Science.gov

Sample records for aboard ulysses measures

  1. Ulysses dust measurements near Jupiter.

    PubMed

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  2. Ulysses

    NASA Technical Reports Server (NTRS)

    Meeks, W.; Beech, F.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for Ulysses are summarized. The primary goal of the Ulysses mission is to explore the Sun, its environment, and possible links between solar variability and terrestrial weather and climate. The Ulysses spacecraft will be injected into an interplanetary orbit toward Jupiter after which the spacecraft travels in a heliocentric, out-of-ecliptic orbit with high heliographic inclination. The Ulysses mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  3. The solar flare and cosmic gamma-ray burst experiment aboard the Ulysses spacecraft

    NASA Technical Reports Server (NTRS)

    Boer, Michel; Sommer, Michael; Hurley, Kevin

    1989-01-01

    The HUS-Ulysses team has prepared an instrument for the Ulysses spacecraft consisting of 2 Csi detectors and 2 Si surface barrier detectors for measuring x rays in the range 5 to 200 keV with up to 8 ms time resolution. The prime objectives of the experiment are the study of solar flares and cosmic gamma-ray bursts. The Ulysses mission will leave the ecliptic during the forthcoming solar maximum. The total time above ecliptic latitudes + or - 70 degrees is expected to be 230 days. The solar data can be used in conjunction with other experiments to measure the directivity of the emission and for correlative studies.

  4. The solar X-ray/cosmic gamma-ray burst experiment aboard Ulysses

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Sommer, M.; Atteia, J.-L.; Boer, M.; Cline, T.; Cotin, F.; Henoux, J.-C.; Kane, S.; Lowes, P.; Niel, M.

    1992-01-01

    The scientific objectives of the Ulysses solar X-ray/cosmic gamma-ray burst experiment, and the unique features of the Ulysses mission which will help to achieve them are described. After a discussion of the special design constraints imposed by the mission, the sensor systems, consisting of two CsI scintillators and two Si surface barrier detectors covering the energy range 5-150 keV are described. Their operating modes and inflight performance are also given.

  5. Ulysses Launch

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Ulysses is a joint mission between the United States National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) to explore the heliosphere over the full range of solar latitudes, especially in the polar regions. The goal of the Ulysses mission is to provide an accurate assessment of our total solar environment. This collaborative ESA/NASA mission will, for the first time, explore the heliosphere -- the region of space that is dominated by the Sun-- within a few astronomical units of the Sun over the full range of heliographic latitudes. The path followed by the spacecraft, using a Jupiter gravity-assist to achieve a trajectory extending to high solar latitudes, will enable the highly sophisticated scientific instruments on board to make measurements in the uncharted third dimension of the heliosphere. The Ulysses spacecraft will carry nine scientific instruments to measure the properties of the solar corona, the solar wind, the Sun/wind interface, the heliospheric magnetic field, solar radio bursts, plasma waves, solar X-rays, solar and galactic cosmic rays, and the interplanetary/interstellar neutral gas and dust. Scientists will take advantage of the enormous distance between the spacecraft and the Earth to perform astrophysical measurements and to search for gravitational waves. In conjunction with instrumentation on Earth-orbiting spacecraft, Ulysses will help to precisely locate the mysterious sources of cosmic gamma bursts. The results obtained will help to solve outstanding problems in solar and heliospheric physics, while undoubtedly revealing new and unanticipated phenomena.

  6. Identification of Solar Wind Stream Interfaces: A Comparison of Ulysses Plasma and Composition Measurements

    NASA Technical Reports Server (NTRS)

    Burton, M.; Neugebauer, M.; Smith, E.; Crooker, N.; von Steiger, R.

    1998-01-01

    Measurements of the specific entropy argument of solar wind protons, T/n superscript y-1, reveal that nearly every occurrence of a high-speed stream seen at Ulysses in 1992-3 is characterized by an abrupt interface at its trailing edge.

  7. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  8. Radiation Measurements aboard Spacelab 1

    NASA Astrophysics Data System (ADS)

    Benton, E. V.; Almasi, J.; Cassou, R.; Frank, A.; Henke, R. P.; Rowe, V.; Parnell, T. A.; Schopper, E.

    1984-07-01

    The radiation environment inside Spacelab 1 was measured by a set of passive radiation detectors distributed throughout the volume inside the module, in the access tunnel, and outside on the pallet. Measurements of the low-LET (linear energy transfer) component obtained from the thermoluminescence detectors ranged from 102 to 190 millirads, yielding an average low-LET dose rate of 11.2 millirads per day inside the module, about twice the low-LET dose rate measured on previous flights of the space shuttle. Because of the higher inclination of the orbit (57 degrees versus 28.5 degrees for previous shuttle flights), substantial fluxes of highly ionizing HZE particles (high charge and energy galactic cosmic rays) were observed, yielding an overall average mission dose-equivalent of about 150 millirems, more than three times higher that measured on previous shuttle missions.

  9. Radiation measurements aboard Spacelab 1

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Almasi, J.; Cassou, R.; Frank, A.; Henke, R. P.; Rowe, V.; Parnell, T. A.; Schopper, E.

    1984-01-01

    The radiation environment inside Spacelab 1 was measured by a set of passive radiation detectors distributed throughout the volume inside the module, in the access tunnel, and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the thermoluminescence detectors ranged from 102 to 190 millirads, yielding an average low LET dose rate of 11.2 millirads/day inside the module, about twice the low LET dose rate measured on previous flights of the Space Shuttle. Because of the higher inclination of the orbit (57 versus 28.5 deg for previous Shuttle flights), substantial fluxes of highly ionizing high charge and energy galactic cosmic ray particles were observed, yielding an overall average mission dose-equivalent of about 150 millirems, more than three times higher than that measured on previous Shuttle missions.

  10. Comparison of measured and calculated magnetic fields along the Ulysses orbit

    NASA Astrophysics Data System (ADS)

    Svirzhevsky, N. S.; Bazilevskaya, G. A.; Svirzhevskaya, A. K.; Stozhkov, Yu. I.

    2015-02-01

    The existence of close relations between the temperature, density and velocity of the solar plasma and the heliospheric magnetic field (HMF) was shown along the space probe Ulysses orbit. A simple mathematical formula describing a relation between the HMF and the solar plasma temperature and density was introduced and the expected values of the HMF were calculated using daily and hourly Ulysses data. Correlation coefficients and regression equation between the values of the measured and calculated magnetic fields have been defined. An origin of the peaks in the magnetic field which are observed in the heliospheric sector zone near the corotating interaction regions is discussed as well as the specific role of plasma density and temperature in the formation of magnetic peaks.

  11. Low energy neutron measurements aboard encounter missions

    NASA Astrophysics Data System (ADS)

    Vilmer, N.; Maksimovic, M.; Trottet, G.

    Neutrons in the MeV to GeV range are produced by interaction of flare accelerated ions with the solar atmosphere. Because of their lifetime, only high energy neutrons (> 100 MeV) have a high probability to be detected at earth's orbit. So far, around fifteen solar neutron events have been observed either by high energy detectors aboard spacecrafts at 1 AU or by ground based neutron monitors. Neutrons between 10 and 100 MeV have also been detected for a few events through their proton decay. Measurements of solar neutrons closer to the Sun aboard encounter missions will allow to probe for the first time the MeV neutrons which are produced by the nuclear reactions of energetic ions with thresholds around 1 MeV/nuc and will provide information on the accelerated ion spectrum in the energy range between ˜ 1 MeV and 100 MeV/nuc in complementarity with what can be deduced from γ -ray line emission. The close proximity of the Sun would allow to measure neutron events for many more flares opening a new field of solar physics. Combined with near in-situ ion measurements and γ -ray observations, neutrons will bring information on the link between interacting and escaping ions while getting rid of most of the transport effects.

  12. Interpretation of Solar Wind Ion Composition Measurements from Ulysses

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1998-01-01

    The ion compositions measured in situ in the solar wind are important since the ion fractions carry information on the plasma conditions in the inner corona. The conditions in the inner corona define the properties of the solar wind plasma flow. Thus, if the ion fraction measurements can be used to unravel some of the plasma parameters in the inner corona, they will provide a valuable contribution to solving the heating and acceleration problem of the solar wind. The ion charge states in the solar wind carry information on electron temperature, electron density and ion flow speed. They are also sensitive to the shape of the electron distribution function. Through carefully modeling the solar wind and calculating the ion fractions predicted for different solar wind conditions, constraints on the electron temperature and ion flow speeds can be placed if the electron density is measured using polarization brightness measurements.

  13. Interpretation of Solar Wind Ion Composition Measurements from ULYSSES

    NASA Astrophysics Data System (ADS)

    Esser, Ruth

    1996-02-01

    Knowledge of the plasma conditions in the inner corona is essential for solar wind modeling since any attempt to explain the expansion of the solar wind plasma depends on information in the inner corona to select and constrain the solar wind expansion models. Of particular interest are the temperatures of the different particle species. The temperatures of protons and heavy ions such as oxygen can only be derived from measurements of spectral lines. As the width of spectral lines reflects both thermal and non-thermal random motions only an upper limit can be placed on the temperature of these particles. The electron temperature on the other hand can be derived from measurements of spectral line intensities by comparing the measured line ratios to the ratios calculated from theoretical models, and from in situ charge state measurements. The idea is that the charge state of the considered element is a function of the local electron temperature only, and that the charge state 'freezes in' at a certain heliocentric distance and remains constant beyond that distance. Therefore, the in situ charge state ratio reflects the electron temperature in the inner corona. In deriving these charge state temperatures it is assumed that all elements and charge states have the same flow speed and the same temperature. Also inherent in these temperature estimates is the assumption that the electron velocity distribution function is Maxwellian. The effect of non-Maxwellian velocity distribution functions and differential flow speeds have been discussed in Owocki and Scudder (1983) and Esser and Leer (1990), respectively. Since the message carried by the charge states is obscured by these different assumptions, model calculations are necessary to extract the desired information from the observations. The goal of the funded study is to develop the necessary solar wind models, and to compare the derived electron temperatures to those derived from spectral line intensity measurements

  14. Interpretation of Solar Wind Composition Measurements from Ulysses

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1999-01-01

    Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona. This information is, however, not easy to extract from the in situ observations. The goal of the proposal was to determine solar wind models and coronal observations that are necessary tools for the interpretation of charge state observations. It has been shown that the interpretation of the in situ ion fractions are heavily dependent on the assumptions about conditions in the inner corona.

  15. STS-41 Ulysses: Ulysses - The Movie

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Footage shows animation of the planned activities of the Ulysses mission. These activities range from Ulysses' deployment from the spacecraft to the orbits around the red giant. The Ulysses spacecraft mission is to explore the polar regions of the Sun.

  16. Sixteen Years of Ulysses Interstellar Dust Measurements in the Solar System. II. Fluctuations in the Dust Flow from the Data

    NASA Astrophysics Data System (ADS)

    Strub, Peter; Krüger, Harald; Sterken, Veerle J.

    2015-10-01

    The Ulysses spacecraft provided the first opportunity to identify and study interstellar dust (ISD) in situ in the solar system between 1992 and 2007. Here we present the first comprehensive analysis of the ISD component in the entire Ulysses dust data set. We analyzed several parameters of the ISD flow in a time-resolved fashion: flux, flow direction, mass index, and flow width. The general picture is in agreement with a time-dependent focusing/defocusing of the charged dust particles due to long-term variations of the solar magnetic field throughout a solar magnetic cycle of 22 years. In addition, we confirm a shift in dust direction of 50° ± 7° in 2005, along with a steep, size-dependent increase in flux by a factor of 4 within 8 months. To date, this is difficult to interpret and has to be examined in more detail by new dynamical simulations. This work is part of a series of three papers. This paper concentrates on the time-dependent flux and direction of the ISD. In a companion paper we analyze the overall mass distribution of the ISD measured by Ulysses, and a third paper discusses the results of modeling the flow of the ISD as seen by Ulysses.

  17. SIXTEEN YEARS OF ULYSSES INTERSTELLAR DUST MEASUREMENTS IN THE SOLAR SYSTEM. II. FLUCTUATIONS IN THE DUST FLOW FROM THE DATA

    SciTech Connect

    Strub, Peter; Krüger, Harald; Sterken, Veerle J.

    2015-10-20

    The Ulysses spacecraft provided the first opportunity to identify and study interstellar dust (ISD) in situ in the solar system between 1992 and 2007. Here we present the first comprehensive analysis of the ISD component in the entire Ulysses dust data set. We analyzed several parameters of the ISD flow in a time-resolved fashion: flux, flow direction, mass index, and flow width. The general picture is in agreement with a time-dependent focusing/defocusing of the charged dust particles due to long-term variations of the solar magnetic field throughout a solar magnetic cycle of 22 years. In addition, we confirm a shift in dust direction of 50° ± 7° in 2005, along with a steep, size-dependent increase in flux by a factor of 4 within 8 months. To date, this is difficult to interpret and has to be examined in more detail by new dynamical simulations. This work is part of a series of three papers. This paper concentrates on the time-dependent flux and direction of the ISD. In a companion paper we analyze the overall mass distribution of the ISD measured by Ulysses, and a third paper discusses the results of modeling the flow of the ISD as seen by Ulysses.

  18. Ulysses: UVCS Coordinated Observations

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.; Corti, G.; Simnett, G.; Noci, G.; Romoli, M.; Kohl, J.; Goldstein, B.

    1998-01-01

    We present results from coordinated observations in which instruments on Solar and Heliospheric Observatory (SOHO) and Ulysses were used to measure the density and flow speed of plasma at the Sun and to again measure the same properties of essentially the same plasma in the solar wind. Plasma was sampled by Ultraviolet Coronagraph Spectrometer (UVCS) at 3.5 and 4.5 solar radii and by Ulysses/SWOOPS at 5 AU. Data were acquired during a nearly 2 week period in May-June 1997 at a latitude of 9-10 degrees north of the equator, on the east limb and, hence, in the streamer belt and the source location of slow wind. Density and outflow speed are compared, in order to check for preservation of the near Sun characteristics in the interplanetary medium. By chance, Ulysses was at the very northern edge of the visible streamer belt. Nevertheless, no evidence of fast wind, or mixing with fast wind coming from the northern polar coronal hole, was evident at Ulysses. The morphology of the streamer belt was similar at the beginning and end of the observation period, but was markedly different during the middle of the period. A corresponding change in density (but not flow speed) was noted at Ulysses.

  19. Composition Of The Inner Source Measured With The Solar Wind Ion Composition Spectrometer On Ulysses

    SciTech Connect

    Gloeckler, G.; Fisk, L. A.; Geiss, J.

    2010-03-25

    To explain the unexpected discovery of C{sup +}, the existence of an inner source of pickup ions close to the Sun was proposed. We report on detailed analyses of the composition and the radial and latitudinal variations of inner source pickup ions measured with the Solar Wind Ion Composition Spectrometer on Ulysses from 1991 to 1998, approaching and during solar minimum. We find that the C{sup +} intensity drops off with radial distance R as R{sup -1.53}, peaks at mid latitudes and drops to its lowest value in the ecliptic. In addition to C{sup +}, N{sup +}, O{sup +}, Ne{sup +}, Na{sup +}, Mg{sup +}, Ar{sup +}, S{sup +}, K{sup +}, CH{sup +}, NH{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, MgH{sup +}, HCN{sup +}, C{sub 2}H{sub 4}{sup +}, SO{sup +} and many other heavy ions and molecular ions are observed. Possible causes for the unexpected latitudinal variations and the neutral source(s) producing the inner source pickup ions are discussed.

  20. Skindeep Ulysses.

    PubMed

    Freedman, Ariela

    2008-01-01

    This essay is about Joyce as an epidermist and Joyce as a chronicler and cataloguer of the "skindeep" surfaces of Dublin in Ulysses. The book is crowded with skins: tanned skins, blushing skins, skins enhanced by makeup and creams, skins marked by race or religion, skins legible and visible, skins imagined and inaccessible and associated with both authenticity and disguise. Skin in Joyce becomes, in Steven Connor's terms, in The Book of Skin, "a place of minglings; a mingling of places," a space where medical, cultural, and aesthetic meanings jostle and intersect and are inscribed and projected on the surface that both expresses and conceals the subject. A skin-deep analysis of Ulysses can reveal to us the entanglement of surface and depth that characterizes Joyce's novel. PMID:20836270

  1. Skindeep Ulysses.

    PubMed

    Freedman, Ariela

    2008-01-01

    This essay is about Joyce as an epidermist and Joyce as a chronicler and cataloguer of the "skindeep" surfaces of Dublin in Ulysses. The book is crowded with skins: tanned skins, blushing skins, skins enhanced by makeup and creams, skins marked by race or religion, skins legible and visible, skins imagined and inaccessible and associated with both authenticity and disguise. Skin in Joyce becomes, in Steven Connor's terms, in The Book of Skin, "a place of minglings; a mingling of places," a space where medical, cultural, and aesthetic meanings jostle and intersect and are inscribed and projected on the surface that both expresses and conceals the subject. A skin-deep analysis of Ulysses can reveal to us the entanglement of surface and depth that characterizes Joyce's novel.

  2. Pickup protons: Comparisons using the three-dimensional MHD HHMS-PI model and Ulysses SWICS measurements

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.; Detman, Thomas; Gloecker, George; Gloeckler, Christine; Dryer, Murray; Sun, Wei; Intriligator, James; Deehr, Charles

    2012-06-01

    We report the first comparisons of pickup proton simulation results with in situ measurements of pickup protons obtained by the SWICS instrument on Ulysses. Simulations were run using the three dimensional (3D) time-dependent Hybrid Heliospheric Modeling System with Pickup Protons (HHMS-PI). HHMS-PI is an MHD solar wind model, expanded to include the basic physics of pickup protons from neutral hydrogen that drifts into the heliosphere from the local interstellar medium. We use the same model and input data developed by Detman et al. (2011) to now investigate the pickup protons. The simulated interval of 82 days in 2003-2004, includes both quiet solar wind (SW) and also the October-November 2003 solar events (the “Halloween 2003” solar storms). The HHMS-PI pickup proton simulations generally agree with the SWICS measurements and the HHMS-PI simulated solar wind generally agrees with SWOOPS (also on Ulysses) measurements. Many specific features in the observations are well represented by the model. We simulated twenty specific solar events associated with the Halloween 2003 storm. We give the specific values of the solar input parameters for the HHMS-PI simulations that provide the best combined agreement in the times of arrival of the solar-generated shocks at both ACE and Ulysses. We show graphical comparisons of simulated and observed parameters, and we give quantitative measures of the agreement of simulated with observed parameters. We suggest that some of the variations in the pickup proton density during the Halloween 2003 solar events may be attributed to depletion of the inflowing local interstellar medium (LISM) neutral hydrogen (H) caused by its increased conversion to pickup protons in the immediately preceding shock.

  3. Pickup Protons: Comparisons using the Three-Dimensional MHD HHMS-PI model and Ulysses SWICS Measurements

    NASA Technical Reports Server (NTRS)

    Intriligator, Devrie S.; Detman, Thomas; Gloecker, George; Gloeckler, Christine; Dryer, Murray; Sun, Wei; Intriligator, James; Deehr, Charles

    2012-01-01

    We report the first comparisons of pickup proton simulation results with in situ measurements of pickup protons obtained by the SWICS instrument on Ulysses. Simulations were run using the three dimensional (3D) time-dependent Hybrid Heliospheric Modeling System with Pickup Protons (HHMS-PI). HHMS-PI is an MHD solar wind model, expanded to include the basic physics of pickup protons from neutral hydrogen that drifts into the heliosphere from the local interstellar medium. We use the same model and input data developed by Detman et al. (2011) to now investigate the pickup protons. The simulated interval of 82 days in 2003 2004, includes both quiet solar wind (SW) and also the October November 2003 solar events (the Halloween 2003 solar storms). The HHMS-PI pickup proton simulations generally agree with the SWICS measurements and the HHMS-PI simulated solar wind generally agrees with SWOOPS (also on Ulysses) measurements. Many specific features in the observations are well represented by the model. We simulated twenty specific solar events associated with the Halloween 2003 storm. We give the specific values of the solar input parameters for the HHMS-PI simulations that provide the best combined agreement in the times of arrival of the solar-generated shocks at both ACE and Ulysses. We show graphical comparisons of simulated and observed parameters, and we give quantitative measures of the agreement of simulated with observed parameters. We suggest that some of the variations in the pickup proton density during the Halloween 2003 solar events may be attributed to depletion of the inflowing local interstellar medium (LISM) neutral hydrogen (H) caused by its increased conversion to pickup protons in the immediately preceding shock.

  4. Self-similar evolution of interplanetary magnetic clouds and Ulysses measurements of the polytropic index inside the cloud

    NASA Technical Reports Server (NTRS)

    Osherovich, Vladimir A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Berdichevsky, D.

    1997-01-01

    A self similar model for the expanding flux rope is developed for a magnetohydrodynamic model of interplanetary magnetic clouds. It is suggested that the dependence of the maximum magnetic field on the distance from the sun and the polytropic index gamma has the form B = r exp (-1/gamma), and that the ratio of the electron temperature to the proton temperature increases with distance from the sun. It is deduced that ion acoustic waves should be observed in the cloud. Both predictions were confirmed by Ulysses observations of a 1993 magnetic cloud. Measurements of gamma inside the cloud demonstrate sensitivity to the internal topology of the magnetic field in the cloud.

  5. The local interstellar medium based on ISN He observations with Ulysses and IBEX and future IMAP measurements

    NASA Astrophysics Data System (ADS)

    Bzowski, M.; Swaczyna, P.; Kubiak, M. A.; Sokol, J. M.; Fuselier, S. A.; Galli, A.; Heirtzler, D.; Kucharek, H.; Leonard, T.; McComas, D. J.; Moebius, E.; Schwadron, N.; Wurz, P.

    2015-12-01

    Direct sampling is an efficient and effective method for studying the local neutral interstellar matter. With first measurements performed in the 1990s by GAS experiment onboard Ulysses, followed by IBEX observations since 2009, we have now a ~20 year long coverage. These observations provide a unique sample of interstellar matter from a spatial region with the dimensions close to the mean free path for atom-ion and atom-atom collisions in the local interstellar medium. Recent analyses of available GAS and IBEX data have resulted in a consolidation of the flow velocity vector and gas temperature of ISN He ahead of the heliosphere. The present GAS and IBEX velocity vectors are in agreement with the determination based on the first two Ulysses ISN observation seasons, but the temperature is markedly higher, by at least 1000 K, than the original determination. In addition, IBEX observations revealed the existence of an additional population of neutral He, dubbed the Warm Breeze, which is likely the secondary population of He produced in the outer heliosheath. We will briefly present the analysis of GAS observations from all three Ulysses orbits and focus on a detailed analysis of IBEX observations from the first six ISN He observation seasons. The velocity vector and temperature obtained from individual IBEX observation seasons vary around the global best-fit values, which is most likely due to statistical fluctuations in the data. An important aspect of the ISN gas studies is the Warm Breeze, which partly overlaps with the ISN population on the sky. Therefore it must be studied in parallel with the ISN gas. Observations of ISN He could provide insight into various hypothetical departures of ISN He from the ideal Maxwell-Boltzmann distribution, but a significant portion of the sky most interesting in this respect is blocked by the local magnetospheric signal, which will not interfere with the observations planned for the IMAP mission.

  6. Survey of caveats in low-energy particle measurements: Ulysses/HI-SCALE and ACE/EPAM Instruments

    NASA Astrophysics Data System (ADS)

    Marhavilas, P. K.; Malandraki, O. E.; Anagnostopoulos, G. C.

    2015-11-01

    "Heliosphere Instrument for Spectra, Composition, and Anisotropy at Low Energies" (HI-SCALE) onboard the ULYSSES spacecraft, and "Electron, Proton, and Alpha Monitor" (EPAM) onboard the ACE spacecraft, are very similar instruments and were designed to make measurements of ions and electrons over a broad range of energy and intensity. The ions (Ei≥50 keV) and electrons (Ee≥30 keV) are detected by five separate solid-state detector telescopes, oriented to provide essentially complete pitch-angle coverage from the spinning spacecraft. In this work, through detailed data-analysis (i) we perform a comprehensive quality assessment on, and (ii) depict a detailed survey of day-of-year (DOYs) with existing contamination in the high-resolution low-energy particle measurements recorded by the HI-SCALE and EPAM instruments, throughout the years 1991-2009 (i.e. during the total Ulysses mission lifetime) and 1997-2011, respectively. Two major types of contamination were revealed in our analysis: (i) "solar X-ray contamination" due to saturation (by solar photons) in two (of the four) detector sectors, during the telescope's direct exposure to the solar disk, and (ii) "cross-talk contamination" due to electrons being recorded as ions and vice versa. The results presented in this work will prove to be valuable to future users of these unique data sets and to designers of similar future instruments, supported by SEP validation and propagation models.

  7. Ulysses Patera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] (Released 18 July 2002) It is helpful to look at the context for this THEMIS image, which covers a large area over the summit of Ulysses Patera. Ulysses Patera is one of the many volcanoes that make up the giant Tharsis volcanic province, although Ulysses itself is fairly small in comparison to the other volcanoes in this area. In the context image, there are 3 circular features near the top of the volcano. The large, central feature is called a 'caldera', and is the result of volcanic activity at Ulysses. The other two circular features are impact craters. The THEMIS image primarily spans across the central caldera, but also covers a portion of the northernmost impact crater. We know that the large central caldera must have formed earlier than the two craters, because its circular form has been cut by the smaller crater rims. In the THEMIS image, there are stair-stepping plateaus in the northern portion of the image. These are part of the rim of the northern crater, and are caused by collapse or subsidence after the impact event. Just to the south of this crater, 'rayed' patterns can be seen on part of the caldera floor. The rayed pattern is most likely due to a landslide of material down the crater rim slope. Another possibility is that the impact that formed the northern crater caused material to be ejected radially, and then parts of the ejecta have either been buried or eroded away. Other signs of mass movement events in this image are dark streaks, caused by dust avalanches, visible in the caldera's northern wall. In the central portion of the image, there are two lobe-shaped features-one overlaps the other-that appear to have flowed westward. It is likely that these features are ejecta lobes, because they are located adjacent to the southeastern crater (see context image). The fluidized appearance of these ejecta lobes is probably due to a significant amount of ice or water being present in the soil at the time

  8. Ulysses charged particle measurements between 1 and 5 AU from the sun.

    PubMed

    Page, D E; Smith, E J; Wenzel, K P

    1994-10-01

    Proton fluxes obtained by two instruments carried on the ESA/NASA Ulysses spacecraft are reported for the period from launch in October 1990 till Jupiter encounter in February 1992. Proton energy ranges are 24-59, 71-99, 130-320, 320-2100 and > 2100 MeV. The Sun was very active during this period, the events of March 1991 being some of the largest of the solar cycle. The relationship between events on the Sun and the observed proton flux is discussed.

  9. An Overview of Energetic Particle Measurements in the Jovian Magnetosphere with the EPAC Sensor on Ulysses.

    PubMed

    Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J

    1992-09-11

    Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.

  10. Electron Pitch-Angle Distribution in Pressure Balance Structures Measured by Ulysses/SWOOPS

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Six, N. Frank (Technical Monitor)

    2002-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. From previous studies, PBSs are believed to be remnants of coronal plumes. Yamauchi et al [2002] investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. They found that PBSs contain structures like current sheets or plasmoids, and suggested that PBSs are associated with network activity such as magnetic reconnection in the photosphere at the base of polar plumes. We have investigated energetic electron data from Ulysses/SWOOPS to see whether bi-directional electron flow exists and we have found evidence supporting the earlier conclusions. We find that 45 ot of 53 PBSs show local bi-directional or isotopic electron flux or flux associated with current-sheet structure. Only five events show the pitch-angle distribution expected for Alfvenic fluctuations. We conclude that PBSs do contain magnetic structures such as current sheets or plasmoids that are expected as a result of network activity at the base of polar plumes.

  11. Ulysses-UVCS Coordinated Observations

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Poletto, G.; Simnett, G. M.; Corti, G.; Neugebauer, M.; Goldstein, B. E.

    1998-01-01

    We present results from coordinated observations in which instruments on SOHO and Ulysses were used to measure the density and flow speed of plasma at the Sun and to again measure the same properties of essentially the same plasma in the solar wind. Plasma was sampled by Ultraviolet Coronagraph Spectrometer (UVCS) at 3.5 and 4.5 solar radii and by Ulysses at 5 AU. Data were acquired during a nearly 2 week period in May-June 1997 at a latitude of 9-10 degrees north of the equator, on the east limb and, hence, in the streamer belt region and the source location of slow wind. Density and outflow plasma speed are compared, in order to check for preservation of the near Sun characteristics in the interplanetary medium. By chance, Ulysses was at the very northern edge of the visible streamer belt. Nevertheless, no evidence of fast wind, or mixing with fast wind coming from the northern polar coronal hole was evident at Ulysses. The morphology of the streamer belt was the same at the beginning and end of the observation period, but changed markedly during the middle of the period. A corresponding change in density (but not flow speed) was noted at Ulysses.

  12. Observations of energetic particles with EPAC on Ulysses in polar latitudes of the heliosphere.

    PubMed

    Keppler, E; Fränz, M; Korth, A; Reuss, M K; Blake, J B; Seidel, R; Quenby, J J; Witte, M

    1995-05-19

    Measurements with the Energetic Particle Composition instrument (EPAC) aboard Ulysses show particles from near the ecliptic that were apparently accelerated by shocks associated with a corotating interaction region. The particles were detected together with the shocks and even when shocks no longer arrived at Ulysses up to -65 degrees of heliographic latitude but not beyond. Particles could have reached these latitudes along magnetic fields; such connections to the outer lower latitude heliosphere evidently do not exist above that latitude. The accelerated streams have composition similar to solar wind abundances, no dispersion, and a net inward anisotropy. The underlying composition between the recurrent stream is similar to the anomalous component of cosmic rays. The channel sensitive to high-energy protons (> 230 megaelectron volts) shows a 26-day variation of the flux superimposed on the heliospheric modulation of galactic ions.

  13. Sixteen Years of Ulysses Interstellar Dust Measurements in the Solar System. I. Mass Distribution and Gas-to-dust Mass Ratio

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Strub, Peter; Grün, Eberhard; Sterken, Veerle J.

    2015-10-01

    In the early 1990s, contemporary interstellar dust penetrating deep into the heliosphere was identified with the in situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the interstellar dust stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium (ISM) surrounding our solar system. Earlier analyses of the Ulysses interstellar dust data measured between 1992 and 1998 implied the existence of a population of “big” interstellar grains (up to 10-13 kg). The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of interstellar dust in the very local ISM. In this paper we analyze the entire data set from 16 yr of Ulysses interstellar dust measurements in interplanetary space. This paper concentrates on the overall mass distribution of interstellar dust. An accompanying paper investigates time-variable phenomena in the Ulysses interstellar dust data, and in a third paper we present the results from dynamical modeling of the interstellar dust flow applied to Ulysses. We use the latest values for the interstellar hydrogen and helium densities, the interstellar helium flow speed of {v}{ISM∞ }=23.2 {km} {{{s}}}-1, and the ratio of radiation pressure to gravity, β, calculated for astronomical silicates. We find a gas-to-dust mass ratio in the local interstellar cloud of {R}{{g}/{{d}}}={193}-57+85, and a dust density of (2.1 ± 0.6) × 10-24 kg m-3. For a higher inflow speed of 26 {km} {{{s}}}-1, the gas-to-dust mass ratio is 20% higher, and, accordingly, the dust density is lower by the same amount. The gas-to-dust mass ratio derived from our new analysis is compatible with the value most recently determined from astronomical observations. We confirm earlier results that the very local ISM contains “big” (i.e., ≈1 μm sized) interstellar grains. We find a dust density in the local ISM that is a

  14. Past and Future SOHO-Ulysses Quadratures

    NASA Technical Reports Server (NTRS)

    Suess, Steven; Poletto, G.

    2006-01-01

    With the launch of SOHO, it again became possible to carry out quadrature observations. In comparison with earlier observations, the new capabilities of coronal spectroscopy with UVCS and in situ ionization state and composition with Ulysses/SWICS enabled new types of studies. Results from two studies serve as examples: (i) The acceleration profile of wind from small coronal holes. (ii) A high-coronal reconnecting current sheet as the source of high ionization state Fe in a CME at Ulysses. Generally quadrature observations last only for a few days, when Ulysses is within ca. 5 degrees of the limb. This means luck is required for the phenomenon of interest to lie along the radial direction to Ulysses. However, when Ulysses is at high southern latitude in winter 2007 and high northern latitude in winter 2008, there will be unusually favorable configurations for quadrature observations with SOHO and corresponding bracketing limb observations from STEREO A/B. Specifically, Ulysses will be within 5 degrees of the limb from December 2006 to May 2007 and within 10 degrees of the limb from December 2007 to May 2008. These long-lasting quadratures and bracketing STEREO A/B observations overcome the limitations inherent in the short observation intervals of typical quadratures. Furthermore, ionization and charge state measurements like those on Ulysses will also be made on STEREO and these will be essential for identification of CME ejecta - one of the prime objectives for STEREO.

  15. Reviving Ulysses contracts.

    PubMed

    Spellecy, Ryan

    2003-12-01

    Ulysses contracts have faced paternalism objections since they first were proposed. Since the contracts are designed to override a present request from a legally competent patient in favor of a past request made by that patient, enforcement of these contracts was argued to be unjustifiable strong paternalism. Recent legal developments and new theories of practical reasoning suggest that the discussion of Ulysses contracts should be revived. This paper argues that with a proper understanding of the future-directed planning embodied in Ulysses contracts, the charge of strong paternalism can be answered, and the enforcement of some Ulysses contracts may be justified under the rubric of weak paternalism.

  16. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport.

    PubMed

    Vuković, B; Radolić, V; Lisjak, I; Vekić, B; Poje, M; Planinić, J

    2008-02-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 microSv/h and the TLD dosimeter registered the dose equivalent of 75 microSv or the average dose rate of 2.7 microSv/h; the neutron dosimeter gave the dose rate of 2.4 microSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4microSv/h; the neutron dosimeter gave the dose rate of 2.5 microSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  17. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport.

    PubMed

    Vuković, B; Radolić, V; Lisjak, I; Vekić, B; Poje, M; Planinić, J

    2008-02-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 microSv/h and the TLD dosimeter registered the dose equivalent of 75 microSv or the average dose rate of 2.7 microSv/h; the neutron dosimeter gave the dose rate of 2.4 microSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4microSv/h; the neutron dosimeter gave the dose rate of 2.5 microSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data. PMID:17935999

  18. Properties of the solar wind electrons between 1.1 and 3.3 AU from Ulysses thermal noise measurements

    SciTech Connect

    Maksimovic, M.; Hoang, S.; Bougeret, J.-L.

    1996-07-20

    Using the distribution function f(v) of the solar wind electrons made of two Maxwellians: a core (density n{sub c}, temperature T{sub c}) and a halo (density n{sub h}, temperature T{sub h}), we determine the quasi-thermal noise (QTN) induced by the ambient electrons on the long wire dipole antenna connected to the radio receiver on the Ulysses Unified Radio and Plasma Wave (URAP) Experiment. The QTN spectroscopy yields the total electron density n{sub e}, the core temperature T{sub c}, and the core and halo kinetic pressures n{sub c}T{sub c} and n{sub h}T{sub h}. We present the results of n{sub e} and T{sub c} measured between 1.1 and 3.3 AU in the ecliptic plane, from November 1990 to June 1991. We investigate the variation of T{sub c} with the heliocentric distance. We also study this radial gradient as a function of three classes of n{sub e} normalized to 1 AU: Low, intermediate and high densities. The T{sub c} gradient is found to increase with increasing plasma density.

  19. Solar Wind Characteristics from SOHO-Sun-Ulysses Quadrature Observations

    NASA Technical Reports Server (NTRS)

    Poletto, Giannina; Suess, Steve T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Over the past few years, we have been running SOHO (Solar and Heliospheric Observatory)-Sun-Ulysses quadrature campaigns, aimed at comparing the plasma properties at coronal altitudes with plasma properties at interplanetary distances. Coronal plasma has been observed by SOHO experiments: mainly, we used LASCO (Large Angle and Spectrometric Coronagraph Experiment) data to understand the overall coronal configuration at the time of quadratures and analyzed SUMER (Solar Ultraviolet Measurements of Emitted Radiation), CDS (Coronal Diagnostic Spectrometer) and UVCS (Ultraviolet Coronagraph Spectrometer) data to derive its physical characteristics. At interplanetary distances, SWICS (Solar Wind Ion Composition Spectrometer) and SWOOPS (Solar Wind Observation over the Poles of the Sun) aboard Ulysses provided us with interplanetary plasma data. Here we report on results from some of the campaigns. We notice that, depending on the geometry of the quadrature, i.e. on whether the radial to Ulysses traverses the corona at high or low latitudes, we are able to study different kinds of solar wind. In particular, a comparison between low-latitude and high-latitude wind, allowed us to provide evidence for differences in the acceleration of polar, fast plasma and equatorial, slow plasma: the latter occurring at higher levels and through a more extended region than fast wind. These properties are shared by both the proton and heavy ions outflows. Quadrature observations may provide useful information also on coronal vs. in situ elemental composition. To this end, we analyzed spectra taken in the corona, at altitudes ranging between approx. 1.02 and 2.2 solar radii, and derived the abundances of a number of ions, including oxygen and iron. Values of the O/Fe ratio, at coronal levels, have been compared with measurements of this ratio made by SWICS at interplanetary distances. Our results are compared with previous findings and predictions from modeling efforts.

  20. Ulysses log 1992

    NASA Technical Reports Server (NTRS)

    Perez, Raul Garcia

    1993-01-01

    The Ulysses Log tells the story of some intriguing problems that we (=The Spacecraft Team) have encountered. Ulysses was launched on 6 Oct. 1990, and it made the fastest trip to Jupiter (8 Feb. 1992). It is presently going out of the ecliptic. This paper presents log entries from the following areas: (1) ingenious maneuvers; (2) telecommunication problems; and (3) surprises.

  1. Ulysses: A Solar Odyssey

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is a film to film transfer of a Media Four production by Charles Finance about the Ulysses Mission to the Sun. The prelaunch production uses graphics, animation, and live footage to describe how Ulysses will use the gravity of Jupiter to lift it out of the ecliptic plane into polar orbit around the Sun.

  2. Ulysses and IBEX Constraints on the Interstellar Neutral Helium Distribution

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Müller, H.-R.

    2015-09-01

    We relax the usual assumption of Maxwellian velocity distributions in the interstellar medium (ISM) in the analysis of neutral He particle data from Ulysses and the Interstellar Boundary Explorer (IBEX). For Ulysses, the possibility that a narrow component from heavy neutrals is contaminating the He signal is considered, which could potentially explain the lower ISM temperature measured by Ulysses compared to IBEX. The expected heavy element contribution is about an order of magnitude too small to resolve that discrepancy. For IBEX, we find that modest asymmetries in the ISM velocity distribution can potentially improve the quality of fit to the first two years of data, and perhaps improve agreement with the Ulysses measurements.

  3. Properties of the solar wind electrons between 1 and 3.3 AU from Ulysses thermal noise measurements

    NASA Technical Reports Server (NTRS)

    Maksimovic, M.; Hoang, S.; Bougeret, J. L.

    1995-01-01

    In order to describe the distribution function f(v) of the solar wind electrons, the simplest model which is commonly used consists of the sum of two Maxwellians representing two distinct populations: a core (density n(sub c), temperature T(sub c)) and a halo (density n(sub h), temperature T(sub h)). It is possible, with the latter assumptions on the electron f(v), to determine the quasi-thermal noise (QTN) induced on an antenna by the motion of the ambient electrons in the solar wind. Using this distribution and the spectroscopy of thermal noise measurements from the radio receiver on Ulysses in the ecliptic plane, we deduce the total electron density N(sub e), the core temperature T(sub c), and the core and halo kinetic pressures N(sub c)T(sub c) and N(sub h)T(sub h). From these electron parameters, we can define a 'global' electron temperature as T(sub e) = (N(sub c)T(sub c) + N(sub h)T(sub h))/N(sub e). Here we present different radial gradients of T(sub e), between 1 and 3.3 AU, as a function of three classes of N(sub e) at 1 AU: low, intermediate, and high densities. In general all these gradients are found to be positive with different polytrope power law indexes between N(sub e) and T(sub e), which are in general lower than unity. We also show different behaviors of the ratio N(sub h)T(sub h)/N(sub c)T(sub c) for each density class considered. Some possible interpretations for these observations are discussed.

  4. Ulysses Education and Outreach

    NASA Technical Reports Server (NTRS)

    Angrum, A.

    1998-01-01

    Ulysses is a joint NASA/ESA mission that is exporing a three-dimensional structure of the heliosphere via an orbit over the poles of the Sun. Since its inception, Ulysses, both in NASA and ESA, has had a public and science outreach program; it is only within the last three years that the project has begun to expand its outreach activities to include education.

  5. REVISITING ULYSSES OBSERVATIONS OF INTERSTELLAR HELIUM

    SciTech Connect

    Wood, Brian E.; Müller, Hans-Reinhard; Witte, Manfred

    2015-03-01

    We report the results of a comprehensive reanalysis of Ulysses observations of interstellar He atoms flowing through the solar system, the goal being to reassess the interstellar He flow vector and to search for evidence of variability in this vector. We find no evidence that the He beam seen by Ulysses changes at all from 1994-2007. The direction of flow changes by no more than ∼0.°3 and the speed by no more than ∼0.3 km s{sup –1}. A global fit to all acceptable He beam maps from 1994-2007 yields the following He flow parameters: V {sub ISM} = 26.08 ± 0.21 km s{sup –1}, λ = 75.54 ± 0.°19, β = –5.44 ± 0.°24, and T = 7260 ± 270 K; where λ and β are the ecliptic longitude and latitude direction in J2000 coordinates. The flow vector is consistent with the original analysis of the Ulysses team, but our temperature is significantly higher. The higher temperature somewhat mitigates a discrepancy that exists in the He flow parameters measured by Ulysses and the Interstellar Boundary Explorer, but does not resolve it entirely. Using a novel technique to infer photoionization loss rates directly from Ulysses data, we estimate a density of n {sub He} = 0.0196 ± 0.0033 cm{sup –3} in the interstellar medium.

  6. Revisiting Ulysses Observations of Interstellar Helium

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Müller, Hans-Reinhard; Witte, Manfred

    2015-03-01

    We report the results of a comprehensive reanalysis of Ulysses observations of interstellar He atoms flowing through the solar system, the goal being to reassess the interstellar He flow vector and to search for evidence of variability in this vector. We find no evidence that the He beam seen by Ulysses changes at all from 1994-2007. The direction of flow changes by no more than ~0.°3 and the speed by no more than ~0.3 km s-1. A global fit to all acceptable He beam maps from 1994-2007 yields the following He flow parameters: V ISM = 26.08 ± 0.21 km s-1, λ = 75.54 ± 0.°19, β = -5.44 ± 0.°24, and T = 7260 ± 270 K where λ and β are the ecliptic longitude and latitude direction in J2000 coordinates. The flow vector is consistent with the original analysis of the Ulysses team, but our temperature is significantly higher. The higher temperature somewhat mitigates a discrepancy that exists in the He flow parameters measured by Ulysses and the Interstellar Boundary Explorer, but does not resolve it entirely. Using a novel technique to infer photoionization loss rates directly from Ulysses data, we estimate a density of n He = 0.0196 ± 0.0033 cm-3 in the interstellar medium.

  7. Ulysses/BATSE observations of cosmic gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Boer, M.; Sommer, M.; Fishman, G.; Meegan, C.; Paciesas, W.; Wilson, R.; Kouveliotou, C.; Cline, T.

    1992-01-01

    The gamma ray burst detector aboard the ESA-NASA Ulysses spacecraft, in operation since Nov. 1990, has detected numerous gamma bursts in conjunction with the BATSE experiment aboard the Compton Observatory. Initial results are presented on burst locations for three events (21 April, 2 May, and 3 May, 1991) obtained by arrival time analysis, and they are compared with the BATSE locations. The arrival time analysis annuli have typical widths of 5'. The preliminary analysis indicates that both experiments are likely to have unresolved systematic errors, but that further work will improve the location accuracy substantially.

  8. Ulysses mission operations

    NASA Technical Reports Server (NTRS)

    Beech, P.

    1992-01-01

    The Ulysses mission is described in terms of in-Shuttle operations, initial in-orbit operations, routine operations, operational organization, and data gathering and production. The configuration of the Ulysses payload is illustrated, and the flight to orbit is described including a three-hour on-orbit checkout. The first contact was reported at the Deep Space Network station followed by an adjustment of the spacecraft solar-aspect angle and the acquisition of ranging and Doppler data. In-orbit operations include the earth acquisition maneuver, a trajectory correction maneuver, and a payload switch. Continuous data gathering is discussed with reference to the Jupiter encounter and the first and second oppositions and conjunctions. The data-gathering components comprise ground stations, a data-processing computer, and a data-records system. Data production is performed in an off-line mode that does not interfere with the real-time operations.

  9. Menstruation in Ulysses.

    PubMed

    Mullin, Katherine

    2008-01-01

    This article investigates James Joyce's fascination with a wide variety of medical texts, sexual folklores, religious beliefs, and persistent superstitions about menstruation. That fascination finds its way into Ulysses, which draws upon a number of intertexts to inform a curiosity about the female body most strikingly articulated by Bloom, Molly, and Gerty MacDowell. These intertexts are not simply imported into the novel but are dismantled and interrogated, as Joyce exposes, rather than endorses, clichés of essential femininity.

  10. Measurement of OH, H2SO4, MSA, and HNO3 Aboard the P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    2003-01-01

    This paper addresses the measurement of OH, H2SO4, MSA, and HNO3 aboard the P-3B aircraft under the following headings: 1) Performance Report; 2) Highlights of OH, H2SO4, and MSA Measurements Made Aboard the NASA P-3B During TRACE-P; 3) Development and characteristics of an airborne-based instrument used to measure nitric acid during the NASA TRACE-P field experiment.

  11. Inefficiency of sanitation measures aboard commercial aircraft: environmental pollution and disease.

    PubMed

    Kikuchi, R

    1977-07-01

    Recent investigations at Tokyo International Airport have proven that environmental pollution resulting from the inefficient disposal of human excretion aboard aircraft is an important problem from the standpoint of quarantine. It is, therefore, recommended that the worldwide aviation industry take immediate measures to improve conditions and eliminate this problem, which has thus far been ignored by aircraft designers, airport administration, and CAB personnel. PMID:329830

  12. Charged particle LET-spectra measurements aboard LDEF

    NASA Technical Reports Server (NTRS)

    Csige, I.; Benton, E. V.; Frank, A. L.; Frigo, L. A.; Benton, E. R.; Parnell, T. A.; Watts, J. W., Jr.

    1992-01-01

    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack.

  13. Charged particle LET-spectra measurements aboard LDEF

    NASA Technical Reports Server (NTRS)

    Csige, I.; Benton, E. V.; Frank, A. L.; Frigo, L. A.; Benton, E. R.; Parnell, T. A.; Watts, John W., Jr.

    1991-01-01

    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 250 to 1000 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The Short Range (SR) and Galactic Cosmic Ray (GCR) components were measured separately. The integral dose and dose rate spectra of charged particles are also given. The high LET portion of the LET spectra was measured with high statistical accuracy. This is a unique result of this experiment due to the low flux of this type of particle under typical shielding conditions.

  14. Ions with low charges in the solar wind as measured by SWICS on board Ulysses. [Solar Wind Ion Composition Spectrometer

    NASA Technical Reports Server (NTRS)

    Geiss, J.; Ogilvie, K. W.; Von Steiger, R.; Mall, U.; Gloeckler, G.; Galvin, A. B.; Ipavich, F.; Wilken, B.; Gliem, F.

    1992-01-01

    We present new data on rare ions in the solar wind. Using the Ulysses-SWICS instrument with its very low background we have searched for low-charge ions during a 6-d period of low-speed solar wind and established sensitive upper limits for many species. In the solar wind, we found He(1+)/He(2+) of less than 5 x 10 exp -4. This result and the charge state distributions of heavier elements indicate that all components of the investigated ion population went through a regular coronal expansion and experienced the typical electron temperatures of 1 to 2 million Kelvin. We argue that the virtual absence of low-charge ions demonstrates a very low level of nonsolar contamination in the source region of the solar wind sample we studied. Since this sample showed the FlP effect typical for low-speed solar wind, i.e., an enhancement in the abundances of elements with low first ionization potential, we conclude that this enhancement was caused by an ion-atom separation mechanism operating near the solar surface and not by foreign material in the corona.

  15. Spatial gradients of GCR protons in the inner heliosphere derived from Ulysses COSPIN/KET and PAMELA measurements

    NASA Astrophysics Data System (ADS)

    Gieseler, J.; Heber, B.

    2016-05-01

    Context. During the transition from solar cycle 23 to 24 from 2006 to 2009, the Sun was in an unusual solar minimum with very low activity over a long period. These exceptional conditions included a very low interplanetary magnetic field (IMF) strength and a high tilt angle, which both play an important role in the modulation of galactic cosmic rays (GCR) in the heliosphere. Thus, the radial and latitudinal gradients of GCRs are very much expected to depend not only on the solar magnetic epoch, but also on the overall modulation level. Aims: We determine the non-local radial and the latitudinal gradients of protons in the rigidity range from ~0.45 to 2 GV. Methods: This was accomplished by using data from the satellite-borne experiment Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) at Earth and the Kiel Electron Telescope (KET) onboard Ulysses on its highly inclined Keplerian orbit around the Sun with the aphelion at Jupiter's orbit. Results: In comparison to the previous A> 0 solar magnetic epoch, we find that the absolute value of the latitudinal gradient is lower at higher and higher at lower rigidities. This energy dependence is therefore a crucial test for models that describe the cosmic ray transport in the inner heliosphere.

  16. Energetic particle acceleration at corotating interaction regions: Ulysses results

    SciTech Connect

    Desai, M.I.; Marsden, R.G.; Sanderson, T.R.; Gosling, J.T.

    1997-07-01

    We present here statistical properties of energetic ions (tilde 1 MeV) accelerated by corotating interaction regions observed at the Ulysses spacecraft. We have correlated the tilde 1 MeV proton intensity measured near the trailing edges of the interaction regions with their compression ratio. We interpret our results in terms of the plasma conditions experienced at Ulysses and identify a likely source of the low energy seed particles accelerated at the interaction regions.

  17. Menstruation in Ulysses.

    PubMed

    Mullin, Katherine

    2008-01-01

    This article investigates James Joyce's fascination with a wide variety of medical texts, sexual folklores, religious beliefs, and persistent superstitions about menstruation. That fascination finds its way into Ulysses, which draws upon a number of intertexts to inform a curiosity about the female body most strikingly articulated by Bloom, Molly, and Gerty MacDowell. These intertexts are not simply imported into the novel but are dismantled and interrogated, as Joyce exposes, rather than endorses, clichés of essential femininity. PMID:20836273

  18. Large-Scale Structure of the Solar Wind: Electron Density, Temperature and Kappa Deduced From ULYSSES Radio Measurements by Quasi-Thermal Noise Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zouganelis, I.; Maksimovic, M.; Meyer-Vernet, N.; Issautier, K.; Moncuquet, M.

    2006-12-01

    We will revisit and discuss the electron density and temperature derived from the electrostatic noise measurement made with the URAP-RAR dipole electric antenna on Ulysses, as this probe flew by pole-to-pole during the minimum solar activity (1994-95). The electron parameters are obtained by fitting a model of the voltage power spectrum to the voltage measured at the terminals of an electric antenna. This method is generically known as quasi thermal noise spectroscopy. In the present work, the model of spectrum is depending on only 3 parameters and computed by assuming that the electron velocity distribution is a generalized Lorentzian or kappa distribution. The 3 fitted parameters are thus the electron density, temperature and kappa value of the distribution, and we will discuss their variations with heliocentric distance, latitude and temporal solar activity. We will also compare these new results to those obtained by our team from the same data set but assuming instead a classical core + halo distribution for the electron velocity, that is a sum of two Maxwellian distributions. With this latter method, the only temperature that could be determined with enough precision was the core temperature, while our new processing provides the total temperature of the solar wind electrons. We will finally focus on the total temperature gradient with distance we find when using such a kappa distribution.

  19. Large-Scale Structure of the Solar Wind: Electron Density, Temperature and Kappa Deduced from ULYSSES Radio Measurements by Quasi-Thermal Noise Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Issautier, K.; Zouganelis, I.

    2004-05-01

    We will revisit and discuss the electron density and temperature derived from the electrostatic noise measurement made with the URAP-RAR dipole electric antenna on Ulysses, as this probe flew by pole-to-pole during the minimum solar activity (1994-95). The electron parameters are obtained by fitting a model of the voltage power spectrum to the voltage measured at the terminals of an electric antenna. This method is generically known as ``quasi thermal noise spectroscopy''. In the present work, the model of spectrum is depending on only 3 parameters and computed by assuming that the electron velocity distribution is a generalized Lorentzian or ``kappa'' distribution. The 3 fitted parameters are thus the electron density, temperature and kappa value of the distribution, and we will discuss their variations with heliocentric distance, latitude and temporal solar activity. We will also compare these new results to those obtained by our team from the same data set but assuming instead a classical ''core + halo'' distribution for the electron velocity, that is a sum of two Maxwellian distributions. With this later method, the only temperature that could be determined with enough precision was the core temperature, while our new processing provides the total temperature of the solar wind electrons. We will finally focus on the total temperature gradient with distance we find when using such a kappa distribution.

  20. Did Ulysses have porphyria?

    PubMed

    Pierach, Claus A

    2004-07-01

    Although the biosynthetic pathway to heme has been well elucidated and errors along that route have been identified and firmly connected to specific diseases, the porphyrias, slight but nonspecific abnormalities, are occasionally invoked as proof of porphyria or in support of other diagnoses. An errant patient with a conundrum of symptoms but without an explanation for them might have to take iatrogenic detours only to learn after what are at times ulyssean vagaries that the initial diagnosis of porphyria is in the end untenable. Thus the porphyrias are superb examples of the interface between laboratory and clinical medicine, in which the occurrence of the Ulysses syndrome can be curtailed through the careful ordering of tests and cogent interpretation of their results.

  1. Exploring the Possibility of O and Ne Contamination in Ulysses Observations of Interstellar Helium

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Müller, Hans-Reinhard; Bzowski, Maciej; Sokół, Justyna M.; Möbius, Eberhard; Witte, Manfred; McComas, David J.

    2015-10-01

    We explore the possibility that interstellar O and Ne may be contributing to the particle signal from the GAS instrument on Ulysses, which is generally assumed to be entirely He. Motivating this study is the recognition that an interstellar temperature higher than any previously estimated from Ulysses data could potentially resolve a discrepancy between Ulysses He measurements and those from the Interstellar Boundary Explorer (IBEX). Contamination by O and Ne could lead to Ulysses temperature measurements that are too low. We estimate the degree of O and Ne contamination necessary to increase the inferred Ulysses temperature to 8500 K, which would be consistent with both the Ulysses and IBEX data given the same interstellar flow speed. We find that producing the desired effect requires a heavy element contamination level of ∼9% of the total Ulysses/GAS signal. However, this degree of heavy element contribution is about an order of magnitude higher than expected based on our best estimates of detection efficiencies, ISM abundances, and heliospheric survival probabilities, making it unlikely that heavy element contamination is significantly affecting temperatures derived from Ulysses data.

  2. EXPLORING THE POSSIBILITY OF O AND Ne CONTAMINATION IN ULYSSES OBSERVATIONS OF INTERSTELLAR HELIUM

    SciTech Connect

    Wood, Brian E.; Müller, Hans-Reinhard; Bzowski, Maciej; Sokół, Justyna M.; Möbius, Eberhard; Witte, Manfred; McComas, David J.

