Science.gov

Sample records for aboard venus express

  1. Investigation of winds in Venus mesosphere by digital method using UV images from VMC aboard Venus Express.

    NASA Astrophysics Data System (ADS)

    Patsaeva, Marina; Khatuntsev, Igor; Ignatiev, Nikolai

    2013-04-01

    Investigation of winds at the top cloud layer is important for understanding the global circulation of the Venus atmosphere. The Venus Monitoring Camera (VMC) aboard Venus Express has acquired a huge number of UV (365 nm) images. UV images of top cloud layer are customary to obtain the wind velocity due to their high contrast. Visual estimation of wind velocities is a labor intensive procedure. Authors have developed a digital method to estimate velocities of shifts of cloud details. The method is based on analysis of correlations between two UV images acquired at different moments. The method takes into account the change of a correlation function due to latitudinal peculiarities of cloud morphology and eliminates image regions which are far from the sub-spacecraft point. The digital method provides with good vector coverage of the Venus day side (9-16 local time) from the equator to high latitudes. The best agreement between the digital and visual methods is observed at low latitudes (below 35S). The discrepancy at higher latitudes is related to complicated cloud morphology, namely domination of streaks, which increases errors in the zonal wind speed. The method is productive for long-scale circulation at the top cloud layer. Sizes of regions for correlation were chosen empirically as a trade-off of sensitivity against noise immunity and varies from 10x7.5 ° to 20x10 ° depending on grid step. 580 orbits covering ten Venus years have been processed by using the digital method. The database of shift vectors counts about 400000 records. The mean wind speed at low latitudes is about 100 m/s. Wind vector fields were obtained for every orbit. The zonal wind speed in the equatorial region exhibits short-period (about 4.8 days) and long-period variations (long-term trend). Vector field averaged by all orbits show deviations of the main stream up to 5 degrees poleward in the early afternoon (12.5-14.5h) at 45-55S. The mean absolute value of the wind speed increases from

  2. Venus Express arrives

    NASA Astrophysics Data System (ADS)

    Coates, Andrew

    2006-06-01

    Venus Express uses some hardware and ideas already in use on Mars Express and Rosetta to explore Venus, a planet with intriguing similarities to and differences from Earth. As the mission proper begins, I examine what we have learnt from other missions and what we hope to discover at Venus. Instruments on the mission will look at the thick atmosphere of Venus below its sulphuric acid clouds and how it interacts with the surface and escapes to space. They will also try to understand the runaway greenhouse effect and search for active volcanism.

  3. Questions About Venus after Venus Express

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    2016-04-01

    The observations from Venus Express for nearly 13 Venus years or 26 solar days from April 2006 till 27 November 2014. Earlier, Venus has been explored by fly-by spacecraft, orbiters, descending probes, landers and floating balloons. These data have been supplemented by many ground based observations at reflected solar wavelengths, short and long wave infrared, millimeter to radio waves. Venus Express added significantly to the collection that will continue to be examined for understanding the planet's atmosphere and continuing analysis will inform us about new facets of the atmosphere and raise new questions. Inter-comparison of the measurements have been able to provide a general idea of the global atmosphere. However, re-visiting these observations also raises some questions about the atmosphere that have not received much attention lately but deserve to be explored and considered for future measurements. These questions are about the precise atmospheric composition in the deep atmosphere, the atmospheric state in the lower atmosphere, the static stability of the lower atmosphere, the clouds and hazes, the nature of the ultraviolet absorber(s) in the cloud layer, and wind speed and direction near the surface from equator to the pole, interaction between the atmosphere and the solid planet. The answers to these questions are important for a better understanding of Venus, its weather and climate and how the climate has evolved. The questions include: (i) What are the implications of the supercritical state of the two primary constituents of the Venus atmosphere - carbon dioxide and nitrogen in the lower atmosphere? (ii) Is the Venus (lower) atmosphere well mixed? (iii) What determines the observed alternating stable and unstable layers (static stability) in the lower atmosphere? (iv) What causes the contrasts seen in reflected sunlight which are largest at ultraviolet wavelengths and very muted at other visible wavelengths? (v) what causes the morning -afternoon

  4. The Venus Express mission

    NASA Astrophysics Data System (ADS)

    McCoy, Donald; Siwitza, Thorsten; Gouka, Roy

    2005-11-01

    Venus evokes the ever-attractive image of a goddess from antiquity, and yet our sister planet, although attractive, is far from hospitable. The reasons for such a great difference between Earth and Venus have still to be understood and so, considering that they are very close in terms of astronomical distances, a mystery is invoked. Whether Earth is a unique planet, for which life was destined, or whether both planets were created under similar circumstances and subsequently evolved in different manners, is fundamental to the understanding of our place in the Solar System and, indeed, perhaps the Universe.

  5. The MESSENGER Venus Flybys: Opportunities for Synergy with Venus Express

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; McNutt, R. L.; Domingue, D. L.; Gold, R. E.; Svedhem, H.; Titov, D.; Helbert, J.

    2006-12-01

    The trajectory of the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft, launched by NASA on 3 August 2004 and destined to be the first probe to orbit Mercury, includes two flybys of Venus during the period that the ESA Venus Express mission is operational in Venus orbit. MESSENGER's first Venus flyby occurred on 24 October 2006, at a closest approach distance of 3140 km, but no scientific observations were made because Venus was at superior conjunction and no direct communication with the MESSENGER spacecraft (or with Venus Express) was possible for an extended period. All MESSENGER instruments, however, will be trained on Venus during the spacecraft's second flyby on 6 June 2007, when closest approach will be at 300 km altitude over 12°S, 107°E, in the uplands of Ovda Regio. The Mercury Dual Imaging System will image the night side in near-infrared bands, and color and higher-resolution monochrome mosaics will be made of both the approaching and departing hemispheres. The Ultraviolet and Visible Spectrometer on the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument will make profiles of atmospheric species on the day and night sides as well as observations of the exospheric tail on departure. The Visible and Infrared Spectrograph on MASCS will observe the planet near closest approach to sense cloud chemical properties and near-infrared returns from the lower atmosphere and surface. The laser altimeter will serve as a passive 1064-nm radiometer and will measure the range to one or more cloud decks for several minutes near closest approach. The combined observations of Venus Express and MESSENGER will permit simultaneous and complementary observations of particular value for characterization of the particle and field environment at Venus. MESSENGER's Energetic Particle and Plasma Spectrometer (EPPS) will observe charged particle acceleration at the Venus bow shock and elsewhere. The Magnetometer will

  6. Venus Express Italian Day on 4 October

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Venus Express is the first European mission to this, the second planet in the Solar System. Often referred to as ‘Earth’s twin’, Venus holds many mysteries that intrigue scientists. The main question is why a planet similar to Earth in size, mass and composition could have evolved so differently over the course of the last four thousand million years. Venus Express will make the first multispectral global examination of the atmosphere of Venus. Completely different from the one around Earth, the Venusian atmosphere appears to be hot and dense. Venus Express will investigate the choking ‘greenhouse’ effect, the hurricane-force winds that encircle the planet, and its mysteriously weak magnetic field. Completion of assembly of the Venus Express spacecraft, including integration and testing of the flight equipment and experiments, is an important milestone. Scheduled for launch on 26 October 2005, Venus Express is currently being made ready for shipment to Astrium, ESA’s prime contractor, in Toulouse, France in mid-October this year. There, further tests to prove the spacecraft's flight readiness will take place. The programme of the event is as follows: 10:30 - Welcoming addresses L.M. Quaglino, Director of Alenia Spazio Infrastructures and Scientific Satellites M. Coradini, ESA Solar System Missions Coordinator 10:45 - ESA presentations The Venus Express project, D. McCoy, ESA Project Manager for Venus Express The Scientific Mission, H. Svedhem, ESA Project Scientist for Venus Express 11:30 - Alenia Spazio: Role and activities on Venus Express G. Finocchiaro and M. Patroncini, Alenia Spazio Project Management for Venus Express The presentations will be followed by a visit to the Venus Express Hardware and a Q & A session. The programme will be concluded with a buffet lunch at 13:00.

  7. Venus Express/VMC observations of the Venus O2 visible nightglow

    NASA Astrophysics Data System (ADS)

    García Muñoz, Antonio; Hueso, Ricardo; Sanchez-Lavega, Agustin; Markiewicz, Wojciech; Opitz, Andrea; Witasse, Olivier; Titov, Dmitrij

    2013-04-01

    We are analyzing the images of the Venus night side obtained with the Venus Monitoring Camera (VMC) aboard Venus Express at visible wavelengths (passband of 502-568 nm at 1/4 maximum transmission). The images show a faint but distinct emitting layer at about 100 km altitude attributed to the O2 visible nightglow discovered by the Venera 9/10 missions [1]. The visible filter is most sensitive to the v''=9, 10 bands of the c(0)-X(v'') progression, that occur at 513 and 551 nm, respectively. The VMC images allow us to investigate day-to-day variations in the nightglow intensity, that typically ranges from 200 to 400 kiloRayleighs in limb viewing, over the Venus disk, thus expanding on past studies from either space-borne or ground-based telescopes. In the presentation, we will discuss the status of our analysis of nearly five years of O2 visible nightglow data with VMC. Ref.: [1] Krasnospolsky et al. (1977), Cosmic Res., 14, 687.

  8. Education and Public Outreach using Venus Express

    NASA Astrophysics Data System (ADS)

    Pertzborn, Rosalyn A.; Limaye, S. S.; Pi, H. Y.

    2006-12-01

    Nearly two decades after NASA’s Magellan radar mission to Venus, its atmosphere and surface is being investigated with new instruments by the Venus Express spacecraft from orbit. It was launched by the European Space Agency (ESA) on 11 November 2005, and has been orbiting Venus since April 2006. This mission provides an opportunity to focus on comparative planetary meteorology for education and public outreach efforts. We present an inquiry-based approach for informal and formal learning audiences by comparing atmospheric states of Venus and Earth using data available from Earth weather satellites and Venus Express. In the context of a middle or a high school curriculum, the science themes of Venus Express mission provide many connections to the themes of the National Science Education Standards. For the general audiences, Venus presents many of its mysteries such as its super rotation in the form of a giant hemispheric vortex akin to a hurricane, its deep atmosphere with sulfuric acid clouds, and the huge greenhouse effect concepts that are familiar to many. More than a dozen US scientists are participating in the Venus Express mission with support from NASA.

  9. Post-Venus Express exploration of Venus : the Venus Entry Probe Initiative

    NASA Astrophysics Data System (ADS)

    Chassefière, E.; Roos-Serote, M.; Titov, D.; Wilson, C.; Witasse, O.; Vepi Team

    The planet Venus -- our neighbour in the solar system and twin sister of the Earth -was once expected to be very similar to the Earth However the space missions to the planet discovered a world completely different from ours The fundamental mysteries in the physics of Venus are related to the composition and dynamics of the atmosphere physics of the cloud layer and greenhouse effect surface mineralogy evolution of the surface and volatile inventory Despite the fact that both Earth and Venus were formed in the same region of the solar system the planets followed dramatically different evolutionary paths Understanding the reasons for this divergence would shed a light on the processes of origin and evolution of all terrestrial planets including Earth Early missions to Venus in 1960-90 included a great variety of robotic spacecraft fly-bys orbiters landers and balloons They established basic understanding of the conditions prevailing in the atmosphere and on the surface of Venus In the same time they raised a number of fundamental questions concerning the mechanisms and processes that formed and are maintaining these conditions The new era of Venus exploration began with the launch of the ESA Venus Express spacecraft in November 2005 The spacecraft will deliver a powerful suite of remote sensing instruments into orbit around the planet The mission will perform a global survey of the Venus atmosphere and plasma environment The Japanese Planet-C mission scheduled for launch in 2010 will focus on meteorological monitoring from orbit These

  10. Thermal structure of Venus atmosphere from Venus Express observations

    NASA Astrophysics Data System (ADS)

    Bertaux, J. L.; Drossart, P.; Grassi, D.; Häusler, B.; Mahieux, A.; Migliorini, A.; Montmessin, F.; Pätzold, M.; Piccialli, A.; Piccioni, G.; Tellmann, S.; Vandaele, A. C.; Wilquet, V.

    2014-04-01

    The thermal structure of Venus atmosphere has been investigated since the early 1960s by several groundbased campaigns and spacecraft missions, such as Pioneer Venus (PV) orbiter [1], PV probes [2], Galileo flyby [3], Venera 15 and 16 [4]. Based on these early and sparse observations, a Venus International Reference Atmosphere (VIRA) model was published in 1983 [5]. The VIRA model splits the atmosphere into three different dynamical regions: (1) the lower atmosphere, from the surface to the upper cloud top (˜ 70 km), (2) the middle atmosphere, extending between the cloud tops and 110 km, and (3) the upper atmosphere, above ~110 km. Vertical temperature profiles below 40 km of altitude are quite similar over the entire planet, with latitudinal and local time variations less than 5 K. On the other hand, the thermal structure of the middle and upper atmosphere shows a significant variability with latitude and local time. The VIRA model presents an atmosphere temperature that decreases from values of ˜ 240 K at the cloud top to 170 K at ˜ 90 - 100 km altitudes on the dayside of the planet and reaching minimum values of less than 120 K during the nighttime in the upper atmosphere[5]. More recently, several experiments on board the European mission to Venus, Venus Express (VEx) [6], and ground-based campaigns [7,8,9] have extensively studied the thermal structure of Venus upper atmosphere over a long time scale revealing a far more complex situation. Three different methods are used to sound remotely atmospheric temperatures: (1) the VeRa radio occultation instrument studies the upper troposphere/mesosphere (40 - 90 km) of both the north and south hemispheres with a vertical resolution of ~500 m [10,11]; (2) the nightside mesosphere (60 - 90 km) is investigated also by VIRTIS thermal emission spectroscopy [12,13]; (3) finally, SPICAV-SOIR stellar/solar occultations sound Venus upper atmosphere (70 - 150 km altitude) on the nightside and at the terminator [14

  11. Venus Express and terrestrial planet climatology

    NASA Astrophysics Data System (ADS)

    Taylor, Fredric W.; Svedhem, Håkan; Titov, Dmitri M.

    After a delay of more than a decade, the exploration of Venus has resumed through the European Venus Express mission, now in orbit around the planet. The mission payload, its implementation in an elliptical polar orbit, and the science operations planned, all focus on outstanding problems associated with the atmosphere and climate of Venus. Many of these problems, such as understanding the extreme surface warming produced by the carbon dioxide-driven greenhouse effect, and the role of sulfate aerosols in the atmosphere, have resonances with climate-change issues on the Earth and Mars. As data on all three terrestrial planets accumulates, and models of the energy balance and general circulation of their atmospheres improve, it becomes increasingly possible to define and elucidate their behavior in a common, comparative framework. Venus Express seeks to contribute to progress in this area.

  12. Experimental Aerobraking with Venus Express

    NASA Astrophysics Data System (ADS)

    Svedhem, Hakan

    2013-10-01

    Venus Express has successfully orbited Venus in its polar 24 hour, 250km by 66000 km, orbit since April 2006 and has provided a wealth of new data from our sister planet. Approaching the end of the mission we are now planning an experimental campaign dedicated to aerobraking at altitudes down to as low as about 130km. These low pericentre passes will provide direct measurements of density, temperature, magnetic field and energetic particles in a region not accessible by other methods. Experience of operations and studies of spacecraft responses will be valuable knowledge for possible future missions that might need this techniques as a part of its nominal operations. Aerobraking was considered in the early design phase of the mission but it was fairly soon realised that the nominal mission would not need this. However, a few important design features were maintained in order to allow for this in case it should be needed at a later stage. The inherently stable geometry of the spacecraft configuration and the inclusion of a software mode for aerobraking are the two most important elements from this early design phase. An recent study by industry has determined the constraints for the spacecraft and identified several potential scenarios. The present highly elliptical orbit has as one of its inherent features a downward drift of the pericentre altitude of between 1 and 4 km/day. However, at certain times, when the Sun is in the orbital plane, this drift disappears for a period of up to two weeks. This is a very well suited time to carry out these initial experiments as it is makes operations safer and it reduces the heat input on the spacecraft as the solar panels will be edge-on towards the sun during the aerobraking. Already a number of low altitude operations have been carried out during the so called atmospheric drag campaigns. The spacecraft has then dipped down to altitudes as low as 165 km and a good characterisation of this region has been performed. This

  13. Observing the surface of Venus with VIRTIS on Venus Express

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Mariangeli, L.; Baines, K. H.; Garcia, R.; Erard, S.; Piccioni, G.; Drossart, P.; Müller, N.; Hashimoto, G.; Kostama, P.; Virtis Team

    The M channel of VIRTIS will allow the first systematic mapping of the surface and of the near-surface atmosphere of Venus in the near infrared wavelengths range This will be done using the atmospheric windows located at 1 10 1 18 mu m and if possible additionally using the window at 1 02 mu m Wattson and Rothman 1986 Kamp et al 1988 Moroz 2002 The latter is unfortunately right at the low end of the wavelength range of the IR channel and at the upper end of the VIS channel Therefore the usability of this window is unclear until first data from Venus are obtained The atmospheric windows will allow measuring the thermal emission of the surface as was demonstrated by Galileo NIMS Carlson et al 1991 and Cassini VIMS Baines et al 2000 While the atmospheric windows show no or little CO 2 absorption the radiance from the surface is still affected by scattering in the clouds This effect varies based on the optical thickness of the clouds We have developed a quicklook processing procedure which allows deriving surface emissivity variations from nighttime observations correcting for the atmospheric effects We will present the first version of this algorithm During the mission the algorithm will be refined based on the data returned from the different instruments on Venus Express The final goal is to derive maps of the absolute surface emissivity Based on these data two main science tasks for the surface analysis will be pursued Classification of the surface composition and study the interaction between low atmosphere and

  14. Venus Terminator Temperature Structure: Venus Express SOIR and VTGCM Comparisons

    NASA Astrophysics Data System (ADS)

    Schulte, R.; Bougher, S. W.; Parkinson, C. D.; Brecht, A. S.; Vandaele, A.; Wilquet, V.; Mahieux, A.

    2013-12-01

    Venus Express SOIR terminator profiles of temperatures are organized and presented for 119 selected orbits obtained between 2006-2011. The SOIR instrument measures CO2 absorption across a broad spectral window. The observed atmospheric transmittance spectra are subsequently inverted to obtain vertical CO2 density (and inferred temperature) profiles at the Venusian terminator over approximately 70 to 160 km. These recently recalibrated measurements continue to show a striking permanent temperature minimum (at 125 km) and a weaker temperature maximum (over 100-115 km). These features are reflected in the corresponding CO2 density profiles, and provide detailed constraints for new empirical models and global circulation models of the Venus upper atmosphere. New Venus Thermospheric General Circulation Model (VTGCM) simulations are conducted for conditions appropriate to these SOIR measurements. In particular, solar minimum or moderate fluxes are specified and mean values of eddy diffusion and wave drag parameters are utilized. Recent upgrades to the VTGCM code now include more realistic lower boundary conditions at 70 km near cloud tops. Model temperature profiles are extracted from the terminators that correspond to five latitude bins (0-30°, 30-60°, 60-70°, 70-80°, 80-90° latitude) presently used in the SOIR data analysis. Averaging of VTGCM temperature profiles in each of these bins (at morning and evening terminators) is conducted to match SOIR sampling. Comparisons of these SOIR and VTGCM temperature profiles are made. Most notably, the observed temperature minimum near 125 km and the weaker temperature maximum over 100-115 km are generally reproduced by the VTGCM at the correct pressure/altitude levels. However, magnitudes of simulated and measured temperatures are somewhat different. In addition, VTGCM evening terminator (ET) temperatures are simulated to be modestly warmer than corresponding morning terminator (MT) values, a result of stronger ET than MT

  15. Venus surface investigation based on VIRTIS measurements on Venus Express

    NASA Astrophysics Data System (ADS)

    Arnold, Gabriele; Haus, Rainer; Döhler, Wolfgang; Kappel, David; Piccioni, Giuseppe; Drossart, Pierre

    The dense atmosphere of Venus prevented systematic studies of its surface at optical wavelengths in the past. The discovery of near infrared nightside atmospheric windows has opened a new challenge for detailed surface studies. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on Venus Express is the first experiment collecting continuously nightside surface emission data from the planet. The observed high variability of measured signatures is mainly due to spatial variations of cloud optical depth and surface elevation. The investigation of surface properties requires a convergent approach of radiative transfer simulations and VIR- TIS data analyses. Therefore, a selection of orbits with well calibrated data over the northern hemisphere was performed for footprints that cover a maximum range of surface elevation variations. Radiative transfer calculations demonstrate that the conservative character of cloud multiple scattering below 2 µm and a strong dependence of radiance ratios on surface elevation in this spectral region allow the mapping of surface topography and a retrieval of the surface temperature. To the first order, the surface temperature is a function of ground elevation. Small deviations from this first order dependence have been identified that are possibly due to different surface materials. 1 Institut f¨r Planetologie, Westf¨lische Wilhelms-Universit¨t M¨nster, Wilhelm-Klemm-Str.10, u a a u 48129 M¨nster, Germany u 2 German PlaceNameAerospace PlaceTypeCenter (DLR), Remote Sensing Technology Institute, Dpt. Marine Remote Sensing, Rutherfordstrasse 2, 12489 CityplaceBerlin, countryregionGermany 3 German PlaceNameAerospace PlaceTypeCenter (DLR), Institute for Planetary Research, Rutherfordstrasse 2, 12489 CityplaceBerlin, country-regionGermany 4 LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, 5 place Jules Janssen, e 92195 Meudon, France 5 INAF-IASF (Instituto di Astrofisica Spaziale e Fisica Cosmica), via

  16. Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin; Vandaele, Ann C.; Wilquet, Valérie; Schulte, Rick; Yung, Yuk; Gao, Peter; Bardeen, Charles

    Observations by the SPICAV/SOIR instruments aboard Venus Express (VEx) have revealed that the Upper Haze of Venus is populated by two particle modes, as reported by Wilquet et al. (J. Geophys. Res., 114, E00B42, 2009; Icarus 217, 2012). Gao et al. (In press, Icarus, 2013) posit that the large mode is made up of cloud particles that have diffused upwards from the cloud deck below, while the smaller mode is generated by the in situ nucleation of meteoric dust. They tested this hypothesis by using version 3.0 of the Community Aerosol and Radiation Model for Atmospheres, first developed by Turco et al. (J. Atmos. Sci., 36, 699-717, 1979) and upgraded to version 3.0 by Bardeen et al. (The CARMA 3.0 microphysics package in CESM, Whole Atmosphere Working Group Meeting, 2011). Using the meteoric dust production profile of Kalashnikova et al. (Geophys. Res. Lett., 27, 3293-3296, 2000), the sulfur/sulfate condensation nuclei production profile of Imamura and Hashimoto (J. Atmos. Sci., 58, 3597-3612, 2001), and sulfuric acid vapor production profile of Zhang et al. (Icarus, 217, 714-739, 2012), they numerically simulate a column of the Venus atmosphere from 40 to 100 km above the surface. Their aerosol number density results agree well with Pioneer Venus Orbiter (PVO) data from Knollenberg and Hunten (J. Geophys. Res., 85, 8039-8058, 1980), while their gas distribution results match that of Kolodner and Steffes below 55 km (Icarus, 132, 151-169, 1998). The resulting size distribution of cloud particles shows two distinct modes, qualitatively matching the observations of PVO. They also observe a third mode in their results with a size of a few microns at 48 km altitude, which appears to support the existence of the controversial third mode in the PVO data. This mode disappears if coagulation is not included in the simulation. The Upper Haze size distribution shows two lognormal-like distributions overlapping each other, possibly indicating the presence of the two distinct

  17. Venus Upper Atmosphere - Results from the Venus Express Aerobraking Campaign

    NASA Astrophysics Data System (ADS)

    Svedhem, H.

    2015-12-01

    During the last year of operations Venus Express was conducting an experimental aerobraking campaign. The objectives were twofold; firstly, to exercise for the first time the techniques of orbit modification by aerobraking with a European spacecraft, in order to prepare for future scientific ESA missions, and secondly, to collect information on atmospheric density by direct measurements in an environment difficult to sample with other means. Several of the scientific instruments on board Venus Express measured gas abundances of various gasses, including CO2, up to an altitude of 130km, but no reliable measurements could be made of total density and no remote measurements could be done above this altitude. The on board accelerometers gave direct measurements of the deceleration which in turn is directly proportional to the local atmospheric density. This provided an excellent way to study both the total density profile throughout the orbital arc in the atmosphere and small scale density variations in the region of the pericentre. The spacecraft behaved perfectly well throughout the whole campaign and provided a wealth of data both on the atmosphere and on the response of the spacecraft to the harsh environment with strong heat loads and some dynamic stress. At the time of the campaign the pericentre was located near the terminator at about 75 degrees Northern latitude. The so called "walk-in" phase started at an altitude of 190 km on 17 May 2014 and the campaign ended on 11 July, after having reached a lowest altitude of 129.2 km. Subsequently, a series of orbit control manoeuvres lifted up the pericentre to 460 km altitude and the science activities were resumed after a thorough check-out of the spacecraft. We have detected a highly variable atmosphere, both on a day to day basis and within the individual pericentre passes. The duration of each pass was approximately 100 s and the maximum dynamic pressure achieved was more than 0.75 N/m2. The orbital period was

  18. Venus O2 nightglow observations with VIRTIS/Venus Express

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Piccioni, G.; Gérard, J. C.; Slanger, T.; Politi, R.; Snels, M.; Nuccilli, F.; Drossart, P.

    2012-09-01

    The oxygen nightglow emissions in the visible spectral range are known since the early observations with the Venera spacecrafts. Recent observations with the VIRTIS instrument on board Venus-Express allowed to re-detect the Herzberg II system of O2. In particular, the (0-7), (0-8), (0-9), (0-10), and (0-11) bands of the Herzberg II system have been observed in the limb data. These bands peak at about 95 km, with a mean total integrated intensity of about 200 kR. Moreover, 3 bands of the Chamberlain system, centred at 0.56 μm, 0.605 μm, and 0.657 μm were also detected. For the first time, the O2 nightglow emissions were investigated simultaneously in the visible and in the IR spectral range, reporting a good agreement of the peak altitude values for the Herzberg II and the O2(a1Δg-X3Σ- g) band. Finally a 1-D atmospheric model was applied in order to interpret our results. The model, starting from realistic O and CO2 vertical distribution, allows to well reproduce the observed profiles for the O2 systems both in the visible and IR spectral ranges.

  19. ESA's Venus Express to reach final destination

    NASA Astrophysics Data System (ADS)

    2006-04-01

    First step: catching Venus To begin to explore our Earth’s hot and hazy sister planet, Venus Express must complete a critical first step, the most challenging one following launch. This involves a set of complex operations and manoeuvres that will inject the spacecraft into orbit. The Venus Orbit Insertion (VOI) manoeuvre allows the spacecraft to reduce its speed relative to Venus, so that it can be captured by the planet’s gravitation. The manoeuvre is a critical one which must proceed at precisely the right place and time. The VOI phase officially started on 4 April and will not be completed until 13 April. It is split into three main sub-phases. The first consists in preparing or initialising the spacecraft for the actual capture manoeuvre so as to avoid the risk of the spacecraft going into safe mode, should parameters unrelated to VOI go off-range. The capture manoeuvre itself consists of a main-engine burn lasting about 50 minutes on the morning of 11 April starting at 09:17 (Central European Summer Time). This is the second main VOI sub-phase. The final sub-phase will be restoring all spacecraft functions, notably resuming communications with Earth and uplinking the commands to be executed during the preliminary ‘capture’ orbit. Orbital capture is controlled by an automatic sequence of predefined commands, uploaded to the spacecraft four days prior to VOI. This sequence is the minimum set needed to perform the main-engine burn. All spacecraft operations are controlled and commanded by the ground control team located at ESA’s European Spacecraft Operations Centre (ESOC) in Darmstadt, Germany. Timeeline of major VOI events (some times subject to change) 4 Aprilacecraft transmitter connected to low gain antenna is switched on. During its interplanetary cruise and during the scientific part of the mission to come, Venus Express communicates with Earth by means of its two high gain antennas. However, during the orbit capture phase (11 April), these two

  20. Venus Surface Investigation Using VIRTIS Onboard the ESA/Venus Express Mission

    NASA Technical Reports Server (NTRS)

    Marinangeli, L. L.; Baines, K.; Garcia, R.; Drossart, P.; Piccioni, G.; Benkhoff, J.; Helbert, J.; Langevin, Y.

    2004-01-01

    Venus Express Mission is the first ESA mission to Venus that will be launched in November 2005. In April 2006 after 150 days of cruise the spacecraft will be inserted into highly elliptical polar orbit around Venus. The observational phase will begin after about one month of commissioning phase. The nominal mission orbital life-time is two Venus sidereal days (486 Earth days). The scientific goals of Venus Express are related to the global atmospheric circulation and atmosphere chemical composition, the surfaceatmosphere physical and chemical interactions, the physics and chemistry of the cloud layer, the thermal balance and role of trace gases in the greenhouse effect, and the plasma environment and its interaction with the solar wind.

  1. MESSENGER and Venus Express Observations of the Solar Wind Interaction with Venus

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Barabash, Stas; Benna, Mehdi; Boardsen, Scott A.; Fraenz, Markus; Gloeckler, George; Gold, Robert E.; Ho,George C.; Korth, Haje; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Raines, Jim M.; Sarantos, Menelaos; Solomon, Sean C.; Zhang, Tielong; Zurbuchen, Thomas H.

    2009-01-01

    At 23:08 UTC on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude of 338 kin during its final flyby of Venus en route to its 2011 orbit insertion at Mercury. The availability of the simultaneous Venus Express solar wind and interplanetary magnetic field measurements provides a rare opportunity to examine the influence of upstream conditions on this planet's solar wind interaction. We present MESSENGER observations of new features of the Venus - solar wind interaction including hot flow anomalies upstream of the bow shock, a flux rope in the near-tail and a two-point determination of the timescale for magnetic flux transport through this induced magnetosphere. Citation: Stavin, J. A., et al. (2009), MESSENGER and Venus Express observations of the solar wind interaction with Venus,

  2. Temporal variations of UV reflectivity of Venus observed by the Venus Monitoring Camera onboard Venus Express.

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Schroder, Stefan

    The UV channel of the Venus Monitoring Camera (VMC) onboard Venus Express (VEX) detects dark and bright features at the cloud top level all over the globe. This UV contrast is affected by the abundance of an unknown UV absorber, which is located within the upper cloud layer, and the upper haze above the cloud tops (Pollack et al.,1979; Esposito, 1980). The unknown UV absorber is a major sink of solar energy in the Venus middle atmosphere (Crisp, 1986). The upper haze and clouds take part in sulfur photochemical processes in the Venus mesosphere (Mills et al., 2007). At the cloud top altitude the zonal wind speed is highest, resulting in changes in cloud morphology in a few days. Therefore, the features shown in the UV images are diagnostic for atmospheric dynamics and chemistry. By analyzing VMC UV images, we found there is a clear decreasing trend of the global mean albedo by 20-30% over 2000 orbits (=2000 Earth days) of VEX operation. This decrease is driven by changes at high latitudes. This implies that the typical latitudinal albedo distribution, bright polar hood and dark equatorial region, varies over time. The latitudinal difference in albedo changes from a clear brightness gradient from pole to equator to an almost identical brightness in both regions. Interestingly, this temporal variation is similar to that of the SO2 abundance above the cloud tops, observed in the same period (Marcq et al., 2013). This suggests a reduction of SO2 over the equator decreases the amount of upper haze at high latitudes, as less sulfur is supplied by the meridional circulation. We investigate the phase angle dependence of the latitudinal albedo difference, which reveals that the vertical distribution of the UV absorbers and the upper haze varies in time as well. Our results show large scale variations in Venusian atmospheric dynamics near the cloud tops, represented by temporal changes in the amount of upper haze at high latitudes and/or in the vertical distribution of the

  3. VIRTIS on Venus Express: retrieval of real surface emissivity on global scales

    NASA Astrophysics Data System (ADS)

    Arnold, Gabriele E.; Kappel, David; Haus, Rainer; Telléz Pedroza, Laura; Piccioni, Giuseppe; Drossart, Pierre

    2015-09-01

    The extraction of surface emissivity data provides the data base for surface composition analyses and enables to evaluate Venus' geology. The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express mission measured, inter alia, the nightside thermal emission of Venus in the near infrared atmospheric windows between 1.0 and 1.2 μm. These data can be used to determine information about surface properties on global scales. This requires a sophisticated approach to understand and consider the effects and interferences of different atmospheric and surface parameters influencing the retrieved values. In the present work, results of a new technique for retrieval of the 1.0 - 1.2 μm - surface emissivity are summarized. It includes a Multi-Window Retrieval Technique, a Multi-Spectrum Retrieval technique (MSR), and a detailed reliability analysis. The MWT bases on a detailed radiative transfer model making simultaneous use of information from different atmospheric windows of an individual spectrum. MSR regularizes the retrieval by incorporating available a priori mean values, standard deviations as well as spatial-temporal correlations of parameters to be retrieved. The capability of this method is shown for a selected surface target area. Implications for geologic investigations are discussed. Based on these results, the work draws conclusions for future Venus surface composition analyses on global scales using spectral remote sensing techniques. In that context, requirements for observational scenarios and instrumental performances are investigated, and recommendations are derived to optimize spectral measurements for Venus' surface studies.

  4. Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Gao, Peter; Schulte, Rick; Bougher, Stephen W.; Yung, Yuk L.; Bardeen, Charles G.; Wilquet, Valérie; Vandaele, Ann Carine; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin

    2015-08-01

    Observations from Pioneer Venus and from SPICAV/SOIR aboard Venus Express (VEx) have shown the upper haze (UH) of Venus to be highly spatially and temporally variable, and populated by multiple particle size modes. Previous models of this system (e.g., Gao et al., 2014. Icarus 231, 83-98), using a typical temperature profile representative of the atmosphere (viz., equatorial VIRA profile), did not investigate the effect of temperature on the UH particle distributions. We show that the inclusion of latitude-dependent temperature profiles for both the morning and evening terminators of Venus helps to explain how the atmospheric aerosol distributions vary spatially. In this work we use temperature profiles obtained by two instruments onboard VEx, VeRa and SPICAV/SOIR, to represent the latitudinal temperature dependence. We find that there are no significant differences between results for the morning and evening terminators at any latitude and that the cloud base moves downwards as the latitude increases due to decreasing temperatures. The UH is not affected much by varying the temperature profiles; however, the haze does show some periodic differences, and is slightly thicker at the poles than at the equator. We also find that the sulphuric acid "rain" seen in previous models may be restricted to the equatorial regions of Venus, such that the particle size distribution is relatively stable at higher latitudes and at the poles.

  5. Venus Express set for launch to the cryptic planet

    NASA Astrophysics Data System (ADS)

    2005-10-01

    On Wednesday, 26 October 2005, the sky over the Baikonur Cosmodrome, Kazakhstan, will be illuminated by the blast from a Soyuz-Fregat rocket carrying this precious spacecraft aloft. The celestial motion of the planets in our Solar System has given Venus Express the window to travel to Venus on the best route. In fact, every nineteen months Venus reaches the point where a voyage from Earth is the most fuel-efficient. To take advantage of this opportunity, ESA has opted to launch Venus Express within the next ‘launch window’, opening on 26 October this year and closing about one month later, on 24 November. Again, due to the relative motion of Earth and Venus, plus Earth’s daily rotation, there is only one short period per day when it is possible to launch, lasting only a few seconds. The first launch opportunity is on 26 October at 06:43 Central European Summer Time (CEST) (10:43 in Baikonur). Venus Express will take only 163 days, a little more than five months, to reach Venus. Then, in April 2006, the adventure of exploration will begin with Venus finally welcoming a spacecraft, a fully European one, more than ten years after humankind paid the last visit. The journey starts at launch One of the most reliable launchers in the world, the Soyuz-Fregat rocket, will set Venus Express on course for its target. Soyuz, procured by the European/Russian Starsem company, consists of three main stages with an additional upper stage, Fregat, atop. Venus Express is attached to this upper stage. The injection of Venus Express into the interplanetary trajectory which will bring it to Venus consists of three phases. In the first nine minutes after launch, Soyuz will perform the first phase, that is an almost vertical ascent trajectory, in which it is boosted to about 190 kilometres altitude by its three stages, separating in sequence. In the second phase, the Fregat-Venus Express ‘block’, now free from the Soyuz, is injected into a circular parking orbit around Earth

  6. Venus

    NASA Technical Reports Server (NTRS)

    Hunten, D. M. (Editor); Colin, L. (Editor); Donahue, T. M. (Editor); Moroz, V. I.

    1983-01-01

    The present conference concerning the study of Venus discusses stellar magnitude and albedo data for the planet, radio astronomical studies, results of the Venera 13 and 14 missions, Venus optical properties, topography, surface properties and tectonic evolution, the tectonic implications of the interior of Venus, the thermal structure, photochemistry, composition, general circulation, and electrical activity of the Venus atmosphere, and the thermal balance of the lower, middle and upper atmoshere of Venus. Also discussed are the observation and interpretation of the Venus ionosphere, its model calculation, the interaction of the solar wind with the ionosphere of Venus in light of flow field models, the origin and evolution of the Venus atmosphere, and the problem posed by rare gases in the atmosphere of Venus.

  7. Progress towards a post-Venus Express Clouds & Haze reference model for Venus

    NASA Astrophysics Data System (ADS)

    Marcq, Emmanuel; Belyaev, Denis; Wilson, Colin; Wilquet, Valérie; Luginin, Mikhail

    2016-07-01

    With the end of Venus Express in 2014, the focus of the scientific community has gradually moved from the study of Venus Express mono-instrumental data sets to cross-instrumental studies involving pure modelization as well. This is especially true for the clouds and hazes that surround most of the planet between 48 and 70 km. They play a major role at the crossroads of various atmospheric processes among which the radiative budget as well as the dynamical and chemical coupling between the lower and upper atmosphere. In order to support such efforts, ISSI has supported from 2013 to 2015 a "Clouds & Hazes of Venus" scientific team involving Venus Express and ground-based observers as well as microphysical modelers. Together, they compared their results in order to achieve a more unified and consistent view of Venus' clouds and hazes, taking into account its spatial and temporal variability more in detail than previously available VIRA-1 and 2 cloud models. We will review the individual data sets and models that have been used, and then present our strategy towards a unified cloud model. We will first make available some observable parameters to the wider community through a web-based repository. Our future steps will involve more advanced techniques (data assimilation) in order to achieve our objective of a unified Venus clouds & haze model that encompasses its various variabilities as well as possible.

  8. Characterizing the low-altitude magnetic belt at Venus: Complementary observations from the Pioneer Venus Orbiter and Venus Express

    NASA Astrophysics Data System (ADS)

    Villarreal, M. N.; Russell, C. T.; Wei, H. Y.; Ma, Y. J.; Luhmann, J. G.; Strangeway, R. J.; Zhang, T. L.

    2015-03-01

    Using Venus Express, Zhang et al. (2012b) identified strong magnetic field enhancements at low altitudes over the north polar region of Venus as giant flux ropes. Strong fields at low altitudes were also observed during the Pioneer Venus Orbiter mission, but at low latitudes near the subsolar and midnight regions. We examine the possibility that the Venus Express observations are not giant flux ropes, but part of a low-altitude magnetic belt that builds up in the subsolar region, passes over the terminator, and extends to the nightside. Our analysis indicates the magnetic belt is dominantly horizontal over the dayside and gains a radial component nightward. The peak magnetic field strength of the belt and the altitude at which it peaks also varies around the planet, with the lowest altitude and strongest field strength in the subsolar region, consistent with the idea of the belt forming on the dayside. Zhang et al. (2012b) also noted the fields in the polar region had a bias in the +By direction in Venus Solar Orbital coordinates. The multifluid magnetohydrodynamic simulation we present shows an asymmetry in the plasma flow from the subsolar region to the poles due to the oxygen ion and proton mass ratio. This causes the magnetic field to preferentially accumulate in the north for a +By interplanetary magnetic field direction, providing an explanation for this bias.

  9. Newest results from SPICAV on-board Venus Express

    NASA Astrophysics Data System (ADS)

    Marcq, Emmanuel; Bertaux, Jean-Loup; Chaufray, Jean-Yves; Rossi, Loïc; Montmessin, Franck; Fedorova, Anna; Korablev, Oleg

    2013-04-01

    Venus Express is now entering its eighth year of operation in Venusian orbit. Among the still working instruments, all three channels of the SPICAV [Bertaux et al., 2007] spectrometer are still fully working and routinely provide new insights on the Venusian atmosphere. We propose to review and highlight the results and the work in progress, among which (non-exhaustive list): a new mapping of the nightside airglow of nitric oxide (NO) using the nadir mode of SPICAV-UV ; the first detection of the dayglow due to CO and CO2+ using limb observations of SPICAV-UV [Chaufray et al., 2012] ; the secular evolution of SO2 column density above Venus' cloud top using SPICAV-UV in nadir mode [Marcq et al., 2013] ; polarimetric and phase function studies of the upper clouds of Venus using SPICAV-IR. Bibilography: Bertaux et al., SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere, PSS (2007) Chaufray et al., First observation of the Venus UV dayglow at limb from SPICAV/VEX, Geophys. Res. Let. (2012) Marcq et al., Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere, Nature Geoscience (2013)

  10. Temporal variations in the cloud cover of Venus as detected from Venus Monitoring Camera Images on Venus Express Orbiter

    NASA Astrophysics Data System (ADS)

    Limaye, S. S.; Markiewicz, W. J.; Krauss, R. J.

    2014-12-01

    The Venus Monitoring Camera (VMC) on Venus Express [1] has been collecting images of the planet since orbit insertion in April 2006 through four narrow band pass (50 nm halfwidth) with center wavelengths of 365, 550, 950 and 1050 nm [2]. With varying range to the planet during the spacecraft's elliptical, near polar orbit, VMC obtains views of the day side southern hemisphere ( ~ 72,500 km) and the limb when it is furthest away from the planet, and can see a fraction of the planet's sun-lit limb northern latitudes when the spacecraft is closer to the planet ( >~ 25,000 km). We use these images to look at the temporal behavior of the normalized intensity and unit slant optical depth (location of the bright limb) at four wavelengths during April 2006 - March 2014. We detect correlated changes in the normalized brightness and the altitude of the unit optical depth over this period. Images were normalized using Minnaert function to account for the varying scattering geometry in order to detect changes in the reflectivity of the cloud cover at selected locations in local solar time. The unit optical depth was determined from the location of the planet's bright limb, taken to be where the brightness gradient is maximum along the bright limb azimuth. The changes observed appear to be quasi periodic. References [1] H. Svedhem,D.V. Titov, F.W. Taylor, O. Witasse, The Venus Express mission, Nature 450, 629-632, 2007. [2] Markiewicz, W. J. et al. Venus monitoring camera for Venus Express. Planet. Space Sci. 55, 1701-1711, 2007.

  11. Venus

    NASA Astrophysics Data System (ADS)

    Fegley, B., Jr.

    Venus is Earth's nearest planetary neighbor and has fascinated mankind since the dawn of history. Venus' clouds reflect most of the sunlight shining on the planet and make it the brightest object in the sky after the Sun and Moon. Venus is visible with the naked eye as an evening star until a few hours after sunset or as a morning star shortly before sunrise. Many ancient civilizations observed and worshipped Venus, which had a different name in each society, for example, Ishtar to the Babylonians, Aphrodite to the Greeks, Tai'pei to the Chinese, and Venus to the Romans. Venus has continued to play an important role in myth, literature, and science throughout history.

  12. Venus

    ERIC Educational Resources Information Center

    Martin, Paula; Stofan, Ellen

    2004-01-01

    On 8 June 2004 Venus will pass in front of the Sun as seen from the Earth. Many people will watch the small dark dot cross the solar disk, but will they stop to think about Venus as a real place? In this article we discuss what we know about Venus, what it looks like from orbit, what you might see if you were on the surface and future plans for…

  13. Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Marcq, Emmanuel; Mills, Franklin; Mahieux, Arnaud; Limaye, Sanjay; Wilson, Colin; Allen, Mark; Bertaux, Jean-Loup; Markiewicz, Wojciech; Roman, Tony; Vandaele, Ann-Carine; Wilquet, Valerie; Yung, Yuk

    2015-09-01

    Hubble Space Telescope Imaging Spectrograph (HST/STIS) UV observations of Venus' upper cloud tops were obtained between 20N and 40S latitude on December 28, 2010; January 22, 2011 and January 27, 2011 in coordination with the Venus Express (VEx) mission. The high spectral (0.27 nm) and spatial (40-60 km/pixel) resolution HST/STIS data provide the first direct and simultaneous record of the latitude and local time distribution of Venus' 70-80 km SO and SO2 (SOx) gas density on Venus' morning quadrant. These data were obtained simultaneously with (a) VEx/SOIR occultation and/or ground-based James Clerk Maxwell Telescope sub-mm observations that record respectively, Venus' near-terminator SO2 and dayside SOx vertical profiles between ∼75 and 100 km; and (b) 0.36 μm VEx/VMC images of Venus' cloud-tops. Updating the (Marcq, E. et al. [2011]. Icarus 211, 58-69) radiative transfer model SO2 gas column densities of ∼2-10 μm-atm and ∼0.4-1.8 μm-atm are retrieved from the December 2010 and January 2011 HST observations, respectively on Venus' dayside (i.e., at solar zenith angles (SZA) < 60°); SO gas column densities of 0.1-0.11 μm-atm, 0.03-0.31 μm-atm and 0.01-0.13 μm-atm are also retrieved from the respective December 28, 2010, January 22, 2011 and January 27, 2011 HST observations. A decline in the observed low-latitude 0.24 and 0.36 μm cloud top brightness paralleled the declining SOx gas densities. On December 28, 2010 SO2 VMR values ∼280-290 ppb are retrieved between 74 and 81 km from the HST and SOIR data obtained near Venus' morning terminator (at SZAs equal to 70° and 90°, respectively); these values are 10× higher than the HST-retrieved January 2011 near terminator values. Thus, the cloud top SO2 gas abundance declined at all local times between the three HST observing dates. On all dates the average dayside SO2/SO ratio inferred from HST between 70 and 80 km is higher than that inferred from the sub-mm the JCMT data above 84 km confirming that

  14. The Venus Neutral Atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Haeusler, B.; Paetzold, M.; Bird, M. K.; Tyler, G. L.

    2008-12-01

    The Venus Express Radio Science Experiment VeRa is sounding the Venus neutral atmosphere and ionosphere using the spacecraft radio subsystem in the oneway radio link mode at X-band (8.4 GHz) and S- band (2.3 GHz). An Ultrastable Oscillator (USO) provides a high quality onboard frequency reference source for the derivation of electron density profiles in the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere. Radial profiles of neutral number density derived from the occultations cover the altitude range 40 to 90 km, which are converted to vertical profiles of temperature and pressure. The polar orbit of Venus Express provides the opportunity to study the atmosphere at all planetocentric latitudes under varying illumination conditions. Five occultation seasons could be covered so far during the Venus Express mission resulting in a data set of more than 150 profiles of the neutral atmosphere. The thermal structure is investigated with regard to the latitudinal and temporal variability. A distinct cold collar region could be observed on both hemispheres. The tropopause altitude increases in this latitude region while the tropopause temperature shows a strong decrease. Profiles of static stability are found to be latitude-dependent and nearly adiabatic in the middle cloud region.

  15. Measurements of minor species below the clouds of Venus using VIRTIS/Venus Express.

    NASA Astrophysics Data System (ADS)

    Marcq, Emmanuel; Drossart, Pierre; Bézard, Bruno; Piccioni, Giuseppe; Henry, Florence; Reess, Jean-Michel

    2016-07-01

    VIRTIS spectral imager was part of Venus Express (2006-2014) payload. On the night side, it was able to analyse the thermal radiation near 2.3 μm originating from the deep atmosphere of Venus and leaking through its optically thick cloud layers [Tsang et al., 2008; Marcq et al., 2008] measuring various minor species in the 30-40 km altitude range: CO, OCS, H_2O, HDO, SO_2, HF. Most of VIRTIS data acquired since 2008 have not been processed until now. Yet a more complete analysis of this data set would be very interesting, especially in the context of two recent discoveries brought by other Venus Express instruments (SPICAV and VMC): the confirmation of the large spatial and temporal variabiliy of SO_2 above Venus's clouds top [Marcq et al., 2013], indicative of a dynamical coupling between the lower atmosphere reservoir and the lower mesosphere; the unexpected correlation between the low latitude topography and several observable parameters at cloud top level [Fedorova et al., 2015; Bertaux et al., submitted]: zonal wind speed, UV albedo, H_2O abundance. We will present here preliminary results about these new composition measurements with an emphasis put on the search for various correlations (latitude/longitude, local solar time, date, etc.)

  16. Retrieval of Venus' clouds parameters with polarization using SPICAV-IR onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Rossi, Loïc; Marcq, Emmanuel; Montmessin, Franck; Fedorova, Anna; Stam, Daphne; Bertaux, Jean-Loup; Korablev, Oleg

    2015-04-01

    Understanding the structure and dynamics of Venus' clouds is essential as they have a strong impact on the radiative balance and atmospheric chemistry of the planet. Polarimetry has greatly contributed to our knwoledge about the properties of the cloud layers located between 48 and ~ 70 km. Hansen and Hovenier (1974), using ground-based observations, found the cloud particles to be ~ 1μm spherical droplets, with a refractive index corresponding to a concentrated sulfuric acid-water solution. Later, Kawabata et al. (1980), using polarimetric data from OCPP onboard Pioneer Venus retrieved the properties of the haze: effective radius of ~ 0.25μm, refractive indices consistent with a sulfuric acid-water solution, variance of the particle size distribution. We introduce here new measurements obtained with the SPICAV-IR spectrometer onboard ESA's Venus Express. Observing Venus in the visible and IR from 650 nm to 1625 nm with a good spatial and temporal converage, SPICAV's sensitivity to the degree of linear polarization gives us an opportunity to put better constraints on haze and cloud particles at Venus cloud top, as well as their spatial and temporal variability. These observations reveal a particular feature called glory, observed by SPICAV-IR and VMC (Markiewicz et al. 2014). Using a radiative transfer code taking into account polarization (de Haan et al. 1987, de Rooij et al. 1984, Stam et al. 1999), we model the cloud layers and the glory allowing us to retrieve the real part of the refractive index, the effective radius and variance of the particle size distribution from the main cloud layer. Our results confirm that the particles are spherical, with a narrow size distribution and with refractive indices that are compatible with H2SO4-H2O solutions (Rossi et al. 2014). Using the large latitudinal coverage of the data, we can also retrieve the variation of the overlying haze layer optical thickness. We find that τh is increasing with increasing latitude, in

  17. The Venus Neutral Atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Haeusler, Bernd; Paetzold, Martin; Bird, Michael; Tyler, G. L.; Andert, Thomas; Remus, Stefan

    The Venus Express Radio Science Experiment VeRa performs regular radio-sounding experi-ments in the Venus neutral atmosphere and ionosphere using the spacecraft radio subsystem in the one-way radio mode at X-band (8.4 GHz) and S-band (2.3 GHz). An Ultra-Stable Oscilla-tor (USO) provides a high quality on-board frequency reference for refractivity measurements, from which electron density profiles in the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere are derived. Radial profiles of neutral number density from the atmospheric-induced Doppler shift during the occultations cover the altitude range 40-90 km. These are then used to derive vertical profiles of temperature and pressure. The polar orbit of Venus Express provides the opportunity to study the troposphere and meso-sphere at all planetocentric latitudes under varying illumination conditions. Seven occultation seasons have occurred thus far during the Venus Express mission, resulting in a data set with more than 320 neutral atmospheric profiles. The thermal structure is investigated with regard to the latitudinal and temporal variability. The Venus mesosphere shows a high variability resulting from atmospheric waves and turbulence. Profiles of atmospheric static stability are found to be latitude dependent and nearly adiabatic in the middle cloud region. Abrupt changes in the static stability can occur at the boundaries of the middle cloud layer, the vertical dis-tribution of which shows a distinct latitudinal dependence. Correlations of wave activity with the static stability profile will be investigated

  18. O+ pickup ions outside of Venus' bow shock: Venus Express observations

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Fraenz, Markus; Dubinin, Eduard; Zhang, Tielong; Jarvinen, Riku; Wan, Weixing; Kallio, Esa; Collinson, Glyn; Barabash, Stars; Norbert, Krupp; Woch, Joachim; Lundin, Rickard; delva, Magda

    2013-04-01

    Pickup ions are ions of planetary origin that become assimilated into the solar wind flow through their interaction with the solar wind magnetic and electric field. The speed of pickup ions varies between zero and twice the underlying plasma flow component perpendicular to magnetic field vector. For the unmagnetized planet Venus and Mars, oxygen (O+) pickup ions are known to be important because they can modify the global configuration of planetary plasma environment and significantly contribute to the atmospheric O+ loss [1]. Since the kinetic energy of an O+ pickup ion can reach 64 times that of a co-moving proton, an instrument must be able to measure O+ ions with energy of at least tens of keV to investigate the O+ pickup ion distribution from planetary ionosphere to solar wind. The in-situ observations and simulations at Mars have shown that the energy of O+ pickup ions can be 55-72 keV outside of the bow shock [2]. For Venus case, the plasma analyzer (OPA) onboard Pioneer Venus Orbiter (PVO), which was designed for solar wind monitoring, has an 8 keV energy limit for O+ detection and the limited sampling and data rate [3]. Therefore, OPA can only measure the O+ pickup ions in the sheath flow or inside the induced magnetosphere where the speed of ambient plasma flow is significantly lower than that of the unshocked solar wind outside of the bow shock. In addition, Galileo also did not capture O+ outside bowshock during its 1-hour Venus flyby though its plasma instrument had ability to cover the energy band of O+ pickup ions [4]. The Ion Mass Analyzer (IMA), included in the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) package on board Venus Express (VEX), determines the composition, energy, and angular distribution of ions in the energy range ~10 eV/q to 30 keV/q. Note that an O+ ion moving at the typical solar wind speed 400 km/s has kinetic energy 13.4 keV. Therefore, IMA has ability to measure the O+ pickup ions outside of Venus' bow shock. We

  19. Venus

    NASA Astrophysics Data System (ADS)

    Fegley, B., Jr.

    2003-12-01

    Venus is Earth's nearest planetary neighbor, and has fascinated mankind since the dawn of history. Venus' clouds reflect most of the sunlight shining on the planet and make it the brightest object in the sky after the Sun and Moon. Venus is visible with the naked eye as an evening star until a few hours after sunset, or as a morning star shortly before sunrise. Many ancient civilizations observed and worshipped Venus, which had a different name in each society, e.g., Ishtar to the Babylonians, Aphrodite to the Greeks, Tai'pei to the Chinese, and Venus to the Romans (Hunt and Moore, 1982). Venus has continued to play an important role in myth, literature, and science throughout history. In the early seventeenth century, Galileo's observations of the phases of Venus showed that the geocentric (Ptolemaic) model of the solar system was wrong and that the heliocentric (Copernican) model was correct. About a century later, Edmund Halley proposed that the distance from the Earth to the Sun (which was then unknown and is defined as one astronomical unit, AU) could be measured by observing transits of Venus across the Sun. These transits occur in pairs separated by eight years at intervals of 105.5 yr and 121.5 yr in an overall cycle of 243 yr, e.g., June 6, 1761, June 3, 1769; December 9, 1874, December 6, 1882, June 8, 2004, June 6, 2012, December 11, 2117, and December 8, 2125. The first attempted measurements of the astronomical unit during the 1761 transit were unsuccessful. However, several observers reported a halo around Venus as it entered and exited the Sun's disk. Thomas Bergman in Uppsala and Mikhail Lomonosov in St. Petersburg, independently speculated that the halo was due to an atmosphere on Venus. Eight years later observations of the 1769 solar transit (including those made by Captain Cook's expedition to Tahiti) gave a value of 1 AU=153 million kilometers, ~2.3% larger than the actual size (149.6 million kilometers) of the astronomical unit (Woolf, 1959

  20. O+ pickup ions outside of Venus' bow shock: Venus Express observation

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Fraenz, M.; Dubinin, E.; Zhang, T. L.; Wan, W.; Barabash, S.; Woch, J.; Lundin, R.

    2012-09-01

    Pickup ions are ions of planetary origin that become assimilated into the solar wind flow through their interaction with the solar wind magnetic and electric field. The speed of pickup ions varies between zero and twice the underlying plasma flow component perpendicular to magnetic field vector. For the unmagnetized planet Venus and Mars, oxygen (O+) pickup ions are known to be important because they can modify the global configuration of planetary plasma environment and significantly contribute to the atmospheric O+ loss [1]. Since the kinetic energy of an O+ pickup ion can reach 64 times that of a co-moving proton, an instrument must be able to measure O+ ions with energy of at least tens of keV to investigate the O+ pickup ion distribution from planetary ionosphere to solar wind. The in-situ observations and simulations at Mars have shown that the energy of O+ pickup ions can be 55-72 keV outside of the bow shock [2]. For Venus case, the plasma analyzer (OPA) onboard Pioneer Venus Orbiter (PVO), which was designed for solar wind monitoring, has an 8 keV energy limit for O+ detection and the limited sampling and data rate [3]. Therefore, OPA can only measure the O+ pickup ions in the sheath flow or inside the induced magnetosphere where the speed of ambient plasma flow is significantly lower than that of the unshocked solar wind outside of the bow shock. The Ion Mass Analyzer (IMA), included in the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) package on board Venus Express (VEX), determines the composition, energy, and angular distribution of ions in the energy range ~10 eV/q to 30 keV/q. Note that an O+ ion moving at the typical solar wind speed 400 km/s has kinetic energy 13.4 keV. Therefore, IMA has ability to measure the O+ pickup ions outside of Venus' bow shock. We have examined the IMA data during the solar minimum period 2006-2010, and identified about ten cases with clear signature of O+ pickup ion. With these observations, we will determine

  1. Venus Express observations of magnetic field fluctuations in the magnetosheath

    NASA Astrophysics Data System (ADS)

    Du, J.; Wang, C.; Zhang, T. L.; Volwerk, M.; Delva, M.; Baumjohann, W.

    2008-12-01

    Magnetic field fluctuations within a planetary magnetosheath play an important role in the solar wind interaction with the planet, since they can reconfigure the plasma flow and the magnetic field and transfer energy from the bow shock to the lower boundary. Many studies have been presented on the fluctuations in the terrestrial magnetosheath; however, hardly any studies have so far been carried out for Venusian magnetosheath fluctuations, except for Luhmann et al. [1983] and Vörös et al. [2008] who performed some case studies on the magnetosheath fluctuations at Venus. It was shown that the fluctuations are probably convected from the vicinity of the quasi-parallel bow shock along the streamlines. Based on the Venus Express observations in 2006 and 2007, we investigate the spatial distributions of magnetic field fluctuations in the Venus magnetosheath statistically.

  2. Improved calibration of SOIR/Venus Express spectra.

    PubMed

    Vandaele, Ann Carine; Mahieux, Arnaud; Robert, Séverine; Berkenbosch, Sophie; Clairquin, Roland; Drummond, Rachel; Letocart, Vincent; Neefs, Eddy; Ristic, Bojan; Wilquet, Valérie; Colomer, Frédéric; Belyaev, Denis; Bertaux, Jean-Loup

    2013-09-01

    The SOIR instrument on board the ESA Venus Express mission has been operational since the insertion of the satellite around Venus in April 2006. Since then, it has delivered high quality IR solar occultation spectra of the atmosphere of Venus. The different steps from raw spectra to archived data are described and explained in detail here. These consist of corrections for the dark current and for the non-linearity of the detector; removing bad pixels, as well as deriving noise. The spectral calibration procedure is described, along with all ancillary data necessary for the understanding and interpretation of the SOIR data. These include the full characterization of the AOTF filter, one of the major elements of the instrument. All these data can be found in the ESA PSA archive.

  3. Venus Express en route to probe the planet's hidden mysteries

    NASA Astrophysics Data System (ADS)

    2005-11-01

    Venus Express will eventually manoeuvre itself into orbit around Venus in order to perform a detailed study of the structure, chemistry and dynamics of the planet's atmosphere, which is characterised by extremely high temperatures, very high atmospheric pressure, a huge greenhouse effect and as-yet inexplicable "super-rotation" which means that it speeds around the planet in just four days. The European spacecraft will also be the first orbiter to probe the planet's surface while exploiting the "visibility windows" recently discovered in the infrared waveband. The 1240 kg mass spacecraft was developed for ESA by a European industrial team led by EADS Astrium with 25 main contractors spread across 14 countries. It lifted off onboard a Soyuz-Fregat rocket, the launch service being provided by Starsem. The lift-off from the Baikonur Cosmodrome in Kazakstan this morning took place at 09:33 hours local time (04:33 Central European Time). Initial Fregat upper-stage ignition took place 9 minutes into the flight, manoeuvring the spacecraft into a low-earth parking orbit. A second firing, 1 hour 22 minutes later, boosted the spacecraft to pursue its interplanetary trajectory. Contact with Venus Express was established by ESA's European Space Operations Centre (ESOC) at Darmstadt, Germany approximately two hours after lift-off. The spacecraft has correctly oriented itself in relation to the sun and has deployed its solar arrays. All onboard systems are operating perfectly and the orbiter is communicating with the Earth via its low-gain antenna. In three days' time, it will establish communications using its high-gain antenna. Full speed ahead for Venus Venus Express is currently distancing itself from the Earth full speed, heading on its five-month 350 million kilometre journey inside our solar system. After check-outs to ensure that its onboard equipment and instrument payload are in proper working order, the spacecraft will be mothballed, with contact with the Earth being

  4. Upstream proton cyclotron waves at Venus observed by Venus Express magnetometer

    NASA Astrophysics Data System (ADS)

    Delva, Magda; Volwerk, Martin; Bertucci, Cesar; Mazelle, Christian; Romanelli, Norberto; Voeroes, Zoltan

    2016-07-01

    An overview of the observations of proton cyclotron waves (PCWs) upstream of the Venus bow shock from the magnetometer data on Venus Express is given. The first detection of this specific type of upstream waves proved that newborn planetary ions from the upper exosphere are directly picked up by the instreaming solar wind. Their occurrence up to large distances (~ 9 Rv) from the planet raises the question of the existence of an extended reservoir of planetary neutral hydrogen. Also, the loss of exospheric hydrogen directly to the solar wind has implications for the evolution of the planetary atmosphere over the age of the solar system. The successful long duration of the Venus Express mission allows to study the occurrence of PCWs under solar minimum and solar maximum conditions. Results of long term studies for both cases are presented and compared. Explanations for the differences are found in the unusual nature of the current solar maximum, which was characterized by low sunspot numbers, low density and mainly moderate speed.

  5. The polar atmosphere of Venus: Radio occultation measurements with Venus Express and Magellan

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Tellmann, S.; Paetzold, M.; Haeusler, B.; Bird, M. K.; Tyler, G. L.

    2012-12-01

    The ESA Venus Express (VEx) spacecraft has been conducting radio occultation experiments since 2006. The results reported to date are based on data recorded by 35-m antennas of the ESA Tracking Station Network (e.g., Tellmann et al., J. Geophys. Res., 114, E00B36, 2009). We have recently begun to derive complementary new results through analysis of high-quality "open-loop" data recorded by a 70-m antenna of the NASA Deep Space Network. This experiment sounded the polar atmosphere in both hemispheres at latitudes greater than 75 degrees. As in previous occultation measurements in this region, there is a deep convective layer at altitudes below about 60 km. The convective layer is capped by an abrupt transition to stable stratification, and the overlying free air is modulated by vertically propagating gravity waves. These new results will be compared with Magellan radio occultation measurements acquired at comparable latitudes in the early 1990s and with the VEx results reported by Tellmann et al. (2009). Our analysis also illustrates some of the challenges that can arise in radio occultation measurements at Venus. For example, the sharp temperature minimum at the tropopause creates a thin layer that eludes radio occultation sounding owing to its peculiar refractive properties. This research is funded in part by NASA Grant NNX10AE22G of the Venus Express Participating Scientist Program.