    2015-10-15

    We explore the possibility that interstellar O and Ne may be contributing to the particle signal from the GAS instrument on Ulysses, which is generally assumed to be entirely He. Motivating this study is the recognition that an interstellar temperature higher than any previously estimated from Ulysses data could potentially resolve a discrepancy between Ulysses He measurements and those from the Interstellar Boundary Explorer (IBEX). Contamination by O and Ne could lead to Ulysses temperature measurements that are too low. We estimate the degree of O and Ne contamination necessary to increase the inferred Ulysses temperature to 8500 K, which would be consistent with both the Ulysses and IBEX data given the same interstellar flow speed. We find that producing the desired effect requires a heavy element contamination level of ∼9% of the total Ulysses/GAS signal. However, this degree of heavy element contribution is about an order of magnitude higher than expected based on our best estimates of detection efficiencies, ISM abundances, and heliospheric survival probabilities, making it unlikely that heavy element contamination is significantly affecting temperatures derived from Ulysses data.

  3. Automated system for measurement, collection and processing of hydrometeorological data aboard scientific research vessels of the GUGMS (SIGMA-s)

    NASA Technical Reports Server (NTRS)

    Borisenkov, Y. P.; Fedorov, O. M.

    1974-01-01

    A report is made on the automated system known as SIGMA-s for the measurement, collection, and processing of hydrometeorological data aboard scientific research vessels of the Hydrometeorological Service. The various components of the system and the interfacing between them are described, as well as the projects that the system is equipped to handle.

  4. Simultaneous observations of gamma-ray bursts with Phebus/Granat and Ulysses GRB

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.; Barat, C.; Boer, M.; Dezalay, J.-P.; Niel, M.; Talon, R.; Vedrenne, G.; Hurley, K.; Sommer, M.; Kuznetsov, A.

    1994-01-01

    We compare the characteristics of 35 gamma-ray bursts (GRBs) detected simultaneously by Phebus aboard Granat and the Ulysses GRB experiment. Phebus observes a medium to high energy range (100 keV - 100 MeV), while the Ulysses GRB detector is sensitive to lower energy photons (25 - 150 keV). Comparison of the peak counts recorded by these two instruments shows that the variation in burst intensities is more extended for Phebus (above approximately 150 keV) than for Ulysses GRB. This result confirms similar observations from other instruments (Atteia et al. 1991; Mitrofanov et al. 1992; Belli 1992). We discuss the consequences of this behavior for the statistical properties of GRBs, and for the searches for a possible cosmological redshift.

  5. Sixteen Years of Ulysses Interstellar Dust Measurements in the Solar System. III. Simulations and Data Unveil New Insights into Local Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Sterken, Veerle J.; Strub, Peter; Krüger, Harald; von Steiger, Rudolf; Frisch, Priscilla

    2015-10-01

    Interstellar dust (ISD) in the solar system was detected in situ for the first time in 1993 by the Ulysses dust detector. The study of ISD is important for understanding its role in star and solar system formation. The goal of this paper is to understand the variability in the ISD observations from the Ulysses mission by using a Monte Carlo simulation of ISD trajectories, with the final aim to constrain the ISD particle properties from simulations and the data. The paper is part of a series of three: Strub et al. describe the variations of the ISD flow from the Ulysses data set, and Krüger et al. focus on its ISD mass distribution. We describe and interpret the simulations of the ISD flow at Ulysses orbit for a wide range of particle properties and discuss four open issues in ISD research: the existence of very big ISD particles, the lack of smaller ISD particles, the shift in dust flow direction in 2005, and particle properties. We conclude that the shift in the dust flow direction in 2005 can best be explained by Lorentz force in the inner heliosphere, but that an extra filtering mechanism is needed to fit the fluxes. A time-dependent filtering in the outer regions of the heliosphere is proposed for this. Also, the high charge-to-mass ratio values found for the heavier particles after 2003 indicate that these particles are lower in density than previously assumed. This method gives new insights into the ISD properties and paves the way toward getting a complete view on the ISD from the local interstellar cloud. We conclude that in combination with the data and simulations, also impact ionization experiments are necessary using low-density dust, in order to constrain the density of the particles.

  6. Helium abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Gosling, J.T.; Mccomas, D.J.; Goldstein, B.E.

    1995-06-01

    The abundance of helium in the solar wind averages approximately 4% but has been observed to vary by more than two orders of magnitude from 0.1 to 30%. Physical processes responsible for this variability are still not clearly understood. Previous work has shown a correlation between low He abundance and coronal streamer plasma and between high He abundance and coronal mass ejections (CMEs). The authors now have out-of-ecliptic data on helium in the solar wind from the plasma experiment aboard Ulysses. Tentative results show that the average high-latitude helium concentration is comparable to the in-ecliptic value for the present phase of the solar cycle, that excursions of the hour-averaged abundance very seldom fall outside the range 2.5 to 6.5%, and that there seems to be very little abundance enhancement associated with CMEs encountered at latitudes greater than 30 deg as opposed to the situation commonly encountered with in-ecliptic CMEs. In addition, preliminary observations of a single CME by both ISEE (in-ecliptic) and Ulysses (out-of-ecliptic) show a considerable He enhancement at ISEE with little or no perturbation of the average value at Ulysses` location. This paper will first present new results from the Ulysses mission up to the time of the meeting on the average abundance of helium in the solar wind as a function of spacecraft position, and will then focus on the out-of-ecliptic results including latitudinal abundance variations and observations of abundance enhancements (or lack thereof) in high-latitude CMEs.

  7. Low-Latitude Solar Wind During the Fall 1998 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Suess, S. T.; Biesecker, D. A.; Esser, R.; Gloeckler, G.; Ko, Y.-K.; Zurbuchen, T. H.

    2002-01-01

    Solar and Heliospheric Observatory (SOH0)-Ulysses quadratures occur when the SOHO-Sun-Ulysses-included angle is 90 deg. These offer the opportunity to directly compare properties of plasma parcels, observed by SOHO [Dorningo et al.] in the low corona, with properties of the same parcels measured, in due time, in situ, by Ulysses [ Wenzel et al]. We refer the reader to Suess et al. for an extended discussion of SOHO-Ulysses quadrature geometry. Here it suffices to recall that there are two quadratures per year, as SOHO makes its one-year revolution around the Sun. This, because SOHO is at the L1 Lagrangian point, in essentially the same place as the Earth, while Ulysses is in a near-polar -5-year solar orbit with a perihelion of 1.34 AU and aphelion of 5.4 AU.

  8. Gigas Meets Ulysses

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 9 July 2003

    Roughly halfway between the great volcanoes of Olympus Mons and Pavonis Mons, the graben (troughs) of Ulysses Fossae intersect with the furrows of Gigas (gigantic) Sulci. A clear time sequence is evident: first came the formation of the sulci terrain (to the left), which then was fractured by graben radial to Olympus Mons, followed by flooding of lava. All but the deepest graben are filled by lava in the topographic low between the two volcanic rises.

    Image information: VIS instrument. Latitude 11.8, Longitude 234.3 East (125.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Atmospheric Measurements Aboard C-130 During the Pacific Atmospheric Sulfur Experiment

    NASA Astrophysics Data System (ADS)

    Yanchilina, A. G.; Mauldin, L.; Anderson, R.

    2007-12-01

    The Pacific Atmospheric Sulfur Experiment (PASE) is a study with a primary goal aimed at understanding the sulfur cycle in a remote marine atmosphere. The study will be conducted in August and September months of 2007 at Christmas Island on board the NSF/NCAR C-130 aircraft. It will foremost focus on measurements of DMS (dimethyl sulfide) and its contribution to formation of H2SO4 (sulfuric acid) and MSA (methane-sulfonic acid) by reaction with OH (hydroxyl). PASE will also concentrate on subsequent production of aerosols and cloud condensation nuclei from H2SO4, MSA, and NH3 concentrations in a cloud free convective boundary layer (CBL) and in outflow of marine cumulus. This study explains the measurement technique for OH, H2SO4, MSA, HO2, HO2+RO2 (peroxy radicals), and NH3 (ammonia) using the SICIMS (Selected ion chemical ionization mass spectrometer). It also presents sample measurements from research flights of OH, H2SO4, MSA, HO2, and HO2+RO2. In addition, this paper discusses the measurement technique utilized aboard the C-130 in testing SO2, DMS, DMSO (dimethyl sulfoxide), DMSO2 (dimethyl sulfone), O3 (ozone), aerosols, and cloud condensation nuclei. It includes several adaptations to technique and instrumentation from previous studies conducted: the First Aerosol Characterization Experiment (ACE-1) in 1998, the Pacific Exploratory Missions A and B (PEM- Tropics) in 1996, and the Intercontinental Transport Experiment (INTEX-B) in 2006.

  10. Ulysses S. Grant and Reconstruction.

    ERIC Educational Resources Information Center

    Wilson, David L.

    1989-01-01

    Discusses the role played by Ulysses S. Grant during the four years of Reconstruction before he became President of the United States. Describes the dynamics of the relationship between Grant and Andrew Johnson. Points out that Grant's attitude of service to the laws created by Congress submerged his desire to create a new South. (KO)

  11. ACE to Ulysses Coherences

    NASA Astrophysics Data System (ADS)

    Thomson, D. J.; Maclennan, C. G.; Lanzerotti, L. J.

    2006-12-01

    The EPAM charged particle instrument on ACE is the backup for the HISCALE instrument on Ulysses making the two ideally suited for spatial coherence studies over large heliosphere distances. Fluxes of low-energy ( ~50 - 200 keV) electrons are detected in eight spatial sectors on both spacecraft. A spherical harmonic description of the particle flux as a function of time using only the l=0 and l=1 degree coefficients describes most of the observed flux. Here we concentrate on the three l=1 coefficients for the 60--100 kev electrons.Between the two spacecraft these result in nine coherence estimates that are all typically moderately coherent, but the fact that the different coefficients at each spacecraft are also coherent with each other makes interpretation difficult. To avoid this difficulty we estimated the canonical coherences between the two groups of three series. This, in effect, chooses an optimum coordinate system at each spacecraft and for each frequency and estimates the coherence in this frame. Using one--minute data, we find that the canonical coherences are generally larger at high frequencies (3 mHz and above) than they are at low frequencies. This appears to be generally true and does not depend particularly on time, range, etc. However, if the data segment is chosen too long, say > 30 days with 1--minute sampling, the coherence at high frequencies drops. This may be because the spatial and temporal features of the mode are confounded, or possibly because the solar modes p--modes are known to change frequency with solar activity, so do not appear coherent on long blocks.The coherences are not smooth functions of frequency, but have a bimodal distribution particularly in the 100 μHz to 5 mHz range. Classifying the data at frequencies where the canonical coherences are high in terms of apparent polarization and orientation, we note two major families of modes that appear to be organized by the Parker spiral. The magnetic field data on the two

  12. Photolysis frequency measurements aboard Zeppelin NT during PEGASOS 2012/13

    NASA Astrophysics Data System (ADS)

    Lohse, Insa; Bohn, Birger; Bachner, Mathias; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Airborne measurements of the solar spectral actinic flux densities for the determination of photolysis frequencies in the atmosphere were performed as part of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS). We present the instrumentation and characterisation of the spectroradiometer systems operated aboard the Zeppelin NT airship and photolysis frequency data obtained in field campaigns in 2012 and 2013. Separate measurements of the upwelling and downwelling components of the actinic flux densities were performed with two instruments covering together a 4π-sr field of view. Since deviations from the ideal 2π-sr angular response of each actinic flux receiver can lead to over- or underestimations of the measured photolysis frequencies, detailed angular sensitivities of the two optical receivers were determined in the laboratory. The influence of the non-ideal behaviour on the photolysis frequency measurements was investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factor were derived. This method is also applicable for other research aircraft operating at higher altitudes. Measurements of the solar actinic flux densities were performed in the wavelength range from 280 - 650 nm with a spectral resolution of about 2 nm and averaged over 3 s. An overview is shown of photolysis frequency data (O3, HNO3, HCHO, H2O2, HNO2, NO2 and NO3) obtained in the atmospheric boundary layer during the PEGASOS campaigns in the Netherlands, Italy 2012 and Finland 2013. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated as well as their influence on the photochemical processing of trace gases. Moreover the instrumentation allows for estimations of height depending spectral albedos. Acknowledgement: Funding by the Deutsche Forschungsgemeinschaft within the

  13. Ulysses, the end of an extraordinary mission

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Ulysses, a pioneering ESA/NASA mission, was launched in October 1990 to explore uncharted territories - the regions above and below the Sun’s poles - and study our star’s sphere of influence, or heliosphere, in the four dimensions of space and time. Originally designed for a lifetime of five years, the mission has surpassed all expectations. The reams of data Ulysses has returned have forever changed the way scientists view the Sun and its effect on the space surrounding it. Media representatives interested in attending the press conference are invited to register using the attached form. Those not able to attend will have the opportunity to follow the press conference using the following phone number: +33 1 56785733 (listening-mode only). The programme of the event is as follows: The Ulysses Legacy Press Conference 12 June 2008, 15:30, Room 137, ESA Headquarters, 8-10 rue Mario-Nikis, Paris Event programme 15:30 Welcome, by David Southwood, ESA Director of Science and Robotic Exploration (with a joint ESA/NASA statement) 15:40 Ulysses: a modern-day Odyssey, by Richard Marsden, ESA Ulysses Project Scientist and Mission Manager 15:50 The Ulysses scientific legacy: Inside the heliosphere, by Richard Marsden,ESA Ulysses Project Scientist and Mission Manager 16:00 The Ulysses scientific legacy: Outside the heliosphere, by Ed Smith, NASA Ulysses Project Scientist 16:10 Ulysses, the over-achiever: challenges and successes of a 17-year-old mission, by Nigel Angold, ESA Ulysses Mission Operations Manager 16:20 Questions and Answers, Panelists: David Southwood, Richard Marsden, Ed Smith, Nigel Angold and Ed Massey (NASA Ulysses Project Manager) 16:40 Interview opportunities 17:30 End of event

  14. The scientific mission of Ulysses

    NASA Technical Reports Server (NTRS)

    Wenzel, K.-P.; Marsden, R. G.; Page, D. E.; Smith, E. J.

    1990-01-01

    The major aims of the Ulysses' scientific investigations of the heliosphere at all latitudes are described. Missions goals include the assessment of the global three-dimensional properties of the interplanetary magnetic field and solar wind, the study of the composition of the solar wind plasma at different heliographic latitudes, and the study of the acceleration of energetic particles in solar flares. Waves, shocks and other discontinuities in the solar wind will be investigated through sampling of various plasma conditions, and interplanetary dust and cosmic rays will be analyzed. Other important goals include the search for gamma-ray-burst sources and for low-frequency gravitational waves by using the spacecraft's radio communication link. Achievement of the Ulysses' solar pole trajectory, which will utilize both launch vehicle thrust and gravitational pull, is also described.

  15. Ulysses Composition, Plasma and Magnetic Field Observations of High Speed Solar wind Streams

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1997-01-01

    During 1992-3 as the Ulysses spacecraft passed in and out of the southern high speed solar wind stream, the Solar Wind Ion Spectrometer, SWICS made continuous composition and temperature measurements of all major solar wind ions.

  16. Preliminary Results from Coordinated UVCS-CDS-Ulysses Observations

    NASA Technical Reports Server (NTRS)

    Parenti, S.; Bromage, B. J.; Poletto, G.; Suess, S. T.; Raymond, J. C.; Noci, G.; Bromage, G. E.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The June 2000 quadrature between the Sun, Earth, and Ulysses took place with Ulysses at a distance of 3.35 AU from the Sun and at heliocentric latitude 58.2 deg south, in the southeast quadrant. This provided an opportunity to observe the corona close to the Sun with Coronal Diagnostic Spectrometer (CDS) and Ultraviolet Coronograph Spectrometer (UVCS) and, subsequently, to sample the same plasma when it reached Ulysses. Here we focus on simultaneous observations of UVCS and CDS made on June 12, 13, 16 and 17. The UVCS data were acquired at heliocentric altitudes ranging from 1.6 to 2.2 solar radii, using different grating positions, in order to get a wide wavelength range. CDS data consisted of Normal Incidence Spectrometer (NIS) full wavelength rasters of 120" x 150" centered at altitudes up to 1.18 solar radii, together with Grazing Incidence Spectrometer (GIS) 4" x 4" rasters within the same field of view, out to 1.2 solar radii. The radial direction to Ulysses passed through a high latitude streamer, throughout the 4 days of observations, Analysis of the spectra taken by UVCS shows a variation of the element abundances in the streamer over our observing interval: however, because the observations were in slightly different parts of the streamer on different days, the variation could be ascribed either to a temporal or spatial effect. The oxygen abundance, however, seems to increase at the edge of the streamer, as indicated by previous analyses. This suggests the variation may be a function of position within the streamer, rather than a temporal effect. Oxygen abundances measured by SWICS on Ulysses are compared with the CDS and UVCS results to see whether changes measured in situ follow the same pattern.

  17. Kilometric type 3 radio bursts observed from high southern ecliptic latitudes by Ulysses

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.

    1995-01-01

    The Ulysses URAP experiment has provided the first measurements of remote and in-situ wave phenomena from high southern latitudes. Remote sensing of type 3 solar radio bursts constitute an important component of the Ulysses observations. Type 3 radio emissions, which have never before been viewed from outside the ecplitic plane, have been observed by Ulysses to its maximum southern latitude (approximately 80 deg S), although their frequency of occurrence has generally diminished due to the declining phase of the solar cycle. In addition, the Ulysses radio receiver measures both the direction of arrival and the complete polarization state of incident radiation. These physical parameters provide information on the origin and nature of the radio emission. Preliminary analyses have indicated that kilometric type 3 radiation is often approximately 10-20% circularly polarized at the highest URAP frequencies. New directional information provides crucial information on the effects of beaming and scattering of the radiation in the interplanetary medium.

  18. Numerical simulation of Ulysses nutation

    NASA Astrophysics Data System (ADS)

    Garciamarirrodriga, C.; Zeischka, J.; Boslooper, E. C.

    1993-04-01

    The in-orbit instability of the Ulysses spacecraft was numerically simulated. The thermal excitation from the solar flux, the flexible axial boom, and the deployment mechanism were modeled and analyzed. In order to model a non-isolated mechanical system, the link between thermal, structural, and multibody dynamics packages is considered. The simulation shows that the nutation build-up was originated by the solar input on the axial boom coupled with the nutational frequency of the spacecraft. The results agree with the observed behavior.

  19. Electromagnetically Interacting Dust Streams During Ulysses' Second Jupiter Encounter

    SciTech Connect

    Krueger, H.; Forsyth, R.J.; Graps, A.L.; Gruen, E.

    2005-10-31

    The Jupiter system is a source of collimated burst-like streams of electrically charged 10-nm dust particles. In 2004 the Ulysses spacecraft had its second flyby at Jupiter and from late 2002 to early 2005 it measured a total of 24 dust streams between 0.8 and 3.4 AU from the planet. The grains show strong coupling to the interplanetary magnetic field: their impact directions correlate with the orientation and strength of the interplanetary magnetic field vector (namely its tangential and radial components) and they occur at 26 day intervals, closely matching the solar rotation period. Ulysses measured the dust streams over a large range in jovian latitude (+75 deg. to -35 deg.). Enhanced dust emission was measured along the jovian equator.

  20. Energetic Particles Measured in and out of the Ecliptic Plane During the Last Gnevyshev Gap

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pacheco, J.; Blanco, J. J.; Heber, B.; Gómez-Herrero, R.

    2012-11-01

    We analyzed the temporal variation of energetic particles measured by the Low Energy Telescope (LET), the Kiel Electron Telescope (KET), and the High Energy Telescope (HET) instruments aboard Ulysses and the Electron Proton Helium Instrument (EPHIN) aboard SOHO during the last solar magnetic field polarity reversal in 2001. We have found two periods with anomalous low fluxes during that time that are present both at low and high heliolatitudes. We compared the energetic particle fluxes with solar energetic phenomena that traditionally have been associated with solar energetic particle (SEP) events at 1 AU. Our results show that these periods are related to relative minima in the number of X-ray flares and CMEs. Since Ulysses scanned the whole latitude range from 80 °S to 80 °N, we conclude that this process affects the inner three-dimensional heliosphere globally.

  1. Electron energy transport in the solar wind: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Scime, Earl; Gary, S. Peter; Phillips, J. L.; Corniileau-Wehrlin, N.; Solomon, J.

    1995-01-01

    The electron heat flux in the solar wind has been measured by the Ulysses solar wind plasma experiment in the ecliptic from 1 to 5 AU and out of the ecliptic during the recently completed pass over the solar south pole and the ongoing pass over the solar north pole. Although the electron heat flux contains only a fraction of the kinetic energy of the solar wind. the available energy is sufficient to account for the non-adiabatic expansion of the solar wind electrons. The Ulysses measurements indicate that the electron heat flux is actively dissipated in the solar wind. The exact mechanism or mechanisms is unknown. but a model based on the whistler heat flux instability predicts radial gradients for the electron heat flux in good agreement with the data. We will present measurements of the correlation between wave activity measured by the unified radio and plasma experiment (URAP) and the electron heat flux throughout the Ulysses mission. The goal is to determine if whistler waves are a good candidate for the observed electron heat flux dissipation. The latitudinal gradients of the electron heat flux. wave activity. and electron pressure will be discussed in light of the changes in the magnetic field geometry from equator to poles.

  2. Uncertainty analysis for Ulysses safety evaluation report

    NASA Technical Reports Server (NTRS)

    Frank, Michael V.

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source-Radioisotope Thermal Generator, the Interagency Nuclear Safety Review Panel (INSRP) performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low.

  3. Effects of corotating interaction regions on ULYSSES high energy particles

    SciTech Connect

    Droege, W.; Kunow, H.; Raviart, A.

    1995-09-01

    Since June 1992 the Kiel Electron Telescope on board ULYSSES measures variations of more than 10% in the fluxes of high energy H and He showing a periodicity of about 26 days in coincidence with the passage of corotating interaction regions. (CIR). At low energies MeV protons are accelerated at the shocks of the CIRs. These effects are observed up to high southern latitudes, where the signature of a CIR is no longer visible in plasma or magnetic field data. After passing over the south polar cap ULYSSES has now returned to the solar equator and climbs up to the north pole. In this paper we study the relative intensity variations with latitude and the latitude dependence at solar distances smaller than ever studied before.

  4. Listen to Data: Video 3 Ulysses

    NASA Video Gallery

    This clip contains audified data from the joint European Space Agency (ESA) and NASA Ulysses satellite gathered on October 26, 1995. The participant in Alexander's study was able to detect artifici...

  5. Modeling of Jovian Hectometric Radiation Source Locations: Ulysses Observations

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Reiner, M. J.

    1996-01-01

    The Unified Radio and Plasma Wave (URAP) experiment on Ulysses has provided unique high latitude measurements of Jovian hectometric radiation (HOM) during its encounter with Jupiter in February 1992. URAP was the first radio instrument in the Jovian environment with radio direction-finding capability, which was previously used to determine the HOM source locations in the Jovian magnetosphere. These initial source location determinations were based on several assumptions, including the neglect of refractive effects, which may be tested. We have, for the first time, combined the measured incident ray-direction at the spacecraft with a model magnetosphere to directly trace the rays back to the HOM source. We concentrate on the observations of HOM from high northern latitudes when Ulysses was at distances less than 15 R(sub j). The three- dimensional ray-tracing calculations presented here indicate that the HOM sources probably lie on L shells in the range 3 less than or approximately equal to L less than 7 (tilted dipole magnetic field model) consistent with previous determinations that ignored the effects of refraction. The ray-tracing results, however, indicate that wave refraction due to the Io torus and the magnetic field can significantly influence the precise source location. We show that constraints on the locations imposed by the gyroemission mechanism suggest that the lo torus density may have experienced temporal and/or spatial fluctuations during the Ulysses observations of HOM. Finally, in the cold plasma approximation we demonstrate that even if the emission were nearly linearly polarized near the source region, almost circular polarization will be observed at Ulysses, in agreement with observations.

  6. Bound to treatment: the Ulysses contract.

    PubMed

    Dresser, R

    1984-06-01

    Several commentators have proposed a novel legal mechanism, the "Ulysses contract" or "voluntary commitment contract," to permit mental patients with recurrent treatable disorders to consent in advance to treatment which they might reject at a time when their cognitive abilities are impaired. Dresser discusses the legal ramifications of precommitment, the implications of basing consent on a patient's past rather than current wishes, problems of enforcing Ulysses contracts given the uncertainties of psychiatric diagnosis, and the inherent paternalism of these precommitment agreements.

  7. Design of an experiment to measure the fire exposure of radioactive materials packages aboard container cargo ships

    SciTech Connect

    Koski, J.A.

    1997-11-01

    The test described in this paper is intended to measure the typical accident environment for a radioactive materials package in a fire aboard a container cargo ship. A stack of nine used standard cargo containers will be variously loaded with empty packages, simulated packages and combustible cargo and placed over a large hydrocarbon pool fire of one hour duration. Both internal and external fire container fire environments typical of on-deck stowage will be measured as well as the potential for container to container fire spread. With the use of the inverse heat conduction calculations, the local heat transfer to the simulated packages can be estimated from thermocouple data. Data recorded will also provide information on fire durations in each container, fire intensity and container to container fire spread characteristics.

  8. Magnetic field observations during the ulysses flyby of jupiter.

    PubMed

    Balogh, A; Dougherty, M K; Forsyth, R J; Southwood, D J; Smith, E J; Tsurutani, B T; Murphy, N; Burton, M E

    1992-09-11

    The Jovian flyby of the Ulysses spacecraft presented the opportunity to confirm and complement the findings of the four previous missions that investigated the structure and dynamics of the Jovian magnetosphere and magnetic field, as well as to explore for the first time the high-latitude dusk side of the magnetosphere and its boundary regions. In addition to confirming the general structure of the dayside magnetosphere, the Ulysses magnetic field measurements also showed that the importance of the current sheet dynamics extends well into the middle and outer magnetosphere. On the dusk side, the magnetic field is swept back significantly toward the magnetotail. The importance of current systems, both azimuthal and field-aligned, in determining the configuration of the field has been strongly highlighted by the Ulysses data. No significant changes have been found in the internal planetary field; however, the need to modify the external current densities with respect to previous observations on the inbound pass shows that Jovian magnetic and magnetospheric models are highly sensitive to both the intensity and the structure assumed for the current sheet and to any time dependence that may be assigned to these. The observations show that all boundaries and boundary layers in the magnetosphere have a very complex microstructure. Waves and wave-like structures were observed throughout the magnetosphere; these included the longest lasting mirror-mode wave trains observed in space.

  9. Hypervelocity dust impacts on the Wind spacecraft: Correlations between Ulysses and Wind interstellar dust detections

    NASA Astrophysics Data System (ADS)

    Wood, S. R.; Malaspina, David M.; Andersson, Laila; Horanyi, Mihaly

    2015-09-01

    The Wind spacecraft is positioned just sunward of Earth at the first Lagrange point, while the Ulysses spacecraft orbits above and below the ecliptic plane crossing the ecliptic as far from the Sun as the orbit of Jupiter (˜5 AU). While Wind does not carry a dedicated dust detector, we demonstrate the ability of Wind electric field measurements to detect hypervelocity dust impacts through their impact plasma signatures. Interstellar dust (ISD) and interplanetary dust particles are differentiated based on a yearly modulation of the ISD flux. Measurements of ISD flux variation by Wind are found to be in good agreement with ISD flux variation measured by Ulysses. While measurements of the ISD flow direction through the Solar System determined by Wind could not be directly compared to those from Ulysses, strong variation in ISD flow direction was observed during similar time periods by both spacecraft.

  10. Timepix-based radiation environment monitor measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Stoffle, Nicholas; Pinsky, Lawrence; Kroupa, Martin; Hoang, Son; Idarraga, John; Amberboy, Clif; Rios, Ryan; Hauss, Jessica; Keller, John; Bahadori, Amir; Semones, Edward; Turecek, Daniel; Jakubek, Jan; Vykydal, Zdenek; Pospisil, Stanislav

    2015-05-01

    A number of small, single element radiation detectors, employing the CERN-based Medipix2 Collaboration's Timepix Application Specific Integrated Circuit (ASIC) coupled to a specially modified version of the USB-Lite interface for that ASIC provided by the Institute for Experimental and Applied Physics (IEAP) at the Czech Technical University in Prague, have been developed at the University of Houston and NASA Johnson Space Center. These detectors, officially designated by NASA as Radiation Environment Monitors (REMs), were deployed aboard the International Space Station in late 2012. Six REM units are currently operating on Station Support Computers (SSCs) and returning data on a daily basis. The associated data acquisition software on the SSCs provides both automated data collection and transfer, as well as algorithms to handle adjustment of acquisition rates and recovery and restart of the acquisition software. A suite of ground software analysis tools has been developed to allow rapid analysis of the data and provides a ROOT-based framework for extending data analysis capabilities.

  11. Five years of Ulysses dust data: 2000 2004

    NASA Astrophysics Data System (ADS)

    Krüger, H.; Altobelli, N.; Anweiler, B.; Dermott, S. F.; Dikarev, V.; Graps, A. L.; Grün, E.; Gustafson, B. A.; Hamilton, D. P.; Hanner, M. S.; Horányi, M.; Kissel, J.; Landgraf, M.; Lindblad, B. A.; Linkert, D.; Linkert, G.; Mann, I.; McDonnell, J. A. M.; Morfill, G. E.; Polanskey, C.; Schwehm, G.; Srama, R.; Zook, H. A.

    2006-08-01

    The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse ( i=79∘, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in 1992. Between January 2000 and December 2004, the spacecraft completed almost an entire revolution about the Sun, passing through perihelion in May 2001 and aphelion in July 2004. In this five-year period the dust detector on board recorded 4415 dust impacts. We publish and analyse the complete data set of both raw and reduced data for particles with masses 10-16g⩽m⩽10-7g. Together with 1695 dust impacts recorded between launch of Ulysses and the end of 1999 published earlier (Grün, E., Baguhl, M., Divine, N., Fechtig, H., Hamilton, D.P, Hanner, M.S., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Riemann, R., Schwehm, G.H., Siddique, N., Staubach, P., Zook, H.A., 1995a. Two years of Ulysses dust data. Planetary Space Sci. 43, 971-999, Paper III; Krüger, H., Grün, E., Landgraf, M., Baguhl, M., Dermott, S.F., Fechtig, H., Gustafson, B.A., Hamilton, D.P., Hanner, M.S., Horányi, M., Kissel, J., Lindblad, B., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., Zook, H.A., 1995. Three years of Ulysses dust data: 1993 to 1995. Planetary and Space Sci. 47, 363-383, Paper V; Krüger, H., Grün, E., Landgraf, M., Dermott, S.F., Fechtig, H., Gustafson, B.A., Hamilton, D.P., Hanner, M.S., Horányi, M., Kissel, J., Lindblad, B., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., Zook, H.A., 2001b. Four years of Ulysses dust data: 1996 to 1999. Planetary Space Sci. 49, 1303-1324, Paper VII), a data set of 6110 dust impacts detected with the Ulysses sensor between October 1990 and December 2004 is now available. The impact rate measured between 2000 and 2002 was relatively constant with about 0.3 impacts per day

  12. Charge state composition in coronal hole and CME related solar wind: Latitudinal variations observed by Ulysses and WIND

    NASA Technical Reports Server (NTRS)

    Galvin, A. B.; Gloeckler, G.

    1997-01-01

    Iron charge states in recurrent coronal hole-associated solar wind flows are obtained in the ecliptic by WIND/SMS, while measurements of iron and silicon from the polar coronal holes are available from Ulysses/SWICS. Ulysses/SWICS also provides ion composition of coronal mass ejection (CME)-related solar wind. Both coronal hole-associated and CME-related solar wind charge charges show heliographic latitudinal variations.

  13. Protecting autonomy as authenticity using Ulysses contracts.

    PubMed

    van Willigenburg, Theo; Delaere, Patrick

    2005-08-01

    Pre-commitment directives or Ulysses contracts are often defended as instruments that may strengthen the autonomous self-control of episodically disordered psychiatric patients. Autonomy is understood in this context in terms of sovereignty ("governing" or "managing" oneself). After critically analyzing this idea of autonomy in the context of various forms of self-commitment and pre-commitment, we argue that what is at stake in using Ulysses contracts in psychiatry is not autonomy as sovereignty, but autonomy as authenticity. Pre-commitment directives do not function to protect autonomous self-control. They serve in upholding the guidance that is provided by one's deepest identity conferring concerns. We elucidate this concept of autonomy as authenticity, by showing how Ulysses contracts protect the possibility of being "a self." PMID:16029989

  14. The May 1997 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Poletto, G.; Romoli, M.; Neugebauer, M.; Goldstein, B. E.; Simnett, G.

    2000-01-01

    We present results from the May 1997 SOHO-Ulysses quadrature, near sunspot minimum. Ulysses was at 5.1 AU, 100 north of the solar equator, and off the east limb. It was, by chance, also at the very northern edge of the streamer belt. Nevertheless, SWOOPS detected only slow, relatively smooth wind and there was no direct evidence of fast wind from the northern polar coronal hole or of mixing with fast wind. LASCO images show that the streamer belt at 10 N was narrow and sharp at the beginning and end of the two week observation interval, but broadened in the middle. A corresponding change in density, but not flow speed, occurred at Ulysses. Coronal densities derived from UVCS show that physical parameters in the lower corona are closely related to those in the solar wind, both over quiet intervals and in transient events on the limb. One small transient observed by both LASCO and UVCS is analyzed in detail.

  15. Protecting autonomy as authenticity using Ulysses contracts.

    PubMed

    van Willigenburg, Theo; Delaere, Patrick

    2005-08-01

    Pre-commitment directives or Ulysses contracts are often defended as instruments that may strengthen the autonomous self-control of episodically disordered psychiatric patients. Autonomy is understood in this context in terms of sovereignty ("governing" or "managing" oneself). After critically analyzing this idea of autonomy in the context of various forms of self-commitment and pre-commitment, we argue that what is at stake in using Ulysses contracts in psychiatry is not autonomy as sovereignty, but autonomy as authenticity. Pre-commitment directives do not function to protect autonomous self-control. They serve in upholding the guidance that is provided by one's deepest identity conferring concerns. We elucidate this concept of autonomy as authenticity, by showing how Ulysses contracts protect the possibility of being "a self."

  16. Uncertainty analysis for Ulysses safety evaluation report

    SciTech Connect

    Frank, M.V. )

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low.

  17. Observations of Solar Energetic Particle Events over the Polar Regions of the Sun at Solar Maximum with the Ulysses COSPIN High Energy Telescope and IMP-8*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Lopate, C.; Zhang, M.

    2002-05-01

    The High Energy Telescope (HET) of the Ulysses COSPIN experi-ment measures intensities and spectra of solar energetic particles (SEPs) with good energy and charge resolution at energies above ~30 MeV/n. During the recent passes over the north and south polar re-gions of the sun, Ulysses observed a number of solar energetic particle events associated with solar activity at low latitudes. Where IMP-8 observations were available, all SEP events observed at proton energies >~30 MeV by Ulysses in the polar regions (solar latitudes above 70 degrees) were also observed at IMP-8. HOwever peak intensities were generally lower and the onsets and rises to maximum were in general significantly slower at Ulysses than at IMP. Anisotropies during the onsets of SEP events at Ulysses were in almost all cases directed outward along the nominal Parker spiral interplanetary magnetic field, implying that the source of the particles on the field lines connecting to Ulysses was inside the orbit of Ulysses. In the late stages of events, generally four to five days after onset, particle fluxes at IMP and Ulysses were approximately equal and remained so for the remainder of the decay phase. We will summarize these and other results from both the north and south polar passes and discuss their significance for models of the ac-celeration and propagation of solar energetic particles. * This work was supported in part by NASA Contract JPL-955432 and by NASA Grant NAG5-8032.

  18. Simultaneous Measurements of Electrons, Protons and Alpha particles by the Electron Proton Helium Instrument aboard SOHO and Chandra

    NASA Astrophysics Data System (ADS)

    Terasa, Christoph; Gomez-Herrero, Raul; Heber, Bernd; Klassen, Andreas; Müller-Mellin, Reinhold

    The flight spare instrument of the Electron Proton Helium Instrument (EPHIN) aboard SOHO was mounted on the X-Ray observatory Chandra. Both instruments measure electrons in the energy range of 150 keV to above 10 MeV, protons and alpha-particles from 4 MeV/nucleon to above 51 MeV/nucleon in different energy channels. While SOHO is located at the Lagrangian L1-point, Chandra is on an elliptical orbit around the Earth crossing the radiation belts with an orbit period of 64 hours. Simultaneous measurements outside of the Earth's magnetosphere are available for both instruments from the launch of Chandra in 1999 to the end of 2008. This period covers half a solar cycle from maximum to the recent solar minimum period. In this presentation different particle components, like Jovian electrons, solar energetic particles and particles coming from interplanetary shock waves will be investigated. We combine SOHO and Chandra observations outside the radiation belts to compare the particle distribution at L1 and at the Earth.

  19. Effects of spacecraft potential on three-dimensional electron measurements in the solar wind

    NASA Technical Reports Server (NTRS)

    Scime, Earl E.; Phillips, John L.; Bame, Samuel J.

    1994-01-01

    Using the three-dimensional, low-energy electron spectrometer aboard the Ulysses spacecraft, we have measured the gyrotropicity of electron distributions in the solar wind. In order to make these observations, we have developed a new technique for correcting spacecraft charging effects in three-dimensional, low-energy particle measurements. Comparisons of ion and electron number and current densities, and the alignment of electron temperature anisotropies with the local magnetic field, are presented as evidence of the improvement in the accuracy of the electron moments resulting from the spacecraft charging corrections. The implications of our charging correction technique go beyond simple scalar corrections to the Ulysses measurements. We discuss the effects of our charging correction upon the measurements of temporal and radial gradients in a plasma environment and for two-dimensionally obtained low-energy particle data.

  20. Effects of spacecraft potential on three-dimensional electron measurements in the solar wind

    SciTech Connect

    Scime, E.E.; Phillips, J.L.; Bame, S.J.

    1994-08-01

    Using the three-dimensional, low-energy electron spectrometer aboard the Ulysses spacecraft, the authors have measured the gyrotropicity of electron distributions in the solar wind. In order to make these observations, they have developed a new technique for correcting spacecraft charging effects in three-dimensional, low-energy particle measurements. Comparisons of ion and electron number and current densities, and the alignment of electron temperature anisotropies with the local magnetic field, are presented as evidence of the improvement in the accuracy of the electron moments resulting from the spacecraft charging corrections. The implications of these charging correction technique go beyond simple scalar corrections to the Ulysses measurements. They discuss the effects of their charging correction upon the measurements of temporal and radial gradients in a plasma environment and for two-dimensionally obtained low-energy particle data. 17 refs., 12 figs.

  1. Ulysses sees differences in solar wind at high, low latitudes

    NASA Astrophysics Data System (ADS)

    1995-06-01

    magnetic field polarity indicates whether the solar wind is coming from the South or from the north. Thus, the equatorial zone in which the Earth is located is aiternatingly traversed by particles originating from northern or southern regions of the Sun." "Periodic excursions in the flux of solar energetic particles between low and high intensity have also reappeared," added Dr. Richard G. Marsden, the European Space Agency project scientist for Ulysses. "They accompany the solar wind fronts -- called interaction regions -- in which energy is transferred to these particles by shocks associated with the interaction regions." An unexpected feature of the Ulysses observations was the detection of these energetic particles at higher latitudes than the shucks that are known to create them. "We really don't know for certain the explanation of these results," Marsden said. "Possible explanations are that the shucks extend to higher latitudes farther from the Sun, or that the particles can diffuse rapidly in latitude without being nearly so much scattered in longitude. These results, when properly understood, will aid us in understanding the creation and propagation of solar energetic particles." Ulysses crossed the Sun's equator on March 5, 1995, making its closest approach at the same time. This period was also marked by a rare line-up of the Earth, Sun and spacecraft that scientists can a conjunction. At this time, the radio beam path from the spacecraft to the Earth swept through all solar latitudes from the south pole to the equator as it probed the Sun's corona. Radio scientists used this opportunity to remotely measure the density of the corona, The scientists warned that this simple global configuration of the Sun to date -- of high speeds over the poles and low speeds near the equator -- is very likely tied to the current phase of the Sun's 11-year sunspot cycle. Currently the Sun is very near to its minimum of activity, with just a few spots observed at low, latitudes

  2. The Ulysses Project. Integrating the Curriculum.

    ERIC Educational Resources Information Center

    Smith, Susan Swenton

    2001-01-01

    Offers a project developed as an outgrowth of sixth-grade students' study of ancient Greece in history, English, drama, and art classes. Explains that the students created sculptures inspired by Greek sculpture that represented student perceptions of the activities and emotions found in the Ulysses myth. (CMK)

  3. Half Sinful Words: Disguised Grief in "Ulysses."

    ERIC Educational Resources Information Center

    Hobbs, Michael

    As a shrewd technician of the language, A. L. Tennyson rightly understood that words are not controllable; they do not always obey rules. As Tennyson said, words "half reveal and half conceal the soul within." In "Ulysses," the title character's speech to his fellow mariners--where he attempts to explain why he has decided to abandon domestic life…

  4. Children's Understanding of the Ulysses Conflict

    ERIC Educational Resources Information Center

    Choe, Katherine S.; Keil, Frank C.; Bloom, Paul

    2005-01-01

    Two studies explored children's understanding of how the presence of conflicting mental states in a single mind can lead people to act so as to subvert their own desires. Study 1 analyzed explanations by children (4-7 years) and adults of behaviors arising from this sort of "Ulysses conflict" and compared them with their understanding of…

  5. Occupational accidents aboard merchant ships

    PubMed Central

    Hansen, H; Nielsen, D; Frydenberg, M

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were identified during a total of 31 140 years at sea. Among these, 209 accidents resulted in permanent disability of 5% or more, and 27 were fatal. The mean risk of having an occupational accident was 6.4/100 years at sea and the risk of an accident causing a permanent disability of 5% or more was 0.67/100 years aboard. Relative risks for notified accidents and accidents causing permanent disability of 5% or more were calculated in a multivariate analysis including ship type, occupation, age, time on board, change of ship since last employment period, and nationality. Foreigners had a considerably lower recorded rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious accidents happened on deck. Conclusions: It was possible to clearly identify work situations and specific risk factors for accidents aboard merchant ships. Most accidents happened while performing daily routine duties. Preventive measures should focus on workplace instructions for all important functions aboard and also on the prevention of accidents caused by walking around aboard the ship. PMID:11850550

  6. Deployment of a Fast-GCMS System to Measure C2 to C5 Carbonyls, Methanol and Ethanol Aboard Aircraft

    NASA Technical Reports Server (NTRS)

    Apel, Eric C.

    2004-01-01

    Through funding of this proposal, a fast response gas chromatograph/mass spectrometer (FGCMS) instrument to measure less than or equal to C4 carbonyl compounds and methanol was developed for the NASA GTE TRACE-P (Global Tropospheric Experiment, Transport And Chemical Evolution Over The Pacific) mission. The system consists of four major components: sample inlet, preconcentration system, gas chromatograph (GC), and detector. The preconcentration system is a custom-built cryogen-conservative system. The GC is a compact, custom-built unit that can be temperature programmed and rapidly cooled. Detection is accomplished with an Agilent Technologies 5973 mass spectrometer. The FGCMS instrument provides positive identification because the compounds are chromatographically separated and mass selected. During TRACE-P, a sample was analyzed every 5 minutes. The FGCMS limit of detection was between 5 and 75 pptv, depending on the compound. The entire instrument package is contained in a standard NASA instrument rack (106 cm x 61 cm x 135 cm), consumes less than 1200 watts and is fully automated with LabViEW 6i. Methods were developed or producing highly accurate gas phase standards for the target compounds and for testing the system in the presence of potential interferents. This report presents data on these tests and on the general overall performance of the system in the laboratory and aboard the DC-8 aircraft during the mission. Vertical profiles for acetaldehyde, methanol, acetone, propanal, methyl ethyl ketone, and butanal from FGCMS data collected over the entire mission are also presented.

  7. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2013-10-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne employment. The modified instrument is described. A laboratory characterization was performed to determine the instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation a calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppbv for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppbv. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately considered and the uncertainty is estimated to be 12.4 ppbv. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppbv at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  8. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2014-03-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  9. The Fall 2000 and Fall 2001 SOHO-Ulysses Quadratures

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.

    2000-01-01

    SOHO-Ulysses quadrature occurs when the SOHO-Sun-Ulysses included angle is 90 degrees. It is only at such times that the same plasma leaving the Sun in the direction of Ulysses can first be remotely analyzed with SOHO instruments and then later be sampled in situ by Ulysses instruments. The quadratures in December 2000 and 2001 are of special significance because Ulysses will be near the south and north heliographic poles, respectively, and the solar cycle will be near sunspot maximum. Quadrature geometry is sometimes confusing and observations are influenced by solar rotation. The Fall 2000 and 2001 quadratures are more complex than usual because Ulysses is not in a true polar orbit and the orbital speed of Ulysses about the Sun is becoming comparable to the speed of SOHO about the Sun. In 2000 Ulysses will always be slightly behind the pole but will appear to hang over the pole for over two months because it is moving around the Sun in the same direction as SOHO. In 20001, Ulysses will be slightly in front of the pole so that its footpoint will be directly observable. Detailed plots will be shown of the relative positions of SOHO and Ulysses will their relative positions. In neither case is true quadrature actually achieved, but this works to the observers advantage in 2001.

  10. The Fall 2000 and Fall 2001 SOHO-Ulysses Quadratures

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    SOHO-Ulysses quadrature occurs when the SOHO-Sun-Ulysses included angle is 90 degrees. It is only at such times that the same plasma leaving the Sun in the direction of Ulysses can first be remotely analyzed with SOHO instruments and then later be sampled in situ by Ulysses instruments. The quadratures in December 2000 and 2001 are of special significance because Ulysses will be near the south and north heliographic poles, respectively, and the solar cycle will be near sunspot maximum. Quadrature geometry is sometimes confusing and observations are influenced by solar rotation. The Fall 2000 and 2001 quadratures are more complex than usual because Ulysses is not in a true polar orbit and the orbital speed of Ulysses about the Sun is becoming comparable to the speed of SOHO about the Sun. In 2000 Ulysses will always be slightly behind the pole but will appear to hang over the pole for over two months because it is moving around the Sun in the same direction as SOHO. In 2001 Ulysses will be slightly in front of the pole so that its footpoint will be directly observable. Detailed plots will be shown of the relative positions of SOHO and Ulysses will their relative positions. In neither case is true quadrature actually achieved, but this works to the observers advantage in 2001.

  11. Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra

    NASA Astrophysics Data System (ADS)

    Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang

    2016-02-01

    We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.

  12. Canopy photosynthesis and transpiration in microgravity: gas exchange measurements aboard Mir.

    PubMed

    Monje, O; Bingham, G E; Carman, J G; Campbell, W F; Salisbury, F B; Eames, B K; Sytchev, V; Levinskikh, M A; Podolsky, I

    2000-01-01

    The SVET Greenhouse on-board the Orbital Station Mir was used to measure canopy photosynthesis and transpiration rates for the first time in space. During the Greenhouse IIB experiment on Mir (June-January 1997), carbon and water vapor fluxes from two wheat (cv. Superdwarf) canopies were measured using the US developed Gas Exchange Measurement System (GEMS). Gas analyzers capable of resolving CO2 concentration differences of 5 micromoles mol-1 against a background of 0.9% CO2, are necessary to measure photosynthetic and respiratory rates on Mir. The ability of the GEMS gas analyzers to measure these CO2 concentration differences was determined during extensive ground calibrations. Similarly, the sensitivity of the analyzers to water vapor was sufficient to accurately measure canopy evapotranspiration. Evapotranspiration, which accounted for over 90% of the water added to the root zone, was estimated using gas exchange and used to estimate substrate moisture content. This paper presents canopy photosynthesis and transpiration data during the peak vegetative phase of development in microgravity.

  13. (abstract) An Extensive Search for Interplanetary Slow-mode Shocks: Ulysses

    NASA Technical Reports Server (NTRS)

    Sakurai, R.; Ho, C. M.; Tsurutani, B. T.; Goldstein, B. E.; Balogh, A.

    1996-01-01

    Ulysses has accumulated five years of interplanetary solar wind plasma and IMF measurements. These data cover from 1 to approximately 5 AU and all the heliographic latitudes. Based on these data, we perform an extensive search for the slow-mode shocks. We find a considerable number of discontinuities that have large magnetic field magnitude changes and also large field normal components.

  14. A review of solar wind ion and electron plasma distributions: Present understanding and Ulysses results

    SciTech Connect

    Goldstein, B. E.

    1996-07-20

    Unlike the oral version of this paper at Solar Wind 8, this written version is not intended as an overview of the observational aspects of solar wind ion and electron distributions, but discusses only recent results in this area with emphasis on Ulysses measurements. Although primarily a review, some new results on solar wind proton temperatures at high latitudes are presented.

  15. Structures in the polar solar wind: Plasma and field observations from Ulysses

    SciTech Connect

    McComas, D.J.; Barraclough, B.L.; Gosling, J.T.; Hammond, C.M.; Phillips, J.L.; Neugebauer, M.; Balogh, A.; Forsyth, R.J.

    1996-07-01

    The Ulysses measurements of the solar wind plasma and magnetic fields for the 36-69 deg.south latitude are analyzed. The plasma compressional structures and pressure balance structures are identified in addition to Alfven waves and coronal mass ejection. {copyright} {bold 1997 American Institute of Physics.}

  16. Stream interfaces and energetic ions in corotating interaction regions: Ulysses test of Pioneer results

    SciTech Connect

    Intriligator, D.S.; Siscoe, G.L. |; Wibberenz, G.; Kunow, H.; Gosling, J.T.

    1996-07-01

    Ulysses measurements of energetic solar wind ions (5-23 MeV) associated with the trailing reverse shock found to be consistent with an earlier result obtained by Pioneers. The observations cover the middle latitude region 20-30 deg.of south heliosphere. {copyright} {ital 1996 American Institute of Physics.}

  17. Stream interfaces and energetic ions in corotating interaction regions: Ulysses test of Pioneer results

    SciTech Connect

    Intriligator, Devrie S.; Siscoe, George L.; Wibberenz, Gerd; Kunow, Horst; Gosling, John T.

    1996-07-20

    Ulysses measurements of energetic solar wind ions (5-23 MeV) associated with the trailing reverse shock found to be consistent with an earlier result obtained by Pioneers. The observations cover the middle latitude region 20-30 deg.of south heliosphere.

  18. Feasibility of a nuclear gauge for fuel quantity measurement aboard aircraft

    NASA Technical Reports Server (NTRS)

    Signh, J. J.; Mall, G. H.; Sprinkle, D. R.; Chegini, H.

    1986-01-01

    Capacitance fuel gauges have served as the basis for fuel quantity indicating systems in aircraft for several decades. However, there have been persistent reports by the airlines that these gauges often give faulty indications due to microbial growth and other contaminants in the fuel tanks. This report describes the results of a feasibility study of using gamma ray attenuation as the basis for measuring fuel quantity in the tanks. Studies with a weak Am-241 59.5-keV radiation source indicate that it is possible to continuously monitor the fuel quantity in the tanks to an accuracy of better than 1 percent. These measurements also indicate that there are easily measurable differences in the physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. The experimental results, along with a suggested source-detector geometrical configuration are described.

  19. Initial Results from the Floating Potential Measurement Unit aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Swenson, Charles; Thompson, Don; Barjatya, Aroh; Koontz, Steven L.; Schneider, Todd; Vaughn, Jason; Minow, Joseph; Craven, Paul; Coffey, Victoria; Parker, Linda; Bui, Them

    2007-01-01

    The Floating Potential Measurement Unit (FPMU) is a multi-probe package designed to measure the floating potential of the 1nternational Space Station (ISS) as well as the density and temperature of the local ionospheric plasma environment. The role oj the FPMU is to provide direct measurements of ISS spacecraft charging as continuing construction leads to dramatic changes in ISS size and configuration. FPMU data are used for refinement and validation of the ISS spacecraft charging models used to evaluate the severity and frequency of occurrence of ISS charging hazards. The FPMU data and the models are also used to evaluate the effectiveness of proposed hazard controls. The FPMU consists of four probes: a floating potential probe, two Langmuir probes. and a plasma impedance probe. These probes measure the floating potential of the ISS, plasma density, and electron temperature. Redundant measurements using different probes support data validation by inter-probe comparisons. The FPMU was installed by ISS crewmembers, during an ExtraVehicular Activity, on the starboard (Sl) truss of the ISS in early August 2006, when the ISS incorporated only one 160V US photovoltaic (PV) array module. The first data campaign began a few hours after installation and continued for over five days. Additional data campaigns were completed in 2007 after a second 160V US PV array module was added to the ISS. This paper discusses the general performance characteristics of the FPMU as integrated on ISS, the functional performance of each probe, the charging behavior of the ISS before and after the addition of a second 160V US PV array module, and initial results from model comparisons.

  20. Airborne FTIR Measurements Obtained Aboard the UW CV-580 During SAFARI-2000

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Bertschi, I.; Christian, T. J.; Hobbs, P. V.; Ward, D. E.; Hao, W. M.

    2001-12-01

    The University of Montana/Forest Service airborne FTIR (AFTIR) was installed on the University of Washington Convair-580 for 19 flights between 14 August and 14 September 2000. We quantified the major trace gases in minutes-old biomass burning smoke (namely CO2, CO, CH4, C2H4, C2H2, CH2O, CH3OH, CH3COOH, HCOOH, NH3, NO, NO2, and HCN) from 9 fires in both arid and humid, wooded savannas where most global biomass burning occurs. Several of these measurements coincided with TERRA/ER2 overpasses. The AFTIR fire measurements confirmed the importance of oxygenated organic compounds in tropical smoke and provided an emission factor for HCN (a potential biomass burning tracer) that is 20 times higher than previously thought. AFTIR also documented some rapid post-emission chemical transformations in smoke. We measured actual formation rates for ozone and acetic acid in smoke downwind from two savanna fires. The ratio of excess ozone to excess CO reached 9% after a few hours of photochemical processing. The similar ratio for acetic acid increased from 1.4 to approximately 5% over the same time period. We observed cloud scavenging of methanol, ammonia, and acetic acid from smoke and a simultaneous, cloud-related source of formaldehyde in the plumes from two other savanna fires. To our knowledge, the SAFARI-2000 flights provided the first comprehensive characterization of savanna fire smoke samples with explicitly known smoke ages and post-emission processing scenarios. We also measured vertical profiles for CO2, CO, CH4, and H2O under TERRA/ER2 at 5 locations in the southern African gyre, one location in the continental outflow over the Atlantic, and one location in the inflow adjacent to the Indian Ocean. During a 3-aircraft intercomparison we observed trace gas enhancement in the free troposphere due to deep cumulus convection. Finally, we measured high NOx emission factors for ships off Namibia. Taken together, our FTIR-based measurements of the emissions from ships

  1. In situ measurements of IO and reactive iodine aboard the RV Sonne during SHIVA

    NASA Astrophysics Data System (ADS)

    Heard, Dwayne; Walker, Hannah; Ingham, Trevor; Huang, Ru-Jin; Wittrock, Folker

    2013-04-01

    Halogenated very short-lived substances (VSLS) are emitted from the oceans by marine species such as macroalgae and phytoplankton and contribute to halogen loading in the troposphere and lower stratosphere. The SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project combined ship-borne, aircraft-based and ground-based measurements in and over the South China Sea and the Sulu Sea, and around the coast of Malaysian Borneo. In this paper we present measurements of IO radicals in coastal and open ocean regions made onboard the German research vessel RV Sonne in November 2011 between Singapore and Manila, via the northern coast of Malaysian Borneo (South China Sea) and the Sulu Sea. In situ measurements of IO were made on 12 days by the University of Leeds laser-induced fluorescence (LIF) instrument, with a detection limit of 0.3 pptv for a 30 minute averaging period. The cruise average IO concentration was found to be 1.2 pptv, with a maximum concentration of 2.4 pptv in the middle of the Sulu Sea, an area known for high biological activity. Only a weak diurnal profile was observed, with IO detected above the detection limit on 10 out of the 11 nights when the LIF instrument was operational. Measurements of IO at night in the open ocean have not previously been reported and indicate the presence of gas phase or heterogeneous mechanisms that recycle iodine species without requiring light. There was reasonable agreement for IO concentrations measured by the University of Leeds LIF and the University of Bremen MAX-DOAS instruments, for which a comparison will be presented. I2, ICl and HOI were measured by the University of Mainz using a coupled diffusion denuder system followed by analysis using gas chromatography coupled with ion trap mass spectroscopy, with a detection of 0.17 pptv for 30 mins (I2). The cruise average I2 concentration was found to be 2.0 pptv, with a maximum concentration observed during one night of 12.7 pptv on the northern coast

  2. Invited article: data analysis of the floating potential measurement unit aboard the international space station.

    PubMed

    Barjatya, Aroh; Swenson, Charles M; Thompson, Donald C; Wright, Kenneth H

    2009-04-01

    We present data from the Floating Potential Measurement Unit (FPMU) that is deployed on the starboard truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of a floating potential probe, a wide-sweeping spherical Langmuir probe, a narrow-sweeping cylindrical Langmuir probe, and a plasma impedance probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data are presented from August 5, 2006 and March 3, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and Utah State University-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in situ density matches the USU-GAIM model better than the IRI, and the derived in situ temperatures are comparable to the average temperatures given by the IRI. PMID:19405644

  3. Data Analysis of the Floating Potential Measurement Unit aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Barjatya, Aroh; Swenson, Charles M.; Thompson, Donald C.; Wright, Kenneth H., Jr.

    2009-01-01

    We present data from the Floating Potential Measurement Unit (FPMU), that is deployed on the starboard (S1) truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of: a Floating Potential Probe, a Wide-sweeping spherical Langmuir probe, a Narrow-sweeping cylindrical Langmuir Probe, and a Plasma Impedance Probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data is presented from August 5th, 2006 and March 3rd, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and USU-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in-situ density matches the USU-GAIM model better than the IRI, and the derived in-situ temperatures are comparable to the average temperatures given by the IRI.

  4. Extended Measurement Capabilities of the Electron Proton Helium INstrument aboard SOHO - Understanding single detector count rates

    NASA Astrophysics Data System (ADS)

    Kühl, P.; Banjac, S.; Heber, B.; Labrenz, J.; Müller-Mellin, R.; Terasa, C.

    Forbush (1937) was the first to observe intensity decreases lasting for a few days utilizing ionization chambers. A number of studies on Forbush decreases (FDs) have been performed since then utilizing neutron monitors and space instrumentation. The amplitude of these variations can be as low as a few permil. Therefore intensity measurements need to be of high statistical accuracy. Richardson et al. (1996) suggested therefore to utilize the single counter measurements of the guard counters of the IMP 8 and Helios E6 instruments. Like the above mentioned instruments the Electron Proton Helium INstrument (EPHIN) provides single counting rates. During the extended solar minimum in 2009 its guard detector counted about 25000~counts/minute, allowing to determine intensity variations of less than 2 permil using 30 minute averages. We performed a GEANT 4 simulation of the instrument in order to determine the energy response of all single detectors. It is shown here that their energy thresholds are much lower than the ones of neutron monitors and therefore we developed a criterion that allows to investigate FDs during quiet time periods.

  5. A Treatment of Measurements of Heptane Droplet Combustion Aboard MSL-1

    NASA Technical Reports Server (NTRS)

    Ackerman, M. D.; Colantonio, R. O.; Crouch, R. K.; Dryer, F. L.; Haggard, J. B.; Linteris, G. T.; Marchese, A. J.; Nayagam, V.; Voss, J. E.; Williams, F. A.

    2003-01-01

    Results of measurements on the burning of free n-heptane droplets (that is, droplets without fiber supports) performed in Spacelab during the flights of the first Microgravity Science Laboratory (MSL-1) are presented. The droplet combustion occurred in oxidizing atmospheres which were at an ambient temperature within a few degrees of 300 K. A total of 34 droplets were burned in helium-oxygen atmospheres having oxygen mole fractions ranging from 20 to 50 percent, at pressures from 0.25 to 1.00 bar. In addition, four droplets were burned in air at 1.00 bar, bringing the total number of droplets for which combustion data were secured to 38; two of these four air tests were fiber-supported to facilitate comparisons with other fiber-support experiments, results of which also are given here. Initial diameters of free droplets ranged from about 1 to 4 mm. The primary data obtained were histories of droplet diameters, recorded in backlight on 35 mm film at 80 frames per second, and histories of flame diameters, inferred from emissions through a narrow-band interference filter centered at the 310 micron OH chemiluminescent ultraviolet band, recorded at 30 frames per second by a intensified-array camera. These data are reported here both in raw form and in a smoothed form with estimated error bars. In addition, summaries are presented of measured burning-rate constants, final droplet diameters, and final flame diameters. Both diffusive and radiative extinctions were exhibited under different conditions. Although some interpretations are reported and conclusions drawn concerning the combustion mechanisms, the principal intent of this report is to provide a complete, documented data set for future analysis.

  6. Tissue equivalent proportional counter microdosimetry measurements utililzed aboard aircraft and in accelerator based space radiation shielding studies

    NASA Astrophysics Data System (ADS)

    Gersey, Brad; Wilkins, Richard

    The space radiation environment presents a potential hazard to the humans, electronics and materials that are exposed to it. Particle accelerator facilities such as the NASA Space Ra-diation Laboratory (NSRL) and Loma Linda University Medical Center (LLUMC) provide particle radiation of specie and energy within the range of that found in the space radiation environment. Experiments performed at these facilities determine various endpoints for bio-logical, electronic and materials exposures. A critical factor in the performance of rigorous scientific studies of this type is accurate dosimetric measurements of the exposures. A Tissue Equivalent Proportional Counter (TEPC) is a microdosimeter that may be used to measure absorbed dose, average quality factor (Q) and dose equivalent of the particle beam utilized in these experiments. In this work, results from a variety of space radiation shielding studies where a TEPC was used to perform dosimetry in the particle beam will be presented. These results compare the absorbed dose and dose equivalent measured downstream of equal density thicknesses of stan-dard and multifunctional shielding materials. The standard materials chosen for these shielding studies included High-Density Polyethylene (HDPE) and aluminum alloy, while the multifunc-tional materials included carbon composite infused with single walled carbon nanotubes. High energy particles including proton, silicon and iron nuclei were chosen as the incident radia-tion for these studies. Further, TEPC results from measurements taken during flights aboard ER-2 and KC-135 aircraft will also be discussed. Results from these flight studies include TEPC measurements for shielded and unshielded conditions as well as the effect of vibration and electromagnetic exposures on the TEPC operation. The data selected for presentation will highlight the utility of the TEPC in space radiation studies, and in shielding studies in particular. The lineal energy response function of the

  7. Low-Latitude Solar Wind During the Fall 1998 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Suess, Steven T.; Biesecker, D.; Esser, R.; Gloeckler, G.; Zurbuchen, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Fall 1998 SOlar-Heliospheric Observatory (SOHO) - Ulysses quadrature occurred when Ulysses was at 5.2 AU, 17.4 deg South of the equator, and off the West line of the Sun. SOHO coronal observations, at heliocentric distances of a few solar radii, showed that the line through the solar center and Ulysses crossed, over the first days of observations, a dark, weakly emitting area and through the northern edge of a streamer complex during the second half of the quadrature campaign. Ulysses in situ observations showed this transition to correspond to a decrease from higher speed wind typical of coronal hole flow to low speed wind. Physical parameters (density, temperature, flow speed) of the low latitude coronal plasma sampled over the campaign are determined using constraints from what is the same plasma measured later in situ and simulating the intensities of the Hydrogen Lyman-alpha and OVI 1032 and 1037 Angstrom lines, measured by the Ultra Violet Coronagraph Spectrometer (UVCS) on SOHO. The densities, temperatures and outflow speed are compared with the same characteristic flow parameters for high-latitude fast wind streams and typical slow solar wind.

  8. RTG performance on Galileo and Ulysses and Cassini test results

    SciTech Connect

    Kelly, C. Edward; Klee, Paul M.

    1997-01-10

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted.

  9. Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.

    PubMed

    Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  10. Jupiter's magnetosphere: Plasma description from the Ulysses flyby

    SciTech Connect

    Bame, S.J.; Barraclough, B.L.; Feldman, W.C.; Gisler, G.R.; Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Thomsen, M.F. ); Goldstein, B.E.; Neugebauer, M. )

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and Io torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  11. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Gosling, J.T.; Phillips, J.L.; McComas, D.J.; Feldman, W.C.; Goldstein, B.E.

    1995-09-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present an overview of the solar wind speed and the variability in helium abundance, [He] data on [He] in six high latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly. In contrast to the high [He] that is commonly associated with CMEs observed in the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad region of low [He] around the crossing time. We discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for the entire convective zone of the Sun.

  12. Ulysses solar wind plasma observations at high latitudes

    SciTech Connect

    Riley, P.; Bame, S.J.; Barraclough, B.L.

    1996-10-01

    Ulysses reached its peak northerly heliolatitude of 80.2{degrees}N on July 31, 1995, and now is moving towards aphelion at 5.41 AU which it will reach in May, 1998. We summarize measurements from the solar wind plasma experiment, SWOOPS, emphasizing northern hemispheric observations but also providing southern and equatorial results for comparison. The solar wind momentum flux during Ulysses` fast pole-to- pole transit at solar minimum was significantly higher over the poles than at near-equatorial latitudes, suggesting a non-circular cross section for the heliosphere. Furthermore, modest asymmetries in the wind speed, density, and mass flux were observed between the two hemispheres during the fast latitude scan. The solar wind was faster and less dense in the north than in the south. These asymmetries persist in the most recent high- and mid-latitude data but are less pronounced. As of July 1, 1996 the northern fast solar wind has lacked any strong stream interactions or shocks and, although a comprehensive search has not yet been made, no CMEs have yet been identified during this interval. On the other hand, Alfv{acute e}nic, compressional, and pressure balanced features are abundant at high latitudes. The most recent data, at 4 AU and 32{degrees}N, has begun to show the effects of solar rotation modulated features in the form of recurrent compressed regions.

  13. RTG performance on Galileo and Ulysses and Cassini test results

    SciTech Connect

    Kelly, C.E.; Klee, P.M.

    1997-01-01

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted. {copyright} {ital 1997 American Institute of Physics.}

  14. Warmer Local Interstellar Medium: A Possible Resolution of the Ulysses-IBEX Enigma

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Bzowski, M.; Frisch, P.; Fuselier, S. A.; Kubiak, M. A.; Kucharek, H.; Leonard, T.; Möbius, E.; Schwadron, N. A.; Sokół, J. M.; Swaczyna, P.; Witte, M.

    2015-03-01

    Interstellar Boundary Explorer (IBEX) measurements from 2009-2010 identified a set of possible solutions with very tight coupling between the interstellar He inflow longitude, latitude, speed, and temperature. The center of this allowable parameter space suggested that the heliosphere could be moving more slowly and in a slightly different direction with respect to the interstellar medium than indicated by earlier Ulysses observations. In this study we examine data from 2012-2014 and compare results from an analytic analysis and a detailed computer model. For observations where the IBEX spacecraft pointing is near the ecliptic plane, the latest measurements indicate a different portion of IBEX's four-dimensional tube of possible parameters—one that is more consistent with the Ulysses flow direction and speed, but with a much higher temperature. Together, the current combined IBEX/Ulysses values we obtain are V ISM∞ ~ 26 km s-1, λISM∞ ~ 75°, βISM∞ ~ -5°, and T He∞ ~ 7000-9500 K. These indicate that the heliosphere is in a substantially warmer region of the interstellar medium than thought from the earlier Ulysses observations alone, and that this warmer region may be roughly isothermal. However, measurements taken when IBEX was pointing ~5° south of the ecliptic are inconsistent with this solution and suggest a slower speed, lower temperature, and flow direction similar to IBEX's prior central values. IBEX measures much deeper into the tails of the distributions of the inflowing interstellar material than Ulysses did and these observations indicate that the heliosphere's interstellar interaction is likely far more complex and interesting than previously appreciated.

  15. Children's understanding of the Ulysses conflict.

    PubMed

    Choe, Katherine S; Keil, Frank C; Bloom, Paul

    2005-09-01

    Two studies explored children's understanding of how the presence of conflicting mental states in a single mind can lead people to act so as to subvert their own desires. Study 1 analyzed explanations by children (4--7 years) and adults of behaviors arising from this sort of 'Ulysses conflict' and compared them with their understanding of conflicting desires in different minds, as well as with changes of mind within an individual across time. The data revealed that only the adults were able to adequately explain the Ulysses conflict. Study 2 asked children (4--7 years) and adults to choose among three explicitly presented competing explanations for self-subverting behaviors. The results suggest that an understanding of the influence of conflicting mental states on behaviors does not occur until at least 7 years of age. PMID:16048510

  16. Microstructures in the Polar Solar Wind: Ulysses

    NASA Technical Reports Server (NTRS)

    Tsuruyani, Bruce T.; Arballo, J. K.; Galvan, C.; Goldstein, B. E.; Lakhina, G. S.; Sakurai, R.; Smith, E. J.; Neugebauer, M.

    1999-01-01

    We find that small (10-200 rP) magnetic decreases comprise a dominant part of the polar solar wind microstructure at Ulysses distances (2.2 AU). These magnetic field dips are almost always bounded by tangential discontinuities, a feature which is not well understood at this time. Hundreds of these events have been examined in detail and a variety of types have been found. These will be described. It is speculated that these structures have been generated by perpendicular heating of ions closer to the Sun and have then been convected to distances of Ulysses. Such structures may be very important for the rapid cross- field diffusion of ions in the polar regions of the heliosphere.

  17. [Ulysses retrotransposon aspartate proteinase (Drosophila virilis)].

    PubMed

    Volkov, D A; Savvateeva, L V; Dergousova, N I; Rumsh, L D

    2002-01-01

    Retrotransposones are mobile genetic elements occurring in genomes of bacteria, plants or animals. Retrotransposones were found to contain nucleotide sequences encoding proteins which are homological to retroviral aspartic proteinases. Our research has been focused on Ulysses which is mobile genetic element found in Drosophila virilis. We suggested a primary structure of Ulysses proteinase using comparative analysis of amino acid sequences of retroviral proteinases and proteinases from retrotransposones. The appropriate cDNA fragment has been cloned and expressed in E. coli. The purification of recombinant protein (12 kD) has been carried out by affinity chromatography using pepstatine-agarose. The obtained protein has proteolytic activity at optimum pH 5.5 like the majority of aspartic proteinases.

  18. Children's understanding of the Ulysses conflict.

    PubMed

    Choe, Katherine S; Keil, Frank C; Bloom, Paul

    2005-09-01

    Two studies explored children's understanding of how the presence of conflicting mental states in a single mind can lead people to act so as to subvert their own desires. Study 1 analyzed explanations by children (4--7 years) and adults of behaviors arising from this sort of 'Ulysses conflict' and compared them with their understanding of conflicting desires in different minds, as well as with changes of mind within an individual across time. The data revealed that only the adults were able to adequately explain the Ulysses conflict. Study 2 asked children (4--7 years) and adults to choose among three explicitly presented competing explanations for self-subverting behaviors. The results suggest that an understanding of the influence of conflicting mental states on behaviors does not occur until at least 7 years of age.

  19. Ulysses arrangements in psychiatry: a matter of good care?

    PubMed

    Gremmen, I; Widdershoven, G; Beekman, A; Zuijderhoudt, R; Sevenhuijsen, S

    2008-02-01

    This article concerns the issue of how an ethic of care perspective may contribute to both normative theory and mental health care policy discussions on so called Ulysses arrangements, a special type of advance directives in psychiatry. The debate on Ulysses arrangements has predominantly been waged in terms of autonomy conceived of as the right to non-intervention. On the basis of our empirical investigations into the experiences of persons directly involved with Ulysses arrangements, we argue that a care ethics perspective may broaden and deepen the debate on Ulysses arrangements, by introducing additional concepts, such as vulnerability, responsibility and mutuality, and by refining familiar concepts, such as autonomy. PMID:18234942

  20. Ulysses arrangements in psychiatry: a matter of good care?

    PubMed

    Gremmen, I; Widdershoven, G; Beekman, A; Zuijderhoudt, R; Sevenhuijsen, S

    2008-02-01

    This article concerns the issue of how an ethic of care perspective may contribute to both normative theory and mental health care policy discussions on so called Ulysses arrangements, a special type of advance directives in psychiatry. The debate on Ulysses arrangements has predominantly been waged in terms of autonomy conceived of as the right to non-intervention. On the basis of our empirical investigations into the experiences of persons directly involved with Ulysses arrangements, we argue that a care ethics perspective may broaden and deepen the debate on Ulysses arrangements, by introducing additional concepts, such as vulnerability, responsibility and mutuality, and by refining familiar concepts, such as autonomy.

  1. Flight performance of Galileo and Ulysses RTGs

    SciTech Connect

    Hemler, R.J.; Kelly, C.E. )

    1993-01-10

    Flight performance data of the GPHS-RTGs (General Purpose Heat Source---Radioisotope Thermoelectric Generators) on the Galileo and Ulysses spacecraft are reported. Comparison of the flight data with analytical predictions is preformed. Differences between actual flight telemetry data and analytical predictions are addressed including the degree of uncertainty associated with the telemetry data. End of mission power level predictions are included for both missions with an overall assessment of RTG mission performances.

  2. Stereoscopic observations of a solar hard x-ray flare with Ulysses, PVO, GRO and Yohkoh spacecraft

    SciTech Connect

    Kane, S.R.; Hurley, K.; McTiernan, J.M.; Slocum, T. ); Laros, J.G.; Fenimore, E.E.; Klebsadel, R.W. ); Sommer, M. ); Yoshimuri, M. ) Ohki, K. )

    1992-01-01

    Hard X-ray/gamma-ray spectrometers aboard two interplanetary spacecraft, Ulysses and Pioneer Venus Orbiter (PVO), and two near-Earth spacecraft, Yohkoh and Compton Gamma Ray Observatory (GRO/BATSE), are currently in operation. A unique set of circumstances have permitted the observation of the 15 November 1991 (2238 UT) flare by all the four instruments. This intense flare (GOES class X 1.5) was associated with the bright (3B) H-alpha flare located on the disk (S13, W19) in the active region 6919. At the time of the flare, the Ulysses and PVO spacecraft were located respectively 101[degree] and 52[degree] west of the Sun-Earth line. Thus the view angles for the PVO and Ulysses instruments were quite different from those of the near-Earth instruments on GRO and Yohkoh. The preliminary photon energy spectra observed by the four instruments at different times during the flare will be presented and their implications regarding the directivity of hard X-ray sources in flares will be discussed.

  3. Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations

    SciTech Connect

    Scime, E.E.; Bame, S.J.; Feldman, W.C.; Gary, S.P.; Phillips, J.L.; Balogh, A.

    1994-12-01

    In this study the authors use observations from the three-dimensional electron spectrometer and magnetometer aboard the Ulysses spacecraft to examine the solar wind electron heat flux from 1.2 to 5.4 AU in the ecliptic plane. Throughout Ulysses` transit to 5.4 AU, the electron heat flux decreases more rapidly ({approximately}R{sup {minus}3.0}) than simple collisionless expansion along the local magnetic field and is smaller than expected for a thermal gradient heat flux, q{sub {parallel}}e(r)={minus}k{sub {parallel}}{del}{sub {parallel}}T{sub e}(r). The radial gradients and magnitudes expected for a number of electron heat flux regulatory mechanisms are examined and compared to the observations. The best agreement is found for heat flux regulation by the whistler heat flux instability. The upper bound and radial scaling for the electron heat flux predicted for the whistler heat flux instability are consistent with observations.

  4. Preliminary Results of Observations of Comets De Vico and Hyakutake by the Ulysses Comet Watch Network

    NASA Technical Reports Server (NTRS)

    Petersen, C. C.; Brandt, J. C.; Yi, Y.

    1996-01-01

    Cometary interactions with the solar wind allow us to use comets as probes of the inner regions of the heliosphere. During their close passage to the Sun, comets are exposed to different environments depending on their latitude. Until recently, characterizing these environments has been difficult because most spacecraft studying the sun have been confined to studying its mid-latitudes. A valuable source of information about the differing regimes of the solar wind is the joint ESA/NASA ULYSSES mission, which is the first spacecraft to explore the polar regions of the heliosphere. In 1995, ULYSSES' orbit covered a range of solar latitudes from -80 degrees to +80 degrees - an interval referred to as the 'fast latitude scan.' The Ulysses Comet Watch incorporates in-situ measurements during these periods by the ULYSSES spacecraft with images contributed by a world-wide network of observers (both amateur and professional). Bright comets whose paths come within 20 degrees solar latitude of the spacecraft are considered especially good targets for correlation between spacecraft data and plasma tail activity. Ulysses findings of interest to cometary plasma research are: Verification of global differences in solar wind properties (speed and density) at different solar latitudes. At polar latitudes - ranging from roughly +/-30 degrees to +/-80 degrees - the solar wind speed is about 750 kilometers/sec, and has a proton density (1 AU) around 3 cm(exp -3). Changes in properties are small and the heliospheric current sheet (HCS) is not seen. In the equatorial latitudes (roughly +30 to -30 degrees), the average solar wind speed is about 450 kilometers/sec, with an average proton density (at 1 AU) around 9 cm(exp -3). The HCS is seen and changes in properties can be large. An object, spacecraft or comet, at a given latitude, can be entirely in the polar, entirely in the equatorial, or can experience both - sort of a transition region.

  5. Ozone sonde measurements aboard long-range boundary-layer pressurized balloons over the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Gheusi, François; Barret, Brice; Verdier, Nicolas; Dulac, François; Durand, Pierre; Jambert, Corinne

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPBs) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electro-chemical cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (due to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPBs. The mechanical elements (Teflon pump and motor) and the electro-chemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, the strategy has been adopted of short measurement sequences (typically 3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is left at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Therefore, the typical measurement sequence is composed of a one-minute spin-up period after the pump has been turned on, followed by a two-minute acquisition period. (Note that the time intervals given here are indicative. All can be adjusted before and during the flight.) Results of a preliminary ground-based test in spring 2012 will be first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then, we will illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during the three summer field campaings of the coordinated project

  6. Regulation of the solar wind electron heat fluxfrom 1 to 5 AU: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Scime, Earl E.; Bame, Samuel J.; Feldman, William C.; Gary, S. Peter; Phillips, John L.; Balogh, Andre

    1994-01-01

    In this study we use observations from the three-dimensional electron spectrometer and magnetometer aboard the Ulysses spacecraft to examine the solar wind electron heat flux from 1.2 to 5.4 AU in the ecliptic plane. Throughout Ulusses' transit to 5.4 AU, the electron heat flux decreases more rapidly (approximately R(exp -30)) than simple collisionless expansion along the local magnetic field and is smaller than expected for a thermal gradient heat flux, q(sub parallel e) (r) = - Kappa(sub parallel) del(sub parallel) T(sub e)(r). The radial gradients and magnitudes expected for a number of electron heat flux regulatory mechanisms are examined and compared to the observations. The best agreement is found for heat flux regulation by the whistler heat flux instability. The upper bound and radial scaling for the electron heat flux predicted for the whistler heat flux instability are consistent with the observations.

  7. Thwarting the Diseased Will: Ulysses Contracts, the Self and Addiction.

    PubMed

    Bell, Kirsten

    2015-09-01

    Ulysses contracts are a particular type of advance directive that has been advocated for use in mental health settings and addictions treatment. Taking their name from the legend of Ulysses, such contracts are distinctive insofar as they are designed to thwart certain anticipated future wishes rather than realize them. In this paper, I consider what Ulysses contracts reveal about contemporary conceptions of addiction and the self. Drawing on discussions of Ulysses contracts in the psychiatric and addictions literature, as well as historical and contemporary examples of such, I show that Ulysses contracts are premised on a split between the present 'rational' self and the future 'irrational' self, thereby reproducing a very particular notion of addiction--one that serves to naturalize certain ways of thinking about freedom, choice, coercion, and the self. PMID:25374370

  8. Ulysses directives in The Netherlands: opinions of psychiatrists and clients.

    PubMed

    Varekamp, I

    2004-12-01

    In this article we present a study on the opinions of Dutch psychiatrists and clients on Ulysses directives. In-depth interviews were conducted with 18 clients and 17 psychiatrists. Most respondents were proponents of Ulysses directives. The most frequently mentioned objective of these directives was to secure timely admission to hospital, although a large minority was mainly interested in giving patients influence on treatment decisions. Psychiatrists differed on how much autonomy they preferred with regard to decisions about the moment of admission and kind of treatment. Clients also differed in this respect. Pressure from others to execute a Ulysses directive, and premature admission to the hospital were mentioned as risks of Ulysses directives. Crisis cards were seen as an alternative by many psychiatrists and some clients. Recommendations are made for a good functioning of Ulysses directives, and the appropriateness of crisis cards as an alternative for a number of patients is discussed. PMID:15488996

  9. Ulysses directives in The Netherlands: opinions of psychiatrists and clients.

    PubMed

    Varekamp, I

    2004-12-01

    In this article we present a study on the opinions of Dutch psychiatrists and clients on Ulysses directives. In-depth interviews were conducted with 18 clients and 17 psychiatrists. Most respondents were proponents of Ulysses directives. The most frequently mentioned objective of these directives was to secure timely admission to hospital, although a large minority was mainly interested in giving patients influence on treatment decisions. Psychiatrists differed on how much autonomy they preferred with regard to decisions about the moment of admission and kind of treatment. Clients also differed in this respect. Pressure from others to execute a Ulysses directive, and premature admission to the hospital were mentioned as risks of Ulysses directives. Crisis cards were seen as an alternative by many psychiatrists and some clients. Recommendations are made for a good functioning of Ulysses directives, and the appropriateness of crisis cards as an alternative for a number of patients is discussed.

  10. Thwarting the Diseased Will: Ulysses Contracts, the Self and Addiction.

    PubMed

    Bell, Kirsten

    2015-09-01

    Ulysses contracts are a particular type of advance directive that has been advocated for use in mental health settings and addictions treatment. Taking their name from the legend of Ulysses, such contracts are distinctive insofar as they are designed to thwart certain anticipated future wishes rather than realize them. In this paper, I consider what Ulysses contracts reveal about contemporary conceptions of addiction and the self. Drawing on discussions of Ulysses contracts in the psychiatric and addictions literature, as well as historical and contemporary examples of such, I show that Ulysses contracts are premised on a split between the present 'rational' self and the future 'irrational' self, thereby reproducing a very particular notion of addiction--one that serves to naturalize certain ways of thinking about freedom, choice, coercion, and the self.

  11. The hot plasma environment at jupiter: ulysses results.

    PubMed

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet. PMID:17776161

  12. The hot plasma environment at jupiter: ulysses results.

    PubMed

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.

  13. Neutral interstellar helium parameters based on Ulysses/GAS and IBEX-LO observations: What are the reasons for the differences?

    SciTech Connect

    Katushkina, O. A.; Izmodenov, V. V.; Wood, B. E.; McMullin, D. R.

    2014-07-01

    Recent analysis of the interstellar helium fluxes measured in 2009-2010 at Earth's orbit by the Interstellar Boundary Explorer (IBEX) has suggested that the interstellar velocity (both direction and magnitude) is inconsistent with that derived previously from Ulysses/GAS observations made in the period from 1990 to 2002 at 1.5-5.5 AU from the Sun. Both results are model dependent, and models that were used in the analyses are different. In this paper, we perform an analysis of the Ulysses/GAS and IBEX-Lo data using our state-of-the-art three-dimensional time-dependent kinetic model of interstellar atoms in the heliosphere. For the first time, we analyze Ulysses/GAS data from year 2007, the closest available Ulysses/GAS observations in time to the IBEX observations. We show that the interstellar velocity derived from the Ulysses 2007 data is consistent with previous Ulysses results and does not agree with the velocity derived from IBEX. This conclusion is very robust since, as is shown in the paper, it does not depend on the ionization rates adopted in theoretical models. We conclude that Ulysses data are not consistent with the new local interstellar medium (LISM) velocity vector from IBEX. In contrast, IBEX data, in principle, could be explained with the LISM velocity vector derived from the Ulysses data. This is possible for the models where the interstellar temperature increased from 6300 K to 9000 K. There is a need to perform further studies of possible reasons for the broadening of the helium signal core measured by IBEX, which could be an instrumental effect or could be due to unconsidered physical processes.

  14. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Feldman, W.C.; Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Goldstein, B.E.

    1996-07-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present here an overview of the solar wind speed and the variability in helium abundance, [He], for the entire mission to date, data on [He] in six high-latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high-latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high (average speed around 760 km/s) with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly around an average value of {approximately}4.3{percent}. In contrast to the high [He] that is often associated with CMEs observed near the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content from average values. Reasons for this difference between high and low latitude CME observations are not yet understood. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad ({plus_minus}3day) period of low [He] around the crossing time. We briefly discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for all regions of the sun lying above the helium ionization zone. {copyright} {ital 1996 American Institute of Physics.}

  15. Electron impact ionization rates for interstellar H and He atoms near interplanetary shocks: Ulysses observations

    SciTech Connect

    Feldman, W.C.; Phillips, J.L.; Gosling, J.T.; Isenberg, P.A.

    1996-07-01

    Solar wind plasma data measured during the near-ecliptic phase of the Ulysses mission between October, 1990 and January, 1993 were studied to determine the relative importance of electron-impact ionization to the total ionization rates of interstellar hydrogen and helium atoms. During times of quiet flow conditions electron-impact ionization rates were found to be generally low, of the order of 1{percent} of the total ionization rates. However, just downstream of the strongest CME- and CIR-driven shock waves encountered by Ulysses, the electron impact-ionization rate at times was more than 10{percent} that of the charge-exchange rate for hydrogen and more than 100{percent} that of the photoionization rate for helium. {copyright} {ital 1996 American Institute of Physics.}

  16. Ulysses - An ESA/NASA cooperative programme

    NASA Technical Reports Server (NTRS)

    Meeks, W.; Eaton, D.

    1990-01-01

    Cooperation between ESA and NASA is discussed, noting that the Memorandum of Understanding lays the framework for this relationship, defining the responsibilities of ESA and NASA and providing for appointment of leadership and managers for the project. Members of NASA's Jet Propulsion Laboratory and ESA's ESTEC staff have been appointed to leadership positions within the project and ultimate control of the project rests with the Joint Working Group consisting of two project managers and two project scientists, equally representing both organizations. Coordination of time scales and overall mission design is discussed, including launch cooperation, public relations, and funding of scientific investigations such as Ulysses. Practical difficulties of managing an international project are discussed such as differing documentation requirements and communication techniques, and assurance of equality on projects.

  17. Ulysses operations at Jupiter - Planning for the unknown

    NASA Technical Reports Server (NTRS)

    Angold, N.; Beech, P.; Garcia-Perez, R.; Mcgarry, A.; Standley, S.

    1992-01-01

    The operational preparations for the Ulysses encounter with Jupiter are described with particular attention given to requirements for survival in the Jovian environment, ground-segment planning, a deep-space network, and encounter activities. It is concluded that the successful operation of the Ulysses spacecraft at Jupiter was the culmination of many years of activity, from spacecraft design and mission planning to the coordination of the encounter activities and production of the detailed timeline.

  18. Making a clean break: addiction and Ulysses contracts.

    PubMed

    Andreou, Chrisoula

    2008-01-01

    I examine current models of self-destructive addictive behaviour, and argue that there is an important place for Ulysses contracts in coping with addictive behaviour that stems from certain problematic preference structures. Given the relevant preference structures, interference based on a Ulysses contract need not involve questionably favouring an agent's past preferences over her current preferences, but can actually be justified in terms of the agent's current concerns and commitments. PMID:18154586

  19. Making a clean break: addiction and Ulysses contracts.

    PubMed

    Andreou, Chrisoula

    2008-01-01

    I examine current models of self-destructive addictive behaviour, and argue that there is an important place for Ulysses contracts in coping with addictive behaviour that stems from certain problematic preference structures. Given the relevant preference structures, interference based on a Ulysses contract need not involve questionably favouring an agent's past preferences over her current preferences, but can actually be justified in terms of the agent's current concerns and commitments.

  20. ULYSSES - an expert-system-based VLSI design environment

    SciTech Connect

    Bushnell, M.L.

    1987-01-01

    Ulysses is a VLSI computer-aided design (CAD) environment which effectively addresses the problems associated with CAD tool integration. Specifically, Ulysses allows the integration of CAD tools into a design automation (DA) system, the codification of a design methodology, and the representation of a design space. Ulysses keeps track of the progress of a design and allows exploration of the design space. The environment employs artificial intelligence techniques, functions as an interactive expert system, and interprets descriptions of design tasks encoded in the scripts language. An integrated-circuit silicon compilation task is presented as an example of the ability of Ulysses to automatically execute CAD tools to solve a problem where inferencing is required to obtain a viable VLSI layout. The inferencing mechanism, in the form of a controlled production system, allows Ulysses to recover when routing channel congestion or over-constrained leaf-cell boundary conditions make it impossible for CAD tools to complete layouts. Also, Ulysses allows the designer to intervene while design activities are being carried out. Consistency-maintenance rules encoded in the scripts language enforce geometric floor-plan consistency when CAD tools fail and when the designer makes adjustments to a VLSI chip layout.

  1. On Measurements of Buoyancy driven Convection and Low-Frequency Microaccelerations aboard orbital Station with the Use of Convection Sensor Dacon

    NASA Astrophysics Data System (ADS)

    Putin, G.; Babushkin, I.; Glukhov, A.; Ivanov, A.; Maksimova, M.; Bessonov, O.; Nikitin, S.; Polezhaev, V.; Sazonov, V.

    The principles of building a system for studying buoyancy driven convection, isothermal motions and low-frequency microaccelerations aboard spacecraft are proposed. The system consists of: 1) facility for experimentation on a spaceship - the convection sensor and electronic equipment for apparatus control and for acquisition and processing of relevant information; 2) facility for ground-based laboratory modeling of various fluid motion mechanisms in application to orbital flight environment; 3) a system for computer simulations of convection processes in a fluid cell of a sensor using the data on linear and angular microaccelerations obtained by accelerometers and another devices aboard the orbital station. The arrangement and functioning of the sensor and control hardware are expounded. The results of terrestrial experiments performed in order to determine the sensitivity of the sensor and for modeling fluid motions under different microgravity environment regimes are described. The procedure and results of experiments carried out with the "DACON" apparatus aboard orbital station "MIR" during 25th - 28th expeditions in 1998 - 1999 are reported. The main results are: - estimation of random noise and systematic errors associated with the experimental techniques and procedure; - calibration of the amplitude-frequency dependence of the sensor using harmonic inertia field oscillations produced by cosmonauts or vibrating platform; - first direct observation of buoyancy driven convection onboard spacecraft; - measurement of buoyancy convection and low -frequency accelerations in different modules of the space station and for various regimes of crew and station activity; - registration of convection and accelerations during the docking of transport ships "Progress"; - evaluation of convection and long-periodic (46 minutes) microacceleration component caused by orbital movement of a station around the Earth; - comparison of convection and acceleration levels in the cases

  2. Ulysses and IMP-8 Observations of Cosmic Rays and So-lar Energetic Particles from the South Pole to the North Pole of the Sun near Solar Maximum*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Connell, J. J.; Lopate, C.; Zhang, M.

    2001-12-01

    The High Energy Telescope (HET) of the Ulysses COSPIN experiment measures intensities of galactic cosmic rays and solar energetic particles (SEPs) with good energy and charge resolution at energies above about 30 MeV/n. Since passing over the South Polar regions of the Sun near solar maximum in late 2000 Ulysses has been rapidly traversing solar latitude in its so-called Fast Latitude Scan (FLS), passing through perihelion near the sun's equator in May 2001. Maximum northern latitude (80.2 deg N) will be reached in October 2001. HET observations since the onset of solar activity, including the South Polar pass and the first part of the FLS, show that SEPs from large events were commonly observed at both Ulysses and Earth (IMP-8) regardless of the radial, latitudinal, or longitudinal separations between Ulysses and Earth. During the decay phases of the events intensities were often almost equal at Ulysses and IMP, even when Ulysses was over the Sun's South Pole and the associated flare site was in the northern hemisphere. This suggests that propagation of particles across the average interplanetary magnetic field in the inner heliosphere is effective enough to relax longitudinal and latitudinal particle intensity gradients within a few days. For galactic cosmic rays, observations from the FLS so far show that latitudinal gradients resulting from solar modulation at solar maximum are <1%/degree, and are in fact consistent with zero to the accuracy of our measurements. The small gradients also suggest effective propagation in the latitudinal direction. We will report observations from the continuing FLS, give a first report of Ulysses observations over the sun's North Polar Regions, and discuss the significance of the results for models of energetic charged particle propagation through the heliosphere. * This work was supported in part by NASA Contract JPL-955432 and by NASA Grant NAG5-8032.

  3. A Detection of the Same Hot Plasma in the Corona: During a CME and Later at Ulysses

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.

    2004-01-01

    We show direct evidence for the same very hot plasma being detected remotely from SOHO in the corona and subsequently, at Ulysses in the solar wind. This is, to our knowledge, the first time that such an unambiguous identification has been made in the case of hot plasma. This detection complements studies correlating other plasma and field properties observed to the properties measured at the source in the corona. This observation takes advantage of a SOHO-Sun-Ulysses quadrature, during which the Sun-Ulysses included angle is $90^\\circ$ and it is possible to observe with Ulysses instruments the same plasma that has previously been remotely observed with SOHO instruments in the corona on the limb of the Sun. The identification builds on an existing base of separate SOHO and interplanetary detections of hot plasma. SOHO/UVCS has found evidence for very hot coronal plasma in current sheets in the aftermath of CMEs in the [Fe XVIII] $\\lambda$ \\AA\\ line, implying a temperature on the order of $6\\times 10(exp 6)$ K. This temperature is unusually high even for active regions, but is compatible with the high temperature predicted in current sheets. In the solar wind, ACE data from early 1998 to middle 2000 revealed high frozen-in Fe charge state in many cases to be present in interplanetary plasma.

  4. In-situ measurements of chlorine activation, nitric acid redistribution and ozone depletion in the Antarctic lower vortex aboard the German research aircraft HALO during TACTS/ESMVal

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Gottschaldt, Klaus-Dirk; Ziereis, Helmut; Hoor, Peter; Bozem, Heiko; Müller, Stefan; Zahn, Andreas; Schlager, Hans; Oelhaf, Hermann; Sinnhuber, Björn-Martin; Dörnbrack, Andreas

    2016-04-01

    In-situ measurements of stratospheric chlorine compounds are rare and exhibit the potential to gain insight into small scale mixing processes where stratospheric air masses of different origin and history interact. In addition, the relationship with chemically stable trace gases helps to identify regions that have been modified by chemical processing on polar stratospheric clouds. To this end, in-situ measurements of ClONO2, HCl, HNO3, NOy, N2O and O3 have been performed in the Antarctic Polar Vortex in September 2012 aboard the German research aircraft HALO (High Altitude and Long Rang research aircraft) during the TACTS/ESMVal (Transport and Composition in the UTLS/Earth System Model Validation) mission. With take-off and landing in Capetown, HALO sampled vortex air with latitudes down to 65°S, at altitudes between 8 and 14.3 km and potential temperatures between 340 and 390 K. Before intering the vortex at 350 K potential temperature, HALO additionally sampled mid-latitude stratospheric air. The trace gas distributions at the edge of the Antarctic polar vortex show distinct signatures of processed upper stratospheric vortex air and chemically different lower stratospheric / upper tropospheric air. Diabatic descend of the vortex transports processed air into the lower stratosphere. Here small scale filaments of only a few kilometers extension form at the lower vortex boundary due to shear stress, ultimately leading to transport and irreversible mixing. Comparison of trace gas relationships with those at the beginning of the polar winter reveals substantial chlorine activation, ozone depletion de- and renitrification with high resolution. Furthermore, the measurements are compared to the chemistry climate models EMAC and supported by ECMWF analysis. Finally, we compare the Antarctic measurements with new measurements of ClONO2, HCl and HNO3 aboard HALO obtained during the Arctic mission POLSTRACC (POLar STratosphere in a Changing Climate) based in Kiruna (Sveden

  5. Analysis of shipboard aerosol optical thickness measurements from multiple sunphotometers aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia

    NASA Astrophysics Data System (ADS)

    Miller, Mark A.; Knobelspiesse, Kirk; Frouin, Robert; Bartholomew, Mary Jane; Reynolds, R. Michael; Pietras, Christophe; Fargion, Giulietta; Quinn, Patricia; Thieuleux, François

    2005-06-01

    Marine sunphotometer measurements collected aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia (ACE-Asia) are used to evaluate the ability of complementary instrumentation to obtain the best possible estimates of aerosol optical thickness and Ångstrom exponent from ships at sea. A wide range of aerosol conditions, including clean maritime conditions and highly polluted coastal environments, were encountered during the ACE-Asia cruise. The results of this study suggest that shipboard hand-held sunphotometers and fast-rotating shadow-band radiometers (FRSRs) yield similar measurements and uncertainties if proper measurement protocols are used and if the instruments are properly calibrated. The automated FRSR has significantly better temporal resolution (2 min) than the hand-held sunphotometers when standard measurement protocols are used, so it more faithfully represents the variability of the local aerosol structure in polluted regions. Conversely, results suggest that the hand-held sunphotometers may perform better in clean, maritime air masses for unknown reasons. Results also show that the statistical distribution of the Ångstrom exponent measurements is different when the distributions from hand-held sunphotometers are compared with those from the FRSR and that the differences may arise from a combination of factors.

  6. HIGH LATITUDE ULYSSES OBSERVATIONS OF THE H/HE INTENSITY RATIO UNDER SOLAR MINIMUM AND SOLAR MAXIMUM CONDITIONS

    SciTech Connect

    J. GOSLING; D. LARIO; ET AL

    2001-03-01

    We analyze measurements of the 0.5-1.0 MeV/nucleon H/He intensity ratio from the Ulysses spacecraft during its first (1992-94) and second (1999-2000) ascent to southern high latitude regions of the heliosphere. These cover a broad range of heliocentric distances (from 5.2 to 2.0 AU) and out-of-ecliptic latitudes (from 18{degree}S to 80{degree}S). During Ulysses' first southern pass, the HI-SCALE instrument measured a series of enhanced particle fluxes associated with the passage of a recurrent corotating interaction region (CIR). Low values ({approximately}6) of the H/He ratio were observed in these recurrent corotating events, with a clear minimum following the passage of the corotating reverse shock. When Ulysses reached high southern latitudes (>40{degree}S), the H/He ratio always remained below {approximately}10 except during two transient solar events that brought the ratio to high (>20) values. Ulysses' second southern pass was characterized by a higher average value of the H/He ratio. No recurrent pattern was observed in the energetic ion intensity which was dominated by the occurrence of transient events of solar origin. Numerous CIRs, many of which were bounded by forward and reverse shock pairs, were still observed in the solar wind and magnetic field data. The arrival of those CIRs at Ulysses did not always result in a decrease of the H/He ratio; on the contrary, many CIRs showed a higher H/He ratio than some transient events. Within a CIR, however, the H/He ratio usually increased around the forward shock and decreased towards the reverse shock. Throughout the second ascent to southern heliolatitudes, the H/He ratio seldom decreased below {approximately}10 even at high latitudes (>40{degree}S). We interpret these higher values of the H/He ratio in terms of the increasing level of solar activity together with the poor definition and short life that corotating solar wind structures have under solar maximum conditions. The global filling of the heliosphere

  7. A Slow Streamer Blowout at the Sun and Ulysses

    NASA Technical Reports Server (NTRS)

    Seuss, S. T.; Bemporad, A.; Poletto, G.

    2004-01-01

    On 10 June 2000 a streamer on the southeast limb slowly disappeared from LASCO/C2 over approximately 10 hours. A small CME was reported in C2. A substantial interplanetary CME (ICME) was later detected at Ulysses, which was at quadrature with the Sun and SOHO at the time. This detection illustrates the properties of an ICME for a known solar source and demonstrates that the identification can be done even beyond 3 AU. Slow streamer blowouts such as this have long been known but are little studied. We report on the SOHO observation of a coronal mass ejection (CME) on the solar limb and the subsequent in situ detection at Ulysses, which was near quadrature at the time, above the location of the CME. SOHO-Ulysses quadrature was 13 June, when Ulysses was 3.36 AU from the Sun and 58.2 degrees south of the equator off the east limb. The slow streamer blowout was on 10 June, when the SOHO-Sun-Ulysses angle was 87 degrees.

  8. ULYSSES comes full circle, before revisiting the Sun's poles

    NASA Astrophysics Data System (ADS)

    1998-04-01

    From its unique perspective, Ulysses has provided scientists with the very first all-round map of the heliosphere, the huge bubble in space filled by the Sun's wind. The Earth swims deep inside the heliosphere, and gusts and shocks in the solar wind can harm satellites, power supplies and ommunications. They may also affect our planet's weather. A better grasp of the solar weather in the heliosphere is therefore one of the major aims of ESA's science programme. In a project of international cooperation between ESA and NASA, Ulysses was launched towards Jupiter in October 1990 by the US space shuttle Discovery. Arriving in February 1992, Ulysses stole energy from the giant planet in a slingshot manoeuvre and was propelled back towards the Sun in an elongated orbit almost at right angles to the ecliptic plane, where the Earth and other planets circle the Sun. "This month Ulysses returns to the point in space where its out-of-ecliptic journey began, but Jupiter isn't there," explains Richard Marsden, ESA's project scientist for Ulysses. "Following its own inexorable path around the Sun, Jupiter is far away on the opposite side of the Solar System. So Ulysses' course will not be changed a second time. The spacecraft is now in effect a man-made comet, forever bound into a 6-year polar orbit around the Sun." Ulysses now starts its second orbit. It will travel over the poles of the Sun in 2000-2001 just as the count of dark sunspots is expected to reach a maximum. With its operational life extended for the Ulysses Solar Maximum Mission, the spacecraft will find the heliosphere much stormier than during its first orbit. Discoveries so far Like its mythical namesake, Ulysses has already had an eventful voyage of discovery. Its unique trajectory has provided the scientific teams with a new perspective, from far out in space and especially in the previously unknown regions of the heliosphere over the Sun's poles. Passing within 9.8 degrees of the polar axis, the highly

  9. Measurements of Volatile Organic Compounds (Including Dimethyl Sulfide), Aerosol Particles, and CCN in the Canadian Arctic: Preliminary Results from the Summer 2014 NETCARE Expedition Aboard the CCGS Amundsen

    NASA Astrophysics Data System (ADS)

    Mungall, E. L.; Abbatt, J.; Lee, A.; Ladino Moreno, L.

    2014-12-01

    The Arctic in summer is a cloud condensation nucleus (CCN) limited environment, and the controls on aerosol number and composition, and thus cloud formation, are poorly understood. A better understanding of these controls and their consequences is required in order to understand the region's changing climate. In order to advance that understanding, during Summer 2014 we deployed instrumentation aboard the CCGS Amundsen, the Canadian research icebreaker. We participated in Legs 1a and 1b of the cruise, affording us observations in locations as varied as the Gulf of St. Lawrence, Lancaster Sound, and the Nares Strait. We collected on-line measurements with high time resolution of particle number, size and CCN activity as well as mixing ratios of volatile organic compounds (VOCs) including dimethyl sulfide, which has been implicated as an important contributor to the CCN population in the Arctic. We also attempted to directly measure air-sea fluxes of dimethyl sulfide using a high resolution time of flight mass spectrometer (HR-ToF-CIMS, Aerodyne) sampling at 10 Hz. Here, we report preliminary results from those measurements.

  10. Spatial evolution of 26-day recurrent galactic cosmic ray decreases: Correlated Ulysses COSPIN/KET and SOHO COSTEP observations

    SciTech Connect

    Heber, B.; Bothmer, V.; Droege, W.

    1998-12-31

    In December 1995 the Ulysses spacecraft was at a radial distance of 3 AU from the Sun and 60{degree} northern heliographic latitude. To that time the Solar and Heliospheric Observatory (SOHO) started its mission. On board of both spacecraft particle sensors are measuring electrons, protons and helium nuclei in the MeV to GeV energy range. In early 1996 the counting rates of several hundred MeV galactic cosmic rays at Ulysses and at SOHO (Earth orbit) were modulated by recurrent cosmic ray decreases (RCRDs). The RCRDs at SOHO were found to be associated with a corotating interaction region (CIRs). A Lomb (spectral) analysis was performed on the galactic cosmic ray flux from February 1996 to June 1996. Surprisingly, the most probable frequency is {approximately} 28 days and not 26 or 27 days, corresponding to one solar rotation. The amplitude of the RCRDs is {approximately} 2.3% on both spacecraft. The variation in the solar wind speed shows the same periodicities and is anticorrelated to the variation in the cosmic ray flux. In contrast to the RCRDs the amplitude found in the solar wind speed is four times larger at WIND (120 km/s) than at Ulysses (32 km/s). The solar wind proton density and magnetic field strength yielded no significant periodicities, neither at Ulysses nor at WIND. Comparing the RCRDs with coronal hole structures observed in the FE XIV line, they found that a single coronal hole close to the heliographic equation can account for the RCRDs observed simultaneously at Ulysses and SOHO. The coronal hole boundaries changed towards lower Carrington longitudes and vanished slowly. The changes of the boundaries during the investigated period could explain a 28 day periodicity.

  11. Development and Use of the Galileo and Ulysses Power Sources

    SciTech Connect

    Bennett, Gary L; Hemler, Richard J; Schock, Alfred

    1994-10-01

    Paper presented at the 45th Congress of the International Astronautical Federation, October 1994. The Galileo mission to Jupiter and the Ulysses mission to explore the polar regions of the Sun required a new power source: the general-purpose heat source radioisotope thermoelectric generator (GPHS-RTG), the most powerful RTG yet flow. Four flight-qualified GPHS-RTGs were fabricated with one that is being used on Ulysses, two that are being used on Galileo and one that was a common spare (and is now available for the Cassini mission to Saturn). In addition, and Engineering Unit and a Qualification Unit were fabricated to qualify the design for space through rigorous ground tests. This paper summarizes the ground testing and performance predictions showing that the GPHS-RTGs have met and will continue to meet or exceed the performance requirements of the ongoing Galileo and Ulysses missions. There are two copies in the file.

  12. Instrumented experiments aboard the frigate WOLF. Wolf 2: Measurement results of the 5.5 kg TNT in the crew aft sleeping compartment

    NASA Astrophysics Data System (ADS)

    Verhagen, T. L. A.; Vandekasteele, R. M.

    1992-08-01

    Within the framework of the research into the vulnerability of ships, an experimental investigation took place in 1989 aboard the frigate 'Wolf.' The recordings of an instrumented experiment in the crew aft sleeping compartment are presented. During this experiment, a nonfragmenting charge of 5.5 kg TNT was initiated. Preceding the 5.5 kg TNT experiment, a 2 kg TNT experiment was performed on the same day. Later that day the 15 kg TNT experiment took place. Reparation/modification of the instrumentation was not possible. The settings of the instrumentation equipment were based on the expected extreme responses of the 15 kg TNT experiment later that day which had, however, an influence on the signal to noise ratio. The blast measurements seem to have recorded correctly. The quasi static pressure in the experiment compartment as well as in the adjacent compartments showed classical behavior. The strain measurements seemed to be good, although some of them malfunctioned after a period of time.

  13. Galileo and Ulysses missions safety analysis and launch readiness status

    NASA Technical Reports Server (NTRS)

    Cork, M. Joseph; Turi, James A.

    1989-01-01

    The Galileo spacecraft, which will release probes to explore the Jupiter system, was launched in October, 1989 as the payload on STS-34, and the Ulysses spacecraft, which will fly by Jupiter en route to a polar orbit of the sun, is presently entering system-test activity in preparation for an October, 1990 launch. This paper reviews the Galileo and Ulysses mission objectives and design approaches and presents details of the missions' safety analysis. The processes used to develop the safety analysis are described and the results of safety tests are presented.

  14. How to justify enforcing a Ulysses contract when Ulysses is competent to refuse.

    PubMed

    Davis, John K

    2008-03-01

    Sometimes the mentally ill have sufficient mental capacity to refuse treatment competently, and others have a moral duty to respect their refusal. However, those with episodic mental disorders may wish to precommit themselves to treatment, using Ulysses contracts known as "mental health advance directives." How can health care providers justify enforcing such contracts over an agent's current, competent refusal? I argue that providers respect an agent's autonomy not retrospectively--by reference to his or her past wishes-and not merely synchronically--so that the agent gets what he or she wants right now-but diachronically and prospectively, acting so that the agent can shape his or her circumstances as the agent wishes over time, for the agent will experience the consequences of providers' actions over time. Mental health directives accomplish this, so they are a way of respecting the agent's autonomy even when providers override the agent's current competent refusal. PMID:18561579

  15. How to justify enforcing a Ulysses contract when Ulysses is competent to refuse.

    PubMed

    Davis, John K

    2008-03-01

    Sometimes the mentally ill have sufficient mental capacity to refuse treatment competently, and others have a moral duty to respect their refusal. However, those with episodic mental disorders may wish to precommit themselves to treatment, using Ulysses contracts known as "mental health advance directives." How can health care providers justify enforcing such contracts over an agent's current, competent refusal? I argue that providers respect an agent's autonomy not retrospectively--by reference to his or her past wishes-and not merely synchronically--so that the agent gets what he or she wants right now-but diachronically and prospectively, acting so that the agent can shape his or her circumstances as the agent wishes over time, for the agent will experience the consequences of providers' actions over time. Mental health directives accomplish this, so they are a way of respecting the agent's autonomy even when providers override the agent's current competent refusal.

  16. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  17. Measurement of OH, H2SO4, MSA, NH3 and DMSO Aboard the NASA P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, Fred

    2001-01-01

    This project involved the installation of a downsized multichannel mass spectrometer instrument on the NASA P-3B aircraft and its subsequent use on the PEM-Tropics B mission. The new instrument performed well, measuring a number of difficult-to-measure compounds and providing much new photochemical and sulfur data as well as possibly uncovering a new nighttime DMSO source. The details of this effort are discussed.

  18. Ulysses and WIND simultaneous observations of the radio emission associated with the 6-7 January 1997 coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Hoang, S.; Maksimovic, M.; Bougeret, J.-L.; Reiner, M. J.; Stone, R. G.; Kaiser, M. L.

    1997-01-01

    The three dimensional source location of interplanetary type 2 radio bursts is intended to be determined from two spacecraft observations, performed by the radio receivers onboard the WIND and Ulysses spacecraft and associated with the interplanetary coronal mass ejection detected by the large advanced spectrometer coronagraph (LASCO) from the SOHO spacecraft. The intensity time profiles recorded by WIND and Ulysses were compared and their directivity is found to vary from one component of radio emission to another. The three dimensional location was obtained by radio triangulation and was deduced from the direction measured at WIND and the difference of the arrival times measured at both spacecraft. The sensitivity of both determination methods to wave scattering and refraction was discussed.