  6. Spectral inventory of the SOIR spectra onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Robert, Séverine; Mahieux, Arnaud; Wilquet, Valérie; Drummond, Rachel; Carine Vandaele, Ann

    2013-04-01

    The set of spectra recorded by the SOIR instrument on board Venus Express have been carefully studied from a spectroscopic point of view. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter for order selection. It performs solar occultation measurements in the IR region (2.2 - 4.4 μm) at a resolution of 0.10 - 0.24 cm-1 [1]. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65 to 180 km) with emphasis on the vertical distribution of gases (CO2, CO, H2O, HCl, HF, ...). The sensitivity of the SOIR instrument and the high concentration of CO2 on Venus, coupled with the long absorption paths sounded during solar occultations, enable us to detect weak absorption bands of rare CO2 isotopologues [2, 3]. The spectra are analysed using ASIMAT, an in-house Matlab algorithm [4]. It is based on the Optimal Estimation Method [5] with the aim to deduce physical characteristics (densities, temperature) of the Venus atmosphere from the spectra recorded using SOIR. The spectra were fitted using HITRAN 2008 [6]. A tool of automatic assignment was developed and applied to each spectrum leading to the creation of the wavenumber list of each line visible in the SOIR spectra. The tools used to calibrate the spectra, to characterize the residuals and to produce the line list will be described extensively for a selected number of orbits. References 1. Nevejans, D., et al., Compact high-resolution space-borne echelle grating spectrometer with AOTF based on order sorting for the infrared domain from 2.2 to 4.3 micrometer. Applied Optics, 2006. 45(21): p. 5191-5206. 2. Wilquet, V., et al., Line parameters for the 01111-00001 band of 12C16O18O from SOIR measurements of the Venus atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 2008. 109: p. 895-905. 3. Robert, S., et al., Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra. J

  7. Analysis of Venusian Zonal Winds Using Venus Express Data

    NASA Astrophysics Data System (ADS)

    McCabe, Ryan M.; Sayanagi, Kunio M.; Blalock, John J.; Peralta, Javier; Gray, Candace L.; McGouldrick, Kevin; Imamura, Takeshi

    2016-10-01

    We measure the zonal mean wind structure of Venus between 2006 and 2013 in the ultraviolet images captured by the Venus Monitoring Camera (VMC) onboard the ESA Venus Express spacecraft. Our wind measurements employ the digital two-dimensional Correlation Imaging Velocimetry method to track cloud motions. Our current focus is on understanding the short- and long-term dynamics of Venus's atmospheric superrotation, in which the equatorial atmosphere rotates with a period of approximately 4-5 days (~60 times faster than the solid planet). The Venusian atmospheric superrotation's forcing and maintenance mechanisms remain to be explained. A number of studies have been published on the cloud-tracking wind measurements on Venus, however, those different measurements have not reached a consensus on the temporal evolution of the zonal wind structure (e.g., Kouyama et al 2013, Khatuntsev et al 2013, Patsaeva et al. 2015). Temporal evolution of the zonal wind could reveal the transport of energy and momentum and eventually shed a light on mechanisms that maintain the superrotation. Our first goal is to characterize the temporal dynamics of Venus's zonal wind profile and two-dimensional wind field, in which we will search for equatorial waves (in particular the so-called "Y-feature") that may force the Venusian atmospheric superrotation.Kouyama, T. et al (2013), J. Geophys. Res. Planets, 118, 37–46, doi:10.1029/2011JE004013.Khatuntsev et al. (2013), Icarus, 226, 140-158, doi:10.1016/j.icarus.2013.05.018.Patsaeva,M.V.,et al. (2015), Planetary and Space Science, 113, 100-108, doi:10.1016/j.pss.2015.01.013.

  8. Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; López Valverde, M. A.; López Puertas, M.; Funke, B.; Bertaux, J. L.

    2015-08-01

    SOIR is a powerful infrared spectrometer flying on board the Venus Express spacecraft since mid-2006. It sounds the Venus atmosphere above the cloud layer using the solar occultation technique. In the recorded spectra, absorption structures from many species are observed, among them carbon dioxide, the main constituent of the Venus atmosphere. Previously, temperature vertical profiles were derived from the carbon dioxide density retrieved from the SOIR spectra by assuming hydrostatic equilibrium. These profiles show a permanent cold layer at 125 km with temperatures of ~100 K, surrounded by two warmer layers at 90 and 140 km, reaching temperatures of ~200 K and 250-300 K, respectively. In this work, temperature profiles are derived from the SOIR spectra using another technique based on the ro-vibrational structure of carbon dioxide observed in the spectra. The error budget is extensively investigated. Temperature profiles obtained by both techniques are comparable within their respective uncertainties and they confirm the vertical structure previously determined from SOIR spectra.

  9. Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; Chamberlain, S.; Belyaev, D.; Bertaux, J. L.

    2015-08-01

    SOIR on board Venus Express sounds the Venus upper atmosphere using the solar occultation technique. It detects the signature from many Venus atmosphere species, including those of SO2 and CO2. SO2 has a weak absorption structure at 4 μm, from which number density profiles are regularly inferred. SO2 volume mixing ratios (VMR) are calculated from the total number density that are also derived from the SOIR measurements. This work is an update of the previous work by Belyaev et al. (2012), considering the SO2 profiles on a broader altitude range, from 65 to 85 km. Positive detection VMR profiles are presented. In 68% of the occultation spectral datasets, SO2 is detected. The SO2 VMR profiles show a large variability up to two orders of magnitude, on a short term time scales. We present mean VMR profiles for various bins of latitudes, and study the latitudinal variations; the mean latitude variations are much smaller than the short term temporal variations. A permanent minimum showing a weak latitudinal structure is observed. Long term temporal trends are also considered and discussed. The trend observed by Marcq et al. (2013) is not observed in this dataset. Our results are compared to literature data and generally show a good agreement.

  10. Neutral atmosphere composition from SOIR measurements on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Drummond, R.; Wilquet, V.; Vandaele, A. C.; Federova, A.; Belyaev, D.; Korablev, O.; Villard, E.; Montmessin, F.; Bertaux, J.-L.

    2009-04-01

    The SOIR instrument performs solar occultation measurements in the IR region (2.2 - 4.3 m) at a resolution of 0.12 cm-1, the highest on board Venus Express. It combines an echelle spectrometer and an AOTF (Acousto-Optical Tunable Filter) for the order selection [1,2]. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of the gases. Measurements of HDO, H2O, HCl, HF, CO and CO2 vertical profiles have been routinely performed, as well as those of their isotopologues [3,4]. We will discuss the improvements introduced in the analysis algorithm of the SOIR spectra. This discussion will be illustrated by presenting new results of retrievals of minor constituents of the Venus mesosphere, in terms of vertical profiles and geographical distribution. CO2 is the major constituent of the Venus atmosphere and was therefore observed in many solar occultations, leading to a good geographical coverage, although limited by the geometry of the orbit. Depending on the abundance of the absorbing isotopologue and on the intensity of the band measured, we will show that the SOIR instrument is able to furnish CO2 vertical profiles ranging typically from 65 to 150 km, reaching in some conditions 185 km altitude. This information is important in the frame of compiling, in collaboration with other teams, a new Venus Atmosphere Model. 1. A. Mahieux, S. Berkenbosch, R. Clairquin, D. Fussen, N. Mateshvili, E. Neefs, D. Nevejans, B. Ristic, A. C. Vandaele, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, E. Villard, F. Montmessin and J.-L. Bertaux, "In-Flight performance and calibration of SPICAV SOIR on board Venus Express", Applied Optics 47 (13), 2252-65 (2008). 2. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois and E. Villard, "Compact high

  11. Venus Express Contributions to the Study of Planetary Lightning

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Hart, R. A.; Zhang, T. L.

    2014-04-01

    Jupiter, and Saturn are expected to generate the electrical potential differences in their clouds sufficient to cause a breakdown in the atmosphere,creating a conducting path for the electric potential to discharge. This high-energy phenomenon creates a hot, high-pressure channel that enables chemical reactions not possible under usual local thermodynamic conditions. Thus it is of some interest to determine if lightning occurs in an atmosphere. While Venus is not usually considered one of the wet planets, lightning has been an object of interest since the Venera landers. It was observed with electromagnetic coils on Venera 11, 12, 13, 14 landers [2]. It was observed with a visible spectrometer on the Venera 9 orbits [1]. It was mapped during solar occultations by the electric antenna on the Pioneer Venus Orbiter [4]. These measurements revealed extensive lightning activity with an electromagnetic energy flux similar to that on Earth. However, the observations were limited in number in the atmosphere and to the nightside from orbit. In order to improve the understanding of Venus lightning, the Venus Express magnetometer was given a 128-Hz sampling rate that could cover much of the ELF frequencies at which lightning could be observed in the weak magnetic fields of the Venus ionosphere [5]. This investigation was immediately successful [3], but mastering the cleaning of the broadband data took several years to accomplish. Furthermore, the high polar latitudes of VEX periapsis were not the ideal locations to conduct the more global survey that was desired. Fortunately, after precessing poleward over the first few years the latitude of periapsis has returned to lower latitudes(Figures 1 and 2) and active electrical storms are now being studied. The charged constituent of the Venus atmosphere need not be water. In fact, we believe it is H2SO4 which polarizes much as water does and which freezes and melts at similar temperatures. If it is H2SO4, we would expect the

  12. Venus winds at cloud level from VIRTIS during the Venus Express mission

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre

    2010-05-01

    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  13. Understanding of the Venus upper atmosphere dynamics with O2(a1Δ) Venus Express observations

    NASA Astrophysics Data System (ADS)

    Soret, L.; Gérard, J.-C.; Piccioni, G.; Drossart, P.

    2012-04-01

    The O2(a1Δ) nightglow emission at 1.27 μm may be used as a tracer of the dynamics prevailing in the Venusian upper mesosphere. This emission has thus been observed with ground-based telescopes and from space with instruments such as VIRTIS on board Venus Express. Observations have shown that the emission maximum is statistically located close to the antisolar point at ~96 km. As originally suggested by Connes et al. (1979), such an emission results from the production of oxygen atoms on the Venus dayside by photodissociation and electron impact dissociation of CO2 and CO, which are then transported to the nightside by the subsolar to antisolar general circulation, where they recombine to create excited O2(a1Δ) molecules. Their radiative deexcitation produces the O2(a1Δ) nightglow with a maximum near the antisolar point. However, VIRTIS observations indicate that the O2(a1Δ) nightglow emission is highly variable, both in intensity and location. Actually, when considering individual observations, the patch of bright emission is rarely located at the antisolar point and the brighter area around this point is the result of statics accumulation. Also, when considering several individual observations acquired in a short period of time, it is possible to follow an individual emission patch and to deduce its displacement and its brightness variation due to activation or deactivation. In this study, we analyze several sequences of VIRTIS observations in order to understand the Venus upper mesosphere dynamics. We show that the intensity can vary by several megaRayleighs in a couple of hours with effective lifetimes on the order of several hours. The horizontal motion of the spots leads to the conclusion that winds in the 95-100 km region are in the range of 25 to 150 m s-1, in good agreement with the study by Hueso et al. (2008).

  14. Models of the global cloud structure on Venus derived from Venus Express observations

    NASA Astrophysics Data System (ADS)

    Barstow, J. K.; Tsang, C. C. C.; Wilson, C. F.; Irwin, P. G. J.; Taylor, F. W.; McGouldrick, K.; Drossart, P.; Piccioni, G.; Tellmann, S.

    2012-02-01

    Spatially-resolved near-infrared spectra from the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on Venus Express have been used to derive improved models of the vertical structure and global distribution of cloud properties in the southern hemisphere of Venus. VIRTIS achieved the first systematic, global mapping of Venus at wavelengths within transparency windows in the 1.6-2.6 μm range, which are sensitive on the nightside to absorption by the lower and middle cloud layers of thermally-emitted radiation from the hot lower atmosphere ( Taylor, F.W., Crisp, D., Bézard, B. [1997]. Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, pp. 325-351). The cloud model used to interpret the spectra is based on previous work by Pollack et al. (Pollack, J., Dalton, J., Grinspoon, D., Wattson, R., Freedman, R., Crisp, D., Allen, D., Bézard, B., de Bergh, C., Giver, L. [1993]. Icarus 103, 1-42), Grinspoon et al. (Grinspoon, D.H., Pollack, J.B., Sitton, B.R., Carlson, R.W., Kamp, L.W., Baines, K.H., Encrenaz, T., Taylor, F.W. [1993]. Planet. Space Sci. 41, 515-542) and Crisp (Crisp, D. [1986]. Icarus 67, 484-514), and assumes a composition for the cloud particles of sulfuric acid and water, with acid concentration as a free parameter to be determined. Other retrieved parameters are the average size of the particles and the altitude of the cloud base in the model. Latitudinal variation in the atmospheric temperature structure was incorporated using data from the Venus Radio Science experiment (VeRa). Values are estimated initially using wavelength pairs selected for their unique sensitivity to each parameter, and then validated by comparing measured to calculated spectra over the entire wavelength range, the latter generated using the NEMESIS radiative transfer and retrieval code (Irwin, P.G.J., Teanby, N.A., de Kok, R., Fletcher, L.N., Howett, C.J.A., Tsang, C.C.C., Wilson, C.F., Calcutt, S.B., Nixon, C.A., Parrish, P.D. [2008]. J. Quant

  15. Venus Express bistatic radar: High-elevation anomalous reflectivity

    NASA Astrophysics Data System (ADS)

    Simpson, Richard A.; Tyler, G. Leonard; Häusler, Bernd; Mattei, Riccardo; Pätzold, Martin

    2009-06-01

    Magellan (MGN) bistatic radar observations in 1994 confirmed earlier Pioneer Venus reports of unusual Venus surface reflectivity and emissivity at elevations above 6054 km radius. They also revealed that the anomalous values of surface dielectric constant $\\varepsilon$ near Cleopatra Patera included a large imaginary component ($\\varepsilon$ ≈ -i 100) at 13 cm wavelength, consistent with a semiconducting surface material. The MGN observations were conducted using a linearly polarized wave, canted at 45° with respect to the plane of incidence and radiated by the MGN synthetic aperture radar antenna toward the specularly reflecting region of the mean planetary surface. In 2006 similar experiments were conducted using 13 cm circularly polarized transmissions from Venus Express (VEX). The VEX signal-to-noise ratio (SNR) was lower than that of MGN, but elevated ∣$\\varepsilon$∣ has been inferred broadly over Maxwell Montes. A quasi-specular echo was detected near Cleopatra but with insufficient SNR to address the question of conductivity. An early failure of the VEX 13 cm radio system precludes further measurements with VEX.

  16. Venus Express en route to probe the planet's hidden mysteries

    NASA Astrophysics Data System (ADS)

    2005-11-01

    Venus Express will eventually manoeuvre itself into orbit around Venus in order to perform a detailed study of the structure, chemistry and dynamics of the planet's atmosphere, which is characterised by extremely high temperatures, very high atmospheric pressure, a huge greenhouse effect and as-yet inexplicable "super-rotation" which means that it speeds around the planet in just four days. The European spacecraft will also be the first orbiter to probe the planet's surface while exploiting the "visibility windows" recently discovered in the infrared waveband. The 1240 kg mass spacecraft was developed for ESA by a European industrial team led by EADS Astrium with 25 main contractors spread across 14 countries. It lifted off onboard a Soyuz-Fregat rocket, the launch service being provided by Starsem. The lift-off from the Baikonur Cosmodrome in Kazakstan this morning took place at 09:33 hours local time (04:33 Central European Time). Initial Fregat upper-stage ignition took place 9 minutes into the flight, manoeuvring the spacecraft into a low-earth parking orbit. A second firing, 1 hour 22 minutes later, boosted the spacecraft to pursue its interplanetary trajectory. Contact with Venus Express was established by ESA's European Space Operations Centre (ESOC) at Darmstadt, Germany approximately two hours after lift-off. The spacecraft has correctly oriented itself in relation to the sun and has deployed its solar arrays. All onboard systems are operating perfectly and the orbiter is communicating with the Earth via its low-gain antenna. In three days' time, it will establish communications using its high-gain antenna. Full speed ahead for Venus Venus Express is currently distancing itself from the Earth full speed, heading on its five-month 350 million kilometre journey inside our solar system. After check-outs to ensure that its onboard equipment and instrument payload are in proper working order, the spacecraft will be mothballed, with contact with the Earth being

  17. The Venus visible oxygen nightglow with VIRTIS on board Venus Express

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Piccioni, G.; Gérard, J.-C.; Drossart, P.

    2011-10-01

    The oxygen nightglow emissions in the visible spectral range have been known since the early observations with the Venera spacecraft. The more recent observations with the VIRTIS (Visible and InfraRed Thermal Imaging Spectrometer) instrument on board the ESA mission Venus Express, allow a detailed study of the Herzberg II system of O2, reporting a maximum value of 200 kR for the integrated intensity of the progression. The (0-7), (0- 8), (0-9), (0-10) and the (0-11) bands of the Herzberg II system have been identified in the limb geometry observation data. In this work, we present results about the vertical profile of the observed bands, as well as the total integrated intensity of each single band.

  18. The Magnetic Field in the Lower Ionosphere of Venus as Seen by Venus Express

    NASA Astrophysics Data System (ADS)

    Villarreal, Michaela; Russell, Christopher T.; Zhang, Tielong

    2016-10-01

    In June 2014, the Venus Express mission conducted its aerobraking campaign that allowed the spacecraft to get to its lowest altitude of 130 km. This provided the first measurements of the lower ionosphere over the north polar region. The data show below ~140 km the magnetic field becomes relatively constant in magnitude and direction. Over the month long aerobraking period, the magnetic field in the lower ionosphere is dominantly horizontal and shows a distinct bias in the +Bx and –By direction despite the field direction at higher altitudes. Here we analyze the relationship between the direction of the lower ionosphere and the long-term average of the interplanetary magnetic field direction.

  19. Interplanetary Coronal Mass Ejections Observed by MESSENGER and Venus Express

    NASA Astrophysics Data System (ADS)

    Good, S. W.; Forsyth, R. J.

    2016-01-01

    Interplanetary coronal mass ejections (ICMEs) observed by the MESSENGER and Venus Express spacecraft have been catalogued and analysed. The ICMEs were identified by a relatively smooth rotation of the magnetic field direction consistent with a flux rope structure, coinciding with a relatively enhanced magnetic field strength. A total of 35 ICMEs were found in the surveyed MESSENGER data (primarily from March 2007 to April 2012), and 84 ICMEs in the surveyed Venus Express data (from May 2006 to December 2013). The ICME flux rope configurations have been determined. Ropes with northward leading edges were about four times more common than ropes with southward leading edges, in agreement with a previously established solar cycle dependence. Ropes with low inclinations to the solar equatorial plane were about four times more common than ropes with high inclinations, possibly an observational effect. Left- and right-handed ropes were observed in almost equal numbers. In addition, data from MESSENGER, Venus Express, STEREO-A, STEREO-B and ACE were examined for multipoint signatures of the catalogued ICMEs. For spacecraft separations below 15° in heliocentric longitude, the second spacecraft observed the ICME flux rope in 82 % of cases; this percentage dropped to 49 % for separations between 15 and 30°, to 18 % for separations between 30 and 45°, and to 12 % for separations between 45 and 60°. As the spacecraft separation increased, it became increasingly likely that only the sheath and not the flux rope of the ICME was observed, in agreement with the notion that ICME flux ropes are smaller in longitudinal extent than the shocks or discontinuities that they often drive. Furthermore, this study has identified 23 ICMEs observed by pairs of spacecraft close to radial alignment. A detailed analysis of these events could lead to a better understanding of how ICMEs evolve during propagation.

  20. Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Grassi, D.; Montabone, L.; Lebonnois, S.; Drossart, P.; Piccioni, G.

    2012-02-01

    We present the spatial distribution of air temperature on Venus' night side, as observed by the high spectral resolution channel of VIRTIS (Visible and Infrared Thermal Imaging Spectrometer), or VIRTIS-H, on board the ESA mission Venus Express. The present work extends the investigation of the average thermal fields in the northern hemisphere of Venus, by including the VIRTIS-H data. We show results in the pressure range of 100-4 mbar, which corresponds to the altitude range of 65-80 km. With these new retrievals, we are able to compare the thermal structure of the Venus' mesosphere in both hemispheres. The major thermal features reported in previous investigations, i.e. the cold collar at about 65-70°S latitude, 100 mbar pressure level, and the asymmetry between the evening and morning sides, are confirmed here. By comparing the temperatures retrieved by the VIRTIS spectrometer in the North and South we find that similarities exist between the two hemispheres. Solar thermal tides are clearly visible in the average temperature fields. To interpret the thermal tide signals (otherwise impossible without day site observations), we apply model simulations using the Venus global circulation model Venus GCM (Lebonnois, S., Hourdin, F., Forget, F., Eymet, V., Fournier, R. [2010b]. International Venus Conference, Aussois, 20-26 June 2010) of the Laboratoire de Météorologie Dynamique (LMD). We suggest that the signal detected at about 60-70° latitude and pressure of 100 mbar is a diurnal component, while those located at equatorial latitudes are semi-diurnal. Other tide-related features are clearly identified in the upper levels of the atmosphere.

  1. ESA to present the latest Venus Express results to the media

    NASA Astrophysics Data System (ADS)

    2007-11-01

    The launch of Venus Express back in November 2005 represented a major milestone in the exploration of Venus — a planet unvisited by any dedicated spacecraft since the early 1990s. One of the fundamental questions being addressed by the Venus Express mission is why a world so similar to Earth in mass and size has evolved so differently, to become the noxious and inhospitable planet it is today. Since it started its scientific observations in July 2006, Venus Express has been making the most detailed study of the planet’s thick and complex atmosphere to date. The latest findings not only highlight the features that make Venus unique in the solar system but also provide fresh clues as to how the planet is — despite everything — a more Earth-like planetary neighbour than one could have imagined. The results will appear in a special section of the 29 November issue of the journal Nature containing nine individual papers devoted to Venus Express science activities. Media organisations interested in attending the press conference are invited to register via the form attached below. Media that cannot attend will have the opportunity to follow the press conference via the following phone line: +33 1 58 99 57 42 (listening-mode only).The results presented at the press conference are embargoed until 28 November 19:00 CET. For more information ESA Media Relations Office Tel: +33 1 5369 7299 Fax: +33 1 5369 7690 Media event programme ‘Venus: a more Earth-like planetary neighbour’ Latest results from Venus Express 28 November 2007, 15:00, room 137 ESA Headquarters, 8-10 rue Mario-Nikis, Paris 15:00 Introduction, by Håkan Svedhem, ESA Venus Express Project Scientist 15:07 Venus: What we knew before, by Fred Taylor, Venus Express Interdisciplinary Scientist 15:15 Temperatures in the atmosphere of Venus, by Jean-Loup Bertaux, SPICAV Principal Investigator 15:25 The dynamic atmosphere of Venus, by Giuseppe Piccioni, VIRTIS Principal Investigator 15:40 Venus

  2. No statistical evidence of lightning in Venus night-side atmosphere from VIRTIS-Venus Express Visible observations

    NASA Astrophysics Data System (ADS)

    Cardesín Moinelo, A.; Abildgaard, S.; García Muñoz, A.; Piccioni, G.; Grassi, D.

    2016-10-01

    In this study we describe a dedicated analysis of luminous transient events on Venus night side atmosphere with the visible channel of the VIRTIS instrument (280-1100 nm), this being the most comprehensive search of lightning conducted so far with Venus Express data. Our search results in thousands of signal detections, but unfortunately they can be all explained by cosmic rays impinging on the detector, and further statistical analysis shows that all of the events are randomly distributed along the spectral dimension, therefore not showing any clear evidence of signal coming from lightning emission in the Venus atmosphere. This does not exclude the existence of lightning, but imposes some constraints on their occurrence that are important for future research.

  3. The structure of the Venus neutral atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Bird, Mike; Verweyen, Alice; Haeusler, Bernd; Paetzold, Martin; Tyler, G. L.

    The Venus Express Radio Science Experiment VeRa uses one-way radio signals at X-band and S-band for the sounding of the Venus neutral atmosphere and ionosphere. An Ultrastable Oscillator (USO) provides a high quality onboard frequency reference source for this one-way radio link. Simultaneous, coherent measurements at two wavelengths allow separation of dispersive media effects from the classical Doppler shift. Electron density profiles of the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere can be derived via an Abel transform with an altitude resolution of only a few hundred metres in the altitude range between about 40 and 100 km. Three occultation seasons could be covered during the nominal mission of Venus Express resulting in a data set of about 140 profiles of the neutral atmosphere. Another three occultation seasons are planned during the extended mission. The polar orbit of Venus Express provides the opportunity to study the atmosphere at all planetocentric latitudes under varying illumination conditions. Day-night and latitudinal variations of the thermal structure, the high variability of the atmosphere above the troposphere and signal absorption effects caused by the H2SO4 vapour can be investigated with the resulting data set.

  4. The Structure of the Venus Neutral Atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S. A.; Häusler, B.; Pätzold, M.; Bird, M. K.; Tyler, G. L.

    2007-12-01

    The Venus Express Radio Science Experiment VeRa is sounding the Venus neutral atmosphere and ionosphere using the spacecraft radio subsystem in the oneway radio link mode. An Ultrastable Oscillator (USO) provides a high quality onboard frequency reference source for the derivation of electron density profiles in the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere. The measurement configuration allows an altitude resolution of only a few hundred metres from the cloud deck at about 40 km to approximately 100 km. Three occultation seasons could be covered in the first two years of the Venus Express mission resulting in a data set of about 140 profiles of the neutral atmosphere. The polar orbit of Venus Express provides the opportunity to study the atmosphere at all planetocentric latitudes under varying illumination conditions. Special attention will be given to day-night variations of the thermal structure and the temperature distribution at high polar latitudes on both hemispheres ("cold collar region") and signal absorption effects caused by the H2SO4 vapour.

  5. Ionospheric Modulation of Venus Express Lightning Detection Rates

    NASA Astrophysics Data System (ADS)

    Hart, Richard A.; Russell, Christopher T.; Zhang, Tielong

    2015-11-01

    Venus Express completed its nearly 9 year campaign at Earth’s sister planet in late 2014. During this period the onboard fluxgate magnetometer collected data up to 64 Hz in frequency while near periapsis. This is the expected frequency range for lightning-generated whistler-mode waves at Venus, between the local electron and ion gyrofrequencies. These waves are right-hand circularly polarized and are guided by the local magnetic field. When the Venusian ionopause is low enough in altitude to reside in the collisional region, the interplanetary magnetic field can get carried down with the ions and magnetize the lower ionosphere. As the field travels towards the terminator it gains a radial component, enabling whistlers to reach higher altitudes and be detected by the spacecraft. The mission covered almost an entire solar cycle and frequently observed a magnetized ionosphere during the solar minimum phase when the ionosphere was weak due to reduced incident EUV. Detection was most common at 250 km altitude where the waves travel more slowly due to reduced ionospheric density. In response they increase in amplitude in order to conserve magnetic energy flux. Here, we examine the changes in the ionospheric properties associated with the evolution of the solar cycle and the rate of detection of these lightning-generated signals.

  6. Post-Venus Express exploration of Venus : an in-situ mission to characterize Venus climate evolution

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Aplin, K.; Ferencz, C.; Lopez-Moreno, J.; Leitner, J.; Marty, B.; Roos-Serote, M.; Titov, D.; Wilson, C.; Witasse, O.; Vep Team

    The planet Venus - our neighbour in the solar system and twin sister of the Earth - was once expected to be very similar to the Earth. However the space missions to the planet discovered a world completely different from ours. The fundamental mysteries in the physics of Venus are related to the composition and dynamics of the atmosphere, physics of the cloud layer and greenhouse effect, surface mineralogy, evolution of the surface and volatile inventory. Despite the fact that both Earth and Venus were formed in the same region of the solar system, the planets followed dramatically different evolutionary paths. Understanding the reasons for this divergence would shed a light on the processes of origin and evolution of all terrestrial planets including Earth. A new mission to Venus is under study. It consists of a set of probes (balloon probe, descent probes) devoted to the characterization of atmospheric chemical cycles, atmospheric electrical/ electromagnetic activity, low atmosphere dynamics, surface/ atmosphere thermo-chemical interactions, surface mineralogy and geology, with an emphasis on past climate evolution (noble gas/ isotope composition of the atmosphere). Some orbital science is planned, in complement to in-situ science. An atmosphere sample return is also considered. Information about current activity may be found at http://www.aero.jussieu.fr/VEP/, together with documents describing the present state of thoughts about scientific priorities and possible mission scenarios.

  7. Investigation of the HDO/H2O ratio on Venus from SOIR solar occultations on board Venus Express

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Mahieux, A.; Robert, S.; Wilquet, V.; Drummond, R.; Vandaele, A. C.; Iwagami, N.; Bertaux, J.-L.

    2012-04-01

    The SOIR instrument performs solar occultation measurements in the IR region (2.2 - 4.3 μm) at a resolution of 0.12 cm-1, the highest on board Venus Express. It combines an echelle spectrometer and an AOTF (Acousto-Optical Tunable Filter) for the order selection. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere at the terminators in the upper mesosphere and lower thermosphere (70 to 170 km) with an emphasis on vertical distribution of the gases. H2O and HDO have been routinely monitored at various latitudes of the Venus terminator, using the temperature profiles obtained from the SOIR CO2 density profiles. The HDO/H2O ratios are obtained from an altitude region extending from 70 km up to 100 km, and show a vertical gradient. Observations made at the IRTF telescope in Hawaii in 2010 showed a disk-averaged mixing ratio of HDO is 0.22 ± 0.03 ppm for a representative height region of 62-67 km. Based on many previous H2O measurements, the HDO/H2O ratio is found to be 140 ± 20 times larger than the telluric ratio. This lies between the ratios of 120 ± 40 and 240 ± 25, respectively, reported for the 30-40 km region [De Bergh et al. 1991] by ground-based night-side spectroscopy and for the 80-100 km region by solar occultation measurement on board the Venus Express [Fedorova et al. 2008]. In addition to this, past observations at an altitude of 70 km show that HDO on Venus in the early evening shows a latitudinal structure, and HDO mixing ratio at higher latitude is two times larger that in the lower latitude regions. So there is probably a vertical distribution or/and a latitudinal structure. From measurements obtained by SOIR on Venus Express at the Venus terminator, the D/H ratio seems to be very variable, and we confirm that the D/H ratio is larger at higher altitude.

  8. Retrieval of the cyclostrophic wind in the Venus mesosphere from the VIRTIS/Venus Express temperature sounding.

    NASA Astrophysics Data System (ADS)

    Piccialli, Arianna; Titov, Dmitri; Grassi, Davide; Khatuntsev, Igor; Drossart, Pierre; Piccioni, Giuseppe; Migliorini, Alessandra

    Venus mesosphere is characterized by an extremely complex dynamics: a retrograde super rotation flow near the cloud top completes a full rotation of the planets in only four earth days and in the upper thermosphere a solar - antisolar circulation reaches speeds of 100 m/s. Earlier studies have shown that the strong zonal winds at cloud top are the result of local balance of pressure gradient and centripetal force which is called cyclostrophic balance. The thermal wind equation that describes this balance relates the vertical wind gradient to the latitudinal temperature gradient on isobaric levels. The temperature structure of Venus mesosphere has been observed with a good spatial and temporal coverage in the last two years from VIRTIS (Visual and Infrared Thermal Imaging Spectrometer) on board the Venus Express spacecraft. Here we present preliminary retrievals of the cyclostrophic wind derived from VIRTIS temperature sounding. The main features of the wind are 1) the midlatitude jet with a maximum speed of 80 - 90 ± 10 m/s which occurs around 50° S latitude at 70 km altitude; 2) the fast decrease of the wind speed from 60° S toward the pole; 3) the decrease of the wind speed with increasing height above the jet. The dependence of zonal wind on local time has been analysed, our preliminary results show that parameters of the mid-latitude jet only weekly depend on local solar time. Comparison with cloud - tracked wind derived from the Venus Monitoring Camera (VMC) show a general good agreement.

  9. The Structure of the Venus Neutral Atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Häusler, B.; Pätzold, M.; Bird, M.; Tyler, G. L.

    2007-08-01

    The Venus Express Radio Science Experiment VeRa uses one-way radio signals at X-band and S-band for the sounding of the Venus neutral atmosphere and ionosphere. An Ultrastable Oscillator (USO) provides a high quality onboard frequency reference source for this dual-frequency one-way radio link. Simultaneous, coherent measurements at two wavelengths allow separation of dispersive media effects from the classical Doppler shift. Electron density profiles of the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere can be derived via an Abel transform with an altitude resolution of only a few hundred metres from the cloud deck to ~ 100 km. Two occultation seasons took place in the first year of observation. A total number of 42 profiles occultation experiments were conducted. The polar orbit of Venus Express provides the opportunity to study the atmosphere at all planetocentric latitudes under varying illumination conditions. Special attention will be given to day-night variations of the atmospheric structure and the temperature distribution at high polar latitudes on both hemispheres ("cold collar region") and signal absorption effects caused by the H2SO4 vapour.

  10. Update of the Venus density and temperature profiles at high altitude measured by SOIR on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Vandaele, A. C.; Bougher, S. W.; Drummond, R.; Robert, S.; Wilquet, V.; Chamberlain, S.; Piccialli, A.; Montmessin, F.; Tellmann, S.; Pätzold, M.; Häusler, B.; Bertaux, J. L.

    2015-08-01

    The SOIR instrument on board Venus Express regularly sounds the Venus atmosphere using the solar occultation technique. The density and temperature profiles are inferred from SOIR spectra recorded in the infrared. The method has been described in a previous publication (Mahieux et al., 2012. J. Geophys. Res. 117. doi:10.1029/2012JE004058.). This paper is devoted to the update of the VAST (Venus Atmosphere from SOIR measurements at the Terminator) compilation that was initiated in the above cited work, which gives the mean CO2 number density and temperature profiles for different latitude bins. The method has been improved and has been applied to more data. The new compilation which is given on the same latitudinal grid now distinguishes between the two sides of the terminator. The compilation also confirms the main thermal layering characteristics that were identified in the earlier version: the succession of a warm layer (230±30 K, 1-σ standard deviation) at a pressure level of 3.2×10-7 mbar (~140 km), a very cold layer (125±32 K) at 2.5×10-5 mbar (~123 km), a warm layer (204±17 K) at 0.01 mbar (~102 km) and finally a colder layer at 0.4 mbar (171±34 K, ~87 km). The layering of all the temperature profiles is explained by radiative rather than dynamical processes. The temporal temperature variation is larger than the mean latitudinal temperature variation. VAST is compared with temperature profiles obtained from other Venus Express instruments, VeRa and SPICAV-UV, and ground based measurements.

  11. First Results of Venus Express Spacecraft Observations with Wettzell

    NASA Technical Reports Server (NTRS)

    Calves, Guifre Molera; Wagner, Jan; Neidhardt, Alexander; Kronschnabl, Gerhard; Ayucar, Miguel Perez; Cimo, Giuseppe; Pogrebenko, Sergei

    2010-01-01

    The ESA Venus Express spacecraft was observed at X-band with the Wettzell radio telescope in October-December 2009 in the framework of an assessment study of the possible contribution of the European VLBI Network to the upcoming ESA deep space missions. A major goal of these observations was to develop and test the scheduling, data capture, transfer, processing, and analysis pipeline. Recorded data were transferred from Wettzell to Metsahovi for processing, and the processed data were sent from Mets ahovi to JIVE for analysis. A turnover time of 24 hours from observations to analysis results was achieved. The high dynamic range of the detections allowed us to achieve a milliHz level of spectral resolution accuracy and to extract the phase of the spacecraft signal carrier line. Several physical parameters can be determined from these observational results with more observational data collected. Among other important results, the measured phase fluctuations of the carrier line at different time scales can be used to determine the influence of the solar wind plasma density fluctuations on the accuracy of the astrometric VLBI observations.

  12. Sulfuric acid vapor in the atmosphere of Venus as observed by the Venus Express Radio Science experiment VeRa

    NASA Astrophysics Data System (ADS)

    Oschlisniok, Janusz; Pätzold, Martin; Häusler, Bernd; Tellmann, Silvia; Bird, Mike; Andert, Tom

    2016-04-01

    The cloud deck within Venus' atmosphere, which covers the entire planet between approx. 50 and 70 km altitude, consists mostly of liquid and gaseous sulfuric acid. The gaseous part increases strongly just below the main clouds and builds an approx. 15 km thick haze layer of H2SO4. This region is responsible for a strong absorption of radio waves as seen in VeRa radio science observations. The amount of the absorption, which is used to derive the abundance of gaseous sulfuric acid, depends on the signal frequency. VeRa probed the atmosphere of Venus between 2006 and 2015 with radio signals at 13 cm (S-band) and 3.6 cm (X-band) wavelengths. We present H2SO4 profiles derived from S-band and X-band absorption during the first occultation season in 2006. The comparison of the H2SO4 profiles derived from both frequency bands provides a reliable picture of the H2SO4 abundance. Distinct differences in the S- and X-band profiles may give a clue to increased SO2 abundances. The derived VeRa results shall be compared with results provided by other experiments onboard Venus Express as well as with previous missions.

  13. Geologic interpretation of the near-infrared images of the surface taken by the Venus Monitoring Camera, Venus Express

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Shalygin, E. V.; Titov, D. V.; Markiewicz, W. J.; Scholten, F.; Roatsch, Th.; Kreslavsky, M. A.; Moroz, L. V.; Ignatiev, N. I.; Fiethe, B.; Osterloh, B.; Michalik, H.

    2012-02-01

    We analyze night-time near-infrared (NIR) thermal emission images of the Venus surface obtained with the 1-μm channel of the Venus Monitoring Camera onboard Venus Express. Comparison with the results of the Magellan radar survey and the model NIR images of the Beta-Phoebe region show that the night-time VMC images provide reliable information on spatial variations of the NIR surface emission. In this paper we consider if tessera terrain has the different NIR emissivity (and thus mineralogic composition) in comparison to the surrounding basaltic plains. This is done through the study of an area SW of Beta Regio where there is a massif of tessera terrain, Chimon-mana Tessera, surrounded by supposedly basaltic plains. Our analysis showed that 1-μm emissivity of tessera surface material is by 15-35% lower than that of relatively fresh supposedly basaltic lavas of plains and volcanic edifices. This is consistent with hypothesis that the tessera material is not basaltic, maybe felsic, that is in agreement with the results of analyses of VEX VIRTIS and Galileo NIMS data. If the felsic nature of venusian tesserae will be confirmed in further studies this may have important implications on geochemical environments in early history of Venus. We have found that the surface materials of plains in the study area are very variegated in their 1-μm emissivity, which probably reflects variability of degree of their chemical weathering. We have also found a possible decrease of the calculated emissivity at the top of Tuulikki Mons volcano which, if real, may be due to different (more felsic?) composition of volcanic products on the volcano summit.

  14. High energy particles at Mars and Venus: Phobos-2, Mars Express and Venus Express observations and their interpretation by hybrid model simulations

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan; Kallio, Esa; Fram, Rudy A.; Alho, Markku; Jarvinen, Riku; Dyadechkin, Sergey; Wedlund, Cyril Simon; Zhang, Tielong; Collinson, Glyn A.; Futaana, Yoshifumi

    2013-04-01

    Mars and Venus can both be reached by Solar Energetic Particles (SEPs). Such high energy particles (protons, multiply charged heavy ions, electrons) penetrate the upper atmospheres of Mars and Venus because, in contrast to Earth, these bodies do not have a significant, global, intrinsic magnetic field to exclude them. One especially well documented, complex and prolonged SEP took in place in early 1989 (Solar Cycle 23) when the Phobos-2 spacecraft was orbiting Mars. This spacecraft had a dedicated high energy particle instrument onboard (SLED), which measured particles with energies in the keV range up to a few tens of MeV. There was in addition a magnetometer as well as solar wind plasma detectors onboard which together provided complementary data to support contemporaneous studies of the background SEP environment. Currently, while the Sun is displaying maximum activity (Solar Cycle 24), Mars and Venus are being individually monitored by instrumentation flown onboard the Mars Express (MEX) and Venus Express (VEX) spacecraft. Neither of these spacecraft carry a high energy particle instrument but their Analyzer of Space Plasmas and Energetic Atoms (ASPERA) experiments (ASPERA-3 on MEX and ASPERA-4 on VEX), can be used to study SEPs integrated over E ≥ ~30 MeV which penetrate the instrument hardware and form background counts in the plasma data. In the present work we present SEP events measured at Mars and Venus based on Phobos-2, 1989 data and on, more recent, MEX and VEX (identified from particle background) observations. We further introduce numerical global SEP simulations of the measured events based on 3-D self-consistent hybrid models (HYB-Mars and HYB-Venus). Through comparing the in situ SEP observations with these simulations, new insights are provided into the properties of the measured SEPs as well as into how their individual planetary bow shocks and magnetospheres affect the characteristics of their ambient Martian and Venusian SEP environments.

  15. Correlations between Venus nightside near infrared emissions measured by VIRTIS/Venus Express and Magellan radar data

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Helbert, J.; Hashimoto, G. L.; Tsang, C. C. C.; Erard, S.; Piccioni, G.; Drossart, P.

    2008-09-01

    Background The Venus Express Spacecraft images the nightside thermal emissions using the VIRTIS imaging spectrometer. At 1.02 micron thermal emission from the surface is penetrates the atmosphere but the signal is attenuated by scattering and absorption [1, 2]. Although the measured flux at top of the atmosphere is nonlinearly related to the original emission of the surface, it is still positively correlated with the product of surface temperature and surface emissivity [3]. The surface temperature of Venus is relatively well constrained as a monotonous function of altitude. Emissivity at 1 micron depends strongly on surface composition, in particular abundance of mafic minerals [3]. Mapping the thermal emission of the surface of Venus therefore supplements radar data as it allows to infer relative variation of surface composition. Data Processing This study examines the correlation of VIRTIS images showing a signal of the surface with all known parameters that govern radiance and applies semi empirical relations to remove the respective influences. 1. Stray sunlight is removed by subtraction of a spectrum template scaled to fit radiance at 1.4 ¹m [2] 2. Limb darkening is accounted for using a linear phase function consistent with results of radiative transfer modeling [4]. 3. Cloud opacity is determined from 1.31 ¹m and applied to 1.02 ¹m while accounting for multiple reflections between lower atmosphere and clouds [3]. Result is brightness temperature of thermal emission below the cloud deck but above the lowest 20 km of the atmosphere. 4. Influence of surface temperature and lower atmosphere absorption is determined by correlation of VIRTIS declouded brightness temperature and Magellan Topography data [5]. To further reduce the influence of cloud contrast and increase the signal of the surface, all suitable VIRTIS observations are map projected and stacked to create a map of the southern hemisphere of Venus. Observations and Interpretation As expected from

  16. The evolution of co-orbiting material in the orbit of 2201 Oljato from 1980 to 2012 as deduced from Pioneer Venus Orbiter and Venus Express magnetic records

    NASA Astrophysics Data System (ADS)

    Lai, Hairong; Russell, Christopher T.; Wei, Hanying; Zhang, Tielong

    2014-01-01

    Asteroid 2201 Oljato passed through perihelion inside the orbit of Venus near the time of its conjunction with Venus in 1980, 1983, and 1986. During those three years, many interplanetary field enhancements (IFEs) were observed by the Pioneer Venus Orbiter (PVO) in the longitude sector where the orbit of Oljato lies inside Venus' orbit. We attribute IFEs to clouds of fine-scale, possibly highly charged dust picked up by the solar wind after an interplanetary collision between objects in the diameter range of 10-1000 m. We interpret the increase rate in IFEs at PVO in these years as due to material in Oljato's orbit colliding with material in, or near to, Venus' orbital plane and producing a dust-anchored structure in the interplanetary magnetic field. In March 2012, almost 30 yr later, with Venus Express (VEX) now in orbit, the Oljato-Venus geometry is similar to the one in 1980. Here, we compare IFEs detected by VEX and PVO using the same IFE identification criteria. We find an evolution with time of the IFE rate. In contrast to the results in the 1980s, the recent VEX observations reveal that at solar longitudes in which the Oljato orbit is inside that of Venus, the IFE rate is reduced to the level even below the rate seen at solar longitudes where Oljato's orbit is outside that of Venus. This observation implies that Oljato not only lost its co-orbiting material but also disrupted the "target material," with which the co-orbiting material was colliding, near Venus.

  17. Results from VIRTIS on board Venus Express after the end of the mission operations

    NASA Astrophysics Data System (ADS)

    Piccioni, G.; Drossart, P.; VIRTIS Venus Express team

    After more than 8 years since the orbit insertion, the Venus Express mission is now at its end of mission operations. VIRTIS aboard the Venus Express spacecraft has addressed a significant amount of scientific results from the surface up to the upper atmosphere, in terms of mapping, composition, structure and dynamics. The VIRTIS instrument consists of two channels: VIRTIS-M, an imaging spectrometer with moderate spectral resolution in the range from 0.25 to 5.2 mu m and VIRTIS-H, a high spectral resolution spectrometer in the range from 2 to 5 mu m co-aligned with the field of view of –M \\citep{Piccioni2007a,Drossart2007a}. The resolution of VIRTIS-M is 2 nm from 0.25 to 1 mu m, and 10 nm from 1 to 5.2 mu m. The resolution of VIRTIS-H is about 2 nm. The atmosphere above the clouds has been observed both on day and night sides, in solar reflection and thermal emission in nadir geometry \\citep{Ignatiev2009, Cottini2012, Peralta2012, Peralta2009}. Limb observations provided O2\\citep{Piccioni2009, Garcia2009a, Gerard2013, Migliorini2013a, Gerard2008, Gerard2009}, OH \\citep{Piccioni2008,Gerard2010,Soret2010,Soret2012}, NO \\citep{Garcia2009b}, CO2 \\citep{Drossart2007b,Lopez-Valverde2011} and CO \\citep{Gilli2009,Gilli2015,Gilli2011} emissions, through nightglow and fluorescence observations. Spectroscopy of the 4-5 mu m range gave access to the cloud structure in the 60-95 km altitude levels \\citep{Irwin2008a,Grassi2014, Grassi2008,Grassi2010,Luz2011}. The deeper atmospheric windows, limited by CO2 and H2O bands were accessible only in thermal emission on the night side. The sounded levels at 1.7 and 2.3 mu m were limited respectively to 30-20 km altitude \\citep{Barstow2012,Bezard2009,Marcq2008a,Satoh2009,Tsang2009, Tsang2010,Tsang2008,Wilson2008,Wilson2009}, while at shorter wavelengths (1.18, 1.10, 1.01, 0.9 and 0.85 mu m), the hot surface of Venus was seen through the scattering clouds \\citep{Mueller2009,Helbert2008,Arnold2008a,Smrekar2010,Mueller2012

  18. Generation of Venus reporter knock-in mice revealed MAGI-2 expression patterns in adult mice.

    PubMed

    Ihara, Kan-ichiro; Nishimura, Tomoki; Fukuda, Tomokazu; Ookura, Tetsuya; Nishimori, Katsuhiko

    2012-01-01

    The membrane-associated guanylate kinase inverted 2 (MAGI-2) protein, which is known to localize at the tight junction of epithelial cells, contains multiple copies of the PDZ and WW domains in its structure. Although the expression pattern of Magi2 mRNA in representative organs has been previously published, its detailed cellular distribution at the histological level remains unknown. Such detailed information would be useful to clarify the biological function of MAGI-2. Here, we report the generation of Venus reporter knock-in mice for Magi2 in which exon 6 of the gene was substituted by the Venus-encoding sequence. We detected the expression of the Venus reporter protein in kidney podocytes from these knock-in mice. We also detected Venus reporter protein expression in spermatids within the testes and within neurons in various regions of the brain. Detection of the reporter protein from these diverse locations indicated the endogenous expression of MAGI-2 in these tissues. Our data suggested a potential function of MAGI-2 in the glomerular filtration process and sperm cell maturation. These data indicate that the Venus reporter knock-in mouse for Magi2 is a useful model for the further study of Magi2 gene function.

  19. A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express.

    PubMed

    Drossart, P; Piccioni, G; Gérard, J C; Lopez-Valverde, M A; Sanchez-Lavega, A; Zasova, L; Hueso, R; Taylor, F W; Bézard, B; Adriani, A; Angrilli, F; Arnold, G; Baines, K H; Bellucci, G; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R W; Coradini, A; Di Lellis, A; Encrenaz, T; Erard, S; Fonti, S; Formisano, V; Fouchet, T; Garcia, R; Haus, R; Helbert, J; Ignatiev, N I; Irwin, P; Langevin, Y; Lebonnois, S; Luz, D; Marinangeli, L; Orofino, V; Rodin, A V; Roos-Serote, M C; Saggin, B; Stam, D M; Titov, D; Visconti, G; Zambelli, M; Tsang, C; Ammannito, Eleonora; Barbis, Alessandra; Berlin, Rainer; Bettanini, Carlo; Boccaccini, Angelo; Bonnello, Guillaume; Bouyé, Marc; Capaccioni, Fabrizio; Cardesin, Alejandro; Carraro, Francesco; Cherubini, Giovanni; Cosi, Massimo; Dami, Michele; De Nino, Maurizio; Del Vento, Davide; Di Giampietro, Marco; Donati, Alessandro; Dupuis, Olivier; Espinasse, Sylvie; Fabbri, Anna; Fave, Agnès; Veltroni, Iacopo Ficai; Filacchione, Gianrico; Garceran, Katia; Ghomchi, Yamina; Giustizi, Maurizio; Gondet, Brigitte; Hello, Yann; Henry, Florence; Hofer, Stefan; Huntzinger, Gerard; Kachlicki, Juergen; Knoll, René; Kouach, Driss; Mazzoni, Alessandro; Melchiorri, Riccardo; Mondello, Giuseppe; Monti, Francesco; Neumann, Christian; Nuccilli, Fabrizio; Parisot, Jérôme; Pasqui, Claudio; Perferi, Stefano; Peter, Gisbert; Piacentino, Alain; Pompei, Carlo; Réess, Jean-Michel; Rivet, Jean-Pierre; Romano, Antonio; Russ, Natalie; Santoni, Massimo; Scarpelli, Adelmo; Sémery, Alain; Soufflot, Alain; Stefanovitch, Douchane; Suetta, Enrico; Tarchi, Fabio; Tonetti, Nazzareno; Tosi, Federico; Ulmer, Bernd

    2007-11-29

    The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 microm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at approximately 115 km and varies with solar zenith angle over a range of approximately 10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km +/- 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.

  20. Oxygen nightglow emissions in the Venus atmosphere, observed by the visible channel of VIRTIS/Venus Express

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Piccioni, G.; Gérard, J.-C.; Slanger, T.; Snels, M.,; Drossart, P.

    2012-04-01

    The oxygen nightglow emissions in the visible spectral range have been known since the early observations with the Venera spacecraft. The VIRTIS instrument on board Venus-Express allows extension of observations of the Herzberg II system of O2, and we report a mean value of 200 kR for the integrated intensity of the progression in limb view. Moreover, three bands of the Chamberlain system have been detected in the VIRTIS mean spectrum, with a mean intensity of 8-10 kR for the most intense of these bands. For the 0-v″ progression of the Herzberg II system, with v″ = 6-13, the maximum emission is typically observed at 95-96 km, with a full width at half maximum ranging from 12 to 15 km. A systematic observing campaign at limb is in progress from Venus Express, which will allow mapping the horizontal spatial distribution of these emissions. Once the map is enough populated, it will be possible to compare the results obtained both in the visible and IR for the O2 nightglow emissions, although not simultaneously.

  1. In-flight performance and calibration of SPICAV SOIR onboard Venus Express.

    PubMed

    Mahieux, Arnaud; Berkenbosch, Sophie; Clairquin, Roland; Fussen, Didier; Mateshvili, Nina; Neefs, Eddy; Nevejans, Dennis; Ristic, Bojan; Vandaele, Ann Carine; Wilquet, Valérie; Belyaev, Denis; Fedorova, Anna; Korablev, Oleg; Villard, Eric; Montmessin, Franck; Bertaux, Jean-Loup

    2008-05-01

    Solar occultation in the infrared, part of the Spectoscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument onboard Venus Express, combines an echelle grating spectrometer with an acousto-optic tunable filter (AOTF). It performs solar occultation measurements in the IR region at high spectral resolution. The wavelength range probed allows a detailed chemical inventory of Venus's atmosphere above the cloud layer, highlighting the vertical distribution of gases. A general description of the instrument and its in-flight performance is given. Different calibrations and data corrections are investigated, in particular the dark current and thermal background, the nonlinearity and pixel-to-pixel variability of the detector, the sensitivity of the instrument, the AOTF properties, and the spectral calibration and resolution.

  2. The latest results on the energetic neutral atoms and plasma of Venus from the ASPERA-4 instrument of Venus Express

    NASA Astrophysics Data System (ADS)

    Barabash, S.; Sauvaud, J.-A.; Aspera-4

    The Venus Express mission carries the instrument ASPERA-4 Analyzer of Space Plasmas and Energetic Atom to perform for the first time comprehensive plasma measurements at Venus ASPERA-4 is a replica of the instrument ASPERA-3 for the Mars Express mission orbiting Mars for about 2 years The general scientific objective of the ASPERA-4 experiment is to study the solar wind - atmosphere interaction and characterize the plasma atmospheric escape through energetic neutral atom ENA imaging and in-situ ion and electron measurements The ASPERA-4 instrument comprises four sensors two ENA sensors and an electron and ion spectrometer The Neutral Particle Imager NPI provides measurements of the integral ENA flux in the energy range 0 1 - 60 keV with no mass and energy resolution but comparatively high angular resolution 4 6 deg x 11 5 deg The Neutral Particle Detector NPD provides measurements of the ENA flux in the energy range 0 1 - 10 keV resolving velocity and mass H and O with a coarse angular resolution The Electron Spectrometer ELS is a standard top-hat electrostatic analyzer in a very compact design with the high 8 energy resolution to perform photoelectron spectroscopy These three sensors are located on a scanning platform to cover ideally the full sphere Ion Mass Analyzer IMA provides ion measurements in the energy range 0 01 - 30 keV q for the main ion components 1 2 4 16 amu q and the group of molecular ions 20 - 80 amu q The instantaneous field of view is 4 6 deg x 360 deg Electrostatic sweeping performs the elevation 90 deg

  3. Mars Express and Venus Express Data Retention In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Lebrédonchel, J.; Rombeck, F.-J.

    2007-08-01

    Venus, Mars and Earth, three out of the four inner or 'rocky' planets of the Solar System, have a lot in common: a solid surface you could walk on, a comparable surface composition, an atmosphere and a weather system. European Space Agency (ESA) Mars Express (MEx) and Venus Express (VEx) pioneer scientific missions aim at exploring these two neighbours of the Earth, in order to enrich our knowledge of our planet and of the Solar System. Both projects are based on the same spacecraft bus, and in particular on 'sister' Solid State Mass Memory (SSMM) units, in charge of the acquisition, storage and retrieval of all on board data, relevant both to the platform and to the instruments. This paper recalls the common SSMM design and the inner fault tolerant memory array module architecture based on Computer Off The Shelf (COTS) Samsung 64 Mbit Synchronous Dynamic Random Access Memory (SDRAM) chips, and presents the comparative in-flight data retention performance for both MEx and Vex units, since their respective June 2003 and November 2005 launches. Both units have shown to successfully withstand the radiative deep space environment, including during the outstanding October 2003 solar flare, and no uncorrectable data corruption was ever reported. Beyond this stable retention performance over time, the memory scrubbing correctable error accounting feedback allows evaluating the deep space Single Event Upset (SEU) rates, to be compared with the theoretical SSMM radiation assessment as well as with other previous missions in-flight qualitative reference performance records, and finally enables to derive a couple of recommendations from the lessons' learnt.

  4. The Surface of Venus and Implications for its Geological and Geodynamical Evolution: The View Before Venus Express and Outstanding Questions for the Future

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Ivanov, M. A.; Basilevsky, A. T.

    2008-12-01

    thickness variations and mantle convection patterns. The relationships of major elements of global topography and the sequence of events in the observed geological history (as recorded by major geologic units and structures) suggest that much of the current long-wavelength topography of Venus (tessera highlands and lowlands with regional plains) may have formed prior to emplacement of regional plains and been preserved since that time. These observations may favor evolutionary geodynamic models that are characterized by changes in geological style and rates, and may involve non-linear heat loss mechanisms that could have profound influence on the atmosphere. Although the observed surface of Venus dates from relatively recent planetary history, comparative planetology permits inferences to be made about the major stages in the earlier history of Venus. The evolution of the understanding of the surface from early speculations to present observations and interpretations provides an important context for: 1) establishing the relationships of the surface of Venus to the nature of the atmosphere and its evolution as assessed by Venus Express, 2) the comparison of the geological features and history of Venus relative to the Moon, Mars, Mercury and the Earth, and 3) defining the major outstanding problems and questions to be addressed by future experiments and missions to Venus.

  5. Circulation of mesosphere of Venus according to wind tracking results obtained from VMC and VIRTIS onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Patsaeva, Marina; Khatuntsev, Igor; Ignatiev, Nikolay

    2012-07-01

    Six years of permanent monitoring of the Venus' cloud layer by the ESA spacecraft Venus Express (VEx) provided the opportunity to study dynamics of various mesospheric layers. UV images provided by the VMC allowed studying the circulation at the top cloud layer. 550 orbits covering about 10 Venusian years have been processed by means of an automated cloud tracking method giving 400000 displacement vectors. Average zonal and meridional wind profiles have been calculated, and vector fields of wind velocities in latitude-time coordinates have been built. The plots show that zonal and meridional wind velocities depend on local time. A diurnal wave of zonal wind velocity at the equatorial region can be seen clearly. It has maximum at 9 a.m. which is in good agreement with data obtained by the FS onboard Venera-15. The average wind velocity at the equator is 97±2 m/s. The period of zonal rotation has maximum (about 5 terrestrial days) at the equator and minimum (3 terrestrial days) at the latitude 50S. The visual cloud tracking method, due to better sensitivity to small image details at middle and high latitudes, shows a jet at the latitude 50S±3. Having maximum at 50S, the zonal wind velocity decreases to the South pole in linear fashion. The meridional wind velocity is about 0 m/s at the equator, increases in linear fashion to -10 m/s (the negative velocity represents the flow from the equator to the South pole) at 50S, and decreases to a low positive value at 75S. Within the equatorial region, up to 35S, the zonal wind velocity oscillates with a period about 4.83 days which is close to the super-rotation period at the equator. The average oscillation amplitude is 4.28 m/s and the maximum amplitude is 17.44 m/s. The oscillation amplitude of the zonal wind velocity depends on latitude. The oscillation amplitude and phase change with time, but can be stable as long as 70 days. VIRTIS images for the 1.27 μ m spectral band (molecular oxygen airglow), obtained at the

  6. A study of magnetic clouds observed by MESSENGER and Venus Express

    NASA Astrophysics Data System (ADS)

    Good, S. W.; Forsyth, R. J.

    2015-12-01

    We present an analysis of a recently compiled list of magnetic clouds observed by the MESSENGER and Venus Express spacecraft. Despite their planetary focus, both spacecraft spent significant amounts of time in the solar wind, allowing transient solar wind structures such as magnetic clouds to be observed. The clouds were observed at a range of heliocentric distances (at 0.72 AU by Venus Express, and from 1 to 0.3 AU by MESSENGER) over the course of a significant fraction of a solar cycle (2006 to 2013 by Venus Express, and 2007 to 2012 by MESSENGER). Neither spacecraft carried a dedicated solar wind plasma instrument, and so the clouds have been identified using magnetic field data only: a coherent rotation of the magnetic field direction lasting for at least four hours that coincides with a field strength above that of the ambient solar wind were the primary identification criteria. The approximate orientations of the magnetic clouds relative to the solar equatorial plane have been found. We consider the frequency distribution of these orientations, and their dependence on heliocentric distance and the solar magnetic field configuration. We also use these observations, in conjunction with observations at 1 AU, to estimate the likelihood that two spacecraft will encounter the same magnetic cloud as a function of the spacecraft's azimuthal separation.

  7. Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 μm

    NASA Astrophysics Data System (ADS)

    Peralta, J.; López-Valverde, M. A.; Gilli, G.; Piccialli, A.

    2016-01-01

    In this work, we analysed nadir observations of atmospheric infrared emissions carried out by VIRTIS, a high-resolution spectrometer on board the European spacecraft Venus Express. We focused on the ro-vibrational band of CO2 at 4.3 μm on the dayside, whose fluorescence originates in the Venus upper mesosphere and above. This is the first time that a systematic sounding of these non-local thermodynamic equilibrium (NLTE) emissions has been carried out in Venus using this geometry. As many as 143,218 spectra have been analysed on the dayside during the period 14/05/2006 to 14/09/2009. We designed an inversion method to obtain the atmospheric temperature from these non-thermal observations, including a NLTE line-by-line forward model and a pre-computed set of spectra for a set of thermal structures and illumination conditions. Our measurements sound a broad region of the upper mesosphere and lower thermosphere of Venus ranging from 10-2-10-5 mb (which in the Venus International Reference Atmosphere, VIRA, is approximately 100-150 km during the daytime) and show a maximum around 195 ± 10 K in the subsolar region, decreasing with latitude and local time towards the terminator. This is in qualitative agreement with predictions by a Venus Thermospheric General Circulation Model (VTGCM) after a proper averaging of altitudes for meaningful comparisons, although our temperatures are colder than the model by about 25 K throughout. We estimate a thermal gradient of about 35 K between the subsolar and antisolar points when comparing our data with nightside temperatures measured at similar altitudes by SPICAV, another instrument on Venus Express (VEx). Our data show a stable temperature structure through five years of measurements, but we also found episodes of strong heating/cooling to occur in the subsolar region of less than two days. The table with numerical data and averaged temperatures displayed in Fig. 7A provided as a CSV data file is only available at the CDS via

  8. Densities inferred from ESA's Venus Express aerobraking campaign at 130 km altitude

    NASA Astrophysics Data System (ADS)

    Bruinsma, Sean; Marty, Jean-Charles; Svedhem, Håkan; Williams, Adam; Mueller-Wodarg, Ingo

    2015-04-01

    In June-July 2014, ESA performed a planned aerobraking campaign with Venus Express to measure neutral densities above 130 km in Venus' atmosphere by means of the engineering accelerometers. To that purpose, the orbit perigee was lowered to approximately 130 km in order to enhance the atmospheric drag effect to the highest tolerable levels for the spacecraft; the accelerometer resolution and precision were not sufficient at higher altitudes. This campaign was requested as part of the Venus Express Atmospheric Drag Experiment (VExADE). A total of 18 orbits (i.e. days) were processed using the attitude quaternions to correctly orient the spacecraft bus and solar arrays in inertial space, which is necessary to accurately compute the exposed surface in the ram direction. The accelerometer data provide good measurements approximately from 130-140 km altitude; the length of the profiles is about 85 seconds, and they are on the early morning side (LST=4.5) at high northern latitude (70°N-82°N). The densities are a factor 2-3 larger than Hedin's VTS-3 thermosphere model, which is consistent with earlier results obtained via classical precise orbit determination at higher altitudes. Wavelike structures with amplitudes of 20% and more are detected, with wavelengths of about 100-500 km. We cannot entirely rule out that these waves are caused by the spacecraft or due to some unknown instrumental effect, but we estimate this probability to be very low.

  9. Time-series analysis of temperature profiles from VIRTIS Venus Express data

    NASA Astrophysics Data System (ADS)

    Grassi, D.; Migliorini, A.; Politi, R.; Montabone, L.; Piccioni, G.; Drossart, P.

    2012-04-01

    Nighttime infrared observations of the VIRTIS instrument on board Venus Express have already demonstrated their potential in the study of air temperature fields of the Venusian mesosphere. The entire available dataset acquired by the VIRTIS-M IR channel was processed at moderate spatial resolution (i.e. averaging pixels in 8x8 boxes) to derive an unprecedented dataset of air temperature profiles in the pressure range 100-0.1 mbar, covering mostly the latitudes south of 45S. We presented in Grassi et al. (2010, doi:10.1029/2009JE003553) an analysis of the mean properties of temperature profiles, once binned in the latitude/local time/pressure space. Here we discuss the preliminary findings of time-series analysis of data from individual bins. Despite the sparsity of most series, Lomb-Scargle periodogram can be effectively applied in the regions south of 70S, where better coverage is made possible by specific properties of Venus Express orbit. Here the algorithm is able to extract a clear signature related to a period of about 115-120 Earth days, i.e. one Venus solar day, particularly strong at the level around 10 mbar. Further analysis of average temperature fields in the latitude - longitude space demonstrated, for different local times during night, that air temperatures east of Lada Terra (most specifically in a region centered around 130°E and about 60° wide) are about 10K warmer than in other longitudes at 75S.

  10. [Construction of venus vector carrying IGFBP7 gene and its expression in K562 cells].

    PubMed

    Wu, Shui-Yan; Hu, Shao-Yan; Cen, Jian-Nong; Chen, Zi-Xing

    2012-02-01

    The aim of this study was to construct venus vector carrying the gene encoding insulin-like growth factor binding protein 7 (IGFBP7), which provides an effective platform for exploring the function of this gene in leukemia. After digestion by restriction endonuclease, the IGFBP7 gene was recombined with the transfer plasmid. The venus particles were packaged using 293T cells to transfect K562 cells, and identification was performed by means of flow cytometry, RT-PCR and Western blot. The results showed that the sequence of cloned IGFBP7 gene was the same as that in GenBank. The size of product restricted by BamHI was same as the predicted one. GFP expression was observed in 293T and K562 cells with the fluorescent microscopy and flow cytometry. The expression level of mRNA and protein of IGFBP7 was confirmed by RT-PCR and Western blotting in K562 cells. It is concluded that venus vector carrying IGFBP7 gene has been successfully constructed and provides basis for exploring function of IGFBP7 in K562 cells.