  19. Ulysses Observations of Alfven and Magnetosonic Waves at High Latitude

    NASA Technical Reports Server (NTRS)

    Smith, Edward J.

    1997-01-01

    Ulysses observations provide a unique opportunity to study diverse problems related to Alfven and magnetosonic waves. The large amplitude of the Alfven waves influences the distribution functions of the spiral angle, the azimuthal field component and, possibly, the radial component such that their averages are not equal to their most probable values.

  20. The Galileo/Mars Observer/Ulysses Coincidence Experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    From March 21 to April 11, 1993 the Galileo, Mars Observer and Ulysses spacecraft were tracked in a coincidence experiment, searching for low-frequency (millihertz) gravitational radiation. In the spacecraft Doppler technique, the earth and a distant spacecraft act as separated test masses.

  1. Directives in anorexia nervosa: use of the "Ulysses Agreement".

    PubMed

    Davidson, H; Birmingham, C L

    2003-09-01

    The course of anorexia nervosa frequently has episodes of exacerbation during which motivation and insight are reduced, cognition is impaired and treatment resistance is increased. Formalizing a directive to be used during these episodes when the patient has greater motivation and insight is one way of reducing treatment resistance. We describe a form of directive, called the "Ulysses Agreement".

  2. LIF measurements of HOx radicals in the lower troposphere aboard the Zeppelin NT during the PEGASOS campaign 2012

    NASA Astrophysics Data System (ADS)

    Gomm, Sebastian; Broch, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Bohn, Birger; Häseler, Rolf; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank; Kiendler-Scharr, Astrid; Li, Xin; Lohse, Insa; Lu, Keding; Mentel, Thomas; Rohrer, Franz; Tillmann, Ralf; Wegener, Robert; Wolfe, Glenn; Wahner, Andreas

    2013-04-01

    The hydroxyl (OH) and hydroperoxy (HO2) radicals are key compounds for the degradation of pollutants in the atmosphere. Therefore, accurate and precise measurements of HOx radicals (= OH + HO2) at different altitudes and in different regions are necessary to test our understanding of atmospheric chemical processes. The planetary boundary layer (PBL) is of special interest as it is chemically the most active part of the atmosphere. Until today there is a general lack of measurements investigating the distribution of radicals, trace gases, and aerosols in the PBL with high spatial resolution. Here, we present results of two measurement campaigns performed from May - July 2012 in the metropolitan area of Rotterdam, the Netherlands, and in the Po valley region in Italy as part of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS). We used the Zeppelin NT as an airborne platform for measurements of HOx radical concentrations and total OH reactivity applying a remotely controlled Laser Induced Fluorescence (LIF) instrument. In addition a comprehensive set of other trace gases (O3, CO, NO, NO2, HCHO, HONO), photolysis frequencies, particle number concentration, and meteorological parameters were measured. The airship Zeppelin NT allowed us to perform unique flight patterns, including localized height profiles up to 900 m above ground and transect flights at low flight speeds. We present measured data for the HOx radical concentrations and the total OH reactivity along with a model analysis of the radical chemistry. Maximum daytime concentrations were 2.0 × 107cm-3 for OH and 1.5 × 109cm-3 for HO2. Typical values for the total OH reactivity were smaller than 10 s-1. During the morning hours, vertical gradients in radical and trace gas concentrations were observed indicating a layered atmospheric structure. The vertical gradients vanished after sunrise due to enhanced convective mixing of the PBL.

  3. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane.

    PubMed

    Goldhagen, P; Reginatto, M; Kniss, T; Wilson, J W; Singleterry, R C; Jones, I W; Van Steveninck, W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was eight times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56-201 g cm-2 atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  4. Cosmic ray modulation at the solar maximum: Ulysses observations during the fast latitude scan of the inner heliosphere*

    NASA Astrophysics Data System (ADS)

    Zhang, M.; McKibben, R. B.; Lopate, C.

    2002-05-01

    Starting at the maximum southern latitude of 80o in November 2000, Ulysses made a fast latitude scan of the inner heliosphere within approximately one year at the time of maximum solar activity. It passed through a perihelion at 1.34 AU near the solar equator in May 2001, and reached its maximum northern latitude in October 2001. The fast latitude scan provides best conditions for the determination of cosmic ray latitudinal gradients because of little expected drift of instrument performance and a small coverage of radial distance (2.2 to 1.34 AU). Although the time period is dominated by solar energetic particle events, measurements from the High-Energy Telescope on the Ulysses COSPIN experiment together with simultaneous measurements from the University of Chicago Charge Particle Telescope on IMP-8 near Earth made during rare solar quiet time periods found that the latitudinal gradient of cosmic ray intensities is essentially zero for all nuclei of energies above 30 MeV/n. Compared to the measurements of small cosmic ray latitude gradients made by Ulysses' first fast latitude scan at the 1994-1995 solar minimum, this observation indicates that the inner heliosphere is more spherically symmetric at the solar maximum. In this paper, we will discuss its implications to the understanding of the structure of heliospheric magnetic fields and the mechanisms of particle transport. * This work was supported in part by NASA Contract JPL-955432 and by NASA Grants NAG5-11036 and NAG5-10888

  5. Measurement of OCS, CO2, CO and H2O aboard NASA's WB-57 High Altitude Platform Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Owano, T. G.; Du, X.; Gardner, A.; Gupta, M.

    2014-12-01

    Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere and has been implicated in controlling the sulfur budget and aerosol loading of the stratosphere. In the troposphere, OCS is irreversibly consumed during photosynthesis and may serve as a tracer for gross primary production (GPP). Its primary sources are ocean outgassing, industrial processes, and biomass burning. Its primary sinks are vegetation and soils. Despite the importance of OCS in atmospheric processes, the OCS atmospheric budget is poorly determined and has high uncertainty. OCS is typically monitored using either canisters analyzed by gas chromatography or integrated atmospheric column measurements. Improved in-situ terrestrial flux and airborne measurements are required to constrain the OCS budget and further elucidate its role in stratospheric aerosol formation and as a tracer for biogenic volatile organics and photosynthesis. Los Gatos Research has developed a flight capable mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to simultaneously quantify OCS, CO2, CO, and H2O in ambient air at up to 2 Hz. The prototype was tested on diluted, certified samples and found to be precise (OCS, CO2, CO, and H2O to better than ±4 ppt, ±0.2 ppm, ±0.31 ppb, and ±3.7 ppm respectively, 1s in 1 sec) and linear (R2 > 0.9997 for all gases) over a wide dynamic range (OCS, CO2, CO, and H2O ranging from 0.2 - 70 ppb, 500 - 3000 ppm, 150 - 480 ppb, and 7000 - 21000 ppm respectively). Cross-interference measurements showed no appreciable change in measured OCS concentration with variations in CO2 (500 - 3500 ppm) or CO. We report on high altitude measurements made aboard NASA's WB-57 research aircraft. Two research flights were conducted from Houston, TX. The concentration of OCS, CO2, CO, and H2O were continuously recorded from sea level to approximately 60,000 feet. The concentration of OCS was observed to increase with altitude through the troposphere due to the

  6. Effects of shuttle bay environment on UV sensitive photographic film results of measurements aboard STS-7 and STS-8

    NASA Technical Reports Server (NTRS)

    Kreplin, R. W.; Dohne, B.; Feldman, U.; Neupert, W. M.

    1984-01-01

    Schumann emulsions, having low gelatin content and no protective gelatin overcoating, are extremely sensitive to environmental conditions and handling. Experiments using this emulsion are to be flown on the space shuttle within the cargo-bay. Because the environment of the cargo-bay is unknown, a Get-Away-Special payload was designed to expose Kodak-type SO 652 Schumann emulsion to the residual atmosphere of the cargo-bay. The experiment was programmed to make exposures for various time periods to determine the maximum length of time the film could be exposed in making a measurement and what precautions would be required to preserve the film during ascent into orbit and reentry. The results of the STS-7 and STS-8 flights indicated that long exposures in the shuttle bay do not produce high fog levels in orbit. Observations of severe bleaching of the latent image makes protection of the emulsion during reentry manditory and increase of fog levels with time set a limit of four weeks (preferably less than three) between installation and recovery of the emulsion for processing.

  7. Warmer Local Interstellar Medium: Resolving the Ulysses-Ibex Enigma and the Promise of IMAP

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Bzowski, M.; Frisch, P. C.; Fuselier, S.; Kubiak, M. A.; Kucharek, H.; Leonard, T.; Moebius, E.; Schwadron, N.; Sokol, J. M.; Swaczyna, P.; Witte, M.

    2014-12-01

    While charged particles from the local interstellar medium (LISM) are convected around our heliosphere with the magnetized LISM flow, the neutral interstellar atoms flow directly into and through the heliosphere. Initial measurements from the Interstellar Boundary Explorer (IBEX) suggested that the heliosphere could be moving more slowly with respect to the interstellar medium than indicated by earlier observations from the Ulysses spacecraft. In this study we refine the range of possible IBEX flow parameters based on the latest measurements and show that both spacecraft's data could be consistent with a single flow velocity for a much larger interstellar neutral temperature (7000-9000K) than previously found. Combining the IBEX and Ulysses observations suggests that the heliosphere is currently in a substantially warmer region of the interstellar medium than previously thought. This study examines this possible resolution of the prior apparent disconnect between these observations. We further examine the incredible improvement in interstellar observations - and our understanding of the local interstellar medium - that the envisioned Interstellar Mapping and Acceleration Probe (IMAP) will provide.

  8. The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS

    SciTech Connect

    Shearer, Paul; Raines, Jim M.; Lepri, Susan T.; Thomas, Jonathan W.; Gilbert, Jason A.; Landi, Enrico; Zurbuchen, Thomas H.; Von Steiger, Rudolf

    2014-07-01

    Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s{sup –1}, we find Ne/O = 0.10 ± 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s{sup –1}, Ne/O ranges from a low of 0.12 ± 0.02 at solar maximum to a high of 0.17 ± 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.

  9. Electron impact ionization rates for interstellar neutral H and He atoms near interplanetary shocks: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Phillips, J. L.; Gosling, J. T.; Isenberg, P. A.

    1995-01-01

    During average solar wind flow conditions at 1 AU, ionization rates of interstellar neutrals that penetrate into the inner heliosphere are dominated by charge exchange with solar wind protons for H atoms, and by photoionization for He atoms. During occurrences of strong, coronal mass ejection (CME)-driven interplanetary shock waves near 1 AU, electron impact ionization can make substantial, if not dominating, contributions to interstellar neutral ionization rates in the regions downstream of the shocks. However, electron impact ionization is expected to be relatively less important with increasing heliocentric distance because of the decrease in electron temperature. Ulysses encountered many CME-driven shocks during its journey to and beyond Jupiter, and in addition, encountered a number of strong corotating interaction region (CIR) shocks. These shocks generally occur only beyond approximately 2 AU. Many of the CIR shocks were very strong rivalling the Earth's bow shock in electron heating. We have compared electron impact ionization rates calculated from electron velocity distributions measured downstream from CIR shocks using the Ulysses SWOOPS experiment to charge-exchange rates calculated from measured proton number fluxes and the photoionization rate estimated from an assumed solar photon spectrum typical of solar maximum conditions. We find that, although normally the ratio of electron-impact ionization rates to charge-exchange (for H) and to photoionization (for He) rates amounts to only about one and a few tens of percent, respectively, downstream of some of the stronger CIR shocks they amount to more than 10% and greater than 100%, respectively.

  10. Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  11. Measurements of Acidic Gases and Aerosol Species Aboard the NASA DC-8 Aircraft During the Pacific Exploratory Mission in the Tropics (PEM-Tropics A)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly

  12. Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses.

    PubMed

    Evgen'ev, M B; Corces, V G; Lankenau, D H

    1992-06-01

    We have determined the DNA structure of the Ulysses transposable element of Drosophila virilis and found that this transposon is 10,653 bp and is flanked by two unusually large direct repeats 2136 bp long. Ulysses shows the characteristic organization of LTR-containing retrotransposons, with matrix and capsid protein domains encoded in the first open reading frame. In addition, Ulysses contains protease, reverse transcriptase, RNase H and integrase domains encoded in the second open reading frame. Ulysses lacks a third open reading frame present in some retrotransposons that could encode an env-like protein. A dendrogram analysis based on multiple alignments of the protease, reverse transcriptase, RNase H, integrase and tRNA primer binding site of all known Drosophila LTR-containing retrotransposon sequences establishes a phylogenetic relationship of Ulysses to other retrotransposons and suggests that Ulysses belongs to a new family of this type of elements.

  13. Searching for cosmic ray latitude gradients with the Ulysses COSPIN High Energy Telescope (HET) during Ulysses' fast latitude scan in 2007-2008

    NASA Astrophysics Data System (ADS)

    McKibben, R. Bruce; Connell, James; Zhang, Ming

    Between February 2007 and January 2008, Ulysses traversed all heliographic latitudes between 79.7° S and 79.7° N at radii between 2.35 and 1.39 AU. This so-called fast latitude scan (FLS) provided a snapshot of the latitudinal intensity structure of modulated galactic cosmic rays in the inner heliosphere in a time short compared to significant evolution of the solar activity cycle, which is now near its minimum phase. Previous fast latitude scans were performed near solar maximum in 2000-2001, and near solar minimum in 1994-1995, when the sign of the solar dipole was opposite to that observed during the current solar minimum. In 1994-1995, small but clear increases in intensity from the equator towards the poles were measured by the HET for the integral intensity of cosmic rays >92 MeV and for helium above about 35 MeV/n, consistent in sign, if not in magnitude, with the positive latitudinal gradients predicted for that sign of the solar dipole by then-current modulation models that included the effects of gradient and curvature drifts. The opposite polarity of the solar dipole in this solar minimum was expected to lead to gradients of opposite sign, with intensities decreasing towards the poles. However in a preliminary report of our results through October 2007 (McKibben et al., AGU Fall Mtg, 2007), based on comparison of measurements of protons, helium, and heavy ions from the Ulysses HET with similar measurements near 1 AU and in the ecliptic from the SOHO/EPHIN and ACE/CRIS instruments no gradients of either sign were apparent. In this report we extend our results to include the complete 2007-2008 fast latitude scan, perform more extensive analysis to search for evidence of even small gradients, and discuss the significance of our results. This work was supported in part by NASA Contract 1247101.

  14. Relation Between Polar Plumes and Fine Structure in the Solar Wind from Ulysses High-Latitude Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Six, N. Frank (Technical Monitor)

    2002-01-01

    Ulysses observations showed that pressure balance structures (PBSs) are a common feature in the high-latitude and high-speed solar winds near the solar minimum. On the other hand, coronal plumes are common in polar coronal holes. PBSs are believed to be remnants of coronal plumes and to be related to network activity such as magnetic reconnection in the photosphere from previous studies. This suggests that information on the magnetic structure of PBSs would help to confirm the relation between PBSs and polar plumes We have investigated the magnetic structures of the PBSs by applying a minimum variance analysis to Ulysses/Magnetometer data and by examining the pitch-angle distribution of energetic electrons measured with Ulysses/SWOOPS. We have found that PBSs have relatively more tangential discontinuities rather than rotational from the minimum variance analysis. Further, most PBSs also show bi-directional electron flux or isotropic pitch-angle distribution or the distribution expected in association with current-sheet structures from the analysis of high-energy electron data. In this, we find further evidence that PBSs are generated due by network activity at the base of polar plumes and their magnetic structures are like current sheets or plasmoids.

  15. Dynamical Evolution of the Inner Heliosphere Approaching Solar Activity Maximum: Interpreting Ulysses Observations Using a Global MHD Model. Appendix 1

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Mikic, Z.; Linker, J. A.

    2003-01-01

    In this study we describe a series of MHD simulations covering the time period from 12 January 1999 to 19 September 2001 (Carrington Rotation 1945 to 1980). This interval coincided with: (1) the Sun s approach toward solar maximum; and (2) Ulysses second descent to the southern polar regions, rapid latitude scan, and arrival into the northern polar regions. We focus on the evolution of several key parameters during this time, including the photospheric magnetic field, the computed coronal hole boundaries, the computed velocity profile near the Sun, and the plasma and magnetic field parameters at the location of Ulysses. The model results provide a global context for interpreting the often complex in situ measurements. We also present a heuristic explanation of stream dynamics to describe the morphology of interaction regions at solar maximum and contrast it with the picture that resulted from Ulysses first orbit, which occurred during more quiescent solar conditions. The simulation results described here are available at: http://sun.saic.com.

  16. Elemental composition variations in the solar wind: Comparisons between Ulysses and ACE within different solar wind regimes

    NASA Astrophysics Data System (ADS)

    Pilleri, P.; Reisenfeld, D. B.; Wiens, R. C.

    2013-12-01

    The elemental composition of the solar wind is likely established at the base of the corona, a conclusion based on the observed dependence of solar wind abundances on the first ionization potential (FIP) of the elements. Although the plasma conditions within the ecliptic solar wind are highly variable, the elemental composition is less so, and is an indicator of the nature of the solar source. In particular, coronal hole (CH, fast) solar wind tends to have less of a FIP enhancement of the low -FIP elements (e.g., Fe, Mg, Si) than interstream (IS, slow) solar wind. The elemental composition of coronal mass ejections (CMEs) is more variable, but tends to be similar to IS composition. The question we address here is how much does the average composition of the different solar wind regimes vary over the course of the solar cycle and between solar cycles. For the most recent solar cycle, which included the unusually deep and prolonged solar minimum (2006 - 2010) Lepri et al. (2013) have shown measurable drifts in the elemental composition within solar wind regimes using data from the Advanced Composition Explorer (ACE) Solar Wind Ion Composition Spectrometer (SWICS). In contrast, von Steiger and Zurbuchen (2011) have shown using Ulysses SWIC data that the composition of the very fast polar coronal hole flow has remained constant. Here, we extend the Lepri et al. ecliptic analysis to include data from Ulysses, which allows us to expand the analysis to the previous solar cycle (1990 - 2001), as well as check consistency with their recent solar cycle results. (Note that although Ulysses was nominally a polar mission, it spent considerable time at low latitudes as well.) A major driver for this investigation is the Genesis Mission solar wind sample analysis. Namely, was the solar wind sampled by Genesis between late 2001 and early 2004 typical of the solar wind over longer time scales, and hence a representative sample of the long-term solar wind, or was it somehow unique

  17. An interpretation of the broadband VLF waves near the Io torus as observed by Ulysses

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Macdowell, R. J.; Hess, R. A.; Kaiser, M. L.; Desch, M. D.; Stone, R. G.

    1993-01-01

    The requirements for the Ulysses trajectory to attain high ecliptic latitudes using a Jovian gravitational assist resulted in a fortuitous passage through the Io torus region. Specifically, the spacecraft spent many hours at latitudes just above the torus. During this time the low-frequency cutoff of an ordinary mode (O mode) emission allowed a determination of the local electron plasma frequency (i.e., electron density) along the northern flank of the torus. Also, near a Jovian System III longitude of 100 deg, the spacecraft flew past a set of active field lines that have been previously identified to be associated with the hectometric generation region. During the passage, Ulysses observed a newly discovered O mode component and a whistler mode emission similar to that observed by Voyager 1 13 years previously. All of the broadband VLF emissions imply the presence of a particular population of electrons. We suggest that broadband VLF emissions can be used as a `particle detector' to qualitatively measure the electron plasma conditions in the torus region and identify active regions.

  18. Investigation of solar wind source regions using Ulysses composition data and a PFSS model

    NASA Astrophysics Data System (ADS)

    Peleikis, Thies; Kruse, Martin; Berger, Lars; Drews, Christian; Wimmer-Schweingruber, Robert F.

    2016-03-01

    In this work we study the source regions for different solar wind types. While it is well known that the fast solar wind originates from inside Coronal Holes, the source regions for the slow solar wind are still under debate. For our study we use Ulysses compositional and plasma measurements and map them back to the solar corona. Here we use a potential field source surface model to model the coronal magnetic field. On the source surface we assign individual open field lines to the ballistic foot points of Ulysses. We do not only consider the photospheric origin of these field lines, but rather attempt to trace them across several height levels through the corona. We calculate the proximity of the field lines to the coronal hole border for every height level. The results are height profiles of these field lines. By applying velocity and charge state ratio filters to the height profiles, we can demonstrate that slow wind is produced close to the coronal hole border. In particular, we find that not only the proximity to the border matters, but also that the bending of the field lines with respect to the coronal hole border plays a crucial role in determining the solar wind type.

  19. The magnetic field investigation on the Ulysses mission - Instrumentation and preliminary scientific results

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Beek, T. J.; Forsyth, R. J.; Hedgecock, P. C.; Marquedant, R. J.; Smith, E. J.; Southwood, D. J.; Tsurutani, B. T.

    1992-01-01

    A fundamental feature of the heliosphere is the three-dimensional structure of the interplanetary magnetic field. The magnetic field investigation on Ulysses, the first space probe to explore the out-of-ecliptic and polar heliosphere, aims at determining the large-scale features and gradients of the field, as well as the heliolatitude dependence of interplanetary phenomena so far only observed near the ecliptic plane. The Ulysses magnetometer uses two sensors, one a Vector Helium Magnetometer, the other a Fluxgate Magnetometer. Onboard data processing yields measurements of the magnetic field vector with a time resolution up to 2 vectors/second and a sensitivity of about 10 pT. Since the switch-on of the instrument in flight on 25 October 1990, a steady stream of observations has been made, indicating that at this phase of the solar cycle the field is generally disturbed: several shock waves and a large number of discontinuities have been observed, as well as several periods with apparently intense wave activity. The paper gives a brief summary of the scientific objectives of the investigation, followed by a detailed description of the instrument and its characteristics. Examples of wave bursts, interplanetary shocks and crossings of the heliospheric current sheet are given to illustrate the observations made with the instrument.

  20. Disappearance of the heliospheric sector structure at Ulysses

    SciTech Connect

    Smith, E.J.; Neugebauer, M.; Goldstein, B.E.; Tsurutani, B.T. ); Balogh, A.; Erdoes, G.; Forsyth, R.J. ); Bame, S.J.; Phillips, J.L. )

    1993-11-05

    In May, 1993, the heliospheric current sheet (HCS) ceased to be seen by the Ulysses spacecraft at a heliocentric latitude of [approximately]30[degrees]S and distance of 4.7 AU. The disappearance of the HCS coincided with the solar wind speed remaining >560 km/s and with the disappearance of one of four interaction regions previously seen on each solar rotation. The heliographic latitude of the disappearance of the HCS at Ulysses was 11[degrees] equatorward of the latitude of the magnetic neutral sheet computed at the source surface at 2.5 solar radii, and it occurred a half year earlier than predicted on the basis of the persistence of the time profile of the neutral sheet tilt from one solar cycle to the next. 16 refs., 3 figs.

  1. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    PubMed

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry.

  2. RTGs - The powering of Ulysses. [Radio-isotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Mastal, E. F.; Campbell, R. W.

    1990-01-01

    The radio-isotope thermoelectric generator (RTG) for Ulysses' electronic supply is described noting that lack of sufficient sunlight renders usual solar cell power generation ineffective due to increased distance from sun. The history of the RTG in the U.S.A. is reviewed citing the first RTG launch in 1961 with an electrical output of 2.7 W and the improved Ulysses RTG, which provides 285 W at mission beginning and 250 W at mission end. The RTG concept is discussed including the most recent RTG technology developed by the DOE, the General Purpose Heat Source RTG (GPHS-RTG). The system relies upon heat generated by radioactive decay using radioactive plutonium-238, which is converted directly to energy using the Seebeck method.

  3. Ulysses - an application for the projection of molecular interactions across species.

    PubMed

    Kemmer, Danielle; Huang, Yong; Shah, Sohrab P; Lim, Jonathan; Brumm, Jochen; Yuen, Macaire M S; Ling, John; Xu, Tao; Wasserman, Wyeth W; Ouellette, B F Francis

    2005-01-01

    We developed Ulysses as a user-oriented system that uses a process called Interolog Analysis for the parallel analysis and display of protein interactions detected in various species. Ulysses was designed to perform such Interolog Analysis by the projection of model organism interaction data onto homologous human proteins, and thus serves as an accelerator for the analysis of uncharacterized human proteins. The relevance of projections was assessed and validated against published reference collections. All source code is freely available, and the Ulysses system can be accessed via a web interface http://www.cisreg.ca/ulysses. PMID:16356269

  4. Ulysses - an application for the projection of molecular interactions across species.

    PubMed

    Kemmer, Danielle; Huang, Yong; Shah, Sohrab P; Lim, Jonathan; Brumm, Jochen; Yuen, Macaire M S; Ling, John; Xu, Tao; Wasserman, Wyeth W; Ouellette, B F Francis

    2005-01-01

    We developed Ulysses as a user-oriented system that uses a process called Interolog Analysis for the parallel analysis and display of protein interactions detected in various species. Ulysses was designed to perform such Interolog Analysis by the projection of model organism interaction data onto homologous human proteins, and thus serves as an accelerator for the analysis of uncharacterized human proteins. The relevance of projections was assessed and validated against published reference collections. All source code is freely available, and the Ulysses system can be accessed via a web interface http://www.cisreg.ca/ulysses.

  5. Robinson Crusoe: the fate of the British Ulysses.

    PubMed

    Pimentel, Juan

    2010-03-01

    If travel has been one of the leitmotifs of Western imagination, Robinson Crusoe has certainly been one of its foremost incarnations. This British Ulysses foretold the global village, but also its problems. He predicted the end of distance, but also the triumph of isolation and anaesthetized loneliness. This paper provides an overview of the connections between Defoe's narrative and the new science and explores two versions of the story by two contemporary writers, Julio Cortazar and John Maxwell Coetzee. PMID:20106528

  6. Robinson Crusoe: the fate of the British Ulysses.

    PubMed

    Pimentel, Juan

    2010-03-01

    If travel has been one of the leitmotifs of Western imagination, Robinson Crusoe has certainly been one of its foremost incarnations. This British Ulysses foretold the global village, but also its problems. He predicted the end of distance, but also the triumph of isolation and anaesthetized loneliness. This paper provides an overview of the connections between Defoe's narrative and the new science and explores two versions of the story by two contemporary writers, Julio Cortazar and John Maxwell Coetzee.

  7. Effects of corotating interaction regions on Ulysses high energy particles

    SciTech Connect

    Droege, W.; Kunow, H.; Heber, B.; Mueller-Mellin, R.; Sierks, H.; Wibberenz, G.; Raviart, A.; Ducros, R.; Ferrando, P.; Rastoin, C.; Paizis, C.; Gosling, J. T.

    1996-07-20

    We investigate the intensity variation of low energy ({approx}6-23 MeV/N) heliospheric ions and of galactic protons (250-2200 MeV) observed by the Kiel Electron Telescope onboard the Ulysses spacecraft associated with Corotating Interaction Regions (CIR) from mid-1992 to end of June 1995. This period covers Ulysses' transit to high southern latitudes, the south polar pass, return to the solar equator and ascent to the north pole up to 70 deg. We find that the flux of high energy protons exhibits a periodicity of about 26 days with a relative intensity variation of 10%. At latitudes below {approx}50 deg. the recurrent variations of galactic protons are in coincidence with the passage of CIRs and enhancements of low energies protons and alpha particles which are accelerated at the shocks of the CIRs. The modulation of galactic protons is observed up to high southern latitudes, where the signatures of a CIR are no longer visible in plasma or magnetic field data. The periodicity does not depend on latitude and its phase apparently remains constant during Ulysses' pass over the south pole as well as through the solar equator.

  8. Effects of corotating interaction regions on Ulysses high energy particles

    SciTech Connect

    Droege, W.; Kunow, H.; Heber, B.; Mueller-Mellin, R.; Sierks, H.; Wibberenz, G.; Raviart, A.; Ducros, R.; Ferrando, P.; Rastoin, C.; Gosling, J.T.

    1996-07-01

    We investigate the intensity variation of low energy ({approximately}6{endash}23MeV/N) heliospheric ions and of galactic protons (250{endash}2200 MeV) observed by the Kiel Electron Telescope onboard the Ulysses spacecraft associated with Corotating Interaction Regions (CIR) from mid-1992 to end of June 1995. This period covers Ulysses{close_quote} transit to high southern latitudes, the south polar pass, return to the solar equator and ascent to the north pole up to 70{degree}. We find that the flux of high energy protons exhibits a periodicity of about 26 days with a relative intensity variation of 10{percent}. At latitudes below {approximately}50{degree} the recurrent variations of galactic protons are in coincidence with the passage of CIRs and enhancements of low energies protons and alpha particles which are accelerated at the shocks of the CIRs. The modulation of galactic protons is observed up to high southern latitudes, where the signatures of a CIR are no longer visible in plasma or magnetic field data. The periodicity does not depend on latitude and its phase apparently remains constant during Ulysses{close_quote} pass over the south pole as well as through the solar equator. {copyright} {ital 1996 American Institute of Physics.}

  9. Solar identification of solar-wind disturbances observed at Ulysses

    NASA Astrophysics Data System (ADS)

    Lemen, J. R.; Acton, L. W.; Alexander, D.; Galvin, A. B.; Harvey, K. L.; Hoeksema, J. T.; Zhao, X.; Hudson, H. S.

    1996-07-01

    The Ulysses polar passages are producing a unique set of observations of solar-wind disturbances at high heliographic latitudes. In this paper we use the Yohkoh soft X-ray telescope (SXT) to locate some of these events, as defined by the Ulysses/SWICS data, in the solar corona. Of 8 events, we identify two with flares, three with front-side large arcade events, two with far-side events, and one was not seen in the Ulysses data. The arcade events generally resemble long-duration flares seen in active regions, but are larger, slower, and cooler. We present Yohkoh images of each of these events. In the large arcade events (see Alexander et al., 1996, for a detailed look at one of them) the magnetic morphology at the location of the Yohkoh arcade is generally consistent with the development of a large system of loops. Some of the identifications are ambiguous, and we summarize the reasons for this. From the SWICS data we have obtained ionization temperatures for several events, and find that they have no obvious pattern in relation to the X-ray temperatures; this may be expected on the basis that the interplanetary plasma cloud is physically distinct from the plasma trapped in the corona. Soft X-ray observations of the solar corona show occasional occurrences of large-scale brightenings in the form of arcades of loops. Such structures have been known since Skylab (e.g., Sturrock, 1980), and have a clear relationship with coronal mass ejections (e.g., Kahler, 1977). We now may study this phenomenon statistically with the much more comprehensive Yohkoh observations; with Yohkoh movies we can also begin to extend our knowledge to the three-dimensional development of the structures. At the same time Ulysses has sampled the latitude dependence of the interplanetary effects. With this paper we introduce this subject and provide a preliminary listing of events from the passage of Ulysses through high heliographic latitudes. The starting point of the present survey is a list

  10. Ulysses(*) reaches the South Pole of the Sun

    NASA Astrophysics Data System (ADS)

    1994-08-01

    One of the many investigations being carried out is a search for the Sun's south magnetic pole. As in the case of the Earth, the magnetic pole is offset from the rotation axis, and at some time in September it should sweep directly into line with Ulysses. Just as the polar regions of the Earth were the last to be explored, so it is with the Sun. For more than thirty years spacecraft have investigated the stream of electric particles know as the solar wind. Ulysses, developed by ESA, built by European Industry and flown in collaboration with NASA, is the first to fly through the solar wind coming from the poles. As Ulysses reaches its highest solar latitude of 80.2 degrees on 13 September, European and American researchers will gather at the ESA/ESTEC, the European Space Research and Technology Centre in Noordwijk, the Netherlands, for a scientific workshop at which they will assess the results from the nine experiments carried by the spacecraft. For the week of the workshop, the ESA/ESTEC conference centre will be transformed into a busy scientific laboratory. The large meeting rooms will be divided into 24 working areas, where the Ulysses experiment teams will take up temporary residence. Bringing a variety of computing equipment with them, the scientists will be able to retrieve the latest data from the spacecraft and perform detailed analyses. The emphasis will be on informality, with exchange of scientific ideas - and data - the key ingredient, leading ultimately to a better understanding of the fascinating information being gathered by Ulysses on its unique exploratory journey. Presentations to the media at ESA/ESTEC will start at 10h00 on 16 September. Media representatives wishing to attend are kindly requested to fill out the attached form and return it - preferably by fax (+33.1.42.73.76.90) - to : ESA Public Relations Division, 8/10, rue Mario Nikis - 75015-PARIS. Note to Television Editors : A video index, containing extensive background material on the

  11. SOHO-Ulysses Coordinated Studies During the Two Extended Quadratures and the Radial Alignment of 2007-2008

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.

    2007-01-01

    During quadrature, plasma seen on the limb of the Sun, along the radi al direction to Ulysses, by SOHO or STEREO can be sampled in situ as lt later passes Ulysses. A figure shows a coronagraph image, the rad ial towards Ulysses at 58 deg. S. and the SOHO/UVCS slit positions d uring one set of observations. A CME subsequently occurred and passed Ulysses (at 3/4 AU) 15 days later.

  12. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  13. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    SciTech Connect

    Kelly, C.E.; Klee, P.M.

    1997-06-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is tile back-up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  14. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    SciTech Connect

    Kelly, C.E.; Klee, P.M.

    1997-12-31

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, mass properties (weight and c.g.) and thermal vacuum test. This paper presents the thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is the backup RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at the Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on these tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also shown. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over 5% are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  15. Cassini RTG Acceptance Test Results and RTG Performance on Galileo and Ulysses

    DOE R&D Accomplishments Database

    Kelly, C. E.; Klee, P. M.

    1997-06-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F 2, F 6, and F 7. F 5 is tile back up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  16. Ulysses observations of wave activity at interplanetary shocks and implications for type II radio bursts

    SciTech Connect

    Lengyel-Frey, D. |; Thejappa, G.; MacDowall, R.J.; Stone, R.G.; Phillips, J.L. |

    1997-02-01

    We present the first quantitative investigation of interplanetary type II radio emission in which in situ waves measured at interplanetary shocks are used to compute radio wave intensities for comparison with type II observations. This study is based on in situ measurements of 42 in-ecliptic forward shocks as well as 10 intervals of type II emission observed by the Ulysses spacecraft between 1 AU and 5 AU. The analysis involves comparisons of statistical properties of type II bursts and in situ waves. Most of the 42 shocks are associated with the occurrence of electrostatic waves near the time of shock passage at Ulysses. These waves, which are identified as electron plasma waves and ion acoustic-like waves, are typically most intense several minutes before shock passage. This suggests that wave-wave interactions might be of importance in electromagnetic wave generation and that type II source regions are located immediately upstream of the shocks. We use the in situ wave measurements to compute type II brightness temperatures, assuming that emission at the fundamental of the electron plasma frequency is generated by the merging of electron plasma waves and ion acoustic waves or the decay of electron plasma waves into ion acoustic and transverse waves. Second harmonic emission is assumed to be produced by the merging of electron plasma waves. The latter mechanism requires that a portion of the electron plasma wave distribution is backscattered, presumably by density inhomogeneities in regions of observed ion acoustic wave activity. The computed type II brightness temperatures are found to be consistent with observed values for both fundamental and second harmonic emission, assuming that strong ({approx_equal}10{sup {minus}4}V/m) electron plasma waves and ion acoustic waves are coincident and that the electron plasma waves have phase velocities less than about 10 times the electron thermal velocity. (Abstract Truncated)

  17. "Their pineal glands aglow": Theosophical physiology in Ulysses.

    PubMed

    Morrisson, Mark S

    2008-01-01

    This article argues that Joyce's engagements with the Theosophy of the Dublin literary world amount to more than simple parody. In Ulysses, Joyce portrays Theosophy's efforts to offer an alternative understanding of physiology to that of the medical establishment as a form of boundary work, an adaptation of the discourse of modern medical research to fashion modern mysticism as a science. Ultimately, Joyce rejects Theosophical physiology and its evolutionary scientism because it provides an unsatisfactory rhetorical body, a failed attempt to renegotiate the boundaries between scientific materialism and spirituality in the awkward modernity of Dublin in 1904. PMID:20836274

  18. Ulysses contracts for the doctor and for the patient.

    PubMed

    Hansson, Mats G; Hakama, Matti

    2010-05-01

    Research subjects participating in randomised clinical trials have a right to drop out of a study without specifying any reason for this. However, leaving a trial may be contradictory to their own general interests in medical research since drop outs may lead to biased conclusions and loss of valuable medical information. We suggest in this paper that self-binding "Ulysses contracts" that are non-exploitative and based on autonomous decisions by research subjects as well as by investigating doctors should be implemented with stopping rules adjusted to the needs of different kinds of randomised clinical trials. PMID:20227524

  19. A Slow Streamer Blowout at the Sun and Ulysses

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Bemporad, A.; Poletto, G.

    2003-01-01

    On 10 June 2000 a streamer on the southeast limb slowly disappeared from LASCO/C2 over a period of 17 hours. Within this interval, a small CME was reported in C2. Nothing was reported in C3. The ejecta was later detected at Ulysses, which was at quadrature with the Sun and SOHO at the time. The interplanetary CME (ICME) displayed all the properties of a typical ICME. Slow streamer blowouts such as this have long been known but are little studied.

  20. Null fields in the outer Jovian magnetosphere: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Haynes, P. L.; Balogh, A.; Dougherty, M. K.; Southwood, D. J.; Fazakerley, A.; Smith, E. J.

    1994-01-01

    This paper reports on a magnetic field phenomenon, hereafter referred to as null fields, which were discovered during the inbound pass of the recent flyby of Jupiter by the Ulysses spacecraft. These null fields which were observed in the outer dayside magnetosphere are characterised by brief but sharp decreases of the field magnitude to values less than 1 nT. The nulls are distinguished from the current sheet signatures characteristic of the middle magnetosphere by the fact that the field does not reverse across the event. A field configuration is suggested that accounts for the observed features of the events.

  1. Ulysses Data Analysis: Magnetic Topology of Heliospheric Structures

    NASA Technical Reports Server (NTRS)

    Crooker, Nancy

    2001-01-01

    In this final technical report on research funded by a NASA grant, a project overview is given by way of summaries on nine published papers. Research has included: 1) Using suprathermal electron data to study heliospheric magnetic structures; 2) Analysis of magnetic clouds, coronal mass ejections (CME), and the heliospheric current sheet (HCS); 3) Analysis of the corotating interaction region (CIR) which develop from interactions between solar wind streams of different velocities; 4) Use of Ulysses data in the interpretation of heliospheric events and phenomena.

  2. "Their pineal glands aglow": Theosophical physiology in Ulysses.

    PubMed

    Morrisson, Mark S

    2008-01-01

    This article argues that Joyce's engagements with the Theosophy of the Dublin literary world amount to more than simple parody. In Ulysses, Joyce portrays Theosophy's efforts to offer an alternative understanding of physiology to that of the medical establishment as a form of boundary work, an adaptation of the discourse of modern medical research to fashion modern mysticism as a science. Ultimately, Joyce rejects Theosophical physiology and its evolutionary scientism because it provides an unsatisfactory rhetorical body, a failed attempt to renegotiate the boundaries between scientific materialism and spirituality in the awkward modernity of Dublin in 1904.

  3. Ulysses above the sun's south pole: an introduction.

    PubMed

    Smith, E J; Marsden, R G; Page, D E

    1995-05-19

    Ulysses has explored the field and particle environment of the sun's polar region. The solar wind speed was fast and nearly constant above -50 degrees latitude. Compositional differences were observed in slow (low-latitude) solar wind and in fast (high-latitude) solar wind. The radial magnetic field did not change with latitude, implying that polar cap magnetic fields are transported toward the equator. The intensity of galactic cosmic rays was nearly independent of latitude. Their access to the polar region is opposed by outward-traveling, large amplitude waves in the magnetic field.

  4. Electron energy transport in the solar wind: Ulysses observations

    SciTech Connect

    Scime, E.E.; Gary, S.P.; Phillips, J.L.; Balogh, A.; Lengyel-Frey, D.

    1996-07-01

    Previous analysis suggests that the whistler heat flux instability is responsible for the regulation of the electron heat flux of the solar wind. For an interval of quiescent solar wind during the in-ecliptic phase of the Ulysses mission, the plasma wave data in the whistler frequency regime are compared to the predictions of the whistler heat flux instability model. The data is well constrained by the predicted upper bound on the electron heat flux and a clear correlation between wave activity and electron heat flux dissipation is observed. {copyright} {ital 1996 American Institute of Physics.}

  5. Electron energy transport in the solar wind: Ulysses observations

    SciTech Connect

    Scime, Earl E.; Gary, S. Peter; Phillips, John L.; Balogh, Andre; Lengyel-Frey, Denise

    1996-07-20

    Previous analysis suggests that the whistler heat flux instability is responsible for the regulation of the electron heat flux of the solar wind. For an interval of quiescent solar wind during the in-ecliptic phase of the Ulysses mission, the plasma wave data in the whistler frequency regime are compared to the predictions of the whistler heat flux instability model. The data is well constrained by the predicted upper bound on the electron heat flux and a clear correlation between wave activity and electron heat flux dissipation is observed.

  6. Ulysses contracts for the doctor and for the patient.

    PubMed

    Hansson, Mats G; Hakama, Matti

    2010-05-01

    Research subjects participating in randomised clinical trials have a right to drop out of a study without specifying any reason for this. However, leaving a trial may be contradictory to their own general interests in medical research since drop outs may lead to biased conclusions and loss of valuable medical information. We suggest in this paper that self-binding "Ulysses contracts" that are non-exploitative and based on autonomous decisions by research subjects as well as by investigating doctors should be implemented with stopping rules adjusted to the needs of different kinds of randomised clinical trials.

  7. Can a subject consent to a 'Ulysses contract'?

    PubMed

    1982-08-01

    A case study is presented in which a schizophrenic consents to experimental drug treatment while competent and then refuses the treatment when in a psychotic state. Three commentaries consider the ethical and legal issues involved in permitting informed consent by the mentally ill by means of a "Ulysses contract," i.e., by agreeing at the time of consent that later refusal of treatment is to be ignored if the patient is no longer competent. The commentators see value in such agreements, provided that safeguards are included to ensure that the patient's legitimate wishes and interests are not ignored.

  8. Encounter of the Ulysses Spacecraft with the Ion Tail of Comet McNaught

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Gloeckler, G.; Gosling, J. T.; Rees, A.; Skoug, R.; Goldstein, B. E.; Armstrong, T. P.; Combi, M. R.; Makinen, T.; McComas, D. J.; VonSteiger, R.; Zurbuchen, T. H.; Smith, E. J.; Geiss, J.; Lanzerotti, L. J.

    2007-01-01

    Comet McNaught was the brightest comet observed from Earth in the last 40 years. For a period of five days in early 2007 February, four instruments on the Ulysses spacecraft directly measured cometary ions and key properties of the interaction of the comet's ion tail with the high-speed solar wind from the polar regions of the Sun. Because of the record-breaking duration of the encounter, the data are unusually comprehensive. O3(+) ions were detected for the first time in a comet tail, coexisting with singly charged molecular ions with masses in the range 28-35 amu. The presence of magnetic turbulence and of ions with energies up to approximately 200 keV indicate that at a distance of approximately 1.6 AU from the comet nucleus, the ion tail McNaught had not yet reached equilibrium with the surrounding solar wind.

  9. Management experience of an international venture in space The Ulysses mission

    NASA Technical Reports Server (NTRS)

    Yoshida, Ronald Y.; Meeks, Willis G.

    1986-01-01

    The management of the Ulysses project, a probe which will fly a solar polar orbit, is described. The 5-yr mission will feature a flyby of Jupiter to deflect the spacecraft into a high-inclination orbit. Data on the solar corona, solar wind, the sun-wind interface, the heliospheric magnetic field, solar and nonsolar cosmic rays, etc., will be gathered as a function of the solar latitude. NASA will track and control the probe with the Deep Space Network. JPL provides project management for NASA while the Directorate of Scientific Programs performs ESA management functions. The DOE will provide a radioisotope thermoelectric generator while NASA and ESA each supply half the scientific payload. A NASA-ESA Joint Working Group meets about twice per year to monitor the project and discuss the technical and scientific requirements. Safety issues and measures which are being addressed due to the presence of the Pu-238 heat source for the RTG are discussed.

  10. Ulysses Radio Occultation Observations of the lo Plasma Torus During the Jupiter Encounter.

    PubMed

    Bird, M K; Asmar, S W; Brenkle, J P; Edenhofer, P; Funke, O; Pätzold, M; Volland, H

    1992-09-11

    Radio signals from Ulysses were used to probe the lo plasma torus (IPT) shortly after the spacecraft's closest approach to Jupiter. The frequencies of the two downlinks at S-band (2.3 gigahertz) and X-band (8.4 gigahertz) were recorded, differenced, and integrated in order to derive the columnar electron density of the IPT. The measurements agree qualitatively with contemporary models of the IPT based on Voyager data, but significant differences are apparent as well. The overall level of the IPT electron density is approximately the same as the prediction, implying that the amount of gas (or plasma) injected from lo is similar to that observed during the Voyager era. On the other hand, the IPT seems to be less extended out of the centrifugal equator, implying a smaller plasma temperature than predicted.

  11. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  12. Theoretical Plasma Distribution Consistent With Ulysses Magnetic Field Observations in a High-Speed Solar Wind Tangential Discontinuity

    NASA Technical Reports Server (NTRS)

    Keyser, J. De; Roth, M.; Lemaire, J.; Tsurutani, B. T.; Ho, C. M.; Hammond, C. M.

    1995-01-01

    The overall multi-layer structure of the magnetic field observed by Ulysses across a broad solar wind tangential discontinuity can be reproduced fairly well by means of a kinetic model. Such a simulation provides complementary information about the velocity distribution functions, which are not always known due to the low time resolution inherent in plasma measurements. The success of such a simulation proves that our kinetic model can be used as a realistic basis for further studies of the structure and stability of tangential discontinuities.

  13. Electron Heat Flux in Pressure Balance Structures at Ulysses

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  14. Ulysses at jupiter: an overview of the encounter.

    PubMed

    Smith, E J; Wenzel, K P; Page, D E

    1992-09-11

    In February 1992, the Ulysses spacecraft flew through the giant magnetosphere of Jupiter. The primary objective of the encounter was to use the gravity field of Jupiter to redirect the spacecraft to the sun's polar regions, which will now be traversed in 1994 and 1995. However, the Ulysses scientific investigations were well suited to observations of the Jovian magnetosphere, and the encounter has resulted in a major contribution to our understanding of this complex and dynamic plasma environment. Among the more exciting results are (i) possible entry into the polar cap, (ii) the identification of magnetospheric ions originating from Jupiter's ionosphere, lo, and the solar wind, (iii) observation of longitudinal asymmetries in density and discrete wave-emitting regions of the lo plasma torus, (iv) the presence of counter-streaming ions and electrons, field-aligned currents, and energetic electron and radio bursts in the dusk sector on high-latitude magnetic field lines, and (v) the identification of the direction of the magnetic field in the dusk sector, which is indicative of tailward convection. This overview serves as an introduction to the accompanying reports that present the preliminary scientific findings. Aspects of the encounter that are common to all of the investigations, such as spacecraft capabilities, the flight path past Jupiter, and unique aspects of the encounter, are presented herein.

  15. POSSIBLE EVIDENCE FOR A FISK-TYPE HELIOSPHERIC MAGNETIC FIELD. I. ANALYZING ULYSSES/KET ELECTRON OBSERVATIONS

    SciTech Connect

    Sternal, O.; Heber, B.; Kopp, A.; Engelbrecht, N. E.; Burger, R. A.; Ferreira, S. E. S.; Potgieter, M. S.; Fichtner, H.; Scherer, K.

    2011-11-01

    The propagation of energetic charged particles in the heliospheric magnetic field is one of the fundamental problems in heliophysics. In particular, the structure of the heliospheric magnetic field remains an unsolved problem and is discussed as a controversial topic. The first successful analytic approach to the structure of the heliospheric magnetic field was the Parker field. However, the measurements of the Ulysses spacecraft at high latitudes revealed the possible need for refinements of the existing magnetic field model during solar minimum. Among other reasons, this led to the development of the Fisk field. This approach is highly debated and could not be ruled out with magnetic field measurements so far. A promising method to trace this magnetic field structure is to model the propagation of electrons in the energy range of a few MeV. Employing three-dimensional and time-dependent simulations of the propagation of energetic electrons, this work shows that the influence of a Fisk-type field on the particle transport in the heliosphere leads to characteristic variations of the electron intensities on the timescale of a solar rotation. For the first time it is shown that the Ulysses count rates of 2.5-7 MeV electrons contain the imprint of a Fisk-type heliospheric magnetic field structure. From a comparison of simulation results and the Ulysses count rates, realistic parameters for the Fisk theory are derived. Furthermore, these parameters are used to investigate the modeled relative amplitudes of protons and electrons, including the effects of drifts.

  16. RADIAL EVOLUTION OF SOLAR WIND TURBULENCE DURING EARTH AND ULYSSES ALIGNMENT OF 2007 AUGUST

    SciTech Connect

    D'Amicis, R.; Bruno, R.; Pallocchia, G.; Bavassano, B.; Telloni, D.; Carbone, V.; Balogh, A.

    2010-07-01

    At the end of 2007 August, during the minimum of solar cycle 23, a lineup of Earth and Ulysses occurred, giving the opportunity to analyze, for the first time, the same plasma sample at different observation points, namely at 1 and 1.4 AU. In particular, it allowed us to study the radial evolution of solar wind turbulence typical of fast wind streams as proposed in a Coordinated Investigation Programme for the International Heliophysical Year. This paper describes both the macrostructure and the fluctuations at small scales of this event. We find that soon after detecting the same fast stream, the Advanced Composition Explorer (ACE) observed a change of magnetic polarity being the interplanetary current sheet located between the orbits of the two spacecraft. Moreover, we observe that the compression region formed in front of the fast stream detected at ACE's location evolves in a fast forward shock at Ulysses' orbit. On the other hand, small-scale analysis shows that turbulence is evolving. The presence of a shift of the frequency break separating the injection range from the inertial range toward lower frequencies while distance increases is a clear indication that nonlinear interactions are at work. Moreover, we observe that intermittency, as measured by the flatness factor, increases with distance. This study confirms previous analyses performed using Helios observations of the same fast wind streams at different heliocentric distances, allowing us to relax about the hypothesis of the stationarity of the source regions adopted in previous studies. Consequently, any difference noticed in the solar wind parameters would be ascribed to radial (time) evolution.

  17. Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.

    PubMed

    Wang, Wanlin; Zhang, Wang; Fang, Xiaotian; Huang, Yiqiao; Liu, Qinglei; Bai, Mingwen; Zhang, Di

    2014-07-15

    Butterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength. Using the finite-difference time-domain (FDTD) method, the stable omnidirectional light absorption is achieved in the structure inspired from the Papilio ulysses over a wide incident angle range and with various wavelengths. This explains some of the mysteries of the structure of the Papilio ulysses butterfly. These conclusions can guide the design of omnidirectional absorption materials. PMID:25121688

  18. Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.

    PubMed

    Wang, Wanlin; Zhang, Wang; Fang, Xiaotian; Huang, Yiqiao; Liu, Qinglei; Bai, Mingwen; Zhang, Di

    2014-07-15

    Butterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength. Using the finite-difference time-domain (FDTD) method, the stable omnidirectional light absorption is achieved in the structure inspired from the Papilio ulysses over a wide incident angle range and with various wavelengths. This explains some of the mysteries of the structure of the Papilio ulysses butterfly. These conclusions can guide the design of omnidirectional absorption materials.

  19. Status of Knowledge after Ulysses and SOHO: Session 2: Investigate the Links between the Solar Surface, Corona, and Inner Heliosphere.

    NASA Technical Reports Server (NTRS)

    Suess, Steven

    2006-01-01

    As spacecraft observations of the heliosphere have moved from exploration into studies of physical processes, we are learning about the linkages that exist between different parts of the system. The past fifteen years have led to new ideas for how the heliospheric magnetic field connects back to the Sun and to how that connection plays a role in the origin of the solar wind. A growing understanding these connections, in turn, has led to the ability to use composition, ionization state, the microscopic state of the in situ plasma, and energetic particles as tools to further analyze the linkages and the underlying physical processes. Many missions have contributed to these investigations of the heliosphere as an integrated system. Two of the most important are Ulysses and SOHO, because of the types of measurements they make, their specific orbits, and how they have worked to complement each other. I will review and summarize the status of knowledge about these linkages, with emphasis on results from the Ulysses and SOHO missions. Some of the topics will be the global heliosphere at sunspot maximum and minimum, the physics and morphology of coronal holes, the origin(s) of slow wind, SOHO-Ulysses quadrature observations, mysteries in the propagation of energetic particles, and the physics of eruptive events and their associated current sheets. These specific topics are selected because they point towards the investigations that will be carried out with Solar Orbiter (SO) and the opportunity will be used to illustrate how SO will uniquely contribute to our knowledge of the underlying physical processes.

  20. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    NASA Technical Reports Server (NTRS)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  1. Final Environmental Impact Statement for the Ulysses Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Final (Tier 2) Environmental Impact Statement (FEIS) addresses the environmental impacts which may be caused by implementation of the Ulysses mission, a space flight mission to observe the polar regions of the Sun. The proposed action is completion of preparation and operation of the Ulysses spacecraft, including its planned launch at the earliest available launch opportunity on the Space Transportation System (STS) Shuttle in October 1990 or in the backup opportunity in November 1991. The alternative is canceling further work on the mission. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. This alternative was further evaluated and eliminated from consideration when, in November 1988, the U.S. Air Force, which procures the Titan 4, notified that it could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The Titan 4 launch vehicle is no longer a feasible alternative to the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special (PAM-S) for the November 1991 launch opportunity. The only expected environment effects of the proposed action are associated with normal launch vehicle operation and are treated elsewhere. The environmental impacts of normal Shuttle launches were addressed in existing NEPA documentation and are briefly summarized. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects were judged insufficient to preclude Shuttle launches. There could also be environmental impacts associated with the accidental release of radiological material during launch, deployment, or interplanetary trajectory injection of the Ulysses spacecraft. Intensive analysis indicates that the probability of release is small. There are no environmental

  2. A Review of Discontinuities (and Alfven Waves) in Interplanetary Space: Ulysses Results

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Ho, C. M.

    1998-01-01

    The Ulysses mission explored for the first time our heliosphere at all latitudes up to +/-80 and therefore has been an ideal mission to study potential gradients in heliolatitude of discontinuity occurrence rates and types.

  3. A Review of Discontinuities (and Alfven Waves) in Interplanetary Space: Ulysses Results

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Ho, C. M.

    1998-01-01

    The Ulysses mission explored for the first time our heliosphere at all latitudes up to +/-80 and therefore has been an ideal mission to study potential gradients in heliolatitude(and radial distance) of discontinuity occurrence rates and types.

  4. Simultaneous Observations of Evolution in SEP Elemental Composition on Widely-Separated Spacecraft: Comparisons between Ulysses and ACE/Wind in Late 2001

    NASA Astrophysics Data System (ADS)

    Tylka, A. J.; Malandraki, O.; Ng, C. K.; Marsden, R. G.; Tranquille, C.

    2010-12-01

    As demonstrated by numerous studies in Solar Cycle 23, temporal evolution in elemental composition is a powerful tool for investigating the acceleration and transport processes that govern large, gradual solar energetic particle (SEP) events. Extending such studies to simultaneous observations at widely-separated spacecraft is a key objective of the STEREO mission. However, as of August 2010, the Sun has not produced any sufficiently large SEP events to facilitate such studies. We have therefore undertaken comparisons of simultaneous SEP observations near Earth (by Wind, ACE, and GOES) and at Ulysses. Specifically, we have examined several large SEP events in late 2001, when Ulysses was beyond 2 AU and at high northern solar latitudes, immersed in the fast solar wind. Although the collecting power of the COSPIN/Low Energy Telescope (LET) on Ulysses is only ˜1% as large as that of solar heavy-ion instruments on ACE and Wind (and ˜10% as large as those on STEREO), it nevertheless has provided statistically-meaningful measurements in these events. We compare time evolution in the Fe/O ratio, as well as proton spectra and intensities, and examine how well systematic differences between Ulysses and the near-Earth measurements can be explained by a SEP transport model (Ng, Reames, & Tylka 2003). We also examine solar ions and their spectra in the late decay phase of events, in the so-called “reservoir” regions. We discuss implications of these observations for models of SEP transport. Supported by NASA under grants NNH09AK79I and NNX09AU98G and by European Commission Grant FP7-COMESEP.

  5. Coercion and pressure in psychiatry: lessons from Ulysses.

    PubMed

    Widdershoven, Guy; Berghmans, Ron

    2007-10-01

    Coercion and pressure in mental healthcare raise moral questions. This article focuses on moral questions raised by the everyday practice of pressure and coercion in the care for the mentally ill. In view of an example from literature-the story of Ulysses and the Sirens-several ethical issues surrounding this practice of care are discussed. Care giver and patient should be able to express feelings such as frustration, fear and powerlessness, and attention must be paid to those feelings. In order to be able to evaluate the intervention, one has to be aware of the variety of goals the intervention can aim at. One also has to be aware of the variety of methods of intervention, each with its own benefits and drawbacks. Finally, an intervention requires a context of care and responsibility, along with good communication and fair treatment before, during and after the use of coercion and pressure. PMID:17906050

  6. Inflight performance of the Ulysses reaction control system

    NASA Technical Reports Server (NTRS)

    McGarry, Andrew; Berry, William; Parker, David

    1997-01-01

    The Ulysses spacecraft has been exploring the heliosphere since October 1990 in a six-year polar orbit. Despite varying operational demands, the pressure-fed monopropellant hydrazine reaction control system (RCS) has experienced few problems. The observed anomalies, having minimal operational impact, include plume impingement effects, electrical power overload effects and hydrazine gas generation effects. These anomalies are presented and discussed, with emphasis on the first observation of gas in the hydrazine propellant. The relatively low gas generation rate is attributed to: the use of high purity hydrazine; the configuration of the spin-stabilized spacecraft; the extensive use of titanium alloys; and the efficiency of the thermal control of the propellant tank which maintains a temperature of 21 C.

  7. Historical vignette #8. General Ulysses S. Grant's hip fracture.

    PubMed

    Lewis, G B

    1987-11-01

    Many biographers have discussed the throat cancer that plagued General Ulysses S. Grant toward the end of his life. However, little attention has been focused on his orthopaedic problems. On Christmas Eve in 1883, Grant slipped on an icy walk and fell. Following this accident he was bedridden for weeks and orthopaedically disabled for the remainder of his life. Although biographers have documented this incident, the outcome of the accident has been variously attributed to a sprain, muscle rupture, or simply a lack of exercise. The history of the injury and the nature of the symptoms and disability, which suggest that the General may have sustained a hip fracture, are reviewed with a discussion of the state of hip fracture diagnosis, treatment, and prognosis taken from the textbooks of the period.

  8. Ulysses solar wind plasma observations at high southerly latitudes.

    PubMed

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures.

  9. Coercion and pressure in psychiatry: lessons from Ulysses.

    PubMed

    Widdershoven, Guy; Berghmans, Ron

    2007-10-01

    Coercion and pressure in mental healthcare raise moral questions. This article focuses on moral questions raised by the everyday practice of pressure and coercion in the care for the mentally ill. In view of an example from literature-the story of Ulysses and the Sirens-several ethical issues surrounding this practice of care are discussed. Care giver and patient should be able to express feelings such as frustration, fear and powerlessness, and attention must be paid to those feelings. In order to be able to evaluate the intervention, one has to be aware of the variety of goals the intervention can aim at. One also has to be aware of the variety of methods of intervention, each with its own benefits and drawbacks. Finally, an intervention requires a context of care and responsibility, along with good communication and fair treatment before, during and after the use of coercion and pressure.

  10. GPHS-RTG launch accident analysis for Galileo and Ulysses

    SciTech Connect

    Bradshaw, C.T. )

    1991-01-01

    This paper presents the safety program conducted to determine the response of the General Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) to potential launch accidents of the Space Shuttle for the Galileo and Ulysses missions. The National Aeronautics and Space Administration (NASA) provided definition of the Shuttle potential accidents and characterized the environments. The Launch Accident Scenario Evaluation Program (LASEP) was developed by GE to analyze the RTG response to these accidents. RTG detailed response to Solid Rocket Booster (SRB) fragment impacts, as well as to other types of impact, was obtained from an extensive series of hydrocode analyses. A comprehensive test program was conducted also to determine RTG response to the accident environments. The hydrocode response analyses coupled with the test data base provided the broad range response capability which was implemented in LASEP.

  11. Historical vignette #8. General Ulysses S. Grant's hip fracture.

    PubMed

    Lewis, G B

    1987-11-01

    Many biographers have discussed the throat cancer that plagued General Ulysses S. Grant toward the end of his life. However, little attention has been focused on his orthopaedic problems. On Christmas Eve in 1883, Grant slipped on an icy walk and fell. Following this accident he was bedridden for weeks and orthopaedically disabled for the remainder of his life. Although biographers have documented this incident, the outcome of the accident has been variously attributed to a sprain, muscle rupture, or simply a lack of exercise. The history of the injury and the nature of the symptoms and disability, which suggest that the General may have sustained a hip fracture, are reviewed with a discussion of the state of hip fracture diagnosis, treatment, and prognosis taken from the textbooks of the period. PMID:3332717

  12. Occurrence of high-beta superthermal plasma events in the close environment of Jupiter's bow shock as observed by Ulysses

    SciTech Connect

    Marhavilas, P. K.; Sarris, E. T.; Anagnostopoulos, G. C.

    2011-01-04

    The ratio of the plasma pressure to the magnetic field pressure (or of their energy densities) which is known as the plasma parameter 'beta'({beta}) has important implications to the propagation of energetic particles and the interaction of the solar wind with planetary magnetospheres. Although in the scientific literature the contribution of the superthermal particles to the plasma pressure is generally assumed negligible, we deduced, by analyzing energetic particles and magnetic field measurements recorded by the Ulysses spacecraft, that in a series of events, the energy density contained in the superthermal tail of the particle distribution is comparable to or even higher than the energy density of the magnetic field, creating conditions of high-beta plasma. More explicitly, in this paper we analyze Ulysses/HI-SCALE measurements of the energy density ratio (parameter {beta}{sub ep}) of the energetic ions'(20 keV to {approx}5 MeV) to the magnetic field's in order to find occurrences of high-beta ({beta}{sub ep}>1) superthermal plasma conditions in the environment of the Jovian magnetosphere, which is an interesting plasma laboratory and an important source of emissions in our solar system. In particular, we examine high-beta ion events close to Jupiter's bow shock, which are produced by two processes: (a) bow shock ion acceleration and (b) ion leakage from the magnetosphere.

  13. Preliminary spatial analysis of combined BATSE/Ulysses gamma-ray burst locations

    SciTech Connect

    Kippen, R. Marc; Hurley, Kevin; Pendleton, Geoffrey N.

    1998-05-16

    We present the preliminary spatial analysis of 278 bursts that have been localized by BATSE and the two-spacecraft Compton/Ulysses Interplanetary Network. The large number and superior accuracy of the combined BATSE/Ulysses locations provides improved sensitivity to small-angle source properties. We find that the locations are consistent with large- and small-scale isotropy, with no significant small-angle clustering. We constrain the fraction of sources in clusters and discuss the implications for burst repetition.

  14. CMEs at High Northern Latitudes During Solar Maximum : Ulysses and SOHO Correlated Observations.

    SciTech Connect

    Reisenfeld, D. B.; Gosling, J. T.; Steinberg, J. T; Riley, P.; Forsyth, R. J.; St. Cyr, Orville Chris,

    2002-01-01

    From September through November 2001, Ulysses was almost continuously immersed in polar coronal hole (CH) flow during its northern polar pass of the Sun. For much of this time, the flow was fast (> 700 km/s) and steady, quite similar to the steady unstructured flow observed during Ulysses first polar orbit near solar minimum. During the three months Ulysses transited the northern polar CH it observed 5 coronal mass ejections (CMEs). Of these, two were clearly over-expanding and two were at least partially driven by overexpansion. The phenomenon of over-expansion was frequently observed at high latitudes during Ulysses first orbit. The recurrence of over-expanding CMEs during the second orbit at high latitudes indicates that this is a phenomenon apparently unique to and typical of CMEs embedded in polar CH flow. Ulysses was nearly above the solar limb during this three-month interval, providing an opportunity to use LASCO/SOHO observations to study the initial velocity profiles of the CMEs observed further out by Ulysses. These initial conditions were used as inputs into a hydrodynamic code, the results of which are reported here.

  15. Measurements of HNO3, SO2 High Resolution Aerosol SO4 (sup 2-), and Selected Aerosol Species Aboard the NASA DC-8 Aircraft: During the Transport and Chemical Evolution Over the Pacific Airborne Mission (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    2004-01-01

    The UNH investigation during TRACE-P provided measurements of selected acidic gases and aerosol species aboard the NASA DC-8 research aircraft. Our investigation focused on measuring HNO3, SO2, and fine (less than 2 microns) aerosol SO4(sup 2-) with two minute time resolution in near-real-time. We also quantified mixing ratios of aerosol ionic species, and aerosol (210)Pb and (7)Be collected onto bulk filters at better than 10 minute resolution. This suite of measurements contributed extensively to achieving the principal objectives of TRACE-P. In the context of the full data set collected by experimental teams on the DC-8, our observations provide a solid basis for assessing decadal changes in the chemical composition and source strength of Asian continental outflow. This region of the Pacific should be impacted profoundly by Asian emissions at this time with significant degradation of air quality over the next few decades. Atmospheric measurements in the western Pacific region will provide a valuable time series to help quantify the impact of Asian anthropogenic activities. Our data also provide important insight into the chemical and physical processes transforming Asian outflow during transport over the Pacific, particularly uptake and reactions of soluble gases on aerosol particles. In addition, the TRACE-P data set provide strong constraints for assessing and improving the chemical fields simulated by chemical transport models.

  16. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  17. Simultaneous Chandra X ray, Hubble Space Telescope Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj. A.; MacDowall, R. J.; Desch, M. D. 8; Majeed, T.

    2005-01-01

    Observations of Jupiter carried out by the Chandra Advanced CCD Imaging Spectrometer (ACIS-S) instrument over 24-26 February 2003 show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X-ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that independent of the source of the energetic ions, magnetospheric or solar wind, the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X rays compared with the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X rays is magnetospheric in origin and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approx.40 min quasi

  18. Simultaneous Chandra X-ray, HST Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj, A.; MacDowall, R. J.

    2004-01-01

    Observations of Jupiter carried out by the Chandra ACIS-S instrument over 24-26 February, 2003, show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully-stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X- ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that, independent of the source of the energetic ions - magnetospheric or solar wind - the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X-rays compared to the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X-rays is magnetospheric in origin, and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approximately 40 minute quasi-periodic radio outbursts.

  19. ULF waves in the Io torus: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Lin, Naiguo; Kellogg, P. J.; Macdowell, R. J.; Mei, Y.; Cornilleau-Wehrlin, N.; Canu, P.; De Villedary, C.; Rezeau, L.; Balogh, L.; Forsyth, R. J.

    1993-01-01

    Throughout the Io torus, Ulysses has observed intense ultralow frequency (ULF) wave activity in both electric and magnetic components. Such ULF waves have been previously suggested as the source of ion precipitation leading to Jovian aurorae. The peaks of the wave spectra are closely related to the ion cyclotron frequencies, which is evidence of the waves being ion cyclotron waves (ICWs). Analysis of the dispersion relation using a multicomponent density model shows that at high latitudes (approximately 30 deg), peak frequencies of the waves fall into L mode branches of guided or unguided ICWs. Near the equator, in addition to the ICWs below f(sub cO(2+)), there are strong signals at approximately 10 Hz which require an unexpectedly large energetic ion temperature anistropy to be explained by the excitation of either convective or nonconvective ion cyclotron instabilities. Their generation mechanism remains open for the future study. Evaluation of the Poynting vector and the dispersion relation analysis suggest that the waves near the equator had a small wave angle relative to the magnetic field, while those observed at high latitudes were more oblique. The polarization of the waves below f(sub cH(+)) is more random than that of the whistler mode waves, but left-hand-polarized components of the waves can still be seen. The intensity of the ICWs both near the equator and at high latitudes are strong enough to meet the requirement for producing strong pitch angle scattering of energetic ions.

  20. Conduct and results of the Interagency Nuclear Safety Review Panel's evaluation of the Ulysses space mission

    SciTech Connect

    Sholtis, J.A. Jr. ); Gray, L.B. ); Huff, D.A. ); Klug, N.P. ); Winchester, R.O. )

    1991-01-01

    The recent 6 October 1990 launch and deployment of the nuclear-powered Ulysses spacecraft from the Space Shuttle {ital Discovery} culminated an extensive safety review and evaluation effort by the Interagency Nuclear Safety Review Panel (INSRP). After more than a year of detailed independent review, study, and analysis, the INSRP prepared a Safety Evaluation Report (SER) on the Ulysses mission, in accordance with Presidential Directive-National Security Council memorandum 25. The SER, which included a review of the Ulysses Final Safety Analysis Report (FSAR) and an independent characterization of the mission risks, was used by the National Aeronautics and Space Administration (NASA) in its decision to request launch approval as well as by the Executive Office of the President in arriving at a launch decision based on risk-benefit considerations. This paper provides an overview of the Ulysses mission and the conduct as well as the results of the INSRP evaluation. While the mission risk determined by the INSRP in the SER was higher than that characterized by the Ulysses project in the FSAR, both reports indicated that the radiological risks were relatively small. In the final analysis, the SER proved to be supportive of a positive launch decision. The INSRP evaluation process has demonstrated its effectiveness numerous times since the 1960s. In every case, it has provided the essential ingredients and perspective to permit an informed launch decision at the highest level of our Government.

  1. Detectability of electrostatic decay products in Ulysses and Galileo observations of type 3 solar radio sources

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    Recent in situ Ulysses and Galileo observations of the source regions of type 3 solar radio bursts appear to show an absence of ion acoustic waves S produced by nonlinear Langmuir wave processes such as the electrostatic (ES) decay, in contradiction with earlier ISEE 3 observations and analytic theory. This letter resolves these apparent contradictions. Refined analyses of the maximum S-wave electric fields produced by ES decay and of the characteristics of the Ulysses Wave Form Analyzer (WFA) instrument show that the bursty S waves observed by the ISEE 3 should be essentially undetectable by the Ulysses WFA. It is also shown that the maximum S-wave levels predicted for the Galileo event are approximately less than the instrumental noise level, thereby confirming an earlier suggestion. Thus, no contradictions exist between the ISEE 3 and Ulysses/Galileo observation, and no evidence exists against ES decay in the published Ulysses and Galileo data. All available data are consistent with, or at worst not inconsistent with, the ES decay proceeding and being the dominant nonlinear process in type 3 bursts.

  2. Energetic Charged-Particle Phenomena in the Jovian Magnetosphere: First Results from the Ulysses COSPIN Collaboration.

    PubMed

    Simpson, J A; Anglin, J D; Balogh, A; Burrows, J R; Cowley, S W; Ferrando, P; Heber, B; Hynds, R J; Kunow, H; Marsden, R G; McKibben, R B; Müller-Mellin, R; Page, D E; Raviart, A; Sanderson, T R; Staines, K; Wenzel, K P; Wilson, M D; Zhang, M

    1992-09-11

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  3. Expedition Seven Launched Aboard Soyez Spacecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Destined for the International Space Station (ISS), a Soyez TMA-1 spacecraft launches from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. Aboard are Expedition Seven crew members, cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer. Expedition Six crew members returned to Earth aboard the Russian spacecraft after a 5 and 1/2 month stay aboard the ISS. Photo credit: NASA/Scott Andrews

  4. STS-41 Ulysses Breakfast, Suit-up, C-7 Exit, Launch and ISOS Cam Views

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Live footage shows the crewmembers of STS-41, Commander Richard N. Richards, Pilot Robert D. Cabana, Mission Specialists William M. Shepherd, Bruce E. Melnick, and Thomas D. Akers, participating in the traditional activities the day of their flight. The crew are seen eating breakfast, suiting-up, walking out to the Astronaut-Van, putting on life vests in the 'White Room' area, and entering the crew module of the Discovery Orbiter. Footage also includes preparation of the Ulysses Payload. Engineers are seen loading Ulysses to the upper stage, transferring Discovery to an upright position, bolting Discovery to the external tank, rolling Discovery out to the launch pad, and finally installing the Ulysses Payload inside Discovery. Also shown are both night and morning panoramic shots of the shuttle on the pad, main engine start, ignition, liftoff, booster separation, and various camera views of the launch.

  5. Relation Between Pressure Balance Structures and Polar Plumes from Ulysses High Latitude Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Suess, Steven T.; Sakurai, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to discontinuities. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.

  6. Relation between Pressure Balance Structures and Polar Plumes from Ulysses High Latitude Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi

    2002-01-01

    Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to magnetic discontinuities in PBSs. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.

  7. Update of Ulysses FSAR results using updated NASA (National Aeronautics and Space Administration) probabilities

    SciTech Connect

    Not Available

    1990-05-18

    The mission risk results reported in the Ulysses Final Safety Analysis Report (FSAR) issued on March 14, 1990, were based on initiating accident probabilities the National Aeronautics and Space Administration (NASA) provided to the Department of Energy (DOE) on July 13, 1988. These probabilities were provided in terms of ranges; the geometric mean of these ranges were used in the development and presentation of the results in the FSAR for source terms, radiological consequences and risks. Subsequent to the issuance of the FSAR, DOE received a revised set of probabilities from NASA. These probabilities were presented in terms of distributions for each initiating accident and characterized by a mean and cumulative percentile values. NASA recommended that DOE use the updated probabilities to update the Ulysses FSAR results. Accordingly, at the request of DOE, this letter report has been prepared to evaluate the changes in the Ulysses FSAR results when the updated mean probabilities are used.

  8. ISS Update: Science Aboard Kounotori3

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Pete Hasbrook, associate program scientist, about the experiments traveling to the International Space Station aboard the H-II Transfer Vehicle...

  9. Interstellar He Parameters in Front of the Heliosphere: View from Ibex and Ulysses

    NASA Astrophysics Data System (ADS)

    Swaczyna, P.; Bzowski, M.; Kubiak, M. A.; Sokol, J. M.; Moebius, E.; Leonard, T.; Heirtzler, D.; Hlond, M.; Banaszkiewicz, M.; Witte, M.; Wurz, P.; Rodriguez, D.; Schwadron, N.; Fuselier, S.; McComas, D. J.; Kucharek, H.

    2014-12-01

    The initial analyses of the Ulysses and IBEX interstellar neutral (ISN) gas observations showed small but significant differences in the ISN flow parameters. In particular, the IBEX observations have defined a narrow and tightly coupled tube in the 4-dimensional ISN parameter space (temperature and inflow speed, longitude, and latitude), which extended to the original Ulysses flow vector but with a somewhat different optimum set of values. However, adopting the Ulysses velocity vector resulted in a significantly higher temperature. Interestingly, the optimum flow vector obtained with IBEX resulted in the same temperature obtained from the Ulysses GAS analysis. These intriguing results were the starting point for a hypothesis that then was tested with a literature study from the past four decades, i.e., that the flow direction of interstellar He may be changing over time. Here, we analyze the data from both experiments using the Warsaw Test Particle Model, i.e., same simulation program and ionization rate model. For Ulysses GAS, we use the original data set and, in addition, the same set reprocessed with improved information on the instrument pointing in the sky. For IBEX, we model a subtle, previously unaccounted for data throughput issue for the first two observation seasons, and we analyze, for the first time, data from the two most recent seasons, when the data throughput issue was eliminated through a mode change and when the IBEX pointing strategy was changed to improve the sensitivity of the observations to tighten the possible range of the ISN flow parameters. In addition, we have refined the data uncertainty system, improved the analysis of the IBEX pointing information, and we now explicitly take into account the newly discovered Warm Breeze. In combination, we present the ISN velocity vector relative to the Sun and the He temperature for the entire Ulysses GAS observations and the past two IBEX-Lo observation seasons as a time series from 1994 until 2014.

  10. On the Response of the Ulysses RTG to the Impact of Large SRM-Fragments

    SciTech Connect

    Eck, Marshall B.; Mukunda, Meera

    1990-01-01

    Presented at the Seventh Symposium on Space Nuclear Power Systems in Albuquerque, NM, January 7-11, 1990. It will be shown that end-on impacts, which are more likely to occur with Ulysses than with Galileo, will produce greater average fueled clad distortion than was typical of Galileo. Fortunately, the predicted distortions remain well within the Galileo database. It will also be shown that the 2-dimensional calculations which were performed for the Galileo configuration were indeed valid in that application and are also valid for the Ulysses configuration. There are three copies in the file.

  11. Ulysses solar wind plasma observations from peak southerly latitude through perihelion and beyond

    SciTech Connect

    Phillips, J.L.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; McComas, D.J.; Goldstein, B.E.; Neugebauer, M.; Hammond, C.M.

    1996-07-01

    We present Ulysses solar wind plasma data from the peak southerly latitude of {minus}80.2{degree} through +64.9{degree} latitude on June 7, 1995. Ulysses encountered fast wind throughout this time except for a 43{degree} equatorial band. Mass flux was nearly constant with latitude, while speed (density) had positive (negative) poleward gradients. Momentum flux was highest at high latitudes, suggesting a latitudinal asymmetry in the heliopause cross section. Solar wind energy flux density was also highest at high latitudes. {copyright} {ital 1996 American Institute of Physics.}

  12. Effects of the 5 October 1996 CME at 4.4 AU: Ulysses observations

    SciTech Connect

    Marsden, R.G.; Desai, M.I.; Sanderson, T.R.; Forsyth, R.J.; Gosling, J.T.

    1997-09-01

    The authors present observations from Ulysses associated with a large coronal mass ejection (CME) that lifted off the west limb of the Sun on 5 October, 1996. The study focuses on the effects of the interplanetary counterpart of the CME on the energetic particle populations at the location of Ulysses, in particular the effect on the sequence of corotating enhancements that had been observed prior to its arrival. They conclude that, despite its large spatial extent, the CME caused no permanent deformation of the heliospheric current sheet.

  13. Ulysses solar wind plasma observations from peak southerly latitude through perihelion and beyond

    SciTech Connect

    Phillips, J.L.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; McComas, D.J.; Goldstein, B.E.; Neugebauer, M.; Hammond, C.M.

    1995-09-01

    We present Ulysses solar wind plasma data from the peak southerly latitude of {minus}80.2{degrees} through +64.9{degrees} latitude on June 7, 1995. Ulysses encountered fast wind throughout this time except for a 43{degrees} band centered on the solar equator. Median mass flux was nearly constant with latitude, while speed and density had positive and negative poleward gradients, respectively. Solar wind momentum flux was highest at high latitudes, suggesting a latitudinal asymmetry in the heliopause cross section. Solar wind energy flux density was also highest at high latitudes.

  14. The Ulysses Supplement to the BATSE 3B Catalog of Cosmic Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.

    1998-01-01

    We present Interplanetary Network Localization information for 219 gamma-ray burst of the 3rd BATSE catalog, obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (triangulation) results in an annulus of possible arrival directions whose width varies between 7 arcseconds and 32 arcminutes, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area by a factor of 30.

  15. Flow properties of the solar wind obtained from white light data, Ulysses observations and a two-fluid model

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai; Esser, Ruth; Guhathakurta, Madhulika; Fisher, Richard

    1995-01-01

    Using the empirical constraints provided by observations in the inner corona and in interplanetary space. we derive the flow properties of the solar wind using a two fluid model. Density and scale height temperatures are derived from White Light coronagraph observations on SPARTAN 201-1 and at Mauna Loa, from 1.16 to 5.5 R, in the two polar coronal holes on 11-12 Apr. 1993. Interplanetary measurements of the flow speed and proton mass flux are taken from the Ulysses south polar passage. By comparing the results of the model computations that fit the empirical constraints in the two coronal hole regions, we show how the effects of the line of sight influence the empirical inferences and subsequently the corresponding numerical results.

  16. Draft Environmental Impact Statement for the Ulysses Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Draft Environmental Impact Statement (DEIS) addresses the environmental impacts which may be caused by the preparation and operation of the Ulysses spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle and the alternative of canceling further work on the mission. The launch configuration will use the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special(PAM-S) combination. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. However, the U.S. Air Force, which procures the Titan 4 for NASA, could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The only expected environmental effects of the proposed action are associated with normal Shuttle launch operations. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects have been judged insufficient to preclude Shuttle launches. In the event of (1) an accident during launch, or (2) reentry of the spacecraft from earth orbit, there are potential adverse health and environmental effects associated with the possible release of plutonium dioxide from the spacecraft's radioisotope thermoelectric generators (RTG). The potential effects considered in this EIS include risks of air and water quality impacts, local land area contamination, adverse health and safety impacts, the disturbance of biotic resources, impacts on wetland areas or areas containing historical sites, and socioeconomic impacts. Intensive analysis of the possible accidents associated with the proposed action are underway and preliminary results indicate small health or environmental risks. The results of a Final Safety Analysis Report will be available for inclusion into the final EIS.

  17. Measurements of Nitric Acid and Aerosol Species Aboard the NASA DC-8 Aircraft During the SASS OZone and Nitrogen Oxide Experiment (SONEX)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    The SASS Ozone and Nitrogen Oxides Experiment (SONEX) over the north Atlantic during October/November 1997 offered an excellent opportunity to examine the budget of total reactive nitrogen (NO(y)) in the upper troposphere (8 - 12 km altitude). The median measured NO(y) mixing ratio was 425 parts per trillion by volume (pptv). Two different methods were used to measure HNO3: (1) the mist chamber technique and, (2) chemical ionization mass spectrometry. Two merged data sets using these HNO3 measurements were used to calculate NO(y) by summing the reactive nitrogen species (a combination of measured plus modeled results) and comparing the resultant values to measured NO(y) (gold catalytic reduction method). Both comparisons showed good agreement in the two quantities (slope greater than 0.9 and r(sup 2) greater than 0.9). Thus, the total reactive nitrogen budget in the upper troposphere over the North Atlantic can be explained in a general manner as a simple mixture of NO(x). (NO + NO2), HNO3, and PAN. Median values of NO(x)/NO(y) were approx. = 0.25, HNO3/NO(y) approx. = 0.35 and PAN/NO(y) approx. = 0.17. Particulate NO3 and alkyl nitrates together composed less than 10% of NO(y), while model estimated HNO4 averaged 12%.

  18. Measurements of Nitric Acid and Aerosol Species Aboard the NASA DC-8 Aircraft During the SASS Ozone and Nitrogen Oxide Experiment (SONEX)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    The SASS Ozone and Nitrogen Oxides Experiment (SONEX) over the North Atlantic during October/November 1997 offered an excellent opportunity to examine the budget of total reactive nitrogen (NO(sub y)) in the upper troposphere (8 - 12 km altitude). The median measured NO(sub y) mixing ratio was 425 parts per trillion by volume (pptv). Two different methods were used to measure HNO3: (1) the mist chamber technique and, (2) chemical ionization mass spectrometry. Two merged data sets using these HNO3 measurements were used to calculate NO(sub y) by summing the reactive nitrogen species (a combination of measured plus modeled results) and comparing the resultant values to measured NO(sub y) (gold catalytic reduction method). Both comparisons showed good agreement in the two quantities (slope > 0.9 and r(exp 2) > 0.9). Thus, the total reactive nitrogen budget in the upper troposphere over the North Atlantic can be explained in a general manner as a simple mixture of NO(sub x). (NO + NO2), HNO3, and PAN. Median values of NO(sub x)/NO(sub y) were approximately equal to 0.25, HNO3/NO(sub y) were approximately equal to 0.35 and Peroxyacetyl Nitrate (PAN)/NO(sub y) were approximately equal to 0. 17. Particulate NO3 and alkyl nitrates together composed <10 % of NO(sub y), while model estimated HNO4 averaged 12%.

  19. Measurements of HOx radicals and the total OH reactivity (kOH) in the planetary boundary layer over southern Finland aboard the Zeppelin NT airship during the PEGASOS field campaign.

    NASA Astrophysics Data System (ADS)

    Broch, Sebastian; Gomm, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Bachner, Mathias; Bohn, Birger; Häseler, Rolf; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank; Li, Xin; Lohse, Insa; Rohrer, Franz; Thayer, Mitchell; Tillmann, Ralf; Wegener, Robert; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The concentration of hydroxyl (OH) and hydroperoxy (HO2) radicals (also named HOx) and the total OH reactivity were measured over southern Finland and during transfer flights over Germany, Denmark and Sweden aboard the Zeppelin NT airship within the framework of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS) field campaign in 2013. The measurements were performed with a remotely controlled Laser Induced Fluorescence (LIF) instrument which was installed on top of the airship. Together with a comprehensive set of trace gas (O3, CO, NO, NO2, HCHO, HONO, VOCs), photolysis frequencies and aerosol measurements as well as the measurement of meteorological parameters, these data provide the possibility to test the current understanding of the chemical processes in the planetary boundary layer (PBL) over different landscapes and in different chemical regimes. The unique flight performance of the Zeppelin NT allowed us to measure transects at a constant altitude as well as vertical profiles within the range of 80 m to 1000 m above ground. The transect flights show changes in the HOx distribution and kOH while crossing different chemical regimes on the way from Friedrichshafen, Germany to Jämijärvi, Finland over Germany, Denmark and Sweden. Vertical profile flights over the boreal forest close to Jämijärvi and Hyytiälä (both Finland) gave the opportunity to investigate the layering of the PBL and with that the vertical distribution of HOx and kOH with a high spatial and temporal resolution. Gradients in the HOx concentration and kOH were measured between the different layers during the early morning hours. The maximum radical concentrations found during the campaign were 1.0 x 107 cm-3 for OH and 1.0 x 109 cm-3 for HO2. The total OH reactivity measured in Finland was much lower than what was reported before in the literature from ground based measurements and ranged from 1 s-1 to 6 s-1. Acknowledgement: PEGASOS project funded by the European

  20. Recent results form measurements of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 airplane and on the ground.

    PubMed

    Goldhagen, P; Clem, J M; Wilson, J W

    2003-01-01

    Crews of future high-altitude commercial aircraft may be significantly exposed to atmospheric cosmic radiation from galactic cosmic rays (GCR). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude aircraft. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer, which was also used to make measurements on the ground. Its detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using the radiation transport code MCNPX. We have now recalculated the detector responses including the effects of the airplane structure. We are also using new FLUKA calculations of GCR-induced hadron spectra in the atmosphere to correct for spectrometer counts produced by charged hadrons. Neutron spectra are unfolded from the corrected measured count rates using the MAXED code. Results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cutoff generally agree well with results from recent calculations of GCR-induced neutron spectra.

  1. Simultaneous, In-situ Measurement of NO3, N2O5 and NO2 via Cavity Ring-down Spectroscopy aboard an Aircraft

    NASA Astrophysics Data System (ADS)

    Dube, W. P.; Brown, S. S.; Osthoff, H. D.; Ciciora, S. J.; Paris, M. W.; McLaughlin, R. J.; Ravishankara, A. R.

    2006-12-01

    This contribution describes improvements to an existing instrument for aircraft measurements of NO3 and N2O5 in the troposphere via cavity ring-down spectroscopy [Brown, et al., 2002; Dubé, et al., 2006]. The instrument was specifically designed and constructed for operation on the NOAA WP-3. The improvements include the incorporation of two additional cavity ring-down channels, reduced residence time for more rapid sampling and reduced inlet losses; higher reflectivity mirrors to improve instrument sensitivity; and a calibration system based on the conversion of NO3 and N2O5 to NO2. The instrument now consists of a total of four measurement channels, three at 662 nm for measuring NO3, N2O5, and a reference channel to track background changes on a rapid time scale, and one at 532 nm for measurement of NO2 [Osthoff, et al., 2006]. This paper describes the specifics of these design changes, the resultant improvements in the measurement and the performance of the instrument during the TexAQS/GoMACCS campaign in Houston, TX in 2006. Brown, S. S., H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara (2002), Simultaneous in-situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy, Rev. Sci. Instr., 73, 3291-3301. Dube, W. P., S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara (2006), Aircraft instrument for simultaneous, in-situ measurements of NO3 and N2O5 via cavity ring-down spectroscopy, Rev. Sci. Instr., 77, 034101. Osthoff, H. D., S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara (2006), Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy, J. Geophys. Res., D12305, doi:10.1029/2005JD006942.

  2. Total OH reactivity measurements aboard the Zeppelin NT during the PEGASOS campaigns 2012 and 2013: Spatial and vertical distribution and contribution of substance classes

    NASA Astrophysics Data System (ADS)

    Wegener, R.; Jäger, J.; Hofzumahaus, A.; Fuchs, H.; Gomm, S.; Broch, S.; Häseler, R.; Holland, F.; Tillmann, R.; Mentel, T. F.; Kiendler-Scharr, A.; Wahner, A.; Kaiser, J.; Lu, K.; Wolfe, G.; Keutsch, F. N.; Thayer, M. P.

    2015-12-01

    Hydroxyl (OH) radicals are the main oxidants of atmospheric pollutants. The quantification of their sources and sinks is necessary to fully comprehend the measured OH concentration. Due to difficulties quantifying all the individual compounds contributing to the OH loss, the direct quantification of the OH loss is a crucial means to have predictive capability of atmospheric OH concentrations and thus oxidation rates. Especially in forested areas, where OH reactivity is dominated by highly reactive organic compounds, the directly measured OH loss rate often exceeds the calculated total OH reactivity. Here we present the total OH loss data and data for the individual sinks of OH measured on board of the Zeppelin NT in summer 2012 and 2013. The campaigns were part of the Pan-European Gas AeroSOls-climate interaction Study (PEGASOS) and were performed from May - July 2012 in the area of Rotterdam (the Netherlands) and Bologna (Italy) and from April - July 2013 over Finland. Total OH reactivity was measured monitoring the decay of photolytically produced OH with laser induced fluorescence (LIF). OH, HO2, Volatile Organic Compounds (VOC), CO, formaldehyde, NOx, HONO and ozone were analyzed online together with photolysis frequencies, particle number concentrations and meteorological parameters. The Zeppelin NT was flying at low speed at altitudes of up to 900 m which provided insight into the vertical structure of the lower troposphere. On average, the total OH reactivity was 6.1 ± 1.2 s-1 over the area of Rotterdam, 3.8 ± 1.4 s-1 over the region of Bologna and only 2.1 ± 1.1 s-1 over Finland. During almost the entire campaigns, the measured total OH reactivity could be explained by the contributions of measured species. Oxygenated volatile organic compounds (OVOC) contributed the major part of the total OH reactivity measured with a percentage share of 30% over the Rotterdam area and 40% over the area of Bologna. In the morning hours when layered structures had been

  3. Active Measurement of Mercury's Plasma experiment: a part of the Plasma Wave Investigation consortium aboard the BepiColombo Mercury Magnetospheric Orbiter

    NASA Astrophysics Data System (ADS)

    Trotignon, Jean Gabriel; Trotignon, Jean Gabriel; Lagoutte, Dominique; Kasaba, Yasumasa; Kojima, Hiro; Blomberg, Lars; Lebreton, Jean-Pierre

    The Active Measurement of Mercury's Plasma experiment, AM2 P, is designed to measure the thermal electron density and temperature in the environment of planet Mercury from the solar wind down to the inner magnetosphere. Detailed analyses of the returned data should also give more information on the electron distribution function itself. AM2 P as part of the Plasma Wave Investigation consortium, PWI, shall then contribute to the study of the intricate and poorly known interaction between the solar wind and the Mercury's magnetosphere, exosphere, and surface. AM2 P shall indeed give another insight into the thermal coupling between neutral and charged particles, the characterization of the spectral distribution of natural waves, the detection of plasma boundaries, and the identification of the plasma regimes inside the Hermean magnetosphere. The AM2 P basic mode is to measure the self-impedance of the MEFISTO (Mercury Electric Field In Situ TOol) double-sphere antenna in a frequency range comprising the plasma frequency which is expected to lie in the various regions encountered by the Mercury Magnetospheric Orbiter, MMO. In this mode, different operations are possible, giving complementary plasma parameter information, mainly in the vicinity of the plasma resonance: normal dipole, monopole, and mutual impedance, according to the antenna elements that are used for the transmitting and receiving functions. In the secondary MEFISTO double-wire antenna mode, the external shield of the wire-boom is used as a 2 x 15 m long dipole antenna. As the dependence upon plasma parameters of the double-wire antenna impedance differs significantly from the double-sphere one, both modes may be of great benefit for achieving reliable and complementary plasma diagnoses. This is actually very useful in the Mercury's dilute media. As a bonus, AM2 P will contribute to the onboard calibrations of the WPT wire electric-antenna and the SC-DB and SC-LF search coils (calibration signal

  4. A Pair of Forward and Reverse Slow-Mode Shocks Detected by Ulysses at 5AU

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Tsurutani, B. T.; Lin, N.; Lanzerotti, L. J.; Smith, E. J.; Goldstein, B. E.; Lakhina, G. S.; Buti, B.

    1998-01-01

    We report the first finding of a pair of forward and reverse slow-mode shocks in the distant heliosphere using plasma and magnetic field data from the Ulysses spacecraft located at 5.3 AU and 9 degrees South heliolatitude.

  5. Magnetic Field Structure of Pressure Balanced Structures from Ulysses High Latitudes Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Suess, S. T.; Sakurai, T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Ulysses observations showed that pressure balance structures (PBSs) are a common feature in the high-latitude solar winds near the solar minimum. On the other hand, coronal plumes are common in polar coronal holes near the solar minimum. It is therefore considered that the PBSs would be remnants of plumes. Several detailed studies of the PBSs have been made from Ulysses/SWOOPS observations, but study of their magnetic structures has not yet been done. The study of the magnetic structure is important because previous observations and theoretical models of plumes indicate that they are related to the network activity such as magnetic reconnection on the photosphere. We have investigated the magnetic structures of the PBSs with Ulysses magnetometer and SWOOPS data. We have found that magnetic reversals in radial magnetic field take place while the spacecraft passes through most of the PBSs These magnetic reversals have been interpreted as large amplitude Alfv/'enic fluctuations but our results suggest that Ulysses is also traversing current sheets of plasmoids associated with network activity at the base of plumes.

  6. (abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.

    1996-01-01

    Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).

  7. Ulysses observations of a recurrent high speed solar wind stream and the heliomagnetic streamer belt

    SciTech Connect

    Bame, S.J.; Gosling, J.T.; McComas, D.J.; Phillips, J.L. ); Goldstein, B.E.; Neugebauer, M. ); Harvey, J.W.

    1993-11-05

    Near-ecliptic solar wind observations by Ulysses on its way to the polar regions of the Sun, compared with those from IMP 8 at 1 AU, showed that high-speed streams decay and broaden with heliocentric distance from IMP 8 to Ulysses, as expected. In July 1992 while travelling south at [approximately]13[degrees]S and 5.3 AU, Ulysses encountered a recurrent high-speed stream, that may also have been observed at IMP 8. The stream has been observed a total of 14 times, once in each solar rotation through June 1993 at [approximately]34[degrees]S. The source of the high-speed stream is an equatorward extension of the south polar coronal hole. From July 1992 through June 1993, averages of solar wind peak speed increased while density decreased with heliographic latitude. Both the stream and a low-speed, high-density flow, presumably associated with the heliomagnetic (coronal) streamer belt encircling the heliomagnetic equator, crossed Ulysses with the solar rotation period until April 1993 when the spacecraft was at [approximately]29[degrees]S heliographic latitude. After this time, as the spacecraft climbed to higher latitudes, the central portion of the streamer belt with lowest speed and highest density disappeared. Therefore, at its maximum inclination, the belt was tilted at [approximately]29[degrees] to the heliographic equator at this point in the solar cycle. 11 refs., 5 figs.

  8. The underlying magnetic field direction in Ulysses observations of the southern polar heliosphere

    SciTech Connect

    Forsyth, R.J.; Balogh, A.; Smith, E.J.; Murphy, N.; McComas, D.J.

    1996-07-01

    Magnetic field data provided by the Ulysses spacecraft between May 1993 and January 1995 are presented for the south latitudes 30-80 dg. The deflections of the magnetic field direction are attributed to the intense Alfven waves. {copyright} {bold 1997 American Institute of Physics.}

  9. Energetic particles and coronal mass ejections in the high latitude heliosphere: Ulysses-LET observations

    SciTech Connect

    Bothmer, V.; Marsden, R. G.; Sanderson, T. R.; Trattner, K. J.; Wenzel, K.-P.; Balogh, A.; Forsyth, R. J.; Goldstein, B. E.; Uchida, Y.; Hudson, H. S.

    1996-07-20

    We have investigated energetic ions of non-corotating nature in the high latitude heliosphere. Major particle events were observed by Ulysses up to latitudes of 60 deg. S. All were associated with passage of coronal mass ejections (CMEs) over the spacecraft. The relationship of these events with solar activity was investigated using Yohkoh soft X-ray images.

  10. Extended measurement capabilities of the Electron Proton Helium INstrument aboard SOHO - Energy spectra up to 1 GeV and anisotropies during GLE 71

    NASA Astrophysics Data System (ADS)

    Kühl, Patrick; Terasa, Christoph; Labrenz, Johannes; Banjac, Saša; Heber, Bernd

    The Electron Proton Helium INstrument (EPHIN) on board the SOlar and Heliospheric Observatory (SOHO) has performed measurements of the cosmic ray intensity at the Lagrangian point L1 since its launch in December 1995. The detector consists of a stack of six solid-state detectors enclosed in a scinitilator as anti-coincidence. The first two detectors are segmented in order to improve particle identification. By design the instrument is capable of determining the energy spectrum of hydrogen and helium up to energies of 53 MeV/n as well as electrons up to 8.3 MeV using the dE/dx-E-method. Above these energies, particles penetrate all detector elements and thus, a separation between different particle species becomes more complicated. To overcome this restriction, we developed new methods to 1) distinguish between different penetrating particles, 2) to calculate the incidence energy of a particle based on the energy deposit in the detector elements and 3) to derive the energy spectrum for penetrating ions up to almost 1 GeV/n based on GEANT4 simulations and the pulse high analyses data of the instrument. Furthermore, Monte-Carlo simulations that exploit the segmentation of the first two detectors allow a correction for different path length and the detection of anisotropies. As an example we present the EPHIN Proton spectrum from 0.1 to 1 GeV and the anisotropy variation for the Ground Level Enhancement observed on May 17, 2012 in comparison to published PAMELA results.

  11. Three-dimensional Features of the Outer Heliosphere due to Coupling between the Interstellar and Interplanetary Magnetic Fields. IV. Solar Cycle Model Based on Ulysses Observations

    NASA Astrophysics Data System (ADS)

    Pogorelov, N. V.; Suess, S. T.; Borovikov, S. N.; Ebert, R. W.; McComas, D. J.; Zank, G. P.

    2013-07-01

    The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90°, separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)—the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1.

  12. THREE-DIMENSIONAL FEATURES OF THE OUTER HELIOSPHERE DUE TO COUPLING BETWEEN THE INTERSTELLAR AND INTERPLANETARY MAGNETIC FIELDS. IV. SOLAR CYCLE MODEL BASED ON ULYSSES OBSERVATIONS

    SciTech Connect

    Pogorelov, N. V.; Zank, G. P.; Suess, S. T.; Borovikov, S. N.; Ebert, R. W.; McComas, D. J.

    2013-07-20

    The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90 Degree-Sign , separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)-the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1.

  13. The low energy magnetic spectrometer on Ulysses and ACE response to near relativistic protons

    NASA Astrophysics Data System (ADS)

    Morgado, Bruno; Filipe Maia, Dalmiro Jorge; Lanzerotti, Louis; Gonçalves, Patrícia; Patterson, J. Douglas

    2015-05-01

    Aims: We show that the Heliosphere Instrument for Spectra Composition and Anisotropy at Low Energies (HISCALE) on board the Ulysses spacecraft and the Electron Proton Alpha Monitor (EPAM) on board the Advance Composition Explorer (ACE) spacecraft can be used to measure properties for ion populations with kinetic energies in excess of 1 GeV. This previously unexplored source of information is valuable for understanding the origin of near relativistic ions of solar origin. Methods: We model the instrumental response from the low energy magnetic spectrometers from EPAM and HISCALE using a Monte Carlo approach implemented in the Geant4 toolkit to determine the response of different energy channels to energies up to 5 GeV. We compare model results with EPAM observations for 2012 May 17 ground level solar cosmic ray event, including directional fluxes. Results: For the 2012 May event, all the ion channels in EPAM show an onset more than one hour before ions with the highest nominal energy range (1.8 to 4.8 MeV) were expected to arrive. We show from Monte Carlo simulations that the timing at different channels, the ratio between counts at the different channels, and the directional fluxes within a given channel, are consistent with and can be explained by the arrival of particles with energies from 35 MeV to more than 1 GeV. Onset times for the EPAM penetrating protons are consistent with the rise seen in neutron monitor data, implying that EPAM and ground neutron monitors are seeing overlapping energy ranges and that both are consistent with GeV ions being released from the Sun at 10:38 UT.

  14. Solar Energetic Particle spectral and compositional invariance in the 3-D Heliosphere: Ulysses and ACE/WIND comparisons in late 2001

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga; Tylka, Allan J.; Ng, Chee K.; Marsden, Richard G.; Tranquille, Cecil; Patterson, Doug; Armstrong, Thomas P.; Lanzerotti, Louis J.

    2013-04-01

    We carry out the first detailed examination and comparison of elemental spectra and composition in the late decay phase of two Solar Energetic Particle (SEP) events in the so-called 'reservoir' regions, between spacecraft widely separated in latitude, as well as in longitude and radial distance in the Heliosphere. Energetic particle data from instruments onboard the Ulysses spacecraft located at a high heliospheric latitude of about 70 deg N and at a heliocentric distance of about 2.5 AU and from spacecraft at L1 are used in this work. Particle intensities over time are observed to be in close agreement following the shock passage over the widely separated spacecraft. Electron measurements were used to identify the extent of the particle reservoir. In this update on reservoir composition studies, we extend our previous work to sub-MeV/nucleon energies, using measurements from HI-SCALE on Ulysses and EPAM on ACE. Implications of the observations for models of SEP transport are also discussed. Acknowledgments: The presented work has received funding from the European Union FP7 project COMESEP (263252) and has also been supported by NASA under grants NNH09AK79I and NNX09AU98G (AJT).

  15. Combined Ulysses Solar Wind and SOHO Coronal Observations of Several West Limb Coronal Mass Ejections. Appendix 8

    NASA Technical Reports Server (NTRS)

    Funsten, H. O.; Gosling, J. T.; Riley, P.; St.Cyr, O. C.; Forsyth, R. J.; Howard, R. A.; Schwenn, R.

    2001-01-01

    From October 1996 to January 1997, Ulysses was situated roughly above the west limb of the Sun as observed from Earth at a heliocentric distance of about 4.6 AU and a latitude of about 25 deg. This presents the first opportunity to compare Solar and Heliospheric Observatory (SOHO) limb observations of coronal mass ejections (CMEs) directly with their solar wind counterparts far from the Sun using the Ulysses data. During this interval, large eruptive events were observed above the west limb of the Sun by the Large Angle Spectrometric Coronagraph (LASCO) on SOHO on October 5, November 28, and December 21-25, 1996. Using the combined plasma and magnetic field data from Ulysses, the October 5 event was clearly identified by several distinguishing signatures as a CME. The November 28 event was also identified as a CME that trailed fast ambient solar wind, although it was identified only by an extended interval of counterstreaming suprathermal electrons. The December 21 event was apparently characterized by a six-day interval of nearly radial field and a plasma rarefaction. For the numerous eruptive events observed by the LASCO coronagraph during December 23-25, Ulysses showed no distinct, CMEs, perhaps because of intermingling of two or more of the eruptive events. By mapping the Ulysses observations back in time to the Sun assuming a constant flow speed, we have identified intervals of plasma that were accelerated or decelerated between the LASCO and Ulysses observations.

  16. Imaging observations of Jupiter's sodium magneto-nebula during the ULYSSES encounter

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Flynn, Brian; Baumgardner, Jeffrey

    1992-09-01

    Jupiter's great sodium nebula represents the largest visible structure traversed by the Ulysses spacecraft during its encounter with the planet in February 1992. Ground-based imaging conducted on Mount Haleakala, Hawaii, revealed a nebula that extended to at least +/- 300 Jovian radii; it was somewhat smaller in scale and less bright than previously observed. Analysis of observations and results of modeling studies suggest reduced volcanic activity on the moon Io, higher ion temperatures in the plasma torus, lower total plasma content in the torus, and fast neutral atomic clouds along the Ulysses inbound trajectory through the magnetosphere. Far fewer neutrals were encountered by the spacecraft along its postencounter, out-of-ecliptic trajectory.

  17. Determination of Position of Jupiter From Very-Long Baseline Interferometry Observations of Ulysses

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; McElrath, T. P.; Mannucci, A. J.

    1996-01-01

    Very-long baseline interferometry (VLBI) observations of the Ulysses spacecraft near its encounter with Jupiter on 1992 February 8 were made to determine the angular position of Jupiter with respect to well known extragalactic radio sources. Spacecraft range and Doppler data were used to determine the position of the spacecraft with respect to Jupiter. Thirty-one VLBI observations of the spacecraft were made within 30 days of Ulysses closest approach to Jupiter, using the California-Spain and California-Australia baselines of NASA's Deep Space Network. When combined, these data determine the position of Jupiter at the time of encounter with an accuracy of 0.003 min in right ascension and 0.005 sec in declination. In addition, the Earth-Jupiter distance was determined with 20 m accuracy.

  18. Ulysses at 50 deg south: Constant immersion in the high-speed solar wind

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.; Balogh, A.; Bame, S. J.; Goldstein, B. E.; Gosling, J. T.; Hoeksema, J. T.; Mccomas, D. J.; Neugebauer, M.; Sheeley, N. R., Jr.; Wang, Y.-M.

    1994-01-01

    We present speed observations from the Ulysses solar wind plasma experiment through 50 deg south latitude. The pronounced speed modulation arising from solar rotation and the tilt of the heliomagnetic current sheet has nearly disappeared. Ulysses is now observing wind speeds in the 700 to 800 km/s range, with a magnetic polarity indicating an origin in the large south polar coronal hole. The strong compressions, rarefractions, and shock waves previously seen have weakened or disappeared. Occasional coronal mass ejections characterized by low plasma density caused by radial expansion have been observed. The coronal configuration was simple and stable in 1993, indicating that the observed solar wind changes were caused by increasing spacecraft latitude. Trends in prevailing speed with increasing latitude support previous findings. A decrease in peak speed southward of 40 deg latitude may indicate that the fastest solar wind comes from the equatorial extensions of the polar coronal holes.

  19. Suprathermal electron loss cone distributions in the solar wind: Ulysses observations

    SciTech Connect

    Phillips, J. L.; Feldman, W. C.; Gosling, J. T.; Hammond, C. M.; Forsyth, R. J.

    1996-07-20

    We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.37 AU Ulysses encountered seven intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning {+-}60 deg. from the sunward field-aligned direction. All events occurred between the forward and reverse shocks or waves bounding corotating interaction regions (CIRs). The observations support a scenario in which the sunward-moving electrons result from reflection of the prevailing antisunward field-aligned beam at magnetic field compressions downstream from the spacecraft, with wide loss cones caused by the relatively weak mirror ratio. This hypothesis requires that the field magnitude within the CIRs actually increased locally with increasing field-aligned distance from the Sun.

  20. Suprathermal electron loss cone distributions in the solar wind: Ulysses observations

    SciTech Connect

    Phillips, J.L.; Feldman, W.C.; Gosling, J.T.; Hammond, C.M.; Forsyth, R.J.

    1995-09-01

    We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.37 AU Ulysses encountered seven intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning {plus_minus}60 ft from the sunward field-aligned direction. All events occurred between the forward and reverse shocks or waves bounding corotating interaction regions (CIRs). The observations support a scenario in which the sunward-moving electrons result from reflection of the prevailing antisunward field-aligned beam at magnetic field compressions downstream from the spacecraft, with wide loss cones caused by the relatively weak mirror ratio. This hypothesis requires that the field magnitude within the CIRs actually increased locally with increasing field-aligned distance from the Sun.

  1. Imaging Obsearvations of Jupiter's Sodium Magneto-Nebula During the Ulysses Encounter.

    PubMed

    Mendillo, M; Flynn, B; Baumgardner, J

    1992-09-11

    Jupiter's great sodium nebula represents the largest visible structure traversed by the Ulysses spacecraft during its encounter with the planet in February 1992. Ground-based imaging conducted on Mount Haleakala, Hawaii, revealed a nebula that extended to at least +/-300 Jovian radii (spanning approximately 50 million kilometers); it was somewhat smaller in scale and less bright than previously observed. Analysis of observations and results of modeling studies suggest reduced volcanic activity on the moon lo, higher ion temperatures in the plasma torus, lower total plasma content in the torus, and fast neutral atomic clouds along the Ulysses inbound trajectory through the magnetosphere. Far fewer neutrals were encountered by the spacecraft along its postencounter, out-of-ecliptic trajectory.

  2. Ulysses at 50{degrees} south: Constant immersion in the high-speed solar wind

    SciTech Connect

    Phillips, J.L.; Bame, S.J.; Gosling, J.T.; McComas, D.J.; Balogh, A.; Goldstein, B.E.; Neugebauer, M.; Hoeksema, J.T.; Sheeley, N.R. Jr.; Wang, Y.M.

    1994-06-15

    The authors present speed observations from the Ulysses solar wind plasma experiment through 50{degrees} south latitude. The pronounced speed modulation arising from solar rotation and the tilt of the heliomagnetic current sheet has nearly disappeared. Ulysses is now observing wind speeds in the 700 to 800 km s{sup {minus}1} range, with a magnetic polarity indicating an origin in the large south polar coronal hole. The strong compressions, rarefactions, and shock waves previously seen have weakened or disappeared. Occasional coronal mass ejections characterized by low plasma density caused by radial expansion have been observed. The coronal configuration was simple and stable in 1993, indicating that the observed solar wind changes were caused by increasing latitude support previous findings. A decrease in peak speed southward of 40{degrees} latitude may indicate that the fastest solar wind comes from the equatorial extensions of the polar coronal holes. 16 refs., 4 figs.

  3. Numerical simulations of non-adiabatic particle motions in the Jovian magnetosphere; comparisons with Ulysses observations

    NASA Astrophysics Data System (ADS)

    Drolias, B.; Quenby, J. J.; Witcombe, A.; Korth, A.; Keppler, E.; Blake, J. B.

    1996-02-01

    The Ulysses encounter with Jupiter gave a unique opportunity for the study of ions in the Jovian day side in the range 0.3 < ( E/nuc) < 6 MeV. The EPAC experiment has already provided a wealth of interesting results concerning the composition and the anisotropies in the magnetosphere (Krupp et al., Planet. Space Sci.41, 953, 1993), however a more complete understanding of the observations is still lacking from the scientific literature. This paper contributes to the field with the analysis of numerical simulations of non-adiabatic trajectories in Jupiter's current sheet and the calculation of the appropriate anisotropies. The results presented here differ from the existing numerical results in that they seem to be in good agreement with the observations of both the Ulysses and Voyager encounters.