  11. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  12. Investigation of planetary space weather effects at Venus observed by the ASPERA-4 particle analyzer and the magnetometer flying onboard of Venus Express Mission

    NASA Astrophysics Data System (ADS)

    Vech, Daniel; Szego, Karoly; Opitz, Andrea; Fraenz, Markus

    2014-05-01

    In this study we identified several coronal mass-ejections (CME's) interacting with the induced magnetosphere of Venus during 2010 and 2011 using STEREO observations and ENLIL simulations. Our purpose is to analyze the response of the induced magnetosphere and the ionosphere to these extreme conditions based on measurements made by the ASPERA-4 and MAG instruments on Venus Express. The parameters of the interplanetary magnetic field (IMF) during these solar events are also discussed. Previously we investigated the effects of the May 2007 solar eruption on the induced magnetosphere of Venus in a poster publication (EPSC2013-266). During the analyzed solar event large scale rotation of the interplanetary magnetic field was observed and in the polar region, the altitude where planetary ions were present decreased compared to the average cases. Polarity reversal of the induced magnetosphere also took place, similar to the cases discussed by Edberg et. al (2011). Several CME's interacted with Venus in November 2011. One of the largest lifted off on 3rd November and reached Venus on 5th November. The solar wind parameters showed large variations: the velocity peaked over 900 km/s, and the magnitude of the IMF suddenly increased threefold. The magnetic field reached 240 nT inside the induced magnetosphere, which is extremely high compared to normal conditions. The heavy ion density measured by VEX peaked over 1000 1/cm3 providing clear evidence for ionosphere crossing. Due to the orbit parameters it is possible to investigate the magnetic structure in the tail. The other selected solar eruptions caused similar changes including the sudden increase in the solar wind velocity and magnitude of the magnetic field in the magnetic barrier but due to the different orbital parameters other regions of the induced magnetosphere were investigated as well. In conclusion the observed planetary space weather effects include that in the shocked solar wind we observed Increased velocity

  13. Solar zenith angle-dependent asymmetries in Venusian bow shock location revealed by Venus Express

    NASA Astrophysics Data System (ADS)

    Chai, Lihui; Wan, Weixing; Fraenz, Markus; Zhang, Tielong; Dubinin, Eduard; Wei, Yong; Li, Yi; Rong, Zhaojin; Zhong, Jun; Han, Xiuhong; Futaana, Yoshifumi

    2015-06-01

    It has been long known that the Venusian bow shock (BS) location is asymmetric from the observations of the long-lived Pioneer Venus Orbiter mission. The Venus Express (VEX) mission crossed BS near perpendicularly not only in the terminator region but also in the near-subsolar and tail regions. Taking the advantage of VEX orbit geometry, we examined a large data set of BS crossings observed during the long-lasting solar minimum between solar cycles 23 and 24 and found that the Venusian BS asymmetries exhibit dependence of solar zenith angle. In the terminator and tail regions, both the magnetic pole-equator and north-south asymmetries are observed in Venusian BS location, which is similar to the Pioneer Venus Orbiter (PVO) observation near terminator. However, in the near-subsolar region, only the magnetic north-south is observed; i.e., the BS shape is indented inward over magnetic south pole and bulged outward over magnetic north pole. The absence of the magnetic pole-equator asymmetry in the near-subsolar region suggests that the magnetic pole-equator asymmetry is mainly caused by the asymmetric wave propagation rather than the ion pickup process. The evident magnetic north-south asymmetry in solar minimum, which is not observed by PVO, suggests that even during the low long-lasting solar minimum, the ion pickup process is very important in Venusian space environment.

  14. Radio science investigations by VeRa onboard the Venus Express spacecraft

    NASA Astrophysics Data System (ADS)

    Häusler, B.; Pätzold, M.; Tyler, G. L.; Simpson, R. A.; Bird, M. K.; Dehant, V.; Barriot, J.-P.; Eidel, W.; Mattei, R.; Remus, S.; Selle, J.; Tellmann, S.; Imamura, T.

    2006-11-01

    The Venus Express Radio Science Experiment (VeRa) uses radio signals at wavelengths of 3.6 and 13 cm ("X"- and "S"-band, respectively) to investigate the Venus surface, neutral atmosphere, ionosphere, and gravity field, as well as the interplanetary medium. An ultrastable oscillator (USO) provides a high quality onboard reference frequency source; instrumentation on Earth is used to record amplitude, phase, propagation time, and polarization of the received signals. Simultaneous, coherent measurements at the two wavelengths allow separation of dispersive media effects from classical Doppler shift. VeRa science objectives include the following: Determination of neutral atmospheric structure from the cloud deck (approximately 40 km altitude) to 100 km altitude from vertical profiles of neutral mass density, temperature, and pressure as a function of local time and season. Within the atmospheric structure, search for, and if detected, study of the vertical structure of localized buoyancy waves, and the presence and properties of planetary waves. Study of the H 2SO 4 vapor absorbing layer in the atmosphere by variations in signal intensity and application of this information to tracing atmospheric motions. Scintillation effects caused by radio wave diffraction within the atmosphere can also provide information on small-scale atmospheric turbulence. Investigation of ionospheric structure from approximately 80 km to the ionopause (<600 km), allowing study of the interaction between solar wind plasma and the Venus atmosphere. Observation of forward-scattered surface echoes obliquely reflected from selected high-elevation targets with anomalous radar properties (such as Maxwell Montes). More generally, such bistatic radar measurements provide information on the roughness and density of the surface material on scales of centimeters to meters. Detection of gravity anomalies, thereby providing insight into the properties of the Venus crust and lithosphere. Measurement of the

  15. Europe Scores New Planetary Success: Venus Express Enters Orbit around the Hothouse Planet

    NASA Astrophysics Data System (ADS)

    2006-04-01

    During the next four weeks, the Venus Express probe will perform a series of manoeuvres to reach the scheduled operational orbit for its scientific mission. It will move from its current highly elongated 9-day orbit to a 24-hour polar orbit, culminating at 66,000 km. From this vantage point, the orbiter will conduct an in-depth observation of the structure, chemistry and dynamics of the atmosphere of Venus for at least two Venusian days (486 Earth days). Enigmatic atmosphere From previous missions to Venus as well as observations directly from Earth, we already know that our neighbouring planet is shrouded in a thick atmosphere where extremes of temperature and pressure conditions are common. This atmosphere creates a greenhouse effect of tremendous proportions as it spins around the planet in four days in an unexplained “super-rotation” phenomenon. The mission of Venus Express will be to carry out a detailed characterisation of this atmosphere, using state-of-the-art sensors in order to answer the questions and solve the mysteries left behind by the first wave of explorers. It will also be the first Venus orbiter to conduct optical observations of the surface through “visibility windows” discovered in the infrared spectrum.V The commissioning of the onboard scientific instruments will begin shortly and the first raw data are expected within days. The overall science payload is planned to be fully operational within two months. Europe explores the Solar System With this latest success, ESA is adding another celestial body to its range of solar system studies. ESA also operates Mars Express around Mars, SMART-1 around the Moon and is NASA’s partner on the Cassini orbiter around Saturn. In addition, ESA is also operating the Rosetta probe en route to comet 67P/Churyumov-Gerasimenko. It should reach its target and become the first spacecraft ever to enter orbit around a comet nucleus by 2014. Meanwhile, ESA also plans to complete the survey of our celestial

  16. Access to VIRTIS / Venus-Express post-operations data archive

    NASA Astrophysics Data System (ADS)

    Erard, Stéphane; Drossart, Pierre; Piccioni, Giuseppe; Henry, Florence; Politi, Romolo

    2016-10-01

    All data acquired during the Venus-Express mission are publicly available on ESA's Planetary Science Archive (PSA). The PSA itself is being redesigned to provide more comprehensive access to its content and a new interface is expected to be ready in the coming months.However, an alternative access to the VIRTIS/VEx dataset is also provided in the PI institutes as part of the Europlanet-2020 European programme. The VESPA user interface (http://vespa.obspm.fr) provides a query mechanism based on observational conditions and instrument parameters to select data cubes of interest in the PSA and to connect them to standard plotting and analysis tools. VESPA queries will also identify related data in other datasets responsive to this mechanism, e. g., contextual images or dynamic simulations of the atmosphere, including outcomes of the EuroVenus programme funded by the EU. A specific on-line spectral cube viewer has been developed at Paris Observatory (http://voplus.obspm.fr/apericubes/js9/demo.php). Alternative ways to access the VIRTIS data are being considered, including python access to PDS3 data (https://github.com/VIRTIS-VEX/VIRTISpy) and distribution in NetCDF format on IAPS website (http://planetcdf.iaps.inaf.it). In the near future, an extended data service will provide direct access to individual spectra on the basis of viewing angles, time, and location.The next step will be to distribute products derived from data analysis, such as surface and wind maps, atmospheric profiles, movies of the polar vortices or O2 emission on the night side, etc. Such products will be accessed in a similar way, and will make VIRTIS results readily available for future Venus studies. Similar actions are taken in the frame of Europlanet concerning atmospheric data from the Mars-Express mission and Cassini observations of Titan.

  17. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus Express

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Peralta, J.; Garate-Lopez, I.; Bandos, T. V.; Sánchez-Lavega, A.

    2015-08-01

    The Venus Express mission has provided a long-term monitoring of Venus atmosphere including the morphology and motions of its upper clouds. Several works have focused on the dynamics of the upper cloud visible on the day-side in ultraviolet images sensitive to the 65-70 km altitude and in the lower cloud level (50 km height) observable in the night-side of the planet in the 1.74 μm spectral window. Here we use VIRTIS-M spectral images in nearby wavelengths to study the upper cloud layer in three channels: ultraviolet (360-400 nm), visible (570-680 nm) and near infrared (900-955 nm) extending in time the previous analysis of VIRTIS-M data. The ultraviolet images show relatively well contrasted cloud features at the cloud top. Cloud features in the visible and near infrared images lie a few kilometers below the upper cloud top, have very low contrast and are distinct to the features observed in the ultraviolet. Wind measurements were obtained on 118 orbits covering the Southern hemisphere over a six-year period and using a semi-automatic cloud correlation algorithm. Results for the upper cloud from VIRTIS-M ultraviolet data confirm previous analysis based on images obtained by the Venus Monitoring Camera (Khatuntsev et al. (2013)). At the cloud top the mean zonal and meridional winds vary with local time accelerating towards the local afternoon. The upper branch of the Hadley cell circulation reaches maximum velocities at 45° latitude and local times of 14-16 h. The mean zonal winds in the ultraviolet cloud layer accelerated in the course of the 2006-2012 period at least 15 m s-1. The near infrared and visible images show a more constant circulation without significant time variability or longitudinal variations. The meridional circulation is absent or slightly reversed in near infrared and visible images indicating that, either the Hadley-cell circulation in Venus atmosphere is shallow, or the returning branch of the meridional circulation extends to levels below

  18. Tracking of Mars Express and Venus Express spacecraft with VLBI radio telescopes

    NASA Astrophysics Data System (ADS)

    Molera Calvés, G.; Pogrebenko, S. V.; Wagner, J.; Cimò, G.; Gurvits, L.; Duev, D.

    2010-12-01

    The ESA Mars Express and Venus Express spacecraft (S/C) have been observed for the last two years with the European VLBI radio telescopes of Metsähovi (FI), Wettzell (GE), Yebes (SP), Medicina, Matera, Noto (IT), Puschino (RU) and Onsala (SW). The campaign is in the framework of the assessment study and preparation of the European VLBI Network to the upcoming ESA and other deep space missions. It also offers new opportunities for applications of radio astronomy techniques to planetary science, geophysics and geodesy. Observations are carried out either in single- or multi-dish modes when S/C is locked to the ESA’s ESTRACK ground stations (Cebreros or New Nortia) observing the two way link. Data are recorded locally at the stations using standard VLBI equipment and transferred to the Metsähovi for processing. Further on, the data are transferred from Metsähovi to Joint Institute for VLBI in Europe for further post-analysis. High dynamic range of the S/C signal detections allowed us to determine the apparent topocentric frequency of the S/C carrier line and accompanying ranging tones down to milli-Hz spectral accuracy and to extract the phase of the S/C signal carrier line. With multi-station observations, the respective phases can be calibrated on the per-baseline basis using VLBI phase referencing technique and observations of background quasars close to S/C in their celestial position using far-field VLBI delay model for quasars and near-field model for S/C. The post-analysis of the S/C tracking data enables us to study several parameters of the S/C signals. Of these, the phase fluctuations of the signal can be used for characterization of the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales and different solar elongations. These fluctuations are well represented by a near-Kolmogorov spectrum. Multi-station observations can distinguish the contributions of propagation effects in the plasma

  19. Fluctuations in the Venusian Ionosphere and Their Effect on Venus Express Lightning Detection Rates

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Russell, C. T.; Zhang, T.

    2015-12-01

    Venus Express completed its nearly 9 year campaign at Earth's sister planet in late 2014. During this period the onboard fluxgate magnetometer collected data up to 64 Hz in frequency near periapsis. This is the expected frequency range for lightning-generated whistler-mode waves at Venus, between the local electron (~100 Hz) and ion gyrofrequencies (~1 Hz). These waves are right-hand circularly polarized and are guided by the local magnetic field. When the Venusian ionopause is low enough to reside in the collisional region, the interplanetary magnetic field can get carried down with the ions and magnetize the lower ionosphere. As the field travels towards terminator it gains a radial component, enabling whistlers to reach higher altitudes and be detected by the spacecraft. The mission covered almost an entire solar cycle and frequently observed a magnetized ionosphere during the solar minimum phase when the ionosphere was weak due to reduced incident EUV. In addition, the detection rate of whistler-mode signals varied with the solar cycle. Here, we examine the changes in the ionospheric properties associated with the evolution of the solar cycle and the rate of detection of these lightning-generated signals.

  20. Habitats for life in the Venusian Environment? Can the VENUS EXPRESS payload answer?

    NASA Astrophysics Data System (ADS)

    Muller, C.

    2003-04-01

    The Venusian conditions are unique in the solar system. Venus abounds in molecules which could feed a life form except that the usual missing factor, energy, is present in excessive amounts from both active geothermic phenomena and from the nearby solar radiation trapped in a dense carbon dioxide atmosphere. Its surface conditions are hotter than the best practiced in hospital sterilisation; volcanism injects highly toxic gases which in the absence of water can accumulate in the atmosphere. Its upper atmosphere lays bare to solar radiation with only carbon dioxide to act as a confirmed EUV filter, so any consideration of life might seem excessive compared to what was known from life on earth before extremophile bacterias were discovered in dark undersea high temperature sulphur rich volcanic vents. However, some regions of the atmosphere might show conditions similar to the earth surface and could be a habitat of earth like microbial life. A synergy between the different atmospheric instruments of the VENUS-Express payload: SPICAM, VIRTIS and PFS can provide the way to probe the actual environmental conditions of this region and to check its capabilities of preserving an extant life or providing nutrients to a new one.

  1. The Scientific Exploration of Venus

    NASA Astrophysics Data System (ADS)

    Taylor, Fredric W.

    2014-12-01

    Part I. Views of Venus, from the Beginning to the Present Day: 1. The dawn of Venus exploration; 2. Mariner and Venera; 3. Pioneer Venus and Vega: orbiters, balloons and multi-probes; 4. Images of the surface; 5. The forgotten world; 6. Earth-based astronomy delivers a breakthrough; 7. Can't stop now; 8. Europe and Japan join in: Venus Express and Akatsuki; Part II. The Motivation to Continue the Quest: 9. Origin and evolution: the solid planet; 10. Atmosphere and ocean; 11. A volcanic world; 12. The mysterious clouds; 13. Superwinds and polar vortices; 14. The climate on Venus, past, present and future; 15. Could there be life on Venus?; Part III. Plans and Visions for the Future: 16. Solar system exploration; 17. Coming soon to a planet near you: planned Venus missions; 18. Towards the horizon: advanced technology; 19. Beyond the horizon: human expeditions; Epilogue; Appendix A. Chronology of space missions to Venus; Appendix B. Data about Venus.

  2. Morphology of the cloud tops as observed by the Venus Express Monitoring Camera

    NASA Astrophysics Data System (ADS)

    Titov, Dmitrij V.; Markiewicz, Wojciech J.; Ignatiev, Nikolay I.; Song, Li; Limaye, Sanjay S.; Sanchez-Lavega, Agustin; Hesemann, Jonas; Almeida, Miguel; Roatsch, Thomas; Matz, Klaus-Dieter; Scholten, Frank; Crisp, David; Esposito, Larry W.; Hviid, Stubbe F.; Jaumann, Ralf; Keller, Horst U.; Moissl, Richard

    2012-02-01

    Since the discovery of ultraviolet markings on Venus, their observations have been a powerful tool to study the morphology, motions and dynamical state at the cloud top level. Here we present the results of investigation of the cloud top morphology performed by the Venus Monitoring Camera (VMC) during more than 3 years of the Venus Express mission. The camera acquires images in four narrow-band filters centered at 365, 513, 965 and 1010 nm with spatial resolution from 50 km at apocentre to a few hundred of meters at pericentre. The VMC experiment provides a significant improvement in the Venus imaging as compared to the capabilities of the earlier missions. The camera discovered new cloud features like bright "lace clouds" and cloud columns at the low latitudes, dark polar oval and narrow circular and spiral "grooves" in the polar regions, different types of waves at the high latitudes. The VMC observations revealed detailed structure of the sub-solar region and the afternoon convective wake, the bow-shape features and convective cells, the mid-latitude transition region and the "polar cap". The polar orbit of the satellite enables for the first time nadir viewing of the Southern polar regions and an opportunity to zoom in on the planet. The experiment returned numerous images of the Venus limb and documented global and local brightening events. VMC provided almost continuous monitoring of the planet with high temporal resolution that allowed one to follow changes in the cloud morphology at various scales. We present the in-flight performance of the instrument and focus in particular on the data from the ultraviolet channel, centered at the characteristic wavelength of the unknown UV absorber that yields the highest contrasts on the cloud top. Low latitudes are dominated by relatively dark clouds that have mottled and fragmented appearance clearly indicating convective activity in the sub-solar region. At ˜50° latitude this pattern gives way to streaky clouds

  3. The first results from the ASPERA-4 instrument of Venus Express

    NASA Astrophysics Data System (ADS)

    Barabash, S.; Sauvaud, J.-A.; Fedorov, A.; Aspera-4

    The Venus Express mission carries the instrument ASPERA-4 Analyzer of Space Plasmas and Energetic Atom to perform for the first time comprehensive plasma measurements at Venus ASPERA-4 is a replica of the instrument ASPERA-3 for the Mars Express mission orbiting Mars for about 2 years The general scientific objective of the ASPERA-4 experiment is to study the solar wind - atmosphere interaction and characterize the plasma atmospheric escape through energetic neutral atom ENA imaging and in-situ ion and electron measurements The ASPERA-4 instrument comprises four sensors two ENA sensors and an electron and ion spectrometer The Neutral Particle Imager NPI provides measurements of the integral ENA flux in the energy range 0 1 - 60 keV with no mass and energy resolution but comparatively high angular resolution 4 6 deg x 11 5 deg The Neutral Particle Detector NPD provides measurements of the ENA flux in the energy range 0 1 - 10 keV resolving velocity and mass H and O with a coarse angular resolution The Electron Spectrometer ELS is a standard top-hat electrostatic analyzer in a very compact design with the high 8 energy resolution to perform photoelectron spectroscopy These three sensors are located on a scanning platform to cover ideally the full sphere Ion Mass Analyzer IMA provides ion measurements in the energy range 0 01 - 30 keV q for the main ion components 1 2 4 16 amu q and the group of molecular ions 20 - 80 amu q The instantaneous field of view is 4 6 deg x 360 deg Electrostatic sweeping performs the elevation 90 deg

  4. Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum

    NASA Astrophysics Data System (ADS)

    Zhang, T. L.; Delva, M.; Baumjohann, W.; Volwerk, M.; Russell, C. T.; Barabash, S.; Balikhin, M.; Pope, S.; Glassmeier, K.-H.; Wang, C.; Kudela, K.

    2008-05-01

    Although there is no intrinsic magnetic field at Venus, the convected interplanetary magnetic field piles up to form a magnetic barrier in the dayside inner magnetosheath. In analogy to the Earth's magnetosphere, the magnetic barrier acts as an induced magnetosphere on the dayside and hence as the obstacle to the solar wind. It consists of regions near the planet and its wake for which the magnetic pressure dominates all other pressure contributions. The initial survey performed with the Venus Express magnetic field data indicates a well-defined boundary at the top of the magnetic barrier region. It is clearly identified by a sudden drop in magnetosheath wave activity, and an abrupt and pronounced field draping. It marks the outer boundary of the induced magnetosphere at Venus, and we adopt the name "magnetopause" to address it. The magnitude of the draped field in the inner magnetosheath gradually increases and the magnetopause appears to show no signature in the field strength. This is consistent with PVO observations at solar maximum. A preliminary survey of the 2006 magnetic field data confirms the early PVO radio occultation observations that the ionopause stands at ˜250 km altitude across the entire dayside at solar minimum. The altitude of the magnetopause is much lower than at solar maximum, due to the reduced altitude of the ionopause at large solar zenith angles and the magnetization of the ionosphere. The position of the magnetopause at solar minimum is coincident with the ionopause in the subsolar region. This indicates a sinking of the magnetic barrier into the ionosphere. Nevertheless, it appears that the thickness of the magnetic barrier remains the same at both solar minimum and maximum. We have found that the ionosphere is magnetized ˜95% of the time at solar minimum, compared with 15% at solar maximum. For the 5% when the ionosphere is un-magnetized at solar minimum, the ionopause occurs at a higher location typically only seen during solar

  5. Electrophysiological characteristics of inhibitory neurons of the prepositus hypoglossi nucleus as analyzed in Venus-expressing transgenic rats.

    PubMed

    Shino, M; Kaneko, R; Yanagawa, Y; Kawaguchi, Y; Saito, Y

    2011-12-01

    The identification and characterization of excitatory and inhibitory neurons are significant steps in understanding neural network functions. In this study, we investigated the intrinsic electrophysiological properties of neurons in the prepositus hypoglossi nucleus (PHN), a brainstem structure that is involved in gaze holding, using whole-cell recordings in brainstem slices from vesicular GABA transporter (VGAT)-Venus transgenic rats, in which inhibitory neurons express the fluorescent protein Venus. To characterize the intrinsic properties of these neurons, we recorded afterhyperpolarization (AHP) profiles and firing patterns from Venus-expressing [Venus⁺] and Venus-non-expressing [Venus⁻] PHN neurons. Although both types of neurons showed a wide variety of AHP profiles and firing patterns, oscillatory firing was specific to Venus⁺ neurons, while a firing pattern showing only a few spikes was specific to Venus⁻ neurons. In addition, AHPs without a slow component and delayed spike generation were preferentially displayed by Venus⁺ neurons, whereas a firing pattern with constant interspike intervals was preferentially displayed by Venus⁻ neurons. We evaluated the mRNAs expression of glutamate decarboxylase (GAD65, GAD67) and glycine transporter 2 (GlyT2) to determine whether the recorded Venus⁺ neurons were GABAergic or glycinergic. Of the 67 Venus⁺ neurons tested, GlyT2 expression alone was detected in only one neuron. Approximately 40% (28/67) expressed GAD65 and/or GAD67 (GABAergic neuron), and the remainder (38/67) expressed both GAD(s) and GlyT2 (GABA&GLY neuron). These results suggest that most inhibitory PHN neurons use either GABA or both GABA and glycine as neurotransmitters. Although the overall distribution of firing patterns in GABAergic neurons was similar to that of GABA&GLY neurons, only GABA&GLY neurons exhibited a firing pattern with a long first interspike interval. These differential electrophysiological properties will be useful

  6. Future Exploration of Venus

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    Venus has been the target of exploration for half a century, before the successful Mariner 2 fly-by in December 1962. The decade after that was marked by growing sophistication in the instruments and spacecraft. During the second decade of Venus exploration (1972 - 1981) the instruments and spacecraft had advanced to make the first detailed survey of the planet and image the surface. During the third decade Venus was explored with more advanced instruments such as synthetic aperture radar and by balloons - the only balloons in another atmosphere ever flown till present. Then came a long pause until 2005 when ESA launched Venus Express, which is still orbiting the planet and returning data. The nearly two-dozen missions flown to Venus have painted a puzzling picture of Venus - we still do not have answers to some key questions. The foremost is why did Venus evolve so differently from Earth? International space agencies and scientists have been considering various approaches to exploring Venus through small and large missions. The Venus Exploration Analysis Group (NASA) has developed a Venus Exploration Roadmap and a comprehensive list of goals, objectives and investigations (www.lpi.usra.edu/vexag), but an international coordinated, comprehensive plan to explore Venus is needed. To fill this void, the COSPAR International Venus Exploration Working Group (IVEWG) has been active in fostering dialog and discussions among the space faring agencies. One small step in the future exploration of Venus is the formation of a joint Science Definition Team (SDT) (NASA and Roscosmos/IKI) for Russia’s Venera-D mission in early 2014. The team is expected to submit a report to respective agencies in early 2015. Towards identifying key surface regions and atmospheric regions of Venus, a workshop is being held in May 2014 by VEXAG to seek community input. It is likely that calls for proposals for missions will also be announced under the M class by ESA and under the Discovery

  7. Wetlab-2 - Quantitative PCR Tools for Spaceflight Studies of Gene Expression Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Schonfeld, Julie E.

    2015-01-01

    Wetlab-2 is a research platform for conducting real-time quantitative gene expression analysis aboard the International Space Station. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space. Currently, gene expression analyses of space flown biospecimens must be conducted post flight after living cultures or frozen or chemically fixed samples are returned to Earth from the space station. Post-flight analysis is limited for several reasons. First, changes in gene expression can be transient, changing over a timescale of minutes. The delay between sampling on Earth can range from days to months, and RNA may degrade during this period of time, even in fixed or frozen samples. Second, living organisms that return to Earth may quickly re-adapt to terrestrial conditions. Third, forces exerted on samples during reentry and return to Earth may affect results. Lastly, follow up experiments designed in response to post-flight results must wait for a new flight opportunity to be tested.

  8. Lunar and Planetary Science XXXV: Venus

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Venus" included the following reports:Preliminary Study of Laser-induced Breakdown Spectroscopy (LIBS) for a Venus Mission; Venus Surface Investigation Using VIRTIS Onboard the ESA/Venus Express Mission; Use of Magellan Images for Venus Landing Safety Assessment; Volatile Element Geochemistry in the Lower Atmosphere of Venus; Resurfacing Styles and Rates on Venus: Assessment of 18 Venusian Quadrangles; Stereo Imaging of Impact Craters in the Beta-Atla-Themis (BAT) Region, Venus; Depths of Extended Crater-related Deposits on Venus ; Potential Pyroclastic Deposit in the Nemesis Tessera (V14) Quadrangle of Venus; Relationship Between Coronae, Regional Plains and Rift Zones on Venus, Preliminary Results; Coronae of Parga Chasma, Venus; The Evolution of Four Volcano/Corona Hybrids on Venus; Calderas on Venus and Earth: Comparison and Models of Formation; Venus Festoon Deposits: Analysis of Characteristics and Modes of Emplacement; Topographic and Structural Analysis of Devana Chasma, Venus: A Propagating Rift System; Anomalous Radial Structures at Irnini Mons, Venus: A Parametric Study of Stresses on a Pressurized Hole; Analysis of Gravity and Topography Signals in Atalanta-Vinmara and Lavinia Planitiae Canali are Lava, Not River, Channels; and Formation of Venusian Channels in a Shield Paint Substrate.

  9. Detailed expression pattern of aldolase C (Aldoc) in the cerebellum, retina and other areas of the CNS studied in Aldoc-Venus knock-in mice.

    PubMed

    Fujita, Hirofumi; Aoki, Hanako; Ajioka, Itsuki; Yamazaki, Maya; Abe, Manabu; Oh-Nishi, Arata; Sakimura, Kenji; Sugihara, Izumi

    2014-01-01

    Aldolase C (Aldoc, also known as "zebrin II"), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes. High levels of Venus expression were observed in cerebellar PCs, cartwheel cells in the dorsal cochlear nucleus, sensory epithelium of the inner ear and in all major types of retinal cells, while moderate levels of Venus expression were observed in astrocytes and satellite cells in the dorsal root ganglion. The striped arrangement of PCs that express Venus to different degrees was carefully traced with serial section alignment analysis and mapped on the unfolded scheme of the entire cerebellar cortex to re-identify all individual Aldoc stripes. A longitudinally striped boundary of Aldoc expression was first identified in the mouse flocculus, and was correlated with the climbing fiber projection pattern and expression of another compartmental marker molecule, heat shock protein 25 (HSP25). As in the rat, the cerebellar nuclei were divided into the rostrodorsal negative and the caudoventral positive portions by distinct projections of Aldoc-positive and negative PC axons in the mouse. Identification of the cerebellar Aldoc stripes in this study, as indicated in sample coronal and horizontal sections as well as in sample surface photos of whole-mount preparations, can be referred to in future experiments.

  10. A new view of Earth's sister: Insights following nine years of Venus Express observations

    NASA Astrophysics Data System (ADS)

    Titov, Dmitrij; Svedhem, Håkan; Drossart, Pierre; Taylor, Fredric W.; Zhang, Tielong; Barabash, Stas; Paetzold, Martin; Piccioni, Giuseppe; Markiewicz, Wojciech; Vandaele, Ann C.; Wilson, Colin; Bertaux, Jean-Loup

    Since April 2006 ESA’s Venus Express has been performing a global survey of the remarkably dense, cloudy, and dynamic atmosphere of our near neighbour. The mission delivers comprehensive data on the temperature structure, the atmospheric composition, the cloud morphology, the atmospheric dynamics, the solar wind interaction and the escape processes. Vertical profiles of the atmospheric temperature show strong latitudinal trend in the mesosphere and upper troposphere correlated with changes in the cloud top structure and indicate convective instability in the main cloud deck at 50-60 km. Observations reveal significant latitudinal variations and temporal changes in the global cloud top morphology, which modulate the solar energy deposited in the atmosphere. The cloud top altitude varies from 72 km in the low and middle latitudes to 64 km in the polar region, correlated with decrease of the aerosol scale height from 4±1.6 km to 1.7±2.4 km, marking vast polar depression. UV imaging shows for the first time the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex dynamics. Solar occultation observations and deep atmosphere spectroscopy in spectral transparency windows mapped the distribution of the major trace gases H _{2}O, SO _{2}, CO, COS and their variations above and below the clouds, revealing key features of the dynamical and chemical processes at work. Tracking motions of cloud features provided the most complete characterization of the mean atmospheric circulation as well as its variability. Low and middle latitudes show an almost constant zonal wind speed at the cloud tops and vertical wind shear of 2-3 m/s/km. The zonal wind speed increased from 84±20 m/s to 110±16 m/s over the course of the mission. Towards the pole, the wind speed drops quickly and the vertical shear vanishes. The meridional poleward wind ranges from 0 at equator to about 15 m/s in

  11. Visualization of RelB expression and activation at the single-cell level during dendritic cell maturation in Relb-Venus knock-in mice.

    PubMed

    Seki, Takao; Yamamoto, Mami; Taguchi, Yuu; Miyauchi, Maki; Akiyama, Nobuko; Yamaguchi, Noritaka; Gohda, Jin; Akiyama, Taishin; Inoue, Jun-ichiro

    2015-12-01

    RelB is activated by the non-canonical NF-κB pathway, which is crucial for immunity by establishing lymphoid organogenesis and B-cell and dendritic cell (DC) maturation. To elucidate the mechanism of the RelB-mediated immune cell maturation, a precise understanding of the relationship between cell maturation and RelB expression and activation at the single-cell level is required. Therefore, we generated knock-in mice expressing a fusion protein between RelB and fluorescent protein (RelB-Venus) from the Relb locus. The Relb(Venus/Venus) mice developed without any abnormalities observed in the Relb(-/-) mice, allowing us to monitor RelB-Venus expression and nuclear localization as RelB expression and activation. Relb(Venus/Venus) DC analyses revealed that DCs consist of RelB(-), RelB(low) and RelB(high) populations. The RelB(high) population, which included mature DCs with projections, displayed RelB nuclear localization, whereas RelB in the RelB(low) population was in the cytoplasm. Although both the RelB(low) and RelB(-) populations barely showed projections, MHC II and co-stimulatory molecule expression were higher in the RelB(low) than in the RelB(-) splenic conventional DCs. Taken together, our results identify the RelB(low) population as a possible novel intermediate maturation stage of cDCs and the Relb(Venus/Venus) mice as a useful tool to analyse the dynamic regulation of the non-canonical NF-κB pathway.

  12. VIRTIS on Venus Express thermal emission spectra near 1μm

    NASA Astrophysics Data System (ADS)

    Mueller, Nils; Tsang, Constantine; Helbert, Joern; Smrekar, Suzanne; Piccioni, Giuseppe; Drossart, Pierre

    2016-10-01

    Thermal emission from the surface of Venus is observable through narrow spectral windows close to 1μm. Surface temperature is strongly constrained by surface elevation, due to the thick and dense atmosphere. The data from Visible and InfraRed Thermal Imaging Spectrometer VIRTIS on Venus Express together with altimetry constrain surface emissivity. In VIRTIS observations at 1.02μm, strongly deformed highland plateaus (tesserae) appear to have a lower emissivity consistent with continental crust, an interpretation that implies existence of an early ocean. Comparison between the Magellan stereo digital elevation model (DEM) and altimetry shows that the altimetry height error in rough tesserae greatly exceeds the formal error. In the one tesserae outlier covered by altimetry, DEM, and VIRTIS, the height error could account for the observed emissivity variation. The radiances observed at 1.10 and 1.18μm have a different response to topography, mostly due to spectrally varying absorption in the overlying atmospheric column. Thus if the tesserae have the same emissivity as volcanic plains, its spectrum should be the same as that of plains of the correct surface elevation. In order to investigate this statistically, we create a database of all long exposure duration VIRTIS spectra in the range of 1 – 1.4μm. The spectra are corrected for the ubiquitous straylight from the dayside, based on analysis of spectra showing deep space. Because the 1.10 and 1.18μm peaks are narrow compared to the variation of instrument spectral registration, we fit each spectrum with a synthetic spectrum from an atmospheric radiative transfer model, using wavelength offset and bandwidths as parameters in addition to atmospheric variables. This dataset of ~28 million thermal emission spectra spans a wide range of southern latitudes and night local times, and thus may be useful for studies beyond the question of surface emissivity. A portion of this research was conducted at the Jet

  13. In situ observations of waves in Venus’s polar lower thermosphere with Venus Express aerobraking

    NASA Astrophysics Data System (ADS)

    Müller-Wodarg, Ingo C. F.; Bruinsma, Sean; Marty, Jean-Charles; Svedhem, Håkan

    2016-08-01

    Waves are ubiquitous phenomena found in oceans and atmospheres alike. From the earliest formal studies of waves in the Earth’s atmosphere to more recent studies on other planets, waves have been shown to play a key role in shaping atmospheric bulk structure, dynamics and variability. Yet, waves are difficult to characterize as they ideally require in situ measurements of atmospheric properties that are difficult to obtain away from Earth. Thus, we have incomplete knowledge of atmospheric waves on planets other than our own, and we are thereby limited in our ability to understand and predict planetary atmospheres. Here we report the first ever in situ observations of atmospheric waves in Venus’s thermosphere (130-140 km) at high latitudes (71.5°-79.0°). These measurements were made by the Venus Express Atmospheric Drag Experiment (VExADE) during aerobraking from 24 June to 11 July 2014. As the spacecraft flew through Venus’s atmosphere, deceleration by atmospheric drag was sufficient to obtain from accelerometer readings a total of 18 vertical density profiles. We infer an average temperature of T = 114 +/- 23 K and find horizontal wave-like density perturbations and mean temperatures being modulated at a quasi-5-day period.

  14. Get the heat on - Obtaining high temperature emissivity measurements in support of the analysis of surface data from VIRTIS on VenusExpress

    NASA Astrophysics Data System (ADS)

    Müller, N.; Helbert, J. X.; Maturilli, A.; Piccioni, G.; Drossart, P.

    2008-12-01

    Analyzing the surface composition of Venus from remote-sensing measurements is a challenging task. Recently we have reported on brightness variations in the near infrared wavelength range observed with VIRTIS on VenusExpress. Our implication is that these brightness variations might be correlated to emissivity variations of the surface material. The next step to verify this hypothesis is to obtain data in the relevant spectral range at temperatures typical for the surface of Venus. We are currently developing a Planetary Emissivity Laboratory (PEL) at Deutsches Zentrum für Luft- und Rahmfahrt (DLR) in Berlin. The PEL allows measuring the emissivity of planetary analog materials grain sizes fractions from less than 25 microns all the way to bulk samples and at temperatures of more than 400°C, typically for the surface of Venus. The PEL development follows a multi-step approach. We are currently installing a new calibration target that will allow obtaining emissivity data on the full range from 1 to 50 microns with a usable signal-to-noise ratio. Here we will present first data in the range from 1 to 1.4 microns which covers the atmospheric windows used for the surface observations from VIRTIS on VenusExpress. We will focus especially on which measurements are necessary to verify our earlier hypotheses of compositional variations on the surface of Venus.

  15. Vertical structure of Venus polar thermosphere from in-situ data of the Venus Express Atmospheric Drag Experiment (VExADE)

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, Ingo; Svedhem, Håkan; Bruinsma, Sean; Gurvits, Leonid; Cimo, Giuseppe; Molera Calves, Guifre; Bocanegra Bahamon, Tatiana; Rosenblatt, Pascal; Duev, Dmitry; Marty, Jean-Charles; Progebenko, Sergei

    The Venus Express Atmospheric Drag Experiment (VExADE) has enabled first ever in-situ measurements of the density of the near-polar thermosphere of Venus above an altitude of 165 km. The measured values have been compared with existing models such as VTS3, which has been built mainly with the Pioneer Venus Orbiter Mass Spectrometer (PV-ONMS) data taken near 16˚ latitude, but extrapolated globally. The VExADE density values have been derived from the Precise Orbit Determination (POD) of the VEx spacecraft using both navigation and dedicated tracking data around pericenter passes during several VExADE campaigns. The last campaign has also benefited from the Planetary Radio Interferometry and Doppler Experiment (PRIDE) tracking. The combination of POD techniques has provided 46 reliable estimates of the polar thermosphere density. An independent set of density measurements was also taken by inferring the torque of the VEx spacecraft exerted by Venus’ upper atmosphere on the spacecraft during pericenter passes. This method has provided more than 120 density values in remarkably good agreement with the density values provided by the POD method. To date, the VExADE data have probed a range of 160 to 185 km in altitude, 80 to 90 degrees North in latitude and 5 to 20 hours in local time. While sampling in these ranges is insufficient to establish detailed horizontal density structures of the polar thermosphere a set of important properties can be inferred. First, the densities are lower by a factor of around 1.5 than the densities predicted by VTS3. At the same time, we find the density scale heights of VExADE and VTS3 to be consistent. Second, the density values exhibit strong variability, which is not taken into account in the VTS3 model. In order to investigate this dynamical behavior of the polar thermosphere, the ratio between the VExADE and VTS3 density has been analyzed. The latitude, altitude and local time trends are tentatively identified, but the sparse

  16. Transgenic frogs expressing the highly fluorescent protein venus under the control of a strong mammalian promoter suitable for monitoring living cells.

    PubMed

    Sakamaki, Kazuhiro; Takagi, Chiyo; Yoshino, Jun; Yokota, Hideo; Nakamura, Sakiko; Kominami, Katsuya; Hyodo, Akiko; Takamune, Kazufumi; Yuge, Masahiro; Ueno, Naoto

    2005-06-01

    To easily monitor living cells and organisms, we have created a transgenic Xenopus line expressing Venus, a brighter variant of yellow fluorescent protein, under the control of the CMV enhancer/chicken beta-actin (CAG) promoter. The established line exhibited high fluorescent intensity not only in most tissues of tadpoles to adult frogs but also in germ cells of both sexes, which enabled three-dimensional imaging of fluorescing organs from images of the serial slices of the transgenic animals. Furthermore, by using this transgenic line, we generated chimeric animals by brain implantation and importantly, we found that the brain grafts survived and expressed Venus in recipients after development, highlighting the boundary between fluorescent and nonfluorescent areas in live animals. Thus, Venus-expressing transgenic frogs, tadpoles, and embryos would facilitate their use in many applications, including the tracing of the fluorescent cells after tissue/organ transplantation.

  17. Geologic Analysis of the Surface Thermal Emission Images Taken by the VMC Camera, Venus Express

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Shalygin, E. V.; Titov, D. V.; Markiewicz, W. J.; Scholten, F.; Roatsch, Th.; Fiethe, B.; Osterloh, B.; Michalik, H.; Kreslavsky, M. A.; Moroz, L. V.

    2010-03-01

    Analysis of Venus Monitoring Camera 1-µm images and surface emission modeling showed apparent emissivity at Chimon-mana tessera and shows that Tuulikki volcano is higher than that of the adjacent plains; Maat Mons did not show any signature of ongoing volcanism.

  18. The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Piccioni, G.; Gérard, J. C.; Soret, L.; Slanger, T. G.; Politi, R.; Snels, M.; Drossart, P.; Nuccilli, F.

    2013-03-01

    The oxygen Venus nightglow emissions in the visible spectral range have been known since the early observations from the Venera spacecraft. Recent observations with the VIRTIS instrument on board Venus Express allowed us to re-examine the Herzberg II system of O2 and to further study its vertical distribution, in particular the (0-ν″ with ν″ = 7-13) bands. The present work describes the vertical profile of the observed bands and relative intensities from limb observation data. The wavelength-integrated intensities of the Herzberg II bands, with ν″ = 7-11, are inferred from the recorded spectra. The resulting values lie in the range of 84-116 kR at the altitudes of maximum intensity, which are found to lie in the range of 93-98 km. Three bands of the Chamberlain system, centered at 560 nm, 605 nm, and 657 nm have been identified as well. Their emission peak is located at about 100 km, 4 km higher than the Herzberg II bands. For the first time, the O2 nightglow emissions were investigated simultaneously in the visible and in the IR spectral range, showing a good agreement between the peak position for the Herzberg II and the O2(aΔg-XΣg-) bands. An airglow model, proposed by Gérard et al. (Gérard, J.C., Soret, L., Migliorini, A., Piccioni, G. [2013]. Icarus.) starting from realistic O and CO2 vertical distributions derived from Venus-Express observations, allows reproduction of the observed profiles for the three O2 systems.

  19. Mars and Venus - The Express Way : Evolution and Heritage in Flexi Type Missions Concerning Model Philosophy and Environmental Test Design

    NASA Astrophysics Data System (ADS)

    Rustichelli, S.; McCoy, D.; Florino, T.; Pereira, J.; Pendaries, M.

    2004-08-01

    Mars Express is the first example of ESA's "Flexible Missions", a new and more economic way of building space science missions based on maximum use of existing technology that is either 'off-the-shelf' or technology that has already been developed for other programs. The high level of recurrence in the design, the re-use of existing hardware and the implementation of new project management practices made possible to Mars Express to meet the objective of shortening the time from original concept to launch, being built unusually quickly to meet its narrow launch window in June 2003. The objective of being assembled, fully tested and prepared for launch in a record time, 30% faster than other comparable missions and with reduced financial funding, could be achieved only with a thorough re- thinking of the model philosophy and environmental test design. The encouraging results obtained with Mars Express are the basis of the AIV program of the second ESA's Flexible Mission, Venus Express. Highly recurrent of Mars Express, even if with important peculiarities due to the different mission and planetary environment, this Project will benefit of the qualifications achieved on its predecessor, allowing a single module approach where the AIT campaign will start directly on the PFM. This paper presents the innovative concepts implemented in the definition of Mars Express Model Philosophy and Environmental Test campaigns, showing the influence of the adopted solutions on the in-flight performances. An overview of Venus Express Test Campaign is also given, focusing on the effects of the previous experience and the lessons learned as well as the peculiarities of the new mission.

  20. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  1. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  2. Comet Halley: The view from Pioneer Venus

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The plans to scan Halley's Comet at close range using the Pioneer Venus Orbiter are discussed. The composition of comets, their paths through space, and the history of comet encounters are examined. An ultraviolet spectrometer aboard the spacecraft will determine the composition of the gaseous coma and will measure the total gas production during its passage. The Pioneer Venus Orbiter will observe the comet for five weeks before solar interference with communications occurs as Venus passes on the far side of the Sun from Earth. Diagrams of the solar system and the relationship of the comet to the planets and the Sun are provided.

  3. Exploring Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    With a temperature higher than the inside of your oven and atmospheric pressure equal to that a kilometer under the ocean, the surface of Venus is one of the most hostile environments in the solar system, and Venus exploration presents a challenge to technology. This lecture presents mission trade-offs and discusses a proposed mission concept for rover and aircraft based exploration of the surface and atmosphere of Venus. Several approaches to the technology, electronics, mechanical parts, and power systems, are discussed.

  4. Exploring Venus: the Venus Exploration Analysis Group (VEXAG)

    NASA Astrophysics Data System (ADS)

    Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.

    In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology

  5. Venus Then and Now: Simulating Sulfuric Acid Clouds Using Latitudinally Dependent VIRA and VeRA Temperature Profiles

    NASA Astrophysics Data System (ADS)

    Gao, P.; Parkinson, C. D.; Bardeen, C.; Yung, Y. L.

    2014-12-01

    Observations from the Pioneer Venus Orbiter (PVO) and from SPICAV/SOIR aboard Venus Express (VEx) have shown the upper haze (UH) of Venus to be highly spatially and temporally variable. Previous models of this system, using typical temperature profiles representative of the Venus atmosphere as a whole, did not investigate the effects of temperature variations on the UH particle distributions. Parkinson et al. (2014, submitted) showed that the inclusion of latitudinally dependent temperature profiles retrieved from SPICAV/SOIR observations in the Venus cloud model of Gao et al. (2014) resulted in markedly different cloud distributions between the different latitude cases, such as a lowered cloud base near the equator and a slightly thicker UH at the poles. Thus, temperature variations across Venus could help explain spatial variations in the atmospheric aerosol distribution. In this work, we expand on the aforementioned study by including VIRA temperature profiles derived from Venera and PVO observations (Kliore et al. 1985) at similar latitudes as the SPICAV/SOIR profiles to assess how the aerosol distribution varies spatially and temporally. By comparing the simulated cloud and haze distributions arising from the two sets of temperature profiles, we can evaluate whether secular changes have occurred in the ~30 years between the PVO and VEx epochs.

  6. Multiple signal propagation at the tropopause of the Venusian atmosphere: new insights from the Radio Science Experiment (VeRa) onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Herrmann, Maren; Oschlisniok, Janusz; Remus, Stefan; Tellmann, Silvia; Häusler, Bernd; Pätzold, Martin

    2016-10-01

    The rapid change of the refractive index over a short altitude range in a planetary atmosphere can lead to multi-path effects when sounding the atmosphere with radio waves. The Radio Science Experiment (VeRa) [1,2] onboard Venus Express sounded the Venusian atmosphere from 90 km downward to 40 km altitude[3,4]. More than 800 profiles of temperature, pressure and neutral number density could be retrieved which cover almost all local times and latitudes. A specially developed analysis method based on the VeRa open loop receiving technique deciphers the multi-path effect and identifies an inversion layer near the tropopause at an altitude of about 60km. This layer is of particular interest - it separates the stratified troposphere from the highly variable mesosphere and can be a likely location for the formation of gravity waves [5]. The new retrieval method shows an inversion layer up to 15 K colder than commonly thought. Local time and latitude dependence including the influence of the spacecraft trajectory on this effect will be discussed. These results will contribute to a consistent picture of the Venus' thermal atmosphere structure and therefore help to improve atmospheric models.[1] Häusler, B. et al: 'Radio science investigations by VeRa onboard the Venus Express spacecraft' Planetary and Space Science 54, 2006[2] Häusler, B. et al, 'Venus Atmospheric, Ionospheric, Surface and Interplanetery Radio-Wave Propagation Studies with the VeRa Radio Science experiment' Eur. Space Agencys, Spec. Publ., ESA SP 1295, 2007[3] Pätzold, M. et al: 'The structure of Venus' middle atmosphere and ionosphere', Nature 450, 2007[4] Tellmann, S. et al : 'Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express', Journal of Geophysical Research 114, 2009[5] Tellmann, S. et al: 'Small-scale temperature fluctuations seen by the VeRa Radio Science Experiment on Venus Express' Icarus 221, 2012.

  7. [Establishment of goat limbal stem cell strain expressing Venus fluorescent protein and construction of limbal epithelial sheets].

    PubMed

    Yin, Jiqing; Liu, Wenqiang; Liu, Chao; Zhao, Guimin; Zhang, Yihua; Liu, Weishuai; Hua, Jinlian; Dou, Zhongying; Lei, Anmin

    2010-12-01

    The integrity and transparency of cornea plays a key role in vision. Limbal Stem Cells (LSCs) are precursors of cornea, which are responsible for self-renewal and replenishing corneal epithelium. Though it is successful to cell replacement therapy for impairing ocular surface by Limbal Stem Cell Transplantation (LSCT), the mechanism of renew is unclear after LSCT. To real time follow-up the migration and differentiation of corneal transplanted epithelial cells after transplanting, we transfected venus (a fluorescent protein gene) into goat LSCs, selected with G418 and established a stable transfected cell line, named GLSC-V. These cells showed green fluorescence, and which could maintain for at least 3 months. GLSC-V also were positive for anti-P63 and anti-Integrinbeta1 antibody by immunofluorescent staining. We founded neither GLSC-V nor GLSCs expressed keratin3 (k3) and keratinl2 (k12). However, GLSC-V had higher levels in expression of p63, pcna and venus compared with GLSCs. Further, we cultivated the cells on denude amniotic membrane to construct tissue engineered fluorescent corneal epithelial sheets. Histology and HE staining showed that the constructed fluorescent corneal epithelial sheets consisted of 5-6 layers of epithelium. Only the lowest basal cells of fluorescent corneal epithelial sheets expressed P63 analyzed by immunofluorescence, but not superficial epithelial cells. These results showed that our constructed fluorescent corneal epithelial sheets were similar to the normal corneal epithelium in structure and morphology. This demonstrated that they could be transplanted for patents with corneal impair, also may provide a foundation for the study on the mechanisms of corneal epithelial cell regeneration after LSCT. PMID:21387825

  8. Preliminary results of the pioneer venus nephelometer experiment.

    PubMed

    Ragent, B; Blamont, J

    1979-02-23

    Preliminary results of the nephelometer experiments conducted aboard the large sounder, day, north, and night probes of the Pioneer Venus mission are presented. The vertical structures of the Venus clouds observed simultaneously at each of the four locations from altitudes of from 63 kilometers to the surface are compared, and similarities and differences are noted. Tentative results from attempting to use the data from the nephelometer and cloud particle size spectrometer on the sounder probe to identify the indices of refraction of cloud particles in various regions of the Venus clouds are reported. Finally the nephelometer readings for the day probe during impact on the surface of Venus are presented.

  9. Photochemical Control of the Distribution of Water and Sulphuric Acid Aerosols in the Clouds and Upper Haze of Venus with Comparison to Venus Express SOIR Observations

    NASA Astrophysics Data System (ADS)

    Parkinson, C. D.; Gao, P.; Yung, Y. L.; Bougher, S. W.; Bardeen, C.

    2014-12-01

    Observations of the middle and lower cloud layers of Venus has established the water vapour mixing ratio there as ~ 30-35 ppm (Ignatiev et al. 1997), while more recent data suggests that the water vapor mixing ratio of the upper haze of Venus is ~ 1 ppm (Bertaux et al. 2007). The transition region between these two regimes, the upper cloud, is an active site of photochemistry and production of sulfuric acid, which occurs through the formation of SO3 from the oxidation of SO2, and subsequent reactions between SO3 and water. These reactions have been shown by Parkinson et al. (2014a, submitted) as capable of causing an order of magnitude decrease of the water vapor mixing ratio in the upper cloud and upper haze if the SO2 mixing ratio at the upper cloud base were increased by only ~20%, as the resulting high SO3 concentrations rapidly react with any available water to form sulfuric acid. The opposite is true when water is in high abundance. This is likely to have profound effects on the sulfuric acid clouds and hazes themselves, as 1) the depletion of either species will decrease the production rate of sulfuric acid and 2) the saturation vapor pressure of the cloud droplets increases with decreasing water fraction, and thus a "drying" of the clouds may result in decreased cloud thickness. In this work we will use the Venus microphysical cloud models of Gao et al. (2014) and Parkinson et al. (2014b, submitted) to simulate the sulfuric acid clouds and hazes of Venus from 40 to 100 km altitude and evaluate how their structure and particle sizes depend on the background water vapor profile and sulfuric acid production rate as determined by Parkinson et al. (2014a, submitted). We also show how they respond to transient episodes of increased/decreased SO2/H2O mixing ratios and discuss the plausibility of possible causes, such as volcanic activity.

  10. Venus 3 Book: Chapter 1

    NASA Astrophysics Data System (ADS)

    Taylor, F.; Svedhem, H.; Head, J.

    2014-04-01

    This will be the first chapter in the planned 'Venus 3' book, which will present the latest knowledge about all aspects of the planet Venus. Chapter 1 will include: 1. Brief history of Venus observations, from telescopic studies up to and including early space missions (Venera, Mariner) 2. Overview of key results from more recent groundbased observations and space missions, including Pioneer Venus, the later Veneras, Vega, Magellan, Akatsuki and Venus Express 3. Summary of current knowledge, in three main sections: a. Surface and interior b. Atmosphere and climate c. Thermosphere, exosphere and magnetosphere 4. Outstanding scientific questions remaining, and future mission concepts providing background, introduction and an overview to the rest of the book.

  11. TheRadio Science Experiment VeRa onboard ESA's Venus Express (VEX) Spacecraft

    NASA Astrophysics Data System (ADS)

    Haeusler, Bernd; Paetzold, M.; Bird, M. K.; Simpson, R. A.; Tyler, L. G.; Dehant, V.; Imamura, T.; Tellmann, S.; Mattei, R.

    2006-09-01

    The VEX spacecraft was successfully injected into the Venus orbit on April 11, 2006. VeRa is an active radio sounding instrument which will measure atmospheric/ionospheric temperature and density profiles, sound with bistatic radar experiments the surface of the planet, will measure its gravity anomalies and investigate also the structure of the corona by analyzing radio carrier signals received on ground in the S- and X-frequency bands. The radio science instrument VeRa is equipped with an ultrastable oscillator (USO) which will be used especially for atmospheric sounding and bistatic radar experiments as frequency reference in the OneWay transmission mode. We will present the current status of the experiment, the results of the commissioning tests and first scientific results.

  12. Venus Syndrome

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Kharecha, P.; Lacis, A.; Russell, G.; Sato, M.

    2012-06-01

    We use three alternative avenues to investigate climate sensitivity on Earth and the conditions that could lead to extermination of human life on the planet or even a Venus-like runaway greenhouse effect.

  13. Venus geology

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    1991-05-01

    The Magellan mission to Venus is reviewed. The scientific investigations conducted by 243-day cycles encompass mapping with a constant incidence angle for the radar, observing surface changes from one cycle to the next, and targeting young-looking volcanos. The topography of Venus is defined by the upper boundary of the crust and upwelling from lower domains. Tectonic features such as rift zones, linear mountain belts, ridge belts, and tesserae are described. The zones of tesserae are unique to the planet. Volcanism accounts for about 80 percent of the observed surface, the remainder being volcanic deposits which have been reworked by tectonism or impacts. Magellan data reveal about 900 impact craters with flow-like ejecta resulting from the fall of meteoroids. It is concluded that the age of the Venusian surface varies between 0 and 800 million years. Tectonic and volcanic activities dominate the formation of the Venus topography; such processes as weathering and erosion are relatively unimportant on Venus.

  14. Exploring Venus.

    ERIC Educational Resources Information Center

    The Universe in the Classroom, 1985

    1985-01-01

    Presents basic information on the planet Venus answering questions on location, size, temperature, clouds, water, and daylight. A weather forecast for a typical day and revelations from radar experiments are also included. (DH)

  15. Venus Phasing.

    ERIC Educational Resources Information Center

    Riddle, Bob

    1997-01-01

    Presents a science activity designed to introduce students to the geocentric and heliocentric models of the universe. Helps students discover why phase changes on Venus knocked Earth out of the center of the universe. (DKM)

  16. Pioneer Venus Orbiter neutral gas mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Booth, J. R.; Cooley, J. E.; Hartle, R. E.; Kasprzak, W. T.; Spencer, N. W.; Way, S. H.; Hunten, D. M.; Carignan, G. R.

    1980-01-01

    The Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) is designed to measure the vertical and horizontal density variations of the major neutral constituents in the upper atmosphere of Venus. The mass spectrometer sensor includes a retarding potential ion source, hyperbolic quadrupole rod analyzer, and electron multiplier detector. The supporting electronic system consists of hybrid integrated circuits to reduce weight and power. The ONMS instrument was launched aboard the Pioneer Venus Orbiter on May 20, 1978, and turned on in orbit around Venus on December 4, 1978. It has operated flawlessly for over a Venus year (243 earth days) and has returned data of the composition of the major constituents in the Venus atmosphere between the altitudes of 150 and 350 km.

  17. Meeting Venus

    NASA Astrophysics Data System (ADS)

    Sterken, Christiaan; Aspaas, Per Pippin

    2013-06-01

    On 2-3 June 2012, the University of Tromsoe hosted a conference about the cultural and scientific history of the transits of Venus. The conference took place in Tromsoe for two very specific reasons. First and foremost, the last transit of Venus of this century lent itself to be observed on the disc of the Midnight Sun in this part of Europe during the night of 5 to 6 June 2012. Second, several Venus transit expeditions in this region were central in the global enterprise of measuring the scale of the solar system in the eighteenth century. The site of the conference was the Nordnorsk Vitensenter (Science Centre of Northern Norway), which is located at the campus of the University of Tromsoe. After the conference, participants were invited to either stay in Tromsoe until the midnight of 5-6 June, or take part in a Venus transit voyage in Finnmark, during which the historical sites Vardoe, Hammerfest, and the North Cape were to be visited. The post-conference program culminated with the participants observing the transit of Venus in or near Tromsoe, Vardoe and even from a plane near Alta. These Proceedings contain a selection of the lectures delivered on 2-3 June 2012, and also a narrative description of the transit viewing from Tromsoe, Vardoe and Alta. The title of the book, Meeting Venus, refers the title of a play by the Hungarian film director, screenwriter and opera director Istvan Szabo (1938-). The autobiographical movie Meeting Venus (1991) directed by him is based on his experience directing Tannhauser at the Paris Opera in 1984. The movie brings the story of an imaginary international opera company that encounters a never ending series of difficulties and pitfalls that symbolise the challenges of any multicultural and international endeavour. As is evident from the many papers presented in this book, Meeting Venus not only contains the epic tales of the transits of the seventeenth, eighteenth and nineteenth centuries, it also covers the conference

  18. Venus volcanism

    SciTech Connect

    Head, J.W.

    1985-01-01

    Eruption styles and processes on the planets are known to be strongly influenced by such factors as gravity, temperature, and atmospheric characteristics. The ascent and eruption of magma on Venus in the current Venus environment must take into account the influence of the extreme surface temperatures (650-750 K) and pressures (40-100 bars) on these processes. Conditions on Venus will reduce the subsurface exsolution of volatiles and lead to a reduction of the possible range of explosive interactions with the atmosphere. Pyroclastic eruptions will be severely inhibited and continuous magma disruption by gas bubble growth may not occur at all unless the exsolved magma volatile content exceeds several weight percent. Recent US and USSR spacecraft missions and Earth-based radar observations are beginning to provide a view of the range of Venus volcanic features, including domes, cones, calderas, shields, and flows. The nature of many lava flows suggests that numerous eruptions have effusion rates exceeding common terrestrial rates and lying more in the range inferred for lunar basaltic flood eruptions (10/sup 4/-10/sup 5/m/sup 3//s). Shield volcanoes are often wide but are low (<2 km elevation) relative to those on Mars and the Earth. Volcano height depends in part on the depth of origin of the magma and the density contrast between the lava and the rocks between the source and the surface, both of which may be different on Venus. Correlations between volcanic style and tectonic structure are emerging.

  19. Venus gravity

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  20. Radial Evolution of a Magnetic Cloud: MESSENGER, STEREO, and Venus Express Observations

    NASA Astrophysics Data System (ADS)

    Good, S. W.; Forsyth, R. J.; Raines, J. M.; Gershman, D. J.; Slavin, J. A.; Zurbuchen, T. H.

    2015-07-01

    The Solar Orbiter and Solar Probe Plus missions will provide observations of magnetic clouds closer to the Sun than ever before, and it will be good preparation for these missions to make full use of the most recent in situ data sets from the inner heliosphere—namely, those provided by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express—for magnetic cloud studies. We present observations of the same magnetic cloud made by MESSENGER at Mercury and later by Solar TErrestrial RElations Observatory-B (STEREO-B), while the spacecraft were radially aligned in 2011 November. Few such radial observations of magnetic clouds have been previously reported. Estimates of the solar wind speed at MESSENGER are also presented, calculated through the application of a previously established technique. The cloudʼs flux rope has been analyzed using force-free fitting; the rope diameter increased from 0.18 to 0.41 AU (corresponding to an {r}{{H}}0.94 dependence on heliocentric distance, rH), and the axial magnetic field strength dropped from 46.0 to 8.7 nT (an {r}{{H}}-1.84 dependence) between the spacecraft, clear indications of an expanding structure. The axial magnetic flux was ∼0.50 nT AU2 at both spacecraft, suggesting that the rope underwent no significant erosion through magnetic reconnection between MESSENGER and STEREO-B. Further, we estimate the change in the cloudʼs angular width by assuming helicity conservation. It has also been found that the rope axis rotated by 30° between the spacecraft to lie close to the solar equatorial plane at STEREO-B. Such a rotation, if it is a common feature of coronal mass ejection propagation, would have important implications for space weather forecasting.

  1. "Depend on, Rely on, Count on": Economic Subjectivities Aboard "The Polar Express"

    ERIC Educational Resources Information Center

    Saltmarsh, Sue

    2009-01-01

    Christmas literature and film produced for children is an important, albeit under-researched, site for the production of cultural values and norms. This paper analyses Chris Van Allsburg's 1985 picture book "The Polar Express", the 2004 Warner Brothers feature film of the same title, the film's official website, and resources for teachers…

  2. The Venus environment

    SciTech Connect

    Not Available

    1982-08-01

    Attention is given to noble gases in planetary atmospheres, the photochemistry of the stratosphere of Venus, the chemistry of metastable species in the Venusian ionosphere, the Venus ionosphere at grazing incidence of solar radiation, disappearing ionospheres on the nightside of Venus, and the observed composition of the ionosphere of Venus. Other investigations considered are concerned with the predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere, sulfuric acid vapor and other cloud-related gases in the Venus atmosphere, the composition and vertical structure of the lower cloud deck on Venus, amorphous sulfur as the ultraviolet absorber on Venus, and polarization studies of the Venus UV contrasts. A description is provided of topics related to temporal variability of ultraviolet cloud features in the Venus stratosphere, zonal mean circulation at the cloud level on Venus, the influence of thermospheric winds on exospheric hydrogen on Venus, and an analysis of Venus gravity data.

  3. The Venus Emissivity Mapper

    NASA Astrophysics Data System (ADS)

    Helbert, Joern; Marcq, Emmanuel; Widemann, Thomas; Mueller, Nils; Kappel, David; Tsang, Constantine; Maturilli, Alessandro; Ferrari, Sabrina; D'Amore, Mario; Dyar, Melinda; Smrekar, Suzanne

    2016-10-01

    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over the entire visible spectral range. Fortunately, Venus' atmospheric gases are largely transparent in narrow spectral windows near 1 mm. Ground observers were the first to successfully use these windows, followed by spacecraft observations during the flyby of the Galileo mission on its way to Jupiter and most recently from Venus orbit by ESA's Venus Express with the VMC and VIRTIS instruments. Analyses of VIRTIS measurements have successfully demonstrated that surface information can be extracted from these windows, but the design of the instrument limited its use for more in-depth surface investigations.Based on experience gained from using VIRTIS to observe the surface of Venus and new high temperature laboratory experiments currently performed at the Planetary Spectroscopy Laboratory of DLR, we have designed the multi-spectral Venus Emissivity Mapper (VEM). Observations from VIRTIS have revealed surface emissivity variations correlated with geological features, but existing data sets contain only three spectral channels. VEM is optimized to map the surface composition and texture, and to search for active volcanism using the narrow atmospheric windows, building on lessons from prior instrumentation and methodology. It offers an opportunity to gain important information about surface mineralogy and texture by virtue of having six different channels for surface mapping.VEM is focused mainly on observing the surface, mapping in all near-IR atmospheric windows using filters with spectral characteristics optimized for the wavelengths and widths of those windows. It also observes bands necessary for correcting atmospheric effects; these bands also provide valuable scientific data on composition as well as altitude and size distribution of the cloud particles, and on H2O vapor abundance variations in the lowest 15 km of the atmosphere.In combination with a

  4. Venusian ion populations and bow shock as seen by the ASPERA-4 ion instrument on Venus Express

    NASA Astrophysics Data System (ADS)

    Grande, M.; Whittaker, I.; Guymer, G.; Barabash, S.

    2008-09-01

    Introduction We examine ion populations at Venus. Previous models use magnetic crossing points to derive the bow shock position. The current work uses data from the ASPERA-4 (Analyser of Space Plasmas and Energetic Atoms) [1] instrument to measure ion populations and derive a bow shock position at Venus. Instrumentation The ASPERA-4 instrument flies onboard Venus Express (VEX) and is comprised of five different detectors (Barabash et al 2006 [1]). A neutral particle detector and analyser, an electron spectrometer and the Ion Mass Analyser (IMA) (ref). This paper uses the IMA instrument for all its data and an explanation of the specifications is required. The instrument is a top hat electrostatic analyser; it runs through voltages to scan look angles and also acceptance energies. In one look direction it scans through 96 different energy values before changing to the next. A full scan of all look directions and energies takes 192 seconds. Data Collection All data is weighed dependant upon its probability of the spacecraft measuring at a particular point and when fitted produces a value of 1.24 RV, somewhat closer distance for the sub solar point than previous authors - see figure 1. We separate the data according to slow or fast solar wind and not the similarities and differences in the results derived. The inbound and outbound bow shock crossings were taken by inspection of 106 orbits between November 2006 and February 2007. Any orbits where the crossing point was not clear or with data missing were ignored. The occupational probability is found from orbital mechanics. By setting up a grid and deriving the amount of time it takes to cross each square the probability as a whole can then be determined. Ion distribution plots Two dimensional maps of the ions are produced and the bow shock model overplotted to verify its accuracy, as shown in figure 3. The test of the bow shock is to place it upon real data and examine the fit. To do this ion distribution plots are

  5. Future of Venus Research and Exploration

    NASA Astrophysics Data System (ADS)

    Glaze, L.; Limaye, S.; Nakamura, M.; Wilson, C.; Zasova, L.

    2014-04-01

    A great deal is known about Venus from the Venera, Pioneer-Venus, Magellan, and Venus Express missions. However, many significant questions remain regarding the origin, evolution and current geologic and atmospheric processes. Much can be learned from theoretical modeling of the planetary interior and atmospheric circulation, as well as from laboratory spectroscopic studies. However, to answer many of the outstanding questions, new space flight missions are needed. Multiple international space agencies are considering Venus as a possible destination for future exploration. Collaborative international participation provides a viable path to further understanding of Earth's sister planet and her role in the formation of our solar system.

  6. Search for ongoing volcanic activity on Venus

    NASA Astrophysics Data System (ADS)

    Shalygin, E. V.; Markiewicz, W. J.; Basilevsky, A. T.; Titov, D. V.; Ignatiev, N. I.; Head, J. W.

    2015-10-01

    We report results of systematical analysis of the whole data-set obtained by the Venus Monitoring Camera(VMC)on-board the Venus Express (VEx) spacecraft at the night side of the planet. In this data set we searched for transient bright events which exhibit behaviour of a hot spot on the surface.

  7. High altitude Venus haze from Pioneer Venus limb scans

    NASA Astrophysics Data System (ADS)

    Lane, W. A.; Opstbaum, R.

    1983-04-01

    High-resolution limb scans of Venus made with the Orbiter Cloud Photopolarimeter aboard Pioneer Venus have been used to observe the high altitude Venus haze and its variation over almost one half a Venusian year. A model for a spherical atmosphere with tangential viewing geometry was used to analyze the observations and derive the haze properties. Values are found for the particle size and refractive index, particle number density and scale height, and eddy diffusion coefficient. Single scattering computations show good agreement with observed intensities for particles smaller than 0.3 micron radius and refractive index less than 1.7, consistent with, but not limited to, concentrated sulfuric acid. Particle scale height in the 0.5 to 2 mbar pressure regions varies between 1 and 3 km over the season, latitude, and local time ranges of the observations. Detached layers of haze are sometimes present. An average particle scale height of 2.2 km at 84 km altitude yields an eddy diffusion coefficient of 130,000 sq cm/sec.

  8. Venus mapping

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Morgan, H. F.; Sucharski, Robert

    1991-01-01

    Semicontrolled image mosaics of Venus, based on Magellan data, are being compiled at 1:50,000,000, 1:10,000,000, 1:5,000,000, and 1:1,000,000 scales to support the Magellan Radar Investigator (RADIG) team. The mosaics are semicontrolled in the sense that data gaps were not filled and significant cosmetic inconsistencies exist. Contours are based on preliminary radar altimetry data that is subjected to revision and improvement. Final maps to support geologic mapping and other scientific investigations, to be compiled as the dataset becomes complete, will be sponsored by the Planetary Geology and Geophysics Program and/or the Venus Data Analysis Program. All maps, both semicontrolled and final, will be published as I-maps by the United States Geological Survey. All of the mapping is based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control on planets where framing cameras were used, is not feasible with the radar images of Venus, although an eventual shift of coordinate system to a revised spin-axis location is anticipated. This is expected to be small enough that it will affect only large-scale maps.

  9. Hot Flow Anomalies at Venus

    NASA Technical Reports Server (NTRS)

    Collinson, G. A.; Sibeck, David Gary; Boardsen, Scott A.; Moore, Tom; Barabash, S.; Masters, A.; Shane, N.; Slavin, J.A.; Coates, A.J.; Zhang, T. L.; Sarantos, M.

    2012-01-01

    We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

  10. Simulation of Radar-Backscattering from Phobos - A Contribution to the Experiment MARSIS aboard MarsExpress

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Hahnel, R.; Hegler, S.; Safaeinili, A.; Orosei, R.; Cicchetti, A.; Plaut, J.; Picardi, G.

    2009-04-01

    MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) on board MarsExpress is the first and so far the only space borne radar that observed the Martian moon Phobos. Radar echoes were measured for different flyby trajectories. The primary aim of the low frequency sounding of Phobos is to prove the feasibility of deep sounding, into the crust of Phobos. In this poster we present a numerical method that allows a very precise computation of radar echoes backscattered from the surface of large objects. The software is based on a combination of physical optics calculation of surface scattering of the radar target, and Method of Moments to calculate the radiation pattern of the whole space borne radar system. The calculation of the frequency dependent radiation pattern takes into account all relevant gain variations and coupling effects aboard the space craft. Based on very precise digital elevation models of Phobos, patch models in the resolution of lambda/10 were generated. Simulation techniques will be explained and a comparison of simulations and measurements will be shown. SURFACE BACKSCATTERING SIMULATOR FOR LARGE OBJECTS The computation of surface scattering of the electromagnetic wave incident on Phobos is based on the Physical Optics method. The scattered field can be expressed by the induced equivalent surface currents on the target. The Algorithm: The simulation program itself is split into three phases. In the first phase, an illumination test checks whether a patch will be visible from the position of the space craft. If this is not the case, the patch will be excluded from the simulation. The second phase serves as a preparation stage for the third phase. Amongst other tasks, the dyadic products for the Js and Ms surface currents are calculated. This is a time-memory trade-off: the simulation will need additional 144 bytes of RAM for every patch that passes phase one. However, the calculation of the dyads is expensive, so that considerable

  11. New Interface for Accessing Archived European Space Agency Planetary Science Data, Such as the New Venus Express Atmospheric Drag Experiment Data Set

    NASA Astrophysics Data System (ADS)

    Grotheer, E.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Docasal, R.; Arviset, C.; Besse, S.; Heather, D.; Gonzalez, J.; De Marchi, G.; Martinez, S.; Lim, T.; Fraga, D.

    2015-12-01

    All Venus Express (VEX) instruments delivered their data products according to the Planetary Data System version 3 (PDS3) standard, and the atmospheric drag experiment (ADE) data was no exception. The European Space Agency's (ESA) Planetary Science Archive (PSA), which can be accessed at www.rssd.esa.int/PSA, is being upgraded to make PDS4 data available from newer missions such as ExoMars and BepiColombo. Thus, the PSA development team has been working to ensure that the legacy PDS3 data will be accessible via the new interface as well. We will preview some of the new methods of accessing legacy VEX data via the new interface, with a focus being placed on the ADE data set. We will show how the ADE data can be accessed using Geographic Information Systems (GIS) and our plans for making this and other data sets compatible with the Virtual European Solar and Planetary Access (VESPA) project for creating a virtual observatory. From February 2010 through March 2014, ESA's Venus Express mission conducted 11 ADE campaigns. During these observation campaigns, VEX's pericenter was in the range of 165 to 190 km, while the spacecraft was near Venus' North pole, and the entire spacecraft was used to make in situ measurements of the atmospheric density. This was done by rotating the solar panels in a manner that somewhat resembles a windmill. Also, VEX 's attitude and orbit control system was tasked with maintaining the spacecraft in a 3-axis stabilized mode during these pericenter passes. The torques that the reaction wheels had to exert to maintain this attitude were then analyzed to yield density readings.

  12. Venus Highland Anomalous Reflectivity

    NASA Astrophysics Data System (ADS)

    Simpson, Richard A.; Tyler, G. L.; Häusler, B.; Mattei, R.; Patzold, M.

    2009-09-01

    Maxwell Montes was one of several unusually bright areas identified from early Venus radar backscatter observations. Pioneer Venus' orbiting radar associated low emissivity with the bright areas and established a correlation between reflectivity and altitude. Magellan, using an oblique bistatic geometry, showed that the bright surface dielectric constant was not only large but also imaginary -- i.e., the material was conducting, at least near Cleopatra Patera (Pettengill et al., Science, 272, 1996). Venus Express (VEX) repeated Magellan's bistatic observations over Maxwell, using the more conventional circular polarization carried by most spacecraft. Although VEX signal-to-noise ratio was lower than Magellan's, echoes were sufficiently strong to verify the Magellan conclusions near Cleopatra (see J. Geophys. Res., 114, E00B41, doi:10.1029/2008JE003156). Only about 40% of the surface at Cleopatra scatters specularly, opening the Fresnel (specular) interpretation model to question. Elsewhere in Maxwell, the specular percentage may be even lower. Nonetheless, the echo polarization is reversed throughout Maxwell, a result that is consistent with large dielectric constants and difficult to explain without resorting qualitatively (if not quantitatively) to specular models. VEX was scheduled to explore other high altitude regions when its S-Band (13-cm wavelength) radio system failed in late 2006, so further probing of high altitude targets awaits arrival of a new spacecraft.

  13. Return to Venus of AKATSUKI, the Japanese Venus Orbiter

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Iwagami, N.; Satoh, T.; Taguchi, M.; Watanabe, S.; Takahashi, Y.; Imamura, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; Fukuhara, T.; Yamada, M.; Ishii, N.; Ogohara, K.

    2011-12-01

    Japanese Venus Climate Orbiter 'AKATSUKI' (PLANET-C) was proposed in 2001 with strong support by international Venus science community and approved as an ISAS mission soon after the proposal. AKATSUKI and ESA's Venus Express complement each other in Venus climate study. Various coordinated observations using the two spacecraft have been planned. Also participating scientists from US have been selected. Its science target is to understand the climate of Venus. The mission life we expected was more than 2 Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles' expansion was confirmed. AKATSUKI was put into the 3-axis stabilized mode in the initial operation from Uchinoura station and the critical operation was finished at 20:00JST on the same day. The malfunction, which happened during the Venus Orbit Insertion (VOI) on7 Dec, 2010 is as follows. We set all commands on Dec. 5. Attitude control for Venus orbit insertion (VOI) was automatically done on Dec. 6. Orbital maneuver engine (OME) was fired 08:49 JST on Dec. 7. 1min. after firing the spacecraft went into the occultation region and we had no telemetry, but we expected to continuous firing for 12min. Recording on the spacecraft told us later that, unfortunately the firing continued just 152sec. and stopped. The reason of the malfunction of the OME was the blocking of check valve of the gas pressure line to push the fuel to the engine. We failed to make the spacecraft the Venus orbiter, and it is rotating the sun with the orbital period of 203 days. As the Venus orbit the sun with the period of 225 days, AKATSUKI has a chance to meet Venus again in 5 or 6 years depending on the orbit correction plan. Let us summarize the present situation of AKATSUKI. Most of the fuel still remains. But the condition of the propulsion

  14. Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)

    NASA Astrophysics Data System (ADS)

    Keating, G.; Theriot, M.; Bougher, S.

    2008-09-01

    density, scale height, inferred temperature, pressure, and other parameters as a function of altitude. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects in over 30 years. The Venus Express accelerometer drag experiment is very similar to accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter which orbit Mars. The Venus Express drag measurements of the polar region will allow a global empirical model of the thermosphere to emerge. Previous drag measurements have been made principally near the equator. The experiment may help us understand on a global scale, tides, winds, gravity waves, planetary waves, and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The rotating vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The super-rotation may affect escape rates and the evolution of the atmosphere. References: [1] Keating, G. M., et al: Venus Thermosphere and Exosphere: First Satellite Drag Measurements of an Extraterrestrial Atmosphere. Science, Vol. 203, No. 4382, 772-774, Feb. 23, 1979. [2] Keating, G. M. and Bougher, S.W.: Isolation of Major Venus Cooling Mechanism and Implications for Earth and Mars, Journal of Geophysical Research, Vol. 97, 4189

  15. Future Venus exploration: mission Venera-D

    NASA Astrophysics Data System (ADS)

    Zasova, Ludmila

    Venus was actively studied by Soviet and US missions in 60-90-th years of the last century. The investigations carried out both from the orbit and in situ were highly successful. After a 15-year break in space research of Venus, the ESA Venus Express mission, launched in 2005, successfully continues its work on orbit around Venus, obtaining spectacular results. However, many questions concerning the structure and evolutions of the planet Venus, which are the key questions of comparative planetology and very essential for understanding the possible evolution of the terrestrial climate, cannot be solved by observations only from an orbit. Venera-D includes orbiter, lander, subsatellite, long living station on the surface. Venera-D is focused for both in situ and remote investigations of Venus of surface and atmosphere, as well plasma environment and solar wind interaction. Practically all experiments for Venera-D, will be provided by international teams. A Russia-US Venera-D Joint Science Definition Team has been formed in February 2014 to recommend a possible collaborative and coordinated implementation by considering the common aspects of Venera-D mission as presently defined, as well as the Venus Climate Mission recommended by the US Academies Decadal Survey of Planetary Science and the Venus Flagship mission studied by NASA in 2009. The team will provide its report by March 2015 and will likely lead to a coordinated or joint call for instruements and/or mission elements.

  16. Venus cartography

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Kirk, R. L.; Edwards, Kathleen; Morgan, H. F.

    1994-01-01

    The entire surface of the planet Venus is being mapped at global and regional scales (1:50 million through 1:1.5 million) with synthetic aperture radar (SAR), radar altimeter, and radiometer measurements of physical properties from the Magellan spacecraft. The mapping includes SAR image mosaics, shaded relief maps, and topographic contour overlays made from altimetry data and by radargrammetric methods. Methods used include new techniques of radar image processing that became operational as a result of the Magellan mission. Special cartographic support products prepared by the USGS include: synthetic stereograms, color thematic maps of physical properties, digital shaded relief maps from opposite-look SAR, and topographic maps by radargrammetry. The area being mapped (at a resolution of 75 m/pixel) is roughly equivalent to that of Earth, including seafloors. The mapping is designed to support geologic and geophysical investigations.

  17. Simulation of Radar-Backscattering from Phobos - A Contribution to the Experiment MARSIS aboard MarsExpress

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Hahnel, R.; Hegler, S.; Safaeinili, A.; Orosei, R.; Cicchetti, A.; Plaut, J.; Picardi, G.

    2009-04-01

    MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) on board MarsExpress is the first and so far the only space borne radar that observed the Martian moon Phobos. Radar echoes were measured for different flyby trajectories. The primary aim of the low frequency sounding of Phobos is to prove the feasibility of deep sounding, into the crust of Phobos. In this poster we present a numerical method that allows a very precise computation of radar echoes backscattered from the surface of large objects. The software is based on a combination of physical optics calculation of surface scattering of the radar target, and Method of Moments to calculate the radiation pattern of the whole space borne radar system. The calculation of the frequency dependent radiation pattern takes into account all relevant gain variations and coupling effects aboard the space craft. Based on very precise digital elevation models of Phobos, patch models in the resolution of lambda/10 were generated. Simulation techniques will be explained and a comparison of simulations and measurements will be shown. SURFACE BACKSCATTERING SIMULATOR FOR LARGE OBJECTS The computation of surface scattering of the electromagnetic wave incident on Phobos is based on the Physical Optics method. The scattered field can be expressed by the induced equivalent surface currents on the target. The Algorithm: The simulation program itself is split into three phases. In the first phase, an illumination test checks whether a patch will be visible from the position of the space craft. If this is not the case, the patch will be excluded from the simulation. The second phase serves as a preparation stage for the third phase. Amongst other tasks, the dyadic products for the Js and Ms surface currents are calculated. This is a time-memory trade-off: the simulation will need additional 144 bytes of RAM for every patch that passes phase one. However, the calculation of the dyads is expensive, so that considerable

  18. Venus Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Bullock, M.

    2012-12-01

    The sensitivity of the Earth's climate to changes in atmospheric carbon dioxide is often expressed as the net change in radiative forcing, in W/m2, due to a doubling of carbon dioxide concentration. Feedbacks due to consequent changes in water vapor abundance, clouds, and surface ice act to magnify or suppress the net change in radiative forcing due to doubling of atmospheric carbon dioxide. For example, for the net change in radiative energy balance of ΔH is ΔH=∂F/∂[CO2 ] Δ[CO2] + ∂F/∂T ΔT + ∂F/∂[H2O] ∂[H2O]/∂T ΔT + So/4 ∂α/∂T ΔT where F is the flux at the top of the atmosphere, [CO2] and [H2O] are the concentrations of carbon dioxide and water vapor in the atmosphere, So is the solar flux, and α is the planetary albedo. The first term on the right is the direct effect of atmospheric carbon dioxide concentration on the outgoing thermal flux. The second term represents the adjustment to outgoing flux that results solely from changes in atmospheric temperature. The third term is the water vapor greenhouse term, and the fourth is the response the Earth's albedo to changes in temperature. Radiative balance is established when ΔH --> 0. The sensitivity of Venus' climate due to perturbations in atmospheric constituents can be expressed in a similar manner. This analysis is useful for assessing the changes in surface temperature that result from volcanic activity, and the long term effects of the loss of volatiles to space or to reactions with the surface. I will discuss the change in radiative forcing of Venus' climate due to alteration of atmospheric water vapor abundance. As with carbon dioxide in the Earth's atmosphere, changes in Venus' atmospheric water vapor have both direct and indirect climate forcing effects. The analogous linearized climate sensitivity equation for Venus will be discussed, with an emphasis on the nature of the feedback each term represents.

  19. Generation of Small-Mode Particles via Nucleation of Meteoric Dust in the Upper Haze of Venus

    NASA Astrophysics Data System (ADS)

    Yung, Yuk; Gao, P.; Zhang, X.; Crisp, D.; Bardeen, C. G.

    2012-10-01

    Observations by the SPICAV/SOIR instruments aboard Venus Express has revealed that the Upper Haze of Venus is populated by two particle modes, as reported by Wilquet et al. (J. Geophys. Res., 114, E00B42, 13pp, 2009). In this work we posit that the large mode is due to the upwelling of cloud particles, while the smaller mode is generated by the nucleation of meteoric dust. We test this hypothesis by using version 3.0 of the Community Aerosol and Radiation Model for Atmospheres, first developed by Turco et al. (J. Atmos. Sci., 36, 699-717, 1979) and upgraded by Bardeen et al. (The CARMA 3.0 microphysics package in CESM, Whole Atmosphere Working Group Meeting, 2011). Using the meteoric dust production profile of Kalashnikova et al. (Geophys. Res. Lett., 27, 3293-3296, 2000), the sulfur/sulfate condensation nuclei production profile of Imamura and Hashimoto (J. Atmos. Sci., 58, 3597-3612, 2001), and sulfuric acid vapour production profile of Zhang et al. (Icarus, 217, 714-739, 2012), we numerically simulate a column of the Venus atmosphere from 40 to 100 km above the surface. Our aerosol number density results agree well with Pioneer Venus data from Knollenberg and Hunten (J. Geophys. Res., 85, 8039-8058, 1980), while our gas distribution results match that of Kolodner and Steffes (Icarus, 132, 151-169, 1998). There is a mediocre agreement between our cloud deck size distribution and Pioneer Venus data. The Upper Haze size distribution shows two lognormal distributions overlapping each other, possibly indicating the presence of two modes, though more analysis is required at this time. Finally, we treat the simulated aerosol particles as Mie scatterers and compute their optical parameters. The results show a minimum in the optical depth at a wavelength of 300 nm, comparable to the results of Lacis (J. Atmos. Sci., 32, 1107-1124, 1975).

  20. Updating the Venus International Reference Atmosphere (VIRA)

    NASA Astrophysics Data System (ADS)

    Limaye, S.; Svedhem, H.; Titov, D.; Markiewicz, W.; Wilson, C.; Zasova, L.

    2012-04-01

    The compilation of the Venus International Reference Atmosphere was completed in 1985 through the initiative of A.J. Kliore, V.I. Moroz, and G.M. Keating. Consisting of seven chapters, it presented a synthesis of the best available data at that time on the neutral atmosphere and ionosphere of Venus.This model consist of seven chapters: (1 ) Models of the structure of the atmosphere of Venus from the surface to 100 km altitude,(2) Circulation of the atmosphere from surface to 100 km, (3) Particulate matter in the Venus atmosphere, (4) Models of Venus neutral upper atmosphere: structure and composition, (5) Composition of the atmosphere below 100 km altitude, (6) Solar and thermal radiation in the Venus atmosphere, and (7) The Venus ionosphere. VIRA provides tables and figures as well as description of how the models were synthesized from the available data and references. VIRA has helped many studies of Venus since its publication and in fact has proved invaluable in comparing and contrasting many studies by providing a common standard for atmospheric data.The organizers of VIRA had anticipated updating the model soon after publication as newer data were becoming available from Pioneer and Venera missions.Since then many other missions have yielded valuable data and newer findings. In particular the Venus Express mission is currently providing many new details of the atmospheric structure and radiation balance from its instruments, so an effort to update VIRA is timely. The Venus community continues to consider new missions to address the unanswered questions about Venus and hence updating the Reference Model in the near future will help both future studies and understanding the available observations through models that need the information. The Venus Exploration Analysis Group (VEXAG) sponsored by NASA provides an international forum to carry out the required effort and invites Venus scientists to propose models and participate in working group to update the model

  1. The Importance of Venus Lightning Investigations

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Russell, C. T.; Wei, H.; Zhang, T.

    2013-12-01

    Lightning in planetary atmospheres arises due to the separation of electric charges in convective cloud systems. We expect that Venus should have strong thermally driven winds at its location of 0.72 AU from the Sun. Observations of the cloud tops and the vertical motions of the atmosphere by the VEGA balloons confirm this expectation. We have made extensive surveys for lightning on Venus with spacecraft in the Venusian ionosphere. However, as yet we do not have a complete mapping of the occurrence of lightning because at the low frequencies at which measurements have been made it is difficult for the waves generated to penetrate the ionosphere. We expect the lightning to be intense as it generates nitric oxide and nitric oxide as is abundant on Venus as on Earth. We have surveyed almost all the Venus Express 128 Hz magnetometer data recorded to date. These data reveal that lightning is extensive on Venus but still do not reveal its true occurrence rate or altitude of generation. This requires observations from multipoint monitors at frequencies that penetrate into the ionosphere and will allow us to determine the energy released by lightning in the Venusian atmosphere. Finally, it is essential for us to study similar planetary processes in different settings in order to fully understand the process itself. Lightning is an important terrestrial process. Venus gives us the opportunity to understand the process more deeply. In this presentation we review the present state of knowledge of Venus lightning.

  2. Meteoric Dust as Condensation Nuclei of Small-Mode Particles in the Upper Haze of Venus

    NASA Astrophysics Data System (ADS)

    Gao, P.; Zhang, X.; Crisp, D.; Bardeen, C.; Yung, Y. L.

    2012-12-01

    Observations by the SPICAV/SOIR instruments aboard Venus Express have revealed that the Upper Haze of Venus is populated by two particle modes, as reported by Wilquet et al. (J. Geophys. Res., 114, E00B42, 2009). In this work, we posit that the large mode is made up of cloud particles that have diffused upwards from the cloud deck below, while the smaller mode is generated by the in situ nucleation of meteoric dust. We test this hypothesis by using version 3.0 of the Community Aerosol and Radiation Model for Atmospheres, first developed by Turco et al. (J. Atmos. Sci., 36, 699-717, 1979) and upgraded to version 3.0 by Bardeen et al. (The CARMA 3.0 microphysics package in CESM, Whole Atmosphere Working Group Meeting, 2011). Using the meteoric dust production profile of Kalashnikova et al. (Geophys. Res. Lett., 27, 3293-3296, 2000), the sulfur/sulfate condensation nuclei production profile of Imamura and Hashimoto (J. Atmos. Sci., 58, 3597-3612, 2001), and sulfuric acid vapor production profile of Zhang et al. (Icarus, 217, 714-739, 2012), we numerically simulate a column of the Venus atmosphere from 40 to 100 km above the surface. Our aerosol number density results agree well with Pioneer Venus data from Knollenberg and Hunten (J. Geophys. Res., 85, 8039-8058, 1980), while our gas distribution results match that of Kolodner and Steffes below 55 km (Icarus, 132, 151-169, 1998). The resulting size distribution of cloud particles shows two distinct modes, qualitatively matching the observations of Pioneer Venus. We also observe a third mode in our results with a size of a few microns at 48 km altitude, which appears to support the existence of the controversial third mode in the Pioneer Venus data. This mode disappears if coagulation is not included in the simulation. The Upper Haze size distribution shows two lognormal-like distributions overlapping each other, possibly indicating the presence of the two distinct modes. We test our hypothesis by simulating the

  3. Can Venus magnetosheath plasma evolve into turbulence?

    NASA Astrophysics Data System (ADS)

    Dwivedi, Navin; Schmid, Daniel; Narita, Yasuhito; Volwerk, Martin; Delva, Magda; Voros, Zoltan; Zhang, Tielong

    2014-05-01

    The present work aims to understand turbulence properties in planetary magnetosheath regions to obtain physical insight on the energy transfer from the larger to smaller scales, in spirit of searching for power-law behaviors in the spectra which is an indication of the energy cascade and wave-wave interaction. We perform a statistical analysis of energy spectra using the Venus Express spacecraft data in the Venusian magnetosheath. The fluxgate magnetometer data (VEXMAG) calibrated down to 1 Hz as well as plasma data from the ion mass analyzer (ASPERA) aboard the spacecraft are used in the years 2006-2009. Ten-minute intervals in the magnetosheath are selected, which is typical time length of observations of quasi-stationary fluctuations avoiding multiple boundaries crossings. The magnetic field data are transformed into the mean-field-aligned (MFA) coordinate system with respect to the large-scale magnetic field direction and the energy spectra are evaluated using a Welch algorithm in the frequency range between 0.008 Hz and 0.5 Hz for 105 time intervals. The averaged energy spectra show a power law upto 0.3 Hz with the approximate slope of -1, which is flatter than the Kolmogorov slope, -5/3. A slight hump in the spectra is found in the compressive component near 0.3 Hz, which could possibly be realization of mirror mode in the magnetosheath. A spectral break (sudden change in slope) accompanies the spectral hump at 0.4 Hz, above which the spectral curve becomes steeper. The overall spectral shape is reminiscent of turbulence. The low-frequency part with the slope -1 is interpreted as realization of the energy containing range, while the high-frequency part with the steepening is interpreted either as the beginning of energy cascade mediated by mirror mode or as the dissipation range due to wave-particle resonance processes. The present research work is fully supported by FP7/STORM (313038).

  4. Venus: Mysteries Of The "forgotten Planet"

    NASA Astrophysics Data System (ADS)

    Titov, D. V.

    T: none of the worldSs space agencies & cedil; has considered it as a primary target. However, a great number of unsolved funda- mental problems in VenusS physics and availability of observational tools encourages the scientific community to propose missions to the planet. Venus Express in Europe and a set of Discovery missions in USA are being currently considered for inclusion in the programmes of space agencies. The Venus Orbiter mission has been recently approved in Japan.

  5. Bimodal distribution of sulfuric acid aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Zhang, Xi; Crisp, David; Bardeen, Charles G.; Yung, Yuk L.

    2014-03-01

    Observations by the SPICAV/SOIR instruments aboard Venus Express have revealed that the upper haze (UH) of Venus, between 70 and 90 km, is variable on the order of days and that it is populated by two particle modes. We use a one-dimensional microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two observed modes, and whether their observed variability are due in part to the action of vertical transient winds at the cloud tops. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets, which then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and therefore cannot reproduce the observed bimodal size distribution. By comparison, the mass transport enabled by transient winds at the cloud tops, possibly caused by sustained subsolar cloud top convection, are able to generate a bimodal size distribution in a time scale consistent with Venus Express observations. Below the altitude where the cloud particles are generated, sedimentation and vigorous convection causes the formation of large mode 2 and mode 3 particles in the middle and lower clouds. Evaporation of the particles below the clouds causes a local sulfuric acid vapor maximum that results in upwelling of sulfuric acid back into the clouds. In the case where the polysulfur condensation nuclei are small and their production rate is high, coagulation of small droplets onto larger droplets in the middle cloud may set up an oscillation in the size modes of the particles such that precipitation of sulfuric acid “rain” may be possible immediately below the clouds once every few Earth months. Reduction of the polysulfur condensation nuclei production

  6. International Collaboration for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Cutts, James; Limaye, Sanjay; Zasova, Ludmila; Wilson, Colin; Ocampo, Adriana; Glaze, Lori; Svedhem, H.; Nakamura, Masato; Widemann, Thomas

    The Venus Exploration Analysis Group (VEXAG) was established by NASA in July 2005 to identify scientific priorities and strategy for exploration of Venus. From the outset, VEXAG has been open to the international community participation and has followed the progress of the ESA Venus Express Mission and the JAXA Akasuki mission as well exploring potential broad international partnerships for Venus exploration through coordinated science and missions. This paper discussed three mechanisms through which these collaborations are being explored in which VEXAG members participate One pathway for international collaboration has been through COSPAR. The International Venus Exploration Working Group (IVEWG) was formed during the 2012 COSPAR general assembly in Mysore, India. Another potentially significant outcome has been the IVEWG’s efforts to foster a formal dialog between IKI and NASA/PSD on the proposed Venera D mission resulting in a meeting in June 2013 to be followed by a discussion at the 4MS3 conference in October 2013. This has now resulted in an agreement between NASA/PSD and IKI to form a joint Science Definition Team for Venera D. A second pathway has been through an international focus on comparative climatology. Scientists from the established space faring nations participated in a first international conference on Comparative Climatology for Terrestrial Planet (CCTP) in Boulder Colorado in June 2012 sponsored by several international scientific organizations. A second conference is planned for 2015. The Planetary Robotics Exploration Coordinating Group (PRECG) of International Academy of Astronautics (IAA) the IAA has been focusing on exploring affordable contributions to the robotic exploration by non-space-faring nations wishing to get involved in planetary exploration. PRECG has sponsored a two year study of Comparative Climatology for which Venus is the focal point and focused on engaging nations without deep space exploration capabilities. A third

  7. Venus Exploration opportunities within NASA's Solar System Exploration roadmap

    NASA Technical Reports Server (NTRS)

    Balint, Tibor; Thompson, Thomas; Cutts, James; Robinson, James

    2006-01-01

    Science goals to understand the origin, history and environment of Venus have been driving international space exploration missions for over 40 years. Past missions include the Magellan and Pioneer-Venus missions by the US; the Venera program by the USSR; and the Vega missions through international cooperation. Furthermore, the US National Research Council (NRC), in the 2003 Solar System Exploration (SSE) Decadal Survey, identified Venus as a high priority target, thus demonstrating a continuing interest in Earth's sister planet. In response to the NRC recommendation, the 2005 NASA SSE Roadmap included a number of potential Venus missions arching through all mission classes from small Discovery, to medium New Frontiers and to large Flagship class missions. While missions in all of these classes could be designed as orbiters with remote sensing capabilities, the desire for scientific advancements beyond our current knowledge - including what we expect to learn from the ongoing ESA Venus Express mission - point to in-situ exploration of Venus.

  8. Colonization of Venus

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.

    2003-01-01

    Although the surface of Venus is an extremely hostile environment, at about 50 kilometers above the surface the atmosphere of Venus is the most earthlike environment (other than Earth itself) in the solar system. It is proposed here that in the near term, human exploration of Venus could take place from aerostat vehicles in the atmosphere, and that in the long term, permanent settlements could be made in the form of cities designed to float at about fifty kilometer altitude in the atmosphere of Venus.

  9. Venusian upper haze properties from UV to IR wavelengths: results from SPICAV/SOIR on Venus Express

    NASA Astrophysics Data System (ADS)

    Montmessin, Franck; Fedorova, Anna; Wilquet, Valerie; Mahieux, Arnaud; Korablev, Oleg; Bertaux, Jean-Loup; Vandaele, Ann-Carine

    The SPICAV suite of instruments is composed of three separate channels: UV (110 to 320 nm), near-IR (0.7 to 1.7 µm) and the SOIR channel (2.3 to 4.4 µm). On specific opportunities, all three channels have operated simultaneously during solar occultations and have provided almost contiguous spectral information from 0.11 to 4.4 µm. Occultation observations provide several advantages, in particular it does not require cross-calibrating the channels together as scientific analysis is based on relative measurements; i.e. atmospheric transmissions which are the ratio of spectra obtained at a given altitude where the atmosphere produces some attenuation onto that collected outside the atmosphere where the sun can be observed free of any absorption. Haze opacities are readily retrieved using Beer-Lambert's law and vertical distribution from 65 to 120 km is inferred using regular onion peeling technique. Over the interval covered by SPICAV/SOIR, the spectral behavior of haze particles can be fully and robustly evaluated since the size parameter varies by more than one order of magnitude. Extraction of extinction coefficients have been performed for all three channels, allowing derivation of size distribution parameters. Details on the observations made for each channel will be presented. Profiles exhibit peculiar wavy structures that suggest gravity wave vertical propagations or localized destruction processes. Size distribution results will be discussed, in particular the possibility for a multi-modal distribution potentially implying different processes of formation and destruction at work in the mesosphere of Venus.

  10. Registration of VENUS peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VENUS is a large-seeded high-oleic Virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot resistance when compared to the cultivar Jupiter. VENUS is the first high-oleic Virginia peanut developed for optimal performance in the South...

  11. Progress towards a Venus reference cloud model

    NASA Astrophysics Data System (ADS)

    Wilson, Colin; Ignatiev, Nikolay; Marcq, Emmanuel

    Venus is completely enveloped by clouds. The main cloud layers stretch from altitudes of 48 - 75 km, with additional tenuous hazes found at altitudes 30 - 100 km. Clouds play a crucial role in governing atmospheric circulation, chemistry and climate on all planets, but particularly so on Venus due to the optical thickness of the atmosphere. The European Space Agency’s Venus Express (VEx) satellite has carried out a wealth of observations of Venus clouds since its arrival at Venus in April 2006. Many VEx observations are relevant to cloud science - from imagers and spectrometers to solar, stellar and radio occultation - each covering different altitude ranges, spectral ranges and atmospheric constituents. We have formed an International Team at the International Space Science Institute to bring together scientists from each of the relevant Venus Express investigation teams as well as from previous missions, as well as those developing computational and analytical models of clouds and hazes. The aims of the project are (1) to create self-consistent reference cloud/haze models which capture not only a mean cloud structure but also its main modes of variability; and (2) to bring together modelers and observers, to reach an understanding of clouds and hazes on Venus which matches all observables and is physically consistent. Our approach is to first to assemble an averaged cloud profile for low latitudes, showing how cloud number abundances and other observables vary as a function of altitude, consistent with all available observations. In a second step, we will expand this work to produce a reference cloud profile which varies with latitude and local solar time, as well as optical thickness of the cloud. We will present our status in progressing towards this goal. We acknowledge the support of the International Space Science Institute of Berne, Switzerland, in hosting our Team’s meetings.

  12. Venus Aerobot Multisonde Mission

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Kerzhanovich, Viktor; Balaram, J. Bob; Campbell, Bruce; Gershaman, Robert; Greeley, Ronald; Hall, Jeffery L.; Cameron, Jonathan; Klaasen, Kenneth; Hansen, David M.

    1999-01-01

    Robotic exploration of Venus presents many challenges because of the thick atmosphere and the high surface temperatures. The Venus Aerobot Multisonde mission concept addresses these challenges by using a robotic balloon or aerobot to deploy a number of short lifetime probes or sondes to acquire images of the surface. A Venus aerobot is not only a good platform for precision deployment of sondes but is very effective at recovering high rate data. This paper describes the Venus Aerobot Multisonde concept and discusses a proposal to NASA's Discovery program using the concept for a Venus Exploration of Volcanoes and Atmosphere (VEVA). The status of the balloon deployment and inflation, balloon envelope, communications, thermal control and sonde deployment technologies are also reviewed.

  13. Characterization of dust activity from Martian Year (MY) 27 to MY 32 observed by the Planetary Fourier Spectrometer aboard the Mars Express spacecraft

    NASA Astrophysics Data System (ADS)

    Wolkenberg, Paulina; Giuranna, Marco; Aoki, Shohei; Scaccabarozzi, Diego; Saggin, Bortolino; Formisano, Vittorio

    2016-04-01

    More than 2,500,000 spectra have been collected by the Planetary Fourier Spectrometer aboard Mars Express spacecraft after 12 years of activity. The data span more than six Martian years, from MY26, Ls = 331°, to MY 33, Ls = 78°. This huge dataset has been used to build a new database of atmospheric parameters, including atmospheric and surface temperatures, and dust and water ice opacity. Dust aerosols suspended in the atmosphere affect its thermal structure and are a major driver of the circulation. They are always present in the Martian atmosphere, but the amount varies greatly depending on location and season. We analyze dust opacities at 1075 cm-1 retrieved from the PFS long-wavelength channel spectra to characterize the dust activity on Mars for the relevant period. The dust storm season (Ls= 185° - 310°) is monitored for each Martian year. All dust observations show a seasonal pattern, which is ruled by the occurrence of regional and/or global dust storms. Regional dust storms are observed every year, while a planet encircling dust storm occurred in MY 28, when the highest values of dust opacity are also observed (~ 2.45). We characterize the spatial and temporal evolution of these regional and global dust events and investigate the effect of dust on surface and atmospheric temperatures.

  14. Shoemaker Lecture: The Atmosphere and Climate of Venus

    NASA Astrophysics Data System (ADS)

    Taylor, F. W.

    2006-12-01

    Venus is like another Earth, orbiting closer to the Sun. Its cloudy atmosphere reflects so much of the Sun's heat that, on simple energy balance grounds, we might expect Venus to be cooler than Earth. In fact, its surface glows with a dull red heat and some metals would be molten there. This fantastic case of global warming is due to a greenhouse effect very similar, though stronger, than that which is now threatening to overheat the Earth. What lessons should we draw from this? Can we explain the evolutionary tracks of Venus, Earth and Mars with a common paradigm? What key investigations should we be making, particularly in terms of space missions? The European Space Agency responded recently to calls from the scientific community there for a new mission to Venus, and produced the Venus Express orbiter. This has now been operating at Venus since April, and early results are beginning to flow. We discuss the interesting questions about Venus that Venus Express is addressing and discuss current and expected progress and remaining mysteries.

  15. Modelling of ultraviolet and visible dayglow emissions on Venus

    NASA Astrophysics Data System (ADS)

    Jain, Sonal Kumar; Bhardwaj, Anil

    The ultraviolet dayglow emissions on Venus is mainly dominated by the CO _{2} and its dissociated products (CO, O, and C). The SPICAV instrument on-board Venus Express (VEx) has recently made first observation of CO Cameron and CO _{2}(+) UV doublet emissions in the dayglow of Venus. We have developed a model to study the ultraviolet and visible dayglow emissions on Venus for low, moderate, and high solar activity conditions. Our calculation shows that CO Cameron band emission on Venus is mainly produced by electron impact excitation of CO (e-CO), however, this process is sensitive to the e-CO cross section used in the calculation. At the altitude of emission peak (˜135 km), the model predicted limb intensity of CO Cameron band and CO _{2}(+) UV doublet emissions in moderate (F10.7 = 130) solar activity condition is about 2400 and 300 kR, respectively, which is in agreement with the very recently published SPICAV/Venus Express observation A model for N _{2} triplet band emissions is developed to predict the intensity of these emissions on Venus. We have developed a detail coupled chemistry model to understand the various processes governing the oxygen ultraviolet (2972 Å), and visible (green and red lines) emission on Venus. The results will be presented and discussed.

  16. 2-D Chemical-Dynamical Modeling of Venus's Sulfur Variability

    NASA Astrophysics Data System (ADS)

    Bierson, Carver J.; Zhang, Xi

    2016-10-01

    Over the last decade a combination of ground based and Venus Express observations have been made of the concentration of sulfur species in Venus's atmosphere, both above [1, 2] and below the clouds [3, 4]. These observations put constraints on both the vertical and meridional variations of the major sulfur species in Venus's atmosphere.. It has also been observed that SO2 concentrations varies on both timescales of hours and years [1,4]. The spatial and temporal distribution of tracer species is owing to two possibilities: mutual chemical interaction and dynamical tracer transport.Previous Chemical modeling of Venus's middle atmosphere has only been explored in 1-D. We will present the first 2-D (altitude and latitude) chemical-dynamical model for Venus's middle atmosphere. The sulfur chemistry is based on of the 1D model of Zhang et al. 2012 [5]. We do model runs over multiple Venus decades testing two scenarios: first one with varying sulfur fluxes from below, and second with secular dynamical perturbations in the atmosphere [6]. By comparing to Venus Express and ground based observations, we put constraints on the dynamics of Venus's middle atmosphere.References: [1] Belyaev et al. Icarus 2012 [2] Marcq et al. Nature geoscience, 2013 [3] Marcq et al. JGR:Planets, 2008 [4] Arney et al. JGR:Planets, 2014 [5] Zhang et al. Icarus 2012 [6] Parish et al. Icarus 2012

  17. Ion flows in Venus' magnetotail

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Brandt, P. C.; Futaana, Y.; Fedorov, A.

    2014-12-01

    The plasma environment of Venus, including its magnetotail up to 3 Venus radii distance has been studied by the Venus Express spacecraft since 2006. We use the ASPERA/IMA instrument that measures protons and oxygen ions in the eV to keV range. Oxygen ions deriving from Venus' atmosphere and flowing down the magnetotail have been reported and contribute to atmospheric escape (Barabash et al. 2007). There have also been ions observed that flow Venusward in the tail (Dubinin et al. 2014). Signatures of magnetic reconnection have been found (Zhang et al. 2012), which might contribute to these flows. We have numerically calculated flow velocities and densities of protons and oxygen ions in the tail. Since the IMA instrument cannot cover all directions during one scan, we manually identified hundreds of cases of clear and mostly unbiased plasma flows. This approach avoids cases that lead to incorrect results. We find that the Venusward fluxes of both protons and oxygen ions are on average smaller but on the same order of magnitude as the tailward escape fluxes. Venusward fluxes are commonly quasi-steady i.e. observed throughout most of a tail passage, which takes several ten minutes. The instantaneous flow directions can differ by more than 100 degrees in the tail. Their net tailward or Venusward direction is opposite in about half of the cases. Comparison with magnetic field data shows that tailward and Venusward bulk flows are roughly field-aligned. The calculation of plasma moments does not imply that the underlying distributions are thermal and described well with a Maxwellian distribution. About a third of the proton spectra show a suprathermal component. Such cases are more common for Venusward fluxes and can be observed over longer periods. In some cases the additional component is a clearly separated second peak but most of the time it fits well with a flat power law (exponents 0 to 3).

  18. Venus within ESA probe reach

    NASA Astrophysics Data System (ADS)

    2006-03-01

    Venus Express mission controllers at the ESA Space Operations Centre (ESOC) in Darmstadt, Germany are making intensive preparations for orbit insertion. This comprises a series of telecommands, engine burns and manoeuvres designed to slow the spacecraft down from a velocity of 29000 km per hour relative to Venus, just before the first burn, to an entry velocity some 15% slower, allowing the probe to be captured into orbit around the planet. The spacecraft will have to ignite its main engine for 50 minutes in order to achieve deceleration and place itself into a highly elliptical orbit around the planet. Most of its 570 kg of onboard propellant will be used for this manoeuvre. The spacecraft’s solar arrays will be positioned so as to reduce the possibility of excessive mechanical load during engine ignition. Over the subsequent days, a series of additional burns will be done to lower the orbit apocentre and to control the pericentre. The aim is to end up in a 24-hour orbit around Venus early in May. The Venus orbit injection operations can be followed live at ESA establishments, with ESOC acting as focal point of interest (see attached programme). In all establishments, ESA specialists will be on hand for interviews. ESA TV will cover this event live from ESOC in Darmstadt. The live transmission will be carried free-to-air. For broadcasters, complete details of the various satellite feeds are listed at http://television.esa.int. The event will be covered on the web at venus.esa.int. The website will feature regular updates, including video coverage of the press conference and podcast from the control room at ESA’s Operations Centre. Media representatives wishing to follow the event at one of the ESA establishments listed below are requested to fill in the attached registration form and fax it back to the place of their choice. For further information, please contact: ESA Media Relations Division Tel : +33(0)1.53.69.7155 Fax: +33(0)1.53.69.7690 Venus Express

  19. Salt tectonics on Venus

    SciTech Connect

    Wood, C.A.; Amsbury, D.

    1986-05-01

    The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

  20. Pioneer Venus Data Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Douglas E.

    1996-01-01

    Analysis and interpretation of data from the Orbiter Retarding Potential Analyzer (ORPA) onboard the Pioneer Venus Orbiter is reported. By comparing ORPA data to proton data from the Orbiter Plasma Analyzer (OPA), it was found that the ORPA suprathermal electron densities taken outside the Venusian ionopause represent solar wind electron densities, thus allowing the high resolution study of Venus bow shocks using both magnetic field and solar wind electron data. A preliminary analysis of 366 bow shock penetrations was completed using the solar wind electron data as determined from ORPA suprathermal electron densities and temperatures, resulting in an estimate of the extent to which mass loading pickup of O+ (UV ionized O atoms flowing out of the Venus atmosphere) upstream of the Venus obstacle occurred. The pickup of O+ averaged 9.95%, ranging from 0.78% to 23.63%. Detailed results are reported in two attached theses: (1) Comparison of ORPA Suprathermal Electron and OPA Solar Wind Proton Data from the Pioneer Venus Orbiter and (2) Pioneer Venus Orbiter Retarding Potential Analyzer Observations of the Electron Component of the Solar Wind, and of the Venus Bow Shock and Magnetosheath.

  1. Venus Gravity Handbook

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1996-01-01

    This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.

  2. AKATSUKI returns to Venus

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Imamura, Takeshi; Ishii, Nobuaki; Abe, Takumi; Kawakatsu, Yasuhiro; Hirose, Chikako; Satoh, Takehiko; Suzuki, Makoto; Ueno, Munetaka; Yamazaki, Atsushi; Iwagami, Naomoto; Watanabe, Shigeto; Taguchi, Makoto; Fukuhara, Tetsuya; Takahashi, Yukihiro; Yamada, Manabu; Imai, Masataka; Ohtsuki, Shoko; Uemizu, Kazunori; Hashimoto, George L.; Takagi, Masahiro; Matsuda, Yoshihisa; Ogohara, Kazunori; Sato, Naoki; Kasaba, Yasumasa; Kouyama, Toru; Hirata, Naru; Nakamura, Ryosuke; Yamamoto, Yukio; Horinouchi, Takeshi; Yamamoto, Masaru; Hayashi, Yoshi-Yuki; Kashimura, Hiroki; Sugiyama, Ko-ichiro; Sakanoi, Takeshi; Ando, Hiroki; Murakami, Shin-ya; Sato, Takao M.; Takagi, Seiko; Nakajima, Kensuke; Peralta, Javier; Lee, Yeon Joo; Nakatsuka, Junichi; Ichikawa, Tsutomu; Inoue, Kozaburo; Toda, Tomoaki; Toyota, Hiroyuki; Tachikawa, Sumitaka; Narita, Shinichiro; Hayashiyama, Tomoko; Hasegawa, Akiko; Kamata, Yukio

    2016-05-01

    AKATSUKI is the Japanese Venus Climate Orbiter that was designed to investigate the climate system of Venus. The orbiter was launched on May 21, 2010, and it reached Venus on December 7, 2010. Thrust was applied by the orbital maneuver engine in an attempt to put AKATSUKI into a westward equatorial orbit around Venus with a 30-h orbital period. However, this operation failed because of a malfunction in the propulsion system. After this failure, the spacecraft orbited the Sun for 5 years. On December 7, 2015, AKATSUKI once again approached Venus and the Venus orbit insertion was successful, whereby a westward equatorial orbit with apoapsis of ~440,000 km and orbital period of 14 days was initiated. Now that AKATSUKI's long journey to Venus has ended, it will provide scientific data on the Venusian climate system for two or more years. For the purpose of both decreasing the apoapsis altitude and avoiding a long eclipse during the orbit, a trim maneuver was performed at the first periapsis. The apoapsis altitude is now ~360,000 km with a periapsis altitude of 1000-8000 km, and the period is 10 days and 12 h. In this paper, we describe the details of the Venus orbit insertion-revenge 1 (VOI-R1) and the new orbit, the expected scientific information to be obtained at this orbit, and the Venus images captured by the onboard 1-µm infrared camera, ultraviolet imager, and long-wave infrared camera 2 h after the successful initiation of the VOI-R1.

  3. Venus - False Color Perspective of Sif and Gula Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A portion of western Eistla Regio is shown in this three dimensional, computer-generated view of the surface of Venus. The viewpoint is at an elevation of 1.2 kilometers (0.75 mile) at a location 700 kilometers (435 miles) southeast of Gula Mons, the volcano on the right horizon. Gula Mons reaches 3 kilometers (1.8 miles) high and is located around 22 degrees north latitude and 359 degrees east longitude. Sif Mons, the volcano on the left horizon, has a diameter of 300 kilometers (186 miles) and a height of 2 kilometers (1.2 miles). Magellan imaging and altimetry data are combined to develop a three-dimensional computer view of the planet's surface. Simulated color based on color images from the Soviet Venera 13 and 14 spacecraft is added to enhance small-scale structure. This image was produced at JPL's Multimission Image Processing Laboratory by Eric De Jong, Jeff Hall and Myche McAuley. Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day, is the length of a Magellan mapping cycle. The spacecraft completed its first mapping cycle and primary mission on May 15, 1991, and immediately began its second cycle. During the first cycle, Magellan mapped more than 80 percent of the planet's surface and the current and subsequent cycles of equal duration will provide complete mapping of Venus. Magellan was launched May 4, 1989, aboard the space shuttle Atlantis and went into orbit around Venus August 10, 1990.

  4. Active volcanism on Venus in the Ganiki Chasma rift zone

    NASA Astrophysics Data System (ADS)

    Shalygin, E. V.; Markiewicz, W. J.; Basilevsky, A. T.; Titov, D. V.; Ignatiev, N. I.; Head, J. W.

    2015-06-01

    Venus is known to have been volcanically resurfaced in the last third of solar system history and to have undergone a significant decrease in volcanic activity a few hundred million years ago. However, fundamental questions remain: Is Venus still volcanically active today, and if so, where and in what geological and geodynamic environment? Here we show evidence from the Venus Express Venus Monitoring Camera for transient bright spots that are consistent with the extrusion of lava flows that locally cause significantly elevated surface temperatures. The very strong spatial correlation of the transient bright spots with the extremely young Ganiki Chasma, their similarity to locations of rift-associated volcanism on Earth, provide strong evidence for their volcanic origin and suggests that Venus is currently geodynamically active.

  5. Self-consistent retrieval of temperature profiles and cloud structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 radiation measurements

    NASA Astrophysics Data System (ADS)

    Haus, R.; Kappel, D.; Arnold, G.

    2013-12-01

    Improved radiative transfer simulation and multi-window retrieval procedures (MWR) are described that are applied to investigate thermal structure and cloud features in the nightside atmosphere of Venus over the northern hemisphere. Comparative analyses of spectroscopic data, which were recorded independently in different parts of the infrared spectrum by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M-IR) aboard ESA's Venus Express space probe and the Profile Measuring Instrument for Venus (PMV, Fourier spectrometer FS-1/4) during the earlier Soviet Venera-15 experiment, are combined with self-consistent temperature profile and cloud parameter retrievals. MWR performance is studied using synthetic spectra at different latitudes and for different atmospheric temperature profiles and cloud parameters. VIRTIS and PMV retrieval result comparisons are used to determine constraints on physical state parameter variations, especially on applicability of different cloud models. An analytically parameterized initial model of four-modal cloud altitude distributions is proposed. Together with retrieved cloud parameters, which encompass individual mode factors and cloud upper altitude boundary, it permits optimum fits of measured radiances and brightness temperatures in the 4.3 and 15 µm CO2 bands utilized for atmospheric temperature profile retrievals. A new multi-spectrum retrieval (MSR) method (Kappel et al., 2012, Kappel, in press) provides deep atmosphere CO2 opacity correction parameters, which affect cloud parameter retrievals from short-wavelength emission windows.

  6. Studying the surface composition of Venus from orbit

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Mueller, N. T.; Maturilli, A.; D'Incecco, P.; Smrekar, S. E.; Nadalini, R.

    2013-12-01

    The atmosphere of Venus allows observations of the surface only in very narrow spectral windows around 1 micron. These have been successfully used by the VenusExpress, Galileo and Cassini spacecrafts as well as by ground-based observers. For any other planetary body this spectral range would be observed in reflectance. However for Venus we can obtain useful data only during nighttime using the thermal emission of the surface. So far no systematic studies have been done on the emissivity of Venus analog materials at high temperatures in this wavelength range due to the significant technical challenges of such experiments. At the Planetary Emissivity Laboratory (PEL) we started 6 years ago to extend our laboratory capabilities to support specifically missions to Venus and Mercury. Both planets exhibit surface temperatures up to 500°C and this extreme temperature range affects the spectral characteristics of the surface minerals. We are systematically studying different Venusian analogs to obtain spectra in the 1 microns region at Venus surface temperatures. First measurements of a carbonatite and an ijolite sample as analogs for low viscosity lavas clearly indicating changes of the emissivity signature at 1 micron with temperature. One of the next steps is to study tesserae analog materials to determine how the diagnostic the 1 micron region is for different compositions. We are currently developing a new instrument concept for future Venus missions designed specifically to observe Venus's surface in segments of the near-IR (NIR) spectrum that penetrate the atmosphere with minimal absorption. The Venus Emissivity Mapper (VEM) builds on experience from analysis of data from Galileo/NIMS, Cassini/VIMS, and especially VIRTIS on Venus Express. Unlike those general-purpose imaging spectrometers, VEM is a hyperspectral mapper focused on observing the surface. It will map the surface in five atmospheric windows between 0.85 and 1.18 microns. In addition, several other

  7. Transits of Venus and Mercury as muses

    NASA Astrophysics Data System (ADS)

    Tobin, William

    2013-11-01

    Transits of Venus and Mercury have inspired artistic creation of all kinds. After having been the first to witness a Venusian transit, in 1639, Jeremiah Horrocks expressed his feelings in poetry. Production has subsequently widened to include songs, short stories, novels, novellas, sermons, theatre, film, engravings, paintings, photography, medals, sculpture, stained glass, cartoons, stamps, music, opera, flower arrangements, and food and drink. Transit creations are reviewed, with emphasis on the English- and French-speaking worlds. It is found that transits of Mercury inspire much less creation than those of Venus, despite being much more frequent, and arguably of no less astronomical significance. It is suggested that this is primarily due to the mythological associations of Venus with sex and love, which are more powerful and gripping than Mercury's mythological role as a messenger and protector of traders and thieves. The lesson for those presenting the night sky to the public is that sex sells.

  8. Astrobiology and Venus exploration

    NASA Astrophysics Data System (ADS)

    Grinspoon, David H.; Bullock, Mark A.

    For hundreds of years prior to the space age, Venus was considered among the most likely homes for extraterrestrial life. Since planetary exploration began, Venus has not been considered a promising target for Astrobiological exploration. However, Venus should be central to such an exploration program for several reasons. At present Venus is the only other Earth-sized terrestrial planet that we know of, and certainly the only one we will have the opportunity to explore in the foreseeable future. Understanding the divergence of Earth and Venus is central to understanding the limits of habitability in the inner regions of habitable zones around solar-type stars. Thus Venus presents us with a unique opportunity for putting the bulk properties, evolution and ongoing geochemical processes of Earth in a wider context. Many geological and meteorological processes otherwise active only on Earth at present are currently active on Venus. Active volcanism most likely affects the climate and chemical equilibrium state of the atmosphere and surface, and maintains the global cloud cover. Further, if we think beyond the specifics of a particular chemical system required to build complexity and heredity, we can ask what general properties a planet must possess in order to be considered a possible candidate for life. The answers might include an atmosphere with signs of flagrant chemical disequilibrium and active, internally driven cycling of volatile elements between the surface, atmosphere and interior. At present, the two planets we know of which possess these characteristics are Earth and Venus. Venus almost surely once had warm, habitable oceans. The evaporation of these oceans, and subsequent escape of hydrogen, most likely resulted in an oxygenated atmosphere. The duration of this phase is poorly understood, but during this time the terrestrial planets were not isolated. Rather, due to frequent impact transport, they represented a continuous environment for early microbial

  9. Mariner-Venus 1967

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed information on the spacecraft performance, mission operations, and tracking and data acquisition is presented for the Mariner Venus 1967 and Mariner Venus 1967 extension projects. Scientific and engineering results and conclusions are discussed, and include the scientific mission, encounter with Venus, observations near Earth, and cruise phase of the mission. Flight path analysis, spacecraft subsystems, and mission-related hardware and computer program development are covered. The scientific experiments carried by Mariner 5 were ultraviolet photometer, solar plasma probe, helium magnetometer, trapped radiation detector, S-band radio occultation, dual-frequency radio propagation, and celestial mechanics. The engineering experience gained by converting a space Mariner Mars 1964 spacecraft into one flown to Venus is also described.

  10. SOHO Sees Venus' Approach

    NASA Video Gallery

    This video taken by the Solar and Heliospheric Observatory (SOHO) shows the Sun's corona and Venus' approach for the transit. This was taken with the Extreme ultraviolet Imaging Telescope (EIT) in ...

  11. The Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Hansen, J. E. (Editor)

    1975-01-01

    Topics considered at the conference included the dynamics, structure, chemistry, and evolution of the Venus atmosphere, as well as cloud physics and motion. Infrared, ultraviolet, and radio occultation methods of analysis are discussed, and atmospheric models are described.

  12. Analysis of high-altitude planetary ion velocity space distributions detected by the Ion Mass Analyzer aboard Mars Express

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Liemohn, M. W.; Fraenz, M.; Curry, S.; Mitchell, D. L.

    2012-12-01

    We present observations of planetary ion velocity space distributions from the Ion Mass Analyzer (IMA) onboard Mars Express (MEX). The magnetometer data from Mars Global Surveyor is used to obtain a rough estimate of the interplanetary magnetic field (IMF) orientation. Characteristic features of the velocity space distributions will be examined and discussed for orbits aligned with the convective electric field and those in the Mars terminator plane. This study will focus on the high (keV) energy ions, as well as the relative importance of a high-altitude magnetosheath source of escaping planetary ions. Furthermore, this paper will examine various methods for converting the IMA detector counts to species-specific fluxes. After mimicking the methods previously used by researchers, we apply each of these methods of species extraction to data collected during the same time intervals. We discuss the implications for planetary ion motion around Mars, using the details of the velocity space observations to better understand the solar wind interaction with Mars. Comparisons to virtual detections using a test particle simulation will also provide insight into ion origins and trajectories.

  13. Plate tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1981-01-01

    The high surface temperature of Venus implies a permanently buoyant lithosphere and a thick basaltic crust. Terrestrial-style tectonics with deep subduction and crustal recycling is not possible. Overthickened basaltic crust partially melts instead of converting to eclogite. Because mantle magmas do not have convenient access to the surface the Ar-40 abundance in the atmosphere should be low. Venus may provide an analog to Archean tectonics on the earth.

  14. Hypothetical habitability of Venus

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    Hypothetical habitability of some of extrasolar planets is a fundamental question of science. Some of exoplanets possess physical conditions close to those of Venus. Therefore, the planet Venus, with its dense and hot (735 K) oxygen-free atmosphere of CO2, having a high pressure of 9.2 MPa at the surface, can be a natural laboratory for this kind of studies. The only existing data on the planet’s surface are still the results obtained by the Soviet VENERA landers in the 1970s and 1980s. The TV experiments of Venera-9 and 10 (October, 1975) and Venera-13 and 14 (March, 1982) delivered 41 panoramas of Venus surface (or their fragments). There have not been any similar missions to Venus in the subsequent 39 and 32 years. In the absence of new landing missions to Venus, the VENERA panoramas have been re-processed. The results of these missions are studied anew. A dozen of relatively large objects, from a decimeter to half a meter in size, with an unusual morphology have been found which moved very slowly or changed slightly their shape. Their emergence by chance could hardly be explained by noise. Certain unusual findings that have similar structure were found in different areas of the planet. This paper presents the last results obtained of a search for hypothetical flora and fauna of Venus.

  15. Three-dimensional thermal structure of the South Polar Vortex of Venus

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Garate-Lopez, Itziar; Garcia-Muñoz, Antonio; Sánchez-Lavega, Agustín

    2014-11-01

    We have analyzed thermal infrared images provided by the VIRTIS-M instrument aboard Venus Express (VEX) to obtain high resolution thermal maps of the Venus south polar region between 55 and 85 km altitudes. The maps investigate three different dynamical configurations of the polar vortex including its classical dipolar shape, a regularly oval shape and a transition shape between the different configurations of the vortex. We apply the atmospheric model described by García Muñoz et al. (2013) and a variant of the retrieval algorithm detailed in Grassi et al. (2008) to obtain maps of temperature over the Venus south polar region in the quoted altitude range. These maps are discussed in terms of cloud motions and relative vorticity distribution obtained previously (Garate-Lopez et al. 2013). Temperature maps retrieved at 55 - 63 km show the same structures that are observed in the ~5 µm radiance images. This altitude range coincides with the optimal expected values of the cloud top altitude at polar latitudes and magnitudes derived from the analysis of ~5 µm images are measured at this altitude range. We also study the imprint of the vortex on the thermal field above the cloud level which extends up to 80 km. From the temperature maps, we also study the vertical stability of different atmospheric layers. The cold collar is clearly the most statically stable structure at polar latitudes, while the vortex and subpolar latitudes show lower stability values. Furthermore, the hot filaments present within the vortex at 55-63 km exhibit lower values of static stability than their immediate surroundings.ReferencesGarate-Lopez et al. Nat. Geosci. 6, 254-257 (2013).García Muñoz et al. Planet. Space Sci. 81, 65-73 (2013).Grassi, D. et al. J. Geophys. Res. 113, 1-12 (2008).AcknowledgementsWe thank ESA for supporting Venus Express, ASI, CNES and the other national space agencies supporting VIRTIS on VEX and their principal investigators G. Piccioni and P. Drossart. This work

  16. 3. ALTOVITI VENUS STATUE IN THE TEMPLE OF VENUS AS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ALTOVITI VENUS STATUE IN THE TEMPLE OF VENUS AS SEEN FROM LIVING ROOM DOORS, SOUTHEAST FACADE OF KYKUIT HOUSE, ON AXIS WITH LINDEN ALLEE - Kykuit, 200 Lake Road, Pocantico Hills, Westchester County, NY

  17. Limb imaging of the Venus O2 visible nightglow with the Venus Monitoring Camera

    NASA Astrophysics Data System (ADS)

    GarcíA MuñOz, A.; Hueso, R.; SáNchez-Lavega, A.; Markiewicz, W. J.; Titov, D. V.; Witasse, O.; Opitz, A.

    2013-06-01

    investigated the Venus O2 visible nightglow with imagery from the Venus Monitoring Camera on Venus Express. Drawing from data collected between April 2007 and January 2011, we study the global distribution of this emission, discovered in the late 1970s by the Venera 9 and 10 missions. The inferred limb-viewing intensities are on the order of 150 kR at the lower latitudes and seem to drop somewhat toward the poles. The emission is generally stable, although there are episodes when the intensities rise up to 500 kR. We compare a set of Venus Monitoring Camera observations with coincident measurements of the O2 nightglow at 1.27 µm made with the Visible and Infrared Thermal Imaging Spectrometer, also on Venus Express. From the evidence gathered in this and past works, we suggest a direct correlation between the instantaneous emissions from the two O2 nightglow systems. Possible implications regarding the uncertain origin of the atomic oxygen green line at 557.7 nm are noted.