  4. Final (Tier 1) environmental impact statement for the Galileo and Ulysses Missions

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Presented here is a Final (Tier 1) Environmental Impact Statement (EIS) addressing the potential environmental consequences associated with continuing the modifications of the Galileo and Ulysses spacecraft for launch using a booster/upper stage combination that is different from the one planned for use prior to the Challenger accident, while conducting the detailed safety and environmental analysis in order to preserve the October 1989 launch opportunity for Galileo and an October 1990 launch opportunity for Ulysses. While detailed safety and environmental analyses associated with the missions are underway, they currently are not complete. Nevertheless, sufficient information is available to enable a choice among the reconfiguration alternatives presented. Relevant assessments of the potential for environmental impacts are presented.

  5. The Ulysses Supplement to the BATSE 4B Catalog of Cosmic Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Briggs, Michael S.; Kippen, Richard M.; Kouveliotou, Chryssa; Meegan, Charles A.; Fishman, Gerald J.; Cline, T. L.; Boer, M.

    1998-01-01

    We present Interplanetary Network Localization information for 150 gamma-ray bursts observed by the Burst and Transient Source Experiment(BATSE) between the end of the 3rd BATSE catalog and the end of the 4th BATSE catalog obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (triangulation) results in an annulus of possible arrival directions whose width varies between 7 arcseconds and 2.3 degrees, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area by a factor of 25.

  6. Generation and reduction of the data for the Ulysses gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Agresti, R.; Bonifazi, P.; Iess, L.; Trager, G. B.

    1987-01-01

    A procedure for the generation and reduction of the radiometric data known as REGRES is described. The software is implemented on a HP-1000F computer and was tested on REGRES data relative to the Voyager I spacecraft. The REGRES data are a current output of NASA's Orbit Determination Program. The software package was developed in view of the data analysis of the gravitational wave experiment planned for the European spacecraft Ulysses.

  7. Using ACE and Ulysses to investigate the heliographic transport of energetic particles

    NASA Astrophysics Data System (ADS)

    Robinson, Ian M.

    2002-03-01

    The Advanced Composition Explorer (ACE) and the Ulysses spacecraft follow radically different trajectories, allowing the Sun to be simultaneously studied from 2 different perspectives. Data from the low energy particle instruments carried by these spacecraft reveals energetic particles accelerated at the Sun can access large angular extents of the interplanetary medium. We look at a rare case when the heliographic transport of energetic electrons was apparently prevented and speculate upon the ability of the corona to inhibit the propagation of these particles.

  8. The Ulysses contract in obstetrics: a woman's choices before and during labour.

    PubMed

    Burcher, Paul

    2013-01-01

    Women recognise that labour represents a mind-altering event that may affect their ability to make and communicate decisions and choices. For this reason, birth plans and other pre-labour directives can represent a form of Ulysses contract: an attempt to make binding choices before the sometimes overwhelming circumstances of labour. These choices need to be respected during labour, but despite the reduced decisional and communicative capacity of a labouring woman, her choices, when clear, should supersede decisions made before labour.

  9. Gamma ray burst source locations with the Ulysses/Compton/PVO network

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Hurley, K. C.; Boer, M.; Sommer, M.; Niel, M.; Fishman, G. J.; Kouveliotou, C.; Meegan, C. A.; Paciesas, W. S.; Wilson, R. B.

    1992-01-01

    The new interplanetary gamma-ray burst network will determine source fields with unprecedented accuracy. The baseline of the Ulysses mission and the locations of Pioneer-Venus Orbiter and of Mars Observer will ensure precision to a few tens of arc seconds. Combined with the event phenomenologies of the Burst and Transient Source Experiment on Compton Observatory, the source locations to be achieved with this network may provide a basic new understanding of the puzzle of gamma ray bursts.

  10. SPATIALLY DEPENDENT HEATING AND IONIZATION IN AN ICME OBSERVED BY BOTH ACE AND ULYSSES

    SciTech Connect

    Lepri, Susan T.; Laming, J. Martin; Rakowski, Cara E.; Von Steiger, Rudolf

    2012-12-01

    The 2005 January 21 interplanetary coronal mass ejection (ICME) observed by multiple spacecraft at L1 was also observed from January 21-February 4 at Ulysses (5.3 AU). Previous studies of this ICME have found evidence suggesting that the flanks of a magnetic cloud like structure associated with this ICME were observed at L1 while a more central cut through the associated magnetic cloud was observed at Ulysses. This event allows us to study spatial variation across the ICME and relate it to the eruption at the Sun. In order to examine the spatial dependence of the heating in this ICME, we present an analysis and comparison of the heavy ion composition observed during the passage of the ICME at L1 and at Ulysses. Using SWICS, we compare the heavy ion composition across the two different observation cuts through the ICME and compare it with predictions for heating during the eruption based on models of the time-dependent ionization balance throughout the event.

  11. Improved data analysis for EPHIN aboard SOHO

    NASA Astrophysics Data System (ADS)

    Terasa, Christoph; Gómez-Herrero, Raúl; Klassen, Andreas; Müller-Mellin, Reinhold; Heber, Bernd

    2010-05-01

    The COSTEP instrument aboard the Solar and Heliospheric Observatory (SOHO) spacecraft consists of two separate energetic particle detectors, the Low Energy Ion and Electron Instrument (LION) and the Electron Proton Helium Instrument (EPHIN). These detectors allow measurement of electrons, protons and helium of solar, interplanetary or galactic origin in the energy range of 44 keV per particle up to several tens of MeV per nucleon. The objectives of these instruments are the study of particle emissions from the Sun, the galaxy and the heliosphere. EPHIN is collecting data since the launch of the mission in December 1995 covering more than a full 11-year solar cycle. Late in 1996 one of the semiconductor detectors became noisy, affecting the quality of the data in the upper energy range. We used the energy-range empiric relation by Goulding et al. to resconstruct the energy loss of nuclei in the affected detector. New dynamic spectra and long-term quiet time spectra using these techniques are presented.

  12. Simultaneous Chandra X-ray, HST UV, and Ulysses Radio Observations of Jupiter's Aurora

    NASA Technical Reports Server (NTRS)

    R. Elsner; Bhardwaj, A.; Waite, H.; Lugaz, N.; Majeed, T.; Cravens, T.; Gladstone, G.; Ford, P.; Grodent, D.; MacDowell, R.

    2004-01-01

    Observations of Jupiter carried out by the Chandra ACIS-S instrument over 24-26 February, 2003, show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from remsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully-stripped oxygen in the precipitating ion flux. The OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are clearly identified. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV for which sulfur and carbon lines are possible candidates. The Jovian auroral spectra differ significantly from measured cometary X-ray spectra. The charge state distribution of the oxygen ion emission evident in the measured auroral spectra strongly suggests that, independent of the source of the energetic ions (magnetospheric or solar wind) the ions have undergone additional acceleration. For the magnetospheric case, acceleration to energies exceeding 10 MeV is apparently required. The ion acceleration also helps to explain the high intensities of the X-rays observed. The phase space densities of unaccelerated source populations of either solar wind or magnetospheric ions are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets provide interesting hints as to the location of the source region and the acceleration characteristics of the generation mechanism. The combined observations suggest that the source of the X rays is magnetospheric in origin, and that strong field-aligned electric fields are present which simultaneously create both the several-MeV energetic ion population and the relativistic

  13. The effects of coronal mass ejection on galactic cosmic rays in the high latitude heliosphere: Observations from Ulysses` first orbit

    SciTech Connect

    Bothmer, V.; Heber, B.; Kunow, H.; Mueller-Mellin, R.; Wibberenz, G.; Gosling, J.T.; Balogh, A.; Raviart, A.; Paizis, C.

    1997-10-01

    During its first solar orbit the Ulysses spacecraft detected several coronal mass ejections (CMEs) at high heliographic latitudes. The authors present first observations on the effects of these high latitude CMEs on galactic cosmic rays (GCRs) using measurements from the Kiel Electron Telescope (KET) which is part of the Cosmic Ray and Solar Particle Investigation (COSPIN) experiment, the Los Alamos SWOOPS (Solar Wind Observations Over the Poles of the Sun) experiment and the magnetic field experiments. They find the passage of these CMEs over the spacecraft to be associated with short term decreases of GCR intensities The relatively weak shocks in these events, driven by the CMEs` over-expansion, had no strong influence on the GCRs. The intensity minimums of GCRs occurred on closed magnetic field lines inside the CMEs themselves as indicated by bidirectional fluxes of suprathermal electrons. Short episodes of intensity increases of GCRs inside CMEs at times when the bidirectional fluxes of suprathermal electrons disappeared, can be interpreted as evidence that GCRs can easily access the interior of those CMEs in which open magnetic field lines are embedded.

  14. Gamma-ray burst observations with the [ital Compton]/[ital Ulysses]/[ital Pioneer]-[ital Venus] network

    SciTech Connect

    Cline, T.L. ); Hurley, K.C. ); Sommer, M. ); Boer, M.; Niel, M. ); Fishman, G.J.; Kouveliotou, C.; Meegan, C.A.; Paciesas, W.S.; Wilson, R.B. ); Fenimore, E.E.; Laros, J.G.; Klebesadel, R.W. )

    1993-07-05

    The third and latest interplanetary network for the precise directional analysis of gamma ray bursts consists of the Burst and Transient Source Experiment in [ital Compton] [ital Gamma] [ital Ray] [ital Observatory] and instruments on [ital Pioneer]-[ital Venus] [ital Orbiter] and the deep-space mission [ital Ulysses]. The unsurpassed resolution of the BATSE instrument, the use of refined analysis techniques, and [ital Ulysses]' distance of up to 6 AU all contribute to a potential for greater precision than had been achieved with former networks. Also, the departure of [ital Ulysses] from the ecliptic plane in 1992 avoids any positional alignment of the three instruments that would lessen the source directional accuracy.

  15. 78 FR 67309 - Earth Stations Aboard Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ...), and (d) published at 78 FR 14920 on March 8, 2013, are effective on November 12, 2013. FOR FURTHER...-161, published at 78 FR 14920, March 8, 2013. The OMB Control Number is 3060-1187. The Commission... COMMISSION 47 CFR Part 25 Earth Stations Aboard Aircraft AGENCY: Federal Communications Commission....

  16. The Ulysses contract in obstetrics: a woman's choices before and during labour.

    PubMed

    Burcher, Paul

    2013-01-01

    Women recognise that labour represents a mind-altering event that may affect their ability to make and communicate decisions and choices. For this reason, birth plans and other pre-labour directives can represent a form of Ulysses contract: an attempt to make binding choices before the sometimes overwhelming circumstances of labour. These choices need to be respected during labour, but despite the reduced decisional and communicative capacity of a labouring woman, her choices, when clear, should supersede decisions made before labour. PMID:23065492

  17. Interpreting Ulysses data using inverse scattering theory: Oblique Alfvén waves

    NASA Astrophysics Data System (ADS)

    Wheeler, Harry R.; Reynolds, M. A.; Hamilton, R. L.

    2015-03-01

    Solitary wave structures observed by the Ulysses spacecraft in the solar wind were analyzed using both inverse scattering theory and direct numerical integration of the derivative nonlinear Schrödinger (DNLS) equation. Several of these structures were found to be consistent with soliton solutions of the DNLS equation. Such solitary structures have been commonly observed in the space plasma environment and may, in fact, be long-lived solitons. While the generation of these solitons may be due to an instability mechanism, e.g., the mirror instability, they may be observable far from the source region due to their coherent nature.

  18. Interagency Nuclear Safety Review Panel Power System Subpanel review for the Ulysses mission

    NASA Astrophysics Data System (ADS)

    McCulloch, William H.

    NASA's Ulysses Mission Power System Subpanel has conducted a review of the safety analyses and risk evaluations done for the spacecraft's General Purpose Heat-Source Thermoelectric Generator. An account is presently given of the activities and results of that review, which furnished an independent assessment of potential releases of radioactive fuel during launch and reentry accidents. Attention is given to the most important of the exceptions taken by the Subpanel to the initial findings of the generator-construction contractor's primary analysis findings.

  19. BeppoSAX/Ulysses observations of cosmic gamma-ray bursts

    SciTech Connect

    Hurley, K.; Cline, T.; Frontera, F.; Dal Fiume, D.; Orlandini, M.

    1998-05-16

    BeppoSAX has been added to the 3rd Interplanetary Network of gamma-ray burst detectors. Of the {approx_equal}8 events observed to date by Ulysses and the BeppoSAX Gamma-Ray Burst Monitor (GRBM), four have been localized by triangulation, resulting in annuli whose 3 {sigma} widths are as small as 63{sup ''}. These data give error boxes whose sizes can be as much as an order of magnitude smaller than those obtained with the SAX Wide Field Camera (WFC). They can be used to confirm the association between fading X-ray and optical sources and gamma-ray bursts.

  20. Volcanic Activity on lo at the Time of the Ulysses Encounter.

    PubMed

    Spencer, J R; Howell, R R; Clark, B E; Klassen, D R; O'connor, D

    1992-09-11

    The population of heavy ions in lo's torus is ultimately derived from lo volcanism. Groundbased infrared observations of lo between October 1991 and March 1992, contemporaneous with the 8 February 1992 Ulysses observations of the lo torus, show that volcanic thermal emission was at the low end of the normal range at all lo longitudes during this period. In particular, the dominant hot spot Loki was quiescent. Resolved images show that there were at least four hot spots on lo's Jupiter-facing hemisphere, including Loki and a long-lived spot on the leading hemisphere (Kanehekili), of comparable 3.5-micrometer brightness but higher temperature.

  1. The Ulysses solar wind plasma investigation: Description and initial in-ecliptic results

    SciTech Connect

    Bame, S. J.; Phillips, J. L.; McComas, D. J.; Gosling, J. T.; Goldstein, B. E.

    1991-01-01

    During the in-ecliptic flight of Ulysses from the Earth toward its encounter with Jupiter, the Los Alamos solar wind plasma experiment has performed well. Briefly described, the instrumentation contains two independent electrostatic analyzers, one for ions and one for electrons. Initial analysis of solar wind electron core temperatures obtained between 1.15 and 3.76 AU yields a gradient of T {proportional to} R{sup {minus}0.7} which is flatter than expected for adiabatic expansion of a single-temperature Maxwellian velocity distribution and steeper than that obtained from Mariner-Voyager.

  2. Inconsistency of Ulysses Millisecond Langmuir Spikes with Wave Collapse in Type 3 Radio Sources

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Recent Ulysses observations of millisecond spikes superposed on broader Langmuir wave packets in type 3 radio sources are compared quantitatively with constraints from the theory of wave collapse. It is found that both the millisecond spikes and the wave packets have fields at least 10 times too small to be consistent with collapse, contrary to previous interpretations in terms of this process. Several alternative explanations are considered and it is argued that the spikes should be interpreted as either non-collapse phenomena or observational artifacts. To the extent the observations are representative, this rules out theories for type 3 bursts at approx. 1 - 4 AU that rely on collapse.

  3. SOHO-Ulysses Coordinated Studies During the Two Extended Quadratures and the Alignment of 2007-2008

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.

    2007-01-01

    During SOHO-Sun-Ulysses quadratures the geometry of the configuration makes it possible to sample "in situ" the plasma parcels that are remotely observed in the corona. Although the quadrature position occurs at a well defined instant in time, we typically take data while Ulysses is within +/- 5 degrees of the limb, with the understanding that plasma sampled by Ulysses over this time interval can all be traced to its source in the corona. The relative positions of SOHO and Ulysses in winter 2007 (19 Dec 2006-28 May 2007) are unusual: the SOHO-Sun-Ulysses included angle is always between 85 and 95 degrees - the quadrature lasts for 5 months! This provides an opportunity for extended observations of specific observing objectives. In addition, in summer 2007, Ulysses (at 1.34 AU) is in near-radial alignment with Earth/ACE/Wind and SOHO, allowing us to analyze radial gradients and propagation in the solar wind and inner heliosphere. Our own quadrature campaigns rely heavily on LASCO and UVCS coronal observations: LASCO giving the overall context above 2 solar radii while the UVCS spectrograph acquired data from - 1.5 to, typically, 4-5 solar radii. In the past, coronal parameters have been derived from data acquired by these two experiments and compared with "in situ" data of Ulysses' SWOOPS and SWICS. Data from other experiments like EIT, CDS, SUMER, Sac Peak Fe XIV maps, magnetic field maps from the Wilcox solar magnetograph, MLSO, from MDI, and from the Ulysses magnetograph experiment have been, and will be, used to complement LASCO/UVCS/SWOOPS and SWICS data. We anticipate that observations by ACE/WIND/STEREO/Hinode and other missions will be relevant as well. During the IHY campaigns, Ulysses will be 52-80 degrees south in winter 2007, near sunspot minimum. Hence, our own scientific objective will be to sample high speed wind or regions of transition between slow and fast wind. This might be a very interesting situation - not met in previous quadratures - allowing

  4. Ulysses radio and plasma wave observations in the Jupiter environment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Pedersen, B. M.; Harvey, C. C.; Canu, P.; Cornilleau-Wehrlin, N.; Desch, M. D.; De Villedary, C.; Fainberg, J.; Farrell, W. M.; Goetz, K.

    1992-01-01

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of auroral-like hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the Io plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the Io torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  5. Ulysses radio and plasma wave observations in the jupiter environment.

    PubMed

    Stone, R G; Pedersen, B M; Harvey, C C; Canu, P; Cornilleau-Wehrlin, N; Desch, M D; de Villedary, C; Fainberg, J; Farrell, W M; Goetz, K; Hess, R A; Hoang, S; Kaiser, M L; Kellogg, P J; Lecacheux, A; Lin, N; Macdowall, R J; Manning, R; Meetre, C A; Meyer-Vernet, N; Moncuquet, M; Osherovich, V; Reiner, M J; Tekle, A; Thiessen, J; Zarka, P

    1992-09-11

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of aurorallike hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the lo plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the lo torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  6. Ulysses Observations of Tripolar Guide-Magnetic Field Perturbations Across Solar Wind Reconnection Exhausts

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Peng, B.; Markidis, S.; Gosling, J. T.; McComas, D. J.; Lapenta, G.; Newman, D. L.

    2014-12-01

    We report observations from 15 solar wind reconnection exhausts encountered along the Ulysses orbit beyond 4 AU in 1996-1999 and 2002-2005. The events, which lasted between 17 and 45 min, were found at heliospheric latitudes between -36o and 21o with one event detected as high as 58o. All events shared a common characteristic of a tripolar guide-magnetic field perturbation being detected across the observed exhausts. The signature consists of an enhanced guide field magnitude within the exhaust center and two regions of significantly depressed guide-fields adjacent to the center region. The events displayed magnetic field shear angles as low as 37o with a mean of 89o. This corresponds to a strong external guide field relative to the anti-parallel reconnecting component of the magnetic field with a mean ratio of 1.3 and a maximum ratio of 3.1. A 2-D kinetic reconnection simulation for realistic solar wind conditions reveals that tripolar guide fields form at current sheets in the presence of multiple X-lines as two magnetic islands interact with one another for such strong guide fields. The Ulysses observations are also compared with the results of a 3-D kinetic simulation of multiple flux ropes in a strong guide field.

  7. Suprathermal electron loss cone distributions in the solar wind: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.; Feldman, W. C.; Gosling, J. T.; Hammond, C. M.; Forsyth, R. J.

    1995-01-01

    Solar wind suprathermal electron distributions in the solar wind generally carry a field-aligned antisunward heat flux. Within coronal mass ejections and upstream of strong shocks driven by corotating interaction regions (CIRs), counterstreaming electron beams are observed. We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.5 AU Ulysses encountered several intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning +/- 60 deg from the sunward field-aligned direction. All events occurred within CIRs, downstream of the forward and reverse shocks or waves bounding the interaction regions. We evaluate the hypothesis that the sunward-moving electrons result from reflection of the antisunward beams at magnetic field compressions downstream from the observations, with wide loss cones caused by the relatively weak compression ratio. This hypothesis requires that field magnitude within the CIRs actually increase with increasing field-aligned distance from the Sun. Details of the electron distributions and ramifications for CIR and shock geometry will be presented.

  8. Suprathermal electron loss cone distributions in the solar wind: Ulysses observations

    SciTech Connect

    Phillips, J.L.; Feldman, W.C.; Gosling, J.T.; Hammond, C.M.; Forsyth, R.J.

    1996-07-01

    We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.37 AU Ulysses encountered seven intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning {plus_minus}60{degree} from the sunward field-aligned direction. All events occurred between the forward and reverse shocks or waves bounding corotating interaction regions (CIRs). The observations support a scenario in which the sunward-moving electrons result from reflection of the prevailing antisunward field-aligned beam at magnetic field compressions downstream from the spacecraft, with wide loss cones caused by the relatively weak mirror ratio. This hypothesis requires that the field magnitude within the CIRs actually increased locally with increasing field-aligned distance from the Sun. {copyright} {ital 1996 American Institute of Physics.}

  9. A review of solar wind ion and electron plasma distribution functions: Present understanding and Ulysses results

    SciTech Connect

    Goldstein, B.E.

    1995-06-01

    The present understanding of the distribution functions of the solar wind ion and electron thermal/suprathermal populations will be reviewed covering selected theoretical and observational topics. Roughly half the review will be devoted to recent discoveries (since Solar Wind 7). Among recent results are those of the Ulysses mission. The SWICS experiment observed pick-up protons and alpha particles, and acceleration of these particles at interplanetary shocks. Positive ion phenomena observed by SWOOPS include enhanced proton-alpha particle differential streaming both: (1) at high latitudes; and (2) in the ecliptic beyond 1 AU in the vicinity of shocks. The SWOOPS positive ion observations also demonstrate relative constancy of the entropy per proton at high latitudes beyond about 2.5 AU. Double beaming in both protons and alphas is observed by SWOOPS on either side of the current sheet, but not within; a possible explanation is reconnection at the edge of the current sheet. SWOOPS observed bi-directional streaming of electrons beyond 2 AU not only within Coronal Mass Ejections, but also upstream of corotating interplanetary shocks. Latitudinal and radial gradients of Ulysses electron core and halo temperatures will be discussed, as will work in progress on the three dimensional (in velocity space) properties of ion distributions.

  10. [Rethinking the challenges of Ulysses and Faust: health, the individual and history].

    PubMed

    Melo-Filho, D A

    1995-01-01

    Concentrating on two historical synecdoches, Ulysses and Faust, this article takes up the etymology of the Latin term salute as a unit lying somewhere between "existential needs" and "especially human needs", leading to the challenge of satisfying the need for "conservation of life" and at the same time to "surpass it, go beyond it". Both meanings are present in Ulysses attitude of not succumbing to the siren s melody and in Faust s desire to rise above everyday life. Some aspects of the Marxist conception of the philosophy of history and Althusser s Structuralist Marxism are criticized. Also, in light of Marxist-Hellerian theory, the article analyzes the hypothesis that the target of the final reports of the VIII National Health Conference was "particular man" and not the individual, since health is treated only as "an existential need", and does not envisage the generic human. As a theoretical challenge, the text, in search of the unfolding individual, finally recommends the construction of "epistemological sutures" between nature and society, everyday life and universality, and the young and old Marx.

  11. [Rethinking the challenges of Ulysses and Faust: health, the individual and history].

    PubMed

    Melo-Filho, D A

    1995-01-01

    Concentrating on two historical synecdoches, Ulysses and Faust, this article takes up the etymology of the Latin term salute as a unit lying somewhere between "existential needs" and "especially human needs", leading to the challenge of satisfying the need for "conservation of life" and at the same time to "surpass it, go beyond it". Both meanings are present in Ulysses attitude of not succumbing to the siren s melody and in Faust s desire to rise above everyday life. Some aspects of the Marxist conception of the philosophy of history and Althusser s Structuralist Marxism are criticized. Also, in light of Marxist-Hellerian theory, the article analyzes the hypothesis that the target of the final reports of the VIII National Health Conference was "particular man" and not the individual, since health is treated only as "an existential need", and does not envisage the generic human. As a theoretical challenge, the text, in search of the unfolding individual, finally recommends the construction of "epistemological sutures" between nature and society, everyday life and universality, and the young and old Marx. PMID:14528347

  12. (abstract) Ulysses Observations of Magnetic Nulls in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Winterhalter, D.; Murphy, N.; Tsurutani, B. T.; Smith, E. J.; Balogh, A.; Erdos, G.

    1993-01-01

    High time resolution magnetic field measurements (1 vector/s) at radial distances out to 5.3 AU and heliographic latitudes from 0(deg) to > 35(deg) S reveal the presence of solitary pulses lasting tens of seconds in which the field magnitude approaches or reaches zero. The properties of these nulls, their spatial distribution and relation to solar wind structures and to similar-apppearing interplanetary and magnetospheric impulses will be discussed.

  13. Evidence, from Pioneer 10/11, Galileo, and Ulysses Data, for an Anomalous, Weak, Long-Range Acceleration

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Laing, P. A.; Lau, E. L.; Liu, A. S.; Nieto, M. M.; Turyshev, S. G.

    1998-01-01

    Radio metric data from the Pioneer 10/11, Galileo, and Ulysses Spacecraft indicate an apparent anomalous, constant, acceleration acting on the spacecraft with a magnitude 8.5 x 10(sup -8) cm/s(sup 2), directed towards the Sun.

  14. A Primary Source to Supplement High School History Textbooks in a Character Study of Ulysses S. Grant.

    ERIC Educational Resources Information Center

    Beardsley, Donna A.

    This paper discusses the use of General Horace Porter, President Ulysses S. Grant's personal friend and closest adviser through the latter stages of the U.S. Civil War and into Grant's presidency. During the Civil War, Porter made field observations, suggested strategy, and relayed orders among commanders. As adviser to the president, Porter wrote…

  15. Wide and Narrow CMEs and Their Source Explosions Observed at the Spring 2003 SOHO-Sun-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Suess, Steven; Corti, G.; Poletto, G.; Sterling, A.; Moore, R.

    2006-01-01

    At the time of the spring 2003 Ulysses-SOHO-Sun quadrature, Ulysses was off the East limb of the Sun at 14.5 degrees north latitude and 4.91 AU. LASCO/C2 images show small transient events that originated from near the limb on May 25, 26 and 27 in the north-east quadrant, along with a large Coronal Mass Ejection (CME) that originated from an active region near disk center on May 26. Ulysses data bear clear signatures of the large CME, specifically including an enhanced abundance of highly ionized Fe. SOHO/UVCS spectra at 1.75 solar radii, near the radial direction to Ulysses, give no evidence of emission from high temperature lines, even for the large CME: instead, for the small events, occasional transient high emission in cool lines was observed, such as the CIII 977 Angstrom line usually absent at coronal levels. Each of these events lasted ca. 1 hour or less and never affected lines from ions forming above ca. 106K. Compact eruptions in Helium 304 Angstrom EIT images, related to the small UVCS transients, were observed at the limb of the Sun over the same period. At least one of these surge events produced a narrow CME observed in LASCO/C2. Most probably all these events are compact magnetic explosions (surges/jets, from around a small island of included polarity) which ejected cool material from lower levels. Ulysses data have been analyzed to find evidence of the cool, narrow CME events, but none or little was found. This puzzling scenario, where events seen by UVCS have no in situ counterparts and vice versa, can be partially explained once the region where the large CME originated is recognized as being at the center of the solar disk so that the CME material was actually much further from the Sun than the 1.7 Rsun height of the UVCS slit off the limb. Conversely, the narrow events may simply have missed Ulysses or been too brief for reliable signatures in composition and ionization state. A basic feature demonstrated by these observations is that large

  16. New aspects of the RPW instrument antennas aboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sampl, Manfred; Kapper, Michael; Plettemeier, Dirk; Rucker, Helmut O.; Maksimovic, Milan

    2013-04-01

    The E-field sensors (boom antennas) of the RPW instrument aboard the Solar Orbiter spacecraft are subject to severe influence of the conducting spacecraft body and other large structures such as the solar panels in close vicinity of the antennas. In this contribution we outline our newest results in finding the true properties of the antennas with additional emphasis on the influence of the built-in heating circuit for deployment. Knowledge of the true properties of the connected antenna system and receiver hardware is an essential component in ensuring the overall performance of a scientific radio and plasma wave instrument. Compared to other spaceborne multiport scatterers, the ANT sensors aboard Solar Orbiter are more sophisticated in mechanical design with features including tubular shaped pipes with radiators along with several hinges. This combined with the challenging environment (closest proximity to Sun is about 0.29 AU) makes finding the true properties even more pressing than with previous spaceborne radio astronomy observatories. Our numerical investigations also provide an important benchmark against measured antenna characteristics using a scale model of the Solar Orbiter spacecraft in an anechoic chamber. The current calibration results are to provide useful input to goniopolarimetry techniques like polarization analysis, direction finding and ray tracing, all of which depend crucially on the effective axes, allowing for significant improvements to the corresponding scientific data analysis.

  17. Astronaut Whitson Displays Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  18. Electrostatic disturbances aboard LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Ferroni, Valerio

    Test mass charging and stray electrostatic fields are a potentially important source of force noise for the LISA Pathfinder mission. During the flight we plan to measure the relevant stray electrostatic fields on the surfaces of both the test mass and the electrode housing and compensate them with DC electrode bias voltages. In addition we monitor the charge and reduce it to near zero by UV illumination. We describe the analysis techniques used during the mission and explain the importance of periodic charging/discharging and of long-term charge measurements to limit the force noise at low frequency, which is particularly relevant for the eLISA mission.

  19. Chaos Theory and James Joyce's "ulysses": Leopold Bloom as a Human COMPLEX@SYSTEM^

    NASA Astrophysics Data System (ADS)

    Mackey, Peter Francis

    1995-01-01

    These four ideas apply as much to our lives as to the life of Leopold Bloom: (1) A trivial decision can wholly change a life. (2) A chance encounter can dramatically alter life's course. (3) A contingent nexus exists between consciousness and environment. (4) A structure of meaning helps us interpret life's chaos. These ideas also relate to a contemporary science called by some "chaos theory." The connection between Ulysses and chaos theory enhances our understanding of Bloom's day; it also suggests that this novel may be about the real process of life itself. The first chapter explains how Joyce's own essays and comments to friends compel attention to the links between Ulysses and chaos theory. His scientific contemporaries anticipated chaos theory, and their ideas seem to have rubbed off on him. We see this in his sense of trivial things and chance, his modernistic organizational impulses, and the contingent nature of Bloom's experience. The second chapter studies what chaos theory and Joyce's ideas tell us about "Ithaca," the episode which particularly implicates our processes of interpreting this text as well as life itself as we face their chaos. The third chapter examines Bloom's close feel for the aboriginal world, a contingency that clarifies his vulnerability to trivial changes. The fourth chapter studies how Bloom's stream of consciousness unfolds--from his chance encounters with trivial things. Beneath this stream's seeming chaos, Bloom's distinct personality endures, similar to how Joyce's schemas give Ulysses an imbedded, underlying order. The fifth chapter examines how trivial perturbations, such as Lyons' misunderstanding about "Throwaway," produce small crises for Bloom, exacerbating his seeming impotence before his lonely "fate.". The final chapter analyzes Bloom's views that fate and chance dictate his life. His views provide an opportunity to explore the implications chaos theory has for our understanding of free will and determinism. Ultimately

  20. [Emigration in hard conditions: the Immigrant Syndrome with chronic and multiple stress (Ulysses' Syndrome)].

    PubMed

    Achotegui, Joseba

    2005-01-01

    During the latest years, immigrant populations have been living in very hard conditions. To million people, migration is becoming a process with a high level of stress surpassing the human being capacity of adaptation. This people are prone to suffer the Immigrant Syndrome with chronic and multiple stress and the so called Ulysses Syndrome, what is becoming a serious health problem in the countries that receive the immigrants. This situation is the by-product of the unjust globalization and of the worsening of the living and health conditions of those undergoing such a displacement. In this article, the author postulates a relationship between the high level of stress suffered by the immigrants and their presentation of psychopathological symptoms. PMID:15912217

  1. The Ulysses Fast Latitude Scan At Solar Maximum: Cospin/ket Results

    NASA Astrophysics Data System (ADS)

    Heber, B.; Ket-Team

    Ulysses, launched in October 1990, began its second out of ecliptic orbit in December 1997, and its second fast latitude scan in September 2000. In contrast to the first per- ihelion in 1994/1995, solar activity now is close to maximum. It is important to note that, in addition to the difference in solar activity, prior to or during the second scan the solar magnetic field reversed. While the first latitude scan mainly gave a snapshot of the spatial distribution of galactic cosmic rays, the second one is dominated by temporal variations. Solar particle increases are observed at all heliographic latitudes, including events that produce >250 MeV protons and 50 MeV electrons. Using >50 MeV proton observations from the EPHIN instrument, this time we find no signifi- cant latitudinal gradients. Furthermore, the differences between the two scans are also reflected in charge sign dependent variations.

  2. Assembly of radioisotope heat sources and thermoelectric generators for Galileo and Ulysses missions

    NASA Astrophysics Data System (ADS)

    Amos, Wayne R.; Goebel, Charles J.

    The processes and facilities for assembling General-Purpose Heat Sources (GPHS) and assembling and testing GPHS radioisotope thermoelectric generators (RTGs) are discussed. Each RTG contains 18 GPHS modules and was designed to produce approximately 285 We. Five of these RTGs were successfully assembled and tested. Two are providing spacecraft power for NASA's Galileo mission to Jupiter. One RTG will provide spacecraft power for the Joint NASA/ESA, Ulysses mission to study the polar regions of the sun. One RTG was assembled and tested to serve as the common spare for both missions, while the fifth RTG serves as the nonflight qualification unit and is undergoing long-term life tests in a simulated space environment.

  3. Lessons learned from the Galileo and Ulysses flight safety review experience

    SciTech Connect

    Bennett, Gary L.

    1998-01-15

    In preparation for the launches of the Galileo and Ulysses spacecraft, a very comprehensive aerospace nuclear safety program and flight safety review were conducted. A review of this work has highlighted a number of important lessons which should be considered in the safety analysis and review of future space nuclear systems. These lessons have been grouped into six general categories: (1) establishment of the purpose, objectives and scope of the safety process; (2) establishment of charters defining the roles of the various participants; (3) provision of adequate resources; (4) provision of timely peer-reviewed information to support the safety program; (5) establishment of general ground rules for the safety review; and (6) agreement on the kinds of information to be provided from the safety review process.

  4. Interagency Nuclear Safety Review Panel Power System Subpanel review for the Ulysses mission

    SciTech Connect

    McCulloch, W.H. )

    1991-01-01

    As part of the Interagency Nuclear Safety Review Panel's assessment of the nuclear safety of NASA's Ulysses Mission to investigate properties of the sun, the Power System Subpanel has reviewed the safety analyses and risk evaluations done for the General Purpose Heat Source-Radioisotope Thermoelectric Generator which provides on-board electrical power for the spacecraft. This paper summarizes the activities and results of that review. In general, the approach taken in the primary analysis, executed by the General Electric Company under contract to the Department of Energy, and the resulting conclusions were confirmed by the review. However, the Subpanel took some exceptions and modified the calculations accordingly, producing an independent evaluation of potential releases of radioactive fuel in launch and reentry accidents. Some of the more important of these exceptions are described briefly.

  5. Ulysses radio and plasma wave observations at high southern heliographic latitudes.

    PubMed

    Stone, R G; Macdowall, R J; Fainberg, J; Kaiser, M L; Desch, M D; Goldstein, M L; Hoang, S; Bougeret, J L; Harvey, C C; Manning, R; Steinberg, J L; Kellogg, P J; Lin, N; Goetz, K; Osherovich, V A; Reiner, M J; Canu, P; Cornilleau-Wehrlin, N; Lengyel-Frey, D; Thejappa, G

    1995-05-19

    Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.

  6. [Emigration in hard conditions: the Immigrant Syndrome with chronic and multiple stress (Ulysses' Syndrome)].

    PubMed

    Achotegui, Joseba

    2005-01-01

    During the latest years, immigrant populations have been living in very hard conditions. To million people, migration is becoming a process with a high level of stress surpassing the human being capacity of adaptation. This people are prone to suffer the Immigrant Syndrome with chronic and multiple stress and the so called Ulysses Syndrome, what is becoming a serious health problem in the countries that receive the immigrants. This situation is the by-product of the unjust globalization and of the worsening of the living and health conditions of those undergoing such a displacement. In this article, the author postulates a relationship between the high level of stress suffered by the immigrants and their presentation of psychopathological symptoms.

  7. Ulysses observations of energetic ions over the south pole of the sun

    SciTech Connect

    Sanderson, T. R.; Bothmer, V.; Marsden, R. G.; Trattner, K. J.; Wenzel, K.-P.; Balogh, A.; Forsyth, R. J.; Goldstein, B. E.

    1996-07-20

    We present here observations of energetic ions during the following phases of the Ulysses prime mission: the first south polar pass, the low-latitude pass and part of the first north polar pass. Peaks are observed in the energetic ion intensity which recur either once per solar rotation during the ascent to high southern latitudes, or twice per rotation during the low latitude pass. The intensity of the peaks also rises with each major solar event, decaying slowly thereafter over a period of several rotations. The peaks are observed up to {approx}70 deg. during the ascent to high southern latitudes, but not seen again until around 45 deg. during the descent, this asymmetry most likely being caused by a decrease in the number of solar events.

  8. Ulysses Observations of the Magnetic Connectivity between CMEs and the Sun

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Gosling, J. T.; Crooker, N. U.

    2004-01-01

    We have investigated the magnetic connectivity of coronal mass ejections (CMEs) to the Sun using Ulysses observations of suprathermal electrons at various distances between 1 AU and 5.2 AU. Drawing on ideas concerning the eruption and evolution of CMEs, we had anticipated that there might be a tendency for CMEs to contain progressively more open field lines, as reconnection back at the Sun either opened or completely disconnected previously closed field lines threading the CMEs. Our results, however, did not yield any discernible trend. By combining the potential contribution of CMEs to the heliospheric flux with the observed build-up of flux during the course of the solar cycle we also derive a lower limit for the reconnection rate of CMEs that is sufficient to avoid the "flux catastrophe" paradox. This rate is well below our threshold of detectability.

  9. ULYSSES OBSERVATIONS OF THE MAGNETIC CONNECTIVITY BETWEEN CORONAL, MASS EJECTIONS AND THE SUN

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Goslin, J. T.; Crooker, . U.

    2004-01-01

    We have investigated the magnetic connectivity of coronal mass ejections (CMEs) to the Sun using Ulysses observations of suprathermal electrons at various distances between 1 and 5.2 AU. Drawing on ideas concerning the eruption and evolution of CMEs, we had anticipated that there might be a tendency for CMEs to contain progressively more open field lines, as reconnection back at the Sun either opened or completely disconnected previously closed field lines threading the CMEs. Our results, however, did not yield any discernible trend. By combining the potential contribution of CMEs to the heliospheric flux with the observed buildup of flux during the course of the solar cycle, we also derive a lower limit for the reconnection rate of CMEs that is sufficient to avoid the "flux catastrophe" paradox. This rate is well below our threshold of detectability. Subject headings: solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material: color figure Sun: magnetic fields

  10. Jovian electron propagation in three dimensions of the heliosphere: The Ulysses investigations

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Smith, D. A.; Zhang, M.

    1993-01-01

    We report investigations of Jovian relativistic electrons in the interplanetary medium that provide new insights into both the physical processes by which the Jovian magnetosphere releases its trapped, relativistic electrons into the interplanetary medium, and the modes of their interplanetary propagation. These studies were dependent on the unique postencounter trajectory for Ulysses. The spacecraft remained close to the radial distance of Jupiter (approximately 5.2 AU) and moved southward on the duskside by only approximately 12 deg in heliographic latitude and less than 8 deg in the heliographic azimuth relative to Jupiter for the period of approximately 100 deg days of this study. During this period the nominal Parker spiral interplanetary magnetic field with its alternating polarities sector structure established direct magnetic field line connections frequently between Jupiter and the spacecraft. These unique conditions made it possible to investigate in detail, for approximately four solar rotations, both the Jovian electron burst phenomenon and the continuous, diffusive interplanetary propagation of Jovian electrons.

  11. Ulysses arrangements in psychiatric treatment: towards proposals for their use based on 'sharing' legal capacity.

    PubMed

    Bielby, Phil

    2014-06-01

    A 'Ulysses arrangement' (UA) is an agreement where a patient may arrange for psychiatric treatment or non-treatment to occur at a later stage when she expects to change her mind. In this article, I focus on 'competence-insensitive' UAs, which raise the question of the permissibility of overriding the patient's subsequent decisionally competent change of mind on the authority of the patient's own prior agreement. In "The Ethical Justification for Ulysses Arrangements", I consider sceptical and supportive arguments concerning competence-insensitive UAs, and argue that there are compelling reasons to give such UAs serious consideration. In "Decisional Competence and Legal Capacity in UAs", I examine the nature of decisional competence and legal capacity as they arise in UAs, an issue neglected by previous research. Using the distinctions which emerge, I then identify the legal structure of a competence-insensitive UA in terms of the types of legal capacity it embodies and go on to explain how types of legal capacity might be shared between the patient and a trusted other to offer support to the patient in the creation and implementation of a competence-insensitive UA. This is significant because it suggests possibilities for building patient support mechanisms into models of legal UAs, which has not addressed in the literature to date. Drawing on this, in "Using Insights from the Competence/Capacity Distinction to Enhance Patient Support in UAs", I offer two possible models to operationalize competence-insensitive UAs in law that allow for varying degrees of patient support through the involvement of a trusted other. Finally, I outline some potential obstacles implementing these models would face and highlight areas for further research. PMID:22773305

  12. Ulysses arrangements in psychiatric treatment: towards proposals for their use based on 'sharing' legal capacity.

    PubMed

    Bielby, Phil

    2014-06-01

    A 'Ulysses arrangement' (UA) is an agreement where a patient may arrange for psychiatric treatment or non-treatment to occur at a later stage when she expects to change her mind. In this article, I focus on 'competence-insensitive' UAs, which raise the question of the permissibility of overriding the patient's subsequent decisionally competent change of mind on the authority of the patient's own prior agreement. In "The Ethical Justification for Ulysses Arrangements", I consider sceptical and supportive arguments concerning competence-insensitive UAs, and argue that there are compelling reasons to give such UAs serious consideration. In "Decisional Competence and Legal Capacity in UAs", I examine the nature of decisional competence and legal capacity as they arise in UAs, an issue neglected by previous research. Using the distinctions which emerge, I then identify the legal structure of a competence-insensitive UA in terms of the types of legal capacity it embodies and go on to explain how types of legal capacity might be shared between the patient and a trusted other to offer support to the patient in the creation and implementation of a competence-insensitive UA. This is significant because it suggests possibilities for building patient support mechanisms into models of legal UAs, which has not addressed in the literature to date. Drawing on this, in "Using Insights from the Competence/Capacity Distinction to Enhance Patient Support in UAs", I offer two possible models to operationalize competence-insensitive UAs in law that allow for varying degrees of patient support through the involvement of a trusted other. Finally, I outline some potential obstacles implementing these models would face and highlight areas for further research.

  13. Ulysses{close_quote} rapid crossing of the polar coronal hole boundary

    SciTech Connect

    McComas, D.J.; Riley, P.; Gosling, J.T.; Balogh, A.; Forsyth, R.

    1998-02-01

    The Ulysses spacecraft crossed from the slow dense solar wind characteristic of the solar streamer belt into the fast, less dense flow from the northern polar coronal hole over a very short interval (several days) in late March 1995. The spacecraft, which was at 1.35 AU and {approximately}19{degree} north heliographic latitude, moving northward in its orbit, remained in the fast solar wind from then through summer 1996. This boundary crossing is unique in that the combination of the spacecraft motion and rotation of the structure past the spacecraft caused Ulysses to move smoothly and completely from one regime into the other. In this study we examine this crossing in detail. The crossing is marked by a region of enhanced pressure, typical of stream interaction regions, which extends {approximately}2{times}10{sup 7}km across. We find that the transition between the slow and fast regimes occurs on several temporal, and hence spatial, scales. On the shortest scale ({lt}8{times}10{sup 4}km) the stream interface is a tangential discontinuity where the proton and core electron densities and ion and electron pressures all drop while the magnetic pressure jumps to maintain a rough pressure balance. The alpha to proton ratio also jumps across the stream interface to reach the comparatively constant polar hole value of {approximately}4.3{percent}. On larger scales (a few {times}10{sup 6}km) the proton and alpha temperatures rise to their high-speed wind values. Finally, on the largest scale ({approximately}10{sup 8}km) the solar wind speed ramps up from {approximately}400kms{sup {minus}1} to {approximately}750kms{sup {minus}1}, typical of polar hole flows. While it seems likely that the stream interface maps back to a sharp boundary near the Sun, the large region of increasing flow speed suggests that there is also an extended gradient in solar wind source speed close to the Sun. {copyright} 1998 American Geophysical Union

  14. Crab allergen exposures aboard five crab-processing vessels.

    PubMed

    Beaudet, Nancy; Brodkin, C Andrew; Stover, Bert; Daroowalla, Feroza; Flack, Joy; Doherty, Dan

    2002-01-01

    Aerosolized crab allergens are suspected etiologic agents for asthma among crab-processing workers. The objectives of this study were to characterize crab allergen concentrations and respiratory symptom prevalence among processing workers aboard crab-processing vessels. A cross-sectional survey of five crab-processing vessels was conducted near Dutch Harbor, Alaska. Crab allergen concentrations were quantified during specific work activities with 25 personal air samples collected on polytetrafluoroethylene filters and analyzed by a competitive IgE immunoassay technique. Two standardized respiratory questionnaires were used to assess respiratory symptoms suggestive of bronchitis or asthma in 82 workers. Aerosolized crab allergen concentrations ranged from 79 ng/m3 to 21,093 ng/m3 (mean = 2797 ng/m3, SD = 4576 ng/m3). The highest concentrations were measured at butchering/degilling work stations, which were combined on the smallest vessel. A significant percentage of workers reported development of respiratory symptoms during the crab-processing season. Cough developed in 28% of workers, phlegm in 11% of workers, and wheeze and other asthma-like symptoms developed in 4% of workers. Despite variations in crab allergen levels, respiratory symptom prevalence was similar across all job categories. Substantial concentrations of crab allergen exposure were measured, as well as the potential for wide variability in exposure during crab processing aboard vessels. The high prevalence of reported respiratory symptoms across all job categories suggests potential adverse respiratory effects that should be further characterized by prospective studies using pulmonary function and serology testing, and rigorous exposure characterization.

  15. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.90 Approval of treatment aboard conveyances. (a) The treatment of water aboard conveyances shall be approved by the Commissioner of Food and Drugs if... produce, potable water. (b) The Commissioner of Food and Drugs may base his approval or disapproval of...

  16. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... health authorities of contiguous foreign nations. (c) Overboard water treated on vessels shall be from... COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.90 Approval of treatment aboard conveyances. (a) The treatment of water aboard conveyances shall be approved by the Commissioner of Food and Drugs...

  17. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  18. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  19. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  20. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  1. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  2. The Three-Dimensional Nature of Interaction Regions: Pioneer, Voyager, and Ulysses fro 1 to 5 AU: Solar Cycle Variations

    NASA Technical Reports Server (NTRS)

    Esperanza, J. A. G.; Smith, E. J.

    1996-01-01

    We investigated diverse aspects of the interaction regions detected by four spacecraft that travelled from Earth to Jupiter at different phases of the solar cycle: Pioneer 11 (declining phase of cycle 20); voyagers 1 and 2 (ascending phase of cycle 21); and Ulysses (just after solar maximum 22). From the analysis of 38 stream interfaces we found that the interaction regions detected by the three missions have different geometries.

  3. Structural Analysis of the QCM Aboard the ER-2

    NASA Technical Reports Server (NTRS)

    Jones, Phyllis D.; Bainum, Peter M.; Xing, Guangqian

    1997-01-01

    As a result of recent supersonic transport (SST) studies on the effect they may have on the atmosphere, several experiments have been proposed to capture and evaluate samples of the stratosphere where SST's travel. One means to achieve this is to utilize the quartz crystal microbalance (QCM) installed aboard the ER-2, formerly the U-2 reconnaissance aircraft. The QCM is a cascade impactor designed to perform in-situ, real-time measurements of aerosols and chemical vapors at an altitude of 60,000 - 70,000 feet. The ER-2 is primarily used by NASA for Earth resources to test new sensor systems before they are placed aboard satellites. One of the main reasons the ER-2 is used for this flight experiment is its capability to fly approximately twelve miles above sea level (can reach an altitude of 78,000 feet). Because the ER-2 operates at such a high altitude, it is of special interest to scientists interested in space exploration or supersonic aircraft. Some of the experiments are designed to extract data from the atmosphere around the ER-2. For the current flight experiment, the QCM is housed in a frame that is connected to an outer pod that is attached to the fuselage of the ER-2. Due to the location of the QCM within the housing frame and the location of the pod on the ER-2, the pod and its contents are subject to structural loads. In addition to structural loads, structural vibrations are also of importance because the QCM is a frequency induced instrument. Therefore, a structural analysis of the instrument within the frame is imperative to determine if resonance and/or undesirable deformations occur.

  4. Spatial evolution of 26-day recurrent galactic cosmic ray decreases: Correlated Ulysses COSPIN/KET and SOHO COSTEP observations

    NASA Technical Reports Server (NTRS)

    Heber, B.; Bothmer, V.; Droege, W.; Kunow, H.; Mueller-Mellin, R.; Posner, A.; Ferrando, P.; Raviart, A.; Paizis, C.; McComas, D.; Forsyth, R. J.; Szabo, A.; Lazarus, A. J.

    1997-01-01

    A Lomb (spectral) analysis was performed on the galactic comsic ray flux from February 1996 to June 1996. The most probable frequency is approximately 28 days and not 26 or 27 days, corresponding to one solar rotation. The amplitude of the recurrent cosmic ray decreases (RCRDs) is approximately 2.3 percent on both spacecraft. The variation in the solar wind speed shows the same periodicites and is anticorrelated to the variation in the cosmic ray flux. In contrast to the RCRDs, the amplitude found in the solar wind speed is four times larger at WIND (120 km/s) than at Ulysses (32 km/s). The solar wind proton density and magnetic field strength yielded no significant periodicities, neither at Ulysses nor at WIND. Comparing the RCRDs with coronal hole structures observed in the FE XIV line, it was found that a single coronal hole close to the heliographic equator can account for the RCRDs observed 'simultaneously' at Ulysses and SOHO. The coronal hole boundaries changed towards lower Carrington longitudes and vanished slowly. The changes of the boundaries during the investigated period could explain a 28-day periodicity.

  5. Ulysses observations of a {open_quotes}density hole{close_quotes} in the high-speed solar wind

    SciTech Connect

    Riley, P.; Gosling, J.T.; McComas, D.J.; Forsyth, R.J.

    1998-02-01

    Ulysses observations at mid and high heliographic latitudes have revealed a solar wind devoid of the large variations in density, temperature, and speed that are commonly observed at low latitudes. One event, however, observed on May 1, 1996, while Ulysses was located at {approximately}3.7AU and 38.5{degree}, stands out in the plasma data set. The structure, which is unique in the Ulysses high-latitude data set, is seen as a drop in proton density of almost an order of magnitude and a comparable rise in proton temperature. The event lasts {approximately}3(1)/(2) hours giving the structure a size of {approximately}9.6{times}10{sup 6}km (0.06 AU) along the spacecraft trajectory. Minimum variance analysis of this interval indicates that the angle between the average magnetic field direction and the minimum variance direction is {approximately}92{degree}, suggesting that the {open_quotes}density hole{close_quotes} may be approximated by a series of planar slabs separated by several tangential discontinuities. We discuss several possible explanations for the origin of this structure, but ultimately the origin of the density hole remains unknown. {copyright} 1998 American Geophysical Union

  6. A Case for Hypogravity Studies Aboard ISS

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2014-01-01

    Future human space exploration missions being contemplated by NASA and other spacefaring nations include some that would require long stays upon bodies having gravity levels much lower than that of Earth. While we have been able to quantify the physiological effects of sustained exposure to microgravity during various spaceflight programs over the past half-century, there has been no opportunity to study the physiological adaptations to gravity levels between zero-g and one-g. We know now that the microgravity environment of spaceflight drives adaptive responses of the bone, muscle, cardiovascular, and sensorimotor systems, causing bone demineralization, muscle atrophy, reduced aerobic capacity, motion sickness, and malcoordination. All of these outcomes can affect crew health and performance, particularly after return to a one-g environment. An important question for physicians, scientists, and mission designers planning human exploration missions to Mars (3/8 g), the Moon (1/6 g), or asteroids (likely negligible g) is: What protection can be expected from gravitational levels between zero-g and one-g? Will crewmembers deconditioned by six months of microgravity exposure on their way to Mars experience continued deconditioning on the Martian surface? Or, will the 3/8 g be sufficient to arrest or even reverse these adaptive changes? The implications for countermeasure deployment, habitat accommodations, and mission design warrant further investigation into the physiological responses to hypogravity. It is not possible to fully simulate hypogravity exposure on Earth for other than transient episodes (e.g., parabolic flight). However, it would be possible to do so in low Earth orbit (LEO) using the centrifugal forces produced in a live-aboard centrifuge. As we're not likely to launch a rotating human spacecraft into LEO anytime in the near future, we could take advantage of rodent subjects aboard the ISS if we had a centrifuge that could accommodate the rodent

  7. Ulysses field and plasma observations of magnetic holes in the solar wind and their relation to mirror-mode structures

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Neugebauer, Marcia; Goldstein, Bruce E.; Smith, Edward J.; Bame, Samuel J.; Balogh, Andre

    1994-01-01

    The term 'magnetic hole' has been used to denote isolated intervals when the magnitude of the interplanetary magnetic field drops to a few tenths, or less, of its ambient value for a time that corresponds to a linear dimension of tens to a few hundreds of proton gyro-radii. Data obtained by the Ulysses magnetometer and solar wind anlayzer have been combined to study the properties of such magnetic holes in the solar wind between 1 AU and 5.4 AU and to 23 deg south latitude. In order to avoid confusion with decreases in field strength at interplanetary discontinuities, the study has focused on linear holes across which the field direction changed by less than 5 deg. The holes occurred preferentially, but not without exception, in the interaction regions on the leading edges of high-speed solar wind streams. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror-mode structures created upstream of the points of observation. Those indications include the following: (1) For the few holes for which proton of alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion beta (ratio of thermal to magnetic pressure) than did the average solar wind. (5) Near the holes, T(sub perp)/T(sub parallel) tended to be either greater than 1 or larger than in the average wind. (6) The proton and alpha-particle distribution functions measured inside the holes occasionally exhibited the flattened phase

  8. Biological investigations aboard the biosatellite Cosmos-1129

    NASA Astrophysics Data System (ADS)

    Tairbekov, M. G.; Parfyonov, G. P.; Platonova, R. W.; Abramova, V. M.; Golov, V. K.; Rostopshina, A. V.; Lyubchenko, V. Yu.; Chuchkin, V. G.

    Experiments on insects, higher plants and lower fungi were carried out aboard the biological satellite Cosmos-1129, in Earth orbit, from 25 September to 14 October 1979. The main objective of these experiments was to gain more profound knowledge of the effect of weightlessness on living organisms and to study the mechanisms by which these various organisms with different life cycles can adjust and develop in weightlessness. Experiments on insects (Drosophila melanogaster) were made with a view towards understanding gravitational preference in flies, the life cycle of which took place on board the biosatellite under conditions of artificial gravity. Experiments on higher plants (Zea mays, Arabidopsis taliana, Lycopersicum esculentum) and lower fungi (Physarum polycephalum) were performed.