  18. Quantifying shapes of volcanoes on Venus

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.

    1994-01-01

    A large population of discrete volcanic edifices on Venus has been identified and cataloged by means of Magellan SAR images, and an extensive database describing thousands of such features is in final preparation. Those volcanoes categorized as Intermediate to Large in scale, while relatively small in number (approx. 400), nonetheless constitute a significant volumetric component (approx. 13 x 10(exp 6) cu km) of the total apparent crustal volume of Venus. For this reason, we have focused attention on the morphometry of a representative suite of the larger edifices on Venus and, in particular, on ways of constraining the eruptive histories of these possibly geologically youthful landforms. Our approach has been to determine a series of reproducible morphometric parameters for as many of the discrete volcanoes on Venus that have an obvious expression within the global altimetry data acquired by Magellan. In addition, we have attempted to objectively and systematically define the mathematical essence of the shapes of these larger volcanoes using a polynomial cross-section approximation involving only parameters easily measured from digital topography, as well as with simple surface cylindrical harmonic expansions. The goal is to reduce the topological complexities of the larger edifices to a few simple parameters which can then be related to similar expressions for well-studied terrestrial and martian features.

  19. Astrobiology and Venus Exploration

    NASA Astrophysics Data System (ADS)

    Grinspoon, D. H.; Bullock, M. A.

    2005-12-01

    Venus has not traditionally been considered a promising target for Astrobiological exploration. We propose that Venus should be central to such an exploration program for several reasons. 1) Putting Earth life in context: Venus is the only other Earth-sized terrestrial planet that we know of, and certainly the only one we will have the opportunity to explore in the foreseeable future. Many geological and meteorological processes otherwise active only on Earth at present are currently active on Venus. For example, active volcanism is most likely responsible for maintaining the global cloud cover (Bullock and Grinspoon, 2001). Understanding the divergence of Earth and Venus is central to understanding the limits of habitability in the inner regions of habitable zones around solar-type stars. Thus Venus presents us with a unique opportunity for putting the bulk properties, evolution and ongoing geochemical processes of Earth in a wider context. 2) The possibility of extant life: Venus almost surely once had warm oceans. The evaporation of these oceans, and subsequent escape of hydrogen, most likely resulted in an oxygenated atmosphere. The duration of this phase is poorly understood, but during this time the terrestrial planets were not isolated. Rather, due to frequent impact transport, they represented a continuous environment for early microbial life. Life, once established in the early oceans of Venus, may have migrated to the clouds which, on present day Venus, may represent a habitable niche. Though highly acidic, this aqueous environment enjoys moderate temperatures, surroundings far from chemical equilibrium, and potentially useful radiation fluxes. Observations of unusual chemistry in the clouds, and particle populations that are not well characterized, suggest that this environment must be explored much more fully before biology can be ruled out. A sulfur-based metabolism for cloud-based life on Venus has recently been proposed (Schulze-Makuch et al., 2004

  20. VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition

    NASA Astrophysics Data System (ADS)

    Gilmore, Martha S.; Mueller, Nils; Helbert, Jörn

    2015-07-01

    The composition of Venus tessera terrain is unknown. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard Venus Express (VEx) collects data that yields the surface emissivity at ∼1 μm, which contains information convolving a number of surface properties, including composition. We examine the variation of emissivity in the vicinity of Alpha Regio, which is the largest exposure of tessera terrain imaged by VIRTIS. We find that the emissivity of Alpha Regio tessera is lower than adjacent plains materials and the deposits and flows of Eve corona, both of which have previously been interpreted to be basaltic. The emissivity of the bulk of Alpha is also lower than its western boundary, which is interpreted to comprise plains structurally deformed to the same degree as tessera terrain. This suggests that the lower emissivity of Alpha is independent of structural elements, macroscale roughness, or local sedimentation processes, and is due to material properties like composition or grain size. The deviation of the emissivity of Alpha from that of the plains for which a bulk basaltic composition is well supported corresponds to a significant difference in rock type or surface mineral assemblage. The 1 μm emissivity of Alpha is consistent with rocks with low ferrous iron content. This includes felsic igneous rocks like granitoids that form under either water-rich or water-poor conditions. A water-rich origin would require both a hydrosphere and a plate recycling mechanism and thus be limited to the lifetime of surface water on Venus. Alternatively, granitoids could form via the differentiation of basaltic melts. The production of all tessera terrain by this mechanism would require the accumulation and preservation of felsic melts from a volume of mafic magma that exceeds what is preserved in the currently observed plains. Both mechanisms of granitoid formation would require that tessera terrain be formed prior to the emplacement of the plains, consistent

  1. Astrobiology and Venus exploration

    NASA Astrophysics Data System (ADS)

    Grinspoon, David H.; Bullock, Mark A.

    For hundreds of years prior to the space age, Venus was considered among the most likely homes for extraterrestrial life. Since planetary exploration began, Venus has not been considered a promising target for Astrobiological exploration. However, Venus should be central to such an exploration program for several reasons. At present Venus is the only other Earth-sized terrestrial planet that we know of, and certainly the only one we will have the opportunity to explore in the foreseeable future. Understanding the divergence of Earth and Venus is central to understanding the limits of habitability in the inner regions of habitable zones around solar-type stars. Thus Venus presents us with a unique opportunity for putting the bulk properties, evolution and ongoing geochemical processes of Earth in a wider context. Many geological and meteorological processes otherwise active only on Earth at present are currently active on Venus. Active volcanism most likely affects the climate and chemical equilibrium state of the atmosphere and surface, and maintains the global cloud cover. Further, if we think beyond the specifics of a particular chemical system required to build complexity and heredity, we can ask what general properties a planet must possess in order to be considered a possible candidate for life. The answers might include an atmosphere with signs of flagrant chemical disequilibrium and active, internally driven cycling of volatile elements between the surface, atmosphere and interior. At present, the two planets we know of which possess these characteristics are Earth and Venus. Venus almost surely once had warm, habitable oceans. The evaporation of these oceans, and subsequent escape of hydrogen, most likely resulted in an oxygenated atmosphere. The duration of this phase is poorly understood, but during this time the terrestrial planets were not isolated. Rather, due to frequent impact transport, they represented a continuous environment for early microbial

  2. Thermal evolution of Venus

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, J.; Toksoz, M. N.

    1984-01-01

    A modification of the Boussinesq fluid assumption is the basis of the present theory of three-dimensional and finite amplitude convection in a viscous spherical shell with temperature- and pressure-dependent physical parameters. The theory is applied to the definition of thermal evolution models for Venus which emphasize the effects of certain physical parameters on thermal evolution, rather than the specific thermal history of the planet. It is suggested that a significant portion of the present temperature in the mantle and surface heat flux of Venus is due to the decay of a high temperature that was established in the planet at the completion of its core formation, and that Venus has been highly convective over the course of its history, until about 0.5 Ga ago.

  3. Wireless Seismometer for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.

    2014-01-01

    Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.

  4. Exploring Venus by Solar Airplane

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars, and the slow rotation of Venus allows an airplane to be designed for continuous sunlight, with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

  5. Venus Transit 2004

    NASA Astrophysics Data System (ADS)

    Mayo, L. A.; Odenwald, S. F.

    2002-09-01

    December 6th, 1882 was the last transit of the planet Venus across the disk of the sun. It was heralded as an event of immense interest and importance to the astronomical community as well as the public at large. There have been only six such occurrences since Galileo first trained his telescope on the heavens in 1609 and on Venus in 1610 where he concluded that Venus had phases like the moon and appeared to get larger and smaller over time. Many historians consider this the final nail in the coffin of the Ptolemaic, Earth centered solar system. In addition, each transit has provided unique opportunities for discovery such as measurement and refinement of the astronomical unit, calculation of longitudes on the earth, and detection of Venus' atmosphere. The NASA Sun Earth Connection Education Forum in partnership with the Solar System Exploration Forum, DPS, and a number of NASA space missions is developing plans for an international education program centered around the June 8, 2004 Venus transit. The transit will be visible in its entirety from Europe and partially from the East Coast of the United States. We will use a series of robotic observatories including the Telescopes In Education network distributed in latitude to provide observations of the transit that will allow middle and high school students to calculate the A.U. through application of parallax. We will also use Venus transit as a probe of episodes in American history (e.g. 1769: revolutionary era, 1882: post civil war era, and 2004: modern era). Museums and planetariums in the US and Europe will offer real time viewing of the transit and conduct educational programs through professional development seminars, public lectures, and planetarium shows. We are interested in soliciting advice from the research community to coordinate professional research interests with this program.

  6. Entry at Venus

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Smith, Brandon

    2016-01-01

    This is lecture to be given at the IPPW 2016, as part of the 2 day course on Short Course on Destination Venus: Science, Technology and Mission Architectures. The attached presentation material is intended to be introduction to entry aspects of Venus in-situ robotic missions. The presentation introduces the audience to the aerodynamic and aerothermodynamic aspects as well as the loads, both aero and thermal, generated during entry. The course touches upon the system design aspects such as TPS design and both high and low ballistic coefficient entry system concepts that allow the science payload to be protected from the extreme entry environment and yet meet the mission objectives.

  7. Ice caps on venus?

    PubMed

    Libby, W F

    1968-03-01

    The data on Venus obtained by Mariner V and Venera 4 are interpreted as evidence of giant polar ice caps holding the water that must have come out of the volcanoes with the observed carbon dioxide, on the assumption that Earth and Venus are of similar composition and volcanic history. The measurements by Venera 4 of the equatorial surface temperature indicate that the microwave readings were high, so that the polar ice caps may be allowed to exist in the face of the 10-centimeter readings of polar temperature. Life seems to be distinctly possible at the edges of the ice sheets.

  8. The terraforming of Venus

    NASA Astrophysics Data System (ADS)

    Fogg, M. J.

    1987-12-01

    Methods are considered for the 'terraforming' modification of Venusian environmental conditions. It is noted that Venus cannot be terraformed by microbiological means alone, and that the massive importation of such materials as H2 from various regions of the solar system will have to be instituted; recent impact erosion research on atmospheres appears to preclude this as an option. More fundamentally, a decrease in the axial rotation period of Venus will be mandatory. Taking all factors into account, a project duration of 16,500 years, begining in 2500 AD, is envisioned. Human colonization could not begin before 19,000 AD.

  9. Lunar and Planetary Science XXXV: Venus

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Venus" included the following reports:Is It Possible to Detect Magnetic Materials on Venus with Bistatic Radar Probing?; Airfall Crater Deposits on the Surface of Venus: Do We See Them in the Venera Panoramas?; Rift System Architecture on Venus; Constraints on Deformation Belt Evolution on Venus; An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth; Crustal Thickening Above a Convecting Mantle with Application to Venus and Mars; Geological Mapping of Venus: Interpretation of Geologic History and Assessment of; Directional and Non-Directional Models; Ages of Venusian Ridge Belts Relative to Regional Plains; and Plumes as a Mechanism for Equilibrium Resurfacing of Venus.

  10. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  11. Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios

    NASA Technical Reports Server (NTRS)

    Stofan, E. R.; Glaze, L. S.; Grinspoon, D. H.

    2011-01-01

    When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus.

  12. Simulations of Wave Features in Venus' Deep Atmosphere Associated with Topography, Using a Venus GCM

    NASA Astrophysics Data System (ADS)

    Parish, H. F.

    2015-12-01

    Venus' cloud-level atmosphere is characterized by the presence of waves with a range of periods and scale sizes. Wave phenomena can have important dynamical effects and may deposit significant momentum and energy into the atmosphere. Fluctuations with scale sizes of a few km to 10's of km have been observed at cloud altitudes in temperatures, winds or UV images from Mariner 10, Pioneer Venus, Venera 9, Magellan and Venus Express, suggesting the presence of gravity waves. Measurements of Venus' cloud level atmosphere have also identified planetary scale waves, with periods of around 4 to 5 days, which have been associated with Rossby or Kelvin waves. Longer term variations have also been observed in wind velocities at cloud heights, with periods of the order of several years. Planetary scale waves or gravity waves at cloud altitudes may be generated by a number of different mechanisms, for example by instabilities such as the Kelvin-Helmholtz instability or convective instability below the upper cloud layer, or they may be generated at lower altitudes and propagate upwards. Recent analyses from Venus Express observations suggest an association of gravity waves at cloud heights with significant topographical features. Although many measurements are available at cloud altitudes, little is known about waves in the poorly measured deep atmosphere. In order to explore the characteristics of waves generated near the surface we perform numerical simulations using the Venus Community Atmosphere Model general circulation model, which includes realistic topography based on measurements from the Magellan mission. We examine the influence of topography in generating waves near the surface associated with topographical features and the vertical development of simulated waves.

  13. The Pioneer Venus Missions.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

    This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

  14. Venus on the Verge

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Abe, Y.; Abe-Ouchi, A.; Sleep, N. H.

    2012-06-01

    Venus’s descent into hellish heat must have been caused by its proximity to the Sun. The story of how Venus lost its water becomes: too much sunlight caused a runaway greenhouse effect, any water evaporated, and the hydrogen escaped into space.

  15. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  16. Venus upper atmosphere structure

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Nicholson, J. Y.; Lake, L. R.

    1980-12-01

    Atmospheric densities of Venus were measured from the orbital decay of the Pioneer Venus from Dec. 9, 1978 to Aug. 7, 1979 near the 16 deg latitude between 140 and 190 km during the entire day. Comparative atmospheric densities on earth at 150 km are higher by a factor of 3.5 with only a 1% diurnal variation; an atmospheric composition, temperature, and density model based on the orbiter atmospheric drag (OAD) vertical structure is presented. The model shows that atomic oxygen is the major component in the Venus atmosphere above 145 km at night and above 160 km during the day with mixing ratios over 0.1 near 140 km; drag measurements indicate O concentrations from 1 x 10 to the 9th/cu cm in daytime to 3 x 10 to the 7th/cu cm at night. It is concluded that the neutral upper atmosphere of Venus is surprisingly insensitive to solar extreme UV variations and changes in the solar wind.

  17. Venus - Lessons for earth

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.

    1992-01-01

    The old idea that Venus might possess surface conditions to those of an overcast earth has been thoroughly refuted by space-age measurements. Instead, the two planets may have started out similar, but diverged because of the greater solar flux at Venus. This cannot be proved, but is consistent with everything known. A runaway greenhouse effect could have evaporated an 'ocean'. The hydrogen would escape, and most of the oxygen would be incorporated into the crust. Without liquid water, CO2 would remain in the atmosphere. Chlorine atoms would catalyze the recombination of any free oxygen back to CO2. The same theories apply to the future of the earth, and to the explanation of the polar ozone holes; the analogies are striking. There is no likelihood that the earth will actually come to resemble Venus, but Venus serves both as a warning that major environmental effects can flow from seemingly small causes, and as a testbed for the predictive models of the earth.

  18. The Prodigal Sister - Venus

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.

    1995-09-01

    If you think Venus is a hellhole now, be thankful you weren't there 500 million years ago. Those were the days, many planetary scientists believe, of apocalypse on our sister world: Volcanoes wracked the land, while greenhouse gases broiled the air. Is this the Earth's fate, too?

  19. Morphology and dynamics of the upper cloud layer of Venus.

    PubMed

    Markiewicz, W J; Titov, D V; Limaye, S S; Keller, H U; Ignatiev, N; Jaumann, R; Thomas, N; Michalik, H; Moissl, R; Russo, P

    2007-11-29

    Venus is completely covered by a thick cloud layer, of which the upper part is composed of sulphuric acid and some unknown aerosols. The cloud tops are in fast retrograde rotation (super-rotation), but the factors responsible for this super-rotation are unknown. Here we report observations of Venus with the Venus Monitoring Camera on board the Venus Express spacecraft. We investigate both global and small-scale properties of the clouds, their temporal and latitudinal variations, and derive wind velocities. The southern polar region is highly variable and can change dramatically on timescales as short as one day, perhaps arising from the injection of SO2 into the mesosphere. The convective cells in the vicinity of the subsolar point are much smaller than previously inferred, which we interpret as indicating that they are confined to the upper cloud layer, contrary to previous conclusions, but consistent with more recent study.

  20. Sampling the Cloudtop Region on Venus

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay; Ashish, Kumar; Alam, Mofeez; Landis, Geoffrey; Widemann, Thomas; Kremic, Tibor

    2014-05-01

    The details of the cloud structure on Venus continue to be elusive. One of the main questions is the nature and identity of the ultraviolet absorber(s). Remote sensing observations from Venus Express have provided much more information about the ubiquitous cloud cover on Venus from both reflected and emitted radiation from Venus Monitoring Camera (VMC) and Visible InfraRed Imaging Spectrometer (VIRTIS) observations. Previously, only the Pioneer Venus Large Probe has measured the size distribution of the cloud particles, and other probes have measured the bulk optical properties of the cloud cover. However, the direct sampling of the clouds has been possible only below about 62 km, whereas the recent Venus Express observations indicate that the cloud tops extend from about 75 km in equatorial region to about 67 km in polar regions. To sample the cloud top region of Venus, other platforms are required. An unmanned aerial vehicle (UAV) has been proposed previously (Landis et al., 2002). Another that is being looked into, is a semi-buoyant aerial vehicle that can be powered using solar cells and equipped with instruments to not only sample the cloud particles, but also to make key atmospheric measurements - e.g. atmospheric composition including isotopic abundances of noble and other gases, winds and turbulence, deposition of solar and infrared radiation, electrical activity. The conceptual design of such a vehicle can carry a much more massive payload than any other platform, and can be controlled to sample different altitudes and day and night hemispheres. Thus, detailed observations of the surface using a miniature Synthetic Aperture Radar are possible. Data relay to Earth will need an orbiter, preferably in a low inclination orbit, depending on the latitude region selected for emphasis. Since the vehicle has a large surface area, thermal loads on entry are low, enabling deployment without the use of an aeroshell. Flight characteristics of such a vehicle have been

  1. Storms On Venus: Lightning-induced Chemistry And Predicted Products

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Baines, K. H.

    2012-10-01

    Observations by many spacecraft that have visited Venus over the last 40 years appear to confirm the presence of lightning storms in the Venus atmosphere. Recent observations by Venus Express indicate that lightning frequency and power is similar to that on Earth. While storms are occurring, energy deposition by lightning into Venus atmospheric constituents will immediately dissociate molecules into atoms, ions and plasma from the high temperatures in the lightning column (>30,000 K) and the associated shock waves and heating, after which these atom and ion fragments will recombine during cooldown to form new sets of molecules. Lightning will re-sort the atoms of C,O,S,N,H to create highly energetic new products. Spark and discharge experiments in the literature suggest that lightning effects on the main atmospheric molecules CO2, N2, SO2, H2SO4 and H2O will yield new molecules such as mixed carbon oxides (CnOm), mixed sulfur oxides (SnOm), oxygen (O2), elemental sulfur (Sn), nitrogen oxides (NO, N2O, NO2, NO3), sulfuric acid clusters (HnSmOx-.aHnSmOx e.g. HSO4-.mH2SO4), polysulfur oxides, carbon soot, and also halogen oxides from HCl or HF and other exotic species. Many of these molecular species may be detectable by instruments onboard Venus Express. We explore the diversity of new products likely created in the storm clouds on Venus.

  2. Second Venus spacecraft set for launch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch phase of the Pioneer Venus Multiprobe spacecraft and cruise phases of both the Pioneer Venus Orbiter and the Multiprobe spacecraft are covered. Material pertinent to the Venus encounter is included.

  3. Planetary Ion fluxes in the Venus Wake

    NASA Astrophysics Data System (ADS)

    Pérez-de-Tejada, H.; Lundin, R.; Durand-Manterola, H.; Barabash, S.; Zhang, T. L.; Sauvaud, J. A.; Reyes-Ruiz, M.

    2012-09-01

    Measurements conducted with the ASPERA-4 instrument and the magnetometer of the Venus Express spacecraft show that the kinetic pressure of planetary O+ ions measured in the Venus wake can be significantly larger than the local magnetic pressure and, as a result, those ions are not being driven by magnetic forces but by the kinetic energy of the solar wind. Beams of planetary O+ ions with those properties have been detected in several orbits of the Venus Express through the wake as the spacecraft traverses by the noon-midnight plane along its near polar trajectory. Peak values of the kinetic pressure of the O+ ions are sufficient to produce superalfvenic flow conditions. It is suggested that such O+ ion beams are eroded from the magnetic polar regions of the Venus ionosphere where the solar wind carves out plasma channels that extend downstream from those regions. Issues related to the acceleration of planetary ions as the solar wind interacts with the Venus ionosphere are related to the energetics of the plasma. When the kinetic pressure of the particle populations involved in the interaction is smaller than the local magnetic pressure the latter will be dominant and hence the particles will follow trajectories dictated by the magnetic field. Such conditions should occur by the magnetic barrier that is formed over the dayside Venus ionosphere where the interplanetary magnetic fluxes pile up thus leading to enhanced values of the magnetic field intensity. Different conditions are expected when the kinetic pressure of the plasma is larger than the local magnetic pressure. In this case the latter will be convected by the particle fluxes as it occurs in the superalfvenic solar wind. Plasma conditions applicable to the planetary ions that stream in the Venus wake and that have been removed from the Venus ionosphere can be examined using the plasma and magnetic field data obtained from the Venus Express (VEX) measurements. A suitable example is provided by the plasma and

  4. Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  5. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  6. The Oldest Rocks on Venus: the Importance of Tessera Terrain for Venus Exploration (Invited)

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.; Glaze, L. S.

    2013-12-01

    Venus tessera terrain is a major, yet unsampled, tectonic unit on Venus characterized by multiple sets of intersecting compressional and extensional structures. Tessera terrain is temporally, morphologically, and perhaps also compositionally unique on Venus. Stratigraphic studies of tessera terrain establish that they consistently appear locally, and perhaps even globally, as the oldest material on a planet with an average surface crater retention age of ~500 million years. Thus, the tesserae provide the best chance to access rocks that are derived from the first 80% of the history of the planet, an era obscured by the emplacement of voluminous (presumably basaltic) plains. Analysis of Magellan imagery, topography and gravity data show that tessera terrain is characterized by higher strain rates and a thinner lithosphere than at present and thus records an extinct geodynamical era on Venus. Yet very little is understood about the number, morphology and stratigraphy of geologic units within tessera terrain, nor mass wasting processes operating on the surface. Improved radar imagery at the 5-25 m scale, and optical images below the clouds (<1 km) and at the surface will help assess the geologic processes operating in the pre-plains era. Such data products are also essential for judicious landing site selection, since tessera meter-scale roughness will limit landing site safety and sample access. Improved topography data are required to quantify the deformation recorded by ubiquitous tesserae structures that are finer than Magellan resolution. Tessera terrain is unsampled, but recent analyses of radiance from the surface at 1 micron using instruments on Venus Express and Galileo are consistent with felsic compositions for tesserae. Silicic compositions likely require both water and a plate recycling mechanism (e.g., subduction) for formation. The high D/H ratio of the Venus atmosphere is consistent with the loss of a significant inventory of water over the history of

  7. The new face of Venus

    NASA Astrophysics Data System (ADS)

    Stofan, E. R.

    1993-08-01

    The Magellan data on the Venus landscape which revealed volcanoes, shining mountains, relaxing plateaus, and craters on the surface of about 500 C, with an atmospheric pressure 90 times that of earth, are discussed. Venus is considered to be a planet that is both incredibly similar and dissimilar to earth. Venus might not exhibit plate tectonism but it might be dominated by catastrophes. The greenhouse around Venus has operated for at least the last 500 million years. The Magellan data revealed channels extending for thousands of kilometers, beautiful outflows surrounding impact craters, and odd volcanic constructs like the steep-sided domes.

  8. The new face of Venus

    NASA Technical Reports Server (NTRS)

    Stofan, Ellen R.

    1993-01-01

    The Magellan data on the Venus landscape which revealed volcanoes, shining mountains, relaxing plateaus, and craters on the surface of about 500 C, with an atmospheric pressure 90 times that of earth, are discussed. Venus is considered to be a planet that is both incredibly similar and dissimilar to earth. Venus might not exhibit plate tectonism but it might be dominated by catastrophes. The greenhouse around Venus has operated for at least the last 500 million years. The Magellan data revealed channels extending for thousands of kilometers, beautiful outflows surrounding impact craters, and odd volcanic constructs like the steep-sided domes.

  9. ESA Venus Entry Probe Study

    NASA Technical Reports Server (NTRS)

    vandenBerg, M. L.; Falkner, P.; Phipps, A.; Underwood, J. C.; Lingard, J. S.; Moorhouse, J.; Kraft, S.; Peacock, A.

    2005-01-01

    The Venus Entry Probe is one of ESA s Technology Reference Studies (TRS). The purpose of the Technology Reference Studies is to provide a focus for the development of strategically important technologies that are of likely relevance for future scientific missions. The aim of the Venus Entry Probe TRS is to study approaches for low cost in-situ exploration of Venus and other planetary bodies with a significant atmosphere. In this paper, the mission objectives and an outline of the mission concept of the Venus Entry Probe TRS are presented.

  10. PLANET-C: Venus Climate Orbiter Mission of Japan

    NASA Astrophysics Data System (ADS)

    Ueno, M.; Nakamura, M.; Imamura, T.; Iwagami, N.; Satoh, T.; Watanabe, S.; Taguchi, M.; Takahashi, Y.; Suzuki, M.; Yamada, M.; Hashimoto, G.; Kasaba, Y.; Fukuhara, T.; Uemizu, K.; Abe, T.; Ishii, N.; Oyama, K.

    2006-08-01

    Venus is one of the most attractive targets in the solar system when we seek to understand the formation of the terrestrial environment. Venus is our nearest neighbor, and has a size very similar to the Earth's; however, previous spacecraft missions discovered an extremely dense (~90 bar) and dry CO[2] atmosphere with H[2]SO[4]-H[2]O clouds floating at high altitudes, and exotic volcanic features covering the whole planet. The abundant gaseous CO[2] brings about a high atmospheric temperature (~740 K) near the surface via greenhouse effect. The atmospheric circulation is also much different from the Earth's. The mechanisms which sustain such conditions are unclear and considered to be the keys to understand the origin of the terrestrial environment. In spite of the many previous missions that explored Venus, such as the Venera, Pioneer Venus, Vega and Magellan, most of the fundamental questions raised so far still remain unsolved. The Venus Climate Orbiter mission (PLANET-C), one of the future planetary missions of Japan, aims at understanding the atmospheric circulation of Venus. Meteorological data will be obtained by globally mapping clouds and minor constituents successively with 4 cameras at ultraviolet and infrared wavelengths, detecting lightning with a high-speed imager, and observing vertical structures of the atmosphere with radio science technique. The equatorial elongated orbit with westward revolution fits the observations of the movement and temporal variation of the Venusian atmosphere which rotates westward. The systematic, continuous imaging observations will provide us with an unprecedented large dataset of the Venusian meteorology. Additional targets of the mission are the exploration of the ground surface and the observation of zodiacal light. The mission will complement the ESA's Venus Express, which also explores the Venusian environment with different approaches. The spacecraft will be launched and arrive at Venus in 2010, and will perform 2

  11. Impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1991-01-01

    Compared with volcanism and tectonism, impact cratering on Venus has played an overall minor role in sculpting the present-day landscape. The study of Venus impact craters is vital to help place the chronology of the geologic features on the surface in the context of the planet's geological evolution. The degradation of impact craters also provides information on surface and interior processes, particularly alteration by tectonism and volcanism. Through orbit 1422, Magellan mapped about 450 impact craters, with diameters ranging from 2 to 275 km, within an area of about 226 million sq km, or 49 percent of the planet's surface. These craters and their associated deposits show surprisingly little evidence of degradation at the 75 m/pixel resolution of the Magellan SAR. Remarkably few craters in the Magellan images appear to be in the process of being buried by volcanic deposits or destroyed by tectonic activity.

  12. Magellan unveils Venus

    SciTech Connect

    Lerner, E.J.

    1991-07-01

    Images obtained after an eight month Venusian year, during which the radar mapper Magellan surveyed nearly all of Venus, are described. It is observed that, instead of rigid plates moving as on earth, Venus appears covered with plumes of hot upwellings that dome out over hundreds or thousands of kilometers, feeding a continuous volcanic resurfacing of the planet. Although the Venusian surface is changing relatively rapidly by vulcanism and tectonic processes, the Magellan images make it clear that erosion is very slow. It is seen that some of the lava flows are highly fluid, etching narrow channels for hundreds of kilometers through the crust. Magellan also revealed some peculiarly Venusian formations, the tesserated areas where ridges and faults crosshatch the region into large blocks.

  13. Simulated Craters on Venus

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The thick atmosphere of Venus prevents all but the largest impactors from cratering the surface. The number of small craters on Venus provides an interesting, and statistically significant test of models for the disruption and deceleration of impacting bodies. Here we compare Monte Carlo simulated crater distributions to the observed crater distribution on Venus. The simulation assumes: (1) a power law mass distribution for impactors of the form N(sub cum) alpha m (exp-b) where b=0.8; (2) isotropic incidence angles; (3) velocity at the top of the atmosphere of 20 kilometers per second (more realistic velocity distributions are also considered); (4) Schmidt-Housen crater scaling, modified such that only the normal component of the impact velocity contributes to cratering, and using crater slumping as parameterized (5) and modern populations (60% carbonaceous, 40% stone, 3% iron) and fluxes of asteroids. We use our previously developed model for the disruption and deceleration of large bodies striking thick planetary atmospheres to calculate the impact velocity at the surface as a function of impactor mass, incident velocity, and incident angle. We use a drag coefficient c(sub d) =1; other parameters are as described in Chyba et al. We set a low velocity cutoff of 500 meters per second on crater-forming impacts. Venus's craters are nicely matched by the simulated craters produced by 700 million years of striking asteroids. Shown for comparison are the simulated craters produced by incident comets over the same period, where for comets we have assumed b=0.7 and a flux at 10(exp 14) g 30% that of asteroids. Systematic uncertainties in crater scaling and crater slumping may make the surface age uncertain by a factor of two.

  14. Three ages of Venus

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Coombs, Cassandra R.

    1989-01-01

    A central question for any planet is the age of its surface. Based on comparative planetological arguments, Venus should be as young and active as the Earth (Wood and Francis). The detection of probable impact craters in the Venera radar images provides a tool for estimating the age of the surface of Venus. Assuming somewhat different crater production rates, Bazilevskiy et al. derived an age of 1 + or - 0.5 billion years, and Schaber et al. and Wood and Francis estimated an age of 200 to 400 million years. The known impact craters are not randomly distributed, however, thus some area must be older and others younger than this average age. Ages were derived for major geologic units on Venus using the Soviet catalog of impact craters (Bazilevskiy et al.), and the most accessible geologic unit map (Bazilevskiy). The crater counts are presented for (diameters greater than 20 km), areas, and crater densities for the 7 terrain units and coronae. The procedure for examining the distribution of craters is superior to the purely statistical approaches of Bazilevskiy et al. and Plaut and Arvidson because the bins are larger (average size 16 x 10(6) sq km) and geologically significant. Crater densities define three distinct groups: relatively heavily cratered (Lakshmi, mountain belts), moderately cratered (smooth and rolling plains, ridge belts, and tesserae), and essentially uncratered (coronae and domed uplands). Following Schaber et al., Grieve's terrestrial cratering rate of 5.4 + or - 2.7 craters greater than 20 km/10(9) yrs/10(6) sq km was used to calculate ages for the geologic units on Venus. To improve statistics, the data was aggregated into the three crater density groups, deriving the ages. For convenience, the three similar age groups are given informal time stratigraphic unit names, from youngest to oldest: Ulfrunian, Sednaian, Lakshmian.

  15. Venus - Dead or alive?

    NASA Technical Reports Server (NTRS)

    Taylor, Harry A., Jr.; Cloutier, Paul A.

    1986-01-01

    In situ nightside electric field observations from the Pioneer Venus Orbiter have been interpreted as evidence of extensive lightning in the lower atmosphere of Venus. The scenario, including proposed evidence of clustering of lightning over surface highland regions, has encouraged the acceptance of currently active volcanic output as part of several investigations of the dynamics and chemistry of the atmosphere and the geology of the planet. However, the correlation between the 100-hertz electric field events attributed to lightning and nightside ionization troughs resulting from the interaction of the solar wind with the ionosphere indicates that the noise results from locally generated plasma instabilities and not from any behavior of the lower atmosphere. Furthemore, analysis of the spatial distribution of the noise shows that it is not clustered over highland topography, but rather occurs at random throughout the latitude and longitude regions sampled by the orbiter during the first 5 years of operation, from 1978 to 1984. Thus the electric field observations do not identify lightning and do not provide a basis for inferring the presence of currently active volcanic output. In the absence of known evidence to the contrary, it appears that Venus is no longer active.

  16. Venus: dead or alive?

    PubMed

    Taylor, H A; Cloutier, P A

    1986-11-28

    In situ nightside electric field observations from the Pioneer Venus Orbiter have been interpreted as evidence of extensive lightning in the lower atmosphere of Venus. The scenario, including proposed evidence of clustering of lightning over surface highland regions, has encouraged the acceptance of currently active volcanic output as part of several investigations of the dynamics and chemistry of the atmosphere and the geology of the planet. However, the correlation between the 100-hertz electric field events attributed to lightning and nightside ionization troughs resulting from the interaction of the solar wind with the ionosphere indicates that the noise results from locally generated plasma instabilities and not from any behavior of the lower atmosphere. Furthermore, analysis of the spatial distribution of the noise shows that it is not clustered over highland topography, but rather occurs at random throughout the latitude and longitude regions sampled by the orbiter during the first 5 years of operation, from 1978 to 1984. Thus the electric field observations do not identify lightning and do not provide a basis for inferring the presence of currently active volcanic output. In the absence of known evidence to the contrary, it appears that Venus is no longer active. PMID:17778949

  17. Radiative Energy Balance in the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Titov, Dmitrij V.; Piccioni, Giuseppe; Drossart, Pierre; Markiewicz, Wojciech J.

    This chapter reviews the observations of the radiative fluxes inside and outside the Venusian atmosphere, along with the available data about the planetary energy balance and the distribution of sources and sinks of radiative energy. We also briefly address the role of the radiation on the atmospheric temperature structure, global circulation, thermodynamics, climate and evolution of Venus and compare the main features of radiative balance on the terrestrial planets. We describe the physics of the greenhouse effect as it applies to the evolution of the Venusian climate, concluding with a summary of outstanding open issues. The article is to a great extent based on the paper by Titov et al. [2007] expanded byincluding recent results from the Venus Express observations relevant to the topic.

  18. The Plains of Venus

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.

    2013-12-01

    Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the

  19. Venus: Water and Life

    NASA Astrophysics Data System (ADS)

    Ditkof, J. F.

    2013-05-01

    Amphiboles that contain the hydroxide ion form only in the presence of water and this fact has become the way for scientists to prove that Venus was once a water world. Though, tremolite is considered the main mineral to look for, it requires life that is analogous to the ancient life here on Earth for it to form. Dolomite is the main ingredient for the formation of this low grade metamorphic mineral and without it would be very difficult for tremolite to form, unless there is another process that is unknown to science. Venus is known to have extensive volcanic features (over 1600 confirmed shield volcanoes dot its surface) and with little erosion taking place; a mineral that is associated with volcanism and forms only in the presence of water should be regarded as the main goal. Hornblende can form via volcanism or a metamorphic process but requires water for initial formation. The European Space Agency is currently trying to determine whether or not the continents on Venus' surface are made of granite, as they argue granite requires water for formation. Either way, computer models suggest that any oceans that formed on the surface would have lasted at best 2 billion years, as the surface is estimated to be only 800 million years old, any hornblende that would have formed is more than likely going to be deep underground. To find this mineral, as well as others, it would require a mission that has the ability to drill into the surface, as the easiest place to do this would be on the mountain peaks in the Northern Hemisphere on the Ishtar Terra continent. Through the process of uplift, any remaining hornblende may have been exposed or very near exposed to the surface. Do to the amount of fluorine in the atmosphere and the interaction between this and the lithosphere, the hydroxyl ions may have been replaced with fluorine turning the hornblende into the more stable fluoro-hornblende. To further add to the mystery of Venus is the unusual atmospheric composition. The

  20. Venus clouds: structure and composition.

    PubMed

    Young, A T

    1974-02-01

    The clouds of Venus consist of a fine sulfuric acid aerosol similar to that found in the earth's stratosphere. The acid aerosol on Venus appears to be uniformly mixed with the gas, at least in the visible layers, and possibly down to the cloud base.

  1. Venus clouds: test for hydrocarbons.

    PubMed

    Plummer, W T

    1969-03-14

    Infrared reflection spectra of hydrocarbon clouds and frosts now give a critical test of Velikovsky's prediction that Venus is surrounded by a dense envelope of hydrocarbon clouds and dusts. Venus does not exhibit an absorption feature near 2.4 microns, although such a feature is prominent in every hydrocarbon spectrum observed.

  2. The thermal conditions of Venus

    NASA Technical Reports Server (NTRS)

    Zharkov, Vladimir N.; Solomatov, V. S.

    1991-01-01

    Models of Venus' thermal evolution are examined. The following subject areas are covered: (1) modified approximation of parameterized convection; (2) description of the model; (3) numerical results and asymptotic solution of the MAPC equations; (4) magnetism and the thermal regime of the cores of Earth and Venus; and (5) the thermal regime of the Venusian crust.

  3. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Polidan, R.; Lee, G.; Sokol, D.; Griffin, K.; Bolisay, L.

    2014-05-01

    VAMP is a long lived, semi-buoyant, atmospheric “rover” that deploys in orbit, enters the Venus atmosphere and flies in the Venus atmosphere between 55 and 70 km for up to one year as a platform to address VEXAG goals I.A, I.B, and I.C.

  4. Pioneer Venus radar mapper experiment

    USGS Publications Warehouse

    Pettengill, G.H.; Ford, P.G.; Brown, W.E.; Kaula, W.M.; Keller, C.H.; Masursky, H.; McGill, G.E.

    1979-01-01

    Altimetry and radar scattering data for Venus, obtained from 10 of the first 13 orbits of the Pioneer Venus orbiter, have disclosed what appears to be a rift valley having vertical relief of up to 7 kilometers, as well as a neighboring, gently rolling plain. Planetary oblateness appears unlikely to exceed 112500 and may be substantially smaller. Copyright ?? 1979 AAAS.

  5. Plasma sheets in induced magnetospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Dubinin, Eduard; Fraenz, Markus; Woch, Joahim; Zhang, Tielong; Wei, Yong; Fedorov, Andrei; Barabash, Stas; Lundin, Rickard

    2013-04-01

    Mars and Venus have no a global intrinsic field and solar wind interacts directly with their conductive ionospheric shells producing the induced magnetospheres with magnetic tails. Plasma sheet is the region in the tail where the magnetic field tensions transfer the momentum back to the ionospheric plasmas which escape the planets. It is one of the main loss channels for the planetary ions. Mars Express and Venus Express have provided a wealth of the data on properties of the induced magnetic tails and plasma sheets. We will discuss their main characteristics including mechanisms of ion energization and their control by solar wind and the interplanetary magnetic field variations.

  6. Ion escape from Venus using statistical distribution functions

    NASA Astrophysics Data System (ADS)

    Nordstrom, T.; Stenberg, G.; Nilsson, H.; Barabash, S.; Futaana, Y.

    2012-04-01

    We use more than three years of data from the ASPERA-4 instrument onboard Venus Express to compile statistical distribution functions of ion flux in and around induced magnetosphere of Venus. We present samples of statistical distribution functions, as well average flux patterns in the near Venus space based on the statistical distribution functions. The statistical distribution functions allows for a compensation of biased sampling regarding both position and angular coverage of the instrument. Protons and heavy ions (mass/charge > 16) are the major ion species escaping from Venus. The escape is due to acceleration of planetary ions by energy transfer from the solar wind. The ion escape appears to exclusively take place in the induced magnetotail region and no heavy ions are present in the magnetosheath. Protons of solar wind origin are travelling around the planet and penetrating the tail, resulting in a mix of planetary and solar wind protons inside the induced magnetosphere boundary. The escape rates of ions inside the tail agree with results from recent published studies, where other analysis methods have been used. We also compare our results for Venus with a recent study of ion escape from Mars, where the same analysis method has been applied to data from the ASPERA-3 instrument on Mars Express. Both Mars and Venus are unmagnetized planets and are expected to interact similarly with the solar wind. On Mars the heavy ions are seen escaping in both the magnetosheath and tail regions as opposed to Venus where escape only takes place inside the tail. A possible explanation is that the magnetosphere of Mars is smaller compared to the ion gyroradius, making it easier for the ions to pass through the induced magnetosphere boundary. On both planets the escape rates of heavy ions in the tail are constant with increasing tail distance, verifying that the ions are leaving the planet in this region.

  7. Small Scale Waves on Venus at High Latitudes

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay; Markiewicz, W. J.; Moissl, R.; Titov, D.

    2008-09-01

    On many occasions, the Venus Monitoring Camera (VMC) on Venus Express has observed several small scale waves or wave trains in high northern latitudes ( 70 to 75°) of Venus for the first time. Such waves were not detected earlier due to a combination of spatial resolution, observed region and duration. Wave trains with different characteristics have been seen at all four wavelengths used by the VMC (centered at 365, 513. 935 and 1010nm with 40, 50, 70 and 20 nm) in and are consistently in the same area on multiple consecutive orbits. Many are similar in appearance to ripples with wavelengths 5 to10 km with extents of some tens of km while others appear as thin straight lines, similar to the Circum Equatorial Belts (CEB) seen previously from Mariner 10 and Pioneer Venus missions at low latitudes. These are distinct from the fine scale transverse waves on the spiral bands on Venus which have been observed by both the VMC and the Visible Infrared Thermal Imaging Spectrometer (VIRTIS). In appearance and perhaps origins, these wave trains appear to be similar to gravity waves observed on Earth, particularly in the airglow images. Their detection on Venus confirms the existence of an atmospheric layer with a very stable lapse rate seen in the thermal structure data at an altitude of 65 to 67 km. The triggering mechanism for these waves could be horizontal or vertical wind shear. The contribution of these waves to momentum transport is not known, but likely is insignificant. However, this could be an observational limitation due to the combination of the eccentric orbit of Venus Express and the camera capabilities. This work has been made possible from a NASA Participating Scientist Grant NNG06GC68G and with the support provided by the VMC Team.

  8. Magellan: The unveiling of Venus

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In the late 1970s and early 1980s, the United States and the Soviet Union sent the Pioneer Venus and Venera spacecraft, respectively, to study Venus more closely and to image its surface with radar. These missions have answered many questions about Venus, but many more questions remain unanswered about the extent to which Venus' surface was shaped by volcanoes, plate tectonics, impact craters, and water and wind erosion. To help answer these remaining questions a new radar imaging spacecraft Magellan will be launched from the Space Shuttle. Magellan will spend eight months mapping most of the planet at a resolution nearly ten times better than any previous views of the surface. The mission of Magellan, the radar equipment, orbiting of Venus, planetary imaging, and surface exploration are discussed.

  9. VENUS-2 Experimental Benchmark Analysis

    SciTech Connect

    Pavlovichev, A.M.

    2001-09-28

    The VENUS critical facility is a zero power reactor located at SCK-CEN, Mol, Belgium, which for the VENUS-2 experiment utilized a mixed-oxide core with near-weapons-grade plutonium. In addition to the VENUS-2 Core, additional computational variants based on each type of fuel cycle VENUS-2 core (3.3 wt. % UO{sub 2}, 4.0 wt. % UO{sub 2}, and 2.0/2.7 wt.% MOX) were also calculated. The VENUS-2 critical configuration and cell variants have been calculated with MCU-REA, which is a continuous energy Monte Carlo code system developed at Russian Research Center ''Kurchatov Institute'' and is used extensively in the Fissile Materials Disposition Program. The calculations resulted in a k{sub eff} of 0.99652 {+-} 0.00025 and relative pin powers within 2% for UO{sub 2} pins and 3% for MOX pins of the experimental values.

  10. Ultra-Low-Frequency Waves at Venus and Mars

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.

    2016-02-01

    Mars and Venus have no global magnetic field. The solar wind interacts directly with their ionospheres and atmospheres, inducing magnetospheres by a pileup of the interplanetary magnetic field. The first measurements of the ultra-low-frequency activity on Mars were made by the Phobos-2 spacecraft. This chapter investigates the wave observations recently supplied by the Mars Global Surveyor, Venus Express, and Mars Express. Coherent wave structures are a typical feature of the Martian magnetosheath. It is likely that the periodic compressional waves generated upstream of the bow shock are transported to the magnetosheath. At Venus, there has often been observed a penetration of the field oscillations downward to the ionosphere. Periodic oscillations of the escaping oxygen ions were typically observed in the Martian tail by MEX. It seems reasonable to suggest that the observed oscillations take their origin in the foreshock/magnetosheath and then propagate to the ionosphere and further to the tail.

  11. Solar Wind Driven Plasma Fluxes from the Venus Ionosphere

    NASA Astrophysics Data System (ADS)

    Perez De Tejada, H. A.; Lundin, R. N.; Zhang, T.; Sauvaud, J. A.; Reyes-Ruiz, M.

    2012-12-01

    SOLAR WIND DRIVEN PLASMA FLUXES FROM THE VENUS IONOSPHERE H. Pérez-de-Tejada (1), R. Lundin (2), H. Durand-Manterola (1), S. Barabash (2), T. L. Zhang (3), J. A., Sauvaud (4), and M. Reyes-Ruiz (5) 1 - Institute of Geophysics, UNAM, México, D. F. 2 - Swedish Institute of Space Physics, Kiruna, Sweden 3 - Space Research Institute, Graz, Austria 4 - CESR, Toulouse, France 5 - Institute of Astronomy, UNAM, Ensenada, México Measurements conducted with the ASPERA-4 instrument and the magnetometer of the Venus Express spacecraft show that the kinetic pressure of planetary O+ ion fluxes measured in the Venus wake can be significantly larger than the local magnetic pressure and, as a result, those ions are not being driven by magnetic forces but by the kinetic energy of the solar wind. Beams of planetary O+ ions with those properties have been detected in several orbits of the Venus Express through the wake as the spacecraft traverses by the noon-midnight plane along its near polar trajectory. The momentum flux of the O+ ions leads to superalfvenic flow conditions. It is suggested that such O+ ion beams are produced in the vicinity of the magnetic polar regions of the Venus ionosphere where the solar wind erodes the local plasma leading to plasma channels that extend downstream from those regions.

  12. Venus atmosphere and extreme surface topography

    NASA Astrophysics Data System (ADS)

    Zasova, L.; Khatuntsev, I.; Patsaeva, M.; Ignatiev, N.; Rodin, A.; Turin, A.; Markiewicz, W.; Piccioni, G.

    2015-10-01

    The temperature fields at several levels in the Venus mesosphere(60-95 km)as well as the altitude of the upper boundary of clouds retrieved from Venera-15 (FS-V15) [1], and the zonal wind fields and albedo of the upper clouds, measured by VMC Venus Express [2], and altitude of the upper boundary of clouds VIRTIS-M VEX [3] data are compared with the topographic map, obtained by Magellan [4] . The results show that the isotherms and the altitude isolines of the upper clouds boundary reproduce the extended surface features Ishtar and Atalanta Planitia. In turn, the shapes of wind isovelocities and albedo at the upper boundary of clouds (VMC) closely follow the details of relief of Terra Aphrodite as well the isolines of altitude of the cloud tops (VIRTIS). In all cases the isolines are shifted with respect to topography by about 30° in the direction of superrotation. Non-hydrostatic general circulation model of the Venus atmosphere[5] demonstrates that the major topographic features such as Maxwell Montes and Terra Aphrodite provide a prominent impact on the atmospheric dynamics at levels as high as 90-95 km.

  13. Transition Parameter applied to boundaries at Venus

    NASA Astrophysics Data System (ADS)

    Guymer, Gemma; Grande, Manuel; Fraenz, Marcus; Barabash, Stas; Zhang, Tielong; Pinter, Balazs

    2015-04-01

    We have used a transition parameter to characterise magnetospheric boundaries at Venus. The technique allows sparsely sampled data to be related to a variable and rapidly moving structure, such as the Bow shock, Magnetic Pile-up boundary or Ion Composition boundary. The solar minimum in 2009 was one of the lowest on record, and by 2006 minimum conditions were already in place. Utilising the ASPERA-4 Ion Mass Analyzer data and the paired magnetometers on board Venus Express the relation between the ions and flux ropes are investigated, in order to determine whether they a part of the replenishment or loss of the Venusian atmosphere. First, by using the magnetometer to identify the flux rope in the ionosphere Wei H.Y. (2006 -personal communication) and then by using the IMA to observe coincident composition changes. The altitude of ropes is dependent on the time spent in the ionosphere, with older ropes increasing weight and dropping weight. However, the occurrence of flux ropes and a mixed populations of ionospheric and solar wind ions is coincidental. Venus boundaries are examined during 2007, and 2011 / 2012 going toward solar maximum. A new use of the transition parameter is put forward; to aid with boundary placement. The bow shock is located with an automatic algorithm and this is then compared with previous models, giving a sense of Venus reaction to solar activity. It is shown that the bow shock position is largely unchanged. The ion composition boundary and the magnetic pile-up boundary are also located. They coincide to within an ion sampling period, but transition parameter analysis reveals that they are not coincident, with the ion composition boundary inside the pileup boundary.

  14. Venus - a mystery unresolved

    NASA Astrophysics Data System (ADS)

    Baum, R.

    1997-12-01

    All brightness, but no detail. Overall this is widely considered to be the most reliable estimate the visual observer can ever give of the telescopic appearance of Venus; as John Herschel remarked, we notice in it only '...a uniform brightness, in which sometimes we may indeed fancy, or perhaps more than fancy, brighter or obscurer portions.' To a degree this is true, but it fails uniquely to take into account hazy intricacies that become visible when the contrast between planet and sky is subdued.

  15. Pioneer Venus gas chromatography of the lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.; Reynolds, R. T.; Craig, R. A.

    1980-01-01

    A gas chromatograph mounted in the Pioneer Venus sounder probe measured the chemical composition of the atmosphere of Venus at three altitudes. Ne, N2, O2, Ar, CO, H2O, SO2, and CO2 were measured, and upper limits set for H2, COS, H2S, CH4, Kr, N2O, C2H4, C2H6, and C3H8. Simulation studies have provided indirect evidence for sulfuric acid-like droplets and support the possibility of water vapor at altitudes of 42 and 24 km. The paper discusses the implications of these results for the origin, evolution, and present state of Venus' atmosphere.

  16. Pioneer Venus gas chromatography of the lower atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.; Reynolds, R. T.; Craig, R. A.

    1980-12-01

    A gas chromatograph mounted in the Pioneer Venus sounder probe measured the chemical composition of the atmosphere of Venus at three altitudes. Ne, N2, O2, Ar, CO, H2O, SO2, and CO2 were measured, and upper limits set for H2, COS, H2S, CH4, Kr, N2O, C2H4, C2H6, and C3H8. Simulation studies have provided indirect evidence for sulfuric acid-like droplets and support the possibility of water vapor at altitudes of 42 and 24 km. The paper discusses the implications of these results for the origin, evolution, and present state of Venus' atmosphere.

  17. Progress report on VENUS

    SciTech Connect

    Leitner, Matthaeus A.; Leitner, Daniela; Abbott, Steve R.; Taylor, Clyde E.; Lyneis, Claude

    2002-09-03

    The construction of VENUS, a next generation superconducting Electron Cyclotron Resonance ion source designed to operate at 28 GHz, is complete. The cryostat including the superconducting magnet assembly was delivered in September 2001. During acceptance tests, the superconducting magnets produced an axial magnetic field strength of 4T at injection, 3T at extraction, and a radial field strength of 2T at the plasma chamber wall without any quenches. These fields are sufficient for optimum operation at 28 GHz. The cryogenic system for VENUS has been designed to operate at 4.2 K with two cryocoolers each providing up to 45 W of cooling at 50 K and 1.5 W at 4 K in a closed loop mode without further helium transfers. However, during the acceptance tests an excessive heat leak of about 3W was measured. In addition, the liquid helium heat exchanger did not work properly and had to be redesigned. The cryogenic system modifications will be described. In addition, an update on the installation of the ion source and its beam line components will be given.

  18. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  19. Venus - A total mass estimate

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Trager, G. B.; Roldan, G. R.

    1990-01-01

    Reductions of four independent blocks of Pioneer Venus Orbiter Doppler radio tracking data have produced very consistent determinations of the GM of Venus (the product of the universal gravitational constant and total mass of Venus). These estimates have uncertainties that are significantly smaller than any values published to date. The value of GM is also consistent with previously published results in that it falls within their one-sigma uncertainties. The value of 324858.60 + or - 0.05 cu km/sec sq is the best estimate.

  20. Venus lower atmospheric composition: preliminary results from pioneer venus.

    PubMed

    Hoffman, J H; Hodges, R R; McElroy, M B; Donahue, T M; Kolpin, M

    1979-02-23

    Initial examination of data from the neutral mass spectrometer on the Pioneer Venus sounder probe indicates that the abundances of argon-36, argon-38, and neon-20 in the Venus atmosphere are much higher than those of the corresponding gases in Earth's atmosphere, although the abundance of radiogenic argon-40 is apparently similar for both planets. The lower atmosphere of Venus includes significant concentrations of various gaseous sulfur compounds. The inlet leak to the mass spectrometer was temporarily blocked by an apparently liquid component of the Venus clouds during passage through the dense cloud layer. Analysis of gases released during the evaporation of the droplets shows the presence of water vapor to some compound or compounds of sulfur.

  1. Little or no solar wind enters Venus' atmosphere at solar minimum.

    PubMed

    Zhang, T L; Delva, M; Baumjohann, W; Auster, H-U; Carr, C; Russell, C T; Barabash, S; Balikhin, M; Kudela, K; Berghofer, G; Biernat, H K; Lammer, H; Lichtenegger, H; Magnes, W; Nakamura, R; Schwingenschuh, K; Volwerk, M; Vörös, Z; Zambelli, W; Fornacon, K-H; Glassmeier, K-H; Richter, I; Balogh, A; Schwarzl, H; Pope, S A; Shi, J K; Wang, C; Motschmann, U; Lebreton, J-P

    2007-11-29

    Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.

  2. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Ignatiev, Nikolay; McGouldrick, Kevin; Wilquet, Valerie; Wilson, Colin

    2015-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. Venus Express observations revealed significant latitudinal variations and temporal changes in the global cloud top morphology. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression. The UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator. Based on the Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and mid-wavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets. The optical model includes H2SO4 concentrations from 60% to 85%. A number of results are strikingly new: (1) an increase of the H2SO4 concentration with a decreasing altitude (from 70-75% at about 90 km to 85% at 70 km of altitude) and (2) Many SOIR/SPICAV data cannot be fitted when using

  3. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Ignatiev, N. I.; McGouldrick, K.; Wilquet, V.; Wilson, C. F.

    2014-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. This paper gives a summary of new observations and modelling efforts that will form the basis for a relevant chapter in the Venus III book. Venus Express observations reveal significant latitudinal variations and temporal changes in the global cloud top morphology [1]. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression [2, 3]. UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics [4]. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator [5]. Based on Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and midwavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets [6]. The optical model includes H2SO4 concentrations from 60 to 85%. A number of results are strikingly new: (1) an increase of the H2SO4

  4. Chemical reactions between Venus' surface and atmosphere - An update. (Invited)

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.

    2013-12-01

    The surface of Venus, at ~740K, is hot enough to allow relatively rapid chemical reactions between it and the atmosphere, i.e. weathering. Venus chemical weathering has been explored in detail [1], to the limits of available data. New data from Venus Express (VEx) and new ideas from exoplanets have sparked a modest renewal of interest in Venus weathering. Venus' surface cannot be observed in visible light, but there are several NIR ';windows' through its atmosphere that allow surface imaging. The VIRTIS spectrometer on VEx viewed the surface through one window [2]; emissivity variations among lava flows on Imdr and Themis Regios have been explained as varying degrees of weathering, and thus age [3]. The VMC camera on VEx also provides images through a NIR window, which suggest variable degrees of weathering on some basaltic plains [4]. Indirect evidence for weathering may come from varying SO2 abundance at Venus' cloud tops; repeated rapid increases and gradual declines may represent volcanic eruptions followed by weathering to form sulfate minerals [5]. Continued geochemical modeling relevant to Venus weathering is motivated by expolanet studies [6]. Models have been extended to hypothetical exo-Venuses of different temperatures and surface compositions [7]. The idea that Venus' atmosphere composition can be buffered by reaction with its surface was explored in detail, and the derived constraint extended to other types of planets [8]. Several laboratories are investigating Venus weathering, motivated in part by the hope that they can provide real constraints on timescales of Venus volcanism [3]. Aveline et al. [9] are extending early studies [10] by reacting rocks and minerals with concentrated SO2 (to accelerate reaction rates to allow detectability of products). Kohler et al. [11] are investigating the stability of metals and chalcogenides as possible causes of the low-emissivity surfaces at high elevations. Berger and Aigouy [12] studied rock alteration on a

  5. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    NASA Technical Reports Server (NTRS)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  6. Return to Venus of the Japanese Venus Climate Orbiter AKATSUKI

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Kawakatsu, Yasuhiro; Hirose, Chikako; Imamura, Takeshi; Ishii, Nobuaki; Abe, Takumi; Yamazaki, Atsushi; Yamada, Manabu; Ogohara, Kazunori; Uemizu, Kazunori; Fukuhara, Tetsuya; Ohtsuki, Shoko; Satoh, Takehiko; Suzuki, Makoto; Ueno, Munetaka; Nakatsuka, Junichi; Iwagami, Naomoto; Taguchi, Makoto; Watanabe, Shigeto; Takahashi, Yukihiro; Hashimoto, George L.; Yamamoto, Hiroki

    2014-01-01

    Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (The Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we expected was more than two Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, 2010, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles' deployment was confirmed. After a successful cruise, the malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on Dec. 7, 2010. The engine shut down before the planned reduction in speed to achieve. The spacecraft did not enter the Venus orbit but entered an orbit around the Sun with a period of 203 days. Most of the fuel still had remained, but the orbital maneuvering engine was found to be broken and unusable. However, we have found an alternate way of achieving orbit by using only the reaction control system (RSC). We had adopted the alternate way for orbital maneuver and three minor maneuvers in Nov. 2011 were successfully done so that AKATSUKI would meet Venus in 2015. We are considering several scenarios for VOI using only RCS.

  7. The role of magnetospheric energy sources on Titan and Venus: A comparative evaluation

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, I.; Yelle, R.; Cui, J.; Galand, M.

    2010-05-01

    The atmospheres of Venus and Titan on one level share many similarities, but at the same time host interesting differences which motivate a more comprehensive comparison. As a result of highly successful missions like Pioneer Venus and Venus Express, the atmosphere of Venus is the most extensively observed planetary atmosphere apart from the Earth's. The ongoing tour of Cassini-Huygens has led to a vast increase in our knowledge and understanding of Titan's atmosphere, but important information gaps remain. How much can we learn from Venus when attempting to understand the upper atmosphere of Titan? One fundamental question to address is that of the global energy balance in the atmosphere of Titan, and in particular in the upper atmosphere (thermosphere/ionosphere region), which in turns drives the global dynamics and affects the neutral and ion species distribution. One potentially important energy source on Titan derives from magnetosphere-atmosphere coupling by a combination of energetic particle precipitation and the closing of magnetospheric currents in the ionosphere. As a result of weaker solar forcing at Titan, these magnetospheric energy sources may play a comparatively stronger factor in driving the global energy balance and thereby dynamics on Titan than they do on Venus. This paper will evaluate the energy balance on Venus and Titan by assessing the ease at which numerical models driven by solar heating reproduce observed thermosphere densities. We will discuss the relative roles of solar and magnetospheric energy sources on Venus and Titan and outline the wider consequences of their differences.

  8. Recent hotspot volcanism on Venus from VIRTIS emissivity data.

    PubMed

    Smrekar, Suzanne E; Stofan, Ellen R; Mueller, Nils; Treiman, Allan; Elkins-Tanton, Linda; Helbert, Joern; Piccioni, Giuseppe; Drossart, Pierre

    2010-04-30

    The questions of whether Venus is geologically active and how the planet has resurfaced over the past billion years have major implications for interior dynamics and climate change. Nine "hotspots"--areas analogous to Hawaii, with volcanism, broad topographic rises, and large positive gravity anomalies suggesting mantle plumes at depth--have been identified as possibly active. This study used variations in the thermal emissivity of the surface observed by the Visible and Infrared Thermal Imaging Spectrometer on the European Space Agency's Venus Express spacecraft to identify compositional differences in lava flows at three hotspots. The anomalies are interpreted as a lack of surface weathering. We estimate the flows to be younger than 2.5 million years and probably much younger, about 250,000 years or less, indicating that Venus is actively resurfacing.

  9. Venus Night Airglow Distibutions and Variability: NCAR VTGCM Simulations

    NASA Astrophysics Data System (ADS)

    Brecht, Amanda; Bougher, S.; Gerard, J.; Rafkin, S.; Foster, B.

    2008-09-01

    The National Center for Atmospheric Research (NCAR) thermospheric general circulation model for Venus (VTGCM) is producing results that are comparative to Pioneer Venus and Venus Express data. The model is a three dimensional model that can calculate temperatures, zonal winds, meridional winds, vertical winds, and concentration of specific species. The VTGCM can also compute the O2-IR and NO-UV night airglow intensity distributions. With a lower boundary set at 70 Km and a range of sensitivity tests, the VTGCM is able to show consistent set of results with the nightside temperature and the night airglows. These results can show possible controlling parameters of the O2-IR, NO-UV night airglow layers, and the nightside hot spot. Being able to understand the night airglow distribution and variability provides valuable insight into the changing circulation of Venus’ upper atmosphere and leads to an overall planetary perception of the atmospheric dynamics.

  10. Atmospheric structure and cloud properties on Venus

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.

    temporary variable. Soviet and American missions investigated Venus in the past, European Venus Express is working successfully now, Japan mission Planet-C is preparing to be launch in 2007 and Venera-D mission is included in Russian Federal Space Program with launch around 2016.

  11. Earth, Venus and Planetary Diversity

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    2015-05-01

    To what extent are planets diverse in internal structure and behavior even when their outward characteristics (e.g., mass and radius) are similar? I will argue that diversity is expected and that Earth and Venus differences illustrate this.

  12. ISS Update: Transit of Venus

    NASA Video Gallery

    ISS Update commentator Brandi Dean interviews Mario Runco, NASA astronaut, about Venus's transit across the sun on June 5, 2012. Questions? Ask us on Twitter @NASA_Johnson and include the hashtag #...

  13. Laying bare Venus' dark secrets

    SciTech Connect

    Allen, D.A.

    1987-10-01

    Ground-based IR observations of the dark side of Venus obtained in 1983 and 1985 with the Anglo-Australian Telescope are studied. An IR spectrum of Venus' dark side is analyzed. It is observed that the Venus atmosphere is composed of CO and radiation escapes only at 1.74 microns and 2.2 to 2.4 microns. The possible origin of the radiation, either due to absorbed sunlight or escaping thermal radiation, was investigated. These two hypotheses were eliminated, and it is proposed that the clouds of Venus are transparent and the radiation originates from the same stratum as the brighter portions but is weakened by the passage through the upper layer. The significance of the observed dark side markings is discussed.

  14. The long-term behavior of the main peak of the dayside ionosphere of Venus during solar cycle 21 and its implications on the effect of the solar cycle upon the electron temperature in the main peak region

    NASA Technical Reports Server (NTRS)

    Kliore, Arvydas J.; Mullen, Luke F.

    1989-01-01

    Results are presented on the long-term behavior of the main peak electron density in the Venus ionosphere during the solar cycle 21, based on 104 radio occultation measurements of the vertical electron density profile in the dayside ionosphere of Venus carried out aboard the Pioneer Venus Orbiter spacecraft (along with published data on 11 Venera 9-10 measurements). The equation representing the electron temperature at h = 140 km is presented. The results imply that the electron temperature at h = 140 km decreased by about 25 percent from solar maximum to solar minimum, compared to a decrease of 50-75 percent above 200 km found by Kliore and Mullen (1989).

  15. Venus Atmosphere and Surface Explorer

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Hall, Jeff; Schofield, Tim

    2014-11-01

    ContextVenus is Earth’s twin planet, but it is an evil twin! To understand how Venus went wrong, to understand the terrestrial planets in our Solar System, those around other stars, and the future of the Earth… we must understand Venus history, evolution and current processes. This requires entering the Venus atmosphere and examining its surface. Future missions will land on Venus, but they need better characterization of its atmosphere and of possible landing sites. VASE can build on discoveries from previous missions, on technical advances in the last decades and on improved balloon technology. The hybrid mission links together a single vertical profile with two weeks of temporal and longitudinal data on a global scale. We can investigate the linked surface and atmosphere processes. We will measure the noble gases which retain indicators of Venus formation; clouds, winds, and chemistry that drive the current Venus processes; and take descent images that extend the Magellan RADAR results to sub-1m resolution, providing ground truth for Magellan’s global mapping and to characterize possible future landing sites.Science Objectives VASE will measure the complete inventory of atmospheric noble gas and light stable isotopes to constrain theories of planetary formation and evolution. It will take nested surface images on descent. It will provide the first complete atmospheric structure profile from clouds to surface of temperature, pressure and wind. VASE will measure with critical accuracy the trace and reactive gas composition profile from clouds to surface. VASE will map the surface emissivity along the surface below two balloon circumnavigations of Venus.Mission VASE is a hybrid Venus mission consisting of a large balloon and a small probe. It reaches Venus after a 4 month trip from Earth. The probe deploys from the entry vehicle and falls to surface in 1.5 hours. The balloon mission lasts 2 weeks, flying in the clouds at 55 km and circumnavigating Venus twice

  16. Stagnation Point Radiative Heating Relations for Venus Entry

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.; Palmer, Grant E.; Prabhu, Dinesh K.

    2012-01-01

    Improved analytic expressions for calculating the stagnation point radiative heating during entry into the atmosphere of Venus have been developed. These analytic expressions can be incorporated into entry trajectory simulation codes. Together with analytical expressions for convective heating at the stagnation point, the time-integrated total heat load at the stagnation point is used in determining the thickness of protective material required, and hence the mass of the fore body heatshield of uniform thickness.

  17. Exploring Venus: Major scientific issues and directions

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Stofan, Ellen R.; Cravens, Thomas E.

    Venus has been a prime target of space exploration since the launch of Venera-1 in 1961. In 1962, Mariner 2 determined that the surface of Venus is hot, providing the first confirmation of its immense greenhouse effect. Venus has now been visited by numerous flybys, orbiters, atmospheric probes, landers, and balloons! Magellan's radar pierced the planet-encircling clouds to provide a global map of the Venus surface. Table 1 lists the chronology of Venus missions. Despite the numerous missions, the Venus environment provides a difficult target, and many significant questions remain unanswered. The state of current knowledge, the open questions, and ways to address them are discussed in the following chapters.

  18. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  19. Venus: an isothermal lower atmosphere?

    PubMed

    Gale, W; Liwshitz, M; Sinclair, A C

    1969-05-30

    Use of Earth-based microwave data in extrapolating the atmospheric profile of Venus below the region probed by Mariner V and Venera 4 reveals an isothermal layer at 670 degrees +/- 20 degrees K that extends to an altitude of 7 +/- 2 kilometers. This model gives a value of 6054.8 kilometers for the radius of Venus, and agreement with brightness spectrum, radar cross sections, and results of microwave interferometry.

  20. Rotation of venus: continuing contradictions.

    PubMed

    Smith, B A

    1967-10-01

    Optical observations of Venus have yielded various values of the rotation period extending from less than one to several hundred days. Radar observations give a retrograde rotation of the solid globe in 244 +/- 2 days. Recent ultraviolet photographs, however, show relatively rapid displacements of clouds in the high atmosphere of Venus which suggest a retrogrode rotation in only 5 days. The two rates seem to be physically incompatible.

  1. Venus lightning: PROS and cons

    NASA Astrophysics Data System (ADS)

    Hunten, D. M.

    1995-04-01

    The evidence concerning the presence of lightning on Venus is summarized. There are several observations of electromagnetic pulses, but the only claimed optical detection is ambiguous. Another optical search, making use of an unusual mode of the Pioneer Venus star sensor, set an upper limit on the flash rate, 1.6% of the corresponding Earth rate. Given these difficulties and the unfavorable environment for charge separation, it is concluded that the presence of lightning at anything like the Earth rate is doubtful.

  2. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Shapiro Griffin, Kristen L.; Sokol, D.; Dailey, D.; Lee, G.; Polidan, R.

    2013-10-01

    We have explored a possible new approach to Venus upper atmosphere exploration by applying Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In this presentation we report results from our ongoing study and plans for future analyses and prototyping. We discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We discuss interdependencies of the above factors and the manner in which the VAMP strawman’s characteristics affect the CONOPs and the science objectives. We show how

  3. The study of Venus continues

    NASA Technical Reports Server (NTRS)

    Barsukov, V. L.

    1983-01-01

    The landing of the Soviet interplanetary station Venera-13 in March, 1982, is described. One of the tasks of the station was to study the composition and structure of cloud layers on Venus. It was established that the cloud layer consists largely of sulfuric acid. Data obtained from other Venera stations are also presented. It is concluded that fundamental similarities can be found in the geological development of the Earth and Venus.

  4. Storms on Venus: Lightning-induced chemistry and predicted products

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Baines, K. H.

    2015-08-01

    Observations by many spacecraft that have visited Venus over the last 40 years appear to confirm the presence of lightning storms in the Venus atmosphere. Recent observations by Venus Express indicate that lightning frequency and power is similar to that on Earth. While storms are occurring, energy deposition by lightning into Venus atmospheric constituents will immediately dissociate molecules into atoms, ions and plasma from the high temperatures in the lightning column (>30,000 K) and the associated shock waves and heating, after which these atom and ion fragments of C,O,S,N,H-containing molecules will recombine during cooldown to form new sets of molecules. Spark and discharge experiments in the literature suggest that lightning effects on the main atmospheric molecules CO2, N2, SO2, H2SO4 and H2O will yield carbon oxides and suboxides (COm, CnOm), sulfur oxides (SnO, SnOm), oxygen (O2), elemental sulfur (Sn), nitrogen oxides (NO, N2O, NO2), sulfuric acid clusters (HnSmOx-.aHnSmOx e.g. HSO4-.mH2SO4), polysulfur oxides, carbon soot and other exotic species. While the amounts generated in lightning storms would be much less than that derived from photochemistry, during storms these species can build up in a small area and so their local concentrations may increase significantly. For a storm of 100×100 km, the increase could be ~5 orders of magnitude if they remain in the storm region for a period before becoming well-mixed. Some of these molecular species may be detectable by instruments onboard Venus Express while they are concentrated in the storm regions. We explore the diversity of new products likely created in lightning storms on Venus.

  5. Mantle plumes on Venus revisited

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.

    1992-01-01

    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  6. Occupational accidents aboard merchant ships

    PubMed Central

    Hansen, H; Nielsen, D; Frydenberg, M

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were identified during a total of 31 140 years at sea. Among these, 209 accidents resulted in permanent disability of 5% or more, and 27 were fatal. The mean risk of having an occupational accident was 6.4/100 years at sea and the risk of an accident causing a permanent disability of 5% or more was 0.67/100 years aboard. Relative risks for notified accidents and accidents causing permanent disability of 5% or more were calculated in a multivariate analysis including ship type, occupation, age, time on board, change of ship since last employment period, and nationality. Foreigners had a considerably lower recorded rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious accidents happened on deck. Conclusions: It was possible to clearly identify work situations and specific risk factors for accidents aboard merchant ships. Most accidents happened while performing daily routine duties. Preventive measures should focus on workplace instructions for all important functions aboard and also on the prevention of accidents caused by walking around aboard the ship. PMID:11850550

  7. Some questions about the Venus atmosphere from past measurements

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    2015-11-01

    The many missions undertaken in the past half a century to explore Venus with fly-by spacecraft, orbiters, descending probes, landers and floating balloons, have provided us with a wealth of data. These data have been supplemented by many ground based observations at reflected solar wavelengths, short and long wave infrared to radio waves. Inter-comparison of the results from such measurements provide a good general idea of the global atmosphere. However, re-visiting these observations also raises some questions about the atmosphere that have not received much attention lately but deserve to be explored and considered for future measurements.These questions are about the precise atmospheric composition in the deep atmosphere, the atmospheric state in the lower atmosphere, the static stability of the lower atmosphere, the clouds and hazes, the nature of the ultraviolet absorber and wind speed and direction near the surface from equator to the pole. The answers to these questions are important for a better understanding of Venus, its weather and climate. The measurements required to answer these questions require careful and sustained observations within the atmosphere and from surface based stations. Some of these measurements should and can be made by large missions such as Venera-D (Russia), Venus Climate Mission (Visions and Voyages - Planetary Science Decadal Survey 2013-2022 or the Venus Flagship Design Reference Mission (NASA) which have been studied in recent years, but some have not been addressed in such studies. For example, the fact that the two primary constituents of the Venus atmosphere - Carbon Dioxide and Nitrogen are supercritical has not been considered so far. It is only recently that properties of binary supercritical fluids are being studied theoretically and laboratory validation is needed.With the end of monitoring of Venus by Venus Express orbiter in November 2014 after nearly a decade of observations and the imminent insertion of JAXA

  8. Crustal deformation: Earth vs Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.

  9. Venus - Mead Crater

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image mosaic shows the largest (275 kilometers in diameter [170 miles]) impact crater known to exist on Venus at this point in the Magellan mission. The crater is located north of Aphrodite Terra and east of Eistla Regio at latitude 12.5 degrees north and longitude 57.4 degrees east, and was imaged during Magellan orbit 804 on November 12, 1990. The Magellan science team has proposed to name this crater Mead, after Margaret Mead, the American Anthropologist (1901- 1978). All Magellan-based names of features on Venus are, of course, only proposed until final approval is given by the International Astronomical Union-Commission on Planetary Nomenclature. Mead is classified as a multi-ring crater with its innermost, concentric scarp being interpreted as the rim of the original crater cavity. No inner peak-ring of mountain massifs is observed on Mead. The presence of hummocky, radar-bright crater ejecta crossing the radar-dark floor terrace and adjacent outer rim scarp suggests that the floor terrace is probably a giant rotated block that is concentric to, but lies outside of, the original crater cavity. The flat, somewhat brighter inner floor of Mead is interpreted to result from considerable infilling of the original crater cavity by impact melt and/or by volcanic lavas. To the southeast of the crater rim, emplacement of hummocky ejecta appears to have been impeded by the topography of preexisting ridges, thus suggesting a very low ground-hugging mode of deposition for this material. Radar illumination on this and all other Magellan image products is from the left to the right in the scene.

  10. Preliminary results of study of infrared spectra of Venus from the orbital spacecraft Venera-9 and Venera-10

    NASA Technical Reports Server (NTRS)

    Gnedykh, V.; Zhegulev, V.; Zasova, L.; Moroz, V. I.; Parfentyev, N.; Tomashova, G.

    1978-01-01

    The infrared spectrum of Venus in the spectral range 1.6 to 2.8 was measured by means of the spectrometers aboard 'Venera-9' and 'Venera-10' orbital spacecrafts. Approximately 20 series of measurements were made near the pericenter of the orbit, each of which contains 150 spectra for each path intersecting the planet from the terminator to the limb. Phase angles lie within the limits from 60 to 120 deg.

  11. Entry-probe studies of the atmospheres of earth, Mars, and Venus - A review (Von Karman Lecture)

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1990-01-01

    This paper overviews the history (since 1963) of the exploration of planetary atmospheres by use of entry probes. The techniques used to measure the compositions of the atmospheres of the earth, Mars, and Venus are described together with the key results obtained. Attention is also given to the atmosphere-structure experiment aboard the Galileo Mission, launched on October 17, 1989 and now under way on its 6-yr trip to Jupiter, and to future experiments.

  12. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Ignatiev, N. I.; McGouldrick, K.; Wilquet, V.; Wilson, C. F.

    2014-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. This paper gives a summary of new observations and modelling efforts that will form the basis for a relevant chapter in the Venus III book. Venus Express observations reveal significant latitudinal variations and temporal changes in the global cloud top morphology [1]. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression [2, 3]. UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics [4]. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator [5]. Based on Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and midwavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets [6]. The optical model includes H2SO4 concentrations from 60 to 85%. A number of results are strikingly new: (1) an increase of the H2SO4

  13. Volcanic lightning on Venus and early Earth

    NASA Astrophysics Data System (ADS)

    Airey, Martin; Aplin, Karen

    2016-04-01

    Lightning may have been crucial in the development of life, as it enables key chemical reactions to occur. We cannot directly observe early Earth's hot, CO2-rich, atmosphere; however, similar conditions exist today on Venus, where there may be volcanic and/or meteorological lightning. Recent observations made by ESA's Venus Express satellite have provided evidence for active volcanism [1-3] and lightning discharges [e.g. 4], which may be volcanic in origin. This study uses laboratory experiments to simulate ash generation and to measure its electrical charging under typical atmospheric conditions for Venus and the early Earth (specifically the Hadean eon, up to 4 billion years ago, and the Archean eon, from 4 billion to 2.5 billion years ago). Ultimately the work will address the following questions: (a) is volcanic activity a feasible mechanism for lightning generation on Venus and early Earth, (b) how would these extreme paleo-environmental conditions affect lightning, (c) can the similarities in atmospheric conditions inform us of planetary evolutionary concepts, (d) could volcanic lightning have been important in the emergence of life on Earth, and (e) what are the wider implications for the likelihood of the emergence of life on other planets? A 1-litre atmospheric simulation chamber will be used to simulate the high-pressure, high-temperature, CO2-dominated atmospheres of the surface of early Earth, and Venus at ~10 km altitude (~5 MPa, 650 K) (where ash plume-forming eruptions on Venus are more likely to occur [5]). The chamber contains temperature/pressure monitoring and logging equipment, a collision apparatus to generate the charged rock fragments, and electrodes for charge measurement with an electrometer [6]. The planned experimental programme will measure the effects of varying temperature, pressure, atmospheric, and sample composition under a range of conditions appropriate to Venus and early Earth. Comparative work with present day Earth conditions

  14. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.

    2013-12-01

    We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation

  15. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Polidan, R.; Lee, G.; Sokol, D.; Griffin, K.; Bolisay, L.; Barnes, N.

    2014-04-01

    Over the past years we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semibuoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. VAMP targets the global Venus atmosphere between 55 and 70 km altitude and would be a platform to address VEXAG goals I.A, I.B, and I.C. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Science payload accommodation, constraints, and opportunities 2. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance, performance sensitivity to payload weight 3. Feasibility of and options for the deployment of the vehicle in space 4. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the

  16. Critical components of Venus Lower and Upper atmospheres with FirefOx and Venus Neutron Spectrometer (VeNuS)

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Papadakis, S. J.; Monica, A. H.; Deglau, D. M.; Lawrence, D. J.; Peplowski, P. N.

    2015-10-01

    We present two instrument concepts for understanding critical aspects of Venus' upper and lower atmosphere. FirefOx is an oxygen fugacity sensor for the lower atmosphere, and The Venus Nuclear Spectrometer (VeNuS) studies composition and volcanic activity signals in the upper atmosphere.

  17. Revealing the face of Venus: Magellan

    NASA Technical Reports Server (NTRS)

    1993-01-01

    An overview of the Magellan spacecraft and mission is presented. Topics covered include: a description of the Magellan spacecraft; Venus geology; Venus gravity; synthetic aperture radar; and radar sensing.

  18. Hot-spot tectonics of Eistla Regio, Venus: Results from Magellan images and Pioneer Venus gravity

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.; Phillips, Roger J.

    1991-01-01

    Eistla Regio (ER) is a broad, low, discontinuous topographic rise striking roughly EW at low northern latitudes of Venus. Some 2000 x 7000 km in dimensions, it is the third largest rise in planform on Venus after Aphrodite Terra and Beta Phoebe Regiones. These rises are the key physiographic elements in a hot spot model of global tectonics including transient plume behavior. Since ER is the first such rise viewed by Magellan and the latitude is very favorable for Pioneer Venus gravity studies, some of the predictions of a time dependent hot spot model are tested. Western ER is defined as the rise including Gula and Sif Mons and central ER as that including Sappho Patera. Superior conjunction prevented Magellan from returning data on eastern ER (Pavlova) during the first mapping cycle. It is concluded that the western and central portions of ER, while part of the same broad topographic rise and tectonic framework, have distinctly different surface ages and gravity signatures. The western rise, including Gula and Sif Mons, is the expression of deep seated uplift with volcanism limited to the individual large shields. The eastern portion has been widely resurfaced more recently by thermal anomalies in the mantle.

  19. The main layers of the ionosphere of Venus as seen by Pioneer Venus Orbiter radio occultations

    NASA Astrophysics Data System (ADS)

    Hermann, Jacob; Withers, Paul; Vogt, Marissa F.

    2016-10-01

    Pioneer Venus Orbiter (PVO) performed numerous atmospheric experiments from 1978 to 1992. Radio occultation measurements were used to create vertical ionospheric electron density profiles extending as low as 100 km altitude; yielding data coverage across the V1 and V2 layers of the Venusian ionosphere, 125 and 140 km respectively. The PVO data give us a unique look at the ionosphere during solar maximum compared to later Venus missions. However, none of these ionospheric profiles were archived at the PDS nor have been available for comparison to Venus Express observations. We have extracted 120 PVO radio occultation profiles from published papers using a program to digitally read data from graphical images. Additionally, the NSSDC had 94 profiles, 63 of which were added to our dataset. The data from both sources were used in conjunction to analyze trends between solar activity and the characteristics of the V1 and V2 layers. The V1 layer, created by soft x-rays, should react more to changes in solar activity than the EUV created V2 layer. We intend to archive this data at the PDS so that the community can easily access digital measurements of the Venusian ionosphere at solar maximum.

  20. How Hot Can Venus Get?

    NASA Astrophysics Data System (ADS)

    Bullock, Mark A.; Grinspoon, David H.

    2001-11-01

    The powerful greenhouse effect on Venus exists because pressure-broadened CO2 absorption bands, interlaced with water absorption features, effectively block most of the upwelling thermal radiation coming from the surface. The sulfuric acid clouds and small amounts of SO2, OCS, CO, HCl and HF are responsible for some absorption of radiation at wavelengths greater than 2 μ m. In particular, these constituents of Venus' atmosphere absorb thermal radiation in a crucial part of the spectrum -- the 2.1 to 2.6 μ m range where the CO2-H2O thermal absorption conspiracy is weak. Much of the radiation on the short-wavelength side of Venus' surface blackbody curve (which has a peak at 4 μ m), leaves the planet through this window. Variations in the abundance of the trace atmospheric species have a large effect on the efficacy of this window, both directly through their infrared absorption, and indirectly through their effect on clouds. Increased atmospheric absorption, say through an increase in atmospheric water abundance, can heat the surface. However, as the surface of Venus heats up, the peak of its Planck function moves towards the 2.1 to 2.6 μ m window, allowing more direct thermal radiation loss to space. This high temperature shift of radiative loss into the window will act as a thermostat. For moderate perturbations in atmospheric trace species therefore, such as those expected from volcanism or large impacts, there is a limit to how hot the surface of Venus can get. Using a one-dimensional, non-gray coupled cloud/radiative transfer model, we will show what the theoretical limits on the surface temperature of Venus are. We will discuss the fairly broad constraints on these conclusions, and make some general predictions for terrestrial planets with CO2-H2O atmospheres in other solar systems. These results may be relevant for models of tectonic and convective history of Venus and other planets.

  1. Pioneer Venus large probe neutral mass spectrometer

    NASA Technical Reports Server (NTRS)

    Hoffman, J.

    1982-01-01

    The deuterium hydrogen abundance ratio in the Venus atmosphere was measured while the inlets to the Pioneer Venus large probe mass spectrometer were coated with sulfuric acid from Venus' clouds. The ratio is (1.6 + or - 0.2) x 10 to the minus two power. It was found that the 100 fold enrichment of deuterium means that Venus outgassed at least 0.3% of a terrestrial ocean and possibly more.

  2. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Ignatiev, Nikolay; McGouldrick, Kevin; Wilquet, Valerie; Wilson, Colin

    2015-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. Venus Express observations revealed significant latitudinal variations and temporal changes in the global cloud top morphology. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression. The UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator. Based on the Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and mid-wavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets. The optical model includes H2SO4 concentrations from 60% to 85%. A number of results are strikingly new: (1) an increase of the H2SO4 concentration with a decreasing altitude (from 70-75% at about 90 km to 85% at 70 km of altitude) and (2) Many SOIR/SPICAV data cannot be fitted when using

  3. Solar wind precipitation - a comparison between Mars and Venus

    NASA Astrophysics Data System (ADS)

    Stenberg Wieser, Gabriella; Nilsson, Hans; Futaana, Yoshifumi; Holmström, Mats; Barabash, Stas

    2015-04-01

    Mars and Venus both have atmospheres but both lack a substantial intrinsic magnetic field. Hence, their interaction with the solar wind is similar. Due to currents set up in the ionospheres the interplanetary magnetic field embedded in the solar wind drapes around the planets forming induced magnetospheres. The plasma instrument packages ASPERA-3 and ASPERA-4 on the two spacecraft Mars Express and Venus Express are very similar and invite to a comparison between the two plasma environments. In this study we used the Ion Mass Analyser (IMA) on both spacecraft to investigate the solar wind precipitation onto the upper atmospheres. We focus on the differences between the two planets. We conclude that on Mars we regularly observe precipitating solar wind ions (H+ and He2+) inside the induced magnetosphere boundary (IMB). The precipitation is clearly guided by the solar wind convection electric field and He2+ and H+ are seen independently of each other. On Venus precipitation of He2+ is only observed close to the IMB and always together with H+. The precipitation events on Venus have no clear correlation with the solar wind electric field.

  4. Venus - Eistla Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image is of an area located in the Eistla Region of Venus in the southern hemisphere and is centered at 5.5 degrees east longitude, 18 degrees south latitude. It is 122 kilometers (76 miles) across east to west and 107 kilometers (66 miles) north to south. North is at the top of the image. Shown is an unusual volcanic edifice unlike all others previously observed. It is approximately 66 kilometers (41 miles) across at the base and has a relatively flat, slightly concave summit 35 kilometers (22 miles) in diameter. The sides of the edifice are characterized by radiating ridges and valleys that impart a fluted appearance. To the west, the rim of the structure appears to have been breached by dark lava flows that emanated from a shallow summit pit approximately 5 kilometers (3 miles) in diameter and traveled west along a channel approximately 5 kilometers wide and 27 kilometers (17 miles) long. A series of coalescing, collapsed pits 2 to 10 kilometers (1.2 to 6.2 miles) in diameter are located 10 kilometers (6 miles) west of the summit. The edifice and western pits are circumscribed by faint, concentric lineaments up to 70 kilometers (43 miles) in diameter. A series of north northwest trending graben are deflected eastward around the edifice; the interplay of these graben and the fluted rim of the edifice produce a distinctive scalloped pattern in the image. Several north northwest trending lineaments cut directly across the summit region. This peculiar volcanic construct is located 25 to 30 kilometers (15 to 19 miles) north of Alpha Regio, a highly deformed region of tessera terrain. A collection of at least six similar volcanoes has been observed near Thetis Regio, a region of tessera within Aphrodite Terra. Thus, these unusual constructs tentatively appear to be spatially associated with regions of tessera. A tessera is a complex, deformed terrain on Venus consisting of at least two sets of intersecting ridges and troughs. The implications of this

  5. Scientific Balloons for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery

    Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.

  6. Episodic plate tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald

    1992-01-01

    Studies of impact craters on Venus from the Magellan images have placed important constraints on surface volcanism. Some 840 impact craters have been identified with diameters ranging from 2 to 280 km. Correlations of this impact flux with craters on the Moon, Earth, and Mars indicate a mean surface age of 0.5 +/- 0.3 Ga. Another important observation is that 52 percent of the craters are slightly fractured and only 4.5 percent are embayed by lava flows. These observations led researchers to hypothesize that a pervasive resurfacing event occurred about 500 m.y. ago and that relatively little surface volcanism has occurred since. Other researchers have pointed out that a global resurfacing event that ceased about 500 MYBP is consistent with the results given by a recent study. These authors carried out a series of numerical calculations of mantle convection in Venus yielding thermal evolution results. Their model considered crustal recycling and gave rapid planetary cooling. They, in fact, suggested that prior to 500 MYBP plate tectonics was active in Venus and since 500 MYBP the lithosphere has stabilized and only hot-spot volcanism has reached the surface. We propose an alternative hypothesis for the inferred cessation of surface volcanism on Venus. We hypothesize that plate tectonics on Venus is episodic. Periods of rapid plate tectonics result in high rates of subduction that cool the interior resulting in more sluggish mantle convection.

  7. Electrical memory in Venus flytrap.

    PubMed

    Volkov, Alexander G; Carrell, Holly; Baldwin, Andrew; Markin, Vladislav S

    2009-06-01

    Electrical signaling, memory and rapid closure of the carnivorous plant Dionaea muscipula Ellis (Venus flytrap) have been attracting the attention of researchers since the XIX century. The electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf in 0.3 s without mechanical stimulation of trigger hairs. Here we developed a new method for direct measurements of the exact electrical charge utilized by the D. muscipula Ellis to facilitate the trap closing and investigated electrical short memory in the Venus flytrap. As soon as the 8 microC charge for a small trap or a 9 microC charge for a large trap is transmitted between a lobe and midrib from the external capacitor, the trap starts to close at room temperature. At temperatures 28-36 degrees C a smaller electrical charge of 4.1 microC is required to close the trap of the D. muscipula. The cumulative character of electrical stimuli points to the existence of short-term electrical memory in the Venus flytrap. We also found sensory memory in the Venus flytrap. When one sustained mechanical stimulus was applied to only one trigger hair, the trap closed in a few seconds.

  8. The European Venus Explorer (EVE) mission proposal

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Wilson, C. F.; Titov, D.; Korablev, O.; Aplin, K.; Baines, K.; Balint, T.; Blamont, J.; Cochrane, C.; Ferencz, Cs.; Ferri, F.; Gerasimov, M.; Imamura, T.; Leitner, J.; Lopez-Moreno, J.; Marty, B.; Martynov, M.; Pogrebenko, S.; Rodin, A.; Whiteway, J.; Zasova, L.

    2007-08-01

    The European Venus Explorer (EVE) is a mission proposed to the European Space Agency (ESA) under the Cosmic Vision Call for Ideas, for launch in 2016-2018. The central goal of this mission is to investigate the evolution of Venus and its climate, in order to understand better the 'life cycle' of Earth-like planets everywhere. After the excellent results being obtained from ESA's Venus Express orbiter, in situ measurements will be required to answer many of the outstanding questions, specially relating to the evolution of the planet, its complex cloud chemistry and the stability of its climate. The baseline EVE mission consists of one balloon platform floating at an altitude of 50-60 km, one descent probe provided by Russia, and an orbiter with a polar orbit which will perform science observations as well as relay data from the balloon and descent probe. The minimum lifetime of the balloon is 7 days, required for one full circle around the planet, much longer than the 48 hour data returned from Russia's VEGA balloons. Earth-based VLBI and Doppler measurements provide tracking information for the orbiter, allowing measurement of the variations in the planet's gravity field, and for the balloon and descent probe to yield wind measurements in the lower atmosphere. The descent probe's fall through the atmosphere is expected to last 60 minutes, followed by a lifetime of 30 minutes on the surface. The Japanese space agency (JAXA) also proposes to include another independent platform, a small water vapour-inflated balloon which would be deployed at 35 km altitude and would communicate directly to Earth. Further details of the EVE mission, including proposals for Education & Outreach schemes, can be viewed at the mission website: http://www.aero.jussieu.fr/EVE/

  9. A teardrop-shaped ionosphere at Venus in tenuous solar wind

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Fraenz, M.; Dubinin, E.; Coates, A. J.; Zhang, T. L.; Wan, W.; Feng, L.; Angsmann, A.; Opitz, A.; Woch, J.; Barabash, S.; Lundin, R.

    2012-12-01

    A very tenuous solar wind regime, following a series of large coronal mass ejections, impacted Venus during early August, 2010. STEREO-B downstream from Venus observed that the solar wind density at Earth orbit dropped to ∼0.1 #/cm3 and persisted at this value over 1 day. A similar low value was observed at Earth in 1999 and has attracted comprehensive attention (Lazarus, A.J., 2000. Solar physics: the day the solar wind almost disappeared. Science 287, 2172-2173.), especially its consequences on Earth's ionosphere and magnetosphere (Lockwood, M., 2001. Astronomy: the day the solar wind nearly died. Nature 409, 677-679.). We now have an opportunity to examine the response of Venus' ionosphere to such a tenuous solar wind. After Venus Express spacecraft entered the ionosphere near the terminator, it continuously sampled O+ dominated planetary plasma on the nightside till it left the optical shadow region when Venus Express was located at 2 RV (Venus' Radii) to the Venus center and 1.1 RV to the Sun-Venus line. Moreover, the O+ speed was lower than the gravitational escape speed. We interpret this low-speed O+ as a constituent of the extended nightside ionosphere as a consequence of long-duration (18 h) tenuous solar wind, because the very low dynamic pressure enhances the source and reduces the sink of the nightside ionosphere. Though the full extent of the nightside ionosphere is not known due to the limitation of spacecraft's trajectory, our results suggest that the global configuration of Venus' ionosphere could resemble a teardrop-shaped cometary ionosphere.

  10. Venera-D -the future Russian mission to Venus

    NASA Astrophysics Data System (ADS)

    Zasova, Ludmila; Zelenyi, Lev; Korablev, Oleg; Sanko, N. F.; Khartov, Victor V.; Vorontsov, Victor A.; Basilevsky, A. T.; Pichkhadze, Konstantin M.; Elkin, Konstantin S.; Voron, Victor V.

    Venus was actively studied by Soviet and US mission in 60-80-th years of the last century. The investigations carried out both from the orbit and in situ were highly successful. After a 15-years break in space research of Venus, the ESA Venus Express mission, launched in 2005, successfully continues its work on orbit around Venus. In 2010 the launch of the Japanese Climate Orbiter (Planeta-C) mission is planned. However, many questions concerning the structure, and evolu-tions of planet Venus, which are the key questions of comparative planetology, very essential for understanding the evolution of the terrestrial climate, cannot be solved by observations from an orbit. Now in Russia the new investigation phase of Venus begins: the mission Venera-D is included in the Russian Federal Space Program to be launched in 2016. This mission includes the lander, balloons, and the orbiter. The long living balloons are planned to be deployed at different heights, in the clouds and under the clouds. Scientific goals of the mission include: -investigation of structure, chemical composition of the atmosphere, including noble gases abundance and isotopic ratio, structure and chemistry of the clouds; -study of dynamics of the atmosphere, nature of the superrotation, radiative balance, nature of an enormous greenhouse effect; -study of structure, mineralogy and geochemistry of the surface, search for seismic and volcanic activity, the lightening, interaction of the atmosphere and the surface; -investigation of the upper atmosphere, ionosphere, magnetosphere, and the escape rate; -study of the evolution of the atmosphere and the surface of Venus. The complex of experiments on the orbiter includes, among the others, several spectrometers in the spectral range from UV to MW, the mapping spectrometers and the plasma package. On the lander there are instruments to work during the descent, and on the surface: gas-chromatograph, PTW (meteo), nephelometer and the particle sizes spectrometer

  11. Reference atmospheres: VIRA II -Venus International Reference Atmosphere update.

    NASA Astrophysics Data System (ADS)

    Zasova, Ludmila

    2012-07-01

    VIRA I was started in 1982 (30 years ago) and published in1985 (ASR,v5,n11, 1985) by G. Keating, A. Kliore, and V. Moroz. The purpose was to produce a concise, descriptive model summarizing the physical properties of the atmosphere of Venus, which by then had been extensively observed by instruments on board the Venera and Pioneer space probes. VIRA was used by many scientists and engineers in their studies as referent standard of atmospheric data. Afterwards several missions have obtained new data. In particular the experiments on late Veneras and Venus Express. Experiments on board of VEX, working on the orbit for 6 years, provide new high quality data on atmospheric structure, clouds properties, dynamics, composition of the atmosphere, thermal balance, ionosphere. These new data will be used for VIRA update. Original data consists of 7 Chapters.(1 ) Models of the structure of the atmosphere of Venus from the surface to 100 km altitude, (2) Circulation of the atmosphere from surface to 100 km, (3) Particulate matter in the Venus atmosphere, (4) Models of Venus neutral upper atmosphere: structure and composition, (5) Composition of the atmosphere below 100 km altitude, (6) Solar and thermal radiation in the Venus atmosphere, (7) The Venus ionosphere. By 2002 Gerry Keating collected materials to update VIRA. But only two chapter were published: (1 ) Models of the structure of the atmosphere of Venus from the surface to 100 km altitude (Zasova et al, 2006, Cosmic Research, 44, N4), (5) Composition of the atmosphere below 100 km altitude (De Bergh et al. 2006, PSS). Both these chapters were based on the data, obtained before VEX. At the moment the structure of the original VIRA looks acceptable for VIRA II also, however, new Chapters may be added. At COSPAR 2014 in Moscow the session on Reference atmospheres (RAPS), may be proposed to continue discussion on VIRA, and start working on MIRA, and complete VIRA and publish (including CD) after COSPAR 2016 (or may be even

  12. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    corresponding them wave granule sizes. (1/338 : 1/6)πR = πR/56.3 = 342 km. (1/338 x 1/6)πR = πR/2028 = 9.5 km. The larger granules as well arranged network were seen in the near IR Galileo image PIA00073 (several miles below the visible cloud tops). The smaller granules, hopefully, will be detected by the Venus Express cameras. So, the wave planetology applying wave methods to solid planetary bodies and to surrounding them gaseous envelopes shows their structural unity. This understanding may help to analyze and predict very complex behavior of atmospheric sells at Earth (anticyclones up to 5000 km across or πR/4), other planets and Titan. Long time ago known the solar supergranules about 30000 km across were never fully understood. The comparative wave planetology placing them together with wave features of planets and satellites throws light on their origin and behavior and thus expands into an area of the solar physics. In this respect it is interesting to note that rather typical for Sun radio emission in 1 meter diapason also was never properly explained. But applying modulation of the solar photosphere frequency 1/ 1month by the Galaxy frequency 1/ 200 000 000 y. one can obtain such short waves [5]. Radio emissions of planets of the solar system also can be related to this modulation by Galaxy rotation [5]. References: [1] Kochemasov G.G. (1992) Comparison of blob tectonics (Venus) and pair tectonics (Earth) // LPS XXIII, Houston, LPI, pt. 2, 703-704; [2] Kochemasov G.G. (2000) Orbiting frequency modulation in Solar system and its imprint in shapes and structures of celestial bodies // Vernadsky-Brown microsymposium 32 on Comparative planetology, Oct. 9-11, 2000, Moscow, Russia, Abstracs, 88-89; [3] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, (CD-ROM); [4] Kochemasov G.G. (2005) Cassini' lessons: square craters, shoulderto- shoulder even-size aligned and in grids craters having wave interference nature must be

  13. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    corresponding them wave granule sizes. (1/338 : 1/6)πR = πR/56.3 = 342 km. (1/338 x 1/6)πR = πR/2028 = 9.5 km. The larger granules as well arranged network were seen in the near IR Galileo image PIA00073 (several miles below the visible cloud tops). The smaller granules, hopefully, will be detected by the Venus Express cameras. So, the wave planetology applying wave methods to solid planetary bodies and to surrounding them gaseous envelopes shows their structural unity. This understanding may help to analyze and predict very complex behavior of atmospheric sells at Earth (anticyclones up to 5000 km across or πR/4), other planets and Titan. Long time ago known the solar supergranules about 30000 km across were never fully understood. The comparative wave planetology placing them together with wave features of planets and satellites throws light on their origin and behavior and thus expands into an area of the solar physics. In this respect it is interesting to note that rather typical for Sun radio emission in 1 meter diapason also was never properly explained. But applying modulation of the solar photosphere frequency 1/ 1month by the Galaxy frequency 1/ 200 000 000 y. one can obtain such short waves [5]. Radio emissions of planets of the solar system also can be related to this modulation by Galaxy rotation [5]. References: [1] Kochemasov G.G. (1992) Comparison of blob tectonics (Venus) and pair tectonics (Earth) // LPS XXIII, Houston, LPI, pt. 2, 703-704; [2] Kochemasov G.G. (2000) Orbiting frequency modulation in Solar system and its imprint in shapes and structures of celestial bodies // Vernadsky-Brown microsymposium 32 on Comparative planetology, Oct. 9-11, 2000, Moscow, Russia, Abstracs, 88-89; [3] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, (CD-ROM); [4] Kochemasov G.G. (2005) Cassini' lessons: square craters, shoulderto- shoulder even-size aligned and in grids craters having wave interference nature must be

  14. Venus - Rhea Mons Volcano

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Two mosaiced pieces of Magellan image strips display the area east of the Rhea Mons volcano on Venus. This image is centered at about 32.5 degrees north latitude and 286.6 degrees east longitude. The mosaic is 47 kilometers (28 miles) wide and 135 km (81 miles) long. This region has been previously identified as 'tessera' from Earth-based radar (Arecibo) images. The center of the image is dominated by a network of intersecting ridges and valleys. The radar bright north south trending features in this image range from 1 km (0.6 mile) to 3 km (1.8 miles) in length. The average spacing between these ridges is about 1.5 km (0.9 mile). The dark patches at the top of the image are smooth surfaces and may be lava flows located in lowlands between the higher ridge and the valley terrain. This image is a mosaic of two orbits obtained in the first Magellan radar test and played back to Earth to the Deep Space Network stations near Goldstone, Calif. and Canberra, Australia, respectively. The resolution of this image is approximately 120 meters (400 feet).

  15. Limb Altitude and the Southern Hemispheric Vortex Observed by Venus Monitoring Camera on VEX Orbiter

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay; Krauss, Robert; Markiewicz, Wojciech

    2013-04-01

    The Venus Monitoring Camera (VMC) on European Space Agency's Venus Express orbiter has been collecting almost daily images at four wavelengths (365, 550, 980 and 1050 nm) since June 2006 with a few gaps during solar conjunctions. These data provide a nearly continuous record of the southern vortex (Limaye at al. 2009) that spans the entire hemisphere and reveal a dynamic, constantly evolving structure and showing a range of dynamical instability features in the central region. These instability features are also seen in the near infrared observations from the VIRTIS instrument on Venus Express (Luz et al. 2011). Some similarities between the Venus hemispheric vortex and a tropical cyclone have been previously noted (Suomi and Limaye, 1981; Limaye et al., 2009; 2011) and more have been discovered from the VMC observations. While the details of the spatial structure of the vortex is easily observed from the imaging observations at ultraviolet (VMC) and near infrared wavelengths (VIRTIS), the vertical structure is more difficult to determine from Venus Express. Here we present inferences about the vertical level obtained from the visible limb of the planet in VMC images. The altitude of the limb has been measured using full or near full disk images and depicts the altitude of the Venus cloud cover which comprises the vortex circulation. By precisely locating the limb location by fitting each limb profile in the VMC images, the average latitudinal profile of the limb altitude has been estimated. Although the pixel size of the images used is ~ 30-45 km, the large number of images (> 25,000) provides a very large sample of limb altitude determinations at each latitude between the equator and about 60° S latitude enabling sub-pixel variations of the limb altitude. The latitudinal profile of the limb altitude is similar to that inferred from the near infrared observations from VIRTIS (Ignatiev et al., 2009; Cottini et al., 2012) - high in low latitudes and low in polar

  16. Optimizing Aerobot Exploration of Venus

    NASA Technical Reports Server (NTRS)

    Ford, Kevin S.

    1997-01-01

    Venus Flyer Robot (VFR) is an aerobot; an autonomous balloon probe designed for remote exploration of Earth's sister planet in 2003. VFR's simple navigation and control system permits travel to virtually any location on Venus, but it can survive for only a limited duration in the harsh Venusian environment. To help address this limitation, we develop: (1) a global circulation model that captures the most important characteristics of the Venusian atmosphere; (2) a simple aerobot model that captures thermal restrictions faced by VFR at Venus; and (3) one exact and two heuristic algorithms that, using abstractions (1) and (2), construct routes making the best use of VFR's limited lifetime. We demonstrate this modeling by planning several small example missions and a prototypical mission that explores numerous interesting sites recently documented in the plane tary geology literature.

  17. Evidence for lightning on Venus

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.

    1992-01-01

    Lightning is an interesting phenomenon both for atmospheric and ionospheric science. At the Earth lightning is generated in regions where there is strong convection. Lightning also requires the generation of large charge-separation electric fields. The energy dissipated in a lightning discharge can, for example, result in chemical reactions that would not normally occur. From an ionospheric point of view, lightning generates a broad spectrum of electromagnetic radiation. This radiation can propagate through the ionosphere as whistler mode waves, and at the Earth the waves propagate to high altitudes in the plasmasphere where they can cause energetic particle precipitation. The atmosphere and ionosphere of Venus are quite different from those on the Earth, and the presence of lightning at Venus has important consequences for our knowledge of why lightning occurs and how the energy is dissipated in the atmosphere and ionosphere. As discussed here, it now appears that lightning occurs in the dusk local time sector at Venus.

  18. Biologically closed electrical circuits in venus flytrap.

    PubMed

    Volkov, Alexander G; Carrell, Holly; Markin, Vladislav S

    2009-04-01

    The Venus flytrap (Dionaea muscipula Ellis) is a marvel of plant electrical, mechanical, and biochemical engineering. The rapid closure of the Venus flytrap upper leaf in about 0.1 s is one of the fastest movements in the plant kingdom. We found earlier that the electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf without mechanical stimulation of trigger hairs. The Venus flytrap can accumulate small subthreshold charges and, when the threshold value is reached, the trap closes. Here, we investigated the electrical properties of the upper leaf of the Venus flytrap and proposed the equivalent electrical circuit in agreement with the experimental data.

  19. Clouds of Venus. Input to VIRA.

    NASA Astrophysics Data System (ADS)

    Ignatiev, Nikolay; Zasova, Ludmila

    2012-07-01

    Venus is completely covered by a thick clod deck. Its' total optical depth in the visible is equal to 30+/-10. Original VIRA model based on the measurements from Pioneer Venus descent probes and orbiter described mainly cloud particle sizes, properties and their vertical distribution. Later measurements from Venera-15 and Venus Express permitted more detailed studies of horizontal and vertical variations. Imaging of Venus in the UV range shows variety of cloud features that include mottled and streaky clouds in the low latitudes, bright mid-latitude belt and ``polar cap'' with imbedded oval polar dipole. Despite this non-uniform picture the location of the upper boundary of the clouds, derived from the observation of the absorption bands in the reflected IR spectrum, demonstrates a smooth systematic behavior with the latitudinal trends symmetric with respect to equator. In low and middle latitudes the cloud top is located at 72+/-1 km. It decreases poleward of +/-50 degrees and reaches 63--69 km in polar regions. This depression coincides with the eye of the planetary vortex. The effective average particle size radius is equal to (1.3+/-0.5) micron at latitudes of 0--70, with a peak value some 50% larger in the polar regions. Cloud top can experience fast variations of about metricconverterProductID1 km1 km in tens of hours, while larger long-term variations of several kilometers have been observed only at high latitudes. UV markings correlate with the cloud altimetry, however the difference between adjacent UV dark and bright regions never exceeds few hundred meters. Ultraviolet dark spiral arms, which are often seen at about --70 degress, correspond to higher altitudes or to the regions with strong latitudinal gradient of the cloud top altitude. In contrast to the relatively uniform upper cloud boundary, strong variations of the brightness temperature at specific near infrared wavelengths, especially in low latitudes, are related to variations of the cloud

  20. Study and Implementation of the End-to-End Data Pipeline for the Virtis Imaging Spectrometer Onbaord Venus Express: "From Science Operations Planning to Data Archiving and Higher Lever Processing"

    NASA Astrophysics Data System (ADS)

    Cardesín Moinelo, Alejandro

    2010-04-01

    This PhD Thesis describes the activities performed during the Research Program undertaken for two years at the Istituto Nazionale di AstroFisica in Rome, Italy, as active member of the VIRTIS Technical and Scientific Team, and one additional year at the European Space Astronomy Center in Madrid, Spain, as member of the Mars Express Science Ground Segment. This document will show a study of all sections of the Science Ground Segment of the Venus Express mission, from the planning of the scientific operations, to the generation, calibration and archiving of the science data, including the production of valuable high level products. We will present and discuss here the end-to-end diagram of the ground segment from the technical and scientific point of view, in order to describe the overall flow of information: from the original scientific requests of the principal investigator and interdisciplinary teams, up to the spacecraft, and down again for the analysis of the measurements and interpretation of the scientific results. These scientific results drive to new and more elaborated scientific requests, which are used as feedback to the planning cycle, closing the circle. Special attention is given here to describe the implementation and development of the data pipeline for the VIRTIS instrument onboard Venus Express. During the research program, both the raw data generation pipeline and the data calibration pipeline were developed and automated in order to produce the final raw and calibrated data products from the input telemetry of the instrument. The final raw and calibrated products presented in this work are currently being used by the VIRTIS Science team for data analysis and are distributed to the whole scientific community via the Planetary Science Archive. More than 20,000 raw data files and 10,000 calibrated products have already been generated after almost 4 years of mission. In the final part of the Thesis, we will also present some high level data

  1. Superrotation observed in Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshihisa; Takagi, Masahiro

    2005-01-01

    Venus has a dense and high-temperature atmosphere with 92 atm and 730K at the surface. The high temperature near the surface is maintained by the greenhouse effect due to a huge amount of carbon dioxide, which is a main constituent of the atmosphere. It is observed that the Venus atmosphere rotates in the same direction with the solid part (its rotation period is 243 Earth days) and at 70 km altitude this atmospheric rotation is 60 times faster than the solid part. This superrotation is introduced in detail.

  2. Venus - Global surface radio emissivity

    NASA Technical Reports Server (NTRS)

    Ford, P. G.; Pettengill, G. H.

    1983-01-01

    Observations of thermal radio emission from the surface of Venus, made by the Pioneer Venus radar mapper at a wavelength of 17 cm, show variations that are dominated by changes in surface emissivity. The regions of lowest emissivity (0.54 + or - 0.05 for the highland areas of Aphrodite Terra and Theia Mons) correspond closely to regions of high radar reflectivity reported earlier. These results support the inference of inclusions of material with high electrical conductivity in the surface rock of these areas.

  3. Venus: global surface radar reflectivity.

    PubMed

    Pettengill, G H; Ford, P G; Nozette, S

    1982-08-13

    Observations of the surface of Venus, carried out by the Pioneer Venus radar mapper at a wavelength of 17 centimeters, reveal a global mean reflectivity at normal incidence of 0.13 +/- 0.03. Over the surface, variations from a low of 0.03 +/- 0.01 to a high of 0.4 +/- 0.1 are found, with Theia Mons, previously identified as possibly volcanic, showing a value of 0.28 +/- 0.07. Regions of high reflectivity may consist of rocks with substantial inclusions of highly conductive sulfides. PMID:17817535

  4. Largest impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Weitz, C. M.; Basilevsky, A. T.

    1992-01-01

    High-resolution radar images from the Magellan spacecraft have allowed us to perform a detailed study on 25 large impact craters on Venus with diameters from 70 to 280 km. The dimension of these large craters is comparable with the characteristic thickness of the venusian lithosphere and the atmospheric scale height. Some physical parameters for the largest impact craters on Venus (LICV), such as depth, ring/diameter ratio, and range of ballistic ejecta deposits, have been obtained from the SAR images and the altimetry dataset produced by MIT. Data related to each of these parameters is discussed.

  5. Chemical Weathering Kinetics of Basalt on Venus

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1997-01-01

    The purpose of this project was to experimentally measure the kinetics for chemical weathering reactions involving basalt on Venus. The thermochemical reactions being studied are important for the CO2 atmosphere-lithosphere cycle on Venus and for the atmosphere-surface reactions controlling the oxidation state of the surface of Venus. These reactions include the formation of carbonate and scapolite minerals, and the oxidation of Fe-bearing minerals. These experiments and calculations are important for interpreting results from the Pioneer Venus, Magellan, Galileo flyby, Venera, and Vega missions to Venus, for interpreting results from Earth-based telescopic observations, and for the design of new Discovery class (e.g., VESAT) and New Millennium missions to Venus such as geochemical landers making in situ elemental and mineralogical analyses, and orbiters, probes and balloons making spectroscopic observations of the sub-cloud atmosphere of Venus.

  6. Venus Atmospheric Exploration by Solar Aircraft

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; LaMarre, C.; Colozza, A.

    2002-01-01

    The Venus atmosphere is a favorable environment for flying powered aircraft. The atmospheric pressure makes flight much easier than on planets such as Mars. Above the clouds, solar energy is available in abundance on Venus, and the slow rotation of Venus allows a solar airplane to be designed for flight within continuous sunlight. The atmosphere between 50 km and 75 km on Venus is one of the most dynamic and interesting regions of the planet. The challenge for a Venus aircraft will be the fierce winds and caustic atmosphere. In order to remain on the sunlit side of Venus, an exploration aircraft will have to be capable of sustained flight at or above the wind speed. An aircraft would be a powerful tool for exploration. By learning how Venus can be so similar to Earth, and yet so different, we will learn to better understand the climate and geological history of the Earth.

  7. Ion energetics in the Venus nightside ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Miller, K. L.; Spenner, K.; Whitten, R. C.

    1980-01-01

    Consideration is given to the energetics of the ion gas flowing across the terminator into the Venus nightside ionosphere. Expressions are derived for the transport time of the ion gas (through 1 radian in solar zenith angle), the heat transfer time from the hot electron gas to the ions of an amount equal to the ion thermal energy), and the time required for vertical heat conduction to remove the internal energy of the ion column above a reference altitude, and it is shown that the time constant for transport is an order of magnitude smaller than the electron heat transfer time and comparable to the conduction time, and thus the ion gas is not a vertical conductive steady state. The conversion of bulk flow ion kinetic energy into heat is suggested as the mechanism responsible for the maintenance of the nightside ion temperatures at their observed values. It is thus concluded that the flow of the ion gas is quasi-adiabatic, and that steady-state, vertical, one dimensional energy balance models must be used with caution in the Venus ionosphere.

  8. Ionospheric magnetic fields at Venus and Mars

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Zhang, T. L.; Woch, J.; Wei, Y.

    2014-04-01

    Mars Global Surveyor (MGS) and Venus Express(VEX) spacecraft have provided us a wealth of insitu observations of characteristics of induced magnetospheres of Mars and Venus at low altitudes during the periods of solar minimum. At such conditions the interplanetary magnetic field (IMF) penetrates deeply inside the ionosphere while the solar wind is terminated at higher altitudes. We present the measurements made by MGS and VEX in the ionospheres of both planets which reveal similar features of the magnetization. The arising magnetic field pattern occurs strongly asymmetrical with respect to the direction of the cross-flow component of the IMF revealing either a sudden straightening of the field lines with a release of the magnetic field stresses or a sudden rotation of the magnetic field vector with a reversal of the sign of the cross-flow component. Such an asymmetrical response is observed at altitudes where the motion of ions and electrons is decoupled and collisional effects become important for generation of the electric currents Asymmetry in the field topology significantly modifies a plasma transport to the night side.

  9. Venus - False Color Image of Alpha Regio

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan radar image shows Alpha Regio, a topographic upland approximately 1,300 kilometers (806 miles) across which is centered on 25 degrees south latitude, 4 degrees east longitude. In 1963 Alpha Regio was the first feature on Venus to be identified from Earth based radar. The radar bright area of Alpha Regio is characterized by multiple sets of intersecting trends of structural features such as ridges, troughs and flat floored fault valleys that together form a polygonal outline. Circular to oblong dark patches within the complex terrain are local topographic lows that are filled with smooth volcanic lava. Complex ridged terrains such as Alpha, formerly called 'tessera' in the Soviet Venera 15 and 16 radar missions and the Arecibo radar data, appear to be widespread and common surface expressions of Venusian tectonic processes. Directly south of the complex ridged terrain is a large ovoid shaped feature named Eve. The radar bright spot located centrally within Eve marks the location of the prime meridian of Venus. Magellan radar data reveals that relatively young lava flows emanate from Eve and extends into the southern margin of the ridged terrain at Alpha. The mosaic was produced by Eric de Jong and Myche McAuley in the JPL Multimission Image Processing Laboratory.

  10. Polarimetric study of Venus' cloud layers with SPICAV/VEx

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Marcq, E.; Montmessin, F.; Fedorova, A.; Stam, D.; Bertaux, J.-L.; Korablev, O.

    2014-04-01

    The study of Venus' cloud layers is important in order to understand the structure, radiative balance and dynamics of the Venusian atmosphere. Polarization measurements have given important constraints for the determination of the constituents of the clouds and haze. From ground based observations, Hansen and Hovenier[3], using a radiative transfer model with polarization, found that the main cloud layers between 50 and 70 km consist of r - 1 μm radius spherical droplets of a H2SO4-H2O solution. In the early 1980s, Kawabata[4] used the polarization data from the OCPP instrument on the spacecraft Pioneer Venus to constrain the properties of the haze. They found that the haze layer is composed of smaller particles r - 0.25 μm with similar refractive indices. Our work reproduces the method used by Hansen and Kawabata[3, 4]. We applied a radiative transfer model with polarization on the so far unexploited polarization data of the SPICAV-IR instrument on-board ESA's Venus Express. Our aim is to better constrain haze and cloud particles at the top of Venus's clouds, as well as their spatial and temporal variability.

  11. Ion transport in the upper ionospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Dubinin, E.; Nielsen, E.; Angsmann, A.; Woch, J.; Barabash, S.; Lundin, R.; Fedorov, A.

    2009-04-01

    The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question wether these fields can put the dense ionospheric plasma into motion. If so, the cross-terminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5km/s for O+ ions at Venus above 300km altitude at the terminator (Knudsen et al, GRL 1982). Since these observations could never be confirmed by other instruments they have been debated. We here report on new measurements of the cross-terminator ion flow by the ASPERA 3 and 4 experiments onboard Mars and Venus Express with support from the MARSIS radar experiment which confirm O+ flow speeds of around 6km/s with fluxes of 1.2 ṡ 109/cm2s (for Mars). We discuss the implication of these new observation for ion escape and possible extensions of the analysis to dayside observations which might allow us to infer the flow structure imposed by the induced magnetic field.

  12. Ion bulk flow in the ionospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Fraenz, M.; Dubinin, E.; Nielsen, E.; Woch, J. G.; Barabash, S.; Lundin, R. N.; Fedorov, A.

    2009-12-01

    The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question wether these fields can put the dense ionospheric plasma into motion. If so, the cross-terminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5km/s for O+ ions at Venus above 300km altitude at the terminator (Knudsen et al. 1980). Since these observations could never be confirmed by other instruments they have been debated. We here report on new measurements of the cross-terminator ion flow by the ASPERA 3 and 4 experiments onboard Mars and Venus Express with support from the MARSIS radar experiment which confirm O+ flow speeds of around 6km/s with fluxes of 1.2x10^9/cm^2s (for Mars). We discuss the implication of these new observation for ion escape and possible extensions of the analysis to dayside observations which might allow us to infer the flow structure imposed by the induced magnetic field.

  13. A survey of hot flow anomalies at Venus

    NASA Astrophysics Data System (ADS)

    Collinson, G. A.; Sibeck, D. G.; Masters, A.; Shane, N.; Zhang, T. L.; Fedorov, A.; Barabash, S.; Coates, A. J.; Moore, T. E.; Slavin, J. A.; Uritsky, V. M.; Boardsen, S.; Sarantos, M.

    2014-02-01

    We present the first survey of hot flow anomalies (HFAs) at the bow shock of Venus, expanding on our recent initial case study. A 3.06 sol (774 Earth day) survey of Venus Express magnetometer, ion spectrometer, and electron spectrometer data was undertaken in order to identify Cytherian HFAs. Seven events were discovered, corresponding to a statistical frequency ≈1.2±0.8 per day, approximately the same rate as at the Earth. All seven HFAs were centered on a discontinuity in the solar wind, with inward pointing motional electric fields on at least one side, and exhibited electron and ion perturbations consistent with heating. For one event the calculation of continuous electron moments is possible, revealing that electron temperature increased from ≈2×105 K to 8×105 K in the HFA core (comparable to terrestrial and Kronian HFA observations), and density increased from ≈1 cm-3 to ~2→2.5 cm-3 in the bounding compression regions. Cytherian HFAs were found to be physically smaller (0.4→1.7 Venus radii (RV)) than their terrestrial or Kronian counterparts, although are much larger when compared to the overall size of the system (≈130% of the subsolar bow shock distance), and occur very close (1.5→3.0RV) to the planet. Thus, we hypothesize that HFAs have a much more dominant role in the dynamics of the induced magnetosphere of Venus relative to the magnetospheres of magnetized planets.

  14. Pancakelike domes on Venus

    NASA Technical Reports Server (NTRS)

    Mckenzie, Dan; Ford, Peter G.; Liu, Fang; Pettengill, Gordon H.

    1992-01-01

    The shape of seven large domes on the plains of Venus, with volumes between 100 and 1000 cu km, is compared with that of an axisymmetric gravity current spreading over a rigid horizontal surface. Both the altimetric profiles and the horizontal projection of the line of intersection of domes on the SAR images agree well with the theoretical similarity solution for a newtonian fluid, but not with the shape calculated for a rigid-plastic rheology, nor with that for a static model with a strong skin. As a viscous current spreads, it generates an isotropic strain rate tensor whose magnitude is independent of radius. Such a flow can account for the randomly oriented cracks that are uniformly distributed on the surface of the domes. The stress induced by the flow in the plains material below is obtained, and is probably large enough to produce the short radial cracks in the surface of the plains beyond the domes. The viscosity of the domes can be estimated from their thermal time constants if spreading is possible only when the fluid is hot, and lies between 10(exp 14) and 10(exp 17) Pa s. Laboratory experiments show that such viscosities correspond to temperatures of 610 - 690 C in dry rhyolitic magmas. These temperatures agree with laboratory measurements of the solidus temperature of wet rhyolite. These results show that the development of the domes can be understood using simple fluid dynamical ideas, and that the magmas involved can be produced by wet melting at depths below 10 km, followed by eruption and degassing.

  15. Venus - Ovda Regio

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This image covers much of Ovda Regio, which forms the western part of Aphrodite Terra. It covers an area about 2,250 kilometers (1,386 miles) wide by 1,300 kilometers (800 miles) north to south, and ranges in latitude from 8 degrees north to 12 degrees south and in longitude from 62 degrees east to 90 degrees east. Ovda Regio is a highland region that rises over 4 kilometers (2.5 miles) above the surrounding plain. Magellan images show a complex surface, with several generations of structures. A pervasive fabric of irregular broad domes and ridges and associated curvilinear valleys was flooded by lava, then fractured. The circular feature surrounded by dark lava flows in the western part of the image is a caldera, or large volcanic collapse pit. Late-stage extension created long graben, or fault-bounded valleys, is best seen near the center of the image. The northern boundary of Ovda Regio is a steep, curvilinear mountain belt made up of long, narrow, rounded ridges. These ridges are similar in appearance to folded mountain belts on Earth. Several impact craters, such as the circular features on the western margin of the image, are scattered across the area. The bright area in the southeast part of the image indicates the presence of a radar-reflective mineral such as pyrite. Most of the highland areas on Venus display a similar bright signal. Each pixel of this image covers an area on the surface 675 meters (2,215 feet) across, representing a 9- times reduction in resolution compared to full-scale resolution data.

  16. Venus - Lakshmi Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image is centered at 55 degrees north latitude, 348.5 degrees longitude, in the eastern Lakshmi region of Venus. This image, which is of an area 300 kilometers (180 miles) in width and 230 kilometers (138 miles) in length, is a mosaic of orbits 458 through 484. The image shows a relatively flat plains region composed of many lava flows. The dark flows mostly likely represent smooth lava flows similar to 'pahoehoe' flows on Earth while the brighter lava flows are rougher flows similar to 'aa' flows on Earth. (The terms 'pahoehoe' and 'aa' refer to textures of lava with pahoehoe a smooth or ropey surface, and aa a rough, clinkery texture). The rougher flows are brighter because the rough surface returns more energy to the radar than the smooth flows. Situated on top of the lava flows are three dark splotches. Because of the thick Venusian atmosphere, the small impactors break up before they reached the surface. Only the fragments from the broken up impactor are deposited on the surface and these fragments produce the dark splotches in this image. The splotch at the far right (east) has a crater centered in it, indicating that the impactor was not completely destroyed during its journey through the atmosphere. The dark splotches in the center and to the far left in this image each represent an impactor that was broken up into small fragments that did not penetrate the surface to produce a crater. The dark splotch at the left has been modified by the wind. A southwest northeast wind flow has moved some of the debris making up the splotch to the northeast where it has piled up against some small ridges.

  17. Venus Phoebe Regio

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Magellan radar image is of part of the Phoebe region of Venus. It is a mosaic of parts of revolutions 146 and 147 acquired in the first radar test on Aug. 16, 1990. The area in the image is located at 291 degrees east longitude, 20 degrees south latitude. The image shows an area 30 kilometers (19.6 miles) wide and 76 km (47 miles) long. The image shows a broad, up to 17 km (11 miles) wide, radar bright, lobate lava flow that extends 25 km (15.5 miles) northwest across the image strip. The volcanic flow appears bright in this image because it is rough on a scale of a few centimeters to a few meters (a few inches to a few yards), much like lava flows on Earth that are called by geologists 'aa' (ah-ah), a Hawaiian word that probably mimics the sound the ancients uttered while running barefoot over the rough, jagged surface. It is located near the southeast flank of Phoebe Regio and has flowed into local topographic lows. This lava flow has flooded the darker plains and appears to have buried north-south trending lineaments that cut the darker material. No obvious volcanic sources area visible in this image. The flow has a markedly uniform surface texture in contrast to the more mottled texture of adjacent deposits; this suggests it may represent the most recent in a series of eruptions that subsequently have been obscured. To the north and south are northwest trending graben crustal depression, or fault, areas that may belong to the system of fractures associated with Phoebe Regio.

  18. Energetic Neutral Atom Spectra in the 0.2-3.0 keV from a Residual Source Across the Sky Obtained by the Neutral Particle Detector on board Venus Express

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus; Roelof, Edmond; Wurz, Peter; Decker, Robert; Barabash, Stas; Bazell, David; Sotirelis, Thomas

    We have surveyed the sky for residual energetic neutral atom (ENA) signals in the energy range of 0.2-3.0 keV [Brandt et al., AIP Proceedings, 2009]. Approximately three years of data obtained by the Neutral Particle Detector (NPD) on board Venus Express (VEX) from May 2006 through August 2009 have been analyzed. After applying strict viewing criteria to minimize all known signals and subtracting the UV background from the Milky Way, we find a residual energy spectral shape with a ledge/bump at around 0.5 keV and a break in the spectral slope at about 1.0 keV, reiminiscent of the spectral shape obtained in reverse shocks. The ledge/bump at about 0.5 keV appears consistent with twice the plasma flow velocity obtained by the V1 measurements in the inner HS. When the ENA spectrum is divided by the energy dependent charge exchange cross section its slope above 1 keV has a spectral power-law index of 1.5, with some variations across the sky. In order to better understand the spectral shape over an extended energy range we compare the spectra obtained by VEX/NPD with the ones reported by the Interstellar Boundary Explorer (IBEX) [Funsten et al., Science, 2009], by the Ion Neutral Camera (INCA) on board Cassini [Krimigis et al., Science, 2009]and with those measured in-situ in the inner heliosheath (HS) by the Low-Energy Charged Particle (LECP) instrument (>40 keV) on board Voyager-1 (V1).

  19. Phlogopite Decomposition, Water, and Venus

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Fegley, B., Jr.

    2005-01-01

    Venus is a hot and dry planet with a surface temperature of 660 to 740 K and 30 parts per million by volume (ppmv) water vapor in its lower atmosphere. In contrast Earth has an average surface temperature of 288 K and 1-4% water vapor in its troposphere. The hot and dry conditions on Venus led many to speculate that hydrous minerals on the surface of Venus would not be there today even though they might have formed in a potentially wetter past. Thermodynamic calculations predict that many hydrous minerals are unstable under current Venusian conditions. Thermodynamics predicts whether a particular mineral is stable or not, but we need experimental data on the decomposition rate of hydrous minerals to determine if they survive on Venus today. Previously, we determined the decomposition rate of the amphibole tremolite, and found that it could exist for billions of years at current surface conditions. Here, we present our initial results on the decomposition of phlogopite mica, another common hydrous mineral on Earth.

  20. Venus and Mercury as Planets

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  1. The Role of Chemically Depleted Mantle in the Formation of Coronae on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.

    1995-01-01

    Without extensive plate subduction to act as a recycling mechanism, a thick layer of buoyant, depleted mantle material may accumulate beneath the thermal lithosphere on Venus due to the pressure-release melting that occurs during crustal formation. Such a layer could be the key factor that allows coronae to form on Venus but not on Earth. Coronae are roughly circular volcano-tectonic features that are interpreted as a manifestation of small-scale upwelling and are unique to Venus. The topographic expression of coronae is highly variable, ranging from domes to plateaus, with or without moats or single or multiple outer rises. In addition to why coronae from on Venus but not on Earth, two outstanding questions in the study of coronae are how the full range of topographic profiles are produced and the relationship between topography and the annulus of fractures that characterize coronae.