  9. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  10. The SAGE III's mission aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Pitts, Michael; Thomason, Larry; Zawodny, Joseph; Flittner, David; Hill, Charles; Roell, Marilee; Vernier, Jean-Paul

    2014-05-01

    The Stratospheric Aerosol and Gas Experiment (SAGE III) is being prepared for deployment on the International Space Station (ISS) in 2015. Constructed in the early 2000s, the instrument is undergoing extensive testing and refurbishment prior to delivery to ISS. In addition, ESA is refurbishing their Hexapod which is a high-accuracy pointing system developed to support ISS external payloads, particularly SAGE III. The SAGE III instrument refurbishment also includes the replacement of the neutral density filter that has been associated with some instrument performance degradation during the SAGE III mission aboard METEOR/3M mission (2002-2005). We are also exploring options for expanding the science targets to include additional gas species including IO, BrO, and other solar, lunar, and limb-scatter species. In this presentation, we will discuss SAGE III-ISS refurbishment including results from Sun-look testing. We also will discuss potential revisions to the science measurements and the expected measurement accuracies determined in part through examination of the SAGE III-METEOR/3M measurement data quality. In addition, we will discuss potential mission science goals enabled by the mid-inclination ISS orbit. No dedicated field campaign for SAGE III validation is anticipated. Instead, validation will primarily rely on a collaborative effort with international groups making in situ and ground-based measurements of aerosol, ozone, and other SAGE III data products. A limited balloon-based effort with a yet-to-be-determined validation partner is also in the planning stages.

  11. Prediction of galactic cosmic ray proton intensities from simultaneous proton and electron measurements during an A smaller than zero solar minimum

    NASA Astrophysics Data System (ADS)

    Heber, Bernd; Gieseler, Jan; Herbst, Klaudia; Kopp, Andreas; Müller-Mellin, Reinhold; Fichtner, Horst; Scherer, Klaus; Steinhilber, Friedhelm; Potgieter, Marius; Ferreira, Stefan

    Galactic cosmic rays (GCRs) are high energy charged particles, mainly protons and doubly ionized helium, originating in the galaxy and striking the Earth from all directions. There are three lines of defends which protect humans on Earth against this radiation. While the inner two shields, the atmosphere and magnetosphere, protect us against cosmic rays from several hundreds of MeV/nuc to about 15 GeV/nuc depending on geomagnetic latitude, the outer shield, the heliosphere, is reducing the intensities of particles with energies up to a few tens of GeV. This reduction depends on the solar activity and can vary by a few ten percent at 5 GeV to several orders of magnitude at a few tenth of MeV. Nevertheless, on a long journey to Mars galactic cosmic rays will pose a risk to astronauts of receiving a harmful dose of radiation. An often used tool to describe this modulation is the force-field solution. This approximation can not take into account the differences between positive and negative solar magnetic epochs or the difference in the modulation of electrons and protons. The current solar minimum is the lowest observed since the space area. The intensity of GCR electrons measured by the Kiel Electron Telescope aboard Ulysses exceed that of protons by more than 30

  12. Ion-cyclotron waves at Jupiter - Possibility of detection by Ulysses

    NASA Technical Reports Server (NTRS)

    Mei, YI; Thorne, Richard M.; Horne, Richard B.

    1992-01-01

    Recent thermal plasma data and a computer code by Horne (1989) are employed to evaluate the linear-path-integrated gain of waves propagating through the Io to predict the Jovian plasma-wave environment. Estimates of the nonlinear saturation amplitudes are utilized with the thermal plasma data from two frequency bands to study the convective growth of the ion-cyclotron (IC) waves. Strong cyclotron resonant damping is theorized to prevent wave propagation to the lower latitudes, and the thermal plasma and cyclotron resonant energetic ions are expected to further confine the IC waves. L-mode waves below the O(+) gyrofrequency in the equatorial region of the torus are shown to inhabit an unstable region. The IC waves probably achieve nonlinear amplitudes regardless of plasma properties due to the rapid amplification in this region. It is suggested that the Ulysses data complicate the identification of the waves because the magnetometer is not adequately sensitive and because of the low frequency of the plasma-wave detector.

  13. A cylindrical current sheet over the South solar pole observed by Ulysses

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga; Kislov, Roman; Malova, Helmi; Obridko, Vladimir

    2016-04-01

    We provide the first evidence for the existence of a quasi-stable cylindrical current sheet over the South solar pole as observed by Ulysses in 2006, near the solar minimum, when it reached maximal heliolatitude of 79.7 degrees at 2.4 AU. It took place inside a fast speed stream from the coronal hole, and the tube was presumably crossed rather far from the center within two degrees of heliolatitude and ~10 degrees of heliolongitude. During the spacecraft passage throughout the structure, the solar wind velocity was approximately twice as little, the solar wind density was 20 times lower than the surrounded plasma values, but the temperature was twice as large in the point closest to the pole. The interplanetary magnetic field (IMF) strongly decreased due to sharp variations in the IMF radial component (RTN) that changed its sign twice, but other components did not show changes out of usual stochastic behavior. Both the behavior of the IMF, rotation of the plasma flow direction and other features indicate the occurrence of cylindrical current sheet. We discuss its solar origin and present modeling that can explain the observations.

  14. Preliminary analysis of a CME observed by SOHO and Ulysses Experiments

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Romoli, M.; Suess, S. T.

    2003-01-01

    Over the last week of November 2002 SOHO/LASCO observed several Coronal Mass Ejections, most of which occurring in the NW quadrant. At that time SOHO/UVCS was involved in a SOHO-Sun-Ulysses quadrature campaign, making observations off the west limb of the Sun, at a northern latitude of 27 deg. Here we focus on data taken at 1.7 solar radii, over a time interval of approx. 7 hours, on 26/27 November 2002, when a large streamer disruption was imaged by LASCO C2 and C3 coronagraphs. UVCS spectra revealed the presence of lines from both high and low ionization ions, such as C III, O VI, Si VIII, IX, and XII, Fe X and XVIII, which brighten at different times, with a different time scale and at different positions and are apparently related to different phenomena. In particular, the intensity increase and fast disappearance of the C III 977 Angstrom line represents the passage through the UVCS slit of cold material released in a jet imaged by EIT in the He II 304 Angstrom line. The persistent presence of the Fe XVIII 974 Angstrom line is not easily related to any special feature crossing the UVCS slit. We suggest to interpret this behavior in terms of the reconnection events which lead to the formation of loops observed in the EIT He II 304 Angstrom line.

  15. Ulysses observations of electron and proton components in a magnetic cloud and related wave activity

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Phillips, J. L.; Balogh, A.

    1995-01-01

    In addition to a smooth rotation of the magnetic field vector, magnetic clouds have a low proton temperature T(sub p). Their expansion in the solar wind leads to depletion and therefore the ion component cools down. It has been shown recently that the electron component in magnetic clouds behaves differently: when the cloud expands, electron temperature Te anti correlates with density and therefore Te increases in the cloud, creating favorable conditions for the rise of ion-acoustic waves. For the magnetic cloud observed by Ulysses on June 10 - 12, 1993 at 4.64 AU at S 32.5 deg, we present observations for both electron and proton components and related plasma wave activity. Our results confirm the anti correlation between T(sub e) and electron density and also exhibit a high ratio of T(sub e)/T(sub P) in the cloud. Since Landau damping is not effective for T(sub e)/T(sub p) much greater than 1, Doppler shifted ion acoustic waves are expected in the cloud. Calculation of ion acoustic wave frequencies in the cloud and comparison with observed wave activity confirm this expectation. As in our previous work, we show that the electron component in the cloud obeys a polytropic law with gamma is less than 1 (gamma approximately equals 0.3-0.4). The dynamics of the magnetic cloud are determined to a large degree by the dominating electron pressure.

  16. Validation of a Coupled Source Surface to MHD Model System at ACE and Ulysses

    NASA Astrophysics Data System (ADS)

    Detman, T.; Fry, C. D.; Smith, Z.; Dryer, M.; Intriligator, D.

    2005-05-01

    The Potential Field Source Surface model [Wang and Sheeley, 1988] combined with the Current Sheet modification [Schatten, 1971] is now in routine operation at the NWS Space Environment Center of NOAA. We use the sequence of source surface current sheet (SSCS) maps so produced. We developed a set of relatively simple empirical relationships to translate the SSCS map parameters into time-dependent MHD model lower boundary conditions at 0.1 AU. This system provides the 3D time-dependent slowly evolving background solar wind conditions in the inner heliosphere. To this system we add shock initiation perturbations to the lower boundary condition based on observed solar flares, CMEs and Type II solar radio bursts. The necessary shock descriptive parameters are generated in near real-time from these data. We compare simulated results with ACE solar wind observations. We have retrospectively adjusted the shock initiation parameters to maximize agreement with ACE observations, and extended the MHD model outer boundary to 10 AU. We will show results and comparisons of model results with Ulysses observations during the 2003 Halloween epoch. This work was partially funded by a NASA Living With a Star (LWS) TR&T grant through NOAA Work Order No.W-10,118 (ZS and TRD) and NASA Grant NAG-12527 (CDF and MD), by University Partnering for Operational Support program (UPOS) sponsored jointly by the U.S. Air Force and U.S. Army (CDF and MD), and by Carmel Research Center (DI).

  17. Ion energy equation for the high-speed solar wind: Ulysses observations

    SciTech Connect

    Feldman, W.C.; Barraclough, B.L.; Gosling, J.T.; McComas, D.J.; Riley, P.; Goldstein, B.E.; Balogh, A.

    1998-07-01

    Ulysses data in the high-speed solar wind that cover a wide range of latitudes centered on the solar poles were studied to test whether a polytrope law can be used to close the ion energy equation. Three approaches were taken. We determined the correlation between proton temperature and density (1) in the free expansion of the high-speed solar wind between 1.5 and 4.8 AU, (2) in steepened microstreams at high latitudes, and (3) at the edges of the equatorial band of solar wind variability. Strong correlations were observed in all data subsets that are consistent with a single polytrope relation, T{sub p}=aN{sub p}{sup ({gamma}{sup {asterisk}}{minus}1)}, where our best estimate for {gamma}{sup {asterisk}} is between 1.5 and 1.7. The best fitting relation is T{sub p}=(2.0{plus_minus}0.13){times}10{sup 5} N{sub p}{sup 0.57}. {copyright} 1998 American Geophysical Union

  18. The speeds of coronal mass ejections in the solar wind at mid heliographic latitudes: Ulysses

    SciTech Connect

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.; Goldstein, B.E.; Neugebauer, M.

    1994-06-15

    Six CMEs have been detected in the Ulysses plasma observations poleward of S31{degrees}. The most striking aspect of these mid-latitude CMEs was their high speeds; the overall average speed of these CMEs was {approximately}740 km s{sup {minus}1}, which was comparable to that of the rest of the solar wind at these latitudes. This average CME speed is much higher than average CME speeds observed in the solar wind in the ecliptic or in the corona close to the Sun. The evidence indicates that the CMEs were not pushed up to high speeds in interplanetary space by interaction with trailing high-speed plasma. Rather, they simply seem to have received the same basic acceleration as the rest of the solar wind at these mid-latitudes. These results suggest that the basic acceleration process for many CMEs at all latitudes is essentially the same as for the normal solar wind. Frequently most of this acceleration must occur well beyond 6 solar radii from Sun`sj center. 18 refs., 4 figs.

  19. Ulysses Observations of the Properties of Multiple Ion Beams in the Solar Wind

    SciTech Connect

    Goldstein, B. E.; Zhou, X.-Y.; Neugebauer, M.

    2010-03-25

    Properties of multiple ion beams in the solar wind beyond 1 AU as observed by the SWOOPS experiment on Ulysses are discussed. The solar wind proton distributions are approximated by a two beam bi-Maxwellian model. The slower outward traveling beam typically comprises the majority of the solar wind density. Differential streaming between the slower and faster proton beams decreases with distance from the Sun. The greatest difference between the beams in their evolution with distance from the Sun is that the parallel temperature component of the faster beam decreases more rapidly, r{sup -1.22}, than that of the slower beam, r{sup -0.39}. The difference in behavior for the perpendicular components (r{sup -0.46} for the faster beam and r{sup -0.73} for the slower beam) is real but less marked. The indication that relative perpendicular cooling is less for the faster beam while relative parallel cooling is greater and differential beam speed decreases is generally consistent with expectations from a streaming instability between the two proton beams. We have observed a dependence of the temperature anisotropy of the faster proton beam on the drift speed of the faster beam with respect to the slower beam; for large drifts (about 1.6 V{sub A}) the anisotropy, T{sub |}/T{sub perpendicular}, is smaller (about 0.8), whereas for slower drifts the parallel temperature is relatively hotter (anisotropy ratio of about 1.5).

  20. Initial Fe/O Enhancements in Large, Gradual, Solar Energetic Particle Events: Observations from Widely-Separated Spacecraft, Wind and Ulysses

    NASA Astrophysics Data System (ADS)

    Tylka, A. J.; Ko, Y. K.; Malandraki, O. E.; Dorrian, G.; Marsden, R. G.; Ng, C. K.; Tranquille, C.

    2012-04-01

    Composition measurements are a powerful tool in investigating the acceleration and transport processes that govern the production solar energetic particles (SEPs). A wide array of observational evidence indicates that shocks driven by fast coronal mass ejections are the dominant acceleration mechanism in large, so-called gradual SEP events. However, in some gradual events, the Fe/O ratio above a few MeV/nucleon sometimes shows a very strong enhancement at the beginning of the event, with Fe/O ~ 1, as typical of impulsive SEP events, in which particle acceleration at reconnections sites (such as flares) are believed to dominate. Some researchers have attributed these initial Fe/.O enhancements to a direct flare component; others have explained it in terms of rigidity-dependent SEP transport. We examine this controversy using observations of initial Fe/O enhancements in two large SEP events in 2001 by Wind at L1 and by Ulysses at high heliolatitudes and beyond 1.6 AU. We also examine the implications of these observations to the controversy about how SEPs reach high heliolatitudes, either by cross-field diffusion or by latitudinal expansion of the CME-driven shock. This work has been supported by the NASA Heliophysics Guest Investigator Program under DPR NNH09AK79I and has received funding from the European Commission FP7 Project COMESEP (263252).

  1. Energetic particle spectral and compositional invariance in the 3-D Heliosphere: Comparison between Ulysses and ACE/WIND in late 2001

    NASA Astrophysics Data System (ADS)

    Malandraki, O. E.; Tylka, A. J.; Ng, C. K.; Marsden, R. G.; Tranquille, C.; Patterson, D.; Armstrong, T. P.; Lanzerotti, L. J.; Dorrian, G.

    2012-04-01

    Basic research on Space Weather carried out at the Institute of Astronomy and Astrophysics of the National Observatory of Athens within the framework of COMESEP, a collaborative project funded by the Seventh Framework Programme of the European Union is presented in this work. We carry out the first detailed examination and comparison of elemental spectra and composition in the late decay phase of two Solar Energetic Particle (SEP) events in the so-called 'reservoir' regions, between spacecraft widely separated in latitude, as well as in longitude and radial distance in the Heliosphere. Energetic particle data from instruments onboard the Ulysses spacecraft located at a high heliospheric latitude of ~70° N and at a heliocentric distance of ~2.5 AU and from spacecraft at L1 are used in this work. Particle intensities over time are observed to be in close agreement following the shock passage over the widely separated spacecraft. Electron measurements were used to identify the extent of the particle reservoir. Implications of the observations for models of SEP transport are also discussed. Acknowledgments: The presented work has received funding from the European Union FP7 project COMESEP (263252) and has also been supported by NASA under grants NNH09AK79I and NNX09AU98G (AJT).

  2. Comparison between Measured and Simulated Radiation Doses in the Matoroshka-R Spherical phantom Experiment#1 and Area Monitoring aboard International Space Station using PADLES from May - Sep. 2012

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Aiko; Tolochek, Raisa; Shurshakov, Vyacheslav; Nikolaev, Igor; Tawara, Hiroko; Kitajo, Keiichi; Shimada, Ken

    The measurement of radiation environmental parameters in space is essential to support radiation risk assessments for astronauts and establish a benchmark for space radiation models for present and future human space activities. Since Japanese Experiment Module ‘KIBO’ was attached to the International Space Station (ISS) in 2008, we have been performing continuous space radiation dosimetery using a PADLES (Passive Dosimeter for Life-Science Experiments in Space) consisting of CR-39 PNTDs (Plastic Nuclear track detectors) and TLD-MSOs (Mg2SiO4:Tb) for various space experiments onboard the ‘KIBO’ part of the ISS. The MATROSHKA-R experiments aims to verify of dose distributions in a human body during space flight. The phantom consists of tissue equivalent material covered by a poncho jacket with 32 pockets on the surface. 20 container rods with dosimeters can be struck into the spherical phantom. Its diameter is 370 mm and it is 32 kg in weight. The first experiment onboard the KIBO at Forward No.2 area (JPM1F2 Rack2) was conducted over 114 days from 21 May to 12 September 2012 (the installation schedule inside the phantom) on the way to solar cycle 24th upward curve. 16 PADLES packages were deployed into 16 poncho pockets on the surface of the spherical phantom. Another 12 PADLES packages were deployed inside 4 rods (3 packages per rod in the outer, middle and inner side). Area monitoring in the KIBO was conducted in the same period (Area PADLES series #8 from 15 May to 16 September, 2012). Absorbed doses were measured at 17 area monitoring points in the KIBO and 28 locations (16 packages in poncho pockets and 12 inside 4 rods) in the phantom. The maximum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the outer wall was 0.43 mGy/day and the minimum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the KIBO interior was 0.30 mGy/day. The maximum absorbed

  3. Mercury exposure aboard an ore boat.

    PubMed Central

    Roach, Richard R; Busch, Stephanie

    2004-01-01

    Two maritime academy interns (X and Y) were exposed to mercury vapor after spilling a bottle of mercury on the floor in an enclosed storeroom while doing inventory aboard an ore boat. During a 3-day period, intern Y suffered transient clinical intoxication that resolved after he was removed from the environment and he showered and discarded all clothing. His initial serum mercury level dropped from 4 ng/mL to < 0.05 ng/mL. Intern X had an initial level of 11 ng/mL, which continued to rise to a maximum of 188.8 ng/mL. He complained of tremulousness, insomnia, and mild agitation and was hospitalized. He had showered and discarded all clothing except his footwear earlier than intern Y. Intern X's continued exposure due to mercury in the contaminated boots during the 2 weeks before hospitalization was presumed to be the cause. Removing his footwear led to resolution of his toxic symptoms and correlated with subsequent lowered serum mercury levels. Chelation was initiated as recommended, despite its uncertain benefit for neurologic intoxication. Mercury is used in the merchant marine industry in ballast monitors called king gauges. New engineering is recommended for ballast monitoring to eliminate this hazard. PMID:15175181

  4. Stealth life detection instruments aboard Curiosity

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2012-10-01

    NASA has often stated (e.g. MSL Science Corner1) that it's Mars Science Laboratory (MSL), "Curiosity," Mission to Mars carries no life detection experiments. This is in keeping with NASA's 36-year explicit ban on such, imposed immediately after the 1976 Viking Mission to Mars. The space agency attributes the ban to the "ambiguity" of that Mission's Labeled Release (LR) life detection experiment, fearing an adverse effect on the space program should a similar "inconclusive" result come from a new robotic quest. Yet, despite the NASA ban, this author, the Viking LR Experimenter, contends there are "stealth life detection instruments" aboard Curiosity. These are life detection instruments in the sense that they can free the Viking LR from the pall of ambiguity that has held it prisoner so long. Curiosity's stealth instruments are those seeking organic compounds, and the mission's high-resolution camera system. Results from any or all of these devices, coupled with the Viking LR data, can confirm the LR's life detection claim. In one possible scenario, Curiosity can, of itself, completely corroborate the finding of life on Mars. MSL has just successfully landed on Mars. Hopefully, its stealth confirmations of life will be reported shortly.

  5. Occupational lead exposure aboard a tall ship

    SciTech Connect

    Landrigan, P.J.; Straub, W.E.

    1985-01-01

    To evaluate occupational exposures to lead in shipfitters cutting and riveting lead-painted iron plates aboard an iron-hulled sailing vessel, the authors conducted an environmental and medical survey. Lead exposures in seven personal (breathing zone) air samples ranged from 108 to 500 micrograms/mT (mean 257 micrograms/mT); all were above the Occupational Safety and Health Administration (OSHA) standard of 50 micrograms/mT. In two short-term air samples obtained while exhaust ventilation was temporarily disconnected, mean lead exposure rose to 547 micrograms/mT. Blood lead levels in ten shipfitters ranged from 25 to 53 micrograms/dl. Blood lead levels in shipfitters were significantly higher than in other shipyard workers. Smoking shipfitters had significantly higher lead levels than nonsmokers. Lead levels in shipfitters who wore respirators were not lower than in those who wore no protective gear. Four shipfitters had erythrocyte protoporphyrin (EP) concentrations above the adult upper normal limit of 50 micrograms/dl. A close correlation was found between blood lead and EP levels. Prevalence of lead-related symptoms was no higher in shipfitters than in other workers. These data indicate that serious occupational exposure to lead can occur in a relatively small boatyard.

  6. Mercury exposure aboard an ore boat.

    PubMed

    Roach, Richard R; Busch, Stephanie

    2004-06-01

    Two maritime academy interns (X and Y) were exposed to mercury vapor after spilling a bottle of mercury on the floor in an enclosed storeroom while doing inventory aboard an ore boat. During a 3-day period, intern Y suffered transient clinical intoxication that resolved after he was removed from the environment and he showered and discarded all clothing. His initial serum mercury level dropped from 4 ng/mL to < 0.05 ng/mL. Intern X had an initial level of 11 ng/mL, which continued to rise to a maximum of 188.8 ng/mL. He complained of tremulousness, insomnia, and mild agitation and was hospitalized. He had showered and discarded all clothing except his footwear earlier than intern Y. Intern X's continued exposure due to mercury in the contaminated boots during the 2 weeks before hospitalization was presumed to be the cause. Removing his footwear led to resolution of his toxic symptoms and correlated with subsequent lowered serum mercury levels. Chelation was initiated as recommended, despite its uncertain benefit for neurologic intoxication. Mercury is used in the merchant marine industry in ballast monitors called king gauges. New engineering is recommended for ballast monitoring to eliminate this hazard. PMID:15175181

  7. Medicine in the age of " Ulysses ": James Joyce's portrait of life, medicine, and disease on a Dublin day a century ago.

    PubMed

    Shanahan, Fergus; Quigley, Eamonn M

    2006-01-01

    Over time, contemporary writing becomes part of the historical record. In medicine, it is an important learning tool, particularly for understanding the experience and context of disease and illness. Although a century has elapsed since the fictional events on a single day described in James Joyce's Ulysses, the work is still fresh with references and allusions to doctors, illnesses, and the human experience. Ulysses provides perspective on medical and social history and offers a biting commentary of continuing relevance to the doctor-patient relationship. PMID:16702710

  8. Medicine in the age of " Ulysses ": James Joyce's portrait of life, medicine, and disease on a Dublin day a century ago.

    PubMed

    Shanahan, Fergus; Quigley, Eamonn M

    2006-01-01

    Over time, contemporary writing becomes part of the historical record. In medicine, it is an important learning tool, particularly for understanding the experience and context of disease and illness. Although a century has elapsed since the fictional events on a single day described in James Joyce's Ulysses, the work is still fresh with references and allusions to doctors, illnesses, and the human experience. Ulysses provides perspective on medical and social history and offers a biting commentary of continuing relevance to the doctor-patient relationship.

  9. Plasma wave phenomena at interplanetary shocks observed by the Ulysses URAP experiment. [Unified Radio and Plasma Waves

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.

    1992-01-01

    We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.

  10. Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration

    SciTech Connect

    Anderson, J.D.; Lau, E.L.; Turyshev, S.G.; Laing, P.A.; Liu, A.S.; Nieto, M.M.

    1998-10-01

    Radio metric data from the Pioneer 10/11, Galileo, and Ulysses spacecraft indicate an apparent anomalous, constant, acceleration acting on the spacecraft with a magnitude {approximately}8.5{times}10{sup {minus}8} cm/s{sup 2} , directed towards the Sun. Two independent codes and physical strategies have been used to analyze the data. A number of potential causes have been ruled out. We discuss future kinematic tests and possible origins of the signal. {copyright} {ital 1998} {ital The American Physical Society}

  11. Acceleration of interstellar pickup ions in the disturbed solar wind observed on Ulysses

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Geiss, J.; Roelof, E. C.; Fisk, L. A.; Ipavich, F. M.; Ogilvie, K. W.; Lanzerotti, L. J.; Von Steiger, R.; Wilken, B.

    1994-01-01

    Acceleration of interstellar pickup H(+) and He(+) as well as of solar wind protons and alpha particles has been observed on Ulysses during the passage of a corotating interaction region (CIR) at approximately 4.5 AU. Injection efficiencies for both the high thermal speed interstellar pickup ions (H(+) and He(+)) and the low thermal speed solar wind ions (H(+) and He(++) are derived using velocity distribution functions of protons, pickup He(+) and alpha particles from less than 1 to 60 keV/e and of ions (principally protons) above approximately 60 keV. The observed spatial variations of the few keV and the few hundred keV accelerated pickup protons across the forward shock of CIR indicate a two stage acceleration mechanism. Thermal ions are first accelerated to speeds of 3 to 4 times the solar wind speed inside the CIR, presumably by some statistical mechanism, before reaching higher energies by a shock acceleration process. Our results also indicate that (1) the injection efficiencies for pickup ions are almost 100 times higher than they are for solar wind ions, (2) pickup H(+) and He(+) are the two most abundant suprathermal ion species and they carry a large fraction of the particle thermal pressure, (3) the injection efficiency is highest for protons, lowest for He(+), and intermediate for alpha particles, (4) both H(+) and He(+) have identical spectral shapes above the cutoff speed for pickup ions, and (5) the solar wind frame velocity distribution function of protons has the form F(w) = F(sub o)w(sup -4) for 1 is less than w is less than approximately 5, where w is the ion speed divided by the solar wind speed. Above w approximately 5-10 the proton spectrum becomes steeper. These results have important implications concerning acceleration of ions by shocks and CIRs, acceleration of anomalous cosmic rays, and particle dynamics in the outer heliosphere.

  12. Large Amplitude IMF Fluctuations in Corotating Interaction Regions: Ulysses at Midlatitudes

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Ho, Christian M.; Arballo, John K.; Goldstein, Bruce E.; Balogh, Andre

    1995-01-01

    Corotating Interaction Regions (CIRs), formed by high-speed corotating streams interacting with slow speed streams, have been examined from -20 deg to -36 deg heliolatitudes. The high-speed streams emanate from a polar coronal hole that Ulysses eventually becomes fully embedded in as it travels towards the south pole. We find that the trailing portion of the CIR, from the interface surface (IF) to the reverse shock (RS), contains both large amplitude transverse fluctuations and magnitude fluctuations. Similar fluctuations have been previously noted to exist within CIRs detected in the ecliptic plane, but their existence has not been explained. The normalized magnetic field component variances within this portion of the CIR and in the trailing high-speed stream are approximately the same, indicating that the fluctuations in the CIR are compressed Alfven waves. Mirror mode structures with lower intensities are also observed in the trailing portion of the CIR, presumably generated from a local instability driven by free energy associated with compression of the high-speed solar wind plasma. The mixture of these two modes (compressed Alfven waves and mirror modes) plus other modes generated by three wave processes (wave-shock interactions) lead to a lower Alfvenicity within the trailing portion of the CfR than in the high-speed stream proper. The results presented in this paper suggest a mechanism for generation of large amplitude B(sub z) fluctuations within CIRS. Such phenomena have been noted to be responsible for the generation of moderate geomagnetic storms during the declining phase of the solar cycle.

  13. Gamma-Ray Burst Arrival Time Localizations: Simultaneous Observations by Mars Observer, Compton Gamma Ray Observatory and Ulysses

    NASA Technical Reports Server (NTRS)

    Laros, J. G.; Boynton, W. V.; Hurley, K.; Kouveliotou, C.; McCollough, M. L.; Fishman, G. J.; Meegan, C. A.

    1997-01-01

    Between 1992 October 4 and 1993 August 1, concurrent coverage by the Compton Gamma Ray Observatory (CGRO), Mars Observer (MO), and Ulysses spacecraft was obtained for 78 gamma-ray bursts (GRBs). Although most of these were below the MO and Ulysses thresholds, nine were positively detected by all three spacecraft, with data quality adequate for quantitative localization analysis. All were localized independently to approximately 2 deg accuracy by the CGRO Burst and Transient Source Experiment (BATSE). We computed arrival-time error boxes with larger dimensions ranging from a few arcminutes to the diameters of the BATSE-only boxes and with smaller dimensions in the arcminute range. Three events are of particular interest: GB 930704 (BATSE 2428) has been described as a possible repeater. The arrival-time information is consistent with that hypothesis, but only just so. The GB 930706 (2431) box, at approximately 1 min x 4 min, is the only one this small obtained since Pioneer Venus Orbiter (PVO) entered the Venusian atmosphere in 1992 October. Sensitive radio and optical observations of this location were made within 8 and 9 days of the burst, but no counterpart candidates were identified. GB 930801 (2477) is the first GRB that had its localization improved by taking into account BATSE Earth occultation.

  14. The northern edge of the band of solar wind variability: Ulysses at {approximately}4.5AU

    SciTech Connect

    Gosling, J.T.; Bame, S.J.; Feldman, W.C.; McComas, D.J.; Riley, P.; Goldstein, B.E.; Neugebauer, M.

    1997-02-01

    Ulysses observations reveal that the northern edge of the low-latitude band of solar wind variability at {approximately}4.5AU was located at N30{degree} in the latter part of 1996 when solar activity was at a minimum. This edge latitude is intermediate between edge latitudes found during previous encounters with the band edge along different portions of Ulysses{close_quote} polar orbit about the Sun. Corotating interaction regions, CIRs, near the northern edge of the band were tilted in such a manner that the forward and reverse shocks bounding the CIRs were propagating equatorward and poleward, respectively, providing definite confirmation that CIRs have opposed tilts in the opposite solar hemispheres. No shocks or coronal mass ejections, CMEs, were detected during the {approximately}1.5y traverse of the northern, high-latitude northern hemisphere; however, at the northern edge of the band of variability an expanding CME was observed that was driving a shock into the high-speed wind.{copyright} 1997 American Geophysical Union

  15. Noise and exposure of personnel aboard vessels in the Royal Norwegian Navy.

    PubMed

    Sunde, Erlend; Irgens-Hansen, Kaja; Moen, Bente E; Gjestland, Truls; Koefoed, Vilhelm F; Oftedal, Gunnhild; Bråtveit, Magne

    2015-03-01

    Despite awareness of noise aboard vessels at sea, few studies have reported measured noise levels aboard ships. This study aimed to describe the noise levels aboard vessels in the Royal Norwegian Navy (RNoN), and to assess the noise exposure of personnel aboard RNoN vessels. In 2012/2013 noise measurements were conducted aboard 14 RNoN vessels from four different vessel classes (frigates, coastal corvettes, mine vessels, and coast guard vessels) which were included in this study. Mean and median A-weighted noise levels (L p,A) in decibel (dB(A)) were calculated for different locations in each vessel class. The noise exposure of RNoN personnel was assessed by dosimeter measurements, and with a task-based (TB) strategy. The TB strategy used means of area measured noise levels in locations and the personnel's mean reported time spent in the respective locations to estimate the exposure. Area measurements of noise during sailing with typical operating modes, showed that for all vessel classes the noise levels were high in engine rooms with median L p,A ranging from 86.4 to 105.3 dB(A). In all the other locations the vessel class with the highest noise levels (coastal corvettes) had a median L p,A ranging from 71.7 to 95.0 dB(A), while the vessel class with the lowest noise levels (coast guard vessels) had a median L p,A ranging from 41.5 to 57.8 dB(A). For all vessel classes the engineers and electricians had amongst the highest 24-hour noise exposure (L p,A,24h), both before and after adjusting for estimated use of hearing protective devices (L p,A,24h > 67.3 dB(A)). The vessel class with the highest personnel exposure levels (coastal corvettes) had L p,A,24h ranging from 76.6 to 79.3 dB(A). The vessel class with the lowest personnel exposure levels (coast guard vessels) had an L p,A,24h ranging from 47.4 to 67.3 dB(A). In general, the dosimeter measurements gave higher exposure levels than those estimated with the TB strategy. All vessel classes, except the coast

  16. Noise and exposure of personnel aboard vessels in the Royal Norwegian Navy.

    PubMed

    Sunde, Erlend; Irgens-Hansen, Kaja; Moen, Bente E; Gjestland, Truls; Koefoed, Vilhelm F; Oftedal, Gunnhild; Bråtveit, Magne

    2015-03-01

    Despite awareness of noise aboard vessels at sea, few studies have reported measured noise levels aboard ships. This study aimed to describe the noise levels aboard vessels in the Royal Norwegian Navy (RNoN), and to assess the noise exposure of personnel aboard RNoN vessels. In 2012/2013 noise measurements were conducted aboard 14 RNoN vessels from four different vessel classes (frigates, coastal corvettes, mine vessels, and coast guard vessels) which were included in this study. Mean and median A-weighted noise levels (L p,A) in decibel (dB(A)) were calculated for different locations in each vessel class. The noise exposure of RNoN personnel was assessed by dosimeter measurements, and with a task-based (TB) strategy. The TB strategy used means of area measured noise levels in locations and the personnel's mean reported time spent in the respective locations to estimate the exposure. Area measurements of noise during sailing with typical operating modes, showed that for all vessel classes the noise levels were high in engine rooms with median L p,A ranging from 86.4 to 105.3 dB(A). In all the other locations the vessel class with the highest noise levels (coastal corvettes) had a median L p,A ranging from 71.7 to 95.0 dB(A), while the vessel class with the lowest noise levels (coast guard vessels) had a median L p,A ranging from 41.5 to 57.8 dB(A). For all vessel classes the engineers and electricians had amongst the highest 24-hour noise exposure (L p,A,24h), both before and after adjusting for estimated use of hearing protective devices (L p,A,24h > 67.3 dB(A)). The vessel class with the highest personnel exposure levels (coastal corvettes) had L p,A,24h ranging from 76.6 to 79.3 dB(A). The vessel class with the lowest personnel exposure levels (coast guard vessels) had an L p,A,24h ranging from 47.4 to 67.3 dB(A). In general, the dosimeter measurements gave higher exposure levels than those estimated with the TB strategy. All vessel classes, except the coast

  17. Safety Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mintz, Shauna M.

    2004-01-01

    As with any task that NASA takes on, safety is of utmost importaqce. There are pages of safety codes and procedures that must be followed before any idea can be brought to life. Unfortunately, the International Space Station s (ISS) safety regulations and procedures are based on lg standards rather than on Og. To aide in making this space age home away from home a less hazardous environment, I worked on several projects revolving around the dangers of flammable items in microgravity. The first task I was assigned was to track flames. This involves turning eight millimeter video recordings, of tests run in the five second drop tower, into avi format on the computer. The footage is then compressed and altered so that the flame can be seen more clearly. Using another program called Spotlight, line profiles were used to collect data describing the luminescence of the flame at different points. These raw data are saved as text files and run trough a macro so that a Matlab program can analyze it. By fitting the data to a curve and determining the areas of brightest luminescence, the behavior of the flame can be recorded numerically. After entering the data into a database, researchers can come back later and easily get information on flames resulting from different gas and liquid mixtures in microgravity. I also worked on phase two of the FATE project, which deals with safety aboard the ISS. This phase involves igniting projected droplets and determining how they react with secondary materials. Such simulations represent, on a small scale, the spread of onboard fires due to the effervescence of burning primary materials. I set up existing hardware to operate these experiments and ran tests with it, photographing the results. I also made CAD drawings of the apparatus and the area available on the (SF)2 rig for it to fit into. The experiment will later be performed on the KC-135, and the results gathered will be used to reanalyze current safety standards for the ISS

  18. Gemini 4 astronauts relax aboard Navy helicopter after recovery

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 4 astronauts, James A. McDivitt (right), command pilot, and Edward H. White II, (left), pilot, relax aboard a U.S. Navy helicopter on their way to the aircraft carrier U.S.S. Wasp after recovery from the Gemini 4 spacecraft. They had been picked up out of the Atlantic Ocean following a successful splashdown (33532); White (left) and McDivitt listen to the voice of President Lyndon B. Johnson as he congratulated them by telephone on the successful mission. They are shown aboard the carrier U.S.S. Wasp just after their recovery (33533).

  19. Microstructure Analysis of Directionally Solidified Aluminum Alloy Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Angart, Samuel Gilbert

    This thesis entails a detailed microstructure analysis of directionally solidified (DS) Al-7Si alloys processed in microgravity aboard the International Space Station and similar duplicate ground based experiments at Cleveland State University. In recent years, the European Space Agency (ESA) has conducted experiments on alloy solidification in microgravity. NASA and ESA have collaborated for three DS experiments with Al- 7 wt. % Si alloy, aboard the International Space Station (ISS) denoted as MICAST6, MICAST7 and MICAST12. The first two experiments were processed on the ISS in 2009 and 2010. MICAST12 was processed aboard the ISS in the spring of 2014; the resulting experimental results of MICAST12 are not discussed in this thesis. The primary goal of the thesis was to understand the effect of convection in primary dendrite arm spacings (PDAS) and radial macrosegregation within DS aluminum alloys. The MICAST experiments were processed with various solidification speeds and thermal gradients to produce alloy with differences in microstructure features. PDAS and radial macrosegregation were measured in the solidified ingot that developed during the transition from one solidification speed to another. To represent PDAS in DS alloy in the presence of no convection, the Hunt-Lu model was used to represent diffusion-controlled growth. By sectioning cross-sections throughout the entire length of solidified samples, PDAS was measured and calculated. The ground-based (1-g) experiments done at Cleveland State University CSU were also analyzed for comparison to the ISS experiments (0-g). During steady state in the microgravity environment, there was a reasonable agreement between the measured and calculated PDAS. In ground-based experiments, transverse sections exhibited obvious radial macrosegregation caused by thermosolutal convection resulting in a non-agreement with the Hunt-Lu model. Using a combination of image processing techniques and Electron Microprobe Analysis

  20. 29 CFR 783.35 - Employees serving as “watchmen” aboard vessels in port.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 783.35 Employees serving as “watchmen” aboard vessels in port. Various situations are presented with respect to employees rendering watchman or similar service aboard a vessel in port. Members of the crew... crew rendering watchman or similar services aboard the vessel during this period would not appear to...

  1. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  2. Paresev 1-C with inflatable wing testbed aboard a truck in preparation for flight tests

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Aboard a truck and ready for a test flight is the Paresev 1-C on the ramp at the NASA Flight Research Center, Edwards, California. The half-scale version of the inflatable Gemini parawing was pre-flighted by being carried across the Rosamond dry lakebed on the back of a truck before a tow behind a International Harvester Carry-All. The inflatable center spar ran fore and aft and measured 191 inches, two other inflatable spars formed the leading edges. The three compartments were filled with nitrogen under pressure to make them rigid. The Paresev 1-C was very unstable in flight with this configuration.

  3. Gemini 12 crew arrives aboard U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    A happy Gemini 12 prime crew arrives aboard the aircraft carrier, U.S.S. Wasp. Astronauts James A. Lovell Jr. (left), command pilot, and Edwin E. Aldrin Jr., pilot, had just been picked up from the splashdown area by helicopter.

  4. Apollo 9 crewmen arrive aboard U.S.S. Guadelcanal

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 9 crewmen arrive aboard the U.S.S. Guadelcanal as they step from a helicopter to receive a red-carpet welcome. Two of the crewmen salute the crowd of newsmen, Navy and NASA personnel gathered to greet them. Left to right are Astronauts Russell L. Schweickart, David R. Scott, and James A. McDivitt.

  5. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  6. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  7. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  8. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  9. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  10. Predicting Airborne Particle Levels Aboard Washington State School Buses.

    PubMed

    Adar, Sara D; Davey, Mark; Sullivan, James R; Compher, Michael; Szpiro, Adam; Liu, L-J Sally

    2008-10-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM(2.5)) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits.To assess onboard concentrations, continuous PM(2.5) data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM(2.5) onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM(2.5) levels, ambient weather, and bus and route characteristics.Concentrations aboard school buses (21 mug/m(3)) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM(2.5) levels between the buses and lead vehicles indicated an average of 7 mug/m(3) originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM(2.5), bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust.These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics.

  11. Potential health risks from postulated accidents involving the Pu-238 RTG (radioisotope thermoelectric generator) on the Ulysses solar exploration mission

    SciTech Connect

    Goldman, M. ); Nelson, R.C. ); Bollinger, L. ); Hoover, M.D. . Inhalation Toxicology Research Inst.); Templeton, W. ); Anspaugh, L. (Lawren

    1990-11-02

    Potential radiation impacts from launch of the Ulysses solar exploration experiment were evaluated using eight postulated accident scenarios. Lifetime individual dose estimates rarely exceeded 1 mrem. Most of the potential health effects would come from inhalation exposures immediately after an accident, rather than from ingestion of contaminated food or water, or from inhalation of resuspended plutonium from contaminated ground. For local Florida accidents (that is, during the first minute after launch), an average source term accident was estimated to cause a total added cancer risk of up to 0.2 deaths. For accidents at later times after launch, a worldwide cancer risk of up to three cases was calculated (with a four in a million probability). Upper bound estimates were calculated to be about 10 times higher. 83 refs.

  12. Joyce and Ulysses: integrated and user-friendly tools for the parameterization of intramolecular force fields from quantum mechanical data.

    PubMed

    Barone, Vincenzo; Cacelli, Ivo; De Mitri, Nicola; Licari, Daniele; Monti, Susanna; Prampolini, Giacomo

    2013-03-21

    The Joyce program is augmented with several new features, including the user friendly Ulysses GUI, the possibility of complete excited state parameterization and a more flexible treatment of the force field electrostatic terms. A first validation is achieved by successfully comparing results obtained with Joyce2.0 to literature ones, obtained for the same set of benchmark molecules. The parameterization protocol is also applied to two other larger molecules, namely nicotine and a coumarin based dye. In the former case, the parameterized force field is employed in molecular dynamics simulations of solvated nicotine, and the solute conformational distribution at room temperature is discussed. Force fields parameterized with Joyce2.0, for both the dye's ground and first excited electronic states, are validated through the calculation of absorption and emission vertical energies with molecular mechanics optimized structures. Finally, the newly implemented procedure to handle polarizable force fields is discussed and applied to the pyrimidine molecule as a test case. PMID:23389748

  13. Study of the precision of the gamma-ray burst source locations obtained with the Ulysses/PVO/CGRO network

    SciTech Connect

    Cline, T.L. ); Hurley, K.C. ); Sommer, M. ); Boer, M.; Niel, M. ); Fishman, G.; Kouveliotou, C.; Meegan, C.; Paciesas, W.S.; Wilson, R.B. ); Laros, J.G.; Klebesadel, R.W. )

    1994-07-01

    The interplanetary gamma-ray burst network of the [ital Ulysses], [ital Compton]-[ital GRO], and [ital Pioneer]-[ital Venus] [ital Orbiter] missions has made source localizations with fractional-arc-minute precision for a number of events, and with auxiliary data, will provide useful annular-segment loci for many more. These studies have, thus far, yielded one possible counterpart, a [ital Rosat] x-ray association with the 92 May 1 burst. Similar to the historic 1978 November 19 burst/[ital Einstein] association, this possibility gives hope that network studies will provide a fundamental source clue for classical' bursts, just as a second supernova remnant in a network-defined source field has done for sgr events.

  14. Joyce and Ulysses: integrated and user-friendly tools for the parameterization of intramolecular force fields from quantum mechanical data.

    PubMed

    Barone, Vincenzo; Cacelli, Ivo; De Mitri, Nicola; Licari, Daniele; Monti, Susanna; Prampolini, Giacomo

    2013-03-21

    The Joyce program is augmented with several new features, including the user friendly Ulysses GUI, the possibility of complete excited state parameterization and a more flexible treatment of the force field electrostatic terms. A first validation is achieved by successfully comparing results obtained with Joyce2.0 to literature ones, obtained for the same set of benchmark molecules. The parameterization protocol is also applied to two other larger molecules, namely nicotine and a coumarin based dye. In the former case, the parameterized force field is employed in molecular dynamics simulations of solvated nicotine, and the solute conformational distribution at room temperature is discussed. Force fields parameterized with Joyce2.0, for both the dye's ground and first excited electronic states, are validated through the calculation of absorption and emission vertical energies with molecular mechanics optimized structures. Finally, the newly implemented procedure to handle polarizable force fields is discussed and applied to the pyrimidine molecule as a test case.

  15. Potential health risks from postulated accidents involving the Pu-238 RTG on the Ulysses solar exploration mission

    NASA Technical Reports Server (NTRS)

    Goldman, Marvin; Hoover, Mark D.; Nelson, Robert C.; Templeton, William; Bollinger, Lance; Anspaugh, Lynn

    1991-01-01

    Potential radiation impacts from launch of the Ulysses solar exploration experiment were evaluated using eight postulated accident scenarios. Lifetime individual dose estimates rarely exceeded 1 mrem. Most of the potential health effects would come from inhalation exposures immediately after an accident, rather than from ingestion of contaminated food or water, or from inhalation of resuspended plutonium from contaminated ground. For local Florida accidents (that is, during the first minute after launch), an average source term accident was estimated to cause a total added cancer risk of up to 0.2 deaths. For accidents at later time after launch, a worldwide cancer risk of up to three cases was calculated (with a four in a million probability). Upper bound estimates were calculated to be about 10 times higher.

  16. Flow properties of the solar wind obtained from white light data, Ulysses observations and a two-fluid model

    SciTech Connect

    Habbal, Shadia Rifai; Esser, Ruth; Guhathakurta, Madhulika; Fisher, Richard

    1996-07-20

    We derive the flow properties of the solar wind using a two-fluid model constrained by the density gradients inferred from white light observations of a south polar coronal hole on 11 April 1993 during the SPARTAN 201-1 flight, and interplanetary observations, e.g. from Ulysses' south polar passage. We present the results of model computations for which we get the best fit to these data. One of the main results of this study is that, for the same energy input to electrons and protons, the proton temperature can be significantly higher than the electron temperature in the inner corona. In addition, we show that different functional forms of the energy addition with the same total energy input can yield different solar wind parameters at 1AU.

  17. Stability of Formulations Contained in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Du, Brian; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick

    2008-01-01

    Efficacious pharmaceuticals with adequate shelf life are essential for successful space medical operations in support of space exploration missions. Physical and environmental factors unique to space missions such as vibration, G forces and ionizing radiation may adversely affect stability of pharmaceuticals intended for standard care of astronauts aboard space missions. Stable pharmaceuticals, therefore, are of paramount importance for assuring health and wellness of astronauts in space. Preliminary examination of stability of formulations from Shuttle and International Space Station (ISS) medical kits revealed that some of these medications showed physical and chemical degradation after flight raising concern of reduced therapeutic effectiveness with these medications in space. A research payload experiment was conducted with a select set of formulations stowed aboard a shuttle flight and on ISS. The payload consisted of four identical pharmaceutical kits containing 31 medications in different dosage forms that were transported to the International Space Station (ISS) aboard the Space Shuttle, STS 121. One of the four kits was stored on the shuttle and the other three were stored on the ISS for return to Earth at six months intervals on a pre-designated Shuttle flight for each kit; the shuttle kit was returned to Earth on the same flight. Standard stability indicating physical and chemical parameters were measured for all pharmaceuticals returned from the shuttle and from the first ISS increment payload along with ground-based matching controls. Results were compared between shuttle, ISS and ground controls. Evaluation of data from the three paradigms indicates that some of the formulations exhibited significant degradation in space compared to respective ground controls; a few formulations were unstable both on the ground and in space. An increase in the number of pharmaceuticals from ISS failing USP standards was noticed compared to those from the shuttle

  18. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to

  19. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  20. Crewmen of the Gemini 7 spacecraft arrive aboard aircraft carrier

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts James A. Lovell Jr., (left), pilot, and Frank Borman, command pilot, are shown just after they arrived aboard the aircraft carrier U.S.S. Wasp. Greeting the astronauts are Donald Stullken (at Lovell's right), Recovery Operations Branch, Landing and Recovery Division; Dr. Howard Minners (standing beside Borman), Flight Medicine Branch, Cneter Medical Office, Manned Spacecraft Center, and Bennett James (standing behind Borman), a NASA Public Affairs Officer.

  1. Study of balloon and thermal control material degradation aboard LDEF

    NASA Technical Reports Server (NTRS)

    Letton, Alan; Rock, Neil I.; Williams, Kevin D.; Strganac, Thomas

    1991-01-01

    The initial results of analysis performed on a number of polymeric materials which were exposed aboard the Long Duration Exposure Facility (LDEF) are discussed. These materials include two typical high altitude balloon films (a polyester and a polyethylene) and silver-backed Teflon from thermal control blanket samples. The techniques used for characterizing changes in mechanical properties, chemical structure and surface morphology include Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy, and dynamic mechanical analysis.

  2. Apollo 10 crewmembers arrive aboard U.S.S. Princeton

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 10 crewmembers arrive aboard the U.S.S. Princeton as they step from a helicopter to receive a red carpet welcome. Left to right, are Astronauts Eugene A. Cernan, lunar module pilot; Thomas P. Stafford, commander; and John W. Young, command module pilot. Standing in left foreground is Dr. Donald E. Stullken, Chief, Recovery Operations Branch, Landing and Recovery Division, Manned Spacecraft Center.

  3. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 μg/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 μg/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  4. GROUP-C and LITES Experiments for Ionospheric Remote Sensing aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.

    2013-12-01

    Ionospheric irregularities, also known as ionospheric bubbles, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Understanding irregularity formation, development, and evolution is vital for efforts within NASA and DoD to forecast scintillation. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the International Space Station (ISS) would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. The GPS Radio Occultation and Ultraviolet Photometry Colocated (GROUPC) and the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are being considered for flight aboard the Space Test Program Houston 5 (STP-H5) experiment pallet. By combining for the first time high-sensitivity in-track photometry with vertical ionospheric airglow spectrographic imagery, we demonstrate that high-fidelity optical tomographic reconstruction of bubbles can be performed from the ISS. Ground-based imagery can supplement the tomography by providing all-sky images of ionospheric structures (e.g. bubbles and TIDs) and of signatures of lower atmospheric dynamics, such as gravity waves, that may play a role in irregularity formation. The optical instrumentation can be augmented with additional sensors to provide measurements of scintillation and in situ plasma density, composition, and drifts.

  5. NASDA President Communicates With Japanese Crew Member Aboard the STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. From the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC), NASDA President, Mr. Yamano, speaks to Payload Specialist Mamoru Mohri, a Japanese crew member aboard the STS-47 Spacelab J mission.

  6. Hardware development for the surface tension driven convection experiment aboard the USML-1 spacelab mission

    NASA Technical Reports Server (NTRS)

    Pline, A. D.; Jacobson, T. P.; Wanhainen, J. S.; Petrarca, D. A.

    1988-01-01

    The Surface Tension Driven Convection Experiment is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for March 1992. Hardware is under development to establish the experimental conditions and perform the specified measurements, for both ground based research and the flight experiment in a Spacelab single rack. Major development areas include an infrared thermal imaging system for surface temperature measurement, a CO2 laser and control system for surface heating, and for flow visualization, a He-Ne laser and optical system in conjunction with an intensified video camera. For ground based work the components of each system were purchased or designed, and tested individually. The three systems will be interfaced with the balance of the experimental hardware and will constitute a working engineering model. A description of the three systems and examples of the component performance is given along with the plans for the development of flight hardware.

  7. Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond [approximately]2 AU: Ulysses

    SciTech Connect

    Gosling, J.T.; Bame, S.J.; Feldman, W.C.; Mcomas, D.J.; Phillips, J.L. ); Goldstein, B.E. )

    1993-11-05

    Enhanced fluxes of suprathermal electrons are commonly observed upstream of corotating forward and reverse shocks in the solar wind at heliocentric distances beyond [approximately]2 AU by the Los Alamos plasma experiment on Ulysses. The average duration of these events, which are most intense immediately upstream from the shocks and which fade with increasing distance from them, is [approximately]2.4 days near 5 AU. These events are caused by the leakage of shock-heated electrons into the upstream region. The upstream regions of these shocks face back toward the SUN along the interplanetary magnetic field, so these leaked electrons commonly counterstream relative to the normal solar wind electron heat flux. The observations suggest that conservation of magnetic moment and scattering typically limit the sunward propagation of these electrons as beams to field-aligned distances of [approximately]15 AU. Although it seems unlikely that these shock-associated events are an important source of counterstreaming events near 1 AU, remnants of the backstreaming beams may contribute importantly to the diffuse solar wind halo electron population there. 13 refs., 3 figs.

  8. Comparison of interplanetary type 2 radio burst observations by ISEE-3, Ulysses, and WIND with applications to space weather prediction

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Klimas, A. J.; Lengyel-Frey, D.; Stone, R. G.; Thejappa, G.

    1997-01-01

    Interplanetary (IP) type 2 radio bursts are produced by IP shocks driven by solar ejecta, presumably involving shock acceleration of electrons that leads to radio emission. These radio bursts, which can be detected remotely by a sensitive spacecraft radio receiver, provide a method of tracking the leading edge of solar ejecta moving outward from the sun. Consequently, observations of these bursts sometimes provide advance warning of one or more days prior to the onset of geomagnetic activity induced by the solar ejecta. A robust lower limit on the fraction of intense geomagnetic storms, that are preceded by IP type 2 bursts, is provided. It is shown that 41 percent of the geomagnetic storms occurring during the interval September 1978 to February 1983 were preceded by type 2 events in this catalog, and reasons why the fraction is not larger are addressed. Differences in the observing capabilities of the International Sun-Earth Explorer (ISEE) 3, Ulysses, and WIND, to explain why each of these similar spacecraft radio investigations provides a different perspective of IP type 2 emissions are reviewed.

  9. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. I. New observations and linear analysis

    SciTech Connect

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: raquel.nuno@asu.edu

    2014-04-01

    We have examined Ulysses magnetic field data using dynamic spectrogram techniques that compute wave amplitude, polarization, and direction of propagation over a broad range of frequencies and time. Events were identified that showed a strong polarization signature and an enhancement of power above the local proton gyrofrequency. We perform a statistical study of 502 wave events in an effort to determine when, where, and why they are observed. Most notably, we find that waves arising from newborn interstellar pickup ions are relatively rare and difficult to find. The quantities normally employed in theories of wave growth are neutral atom density and quantities related to their ionization and the subsequent dynamics such as wind speed, solar wind flux, and magnetic field orientation. We find the observations of waves to be largely uncorrelated to these quantities except for mean field direction where quasi-radial magnetic fields are favored and solar wind proton flux where wave observations appear to be favored by low flux conditions which runs contrary to theoretical expectations of wave generation. It would appear that an explanation based on source physics and instability growth rates alone is not adequate to account for the times when these waves are seen.