  2. Correlation studies of Pioneer Venus imagery obtained from PV experiments with near IR imagery obtained from ground-based observations during Venus inferior conjunction

    NASA Technical Reports Server (NTRS)

    Ragent, Boris

    1993-01-01

    The purpose of this study is to attempt to find correlations between data taken by experiments aboard the Pioneer-Venus Orbiter (PVO) and those obtained from Earth-based near-infrared (NIR) measurements of Venus during periods near inferior conjunction. Since the NIR measurements have been found to provide data on the middle atmosphere cloud morphology and motion, it is assumed that any correlations will also indicate that the PVO experiments are also documenting cloud behavior. If such correlations are found, then a further task is to attempt to study the long term behavior of the cloud features implied by the correlations. Many PVO data have been obtained over an extended period extending from 1978 until the PV demise in 1992. There exists a long, somewhat ill-conditioned time series of data that may contain valuable information on the long time, as well as short term behavior of the clouds, and, derivatively from cloud motion, atmospheric dynamics and wave activity in the Venus atmosphere. For example, determination of the zonal velocities of any OCPP (Cloud Photopolarimeter) 0.935 micron features could then be used for comparisons with data from other sources to attempt to fix the altitude region in which such features existed. A further task of this study is to attempt to correlate any features found in simultaneously obtained data, for example, the OCPP 0.365 and 0.935 micron data. The existence of such correlations may imply that data was obtained in overlapping altitude regions of the atmosphere.

  3. Potential vorticity of the south polar vortex of Venus

    NASA Astrophysics Data System (ADS)

    Garate-Lopez, I.; Hueso, R.; Sánchez-Lavega, A.; García Muñoz, A.

    2016-04-01

    Venus' atmosphere shows highly variable warm vortices over both of the planet's poles. The nature of the mechanism behind their formation and properties is still unknown. Potential vorticity is a conserved quantity when advective processes dominate over friction and diabatic heating and is a quantity frequently used to model balanced flows. As a step toward understanding the vortices' dynamics, we present maps of Ertel's potential vorticity (EPV) at Venus' south polar region. We analyze three configurations of the south polar vortex at the upper cloud level (P ~ 240 mbar; z ~ 58 km), based on our previous analyses of cloud motions and thermal structure from data acquired by the Visual and InfraRed Thermal Imaging Spectrometer instrument on board Venus Express. Additionally, we tentatively estimate EPV at the lower cloud level (P ~ 2200 mbar; z ~ 43 km), based on our previous wind measurements and on static stability data from Pioneer Venus and the Venus International Reference Atmosphere (VIRA) model. Values of EPV are on the order of 10-6 and 10-8 K m2 kg-1 s-1 at the upper and lower cloud levels, respectively, being 3 times larger than the estimated errors. The morphology observed in EPV maps is mainly determined by the structures of the vertical component of the relative vorticity. This is in contrast to the vortex's morphology observed in 3.8 or 5 µm images which are related to the thermal structure of the atmosphere at the cloud top. Some of the EPV maps point to a weak ringed structure in the upper cloud, while a more homogenous EPV field is found in the lower cloud.

  4. Transits of Venus in Public Education and Contemporary Research

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.

    2011-10-01

    Transits of Venus are among the rarest predictable astronomical event that humans can enjoy, and the 2012 transit will be visible by almost all the people on Earth. It is our job as educators to bring out the thrill of being able to see the tiny dot of Venus silhouetted against the solar disk even with just a simple eye-protection filter. My Website at http://www.transitofvenus.info brings together not only historical information about the five previous transits of Venus that were observed through the 20th century--1639, 1761, 1769, 1874, and 1882--but also the scientific work carried out at the 2004 transit and at recent transits of Mercury. Based on space observations of the 1999 transit of Mercury with NASA's Transition Region and Coronal Explorer (TRACE), Glenn Schneider and I provided proof of the contemporary explanation of the black-drop effect as an amalgam of instrumental point-spread and solar limb-darkening [1]. Based on observations of the changes in the total solar irradiance during the transit, we provided an analysis of this solar-system analogue to exoplanet transits [2]. High-resolution (0.5 arcsec pixels) observations of ingress and egress with TRACE during the 2004 transit provided information about the visibility of Venus's atmosphere through its refraction of sunlight, interpreted with Venus Express observations [3]. We anticipate observing the 2012 transit with groundbased facilities of the University of Hawaii at Haleakala, and of the National Solar Observatory at Sacramento Peak, and Kitt Peak, as well as with NASA and JAXA spacecraft, including Solar Dynamics Observatory, ACRIMsat, and Hinode. The Program Group on Public Education on the Occasions of Eclipses and Transits of Commission 46 on Education and Development of the International Astronomical Union, which I chair, looks forward to participating in Education and Public Outreach efforts related to the 2012 transit.

  5. Volcanism of Venus: Insights from the VMC data analysis

    NASA Astrophysics Data System (ADS)

    Bazilevskiy, Alexander; Ignatiev, Nikolay; Markiewicz, Wojciech; Head, James; Titov, Dmitrij; Shalygin, Eugene V.

    The analysis of the Venera 15/16 and Magellan data led to an understanding of Venus geology which may be described as a time sequence of material and structural units and features [e.g., (Basilevsky and Head, 1995, 2000; Ivanov and Head, 2011]. Dominant among them are various volcanic plains and volcanic constructs whose morphologies indicate a low viscosity for the lavas composing them suggesting mostly basaltic composition [e.g., Head et al., 1992; Crumpler et al., 1997]. This is supported by the analyses of surface composition at the Venera-Vega sites [e.g., Surkov, 1986]. However, some volcanic features of Venus could be composed of nonbasaltic lavas [e.g., Pavri et al., 1992; Crumpler et al., 1997; Ivanov and Head, 1999] but this suggestion needs more study. Based on the analysis of the characteristics of impact crater populations on Venus [e.g., McKinnon et al., 1997] as well as on the analysis of the unit superposition/embayment relations [Basilevsky and Head, 1996, 2000, 2006; Collins et al., 1999] it was shown that the widespread regional volcanic plains formed close to the beginning of morphologically visible history of this planet that is 0.5-1 b.y. ago. Later in time, volcanic activity on Venus continued in different areas at different times, including very close to the present. No conclusive evidence of ongoing volcanic activity has yet been found, although some indications of very recent volcanic events have been published [Bondarenko et al., 2010; Smrekar et al., 2010]. Analysis of the data taken by the Venus Monitoring Camera (VMC) onboard of Venus Express, which has two NIR, one visible and one UV channels, allowed to revealed some promising results on the questions of nonbasaltic volcanism [e.g., Basilevsky et al., 2012] and the ongoing volcanic activity on Venus [e.g., Shalygin et al., 2014]. The VMC results presented in the context of characteristics of Venusi volcanism will be the main emphasis of the talk.

  6. The dynamics of the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Miller, K. L.

    1988-01-01

    Data from the Pioneer-Venus orbiter has demonstrated the importance of understanding ion dynamics in the Venus ionosphere. The analysis of the data has shown that during solar maximum the topside Venus ionosphere in the dark hemisphere is generated almost entirely on the dayside of the planet during solar maximum, and flows with supersonic velocities across the terminator into the nightside. The flow field in the ionosphere is mainly axially-symmetric about the sun-Venus axis, as are most measured ionospheric quantities. The primary data base used consisted of the ion velocity measurements made by the RPA during three years that periapsis of the orbiter was maintained in the Venus ionosphere. Examples of ion velocities were published and modeled. This research examined the planetary flow patterns measured in the Venus ionosphere, and the physical implications of departures from the mean flow.

  7. Abstracts for the Venus Geoscience Tutorial and Venus Geologic Mapping Workshop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Abstracts and tutorial are presented from the workshop. Representative titles are: Geology of Southern Guinevere Planitia, Venus, Based on Analyses of Goldstone Radar Data; Tessera Terrain: Characteristics and Models of Origin; Venus Volcanism; Rate Estimates from Laboratory Studies of Sulfur Gas-Solid Reactions; and A Morphologic Study of Venus Ridge Belts.

  8. Abstracts for the venus geoscience tutorial and venus geologic mapping workshop

    SciTech Connect

    Not Available

    1989-01-01

    Abstracts and tutorial are presented from the workshop. Representative titles are: Geology of Southern Guinevere Planitia, Venus, Based on Analyses of Goldstone Radar Data; Tessera Terrain: Characteristics and Models of Origin; Venus Volcanism; Rate Estimates from Laboratory Studies of Sulfur Gas-Solid Reactions; and A Morphologic Study of Venus Ridge Belts.

  9. Future exploration of Venus (post-Pioneer Venus 1978)

    NASA Technical Reports Server (NTRS)

    Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.

    1976-01-01

    A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.

  10. BOOK REVIEW: June 8, 2004: Venus in Transit

    NASA Astrophysics Data System (ADS)

    Maor, Eli

    2000-09-01

    A transit of Venus is a relatively rare astronomical event in which the silhouette of Venus is seen to move across the face of the Sun. The phenomenon typically lasts several hours, during which Venus is seen as a small dot against the half-degree angular diameter of the solar disc. The last transit of Venus occurred in 1882; the next will be 8 June 2004. Such transits were once of great importance in astronomy. By observing a transit simultaneously from well separated points on the Earth's surface, astronomers were able to measure, with some degree of accuracy, the crucially important separation of the Earth and the Sun. Knowing this enabled them to convert the relative spacings of the planets indicated by Kepler's laws into absolute interplanetary distances expressed in miles or kilometres. Eli Maor's book presents the general reader with a full account of Venusian transits that covers the history of their observation as well as their significance and the reasons for their rarity. The book is a light and enjoyable read that opens well with an imaginative description of observing the 2004 transit from the hills outside Jerusalem. Following an account of Kepler's prediction of a transit of Mercury in 1631 and its observation by Gassendi, the book moves on to describe the transit of Venus in 1639, giving particular emphasis to the prescient work of Jeremiah Horrocks, the extraordinary young English curate and astronomer who died just two years later at the age of 21. The story, however, really takes off with Edmond Halley's realization, in 1677, that transits of Venus might provide the key to determining distances within the solar system. The details of Halley's method are confined to an appendix, but the central chapters of the book detail the increasingly elaborate efforts that astronomers made to observe transits of Venus up to the time of the 1882 transit, when, due to the impact of new photographic methods, interest in transit observations was waning. By that

  11. Mid-day naked-eye Venus

    NASA Astrophysics Data System (ADS)

    Sultan, A. H.

    2004-10-01

    It is generally believed that Venus may be seen with the naked eye in daylight at any time of the day. However, I could not actually find any documents indicating that Venus had been seen in the middle of the day! We now wish to correct that omission: my 4th-year students and I, on Wednesday 2004 April 28, succeeded in observing Venus at noon with the naked eye. It happened in Sana'a the capital city of Yemen.

  12. Return to Venus of Japanese Venus Orbiter AKATSUKI

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Ishii, N.; Abe, T.; Imamura, T.; Yamazaki, A.; Satoh, T.; Suzuki, M.; Ueno, M.; Ohtsuki, S.; Yamada, M.; Ogohara, K.; Uemizu, K.; Hirose, C.; Kawakatsu, Y.; Watanabe, S.; Takahashi, Y.; Iwagami, N.; Taguchi, M.

    2012-12-01

    Japanese Venus Climate Orbiter 'AKATSUKI' (PLANET-C) was successfully launched at 06:58:22JST on May 21, by H-IIA F17. The malfunction, which happened during the Venus Orbit Insertion (VOI) on 7 Dec, 2010 is as follows. Orbital maneuver engine (OME) was fired 08:49 JST on Dec. 7. 1min. after firing the spacecraft went into the occultation region and we had no telemetry, but we expected to continuous firing for 12min. Recording on the spacecraft told us later that, unfortunately the firing continued just 152sec. and stopped. The reason of the malfunction of the OME was the blocking of check valve on the gas pressure line to push the fuel to the engine. We failed to make the spacecraft the Venus orbiter, and it is rotating the sun with the orbital period of 203 days. Most of the fuel still remains, but the OME was found to be broken. We decided to use only RCS for orbit maneuver and 3 minor maneuvers in November 2012 were successfully done so that AKATSUKI will meet Venus in late 2015. We are considering several scenarios only using RCS for VOI. In the presentation we will show the possible orbits and how we put the spacecraft into those orbits. They have higher apoapsis than we expected in the initial design, but they are still westward and equatorial that is ideal to reveal the mechanism of the super-rotation of the atmosphere, and we think we will be able to achieve the scientific goals which we have been proposing.

  13. Mars is close to venus--female reproductive proteins are expressed in the fat body and reproductive tract of honey bee (Apis mellifera L.) drones.

    PubMed

    Colonello-Frattini, Nínive Aguiar; Guidugli-Lazzarini, Karina Rosa; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2010-11-01

    Vitellogenin (Vg) and lipophorin (Lp) are lipoproteins which play important roles in female reproductive physiology of insects. Both are actively taken up by growing oocytes and especially Vg and its receptor are considered as female-specifically expressed. The finding that the fat body of in honey bee (Apis mellifera) drones synthesizes Vg and is present in hemolymph has long been viewed as a curiosity. The recent paradigm change concerning the role played by Vg in honey bee life history, especially social division of labor, has now led us to investigate whether a physiological constellation similar to that seen in female reproduction may also be represented in the male sex. By means of Western blot analysis we could show that both Vg and Lp are present in the reproductive tract of adult drones, including the accessory (mucus) glands, but apparently are not secreted. Furthermore, we analyzed the transcript levels of the genes encoding these proteins (vg and lp), as well as their putative receptors (Amvgr and Amlpr) in fat body and accessory glands. Whereas lp, vg and Amlpr transcript levels decreased with age in both tissues, Amvgr mRNA levels increased with age in fat body. To our knowledge this is the first report that vitellogenin and its receptor are co-expressed in the reproductive system of a male insect. We interpret these findings as a cross-sexual transfer of a social physiological trait, associated with the rewiring of the juvenile hormone/vitellogenin circuitry that occurred in the female sex of honey bees.

  14. Mars is close to venus--female reproductive proteins are expressed in the fat body and reproductive tract of honey bee (Apis mellifera L.) drones.

    PubMed

    Colonello-Frattini, Nínive Aguiar; Guidugli-Lazzarini, Karina Rosa; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2010-11-01

    Vitellogenin (Vg) and lipophorin (Lp) are lipoproteins which play important roles in female reproductive physiology of insects. Both are actively taken up by growing oocytes and especially Vg and its receptor are considered as female-specifically expressed. The finding that the fat body of in honey bee (Apis mellifera) drones synthesizes Vg and is present in hemolymph has long been viewed as a curiosity. The recent paradigm change concerning the role played by Vg in honey bee life history, especially social division of labor, has now led us to investigate whether a physiological constellation similar to that seen in female reproduction may also be represented in the male sex. By means of Western blot analysis we could show that both Vg and Lp are present in the reproductive tract of adult drones, including the accessory (mucus) glands, but apparently are not secreted. Furthermore, we analyzed the transcript levels of the genes encoding these proteins (vg and lp), as well as their putative receptors (Amvgr and Amlpr) in fat body and accessory glands. Whereas lp, vg and Amlpr transcript levels decreased with age in both tissues, Amvgr mRNA levels increased with age in fat body. To our knowledge this is the first report that vitellogenin and its receptor are co-expressed in the reproductive system of a male insect. We interpret these findings as a cross-sexual transfer of a social physiological trait, associated with the rewiring of the juvenile hormone/vitellogenin circuitry that occurred in the female sex of honey bees. PMID:20600084

  15. Venus Chasmata: A Lithospheric Stretching Model

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Head, J. W.

    1985-01-01

    An outstanding problem for Venus is the characterization of its style of global tectonics, an issue intimately related to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. A lithospheric stretching model was developed to explain the topographic characteristics of Venus chasmata and to constrain the physical properties of the Venus crust and lithosphere.

  16. Predictions for the 2004 Transit of Venus

    NASA Astrophysics Data System (ADS)

    Espenak, F.; Anderson, J.

    2003-12-01

    On 2004 June 08, Venus will transit the Sun's disk for the first time in over a century. This rarest of planetary alignments has only occurred six times since the invention of the telescope (1631, 1639, 1761, 1769, 1874 and 1882). The predicted geocentric track of Venus across the Sun and a map showing the regions of geographic visibility will be presented along with contact times for several hundred cities around the world. Finally, a preview of the 2012 June 06 transit of Venus will be given. Updates and additional predictions will be posted at: http://sunearth.gsfc.nasa.gov/eclipse/transit/venus04.html

  17. Mariner Venus/Mercury 1973 navigation strategy

    NASA Technical Reports Server (NTRS)

    Mckinley, E. L.; Jones, J. B.; Bantell, M. H.

    1973-01-01

    This paper presents the navigational aspects of the Mariner Venus/Mercury 1973 mission. Principal emphasis is on the development of the trajectory correction strategy, propellant costs, and delivery accuracies at Venus and Mercury. Key error sources and mission constraints are discussed. Of particular interest are the statistics of the first, post-Venus, maneuver which must correct for the magnification of errors in the Venus encounter. Finally, although not a primary objective of the mission, the analysis is extended to include a second Mercury encounter.

  18. Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells.

    PubMed

    Khoa, Le Tran Phuc; Azami, Takuya; Tsukiyama, Tomoyuki; Matsushita, Jun; Tsukiyama-Fujii, Setsuko; Takahashi, Satoru; Ema, Masatsugu

    2016-01-01

    Fibroblast growth factor 5 (Fgf5) has been widely used as a marker for the epiblast in the postimplantation embryo and epiblast stem cells (mEpiSCs) in the mouse, making it valuable for study of differentiation of various tissues and epiblast cells in vivo and in vitro. Here, we report for the first time the generation of Fgf5-P2A-Venus BAC transgenic (Tg) mice and show that the BAC Tg can recapitulate endogenous Fgf5 expression in epiblast and visceral endodermal cells of E6.5 and 7.5 embryos. We also show that Fgf5-P2A-Venus BAC Tg mEpiSCs in the undifferentiated state expressed abundant Venus, and upon reprogramming into naïve state, Venus was suppressed. Furthermore, while most Tg mEpiSCs expressed Venus abundantly, surprisingly the Tg mEpiSCs contained a minor subpopulation of Venus-negative cells that were capable of conversion to Venus-positive cells, indicating that even Fgf5 expression shows dynamic heterogeneity in mEpiSCs. Taken together, Fgf5-P2A-Venus BAC Tg mice and mEpiSCs generated in this study will be useful for developmental biology as well as stem cell biology research. PMID:27409080

  19. Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells

    PubMed Central

    Tsukiyama, Tomoyuki; Matsushita, Jun; Tsukiyama-Fujii, Setsuko; Takahashi, Satoru; Ema, Masatsugu

    2016-01-01

    Fibroblast growth factor 5 (Fgf5) has been widely used as a marker for the epiblast in the postimplantation embryo and epiblast stem cells (mEpiSCs) in the mouse, making it valuable for study of differentiation of various tissues and epiblast cells in vivo and in vitro. Here, we report for the first time the generation of Fgf5-P2A-Venus BAC transgenic (Tg) mice and show that the BAC Tg can recapitulate endogenous Fgf5 expression in epiblast and visceral endodermal cells of E6.5 and 7.5 embryos. We also show that Fgf5-P2A-Venus BAC Tg mEpiSCs in the undifferentiated state expressed abundant Venus, and upon reprogramming into naïve state, Venus was suppressed. Furthermore, while most Tg mEpiSCs expressed Venus abundantly, surprisingly the Tg mEpiSCs contained a minor subpopulation of Venus-negative cells that were capable of conversion to Venus-positive cells, indicating that even Fgf5 expression shows dynamic heterogeneity in mEpiSCs. Taken together, Fgf5-P2A-Venus BAC Tg mice and mEpiSCs generated in this study will be useful for developmental biology as well as stem cell biology research. PMID:27409080

  20. Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells.

    PubMed

    Khoa, Le Tran Phuc; Azami, Takuya; Tsukiyama, Tomoyuki; Matsushita, Jun; Tsukiyama-Fujii, Setsuko; Takahashi, Satoru; Ema, Masatsugu

    2016-01-01

    Fibroblast growth factor 5 (Fgf5) has been widely used as a marker for the epiblast in the postimplantation embryo and epiblast stem cells (mEpiSCs) in the mouse, making it valuable for study of differentiation of various tissues and epiblast cells in vivo and in vitro. Here, we report for the first time the generation of Fgf5-P2A-Venus BAC transgenic (Tg) mice and show that the BAC Tg can recapitulate endogenous Fgf5 expression in epiblast and visceral endodermal cells of E6.5 and 7.5 embryos. We also show that Fgf5-P2A-Venus BAC Tg mEpiSCs in the undifferentiated state expressed abundant Venus, and upon reprogramming into naïve state, Venus was suppressed. Furthermore, while most Tg mEpiSCs expressed Venus abundantly, surprisingly the Tg mEpiSCs contained a minor subpopulation of Venus-negative cells that were capable of conversion to Venus-positive cells, indicating that even Fgf5 expression shows dynamic heterogeneity in mEpiSCs. Taken together, Fgf5-P2A-Venus BAC Tg mice and mEpiSCs generated in this study will be useful for developmental biology as well as stem cell biology research.

  1. Towards a Self Consistent Model of the Thermal Structure of the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay; Vandaele, Ann C.; Wilson, Colin

    Nearly three decades ago, an international effort led to the adoption of the Venus International Reference Atmosphere (VIRA) was published in 1985 after the significant data returned by the Pioneer Venus Orbiter and Probes and the earlier Venera missions (Kliore et al., 1985). The vertical thermal structure is one component of the reference model which relied primarily on the three Pioneer Venus Small Probes, the Large Probe profiles as well as several hundred retrieved temperature profiles from the Pioneer Venus Orbiter radio occultation data collected during 1978 - 1982. Since then a huge amount of thermal structure data has been obtained from multiple instruments on ESA’s Venus Express (VEX) orbiter mission. The VEX data come from retrieval of temperature profiles from SPICAV/SOIR stellar/solar occultations, VeRa radio occultations and from the passive remote sensing by the VIRTIS instrument. The results of these three experiments vary in their intrinsic properties - altitude coverage, spatial and temporal sampling and resolution and accuracy An international team has been formed with support from the International Space Studies Institute (Bern, Switzerland) to consider the observations of the Venus atmospheric structure obtained since the data used for the COSPAR Venus International Reference Atmosphere (Kliore et al., 1985). We report on the progress made by the comparison of the newer data with VIRA model and also between different experiments where there is overlap. Kliore, A.J., V.I. Moroz, and G.M. Keating, Eds. 1985, VIRA: Venus International Reference Atmosphere, Advances in Space Research, Volume 5, Number 11, 307 pages.

  2. The SPICAV-SOIR instrument probing the atmosphere of Venus: an overview

    NASA Astrophysics Data System (ADS)

    Trompet, Loïc; Mahieux, Arnaud; Wilquet, Valérie; Robert, Séverine; Chamberlain, Sarah; Thomas, Ian; Carine Vandaele, Ann; Bertaux, Jean-Loup

    2016-04-01

    The Solar Occultation in the Infrared (SOIR) channel mounted on top of the SPICAV instrument of the ESA's Venus Express mission has observed the atmosphere of Venus during more than eight years. This IR spectrometer (2.2-4.3 μm) with a high spectral resolution (0.12 cm-1) combined an echelle grating with an acousto-optic tunable filter for order selection. SOIR performed more than 1500 solar occultation measurements leading to about two millions spectra. The Royal Belgian Institute for Space Aeronomy (BIRA-IASB) was in charge of SOIR's development and operations as well as its data pipeline. BIRA-IASB carried out several studies on the composition of Venus mesosphere and lower thermosphere: carbon dioxide, carbon monoxide, hydrogen halide (HF, HCl, DF, DCl), sulfur dioxide, water (H2O, HDO) as well as sulphuric acid aerosols in the upper haze of Venus. Density and temperature profiles of the upper atmosphere of Venus (60 km to 170 km) at the terminator have been retrieved from SOIR's spectra using different assumptions, wherein the hydrostatic equilibrium and the local thermodynamical equilibrium in the radiative transfer calculations. These results allow us to produce an Atmospheric model of Venus called Venus Atmosphere from SOIR measurements at the Terminator (VAST). Data obtained by SOIR will also contribute to update the Venus International Reference Atmosphere (VIRA). Recently, the treatment of the raw data to transmittance has been optimized, and a new dataset of spectra has been produced. All raw spectra (PSA level 2) as well as calibrated spectra (PSA level 3) have been delivered to ESA's Planetary Science Archive (PDSPSA). Consequently the re-analysis of all spectra has been undergone. We will briefly present the improvements implemented in the data pipeline. We will also show a compilation of results obtained by the instrument considering the complete mission duration.

  3. The magnetic barrier at Venus

    NASA Technical Reports Server (NTRS)

    Zhang, T. L.; Luhmann, J. G.; Russell, C. T.

    1991-01-01

    Altitude profiles of the Venus magnetic barrier are derived here from a statistical analysis of the Pioneer Venus Orbiter magnetometer data. The outer boundary of the magnetic barrier is then compared with the obstacle expected from gasdynamic models of the bow shock, and the stagnation pressure is compared with that expected from gasdynamic theory. The magnetic barrier is strongest at the subsolar point and weakens as expected with increasing solar zenith angle. The existence of a north-south asymmetry in the barrier strength is also demonstrated. The magnetic barrier is about 200 km thick at the subsolar point and 800 km thick at the terminator. The magnetic barrier transfers most of the solar wind dynamic pressure to the ionosphere via the enhanced magnetic pressure. The convected field gasdynamic model predicts the correct bow shock location if the magnetic barrier is treated as the obstacle.

  4. How the Venus flytrap snaps.

    PubMed

    Forterre, Yoël; Skotheim, Jan M; Dumais, Jacques; Mahadevan, L

    2005-01-27

    The rapid closure of the Venus flytrap (Dionaea muscipula) leaf in about 100 ms is one of the fastest movements in the plant kingdom. This led Darwin to describe the plant as "one of the most wonderful in the world". The trap closure is initiated by the mechanical stimulation of trigger hairs. Previous studies have focused on the biochemical response of the trigger hairs to stimuli and quantified the propagation of action potentials in the leaves. Here we complement these studies by considering the post-stimulation mechanical aspects of Venus flytrap closure. Using high-speed video imaging, non-invasive microscopy techniques and a simple theoretical model, we show that the fast closure of the trap results from a snap-buckling instability, the onset of which is controlled actively by the plant. Our study identifies an ingenious solution to scaling up movements in non-muscular engines and provides a general framework for understanding nastic motion in plants.

  5. Venus transits - A French view

    NASA Astrophysics Data System (ADS)

    Débarbat, Suzanne

    2005-04-01

    After a careful study of Mars observations obtained by Tycho Brahé (1546-1601), Kepler (1571-1630) discovered the now-called Kepler's third law. In 1627 he published his famous Tabulae Rudolphinae, a homage to his protector Rudolph II (1552-1612), tables (Kepler 1609, 1627) from which he predicted Mercury and Venus transits over the Sun. In 1629 Kepler published his Admonitio ad Astronomos Advertisement to Astronomers (Kepler 1630), Avertissement aux Astronomes in French Au sujet de phénomènes rares et étonnants de l'an 1631: l'incursion de Vénus et de Mercure sur le Soleil. This was the beginning of the interest of French astronomers, among many others, in such transits, mostly for Venus, the subject of this paper in which dates are given in the Gregorian calendar.

  6. Venus - Lavinia Region Impact Craters

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Three large meteorite impact craters, with diameters that range from 37 to 50 kilometers (23 to 31 miles), are seen in this image of the Lavinia region of Venus. The image is centered at 27 degrees south latitude and 339 degrees east longitude (longitude on Venus is measured from 0 degrees to 360 degrees east), and covers an area 550 kilometers (342 miles) wide by about 500 kilometers (311 miles) long. Situated in a region of fractured plains, the craters show many features typical of meteorite impact craters, including rough (bright) material around the rim, terraced inner walls and central peaks. Numerous domes, probably caused by volcanic activity, are seen in the southeastern corner of the mosaic. The domes range in diameter from 1 to 12 kilometers (0.6 to 7 miles). Some of the domes have central pits that are typical of some types of volcanoes. North is at the top of the image.

  7. Signs of Life on Venus

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L.

    2012-04-01

    The search for "habitable zones" in extrasolar planetary systems is based on the premise of "normal" physical conditions in a habitable zone, i.e. pressure, temperature range, and atmospheric composition similar to those on the Earth. However, one should not exclude completely the possibility of the existence of life at relatively high temperatures, despite the fact that at the first glance it seems impossible. The planet Venus with its dense, hot (735 K), oxigenless CO2 - atmosphere and high 92 bar-pressure at the surface could be the natural laboratory for the studies of this type. Amid exoplanets, celestial bodies with the physical conditions similar to the Venusian can be met. The only existing data of actual close-in observations of Venus' surface are the results of a series of missions of the soviet VENERA landers which took place the 1970's and 80's in the atmosphere and on the surface of Venus. For 36 and 29 years since these missions, respectively, I repeatedly returned to the obtained images of the Venus' surface in order to reveal on them any unusual objects observed in the real conditions of Venus. The new analysis of the Venus' panoramas was based on the search of unusual elements in two ways. Since the efficiency of the VENERA landers maintained for a long time they produced a large number of primary television panoramas during the lander's work. Thus, one can try to detect: (a) any differences in successive images (appearance or disappearance of parts of the image or change of their shape), and understand what these changes are related to (e.g., wind), and whether they are related to hypothetical habitability of a planet. Another sign (b) of the wanted object is their morphological peculiarities which distinguishes them from the ordinary surface details. The results of VENERA-9 (1975) and VENERA -13 (1982) are of the main interest. A few relatively large objects ranging from a decimeter to half meter and with unusual morphology were observed in some

  8. Tectonism on Venus: A review

    NASA Technical Reports Server (NTRS)

    Kozak, Richard C.; Schaber, Gerald G.

    1989-01-01

    Venus is more similar to Earth than to any other planet. It has elevated regions associated with marginal fold and thrust belts, fracture zones that extend tens of thousands of kilometers, crustal swells and shields that are hundreds of kilometers in diameter and 1 to 2 km high, and sublinear accumulations of volcanic cones and domes that stretch for thousands of kilometers across the plains. The Venusian surface is, however, distinctly different from Earth's in that: (1) its elevated terrains cannot be distinguished from its low plains on a hypsometric curve; (2) trenches have not been found plainsward of the marginal belts; (3) fracture zones bear no resemblance to mid-oceanic ridges; and (4) some features, such as the ridge-belt zone near 210 deg E, seem to have no terrestrial analog. Various theories about tectonism on Venus and Earth of other authors are reviewed.

  9. The VENUS barrel electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Hayashi, K.; Iwai, M.; Sumiyoshi, T.; Takasaki, F.; Teramoto, Y.; Uehara, T.; Sugimoto, S.; Kusomoto, H.; Yoshida, H.

    1986-02-01

    The VENUS barrel electromagnetic calorimeter for the TRISTAN electron-positron colliding experiment now under construction is described. It is composed of 5160 lead glass counters pointing to interaction point. It covers polar angles of 37°-143° and whole azimuthal angles. The energy resolution of this calorimeter is measured to be typically σ/E = 0.7% + 5.2%/√E.

  10. An overview of Venus geology

    NASA Astrophysics Data System (ADS)

    Saunders, R. S.; Arvidson, R. E.; Head, J. W.; Schaber, G. G.; Stofan, E. R.; Solomon, S. C.

    1991-04-01

    The Magellan spacecraft is producing comprehensive image and altimetry data for the planet Venus. Initial geologic mapping of the planet reveals a surface dominated by volcanic plains and characterized by extensive volcanism and tectonic deformation. Geologic and geomorphologic units include plains terrains, tectonic terrains, and surficial material units. Understanding the origin of these units and the relation between them is an ongoing task of the Magellan team.

  11. The latest views of Venus as observed by the Japanese Orbiter "Akatsuki"

    NASA Astrophysics Data System (ADS)

    Satoh, Takehiko; Akatsuki Project Team

    2016-10-01

    Akatsuki, also known as the Venus Climate Orbiter (VCO) of Japan, was launched on 21 May 2010 from Tanegashima Space Center, Kagoshima, Japan. After 6 months of cruising to Venus, an attempt was made to insert Akatsuki in Venus orbit (VOI) on 7 December 2010. However, due to the clogged check valve in a pressurizing system of fuel line, the thrust to decelerate the spacecraft was not enough to allow it captured by the gravitational pull of Venus. After this failure, Akatsuki became an artificial planet around the sun with an orbital period of ~200 days. We waited for 5 earth years (or 9 Akatsuki years), and the second attempt (VOI-R1) was made on the same day, 7 December 2015. It was a great surprise to the world that a "once failed" spacecraft made a successful orbital insertion after many years of time. The orbital period around Venus is slightly shorter than 11 days, with the apoapsis altitude of ~0.37 million km.After Venus Express (VEX), which was in Venus orbit for 8 years, Akatsuki still keeps a unique position and is expected to make a great contribution to the Venus science due primarily to its orbit. In contrast to the polar orbits of Pioneer Venus or VEX, Akatsuki is in a near-equatorial plane and revolves westward, the same direction as the super rotating atmosphere. This orbit allows the spacecraft in a "partial" synchronization with the atmospheric motion when Akatsuki is near the planet. When at greater distances, the atmosphere moves faster than Akatsuki's orbital motion so the spacecraft maps the full longitude range of Venus in several days. This meteorological-satellite-like concept makes Akatsuki the most unique planetary orbiter in the history. To sense the various levels of the atmosphere, to draw 3-dimentional picture of dynamics, Akatsuki is equipped with 5 on-board cameras, UVI (283 and 365 nm wavelength), IR1 (0.90, 0.97, and 1.01 μm), IR2 (1.65, 1.735, 2.02, 2.26, and 2.32 μm), LIR (8-12 μm), and LAC (a special high-speed sensor at

  12. Memristors in the Venus flytrap

    PubMed Central

    Volkov, Alexander G; Forde-Tuckett, Victoria; Reedus, Jada; Mitchell, Colee M; Volkova, Maya I; Markin, Vladislav S.; Chua, Leon

    2014-01-01

    A memristor is a nonlinear element because its current-voltage characteristic is similar to that of a Lissajous pattern for nonlinear systems. We investigated the possible presence of memristors in the electrical circuitry of the Venus flytrap’s upper and lower leaves. The electrostimulation of this plant by bipolar sinusoidal or triangle periodic waves induces electrical responses in the upper and lower leaves of the Venus flytrap with fingerprints of memristors. The analysis was based on cyclic voltammetric characteristics where the memristor, a resistor with memory, should manifest itself. Tetraethylammonium chloride, an inhibitor of voltage gated K+ channels, or NPPB, a blocker of voltage gated Cl- and K+ channels, transform a memristor to a resistor in plant tissue. Uncouplers carbonylcyanide-3-chlorophenylhydrazone (CCCP) and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone (FCCP) decrease the amplitude of electrical responses at low and high frequencies of bipolar periodic electrostimulating waves. Our results demonstrate that voltage gated K+ channels in the Venus flytrap have properties of memristors of type 1 and type 2. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants. PMID:25763613

  13. An unusual volcano on Venus

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Plaut, J. J.; Schenk, P. M.; Head, J. W.

    1992-01-01

    Materials that issued from an unusual Venusian volcano produced (1) a complex domical structure about 100 km across with thick, broad flow lobes up to 41 wide, (2) an extensive sheet of thick flows, and (3) radar-bright surfaces that extend to 360-400 km from the volcano. Altimetry indicates that the relief of the domical structure is about 0.5-1.1 km. The lobes and flows have prominant regularly spaced ridges about 686-820 m apart. Thick flows with large ridge separations and broad lobes are rare on Venus. The viscosities of these flows were larger than those of most lava flows on Venus. Comparisons of the dimensions of the volcano's lobes with lava flows on earth suggest that the Venusian lavas may have large silica contents. Radar-bright surfaces around the volcano may represent the result of an explosive eruption or very thin deposits of low-viscosity lavas. Thus, the radar-bright surfaces and lavas of the volcano were derived from a magma that differentiated within the crust or mantle of Venus. The differentiation produced (1) a gas-rich low-viscosity phase, (2) high-viscosity lavas, and (3) a residual primary magma.

  14. Solar Powered Flight on Venus

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Landis, Geoff (Technical Monitor)

    2004-01-01

    Solar powered flight within the Venus environment from the surface to the upper atmosphere was evaluated. The objective was to see if a station-keeping mission was possible within this environment based on a solar power generating system. Due to the slow rotation rate of Venus it would be possible to remain within the day light side of the planet for extended periods of time. However the high wind speeds and thick cloud cover make a station-keeping solar powered mission challenging. The environment of Venus was modeled as a function of altitude from the surface. This modeling included density, temperature, solar attenuation and wind speed. Using this environmental model flight with both airships and aircraft was considered to evaluate whether a station-keeping mission is feasible. The solar power system and flight characteristics of both types of vehicles was modeled and power balance was set up to determine if the power available from the solar array was sufficient to provide enough thrust to maintain station over a fixed ground location.

  15. The Magellan Venus explorer's guide

    NASA Technical Reports Server (NTRS)

    Young, Carolynn (Editor)

    1990-01-01

    The Magellan radar-mapping mission to the planet Venus is described. Scientific highlights include the history of U.S. and Soviet missions, as well as ground-based radar observations, that have provided the current knowledge about the surface of Venus. Descriptions of the major Venusian surface features include controversial theories about the origin of some of the features. The organization of the Magellan science investigators into discipline-related task groups for data-analysis purposes is presented. The design of the Magellan spacecraft and the ability of its radar sensor to conduct radar imaging, altimetry, and radiometry measurements are discussed. Other topics report on the May 1989 launch, the interplanetary cruise, the Venus orbit-insertion maneuver, and the in-orbit mapping strategy. The objectives of a possible extended mission emphasize the gravity experiment and explain why high-resolution gravity data cannot be acquired during the primary mission. A focus on the people of Magellan reveals how they fly the spacecraft and prepare for major mission events. Special items of interest associated with the Magellan mission are contained in windows interspersed throughout the text. Finally, short summaries describe the major objectives and schedules for several exciting space missions planned to take us into the 21st century.

  16. Memristors in the Venus flytrap.

    PubMed

    Volkov, Alexander G; Forde-Tuckett, Victoria; Reedus, Jada; Mitchell, Colee M; Volkova, Maya I; Markin, Vladislav S; Chua, Leon

    2014-05-16

    A memristor is a nonlinear element because its current-voltage characteristic is similar to that of a Lissajous pattern for nonlinear systems. We investigated the possible presence of memristors in the electrical circuitry of the Venus flytrap's upper and lower leaves. The electrostimulation of this plant by bipolar sinusoidal or triangle periodic waves induces electrical responses in the upper and lower leaves of the Venus flytrap with fingerprints of memristors. The analysis was based on cyclic voltammetric characteristics where the memristor, a resistor with memory, should manifest itself. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, or NPPB, a blocker of voltage gated Cl(-) and K(+) channels, transform a memristor to a resistor in plant tissue. Uncouplers carbonylcyanide-3-chlorophenylhydrazone (CCCP) and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone (FCCP) decrease the amplitude of electrical responses at low and high frequencies of bipolar periodic electrostimulating waves. Our results demonstrate that voltage gated K(+) channels in the Venus flytrap have properties of memristors of type 1 and type 2. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants.

  17. Memristors in the Venus flytrap.

    PubMed

    Volkov, Alexander G; Forde-Tuckett, Victoria; Reedus, Jada; Mitchell, Colee M; Volkova, Maya I; Markin, Vladislav S; Chua, Leon

    2014-01-01

    A memristor is a nonlinear element because its current-voltage characteristic is similar to that of a Lissajous pattern for nonlinear systems. We investigated the possible presence of memristors in the electrical circuitry of the Venus flytrap's upper and lower leaves. The electrostimulation of this plant by bipolar sinusoidal or triangle periodic waves induces electrical responses in the upper and lower leaves of the Venus flytrap with fingerprints of memristors. The analysis was based on cyclic voltammetric characteristics where the memristor, a resistor with memory, should manifest itself. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, or NPPB, a blocker of voltage gated Cl(-) and K(+) channels, transform a memristor to a resistor in plant tissue. Uncouplers carbonylcyanide-3-chlorophenylhydrazone (CCCP) and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone (FCCP) decrease the amplitude of electrical responses at low and high frequencies of bipolar periodic electrostimulating waves. Our results demonstrate that voltage gated K(+) channels in the Venus flytrap have properties of memristors of type 1 and type 2. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants.

  18. Expedition Seven Launched Aboard Soyez Spacecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Destined for the International Space Station (ISS), a Soyez TMA-1 spacecraft launches from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. Aboard are Expedition Seven crew members, cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer. Expedition Six crew members returned to Earth aboard the Russian spacecraft after a 5 and 1/2 month stay aboard the ISS. Photo credit: NASA/Scott Andrews

  19. Venus as a more Earth-like planet.

    PubMed

    Svedhem, Håkan; Titov, Dmitry V; Taylor, Fredric W; Witasse, Olivier

    2007-11-29

    Venus is Earth's near twin in mass and radius, and our nearest planetary neighbour, yet conditions there are very different in many respects. Its atmosphere, mostly composed of carbon dioxide, has a surface temperature and pressure far higher than those of Earth. Only traces of water are found, although it is likely that there was much more present in the past, possibly forming Earth-like oceans. Here we discuss how the first year of observations by Venus Express brings into focus the evolutionary paths by which the climates of two similar planets diverged from common beginnings to such extremes. These include a CO2-driven greenhouse effect, erosion of the atmosphere by solar particles and radiation, surface-atmosphere interactions, and atmospheric circulation regimes defined by differing planetary rotation rates. PMID:18046393

  20. Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere

    PubMed Central

    Zhang, T. L.; Baumjohann, W.; Russell, C. T.; Luhmann, J. G.; Xiao, S. D.

    2016-01-01

    The existence of a strong internal magnetic field allows probing of the interior through both long term changes of and short period fluctuations in that magnetic field. Venus, while Earth’s twin in many ways, lacks such a strong intrinsic magnetic field, but perhaps short period fluctuations can still be used to probe the electrical conductivity of the interior. Toward the end of the Venus Express mission, an aerobraking campaign took the spacecraft below the ionosphere into the very weakly electrically conducting atmosphere. As the spacecraft descended from 150 to 140 km altitude, the magnetic field became weaker on average and less noisy. Below 140 km, the median field strength became steady but the short period fluctuations continued to weaken. The weakness of the fluctuations indicates they might not be useful for electromagnetic sounding of the atmosphere from a high altitude platform such as a plane or balloon, but possibly could be attempted on a lander. PMID:27009234

  1. Venus as a more Earth-like planet.

    PubMed

    Svedhem, Håkan; Titov, Dmitry V; Taylor, Fredric W; Witasse, Olivier

    2007-11-29

    Venus is Earth's near twin in mass and radius, and our nearest planetary neighbour, yet conditions there are very different in many respects. Its atmosphere, mostly composed of carbon dioxide, has a surface temperature and pressure far higher than those of Earth. Only traces of water are found, although it is likely that there was much more present in the past, possibly forming Earth-like oceans. Here we discuss how the first year of observations by Venus Express brings into focus the evolutionary paths by which the climates of two similar planets diverged from common beginnings to such extremes. These include a CO2-driven greenhouse effect, erosion of the atmosphere by solar particles and radiation, surface-atmosphere interactions, and atmospheric circulation regimes defined by differing planetary rotation rates.

  2. Venus as a more Earth-like planet

    NASA Astrophysics Data System (ADS)

    Svedhem, Håkan; Titov, Dmitry V.; Taylor, Fredric W.; Witasse, Olivier

    2007-11-01

    Venus is Earth's near twin in mass and radius, and our nearest planetary neighbour, yet conditions there are very different in many respects. Its atmosphere, mostly composed of carbon dioxide, has a surface temperature and pressure far higher than those of Earth. Only traces of water are found, although it is likely that there was much more present in the past, possibly forming Earth-like oceans. Here we discuss how the first year of observations by Venus Express brings into focus the evolutionary paths by which the climates of two similar planets diverged from common beginnings to such extremes. These include a CO2-driven greenhouse effect, erosion of the atmosphere by solar particles and radiation, surface-atmosphere interactions, and atmospheric circulation regimes defined by differing planetary rotation rates.

  3. A migratory mantle plume on Venus: Implications for Earth?

    USGS Publications Warehouse

    Chapman, M.G.; Kirk, R.L.

    1996-01-01

    A spatially fixed or at least internally rigid hotspot reference frame has been assumed for determining relative plate motions on Earth. Recent 1:5,000,000 scale mapping of Venus, a planet without terrestrial-style plate tectonics and ocean cover, reveals a systematic age and dimensional progression of corona-like arachnoids occurring in an uncinate chain. The nonrandom associations between arachnoids indicate they likely formed from a deep-seated mantle plume in a manner similar to terrestrial hotspot features. However, absence of expected convergent "plate" margin deformation suggests that the arachnoids are the surface expression of a migratory mantle plume beneath a stationary surface. If mantle plumes are not stationary on Venus, what if any are the implications for Earth?

  4. Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Tielong; Baumjohann, Wolfgang; Russell, Christopher; Luhmann, Janet

    2016-04-01

    The existence of a strong internal magnetic field allows probing of the interior through both long term changes of and short period fluctuations in that magnetic field. Venus, while Earth's twin in many ways, lacks such a strong intrinsic magnetic field, but perhaps short period fluctuations can still be used to probe the electrical conductivity of the interior. Toward the end of the Venus Express mission, an aerobraking campaign took the spacecraft below the ionosphere into the very weakly electrically conducting atmosphere. As the spacecraft descended from 150 to 140 km altitude, the magnetic field became weaker on average and less noisy. Below 140 km, the median field strength became steady but the short period fluctuations continued to weaken. The weakness of the fluctuations indicates they might not be useful for electromagnetic sounding of the atmosphere from a high altitude platform such as a plane or balloon, but possibly could be attempted on a lander.

  5. Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, T. L.; Baumjohann, W.; Russell, C. T.; Luhmann, J. G.; Xiao, S. D.

    2016-03-01

    The existence of a strong internal magnetic field allows probing of the interior through both long term changes of and short period fluctuations in that magnetic field. Venus, while Earth’s twin in many ways, lacks such a strong intrinsic magnetic field, but perhaps short period fluctuations can still be used to probe the electrical conductivity of the interior. Toward the end of the Venus Express mission, an aerobraking campaign took the spacecraft below the ionosphere into the very weakly electrically conducting atmosphere. As the spacecraft descended from 150 to 140 km altitude, the magnetic field became weaker on average and less noisy. Below 140 km, the median field strength became steady but the short period fluctuations continued to weaken. The weakness of the fluctuations indicates they might not be useful for electromagnetic sounding of the atmosphere from a high altitude platform such as a plane or balloon, but possibly could be attempted on a lander.

  6. Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere.

    PubMed

    Zhang, T L; Baumjohann, W; Russell, C T; Luhmann, J G; Xiao, S D

    2016-01-01

    The existence of a strong internal magnetic field allows probing of the interior through both long term changes of and short period fluctuations in that magnetic field. Venus, while Earth's twin in many ways, lacks such a strong intrinsic magnetic field, but perhaps short period fluctuations can still be used to probe the electrical conductivity of the interior. Toward the end of the Venus Express mission, an aerobraking campaign took the spacecraft below the ionosphere into the very weakly electrically conducting atmosphere. As the spacecraft descended from 150 to 140 km altitude, the magnetic field became weaker on average and less noisy. Below 140 km, the median field strength became steady but the short period fluctuations continued to weaken. The weakness of the fluctuations indicates they might not be useful for electromagnetic sounding of the atmosphere from a high altitude platform such as a plane or balloon, but possibly could be attempted on a lander. PMID:27009234

  7. Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere.

    PubMed

    Zhang, T L; Baumjohann, W; Russell, C T; Luhmann, J G; Xiao, S D

    2016-03-24

    The existence of a strong internal magnetic field allows probing of the interior through both long term changes of and short period fluctuations in that magnetic field. Venus, while Earth's twin in many ways, lacks such a strong intrinsic magnetic field, but perhaps short period fluctuations can still be used to probe the electrical conductivity of the interior. Toward the end of the Venus Express mission, an aerobraking campaign took the spacecraft below the ionosphere into the very weakly electrically conducting atmosphere. As the spacecraft descended from 150 to 140 km altitude, the magnetic field became weaker on average and less noisy. Below 140 km, the median field strength became steady but the short period fluctuations continued to weaken. The weakness of the fluctuations indicates they might not be useful for electromagnetic sounding of the atmosphere from a high altitude platform such as a plane or balloon, but possibly could be attempted on a lander.

  8. Robotic Technology for Exploration of Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    Venus, the "greenhouse planet", is a scientifically fascinating place. A huge number of important scientific questions remain to be answered. Venus is sometimes called Earth's "sister planet" due to the fact that it is closest to the Earth in distance and similar to Earth in size. Despite its similarity to Earth, however, the climate of Venus is vastly different from Earth's. Understanding the atmosphere, climate, geology, and history of Venus could shed considerable light on our understanding of our own home planet. The surface of Venus is a hostile environment, with an atmosperic pressure of over 90 bar of carbon dioxide, temperature of 450 C, and shrouded in sulphuric-acid clouds. Venus has been explored by a number of missions from Earth, including the Russian Venera missions which landed probes on the surface, the American Pioneer missions which flew both orbiters and atmospheric probes to Venus, the Russian "Vega" mission, which floated balloons in the atmosphere of Venus, and most recently the American Magellan mission which mapped the surface by radar imaging. While these missions have answered basic questions about Venus, telling us the surface temperature and pressure, the elevations and topography of the continents, and the composition of the atmosphere and clouds, scientific mysteries still abound. Venus is of considerable interest to terrestrial atmospheric science, since of all the planets in the solar system, it is the closest analogue to the Earth in terms of atmosphere. Yet Venus' atmosphere is an example of "runaway greenhouse effect." Understanding the history and the dynamics of Venus' atmosphere could tell us considerable insight about the workings of the atmosphere of the Earth. It also has some interest to astrobiology-- could life have existed on Venus in an earlier, pre-greenhouse-effect phase? Could life still be possible in the temperate middle-atmosphere of Venus? The geology of Venus also has interest in the study of Earth. surface

  9. ISS Update: Science Aboard Kounotori3

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Pete Hasbrook, associate program scientist, about the experiments traveling to the International Space Station aboard the H-II Transfer Vehicle...

  10. Global geological map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail A.; Head, James W.

    2011-10-01

    The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be

  11. What can Venus and Mars tell us about Sun's direct influence on Earth's Atmosphere?

    NASA Astrophysics Data System (ADS)

    Lundin, R.

    2010-09-01

    Venus and Mars, Earth's sister planets, are similar but also very different compared to the Earth. The mass-density and surface properties bear certain commonality, but the atmospheric composition, the temperature and the surface pressure on Venus and Mars are very different compared to the Earth. Venus and Mars are arid planets with atmospheres dominated by a greenhouse gas CO2 (>95%), while the Earth's atmosphere is dominated by molecular Nitrogen and Oxygen. The main greenhouse gas in the Earth's atmosphere is water, with a minor contribution of CO2. Bearing these differences in mind, what can we possibly learn from Mars and Venus about the solar influence on the Earth's atmosphere? The answer can be found in how solar forcing affects a planetary atmosphere, more specifically the impact of solar EUV and solar wind variability on a planetary atmosphere. The lack of a strong intrinsic magnetic field on Mars and Venus means that solar wind forcing has a global effect on the upper atmosphere of Mars and Venus. Conversely, the Earth's intrinsic dipole magnetic field alleviates the forcing to narrow zones near the magnetic poles. Results obtained from Venus and Mars orbiters imply that solar wind forcing leads to a long-term gradual removal of atmospheric constituents. New information from ESAs Mars Express and Venus Express orbiters suggests short-term solar wind forcing effects as well, especially in the polar region. While the impact of solar forcing on the "unprotected" planets Venus and Mars seems conceivable, one might argue that similar forcing effects are unlikely on a magnetically protected planet. Short-term "space weather" effects on the Earth's tropospheric circulatory system have been reported in the past, but the effects have usually been discarded using arguments that such a weak forcing is unlikely to have any implications whatsoever on the Earth's weather system. However, considering the forcing observed in e.g. the Venus polar region, solar forcing

  12. Pioneer Venus Orbiter (PVO) Ionosphere Evidence for Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Hoegy, W. R.

    2009-12-01

    An early estimate of escape of H2O from Venus [McElroy et al., 1982] using observed hot oxygen densities inferred by Nagy et al. [1981] from PVO OUVS 1304 Å dayglow and using ionization rates from photoionization and electron impact. This resulted in an estimated oxygen ionization rate planet-wide above the plasmapause of 3x1025 atoms/s. Based on the energetic O+ being swept up and removed by solar wind, McElroy et al. [1982] gave an estimate of a loss rate for O of 6x106 atoms/cm2/s. Using a different method of estimating escape based data in the ionotail of Venus, Brace et al. [1987] estimated a total planetary O+ escape rate of 5x1025 ions/s. Their estimate was based on PVO measurements of superthermal O+ (energy range 9-16 eV) in the tail ray plasma between 2000 and 3000 km. Their estimated global mean flux was 107 atoms/cm2/s. The two escape rates are remarkably close considering all the errors involved in such estimates of escape. A study of escape by Luhmann et al. [2008] using VEX observations at low solar activity finds modest escape rates, prompting the authors to reconsider the evidence from both PVO and VEX of the possibility of enhanced escape during extreme interplanetary conditions. We reexamine the variation of escape under different solar wind conditions using ion densities and plasma content in the dayside and nightside of Venus using PVO ionosphere density during times of high solar activity. Citations: Brace, L.H., W. T. Kasprzak, H.A. Taylor, R. F. Theis, C. T. Russess, A. Barnes, J. D. Mihalov, and D. M. Hunten, "The Ionotail of Venus: Its Configuration and Evidence for Ion Escape", J. Geophys. Res. 92, 15-26, 1987. Luhmann, J.G., A. Fedorov, S. Barabash, E. Carlsson, Y. Futaana, T.L. Zhang, C.T. Russell, J.G. Lyon, S.A. Ledvina, and D.A. Brain, “Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections”, J. Geophys. Res., 113, 2008. McElroy, M. B., M. J. Prather, J. M. Rodiquez, " Loss

  13. Venus Water Vapour Profiles Obtained by SOIR/VEx

    NASA Astrophysics Data System (ADS)

    Chamberlain, Sarah; Wilquet, Valerie; Mahieux, Arnaud; Robert, Severine; Thomas, Ian; Carine Vandaele, Ann; Bertaux, Jean-Loup

    2015-04-01

    We present up-to-date observations of the water vapour profile at the Venus terminator, between altitudes of 70 - 110km. The data were obtained by the Solar Occultation in the InfraRed (SOIR) instrument on board Venus Express (VEx). The SOIR instrument allows observations of trace gas profiles at altitudes within the Venus lower thermosphere and mesosphere. Due to the observational technique, all observations are taken at the Venus terminator, on either or both of the evening and morning side of the planet and covering almost all latitudes. These are key locations for study as the mesosphere/thermosphere altitudes correspond to the transition in dynamical regime from a retrograde zonal flow to sub-solar to antisolar flow (approximately 90 km) and at these altitudes we expect a steeper than normal temperature gradient across the terminator which would drive chemical reactions and dynamical flows. Water vapour in the mesosphere is involved in the cloud formation process and contributes to several chemical cycles. Isotopologue ratio studies also contribute towards understanding the evolution of the Venus climate and atmosphere. Determining the abundance, distribution and variability of water vapour is therefore a key element to understanding the development, maintenance and links between dynamical features, important chemical cycles and the evolution of the Venus atmosphere. Both water vapour isotopologues are targeted simultaneously in the majority of dedicated SOIR water vapour observations. H2O is detected between 70 - 110km and HDO is detected between 70 - 95km altitude. Early SOIR water vapour observations were published in 2007 and 2008. Previous results show a depletion in the volume mixing ratio (VMR) at 85km in both HDO and H2O and an increase in HDO/H2O ratio above the clouds. No noticeable temporal variability was detected. Numerous subsequent H2O and HDO SOIR observations have been obtained between 2007 - 2014 and with recent improvements in instrument

  14. The interior of Venus and Tectonic implications

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Malin, M. C.

    1983-01-01

    It is noted in the present consideration of the Venus lithosphere and its implications for plate tectonics that the major linear elevated regions of Venus, which are associated with Beta Regio and Aphrodite Terra, do not seem to have the shape required for sure interpretation as the divergent plate boundaries of seafloor spreading. Such tectonics instead appear to be confined to the median plains, and may not be resolvable in the Pioneer Venus altimetry data. The ratios of gravity anomalies to topographic heights indicate that surface load compensation occurs at depths greater than about 100 km under the western Aphrodite Terra and 400 km under Beta Regio, with at least some of this compensation probably being maintained by mantle convection. It is also found that the shape of Venus's hypsogram is very different from the ocean mode of the earth's hypsogram, and it is proposed that Venus tectonics resemble intraplate, basin-and-swell tectonics on earth.

  15. Comments on the tectonism of Venus

    NASA Technical Reports Server (NTRS)

    Kozak, R. C.; Schaber, G. G.

    1987-01-01

    Preliminary tectonic mapping of Venus from Venera 15/16 images shows unquestionable evidence of at least limited horizontal tectonism. The majority of tectonic features on Venus have no relation to topography. In fact, many axes of disruption interconnect, and cross sharp topographic boundaries at large angles, thereby discounting gravity as the driving force. Compressional zones (CZ's), unlike Extensional zones (EZ's), tend to be discontinuous, and, whereas EZ's cross tectonic and topographic boundaries at various angles, many CZ's on Venus are subparallel to these boundaries. Strike-like faulting is curiously lacking from the mapping, possible due to the steep incidence angle of the radar, which is far from optimal for detecting faults of small throw. A chronology of horizontal crustal movements, and hence the analysis of Venus' thermal development, is large dependent on understanding the crater form features. Regardless of their uncertain origin, the craters still could hold the answer to whether, and to what extent, crustal shuffling is occurring on Venus.

  16. Pioneer Venus - Evolving coverage of the near-Venus environment

    NASA Astrophysics Data System (ADS)

    Brace, L. H.; Colin, L.

    1984-06-01

    The manner in which secular changes in the orbit of the Pioneer Venus Orbiter (PVO) research satellite influence its data collecting capabilities is discussed. A brief description of the propulsion system and sensor arrays of the satellite is presented, and the susceptibility of these systems to changes in power supply due to the decline in solar activity is considered. It is pointed out that the PVO should have enough fuel to continue to transmit data until after the arrival of Comet Halley in 1986, and that, during the 1991 to 1992 period, more moderate levels of solar activity will permit more accurate measurements of thermospheric and ionospheric parameters.

  17. Venus Atmospheric Circulation from Digital Tracking of VMC Images

    NASA Astrophysics Data System (ADS)

    Limaye, S.; Moissl, R.; Markiewicz, W.; Titov, D.

    2008-09-01

    The Venus Monitoring Camera on Venus Express has been returning images of Venus in four filters since April 2006 on almost every orbit. These images portray the southern hemisphere of Venus at spatial resolutions ranging from ~ 50 km per pixel to better than ~ 10 km per pixel depending on when the planet was imaged from orbit. Images covering a substantial portion of the planet and separated by ~ 45 min to one hour have been mapped into rectilinear projection to enable use of digital tracking technique for the measurement of cloud motions on an orbit by orbit basis. The aggregate results are in good agreement with visual tracking results as well as from the previous missions [1] and show evidence of temporal variations, large scale waves and solar thermal tides in low and mid latitudes. The digital tracking results for the meridional component confirm the poleward flow increasing from low latitudes to mid-latitudes and then showing a tendency to weaken. However, the confidence in high latitude measurements is lower due to the peculiar nature of the cloud morphology that is generally streaky and quite different from the low latitudes. The meridional profile of the average zonal wind at higher latitudes is of considerable interest. At high and polar latitudes, a vortex organization is evident in the data consistently, with the core region centered over the pole. The images show variability in structure of the ultraviolet signature of the "S" shaped feature seen in the VIRTIS data on the capture orbit [2]. However, the cloud morphologies seen poleward of ~ 50 degrees latitude also makes digital tracking less reliable due to absence of discrete features at the spatial resolution of the VMC images acquired in the apoapsis portion of the Venus Express orbit. It is expected that images obtained closer to the planet will enable a determination of the zonal wind profile with better confidence which will be useful in elucidating the nature of the transient features seen in

  18. Magnetic energy density and plasma energy density in the Venus wake

    NASA Astrophysics Data System (ADS)

    Perez De Tejada, H. A.; Durand-Manterola, H. J.; Lundin, R.; Barabash, S.; Zhang, T.; Reyes-Ruiz, M.; Sauvaud, J.

    2013-05-01

    Magnetic energy density and plasma energy density in the Venus wake H. Pérez-de-Tejada1, H. Durand-Manterola1, R. Lundin2, S. Barabash2, T. L. Zhang3, A. Sauvaud4, M. Reyes-Ruiz5. 1 - Institute of Geophysics, UNAM, México, D. F. 2 - Swedish Institute of Space Physics, Umea, Sweden 3 - Space Research Institute, Graz, Austria 4 - CESR, Toulouse, France 5 - Institute of Astronomy, UNAM, Ensenada, México Measurements conducted in the Venus wake with the magnetometer and the Aspera-4 plasma instrument of the Venus Express spacecraft show that average values of the kinetic energy density of the plasma in that region are comparable to average local values of the magnetic energy density. Observations were carried out in several orbits of the Venus Express near the midnight plane and suggest that the total energy content in the Venus wake is distributed with nearly comparable values between the plasma and the magnetic field. Processes associated with the solar wind erosion of planetary ions from the polar magnetic regions of the ionosphere are involved in the comparable distribution of both energy components.

  19. Venus Express - Status and major results

    NASA Astrophysics Data System (ADS)

    Svedhem, H.; Titov, D.

    2011-10-01

    Studies of the surface in the near infrared have shown several areas of recent geologic activity. These areas correspond well to the suspected 'hot spots' previously identified in the Magellan radar and gravity field maps. Recently the atmospheric density has been probed in situ by reducing the pericentre altitude such that the drag force on the spacecraft has become significant and thus measureable. In this way the altitude range 165-200 km, which is not possible to address with remote measurements, has been characterized. For the first time a new technique has been applied whereby the solar panels are set in an asymmetric position with respect to each other such that a torque is acting on the spacecraft during the atmospheric pass. Since the spacecraft attitude is maintained automatically be the reaction wheels the rotation rate changes of the wheels provide a very sensitive measure of the atmospheric density.

  20. Evidence for Long-term Variability at Venus' Clouds Top

    NASA Astrophysics Data System (ADS)

    Marcq, E.; Bertaux, J. L.; Montmessin, F.; Belyaev, D.

    2012-09-01

    The ESA mission Venus Express has been operating since 2006 around Venus, thus providing a dataset spanning more than six years of observations. Following the methods used by Marcq et al. [1], we have thus derived (i) SO2 column densities above cloud top and (ii) mean UV brightness in the 200-320 nm range between 2006/04/14 and 2012/02/18. Very strong temporal and spatial variability is found for both observable parameters, but a mean decrease is found for SO2 (5 to 10-fold) and mean UV brightness (about 40%) between 2007 and 2012. The latitudinal pattern is also subject to changes, with decreasing SO2 with increasing latitude prevalent during SO2-rich periods and no noticeable (or even reversed) latitudinal gradient during SO2-poor episods. This evolution is highly reminiscent of the situation observed by Pioneer Venus and Venera-15 [2, 3]. Possible causes for these long-term trends are difficult to assess at the present stage of our study. Fluctuation on a decadal timescale of the intensity of the advection from the deep, SO2-enriched atmosphere is the most likely candidate according to simple modeling, but it does not preclude possible fluctuations in the volume of volcanic outgassing rich in SO2.

  1. Carbon monoxide observed in Venus' atmosphere with SOIR/VEx

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; Mahieux, A.; Chamberlain, S.; Ristic, B.; Robert, S.; Thomas, I. R.; Trompet, L.; Wilquet, V.; Bertaux, J. L.

    2016-07-01

    The SOIR instrument on board the ESA Venus Express mission has been operational during the complete duration of the mission, from April 2006 up to December 2014. Spectra were recorded in the IR spectral region (2.2-4.3 μm) using the solar occultation geometry, giving access to a vast number of ro-vibrational lines and bands of several key species of the atmosphere of Venus. Here we present the complete set of vertical profiles of carbon monoxide (CO) densities and volume mixing ratios (vmr) obtained during the mission. These profiles are spanning the 65-150 km altitude range. We discuss the variability which is observed on the short term, but also the long term trend as well as variation of CO with solar local time and latitude. Short term variations can reach one order of magnitude on less than one month periods. SOIR does not observe a marked long term trend, except perhaps at the beginning of the mission where an increase of CO density and vmr has been observed. Evening abundances are systematically higher than morning values at altitudes above 105 km, but the reverse is observed at lower altitudes. Higher abundances are observed at the equator than at the poles for altitude higher than 105 km, but again the reverse is seen at altitudes lower than 90 km. This illustrates the complexity of the 90-100 km region of the Venus' atmosphere where different wind regimes are at play.