  10. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    SciTech Connect

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  11. Post-encapsulation plutonia reduction for Galileo and Ulysses GPHS modules: The Module Reduction and Monitoring Facility (MRMF)

    SciTech Connect

    Johnson, E.W. )

    1991-01-01

    In heat source systems of the type C/Ir/PuO{sub 2}, ingrowth of CO and CO{sub 2} is evident. This is due to a cyclical reaction between the C and PuO{sub 2} constituents. Gas tap results show that repeated exchanges using a pure inert gas backfill reduces the CO/CO{sub 2} ingrowth rate. Also, the temperature experienced during Radioisotope Thermoelectric Generator (RTG) processing reduces further the effect such that normal RTG storage temperatures do not result in this deleterious effect. A 36-station vacuum/inert gas manifold has been developed at Mound Facility to serve as a Module Reduction and Monitoring Facility (MRMF) for up to 68 GPHS-type heat source modules. This method of storage effectively prevented atmospheric contamination of modules while reducing the CO/CO{sub 2} ingrowth rate. This paper describes in detail the theoretical, practical, facility, and quality/reliability aspects of this processing facility that has supported the Galileo and Ulysses RTG programs. 5 refs., 3 figs., 1 tab.

  12. High temperature heat pipe experiments aboard the space shuttle

    SciTech Connect

    Woloshun, K.A.; Merrigan, M.A.; Sena, J.T. ); Secary, C.J. )

    1993-01-10

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most space nuclear power systems, there is no experimental data on the operation of these heat pipes in a zero gravity or micro gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation. Three SST/potassium heat pipes are being designed, fabricated, and ground tested. It is anticipated that these heat pipes will fly aboard the space shuttle in 1995. Three wick structures will be tested: homogeneous, arterial, and annular gap. Ground tests are described that simulate the space shuttle environment in every way except gravity field.

  13. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  14. [Equipment for biological experiments with snails aboard piloted orbital stations].

    PubMed

    Gorgiladze, G I; Korotkova, E V; Kuznetsova, E E; Mukhamedieva, L N; Begrov, V V; Pepeliaev, Iu V

    2010-01-01

    To fly biological experiments aboard piloted orbital stations, research equipment was built up of an incubation container, filter system and automatic temperature controller. Investigations included analysis of the makeup and concentrations of gases produced by animals (snails) during biocycle, and emitted after death. Filters are chemisorption active fibrous materials (AFM) with high sorption rate and water receptivity (cation exchange fiber VION-KN-1 and anion exchange fiber VION-AS-1), and water-repellent carbon adsorbent SKLTS. AFM filters were effective in air cleaning and practically excluded ingress of chemical substances from the container into cabin atmosphere over more than 100 days. PMID:21033402

  15. Properties and Radial Trends of Coronal Mass Ejecta and Their Associated Shocks Observed by Ulysses in the Ecliptic Plane. Appendix 2; Repr. from Journal of Geophysical Research, v. 105, 2000 p 12,617-12,626

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Gosling, J. T.; McComas, D. J.; Forsyth, R. J.

    2001-01-01

    In this paper, magnetic and plasma measurements are used to analyze 17 interplanetary coronal mass ejections (CMEs) identified by Ulysses during its in-ecliptic passage to Jupiter. We focus on the expansion characteristics of these CMEs (as inferred from the time rate of change of the velocity profiles through the CMEs) and the properties of 14 forward shocks unambiguously associated with these CMEs. We highlight radial trends from 1 to 5.4 AU. Our results indicate that the CMEs are generally expanding at all heliocentric distances. With regard to the shocks preceding these ejecta, we note the following: (1) There is a clear tendency for the shock speed (in the upstream frame of reference) to decrease with increasing heliocentric distance as the CMEs transfer momentum to the ambient solar wind and slow down; (2) 86% of the shock fronts are oriented in the ecliptic plane such that their normals point westward (i.e., in the direction of planetary motion about the Sun), (3) 86% of the shocks are propagating toward the heliographic equator; and (4) no clear trend was found in the strength of the shocks versus heliocentric distance. These results are interpreted using simple dynamical arguments and are supported by fluid and magnetohydrodynamic (MHD) simulations.

  16. Alterations in erythrocyte survival parameters in rats after 19.5 days aboard Cosmos 782

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Serova, L. V.; Cummins, J.; Landaw, S. A.

    1978-01-01

    Rats were subjected to 19.5 days of weightless space flight aboard the Soviet biosatellite, Cosmos 782. Based on the output of CO-14, survival parameters of a cohort of erythrocytes labeled 15.5 days preflight were evaluated upon return from orbit. These were compared to vivarium control rats injected at the same time. Statistical evaluation indicates that all survival factors were altered by the space flight. The mean potential lifespan, which was 63.0 days in the control rats, was decreased to 59.0 days in the flight rats, and random hemolysis was increased three-fold in the flight rats. The measured size of the cohort was decreased, lending further support to the idea that hemolysis was accelerated during some portion of the flight. A number of factors that might be contributory to these changes are discussed, including forces associated with launch and reentry, atmospheric and environmental parameters, dietary factors, radiation, and weightlessness.

  17. Degradation of electro-optic components aboard LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    Re-measurement of the properties of a set of electro-optic components exposed to the low earth orbital environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, LED's, filter, mirrors, and black paints will be presented. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens. We find plastics and multi-layer dielectric coatings to be potentially unstable. Semiconductor devices, metal, and glass are more likely to be stable.

  18. Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.

  19. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., FR Doc. 2013-04429, on page 14952, column 1, correct the DATES section to read as follows: DATES... COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... Stations Aboard Aircraft. FOR FURTHER INFORMATION CONTACT: Andrea Kelly, Satellite Division,...

  20. An apparatus for preparing benthic samples aboard ship

    USGS Publications Warehouse

    Pepper, Phillip N.; Girard, Thomas L.; Stapanian, Martin A.

    2001-01-01

    We describe a safe and effective apparatus for washing and reducing the volume of benthic samples collected by grab samplers aboard ship. The sample is transferred directly from the dredge to the apparatus and then washed with water pumped through pipes in the apparatus and from onboard hoses. Wastewater and materials smaller than 0.541 mm in diameter are washed overboard. Larger materials, including benthic organisms, collect on an upper 0.64-cm screen and on a lower 30-mm-mesh stainless steel bolt cloth. A collection jar is screwed into the bottom of the apparatus. Therefore, transfer of sample material from the apparatus to the jar is quick and easy. This apparatus has several advantages for use aboard ship over others described in the literature, especially in rough seas, in cold weather, and at night. The apparatus provides a safe and convenient platform for washing and reducing samples, and samples can be prepared while the vessel is traveling at full speed.

  1. Astronaut Richard F. Gordon Aboard Command Module Yankee Clipper

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  2. 77 FR 27855 - Celerity Partners IV, LLC, Celerity AHI Holdings SPV, LLC, and All Aboard America! Holdings, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Surface Transportation Board Celerity Partners IV, LLC, Celerity AHI Holdings SPV, LLC, and All Aboard...., d/b/a All Aboard America AGENCY: Surface Transportation Board. ACTION: Notice Tentatively Approving and Authorizing Transaction. SUMMARY: All Aboard America! Holdings, Inc. (AHI), Celerity AHI...

  3. Unique application of plastics and composite materials in the design of the magnetometer instruments for the Ulysses and Cassini spacecraft

    SciTech Connect

    Noller, E.W.

    1996-12-31

    The Jet Propulsion Laboratory (JPL) vector helium magnetometer (VHM) design for the Ulysses solar polar mission is the first to explore the structure and characteristics of the magnetic field out of the ecliptic plane. A dual technique combination vector/scalar design that is a modified second generation sensor is currently being manufactured for the Cassini mission. Five major considerations were incorporated into the design: (1) greater use of lightweight composites and plastics, (2) interchangeability of the sensor components, (3) self-alignment of internal optical components, (4) long, projected, stable life of the materials in the deep space environment, and (5) elimination of mechanical fasteners, wherever possible. The nonmagnetic characteristics of plastics and their lightweight-to-strength properties worked together to meet the 900-gram weight limit for the boom-mounted sensor. During the selection process, a wide range of nonmetallic materials were candidates for use in the magnetometer components. The primary materials requirements, beyond environmental and structural, were stringent criteria that all materials and processes for parts be nonmagnetic and free from the thermocouple effect that results when there is the slightest thermal electric noise from the interaction of dissimilar materials. To accomplish this, the manufacturing and assembly had to be free of contamination from particle inclusion in the materials manufacturing, forming, processing, and finishing operations. There was a further requirement that no part of the sensor could have permeable properties in the plastics or adhesives. The dimensional stability of the instruments` optical axis was a critical consideration in the coefficient of thermal expansion (CTE) properties of the materials selected.

  4. Structural Loading on the QCM/SAW Instrument Aboard the ER-2 Used for Atmospheric Testing

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Jones, Phyllis D.; Irish, Sandra M.; Xing, Guang-Qian

    1998-01-01

    Several experiments have been proposed to capture and evaluate samples of the atmosphere where SST's travel. One means to achieve this is to utilize the quartz crystal microbalance (QCM) / surface acoustical wave (SAW) instrument installed aboard the ER-2, formerly the U-2 reconnaissance aircraft. The QCM is a cascade impactor designed to perform in-situ, real-time measurements of aerosols and chemical vapors at an altitude of 60,000-70,000 feet. The primary use of the ER-2 is by NASA for Earth resources to test new sensor systems before being placed aboard satellites. One of the main reasons the ER-2 is used for this flight experiment is its capability to fly approximately twelve miles above the sea level (can reach an altitude of 78,000 feet). Because the ER-2 operates at such a high altitude, it is of special interest to scientists interested in space exploration or supersonic aircraft. The purpose of some of the experiments is to extinct data from the atmosphere around the ER-2. For the current CSTEA flight experiment, the housing of the QCM is in a frame that connects to an outer pod that attaches to the fuselage of the ER-2. Due to the location of the QCM within the housing frame and the location of the pod on the ER-2, the pod and its contents are subject to structural loads. In addition to structural loads, structural vibrations are also of importance because the QCM output data is based on the determination of beat frequencies between a pair of oscillators (one coated, the second uncoated, according to the chemical reaction being monitored). A structural analysis of this system can indicate whether potential resonances may exist between the (higher) structural modal frequencies and the beat frequencies. In addition undesirable deformations may result due to maximum expected static or dynamic loads during typical flight conditions. If the deformations are excessive they may adversely affect the accuracy the instrumentation output.

  5. On-Orbit Spatial Characterization of MODIS with ASTER Aboard the Terra Spacecraft

    NASA Technical Reports Server (NTRS)

    Xie, Yong; Xiong, Xiaoxiong

    2011-01-01

    This letter presents a novel approach for on-orbit characterization of MODerate resolution Imaging Spectroradiometer (MODIS) band-to-band registration (BBR) using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra spacecraft. The spatial resolution of ASTER spectral bands is much higher than that of MODIS, making it feasible to characterize MODIS on-orbit BBR using their simultaneous observations. The ground target selected for on-orbit MODIS BBR characterization in this letter is a water body, which is a uniform scene with high signal contrast relative to its neighbor areas. A key step of this approach is to accurately localize the measurements of each MODIS band in an ASTER measurement plane coordinate (AMPC). The ASTER measurements are first interpolated and aggregated to simulate the measurements of each MODIS band. The best measurement match between ASTER and each MODIS band is obtained when the measurement difference reaches its weighted minimum. The position of each MODIS band in the AMPC is then used to calculate the BBR. The results are compared with those derived from MODIS onboard Spectro-Radiometric Calibration Assembly. They are in good agreement, generally less than 0.1 MODIS pixel. This approach is useful for other sensors without onboard spatial characterization capability. Index Terms Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), band-to-band registration (BBR), MODerate resolution Imaging Spectroradiometer (MODIS), spatial characterization.

  6. [Noise-related occupational risk aboard fishing vessels: considerations on prevention and the protection of exposed workers].

    PubMed

    Rapisarda, V; Valentino, M; Bolognini, S; Fenga, C

    2004-01-01

    Recent legislation regarding the safety of workers aboard fishing vessels requires the appointment by ship owners of a Reference Physician in charge of health surveillance, preventive inspections and related tasks. As maritime workers, especially fishermen, have always been excluded from legal protection of occupational health, there are no exhaustive data on the incidence of their occupational disease. Several epidemiological studies of fishermen have evidenced a high prevalence and incidence of occupational conditions, among which noise-related hypoacousia. We report data of a phonometric survey conducted aboard six fishing vessels carrying a crew of less than six fishing in the mid-Adriatic. Measurements were performed during fishing and navigation aboard five vessels fitted with a fixed-pitch propeller and during fishing only aboard one vessel fitted with an controllable pitch propeller. Measurements were conducted: 1) in the engine rooms; 2) in the work area on deck; 3) at the winch; 4) in the wheelhouse; 5) in the mess-room and kitchen; 6) in the sleeping quarters. Results show that the equivalent sound pressure level in the engine rooms consistently exceeded 90 dBA on all vessels. The speed of the vessels fitted with the fixed-pitch propeller is 3-4 knots in the fishing phase and around 10 knots during navigation to and from the fishing grounds; noise emission is lower with the former regimen because of the smaller number of engine revolutions per minute. Our survey demonstrated considerably different noise levels in the various areas of vessels. One key element in workers' exposure, the tasks assigned and the environmental working conditions is of course the type of fishing in which the vessel is engaged. Further phonometric studies are required to assess the daily level of exposure per crew member, which represents the reference for the noise-related risk of each subject. Knowledge of the sound pressure levels in the work environment and the length of

  7. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  8. Capillary channel flow experiments aboard the International Space Station.

    PubMed

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired. PMID:24483559

  9. Degradation of electro-optic components aboard LDEF

    NASA Astrophysics Data System (ADS)

    Blue, M. D.

    1993-04-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  10. Capillary channel flow experiments aboard the International Space Station.

    PubMed

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  11. Advanced water iodinating system. [for potable water aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.

    1975-01-01

    Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.

  12. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, Robert J.; Loughin, Stephen

    1997-01-10

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  13. A forward-reverse shock pair in the solar wind driven by over-expansion of a coronal mass ejection: Ulysses observations

    SciTech Connect

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.; Scime, E.E. ); Pizzo, V.J. ); Goldstein, B.E. ); Balogh, A. )

    1994-02-01

    A previously unidentified type of solar wind forward-reverse shock pair has been observed by Ulysses at 4.64 AU and S32.5[degrees]. In contrast to most solar wind forward-reverse shock pairs, which are driven by the speed difference between fast solar wind plasma and slower plasma ahead, this particular shock pair was driven purely by the over-expansion of a coronal mass ejection, CME, in transit from the Sun. A simple numerical simulation indicates that the over-expansion was a result of a high initial internal plasma and magnetic field pressure within the CME. The CME observed at 4.64 AU had the internal field structure of a magnetic flux rope. This event was associated with a solar disturbance in which new magnetic loops formed in the corona almost directly beneath Ulysses [approximately]11 days earlier. This association suggests that the flux rope was created as a result of reconnection between the the legs' of neighboring magnetic loops within the rising CME.

  14. Accomplishments in bioastronautics research aboard International Space Station.

    PubMed

    Uri, John J; Haven, Cynthia P

    2005-01-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  15. New mud gas monitoring system aboard D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki

    2013-04-01

    Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.

  16. Accomplishments in Bioastronautics Research Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2003-01-01

    The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  17. Accomplishments in bioastronautics research aboard International Space Station

    NASA Astrophysics Data System (ADS)

    Uri, John J.; Haven, Cynthia P.

    2005-05-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  18. In-situ observation of Martian neutral exosphere: Results from MENCA aboard Indian Mars Orbiter Mission (MOM)

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Pratim Das, Tirtha; Dhanya, M. B.; Thampi, Smitha V.

    2016-07-01

    Till very recently, the only in situ measurements of the Martian upper atmospheric composition was from the mass spectrometer experiments aboard the two Viking landers, which covered the altitude region from 120 to 200 km. Hence, the exploration by the Mars Exospheric Neutral Composition Analyser (MENCA) aboard the Mars Orbiter Mission (MOM) spacecraft of ISRO and the Neutral Gas and Ion Mass Spectrometer (NGIMS) experiment aboard the Mars Atmosphere and Volatile ENvironment (MAVEN) mission of NASA are significant steps to further understand the Martian neutral exosphere and its variability. MENCA is a quadrupole based neutral mass spectrometer which observes the radial distribution of the Martian neutral exosphere. The analysis of the data from MENCA has revealed unambiguous detection of the three major constituents, which are amu 44 (CO2), amu 28 (contributions from CO and N2) and amu 16 (atomic O), as well as a few minor species. Since MOM is in a highly elliptical orbit, the MENCA observations pertain to different local times, in the low-latitude region. Examples of such observations would be presented, and compared with NGIMS results. Emphasis would be given to the observations pertaining to high solar zenith angles and close to perihelion period. During the evening hours, the transition from CO2 to O dominated region is observed near 270 km, which is significantly different from the previous observations corresponding to sub-solar point and SZA of ~45°. The mean evening time exospheric temperature derived using these observations is 271±5 K. These are the first observations corresponding to the Martian evening hours, which would help to provide constraints to the thermal escape models.

  19. The southern high-speed stream: results from the SWICS instrument on Ulysses.

    PubMed

    Geiss, J; Gloeckler, G; von Steiger, R; Balsiger, H; Fisk, L A; Galvin, A B; Ipavich, F M; Livi, S; McKenzie, J F; Ogilvie, K W

    1995-05-19

    The high-speed solar wind streaming from the southern coronal hole was remarkably uniform and steady and was confined by a sharp boundary that extended to the corona and chromosphere. Charge state measurements indicate that the electron temperature in this coronal hole reached a maximum of about 1.5 million kelvin within 3 solar radii of the sun. This result, combined with the observed lack of depletion of heavy elements, suggests that an additional source of momentum is required to accelerate the polar wind. PMID:7754380

  20. The southern high-speed stream: results from the SWICS instrument on Ulysses.

    PubMed

    Geiss, J; Gloeckler, G; von Steiger, R; Balsiger, H; Fisk, L A; Galvin, A B; Ipavich, F M; Livi, S; McKenzie, J F; Ogilvie, K W

    1995-05-19

    The high-speed solar wind streaming from the southern coronal hole was remarkably uniform and steady and was confined by a sharp boundary that extended to the corona and chromosphere. Charge state measurements indicate that the electron temperature in this coronal hole reached a maximum of about 1.5 million kelvin within 3 solar radii of the sun. This result, combined with the observed lack of depletion of heavy elements, suggests that an additional source of momentum is required to accelerate the polar wind.

  1. Transmission windows in Titan's lower troposphere: Implications for IR spectrometers aboard future aerial and surface missions

    NASA Astrophysics Data System (ADS)

    McDonald, George D.; Corlies, Paul M.; Wray, James J.; Hofgartner, Jason D.; Hörst, Sarah M.; Hayes, Alexander G.; Liuzzo, Lucas R.; Buffo, Jacob J.

    2015-11-01

    Titan's thick atmosphere contains a 1.5 - 5.7% methane mole fraction. Methane's possession of fundamental, overtone, and combination bands across much of the near and mid IR results in significant absorption in the atmosphere across this spectral region. The consequence is spectral windowing, such that Titan's surface can only be observed at a handful of methane transmission windows. The narrow width of these windows for observations from the top of the atmosphere (ToA) make only multispectral imaging of the surface possible. This limits the information that can be gleaned about the surface composition, which remains largely unknown. From ToA, there is effectively zero transmission at most wavelengths between the windows, so that improvements to the detectors or telescopes of IR spectrometers aboard orbital or flyby missions would not result in any appreciable widening of the windows. Only decreasing the methane column through which observations are made, with a future mission operating near or on the surface, would result in any widening of the windows. We present a new line-by-line radiative transfer model to quantify the window widths for an IR spectrometer aboard an aerial or surface mission to Titan. We take spectral line parameters from the HITRAN database (Rothmann et al. 2013) for methane and six trace gases, include N2-N2 and N2-H2 collision-induced absorptions as measured by McKellar 1989, and the haze extinction measured in situ by Huygens DISR. The number of vertical layers in the model is chosen to correspond with the high cadence of measurements of the physical conditions of Titan's atmosphere by Huygens HASI. We find that the transmission windows do not widen appreciably for an aerial mission operating at altitudes on the order of kilometers above the surface. For surface missions observing at distances of order 10 m, the windows widen considerably to encompass regions where absorptions from hydrated minerals, sulfates, and pentane and higher order

  2. Gemini 12 crew receive Official welcome aboard U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts James A. Lovell Jr. (left), command pilot, and Edwin E. Aldrin Jr., pilot, receive Official welcome as they arrive aboard the aircraft carrier U.S.S. Wasp after their splashdown at the end of the Gemini 12 mission.

  3. ISS Update: Launching Aboard the Soyuz to Live on the Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Mike Fossum, astronaut and Commander of Expedition 29, about his Soyuz launch experience and his insight into life aboard the station. Question...

  4. Advanced Ionospheric Sensing using GROUP-C and LITES aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.; Finn, S. C.; Cook, T.; Powell, S. P.; O'Hanlon, B.; Bishop, R. L.

    2015-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) and Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are manifested for flight aboard the International Space Station (ISS) in 2016 as part of the Space Test Program Houston #5 payload. The two experiments provide technical development and risk-reduction for future DoD space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. In addition, the combined instrument complement of these two experiments offers a unique opportunity to study structures of the nighttime ionosphere. GROUP-C includes an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements and a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients. LITES is an imaging spectrograph that spans 60-140 nm and will obtain high-cadence limb profiles of the ionosphere and thermosphere from 150-350 km altitude. In the nighttime ionosphere, recombination of O+ and electrons produces optically thin emissions at 91.1 and 135.6 nm that can be used to tomographically reconstruct the two-dimensional plasma distribution in the orbital plane below ISS altitudes. Ionospheric irregularities, such as plasma bubbles and blobs, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the ISS would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. By combining for the first time high-sensitivity in-track photometry, vertical ionospheric airglow spectrographic imagery, and recent advancements in UV tomography, high-fidelity tomographic reconstruction of

  5. A model for predicting the radiation exposure for mission planning aboard the international space station

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Lewis, Brent J.; Tomi, Leena

    2014-04-01

    The International Space Station Cosmic Radiation Exposure Model (ISSCREM) has been developed as a possible tool for use in radiation mission planning as based on operational data collected with a tissue equivalent proportional counter (TEPC) aboard the ISS since 2000. It is able to reproduce the observed trapped radiation and galactic cosmic radiation (GCR) contributions to the total dose equivalent to within ±20% and ±10%, respectively, as would be measured by the onboard TEPC at the Zvezda Service Module panel 327 (SM-327). Furthermore, when these contributions are combined, the total dose equivalent that would be measured at this location is estimated to within ±10%. The models incorporated into ISSCREM correlate the GCR dose equivalent rate to the cutoff rigidity magnetic shielding parameter and the trapped radiation dose equivalent rate to atmospheric density inside the South Atlantic Anomaly. The GCR dose equivalent rate is found to vary minimally with altitude and TEPC module location however, due to the statistics and data available, the trapped radiation model could only be developed for the TEPC located at SM-327. Evidence of the variation in trapped radiation dose with detector orientation and the East-West asymmetry were observed at this location.

  6. The point spread function of the soft X-ray telescope aboard Yohkoh

    NASA Technical Reports Server (NTRS)

    Martens, Petrus C.; Acton, Loren W.; Lemen, James R.

    1995-01-01

    The point spread function of the SXT telescope aboard Yohkoh has been measured in flight configuration in three different X-ray lines at White Sands Missile Range. We have fitted these data with an elliptical generalization of the Moffat function. Our fitting method consists of chi squared minimization in Fourier space, especially designed for matching of sharply peaked functions. We find excellent fits with a reduced chi squared of order unity or less for single exposure point spread functions over most of the CCD. Near the edges of the CCD the fits are less accurate due to vignetting. From fitting results with summation of multiple exposures we find a systematic error in the fitting function of the order of 3% near the peak of the point spread function, which is close to the photon noise for typical SXT images in orbit. We find that the full width to half maximum and fitting parameters vary significantly with CCD location. However, we also find that point spread functions measured at the same location are consistent to one another within the limit determined by photon noise. A 'best' analytical fit to the PSF as function of position on the CCD is derived for use in SXT image enhancemnent routines. As an aside result we have found that SXT can determine the location of point sources to about a quarter of a 2.54 arc sec pixel.

  7. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  8. Global map based on the FIMS observations aboard STSAT-1

    NASA Astrophysics Data System (ADS)

    Min, Kyoung Wook

    2016-07-01

    The Far Ultraviolet Imaging Spectrograph (FIMS), a dual-channel instrument with 900 - 1150 A and 1350 - 1750 A passbands, was launched aboard the Korean microsatellite STSAT-1 on 2003 September 27. FIMS, with moderate spectral and angular resolutions while maintaining large fields of view, was optimized for observations of diffuse emissions such as those from hot gases in our Galaxy. About 70 percent of the sky was covered after 18 months of survey with sufficient exposure time for the long wavelength band. The dataset has been used to study the interaction between the hot gas and the cold component as well as the molecular hydrogen fluorescence emission for a variety of targets. Furthermore, it was successfully used to determine the optical properties of dust scattering and thereby the distances for several prominent clouds from the continuum observations. In the present paper, the global distribution of ion and molecular hydrogen lines will be presented although the coverage of the sky is somewhat limited. For example, topics such as the ion lines distribution in the Galactic halo regions and correlation of molecular hydrogen with dust or CO will be discussed.

  9. New Mobile Lidar Systems Aboard Ultra-Light Aircrafts

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Shang, Xiaoxia; Totems, Julien; Marnas, Fabien; Sanak, Joseph

    2013-04-01

    Two lidar systems embedded on ultra light aircraft (ULA) flew over the Rhone valley, south-east of France, to characterize the vertical extend of pollution aerosols in this area influenced by large industrial sites. The main industrial source is the Etang de Berre (43°28' N, 5°01' E), close to Marseille city. The emissions are mainly due to metallurgy and petrochemical factories. Traffic related to Marseille's area contribute to pollution with its ~1500000 inhabitants. Note that the maritime traffic close to Marseille may play an important role due to its position as the leading French harbor . For the previous scientific purpose and for the first time on ULA, we flew a mini-N2 Raman lidar system to help the assessment of the aerosol optical properties. Another Ultra-Violet Rayleigh-Mie lidar has been integrated aboard a second ULA. The lidars are compact and eye safe instruments. They operate at the wavelength of 355 nm with a sampling along the line-of-sight of 0.75 m. Different flights plans were tested to use the two lidars in synergy. We will present the different approaches and discuss both their advantages and limitations. Acknowledgements: the lidar systems have been developed by CEA. They have been deployed with the support of FERRING France. We acknowledge the ULA pilots Franck Toussaint, François Bernard and José Coutet, and the Air Creation ULA Company for logistical help during the ULA campaign.

  10. A new small Stirling engine prototype for auxiliary employments aboard

    SciTech Connect

    Bartolini, C.M.; Caresana, F.

    1995-12-31

    The development of a small size Stirling engine as low power system for auxiliary employments aboard sailing boats or caravan still appears interesting. In previous papers the author presented the design, the prototype construction and the experimental tests of a monocylinder P-type configuration with the regenerator and part of the heat exchangers set on the displacer; the heat was irradiated by the head and it was removed by the water circulating through the rod of the displacer and around the cylinder. Considerable reductions in dead volume and global dimensions were obtained. At the same time, however, the weight of the heat exchanger regenerator displacer, mainly due to the cooler, kept the speed of revolution from increasing, with consequent limitation of specific power value; furthermore thermal insulation between hot and cold ends and displacer rod seals proved to be critical features as far as reliability is concerned. A new prototype has been developed adopting {gamma}-type configuration with stationary heat exchangers and with the displacer connecting rod linked to the crankshaft by means of an epicyclic train able to make its movement linear thus eliminating rod seal side loadings. The paper deals with the criteria followed with the design and the prototype construction; the adopted technical solutions are shown and discussed.

  11. The solid surface combustion experiment aboard the USML-1 mission

    NASA Technical Reports Server (NTRS)

    Altenkirch, Robert A.; Sacksteder, Kurt; Bhattacharjee, Subrata; Ramachandra, Prashant A.; Tang, Lin; Wolverton, M. Katherine

    1994-01-01

    AA Experimental results from the five experiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. An experiment was conducted aboard STS-50/USML-1 in the solid Surface Combustion Experiment (SSCE) hardware for flame spread over a thin cellulosic fuel in a quiescent oxidizer of 35% oxygen/65% nitrogen at 1.0 atm. pressure in microgravity. The USML-1 test was the fourth of five planned experiments for thin fuels, one performed during each of five Space Shuttle Orbiter flights. Data that were gathered include gas- and solid-phase temperatures and motion picture flame images. Observations of the flame are described and compared to theoretical predictions from steady and unsteady models that include flame radiation from CO2 and H2O. Experimental results from the five esperiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. The brightness of the flame and the visible soot radiation also increase with increasing spread rate. Steady-state numerical predictions of temperature and spread rate and flame structure trends compare well with experimental results near the flame's leading edge while gradual flame evolution is captured through the unsteady model.

  12. Dwarf Wheat grown aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).

  13. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, R.J.; Loughin, S.

    1997-01-01

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  14. Effect of current sheets on the solar wind magnetic field power spectrum from the Ulysses observation: from Kraichnan to Kolmogorov scaling.

    PubMed

    Li, G; Miao, B; Hu, Q; Qin, G

    2011-03-25

    The MHD turbulence theory developed by Iroshnikov and Kraichnan predicts a k(-1.5) power spectrum. Solar wind observations, however, often show a k(-5/3) Kolmogorov scaling. Based on 3 years worth of Ulysses magnetic field data where over 28,000 current sheets are identified, we propose that the current sheet is the cause of the Kolmogorov scaling. We show that for 5 longest current-sheet-free periods the magnetic field power spectra are all described by the Iroshnikov-Kraichnan scaling. In comparison, for 5 periods that have the most number of current sheets, the power spectra all exhibit Kolmogorov scaling. The implication of our results is discussed. PMID:21517318

  15. Update to the safety program for the general-purpose heat source radioisotope thermoelectric generators for the Galileo and Ulysses missions

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Bradshaw, C. T.; Englehart, Richard W.; Bartram, Bart W.; Cull, Theresa A.; Zocher, Roy W.; Eck, Marshall B.; Mukunda, Meera; Brenza, Peter T.; Chan, Chris C.

    1992-01-01

    With the rescheduling of the Galileo and Ulysses launches and the use of new upper stages following the Challenger accident, the aerospace nuclear safety program for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) was extended to accommodate the new mission scenarios. As in the original safety program, the objectives were to determine the response of the GPHS-RTG to the various postulated accident environments and to determine the risk (if any) associated with these postulated accidents. The extended GPHS-RTG safety program was successfully completed in sufficient time to prepare an updated Final Safety Analysis Report (FSAR) with revisions for the October 1989 launch of the Galileo spacecraft.

  16. Effect of Current Sheets on the Solar Wind Magnetic Field Power Spectrum from the Ulysses Observation: From Kraichnan to Kolmogorov Scaling

    SciTech Connect

    Li, G.; Miao, B.; Hu, Q.; Qin, G.

    2011-03-25

    The MHD turbulence theory developed by Iroshnikov and Kraichnan predicts a k{sup -1.5} power spectrum. Solar wind observations, however, often show a k{sup -5/3} Kolmogorov scaling. Based on 3 years worth of Ulysses magnetic field data where over 28 000 current sheets are identified, we propose that the current sheet is the cause of the Kolmogorov scaling. We show that for 5 longest current-sheet-free periods the magnetic field power spectra are all described by the Iroshnikov-Kraichnan scaling. In comparison, for 5 periods that have the most number of current sheets, the power spectra all exhibit Kolmogorov scaling. The implication of our results is discussed.

  17. Effect of current sheets on the solar wind magnetic field power spectrum from the Ulysses observation: from Kraichnan to Kolmogorov scaling.

    PubMed

    Li, G; Miao, B; Hu, Q; Qin, G

    2011-03-25

    The MHD turbulence theory developed by Iroshnikov and Kraichnan predicts a k(-1.5) power spectrum. Solar wind observations, however, often show a k(-5/3) Kolmogorov scaling. Based on 3 years worth of Ulysses magnetic field data where over 28,000 current sheets are identified, we propose that the current sheet is the cause of the Kolmogorov scaling. We show that for 5 longest current-sheet-free periods the magnetic field power spectra are all described by the Iroshnikov-Kraichnan scaling. In comparison, for 5 periods that have the most number of current sheets, the power spectra all exhibit Kolmogorov scaling. The implication of our results is discussed.

  18. Observations of Cosmic Rays and Solar Energetic Particles from the Ulysses COSPIN High Energy Telescope Following Completion of the Solar Maximum Solar Polar Passes.*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Lopate, C.; Connell, J. J.; Posner, A.

    2003-04-01

    At the end of 2002, following its second pass over the Sun's north polar region, Ulysses had reached a radial distance of about 4.5 AU at a heliographic latitude of 24°N. While solar activity remained high, the modulated intensity of cosmic rays observed by Ulysses’ COSPIN High Energy Telescope had increased significantly from the levels observed early in 2001, which most likely represented the maximum modulation for this solar cycle. Despite continuing solar activity, the new qA<0 magnetic polarity of the Sun's dipole field was fully established for both poles since the change in the North Pole polarity in 2000. Although the current sheet tilt was still large (>40° as reported by the Wilcox Solar Observatory) and the solar wind was still frequently disturbed by solar activity, it is worthwhile to examine the recent increase in the quiet-time cosmic ray fluxes for evidence of the change in latitudinal gradients expected upon change of magnetic polarity. A difficulty is the lack of a well-matched 1 AU base-line to help distinguish spatial from temporal variations following the termination of IMP-8 operations in late 2001. We will summarize Ulysses observations of energetic (>~30 MeV/n) protons and helium through the most recent available data, and will discuss available options for determining baseline fluxes at 1 AU for studies of the radial and latitudinal gradients. **This work was supported in part by NASA/JPL Contract 955432, by NASA Grant NASA 5-28516 and by NSF grant ATM 99-12341.

  19. Ulysses Fossae in Tharsis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Extensional forces in the volcanic province of Tharsis have produced a fractured terrain that resembles wrinkled skin.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Cinderella Meets Ulysses.

    ERIC Educational Resources Information Center

    Mello, Robin

    2001-01-01

    Presents a study of boys' and girls' conversations about traditional folktales. Focuses on storytelling as a teaching method and explores how students learn from folktales, myths, and legends. Investigates how characters and gender roles in folktales and other traditional stories act as educational and developmental models, especially among…

  1. AASE-2 In-Situ Tracer Correlations of Methane Nitrous Oxide and Ozone as Observed Aboard the DC-8

    NASA Technical Reports Server (NTRS)

    Collins, J. E., Jr.; Sachse, G. W.; Anderson, B. E.; Weinheimer, A. J.; Walgea, J. G.; Ridley, B. A.

    1993-01-01

    We report in situ stratospheric measurements of CH4, N2O, and O3 obtained aboard the NASA DC-8 during the January-March 1992 Airborne Arctic Stratospheric Expedition II field campaign. These data demonstrate a strong linear correlation between N2O and CH4 in the lower stratosphere thus indicating that both species are effective tracers of stratospheric air motion. Measurements of both species on constant geometric height surfaces indicate that significant subsidence of the arctic stratospheric air mass occurred at DC-8 altitudes over the course of the AASE-II expedition. In addition, a widespread reduction in O3 mixing ratios (up to 20%) relative to these conserved tracers was also observed in the lower stratosphere in March a compared to January and February results.

  2. AASE-2 in-situ tracer correlations of methane, nitrous oxide, and ozone as observed aboard the DC-8

    NASA Technical Reports Server (NTRS)

    Collins, J. E., Jr.; Sachse, G. W.; Anderson, B. E.; Weinheimer, A. J.; Walega, J. G.; Ridley, B. A.

    1993-01-01

    We report in situ stratospheric measurements of CH4, N2O, and O3 obtained aboard the NASA DC-8 during the January-March 1992 Airborne Arctic Stratospheric Expedition 2 field campaign. These data demonstrate a strong linear correlation between N2O and CH4 in the lower stratosphere thus indicating that both species are effective tracers of stratospheric air motion. Measurements of both species on constant geometric height surfaces indicate that significant subsidence of the arctic stratospheric air mass occurred at DC-8 altitudes over the course of the AASE-2 expedition. In addition, a widespread reduction in O3 mixing ratios (up to 20%) relative to these conserved tracers was also observed in the lower stratosphere in March as compared to January and February results.

  3. Intensified array camera imaging of solid surface combustion aboard the NASA Learjet

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.

    1992-01-01

    An intensified array camera was used to image weakly luminous flames spreading over thermally thin paper samples in a low gravity environment aboard the NASA-Lewis Learjet. The aircraft offers 10 to 20 sec of reduced gravity during execution of a Keplerian trajectory and allows the use of instrumentation that is delicate or requires higher electrical power than is available in drop towers. The intensified array camera is a charge intensified device type that responds to light between 400 and 900 nm and has a minimum sensitivity of 10(exp 6) footcandles. The paper sample, either ashless filter paper or a lab wiper, burns inside a sealed chamber which is filled with 21, 18, or 15 pct. oxygen in nitrogen at one atmosphere. The camera views the edge of the paper and its output is recorded on videotape. Flame positions are measured every 0.1 sec to calculate flame spread rates. Comparisons with drop tower data indicate that the flame shapes and spread rates are affected by the residual g level in the aircraft.

  4. X-ray polarimetry. [aboard Ariel 5 and OSO 8 for observation of galactic sources

    NASA Technical Reports Server (NTRS)

    Long, K. S.; Chanan, G. A.; Helfand, D. J.; Ku, W. H.-M.; Novick, R.

    1979-01-01

    The method by which the Bragg-crystal X-ray polarimeters aboard Ariel 5 and OSO 8 operate is briefly described, and some results obtained with these instruments for six Galactic X-ray sources are summarized. A precision measurement of the linear polarization in the Crab Nebula at energies of 2.6 and 5.2 keV is presented. Evidence is given for polarization in Sco X-1, Cyg X-2, Cen X-3, and the X-ray transient A0620-00. The determined or estimated polarizations are approximately 19.2% at 2.6 keV and 19.5% at 5.2 keV for the Crab Nebula, 1.1% at 2.6 keV and 2.4% at 5.2 keV for Sco X-1, 2.5% at 2.6 keV and 9.8% at 5.2 keV for Cyg X-1, an upper limit of 13.5% for A0620-00, an upper limit of 13.5% to the time-averaged polarization of Cen X-3, and an apparent value of about 5% for Cyg X-2.

  5. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  6. Pineal physiology in microgravity - Relation to rat gonadal function aboard Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Markley, Carol L.; Soliman, Magdi R. I.; Kaddis, Farida; Krasnov, Igor'

    1991-01-01

    Results are reported from an analysis of pineal glands obtained for five male rats flown aboard an orbiting satellite for their melatonin, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIA), and calcium content. Plasma 5-HT and 5-HIAA were measured. These parameters were compared to indicators of gonadal function: plasma testosterone concentration and spermatogonia development. Plasma melotonin was found to be low at the time of euthanasia and was not different among the experimental groups. Pineal calcium of flight animals was not different from ground controls. Pineal 5-HT and 5-HIAA in the flight group were significantly higher than those in ground controls. These findings suggest a possible increase in pineal 5-HT turnover in flight animals which may result in increased melatonin secretion. It is argued that the alteration of pinal 5-HT turnover and its expected effects on melatonin secretion may partially explain the lower plasma testosterone levels and 4-11 percent fewer spermatogonia cells observed in flight animals.

  7. Characterization of the Protein Crystal Growth Apparatus for Microgravity Aboard the Space Station

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Roeber, D.; Achari, A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    We have conducted experiments to determine the equilibration rates of some major precipitants used in protein crystallography aboard the International Space Station (ISS). The solutions were placed in the Protein Crystallization Apparatus for Microgravity (PCAM) which mimic Cryschem sitting drop trays. The trays were placed in cylinders. These cylinders were placed inside a Single locker Thermal Enclosure System (STES), and were activated for different durations during the flight. Bumpers pressed against elastomers seal drops in a deactivated state during pre-flight and prior to transfer to the ISS. Activation occurs while in flight on the ISS by releasing the bumpers allowing the drops to be exposed to the reservoir. PCAM was flown to the ISS on STS 100, Flight 6A, on April 19, 2001. Six series of equilibration experiments were tested for each precipitant with a small amount of Green Fluorescent Protein (GFP). Cylinder 10 was never activated, 7 was activated for 40 days, 8 was activated for 20 days, 9 was activated for 10 days, 11 was activated for 4 days and 12 was activated for 2 days. Upon the return to Earth by STS 104 on July 24,2001 the samples were transferred to Marshall Space Flight Center. The samples were then brought to the lab and the volumes of each sample were measured.

  8. LEO degradation of graphite and carbon-based composites aboard Space Shuttle Flight STS-46

    SciTech Connect

    Spady, B.R.; Synowicki, R.A.; Hale, J.S.; Devries, M.J.; Woollam, J.A.; Moore, A.W.; Lake, M. |

    1995-02-01

    Six different types of carbon and carbon-boron nitride composites were exposed to low Earth orbit aboard Space Shuttle flight STS-46. The samples received a nominal atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm in 42 hours of exposure. Pyrolytic graphite and highly oriented pyrolytic graphite showed significant degradation, and the measured erosion yield was within a factor of two of published values. The erosion yield of pyrolytic boron nitride was found to be 2.6 x 10(exp 26) cu cm/atom in plasma asher exposure, over 42 times lower than that of pyrolytic graphite. This low erosion yield makes graphite plus boron nitride mixtures quite resistant to low Earth orbit exposure. Evidence suggests that the graphitic component was preferentially etched, leaving the surface boron nitride rich. Degradation resistance increases with boron nitride composition. Carbon fiber/carbon composites degraded in low Earth orbit, and the carbon pitch binder was found to etch more easily than the graphite fibers which have much higher degradation resistance.

  9. LEO degradation of graphite and carbon-based composites aboard Space Shuttle Flight STS-46

    NASA Technical Reports Server (NTRS)

    Spady, Blaine R.; Synowicki, R. A.; Hale, Jeffrey S.; Devries, M. J.; Woollam, John A.; Moore, Arthur W.; Lake, Max

    1995-01-01

    Six different types of carbon and carbon-boron nitride composites were exposed to low Earth orbit aboard Space Shuttle flight STS-46. The samples received a nominal atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm in 42 hours of exposure. Pyrolytic graphite and highly oriented pyrolytic graphite showed significant degradation, and the measured erosion yield was within a factor of two of published values. The erosion yield of pyrolytic boron nitride was found to be 2.6 x 10(exp 26) cu cm/atom in plasma asher exposure, over 42 times lower than that of pyrolytic graphite. This low erosion yield makes graphite plus boron nitride mixtures quite resistant to low Earth orbit exposure. Evidence suggests that the graphitic component was preferentially etched, leaving the surface boron nitride rich. Degradation resistance increases with boron nitride composition. Carbon fiber/carbon composites degraded in low Earth orbit, and the carbon pitch binder was found to etch more easily than the graphite fibers which have much higher degradation resistance.

  10. LEO Flight Testing of GaAs on Si Solar Cells Aboard MISSES

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Clark, Eric B.; Ringel, Steven A.; Andre, Carrie L.; Smith, Mark A.; Scheiman, David A.; Jenkins, Phillip P.; Maurer, William F.; Fitzgerald, Eugene A.; Walters, R. J.

    2004-01-01

    Previous research efforts have demonstrated small area (0.04 cm) GaAs on Si (GaAs/Si) solar cells with AM0 efficiencies in excess of 17%. These results were achieved on Si substrates coated with a step graded buffer of Si(x),Ge(1-x) alloys graded to 100% Ge. Recently, a 100-fold increase in device area was accomplished for these devices in preparation for on-orbit testing of this technology aboard Materials International Space Station Experiment number 5 (MISSE5). The GaAs/Si MISSE5 experiment contains five (5) GaAs/Si test devices with areas of lcm(exp 2) and 4cm(exp 4) as well as two (2) GaAs on GaAs control devices. Electrical performance data, measured on-orbit for three (3) of the test devices and one (1) of the control devices, will be telemetered to ground stations daily. After approximately one year on orbit, the MISSE5 payload will be returned to Earth for post flight evaluation. This paper will discuss the development of the GaAs/Si devices for the MISSE5 flight experiment and will present recent ground and on-orbit performance data.

  11. ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto-Kuiper Belt Mission

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan; Slater, David C.; Scherrer, John; Stone, John; Dirks, Greg; Versteeg, Maarten; Davis, Michael; Gladstone, G. Randall; Parker, Joel W.; Young, Leslie A.; Siegmund, Oswald H. W.

    2008-10-01

    The ALICE instrument is a lightweight (4.4 kg), low-power (4.4 watt) imaging spectrograph aboard the New Horizons mission to the Pluto system and the Kuiper Belt. Its primary job is to determine the relative abundances of various species in Pluto’s atmosphere. ALICE will also be used to search for an atmosphere around Pluto’s moon, Charon, as well as the Kuiper Belt Objects (KBOs) that New Horizons is expected to fly by after Pluto-Charon, and it will make UV surface reflectivity measurements of all of these bodies, as well as of Pluto’s smaller moons Nix and Hydra. The instrument incorporates an off-axis telescope feeding a Rowland-circle spectrograph with a 520-1870 Å spectral passband, a spectral point spread function of 3-6 Å FWHM, and an instantaneous spatial field-of-view that is 6 degrees long. Two different input apertures that feed the telescope allow for both airglow and solar occultation observations during the mission. The focal plane detector is an imaging microchannel plate (MCP) double delay-line detector with dual solar-blind opaque photocathodes (KBr and CsI) and a focal surface that matches the instrument’s 15-cm diameter Rowland-circle. In this paper, we describe the instrument in greater detail, including descriptions of its ground calibration and initial in flight performance. New Horizons launched on 19 January 2006.

  12. Interpopulation study of medical attendance aboard a cruise ship.

    PubMed

    Tomaszewski, Ryszard; Nahorski, Wacław Leszek

    2008-01-01

    The study carried out aboard a cruise ship in the years 1993-1998 involved ship passengers of various nationalities including 3872 Germans aged 23-94 years and 1281 Americans aged 25-94 years. Both nationality groups were divided into two age subgroups: till 64, and 65-94 years. The German younger age subgroup (mean age 53.2 years) consisted of 59% of the passengers, whereas the 65-94 years subgroup (mean age 72 years) was made up of 41% of the ships passengers. On the other hand, 73% of the Americans belonged to the 65-94 years subgroup (mean age 73,4 years), whereas 27% to the younger one (mean age 52.8 years). The number of onboard consultations and their causes were determined. The occurrence of chronic illnesses in both 65-94 years subgroups was assessed by means of a questionnaire. A higher frequency of consultations was found in the Germans (24.38%) than in the Americans (14.05%) (p=0.001). The difference was particularly striking in the people over 65 years of age (30.87% of the Germans as compared with 14.22% of the Americans, p=0.001). The Germans were nearly 4-times more frequently seen than the Americans for cardio-vascular diseases and almost 3-times more often because of gastrointestinal disorders. The discrepancies in the consultation rates were mainly caused by the different insurance systems of both nations. Chronic illnesses as estimated by means of the questionnaire prevailed in the German passengers. The statistically significant differences (13.3% versus 20%, p=0.01 and 0.001) regarded the locomotor system, urinary tract diseases and a group of illnesses including neurological, ophthalmological, ear, skin, malignant diseases and diabetes.

  13. Dust measurements at high ecliptic latitudes.

    PubMed

    Baguhl, M; Hamilton, D P; Grün, E; Fechtig, H; Kissel, J; Linkert, D; Linkert, G; Riemann, R; Staubach, P; Dermott, S F; Hanner, M S; Polanskey, C; Lindblad, B A; Mann; McDonnell, J A; Morfill, G E; Schwehm, G; Zook, H A

    1995-05-19

    Along Ulysses' path from Jupiter to the south ecliptic pole, the onboard dust detector measured a dust impact rate that varied slowly from 0.2 to 0.5 impacts per day. The dominant component of the dust flux arrived from an ecliptic latitude and longitude of 100 + 10 degrees and 280 degrees +/- 30 degrees which indicates an interstellar origin. An additional flux of small particles, which do not come from the interstellar direction and are unlikely to be zodiacal dust grains, appeared south of -45 degrees latitude. One explanation is that these particles are beta-meteoroids accelerated away from the sun by radiation pressure and electromagnetic forces. PMID:17774227

  14. Dust measurements at high ecliptic latitudes.

    PubMed

    Baguhl, M; Hamilton, D P; Grün, E; Fechtig, H; Kissel, J; Linkert, D; Linkert, G; Riemann, R; Staubach, P; Dermott, S F; Hanner, M S; Polanskey, C; Lindblad, B A; Mann; McDonnell, J A; Morfill, G E; Schwehm, G; Zook, H A

    1995-05-19

    Along Ulysses' path from Jupiter to the south ecliptic pole, the onboard dust detector measured a dust impact rate that varied slowly from 0.2 to 0.5 impacts per day. The dominant component of the dust flux arrived from an ecliptic latitude and longitude of 100 + 10 degrees and 280 degrees +/- 30 degrees which indicates an interstellar origin. An additional flux of small particles, which do not come from the interstellar direction and are unlikely to be zodiacal dust grains, appeared south of -45 degrees latitude. One explanation is that these particles are beta-meteoroids accelerated away from the sun by radiation pressure and electromagnetic forces.

  15. Evaluation of the MICAST #2-12 AI-7wt%Si Sample Directionally Solidified Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra N.; Ghods, Masoud; Angart, Samuel G.; Lauer, Mark; Grugel, Richard N.; Poirier, David R.

    2016-01-01

    The US team of the European led "MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions" (MICAST) program recently received a third Aluminum - 7wt% silicon alloy that was processed in the microgravity environment aboard the International Space Station. The sample, designated MICAST#2-12, was directionally solidified in the Solidification with Quench Furnace (SQF) at a constant rate of 40micometers/s through an imposed temperature gradient of 31K/cm. Procedures taken to evaluate the state of the sample prior to sectioning for metallographic analysis are reviewed and rational for measuring the microstructural constituents, in particular the primary dendrite arm spacing (Lambda (sub1)), is given. The data are presented, put in context with the earlier samples, and evaluated in view of a relevant theoretical model.

  16. The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study

    NASA Technical Reports Server (NTRS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-01-01

    We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  17. Hemopoietic tissue in newts flown aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena I.; Almeida, Eduardo; Butorina, Nina N.; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Poplinskaya, Valentina A.; Souza, Kenneth; Skidmore, Mike

    The effect of 12-day spaceflight aboard the Foton-M3 biosatellite on the hematopoietic tissue of P. waltl newts was studied. These animals used at the same time in regeneration experiments after lens and tail tip amputation. In flight and synchronous groups there were performed video recording, temperature and radiation monitoring and continuous contact (via skin) with thymidine analog BrdU. We took differential blood counts and assessed histologically the liver in the flight (F), basal (BC) and synchronous (SC)control groups of animals. In the peripheral blood, we identified neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Lymphocytes (L) and neutrophils (N) prevailed, accounting for about 60 and 20% of white blood cells, respectively. The spaceflight had no apparent effect on the differential blood count in the F group: neither the L and N contents nor the maturing to mature N - ratio differed from those in the control groups. No significant differences between F, SC and BC groups were observed with respect to the structure of hematopoietic areas and the liver morphology. As in Foton-M2, BrdU labeled cells revealed in blood as well as in the hemopoietic areas of the liver. However, in previous experiments performed at satellites Bion-10 and Foton-M2 the changes in peripheral blood contents were registered in operated F newts, and we supposed it could be the result of additive effects of spaceflight factors and stimulation of reparative potency and stress due to surgical operation. Possibly, the temperature conditions also may provide some influence on blood cell content of newts that belong to poikilothermic animals. Thus, in present experiment F and SC groups were reared in the same temperature regims, whereas it was nearly 3o C differences between SC and F groups exposed on Foton-M2. At the same time as it was found in experiments on Bion-11 and Foton-M2 spaceflight factors did not affect on differential blood counts of intact non

  18. Electrochemical deposition of silver crystals aboard Skylab 4

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.; Johnston, M. H.; Gates, D. W.

    1976-01-01

    Silver crystals were grown aboard Skylab 4 by an electro-chemical reaction and subsequently returned to earth for comparison with crystals grown at 1- and 5-g. Both the Skylab and earth-grown crystals show a variety of structures. Certain tendencies in structure dependency on gravity level, however, can be discerned. In addition, downward growing dendrite streamers; upward growing chunky crystal streamers; growth along an air/liquid interface; and ribbon, film, and fiber crystal habits were observed in experiments conducted on the ground with solutions of varying concentrations. It was also observed that the crystal structures of space and ground electro-deposited silver crystals were very similar to the structures of germanium selenide and germanium telluride crystals grown in space and on the ground by a vapor transport technique. Consideration of the data leads to the conclusions that: (1) the rate of electrochemical displacement of silver ions from a 5 percent aqueous solution by copper is predominantly diffussion controlled in space and kinetically controlled in 1- and higher-g because of augmentation of mass transport by convection; (2) downward and upward crystal streamers are the result of gravity-driven convection, the flow patterns of which can be delineated. Lateral growths along an air/liquid interface are the result of surface-tension-driven convection, the pattern of which also can be delineated; (3) electrolysis in space or low-g environments can produce either dendritic crystals with more perfect microcrystalline structures or massive, single crystals with fewer defects than those grown on ground or at higher g-levels. Ribbons or films of space-grown silicon crystals would find a ready market for electronic substrate and photocell applications. Space-grown dendritic, metal crystals present the possibility of unique catalysts. Large perfect crystals of various materials are desired for a number of electronic and optical applications; and (4) vapor

  19. 78 FR 22363 - Environmental Impact Statement for the All Aboard Florida Miami-Orlando Passenger Rail Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    .... 4321 et seq.) (NEPA) and FRA's Procedures for Considering Environmental Impacts (64 FR 28545, May 26... Federal Railroad Administration Environmental Impact Statement for the All Aboard Florida Miami-- Orlando... service proposed by the private company, All Aboard Florida--Operations LLC (AAF), between Miami...

  20. A map of D/H on Mars in the thermal infrared using EXES aboard SOFIA

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; DeWitt, C.; Richter, M. J.; Greathouse, T. K.; Fouchet, T.; Montmessin, F.; Lefèvre, F.; Forget, F.; Bézard, B.; Atreya, S. K.; Case, M.; Ryde, N.

    2016-02-01

    On a planetary scale, the D/H ratio on Mars is a key diagnostic for understanding the past history of water on the planet; locally, it can help to constrain the sources and sinks of water vapor through the monitoring of condensation and sublimation processes. To obtain simultaneous measurements of H2O and HDO lines, we have used the Echelle Cross Echelle Spectrograph (EXES) instrument aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) facility to map the abundances of these two species over the Martian disk. High-resolution spectra (R = 6 × 104) were recorded in the 1383-1390 cm-1 range (7.2 μm) on April 08, 2014. Mars was very close to opposition and near northern summer solstice (Ls = 113°). Maps of the H2O and HDO mixing ratios were retrieved from the line depth ratios of weak H2O and HDO transitions divided by a weak CO2 line. As expected for this season, the H2O and HDO maps show a distinct enhancement toward polar regions, and their mixing ratios are consistent with previous measurements and with predictions by the global climate models, except at the north pole where the EXES values are weaker. We derive a disk-integrated D/H ratio of 6.8 (+1.6, -1.0) × 10-4. It is higher than the value in Earth's oceans by a factor 4.4 (+1.0, -0.6). The D/H map also shows an enhancement from southern to northern latitudes, with values ranging from about 3.5 times to 6.0 times the VSMOW (Vienna standard mean ocean water) value. The D/H distribution shows a depletion over the Tharsis mountains and is consistent with observed latitudinal variations. The variations in D/H with latitude and altitude agree with the models and with the isotope fractionation expected from condensation and sublimation processes.