  2. The loss of ions from Venus through the plasma wake.

    PubMed

    Barabash, S; Fedorov, A; Sauvaud, J J; Lundin, R; Russell, C T; Futaana, Y; Zhang, T L; Andersson, H; Brinkfeldt, K; Grigoriev, A; Holmström, M; Yamauchi, M; Asamura, K; Baumjohann, W; Lammer, H; Coates, A J; Kataria, D O; Linder, D R; Curtis, C C; Hsieh, K C; Sandel, B R; Grande, M; Gunell, H; Koskinen, H E J; Kallio, E; Riihelä, P; Säles, T; Schmidt, W; Kozyra, J; Krupp, N; Fränz, M; Woch, J; Luhmann, J; McKenna-Lawlor, S; Mazelle, C; Thocaven, J-J; Orsini, S; Cerulli-Irelli, R; Mura, M; Milillo, M; Maggi, M; Roelof, E; Brandt, P; Szego, K; Winningham, J D; Frahm, R A; Scherrer, J; Sharber, J R; Wurz, P; Bochsler, P

    2007-11-29

    Venus, unlike Earth, is an extremely dry planet although both began with similar masses, distances from the Sun, and presumably water inventories. The high deuterium-to-hydrogen ratio in the venusian atmosphere relative to Earth's also indicates that the atmosphere has undergone significantly different evolution over the age of the Solar System. Present-day thermal escape is low for all atmospheric species. However, hydrogen can escape by means of collisions with hot atoms from ionospheric photochemistry, and although the bulk of O and O2 are gravitationally bound, heavy ions have been observed to escape through interaction with the solar wind. Nevertheless, their relative rates of escape, spatial distribution, and composition could not be determined from these previous measurements. Here we report Venus Express measurements showing that the dominant escaping ions are O+, He+ and H+. The escaping ions leave Venus through the plasma sheet (a central portion of the plasma wake) and in a boundary layer of the induced magnetosphere. The escape rate ratios are Q(H+)/Q(O+) = 1.9; Q(He+)/Q(O+) = 0.07. The first of these implies that the escape of H+ and O+, together with the estimated escape of neutral hydrogen and oxygen, currently takes place near the stoichometric ratio corresponding to water. PMID:18046398

  3. Geologic Map of the Niobe Planitia Quadrangle (V-23), Venus

    USGS Publications Warehouse

    Hansen, Vicki L.

    2009-01-01

    The Niobe Planitia quadrangle (V-23) encompasses approximately 8,000,000 km2 of the Venusian equatorial region extending from lat 0 deg to 25 deg N. and from long 90 deg to 120 deg E. (approximately 9,500 15-minute quadrangles on Earth). The map area lies along the north margin of the equatorial highland, Aphrodite Terra (V-35), and extends into the lowland region to the north, preserving a transition from southern highlands to northern lowlands (figs. 1, 2, map sheet). The northern parts of the crustal plateau, Ovda Regio and Haasttse-baad Tessera, mark the south margin of the map area; Niobe and Sogolon Planitiae make up the lowland region. The division between Niobe and Sogolon Planitiae is generally topographic, and Sogolon Planitia forms a relatively small elongate basin. Mesolands, the intermediate topographic level of Venus, are essentially absent or represented only by Gegute Tessera, which forms a slightly elevated region that separates Niobe Planitia from Llorona Planitia to the east (V-24). Lowlands within the map area host five features currently classified as coronae: Maya Corona (lat 23 deg N., long 97 deg E.) resides to the northwest and Dhisana, Allatu, Omeciuatl, and Bhumiya Coronae cluster loosely in the east-central area. Lowlands extend north, east, and west of the map area. Mapping the Niobe Planitia quadrangle (V-23) provides an excellent opportunity to examine a large tract of lowlands and the adjacent highlands with the express goal of clarifying the processes responsible for resurfacing this part of Venus and the resulting implications for Venus evolution. Although Venus lowlands are widely considered to have a volcanic origin, lowlands in the map area lack adjacent coronae or other obvious volcanic sources.

  4. Measurements Needed to Understand Superrotation and Circulation in the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Parish, H. F.; Schubert, G.; Covey, C. C.

    2013-12-01

    many satellite and ground based instruments. Recent measurements from Venus Express also indicate that the average cloud top wind speeds have steadily and significantly increased over the last six years. Variability on multi-year and shorter timescales occurs in at least one Venus general circulation model (Parish et al., 2011) for a variety of choices of input assumptions (Lebonnois et al., 2012). The same model also indicates significant hemispheric asymmetries in the zonal winds and angular momentum, related to hemispheric asymmetries in the surface topography. Accordingly, future observations must include multi-year observations and in situ measurements of the lower atmosphere that cover a full range of both latitudes and local solar times.

  5. Sporadic loss of plasma from Mars, Venus and Titan caused by upstream variability

    NASA Astrophysics Data System (ADS)

    Edberg, N. J.; Nilsson, H.; Wahlund, J.; Agren, K.; Andrews, D. J.; Opgenoorth, H. J.; Stenberg, G.; Lester, M.; Cowley, S. W.; Fraenz, M.; Luhmann, J. G.; McEnulty, T.; Barabash, S.; Coates, A. J.; Zhang, T.

    2012-12-01

    We present results on ionospheric escape from Mars, Venus and Titan during times when the upstream density, velocity and magnetic field are changing. During the current solar minimum we search the ACE, Mars Express and Venus Express data for high-pressure events in the solar wind, such as corotating interaction regions and coronal mass ejections, that will impact on Mars and Venus. Venus Express and Mars Express measurements are used to compare the anti-sunward fluxes of heavy planetary ions during the passage of these events to the fluxes during quiet solar wind conditions. The planetary ion fluxes are observed to increase by a factor of ~1.9 at Venus and by a factor of ~2.5 at Mars, on average. Taking into account the occurrence rate and duration of these events at each planet we find that 30% of the total outflow from Mars and 50% of the total outflow from Venus occurs when solar wind pressure pulses impact on the planets. We also predict how similar processes of sporadic plasma escape can occur at Titan due to the changing upstream conditions of Saturn's corotating magnetosphere. We discuss the importance of the increased upstream dynamic pressure as well as sudden rotations of the impinging magnetic field that drapes around the unmagnetised bodies in terms of causing enhanced escape rates. The increased dynamic pressure means that solar wind plasma can penetrate deeper into the ionosphere and more effectively erode plasma. The magnetic field rotation causes the induced magnetospheres to reconfigure and change polarity, which could occur through substorm-like processes. During such processes plasma can be accelerated in the downstream direction through electrodynamical effects.

  6. The thermal regime of Venus

    SciTech Connect

    Solomatov, V.S.; Zharkov, V.N. )

    1990-04-01

    In the present numerical modeling study of the thermal evolution of Venus, the mantle is taken to be composed of independently convecting upper and lower mantles. A novel parameterization is used which takes into account recent numerical investigations in media with complex rheology. The parameters of the convecting planet in the asymptotic regime do not depend on initial conditions, and are ascertained analytically. Convection in the lower part of the crust is demonstrated to be involved in regions having specific crustal composition; heat transfer to the surface is primarily via advection by magmas that are produced by melting of the lower layers of the crust. 50 refs.

  7. Venus magmatic and tectonic evolution

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Hansen, V. L.

    1993-01-01

    Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.

  8. William Crabtree's Venus transit observation

    NASA Astrophysics Data System (ADS)

    Kollerstrom, Nicholas

    2005-04-01

    The close collaboration between the two North-country astronomers Jeremiah Horrocks and William Crabtree gave them special insight into the new astronomy published by the recently-deceased Kepler, whereby Horrocks became the only person to apprehend that the Rudolphine tables were in fact predicting a Venus transit in 1639. This paper focuses especially upon William Crabtree's role and contribution. A comparison is made with an earlier, unsuccessful endeavour by these two concerning a possible transit of Mercury. Much of the record of their work was lost during the civil war. Finally, thanks to Christiaan Huygens, Horrock's manuscript was published by Johannes Hevelius in Danzig, in 1662.

  9. New measurements of Venus winds with ground-based Doppler velocimetry at CFHT

    NASA Astrophysics Data System (ADS)

    Machado, P.; Widemann, T.; Luz, D.; Peralta, J.; Berry, D. L.

    2012-04-01

    Since Venus Express spacecraft operations started in 2006, an ongoing effort has been made to coordinate its operations with observations from the ground using various techniques and spectral domains (Lellouch and Witasse, 2008). We present an analysis of Venus Doppler winds at cloud tops based on observations made at the Canada France Hawaii 3.6-m telescope (CFHT) with the ESPaDOnS visible spectrograph. These observations consisted of high-resolution spectra of Fraunhofer lines in the visible range (0.37-1.05 μm) to measure the winds at cloud tops using the Doppler shift of solar radiation scattered by cloud top particles in the observer's direction (Widemann et al., 2007, 2008). The observations were made during 19-20 February 2011 and were coordinated with Visual Monitoring Camera (VMC) observations by Venus Express. The complete optical spectrum was collected over 40 spectral orders at each point with 2-5 seconds exposures, at a resolution of about 80000. The observations included various points of the dayside hemisphere at a phase angle of 67°, between +10° and -60° latitude, in steps of 10° , and from +70° to -12° longitude relative to sub-Earth meridian in steps of 12°. The Doppler shift measured in scattered solar light on Venus dayside results from two instantaneous motions: (1) a motion between the Sun and Venus upper cloud particles; (2) a motion between the observer and Venus clouds. The measured Doppler shift, which results from these two terms combined, varies with the planetocentric longitude and latitude and is minimum at meridian ΦN = ΦSun - ΦEarth where the two components subtract to each other for a pure zonal regime. Due to the need for maintaining a stable velocity reference during the course of acquisition using high resolution spectroscopy, we measure relative Doppler shifts to ΦN. The main purpose of our work is to provide variable wind measurements with respect to the background atmosphere, complementary to simultaneous

  10. Quantitative tests for plate tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.; Phillips, R. J.

    1981-01-01

    Quantitative comparisons are made between the characteristics of plate tectonics on the earth and those which are possible on Venus. Considerations of the factors influencing rise height and relating the decrease in rise height to plate velocity indicate that the rate of topographic dropoff from spreading centers should be about half that on earth due to greater rock-fluid density contrast and lower temperature differential between the surface and interior. Statistical analyses of Pioneer Venus radar altimetry data and global earth elevation data is used to identify 21,000 km of ridge on Venus and 33,000 km on earth, and reveal Venus ridges to have a less well-defined mode in crest heights and a greater concavity than earth ridges. Comparison of the Venus results with the spreading rates and associated heat flow on earth reveals plate creation rates on Venus to be 0.7 sq km/year or less and indicates that not more than 15% of Venus's energy is delivered to the surface by plate tectonics, in contrast to values of 2.9 sq km a year and 70% for earth.

  11. Plasma Waves in the Magnetosheath of Venus

    NASA Technical Reports Server (NTRS)

    Strangeway, Robert J.

    1996-01-01

    Research supported by this grant is divided into three basic topics of investigation. These are: (1) Plasma waves in the Venus magnetosheath, (2) Plasma waves in the Venus foreshock and solar wind, (3) plasma waves in the Venus nightside ionosphere and ionotail. The main issues addressed in the first area - Plasma waves in the Venus magnetosheath - dealt with the wave modes observed in the magnetosheath and upper ionosphere, and whether these waves are a significant source of heating for the topside ionosphere. The source of the waves was also investigated. In the second area - Plasma waves in the Venus foreshock and solar wind, we carried out some research on waves observed upstream of the planetary bow shock known as the foreshock. The foreshock and bow shock modify the ambient magnetic field and plasma, and need to be understood if we are to understand the magnetosheath. Although most of the research was directed to wave observations on the dayside of the planet, in the last of the three basic areas studied, we also analyzed data from the nightside. The plasma waves observed by the Pioneer Venus Orbiter on the nightside continue to be of considerable interest since they have been cited as evidence for lightning on Venus.

  12. Venus tectonics - Another earth or another Mars

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.

    1979-01-01

    The paper reexamines the evidence on the intensity of Venusian tectonic/volcanic activity and suggests alternate hypotheses. Three major questions are discussed: (1) whether the presence of large, presumably primordial craters on Venus requires an intensity of tectonic/volcanic activity significantly less than on earth, (2) what thicknesses of lithosphere are implied for reasonable models of temperature and volatile content of the upper mantle of Venus, and (3) can the recently obtained Ar-40 content of the Venus lower atmosphere help define the relative tectonic/volcanic activities of Venus and earth. It was shown that the abundance of Ar-40 in the Venus atmosphere lies between the earth value and one-tenth of the earth value, and since erosional liberation of Ar-40 on Venus will be inefficient, this range for Ar-40 abundance indicates an active tectonic history. It is concluded that the presence of craters and possible mantle dryness does not restrict Venus tectonics to a Mars-like model, and an earth-like model is equally probable.

  13. Characterization of a transiting exo-Venus : lessons from the 2012 Transit

    NASA Astrophysics Data System (ADS)

    Widemann, Thomas; Jaeggli, S. A.; Reardon, K. P.; Tanga, P.; Pasachoff, J. M.; Schneider, G.

    2013-10-01

    The transit of Venus in June 2012 provided a unique chance to view a well studied planetary atmosphere as we might see that of a transiting exoplanet, through scattered and refracted illumination of its parent star. We report on mesospheric temperature at Venus' morning terminator using SDO/HMI aureole photometry and comparison with Venus Express. Close to ingress and egress phases, we have shown that the aureole photometry reflects the local density scale height and the altitude of the refracting layer (Tanga et al. 2012). The lightcurve of each spatial resolution element of the aureole is compared to a two-parameter model to constrain the meridional temperature gradient along the terminator. Our measurements are in agreement with the VEx/SOIR temperatures obtained during orbit 2238 at evening terminator during solar ingress (46.75N - LST = 6.075PM) and solar egress (31.30N - LST = 6.047PM) as seen from the orbiter. Imaging data using IBIS/ROSA on the Dunn Solar Telescope in the G-band (430 nm) are also presented. We also performed spectroscopy and polarimetry during the transit of Venus focusing on extracting signatures of CO2 absorption. Observations were taken during the first half of the transit using the Facility InfraRed Spectropolarimeter on the Dunn Solar Telescope. Although the predicted CO2 transmission spectrum of Venus was not particularly strong at 1565 nm, this region of the H-band often used in magnetic field studies of the Sun's photosphere provides a particularly flat solar continuum with few atmospheric and molecular lines. Sun-subtracted Venus limb observations show intensity distribution of vibro-rotational CO2 band 221 2ν + 2ν2 + ν3 at 1.571μm allowing for an additional constraint on Venus' thermospheric temperature.

  14. Zephyr: A Landsailing Rover for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Grantier, David

    2014-01-01

    With an average temperature of 450C and a corrosive atmosphere at a pressure of 90 bars, the surface of Venus is the most hostile environment of any planetary surface in the solar system. Exploring the surface of Venus would be an exciting goal, since Venus is a planet with significant scientific mysteries, and interesting geology and geophysics. Technology to operate at the environmental conditions of Venus is under development. A rover on the surface of Venus with capability comparable to the rovers that have been sent to Mars would push the limits of technology in high-temperature electronics, robotics, and robust systems. Such a rover would require the ability to traverse the landscape on extremely low power levels. We have analyzed an innovative concept for a planetary rover: a sail-propelled rover to explore the surface of Venus. Such a rover can be implemented with only two moving parts; the sail, and the steering. Although the surface wind speeds are low (under 1 m/s), at Venus atmospheric density even low wind speeds develop significant force. Under funding by the NASA Innovative Advanced Concepts office, a conceptual design for such a rover has been done. Total landed mass of the system is 265 kg, somewhat less than that of the MER rovers, with a 12 square meter rigid sail. The rover folds into a 3.6 meter aeroshell for entry into the Venus atmosphere and subsequent parachute landing on the surface. Conceptual designs for a set of hightemperature scientific instruments and a UHF communication system were done. The mission design lifetime is 50 days, allowing operation during the sunlit portion of one Venus day. Although some technology development is needed to bring the high-temperature electronics to operational readiness, the study showed that such a mobility approach is feasible, and no major difficulties are seen.

  15. The 3 Final States of Venus

    NASA Astrophysics Data System (ADS)

    Correia, A. C. M.; Laskar, J.

    2000-10-01

    In 1962, using radar measurements, the slow retrograde rotation of Venus was discovered (see Carpenter, 1970). Since, the understanding of this particular state becomes a challenge as many uncertainties remain in the dissipative models of Venus' rotation. Various hypothesis were proposed for its evolution, aiming to search wether Venus was born with a direct or retrograde rotation. The most favored scenario assumes that its axis was actually tilted down during its past evolution as a result of core mantle friction and atmospheric tides (Lago and Cazenave, 1979, Dobrovolski, 1980, Shen and Zhang, 1989, McCue and Dormand, 1993, Yoder, 1995, 1997). Nevertheless, this requires high values of the initial obliquity, and it was proposed that Venus was strongly hit by massive bodies which would have tilted it significantly or started its rotation backward (Dones and Tremaine, 1993). Even while considering the chaotic evolution of Venus's obliquity (Laskar and Robutel, 1993), the published scenarios still have some difficulties to tilt Venus axis towards its present position (Yoder,1997). In the present work we show that due to the dissipative effects, there are only 4 possible final states for Venus' rotation, and only 3 of them are really reachable. When the planetary perturbations are added, most of the initial conditions lead to the two states corresponding to the present configuration of Venus, one with period -243.02 days and nearly 0o obliquity, and the other with opposite period and nearly 180o obliquity.We thus demonstrate that a large impact is not necessary to have a satisfying scenario for the reverse rotation of Venus.

  16. Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse.

    PubMed

    Wang, Y; Kakizaki, T; Sakagami, H; Saito, K; Ebihara, S; Kato, M; Hirabayashi, M; Saito, Y; Furuya, N; Yanagawa, Y

    2009-12-15

    Inhibitory neurons play important roles in a number of brain functions. They are composed of GABAergic neurons and glycinergic neurons, and vesicular GABA transporter (VGAT) is specifically expressed in these neurons. Since the inhibitory neurons are scattered around in the CNS, it is difficult to identify these cells in living brain preparations. The glutamate decarboxylase (GAD) 67-GFP knock-in mouse has been widely used for the identification of GABAergic neurons, but their GAD67 expression was decreased compared to the wild-type mice. To overcome such a problem and to highlight the function and morphology of inhibitory neurons, we generated four lines of VGAT-Venus transgenic mice (lines #04, #29, #39 and #49) expressing Venus fluorescent protein under the control of mouse VGAT promoter. We found higher expression level of Venus transcripts and proteins as well as brighter fluorescent signal in line #39 mouse brains, compared to brains of other lines examined. By Western blots and spectrofluorometric measurements of forebrain, the line #39 mouse showed stronger GFP immunoreactivity and brighter fluorescent intensity than the GAD67-GFP knock-in mouse. In addition, Venus was present not only in somata, but also in neurites in the line #39 mouse by histological studies. In situ hybridization analysis showed that the expression pattern of Venus in the line #39 mouse was similar to that of endogenous VGAT. Double immunostaining analysis in line #39 mouse showed that Venus-expressing cells are primarily immunoreactive for GABA in cerebral cortex, hippocampus and cerebellar cortex and for GABA or glycine in dorsal cochlear nucleus. These results demonstrate that the VGAT-Venus line #39 mouse should be useful for studies on function and morphology of inhibitory neurons in the CNS.

  17. Dynamics of the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1992-01-01

    The superrotation of the Venus atmosphere is a major unanswered problem in planetary science. At cloud-top levels (65-70 km altitude) the atmosphere rotates with a five-day period, corresponding to an equatorial wind speed of 90 m/s. Angular velocity is roughly constant on spherical shells, and decreases linearly with altitude to zero at the surface. The direction of rotation is the same as that of the solid planet, which is retrograde--opposite to the direction of orbital motion, but the 5-day period is short compared to the 243-day spin period of the solid planet or to the mean solar day, which is 117 Earth-days at the surface. The problem with the superrotation is that shearing stresses tend to transfer angular momentum downward, and would slow the atmosphere until it is spinning with the solid planet. Some organized circulation pattern is counteracting the tendency, but the pattern has not been identified. A simple Hadley-type circulation cannot do it because such a circulation is zonally symmetric and Hide's Theorem states that in an axisymmetric circulation an extremum in angular momentum per unit mass M can exist only at the surface. Venus violates the last condition, having a maximum of retrograde M on the equator at 70-80 km altitude. This leaves waves and eddies to maintain the superrotation but the length scales and forcing mechanisms for these motions need to be specified. Possible forcing mechanisms associated with waves, eddies and tides are discussed.

  18. Erosion and the rocks of Venus

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1976-01-01

    Photographs of the surface of Venus returned by the Venera 9 and 10 spacecraft have revealed the presence of smooth and angular rockline forms. Two mechanisms previously suggested (Sagan, 1975) for erosion of crater ramparts on the surface of Venus might also explain the erosion of rocks. Chemical weathering by the hydrochloric, hydrofluoric, and sulfuric acids present in the atmosphere of Venus may have been sufficient to erode angular projections of silicous rocks. Alternatively, the contours of rocks containing such low-melting materials as NaOH, KOH, HgS and KNO2 may have softened as the result of exposure to the high surface temperatures of the planet.

  19. Venus in motion. [Mariner 10 television pictures

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Danielson, G. E.; Evans, N.; Soha, J. M.; Belton, M. J. S.

    1978-01-01

    A comprehensive set of television pictures of Venus taken by the Mariner 10 spacecraft is presented. Included is a chronological sequence of television images illustrating the development, variety, and circulation of Venus upper-atmospheric phenomena as viewed in the near-ultraviolet. The higher-resolution images have been assembled into global mosaics to facilitate comparison. Figures and tables describing the imaging sequences have been included to provide a guide to the more complete set of 3400 Venus images on file at the National Space Science Data Center.

  20. Contrasts in evolution of Venus and Earth

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.

    1985-01-01

    The differences of the two planets in dynamical characteristics and inert gas abundances require major differences of formation. There probably was an impact into the Earth much greater than any into Venus. The resulting heat pulse would have caused more rapid and thorough outgassing of the Earth, lending to an ocean retaining water. Water is the key to the differences in evolution between the planets. A most important consequence was less effective recycling of lithosphere on Venus, leading to a thick global crust which suppressed plate tectonics. Stratification is more pronounced in Venus, but there must remain sufficient heat sources at depth for convective support of the high plateaus.

  1. Pioneer Venus orbiter electron temperature probe

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1994-01-01

    This document lists the scientific accomplishments of the Orbiter Electron Temperature Probe (OETP) group. The OETP instrument was fabricated in 1976, integrated into the PVO spacecraft in 1977, and placed in orbit about Venus in December 1978. The instrument operated flawlessly for nearly 14 years until PVO was lost as it entered the Venusian atmosphere in October 1992. The OETP group worked closely with other PVO investigators to examine the Venus ionosphere and its interactions with the solar wind. After the mission was completed we continued to work with the scientist selected for the Venus Data Analysis Program (VDAP), and this is currently leading to additional publications.

  2. The Atmosphere and Climate of Venus

    NASA Astrophysics Data System (ADS)

    Bullock, M. A.; Grinspoon, D. H.

    Venus lies just sunward of the inner edge of the Sun's habitable zone. Liquid water is not stable. Like Earth and Mars, Venus probably accreted at least an ocean's worth of water, although there are alternative scenarios. The loss of this water led to the massive, dry CO2 atmosphere, extensive H2SO4 clouds (at least some of the time), and an intense CO2 greenhouse effect. This chapter describes the current understanding of Venus' atmosphere, established from the data of dozens of spacecraft and atmospheric probe missions since 1962, and by telescopic observations since the nineteenth century. Theoretical work to model the temperature, chemistry, and circulation of Venus' atmosphere is largely based on analogous models developed in the Earth sciences. We discuss the data and modeling used to understand the temperature structure of the atmosphere, as well as its composition, cloud structure, and general circulation. We address what is known and theorized about the origin and early evolution of Venus' atmosphere. It is widely understood that Venus' dense CO2 atmosphere is the ultimate result of the loss of an ocean to space, but the timing of major transitions in Venus' climate is very poorly constrained by the available data. At present, the bright clouds allow only 20% of the sunlight to drive the energy balance and therefore determine conditions at Venus' surface. Like Earth and Mars, differential heating between the equator and poles drives the atmospheric circulation. Condensable species in the atmosphere create clouds and hazes that drive feedbacks that alter radiative forcing. Also in common with Earth and Mars, the loss of light, volatile elements to space produces long-term changes in composition and chemistry. As on Earth, geologic processes are most likely modifying the atmosphere and clouds by injecting gases from volcanos as well as directly through chemical reactions with the surface. The sensitivity of Venus' atmospheric energy balance is quantified in

  3. The Sensitivity of Venus' Oxygen Budget to Venus' Mesospheric Temperature

    NASA Astrophysics Data System (ADS)

    Jessup, K.; Mills, F.; Yung, Y.; Allen, M.

    2009-05-01

    The dominant chemical cycle in Venus' mesosphere above the clouds (70-110 km altitude) is the CO2 cycle. The primary steps of this cycle are photodissociation of CO2 to produce CO and O on the day side, transport of CO and O from the day side to the night side, formation of O2 on the day and night sides, and production of CO2 from CO and O2. Many photochemical models have attempted to identify the mechanisms by which CO2 is produced, but none has satisfactorily reproduced the observational upper limit on the O2 abundance (Trauger and Lunine 1983, Krasnopolsky 2006). In these models (Yung and DeMore 1982, Krasnopolsky and Parshev 1983, Pernice et al 2004) the assumed mesospheric vertical pressure and temperature profiles were derived from Pioneer Venus data. However, recent SPICAV observations (Bertaux et al. 2007) indicate mesospheric temperatures at 110 km may be up to 50 K warmer than the standard values adopted from the Pioneer Venus data. The CO2 cross section is sensitive to temperature, so an increase in temperature in the upper part of the mesosphere will increase photodissociation in the upper part of the mesosphere and decrease photodissociation at lower altitudes. These changes should, in turn, affect the abundances and vertical profiles of CO, O2 and O. We have developed a simplified version of the Caltech/JPL photochemical model (Allen et al. 1981) which limits the mesospheric chemistry solely to carbon and oxygen species. Using temperature dependent CO2 cross-section data in this model, we will investigate the impact of temperature on the vertical profile of CO2 photodissociation and the calculated abundances of CO, O, and O2. Two sets of temperature dependent CO2 cross section data a) Lewis and Carver 1983, and b) Yoshino et al. 1996; Parkinson et al 2003 will be utilized in this study. The sensitivity of the model results to differences between the two sets of cross section measurements will be quantified.

  4. Meteoric ion layers in the ionospheres of venus and mars: Early observations and consideration of the role of meteor showers

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Christou, A. A.; Vaubaillon, J.

    2013-10-01

    Layers of metal ions produced by meteoroid ablation have been known in Earth's ionosphere for decades, but have only recently been discovered at Venus and Mars. Here we report the results of a search for meteoric layers in earlier datasets from Venus and Mars. We find 13 candidates at Venus in Mariner 10, Venera 9/10, and Pioneer Venus Orbiter data that augment the 18 previously identified in Venus Express data. We find 8 candidates at Mars in Mariner 7 and Mariner 9 data that augment the 71 and 10 previously identified in Mars Global Surveyor and Mars Express data, respectively. These new findings extend the ranges of conditions under which meteoric layers have been observed, support studies of the temporal variability of meteoric layers, and (for Venus) independently confirm the existence of meteoric layers. One of the proposed causes of temporal variations in the occurrence rate of meteoric layers is meteor showers. This possibility is controversial, since meteor showers have minimal observed effect on meteoric layers in Earth's ionosphere. In order to aid progress towards a resolution of this issue, we present a series of tests for this hypothesis.

  5. [Transfection of HL-60 cells by Venus lentiviral vector].

    PubMed

    Li, Zheng; Hu, Shao-Yan; Cen, Jian-Nong; Chen, Zi-Xing

    2013-06-01

    In order to study the potential of Venus, lentiviral vector, applied to acute myeloid leukemia, the recombinant vector Venus-C3aR was transfected into 293T packing cells by DNA-calcium phosphate coprecipitation. All virus stocks were collected and transfected into HL-60, the GFP expression in HL-60 cells was measured by flow cytometry. The expression level of C3aR1 in transfected HL-60 cells was identified by RT-PCR and flow cytometry. The lentiviral toxicity on HL-60 was measured by using CCK-8 method and the ability of cell differentiation was observed. The results indicated that the transfection efficacy of lentiviral vector on HL-60 cells was more than 95%, which meets the needs for further study. C3aR1 expression on HL-60 cells increased after being transfected with recombinant lentiviral vector. Before and after transfection, the proliferation and differentiation of cells were not changed much. It is concluded that the lentiviral vector showed a high efficacy to transfect AML cells and can be integrated in genome of HL-60 cells to realize the stable expression of interest gene. Meanwhile, lentiviral vector can not affect HL-60 cell ability to proliferate and differentiate.

  6. The impact of a slow interplanetary coronal mass ejection on Venus

    NASA Astrophysics Data System (ADS)

    Collinson, Glyn A.; Grebowsky, Joseph; Sibeck, David G.; Jian, Lan K.; Boardsen, Scott; Espley, Jared; Hartle, Dick; Zhang, Tielong L.; Barabash, Stas; Futaana, Yoshifumi; Kollmann, Peter

    2015-05-01

    We present Venus Express observations of the impact of a slow interplanetary coronal mass ejection (ICME), which struck Venus on 23 December 2006, creating unusual quasi steady state upstream conditions for the 2 h close to periapsis: an enhanced (˜ nT) interplanetary magnetic field (IMF), radially aligned with the Sun-Venus line; and a dense (˜ cm-3) solar wind. Contrary to our current understanding and expectations, the ionosphere became partially demagnetized. We also find evidence for shocked sheathlike solar wind protons and electrons in the wake of Venus, and powerful (≈ nT2/Hz) foreshock whistler mode waves radiating from the bow shock at an unexpectedly low frequency (0.6 Hz). Given the abnormally high density of escaping heavy ions at the magnetopause boundary (295 cm-3, one of the highest of the whole mission) and the enhanced density of escaping heavy ions in the wake, we find that even weak ICMEs with no driving shocks can increase atmospheric loss rates at Venus and suggests that the Bx component of the IMF may be a factor in atmospheric escape rates.

  7. A study of ionopause perturbation and associated wave formation at Venus

    NASA Astrophysics Data System (ADS)

    Siung Chong, Ghai; Balikhin, Michael A.; Pope, Simon

    2016-07-01

    In contrast to Earth, Venus does not possess an intrinsic magnetic field. Hence the interaction between solar wind and Venus is significantly different when compared to Earth, even though these two planets were considered to have evolved in a similar fashion until about a billion years ago. Within the induced magnetosphere and ionosphere of Venus, previous studies have shown the existence of large scale vortex-like structures. These structures may play an important role in the atmospheric evolution of Venus. One example was observed on 26th June 2006. The occurrence and evolution of these structures could be driven by the Kelvin Helmholtz Instability. We analyse perturbations of the ionopause in the terminator region to further investigate these structures. The orbit of Venus Express is well aligned for such a study as it regularly traverses the terminator region at an altitude close to that of the nominal ionopause. A minimum variance analysis of both the 1Hz and 32Hz magnetic field data is conducted. Wave like structures are identified and their evolution into the potential nonlinear regime is observed and analysed.

  8. VizieR Online Data Catalog: Horizontal temperature at Venus upper atmosphere (Peralta+, 2016)

    NASA Astrophysics Data System (ADS)

    Peralta, J.; Lopez-Valverde, M. A.; Gilli, G.; Piccialli, A.

    2015-11-01

    The dayside atmospheric temperatures in the UMLT of Venus (displayed in Figure 7A of this article) are listed as a CSV data file. These values consist of averages in bins of 5° in latitude and 0.25-hours in local time from dayside temperatures covering five years of data (from 2006/05/14 to 2011/06/05). These temperatures were inferred from the CO2 NLTE nadir spectra measured by the instrument VIRTIS-H onboard Venus Express (see article for full description of the procedure), and are representative of the atmospheric region between 10-2 to 10-5mb. Along with the temperatures, we also provide the corresponding error and the number of temperatures averaged in each bin. The format of the CSV file reasonably agrees with the expected format of the data files to be provided in the future version of the Venus International Reference Atmosphere (VIRA). (1 data file).

  9. Energetic Neutral Atom Emissions From Venus: VEX Observations and Theoretical Modeling

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Galli, A.; Tanaka, T.; Moore, T. E.; Wurz, P.; Holmstrom, M.

    2007-01-01

    Venus has almost no intrinsic magnetic field to shield itself from its surrounding environment. The solar wind thus directly interacts with the planetary ionosphere and atmosphere. One of the by-products of this close encounter is the production of energetic neutral atom (ENA) emissions. Theoretical studies have shown that significant amount of ENAs are emanated from the planet. The launch of the Venus Express (VEX) in 2005 provided the first light ever of the Venus ENA emissions. The observed ENA flux level and structure are in pretty good agreement with the theoretical studies. In this paper, we present VEX ENA data and the comparison with numerical simulations. We seek to understand the solar wind interaction with the planet and the impacts on its atmospheres.

  10. Three 2012 Transits of Venus: From Earth, Jupiter, and Saturn

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.; Edelman, E.; Reardon, K.; Widemann, T.; Tanga, P.; Dantowitz, R.; Silverstone, M. D.; Ehrenreich, D.; Vidal-Madjar, A.; Nicholson, P. D.; Willson, R. C.; Kopp, G. A.; Yurchyshyn, V. B.; Sterling, A. C.; Scherrer, P. H.; Schou, J.; Golub, L.; McCauley, P.; Reeves, K.

    2013-01-01

    We observed the 2012 June 6/5 transit seen from Earth (E/ToV), simultaneously with Venus Express and several other spacecraft not only to study the Cytherean atmosphere but also to provide an exoplanet-transit analog. From Haleakala, the whole transit was visible in coronal skies; among our instruments was one of the world-wide Venus Twilight Experiment's nine coronagraphs. Venus's atmosphere became visible before first contact. SacPeak/IBIS provided high-resolution images at Hα/carbon-dioxide. Big Bear's NST also provided high-resolution observations of the Cytherean atmosphere and black-drop evolution. Our liaison with UH's Mees Solar Observatory scientists provided magneto-optical imaging at calcium and potassium. Solar Dynamics Observatory's AIA and HMI, and the Solar Optical Telescope (SOT) and X-ray Telescope (XRT) on Hinode, and total-solar-irradiance measurements with ACRIMSAT and SORCE/TIM, were used to observe the event as an exoplanet-transit analog. On September 20, we imaged Jupiter for 14 Hubble Space Telescope orbits, centered on a 10-hour ToV visible from Jupiter (J/ToV), as an exoplanet-transit analog in our own solar system, using Jupiter as an integrating sphere. Imaging was good, although much work remains to determine if we can detect the expected 0.01% solar irradiance decrease at Jupiter and the even slighter differential effect between our violet and near-infrared filters caused by Venus's atmosphere. We also give a first report on our currently planned December 21 Cassini UVIS observations of a transit of Venus from Saturn (S/ToV). Our E/ToV expedition was sponsored by the Committee for Research and Exploration/National Geographic Society; supplemented: NASA/AAS's Small Research Grant Program. We thank Rob Ratkowski, Stan Truitt, Rob Lucas, Aram Friedman, and Eric Pilger '82 at Haleakala, and Joseph Gangestad '06 at Big Bear for assistance, and Lockheed Martin Solar and Astrophysics Lab and Hinode science and operations teams for support

  11. The Venus-solar wind interaction: Is it purely ionospheric?

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Ma, Y. J.; Villarreal, M. N.; Wei, H. Y.; Zhang, T. L.

    2015-12-01

    The Venus solar wind interaction is often regarded as the prototypical example of an induced magnetosphere. Pioneer Venus Orbiter (PVO) observations during a period of moderate to strong solar EUV fluxes led to a fairly detailed picture in which the currents in the conducting ionosphere produce a nearly impenetrable obstacle to the incident magnetized plasma flow, resulting in a classical draped field magnetosheath region and a comet-like magnetotail. Inspired by the availability of Venus Express (VEX) observations from the north polar region, and their sometimes unexpected behavior, we reanalyzed the observed Venus wake magnetic fields in the altitude range ~150 to ~450 km to determine whether some signature of a weak planetary field could have been missed. Our results suggest the presence of a small (few nT) but persistent radial field direction bias in the deep nightside, low to mid-latitude range sampled on PVO. The bias has a hemispheric dependence, with the more positive (outward) fields in the south and the more negative (inward) fields in the north. However the VEX counterpart of these data, obtained just nightward of the north polar terminator, shows no significant bias. This observation raises several questions about our understanding of the fields at the surface of Venus. We investigate whether the PVO radial field bias could be the subtle signature of a weak global dipole with , higher by ~10× than the previously established upper limits. A weak dipole solar wind interaction model produces results in the center of the low altitude wake that compare favorably with the observed field bias seen by PVO; however, the lack of agreement with the higher latitude and VEX observations suggests other explanations need to be considered. For example, effects related to previously observed convection electric field-controlled hemispheric asymmetries provide a possible alternative, as are external fields that diffuse into and through the interior. This work points

  12. Magellan Paints a Portrait of Venus.

    ERIC Educational Resources Information Center

    Kerr, Richard A.

    1991-01-01

    Details of the landscape of the planet Venus as revealed by the Magellan spacecraft are discussed and illustrated. Advances beyond previous space probes are demonstrated. Details of the program are described. Additional work from this project is proposed. (CW)

  13. Rifting on Venus: Implications for lithospheric structure

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Golombek, M. P.

    1985-01-01

    Lithospheric strength envelopes on Venus are reviewed and their implications for large scale rifting are discussed. Their relationship to crustal thicnesses and thermal gradients are explored. Also considered are the implications of a theory for rift formation.

  14. ISS Update: After the Venus Transit

    NASA Video Gallery

    ISS Update commentator Brandi Dean interviewed astronaut Mario Runco about the results of the Expedition 31 crew’s effort to photograph Venus transit. Questions? Ask us on Twitter @NASA_Johnson a...

  15. Venus general atmosphere circulation described by Pioneer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The predominant weather pattern for Venus is described. Wind directions and wind velocities are given. Possible driving forces of the winds are presented and include solar heating, planetary rotation, and the greenhouse effect.

  16. Venus lives!. [evidence for active volcanoes

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Francis, Peter W.

    1988-01-01

    Observational evidence which supports the contention that Venus is a volcanically and tectonically active planet is discussed. It is argued that, although there are no observations to date that would prove that Venus has been volcanically active during the last decade, planetological studies presented evidence for youthful volcanic mountains on Venus: the surface of the northern quarter of Venus is considered to be younger than 1 Gy, and some units are likely to be much younger. Because of the small sizes of likely volcanic manifestations and the long intervals expected between eruptions, it is unlikely that any direct evidence of eruptions will be detected with existing and planned spacecraft. It is suggested that future studies of the dynamics and the chemical mixing of the Venusian atmosphere might supply an unequivocal evidence for active volcanism on this planet.

  17. Tremolite Decomposition and Water on Venus

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Fegley, B., Jr.

    2000-01-01

    We present experimental data showing that the decomposition rate of tremolite, a hydrous mineral, is sufficiently slow that it can survive thermal decomposition on Venus over geologic timescales at current and higher surface temperatures.

  18. The development of studies of Venus

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    1983-01-01

    An historical account is given of the major figures, observational techniques and theories involved in Venus studies prior to space probe-based researches. Those who followed Galileo Galilei (1610) with the simple telescopes of the 17th and early 18th centuries confirmed the phases of the illuminated face of Venus. Lomonosov (1761) noted a gray halo surrounding the planet as it was partially silhouetted against the sun, and correctly inferred that Venus has an atmosphere. The brightness and nearly featureless appearance of the planet, together with the halo effect, led to the early conclusion that the atmosphere is cloudy. While visual and photographic spectroscopy had been applied to Venus many times, the first indication of spectral features different from the solar spectrum was found in 1932 with the high dispersion spectrograph on the Mt. Wilson 2.5-m telescope.

  19. Hinode Views the 2012 Venus Transit

    NASA Video Gallery

    On June 5, 2012, Hinode captured these stunning views of the transit of Venus -- the last instance of this rare phenomenon until 2117. Hinode is a joint JAXA/NASA mission to study the connections o...

  20. Hinode Views the Transit of Venus

    NASA Video Gallery

    On June 5, 2012, Hinode captured this stunning view of the transit of Venus -- the last instance of this rare phenomenon until 2117. Hinode is a joint JAXA/NASA mission to study the connections of ...

  1. Obliquity Variations of a Rapidly Rotating Venus

    NASA Astrophysics Data System (ADS)

    Quarles, Billy L.; Barnes, Jason W.; Lissauer, Jack J.; Chambers, John E.; Hedman, Matthew M.

    2016-05-01

    Venus clearly differs from Earth in terms of its spin and atmospheric composition, where the former is controlled by solid-body and atmospheric thermal tides. However, this may have been different during earlier stages of planetary evolution, when the Sun was fainter and the Venusian atmosphere was less massive. We investigate how the axial tilt, or obliquity, would have varied during this epoch considering a rapidly rotating Venus. Through numerical simulation of an ensemble of hypothetical Early Venuses, we find the obliquity variation to be simpler than a Moonless Earth (Lissauer et al., 2012). Most low-obliquity Venuses show very low total obliquity variability comparable to that of the real Moon-influenced Earth.

  2. The Venus-new-world project

    NASA Astrophysics Data System (ADS)

    Marchal, C.

    1982-09-01

    Instrumentation used in planetary and interplanetary probes to search for life are reviewed, and methods of altering the Venus atmosphere to make the planet susceptible to human colonization are discussed. Noting that further investigations of the conditions in the southern hemisphere of Mars during the hottest part of the Mars year are necessary in order to categorically rule out life on that planet, attention is given to redirecting an earth grazing asteroid (EGA) to Venus. The scheme is to use one or two kiloton bombs in the center of an EGA, vented outward in a channel to produce thrust, to the neighborhood of Venus and then either blow it up, make it collide with another asteroid, or crash it into the planet. The resultant dust cloud is expected to cancel the greenhouse effect present on Venus. Placing the dust cloud in a Lagrangian point would assure the stability and long-term residence.

  3. Mapping Venus: Modeling the Magellan Mission.

    ERIC Educational Resources Information Center

    Richardson, Doug

    1997-01-01

    Provides details of an activity designed to help students understand the relationship between astronomy and geology. Applies concepts of space research and map-making technology to the construction of a topographic map of a simulated section of Venus. (DDR)

  4. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  5. Global Geological Map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  6. A global traveling wave on Venus

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Gierasch, Peter J.; Schinder, Paul J.

    1992-01-01

    The dominant large-scale pattern in the clouds of Venus has been described as a 'Y' or 'Psi' and tentatively identified by earlier workers as a Kelvin wave. A detailed calculation of linear wave modes in the Venus atmosphere verifies this identification. Cloud feedback by infrared heating fluctuations is a plausible excitation mechanism. Modulation of the large-scale pattern by the wave is a possible explanation for the Y. Momentum transfer by the wave could contribute to sustaining the general circulation.

  7. Particulate matter in the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Ragent, B.; Esposito, L. W.; Tomasko, M. G.; Marov, M. IA.; Shari, V. P.

    1985-01-01

    The paper presents a summary of the data currently available (June 1984) describing the planet-enshrouding particulate matter in the Venus atmosphere. A description and discussion of the state of knowledge of the Venus clouds and hazes precedes the tables and plots. The tabular material includes a precis of upper haze and cloud-top properties, parameters for model-size distributions for particles and particulate layers, and columnar masses and mass loadings.

  8. Venus: uniformity of clouds, and photography.

    PubMed

    Keene, G T

    1968-01-19

    Photographs of Earth at a resolution of about 600 kilometers were compared to pictures of Venus taken from Earth at about the same resolution . Under these conditions Earth appear very heavily covered by clouds. Since details on the surface of Earth can be recorded from Earth orbit, it may be possible to phiotograph protions of the surface of Venus, through openings in the clouds, from an orbiting satellite.

  9. A global traveling wave on venus.

    PubMed

    Smith, M D; Gierasch, P J; Schinder, P J

    1992-05-01

    The dominant large-scale pattern in the clouds of Venus has been described as a "gamma" or "Psi" and tentatively identified by earlier workers as a Kelvin wave. A detailed calculation of linear wave modes in the Venus atmosphere verifies this identification. Cloud feedback by infrared heating fluctuations is a plausible excitation mechanism. Modulation of the large-scale pattern by the wave is a possible explanation for the Y. Momentum transfer by the wave could contribute to sustaining the general circulation.

  10. Venus - Detailed mapping of Maxwell Montes region

    NASA Astrophysics Data System (ADS)

    Alexandrov, Yu. N.; Crymov, A. A.; Kotelnikov, V. A.; Petrov, G. M.; Rzhiga, O. N.; Sidorenko, A. I.; Sinilo, V. P.; Zakharov, A. I.; Akim, E. L.; Basilevski, A. T.; Kadnichanski, S. A.; Tjuflin, Yu. S.

    1986-03-01

    From October 1983 to July 1984, the north hemisphere of Venus, from latitude 30° to latitude 90°, was mapped by means of the radar imagers and altimeters of the spacecraft Venera 15 and Venera 16. This report presents the results of the radar mapping of the Maxwell Montes region, one of the most interesting features of Venus' surface. A radar mosaic map and contour map have been compiled.

  11. A global traveling wave on Venus

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Gierasch, Peter J.; Schinder, Paul J.

    1993-01-01

    The dominant large-scale pattern in the clouds of Venus has been described as a 'Y' or 'Psi' and tentatively identified by earlier workers as a Kelvin wave. A detailed calculation of linear wave modes in the Venus atmosphere verifies this identification. Cloud feedback by infrared heating fluctuations is a plausible excitation mechanism. Modulation of the large-scale pattern by the wave is a possible explanation for the Y. Momentum transfer by the wave could contribute to sustaining the general circulation.

  12. Venus and the Archean Earth: Thermal considerations

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.

    1989-01-01

    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus.

  13. IR spectrometers for Venus and Mars measurements

    NASA Astrophysics Data System (ADS)

    Drummond, Rachel; Neefs, Eddy; Vandaele, Ann C.

    2012-07-01

    The SOIR spectrometer [1] is an infra-red spectrometer that has performed over 500 solar occultation measurements of the Venus atmosphere, profiling major and minor constituents and studying aerosol absorption, temperature and pressure effects. NOMAD is a 3-channel spectrometer for Mars occultation, limb and nadir measurements. 2 channels are infra-red, the other UV-visible. We will present the technology that enables SOIR and NOMAD to get to parts per billion mixing ratio sensitivities for trace atmospheric components and highlight the improvements made to the SOIR design to enable nadir viewing with NOMAD. Key components include the Acousto-Optical Tunable Filter with radio frequency driver that allows these spectrometers to select the wavelength domain under observation with no need for mechanical moving parts. It also allows background measurements because it is opaque when no RF is applied. The grating with 4 grooves/mm is a very hard to manufacture optical component, and suppliers were very difficult to find. The detector-cooler combination (working at 90K) is from Sofradir/Ricor and the model on board Venus Express is still working after 6 years in space (more on/off cycles that ON hour lifetime problem). The detector MCT mix is slightly altered for nadir observation, in order to reduce thermal background noise and the nadir channel spectrometer is cooled down to 173K by a large V-groove radiator. All the optical components have been enlarged to maximise signal throughput and the slit (that determines spatial and spectral resolution) has also been increased. The spacecraft attitude control system switches from yaw steering for nadir to inertial pointing for solar occultations. 1. Nevejans, D., E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.P. Dubois, and E. Villard, Compact high-resolution space-borne echelle grating spectrometer with AOTF based on

  14. Dynamics investigation in the Venus upper atmosphere

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Altieri, F.; Shakun, A.; Zasova, L.; Piccioni, G.; Bellucci, G.

    The O_2 nightglow emissions in the infrared spectral range are important features to investigate dynamics at the mesospheric altitudes, in the planetary atmosphere. In this work, we analyzed the profiles obtained at limb by the VIRTIS spectrometer on board the Venus Express mission, acquired during the mission period from 2006-07-05 to 2008-08-15 to investigate possible gravity waves characteristics at the airglow altitudes. Indeed, several profiles present double peaked structures that can be interpreted as due to gravity waves. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O_2 nightglow emissions affected by gravity waves propagation, in order to support this thesis and derive the waves properties. We discuss results from 30 profiles showing double peaked structures, focusing on vertical wavelength and wave amplitude of the possible gravity waves. On average, the double peaked profiles are compatible with the effects of gravity waves with a vertical wavelength ranging between 7 and 16 km, and wave amplitude of 3-14%. A comparison with gravity waves properties in the Mars and Earth's atmospheres, using the same theory, is also proposed \\citep{altieri_2014}. \\ The research is supported by ASI (contract ASI-INAF I/050/10/0).

  15. The volcanoes and clouds of Venus

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.

    1985-03-01

    One of the earth's most intriguing features is its geologic activity. However, volcanic eruptions have not been observed on any other body in the solar system, except for a detection of such eruptions on Jupiter's moon Io. As in a number of respects Venus is similar to earth, questions arise regarding the presence of active volcanoes on Venus. In the past, the study of such questions was made difficult or impossible by the layer of clouds surrounding the Venusian surface. In the past half decade the situation has changed. These changes are mainly related to studies based on a utilization of radio waves and microwaves which can pass through the cloud layer. Such studies have been conducted with the aid of terrestrial radio telescopes, the Pioneer Venus satellite orbiting Venus, and two Russian spacecraft. The results of these studies are discussed in detail. It appears that there are active volcanoes on Venus. This volcanism is a key link in the chemical cycle which produces the clouds. The levels of volcanic activity on Venus and earth seem to be roughly comparable.

  16. A Landsailing Rover for Venus Mobility

    NASA Astrophysics Data System (ADS)

    Landis, G.

    The surface of Venus is a location that is of great interest for future scientific exploration, but designing a rover that can move and conduct science operations on Venus is a difficult task. Electronic and materials technologies are available that could survive the furnace of Venus, but such a rover represents a challenging design problem. One approach to the problem is to make use of the features of the Venus environment, such as the thick atmosphere. A new approach for rover mobility is proposed, in which the rover motive force is produced by a sail. Such a Venus landsailing rover could be small and low powered, since the main power required for motion is generated by the wind, rather than by motors. Although the wind velocities on Venus are low, estimated at 0.6 ± 0.3 m/sec at the Venera landing sites, due to the high density of the atmosphere, sufficient force would be generated on a sail to allow good mobility for a lightweight rover.

  17. Hypothetical flora and fauna of Venus

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2014-12-01

    Hypothetical habitability of some of extrasolar planets is a fundamental question of science. Some of exoplanets possess physical conditions close to those of Venus. Therefore, the planet Venus, with its dense and hot (735 K) oxygen-free atmosphere of CO2, having a high pressure of 9.2 MPa at the surface, can be a natural laboratory for this kind of studies. The only existing data on the planet's surface are still the results obtained by the Soviet VENERA landers in the 1970s and 1980s. The TV experiments of Venera-9 and 10 (October, 1975) and Venera-13 and 14 (March, 1982) delivered 41 panoramas of Venus surface (or their fragments). There have not been any similar missions to Venus in the subsequent 39 and 32 years. In the absence of new landing missions to Venus, the VENERA panoramas have been re-processed. The results of these missions are studied anew. A dozen of relatively large objects, from a decimeter to half a meter in size, with an unusual morphology have been found which moved very slowly or changed slightly their shape. Their emergence by chance could hardly be explained by noise. Certain unusual findings that have similar structure were found in different areas of the planet. This paper presents the last results obtained of a search for hypothetical flora and fauna of Venus.

  18. The rate of volcanism on Venus

    NASA Astrophysics Data System (ADS)

    Fegley, Bruce, Jr.; Prinn, Ronald G.

    1988-07-01

    The maintenance of the global H2SO4 clouds on Venus requires volcanism to replenish the atmospheric SO2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO2 and calcite (CaCO3) to form anhydrite (CaSO4), are reported. If the rate of this reaction is representative of the SO2 reaction rate at the Venus surface, then we estimate that all SO2 in the Venus atmosphere (and thus the H2SO4 clouds) will be removed in 1.9 million years unless the lost SO2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth.

  19. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  20. Studying Venus' atmosphere and ionosphere with Planetary Radio Interferometry and Doppler Experiment (PRIDE)

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamon, T. M.; Cimo, G.; Duev, D. A.; Gurvits, L. I.; Marty, J. Ch.; Pogrebenko, S. V.; Rosenblatt, P.

    2014-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that can provide a multi-disciplinary enhancement of the science return of planetary missions. By performing precise Doppler tracking of a spacecraft carrier radio signal, at Earth-based radio telescopes, and VLBI-style processing of these signals in phase-referencing mode, the technique allows the determination of the radial velocity and lateral coordinates of the spacecraft with very high accuracy[1]. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research. The application of this technique for atmospheric studies has been assessed by observing ESA's Venus Express (VEX) during Venus occultation events in 2012 and 2014, and by participating in one of the Venus Express Atmospheric Drag Experiment (VExADE) campaigns in 2012. Both studies are contributing to the characterization efforts of the atmosphere and ionosphere of Venus. During the Venus Express Atmospheric Drag Experiment (VExADE) campaigns VEX's orbit pericenter was lowered into an altitude range of approximately 165 to 175 km in order to probe Venus upper atmosphere above its north pole. The first VExADE campaigns were carried out between 2009-2010 using Doppler tracking data acquired by the VEX radio science experiment (VeRa), which provided the first in situ measurements of the density of Venus' polar thermosphere at solar minimum conditions [2]. In the December 2012 campaign the PRIDE-team participated by tracking VEX with several radio telescopes from the European VLBI Network (EVN) during pericenter passage. A Doppler frequency drop of ∼40 mHz was detected as VEX reached the lowest altitudes at around 170 km. The tracking data for each pericenter pass is fitted for precise orbit determination, from which drag acceleration estimates and the

  1. Venus - Landslide in Navka Region

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Magellan spacecraft has observed remnant landslide deposits apparently resulting from the collapse of volcanic structures. This Magellan radar image is centered about 25.4 degrees south latitude and 308 degrees east longitude in the southwestern Navka Region of Venus. The image shows a 17.4 kilometer (10.8 mile) diameter volcanic dome on the plains. The dome is approximately 1.86 kilometers (1.2 mile) in height and it has a slope of about 23 degrees. The northwest and northeast flanks of the dome have collapsed to form landslides that have deposited debris on the plains. The image shows an area 110 kilometers (68 miles) across and 100 kilometers (62 miles) in length.

  2. Venus - Global gravity and topography

    NASA Astrophysics Data System (ADS)

    McNamee, J. B.; Borderies, N. J.; Sjogren, W. L.

    1993-05-01

    A new gravity field determination that has been produced combines both the Pioneer Venus Orbiter (PVO) and the Magellan Doppler radio data. Comparisons between this estimate, a spherical harmonic model of degree and order 21, and previous models show that significant improvements have been made. Results are displayed as gravity contours overlaying a topographic map. We also calculate a new spherical harmonic model of topography based on Magellan altimetry, with PVO altimetry included where gaps exist in the Magellan data. This model is also of degree and order 21, so in conjunction with the gravity model, Bouguer and isostatic anomaly maps can be produced. These results are very consistent with previous results, but reveal more spatial resolution in the higher latitudes.

  3. The global resurfacing of Venus

    NASA Technical Reports Server (NTRS)

    Strom, Robert G.; Schaber, Gerald G.; Dawsow, Douglas D.

    1994-01-01

    The impact cratering record on Venus is unique among the terrestrial planets. Fully 84% of the craters are in pristine condition, and only 12% are fractured. Remarkably, only 2.5% of the craters and crater-related features are embayed by lava, although intense volcanism and tectonism have affected the entire planet. Furthermore, the spatial and hypsometric distribution of the craters is consistent with a completely random one, including stochastic variations. Monte Carlo simulations of equilibrium resurfacing models result in a minimum of 17 times more embayed craters than observed, or unobserved nonrandom crater distributions for resurfacing areas between 0.03% and 100% of the planet's surface. These models also are not consistent with the number and nonrandom distribution of volcanoes, and the nonrandom distribution of embayed and heavily fractured craters. The constraints imposed by the cratering record strongly indicate that Venus experienced a global resurfacing event about 300 m.y. ago followed by a dramatic reduction of volcanism and tectonism. This global resurfacing event ended abruptly (less than 10 m.y.). The present crater population has accumulated since then and remains largely intact. Thermal history models suggest that similar global resurfacing events probably occured episodically in the past. We show that neither the present level and style of geologic activity nor anything less than global resurfacing could have produced the observed cratering record. The effects of recent geologic activity are much less than those of the earlier global resurfacing event, when the record of all the early heavy bombardment and much of the later light bombardment was erased from the surface by massive volcanism and tectonic activity. Episodic regional resurfacing events that had global effects also occurred on Earth (e.g., the mid-Cretaceous superplume) and probably on Mars. On Mars they may have triggered the catastrophic releases of water that formed the outflow

  4. Recent deformation rates on Venus

    NASA Astrophysics Data System (ADS)

    Grimm, Robert E.

    1994-11-01

    Constraints on the recent geological evolution of Venus may be provided by quantitative estimates of the rates of the principal resurfacing processes, volcanism and tectonism. This paper focuses on the latter, using impact craters as strain indicators. The total postimpact tectonic strain lies in the range 0.5-6.5%, which defines a recent mean strain rate of 10-18-10-17/s when divided by the mean surface age. Interpretation of the cratering record as one of pure production requires a decline in resurfacing rates at about 500 Ma (catastrophic resurfacing model). If distributed tectonic resurfacing contributed strongly before that time, as suggested by the widespread occurrence of tessera as inliers, the mean global strain rate must have been at least approximately 10-15/s, which is also typical of terrestrial active margins. Numerical calculations of the response of the lithosphere to inferred mantle convective forces were performed to test the hypothesis that a decrease in surface strain rate by at least two orders of magnitude could be caused by a steady decline in heat flow over the last billion years. Parameterized convection models predict that the mean global thermal gradient decreases by only about 5 K/km over this time; even with the exponential dependence of viscosity upon temperature, the surface strain rate drops by little more than one order of magnitude. Strongly unsteady cooling and very low thermal gradients today are necessary to satisfy the catastrophic model. An alternative, uniformitarian resurfacing hypothesis holds that Venus is resurfaced in quasi-random 'patches' several hundred kilometers in size that occur in response to changing mantle convection patterns.

  5. High Temperature Mechanisms for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  6. Results of the first statistical study of pioneer Venus orbiter plasma observations in the distant Venus tail: Evidence for a hemispheric asymmetry in the pickup of ionospheric ions

    SciTech Connect

    Intriligator, D.S. )

    1989-02-01

    Pioneer Venus Orbiter plasma and magnetometer observations from the first nine tail seasons of crossings of the Venus wake are used to study ion pickup in the far wake of an unmagnetized object embedded in the solar wind. This first statistical study treats all of the plasma spectra containing pickup ions in the vicinity of the Venus tail. The author finds a hemispheric asymmetry in the pickup of ionospheric ions, with approximately four times more O{sup +} events observed in the northern magnetic hemisphere (where Z{double prime} > O), i.e., the induced electric field points outward, (away from the ionopause boundary) than in the southern (Z{double prime} < O) magnetic hemisphere. Out of a total of 167 large O{sup +} events, 125, or 75%, occurred in the northern hemisphere when position is calculated in terms of Venus radii and 129 or 77% occurred in the northern hemisphere when position is expressed in gyroradii. This hemisphere asymmetry in ion pickup is consistent with the prediction of the Cloutier et al. (1974) mass loading model for Venusian ions above the ionopause boundary.

  7. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements

    NASA Astrophysics Data System (ADS)

    Haus, R.; Kappel, D.; Arnold, G.

    2014-04-01

    Thermal structure and cloud features in the atmosphere of Venus are investigated using spectroscopic nightside measurements recorded by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Express mission in the moderate resolution infrared mapping channel (M-IR, 1-5 μm). New methodical approaches and retrieval results for the northern hemisphere have been recently described by Haus et al. (Haus, R., Kappel, D., Arnold, G. [2013]. Planet. Space Sci. 89, 77-101. http://dx.doi.org/10.1016/j.pss.2013.09.020). Now, southern hemisphere maps of mesospheric temperature and cloud parameter fields are presented that cover variations with altitude, latitude, local time, and mission time. Measurements from the entire usable data archive are utilized comprising radiation spectra recorded during eight Venus solar days between April 2006 and October 2008. Zonal averages of retrieved temperature altitude profiles in both hemispheres are very similar and give evidence of global N-S axial symmetry of atmospheric temperature structure. Cold collar and warmer polar vortex regions exhibit the strongest temperature variability with standard deviations up to 8.5 K at 75°S and 63 km altitude compared with about 1.0 K at low and mid latitudes above 75 km. The mesospheric temperature field strongly depends on local time. At altitudes above about 75 km, the atmosphere is warmer in the second half of night, while the dawn side at lower altitudes is usually colder than the dusk side by about 8 K. Local minimum temperature of 220 K occurs at 03:00 h local time at 65 km and 60°S. Temperature standard deviation at polar latitudes is particularly large near midnight. Temperature variability with solar longitude is forced by solar thermal tides with a dominating diurnal component. The influence of observed cloud parameter changes on retrieved mesospheric zonal average temperature structure is moderate and does not exceed 2-3 K at altitudes between 60 and 75 km

  8. Error analysis for retrieval of Venus' IR surface emissivity from VIRTIS/VEX measurements

    NASA Astrophysics Data System (ADS)

    Kappel, David; Haus, Rainer; Arnold, Gabriele

    2015-08-01

    Venus' surface emissivity data in the infrared can serve to explore the planet's geology. The only global data with high spectral, spatial, and temporal resolution and coverage at present is supplied by nightside emission measurements acquired by the Visible and InfraRed Thermal Imaging Spectrometer VIRTIS-M-IR (1.0 - 5.1 μm) aboard ESA's Venus Express. A radiative transfer simulation and a retrieval algorithm can be used to determine surface emissivity in the nightside spectral transparency windows located at 1.02, 1.10, and 1.18 μm. To obtain satisfactory fits to measured spectra, the retrieval pipeline also determines auxiliary parameters describing cloud properties from a certain spectral range. But spectral information content is limited, and emissivity is difficult to retrieve due to strong interferences from other parameters. Based on a selection of representative synthetic VIRTIS-M-IR spectra in the range 1.0 - 2.3 μm, this paper investigates emissivity retrieval errors that can be caused by interferences of atmospheric and surface parameters, by measurement noise, and by a priori data, and which retrieval pipeline leads to minimal errors. Retrieval of emissivity from a single spectrum is shown to fail due to extremely large errors, although the fits to the reference spectra are very good. Neglecting geologic activity, it is suggested to apply a multi-spectrum retrieval technique to retrieve emissivity relative to an initial value as a parameter that is common to several measured spectra that cover the same surface bin. Retrieved emissivity maps of targets with limited extension (a few thousand km) are then additively renormalized to remove spatially large scale deviations from the true emissivity map that are due to spatially slowly varying interfering parameters. Corresponding multi-spectrum retrieval errors are estimated by a statistical scaling of the single-spectrum retrieval errors and are listed for 25 measurement repetitions. For the best of the

  9. Asteroid flux and impact cratering rate on Venus

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Wolfe, R. F.; Shoemaker, C. S.

    1991-01-01

    By the end of 1990, 65 Venus-crossing asteroids were recognized; these represent 59 percent of the known Earth-crossing asteroids. Further studies, chiefly numerical integrations of orbit evolution, may reveal one or two more Venus crossers among the set of discovered asteroids. A Venus crosser was defined as an asteroid whose orbit can intersect the orbit of Venus as a result of secular (long range) perturbations. Venus crossers revolving on orbits that currently overlap the orbit of Venus are called Venapol asteroids, and those on orbit that don't overlap are called Venamor asteroids; 42 Venapols and 23 Venamors were recognized. Collision probabilities with Venus for 60 of the known Venus crossers were determined.

  10. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  11. Dayside thermal structure of Venus' upper atmosphere characterized by a global model

    NASA Astrophysics Data System (ADS)

    Brecht, A. S.; Bougher, S. W.

    2012-08-01

    Observations of Venus' dayside thermal structure are being conducted through ground based observatories. These temperature measurements, along with those from several instruments onboard the current Venus Express mission, are augmenting the previous thermal structure data from past missions (e.g., Veneras', Pioneer Venus Orbiter, Pioneer Venus Probes). These recent ground-based and VEx observations reveal the Venus dayside lower thermosphere to be considerably warmer and dynamically important than previously understood. In this study, a three dimensional general circulation model, the Venus Thermospheric General Circulation Model (VTGCM), is used to provide dayside temperature predictions for comparison to these recent ground based observations. Such a comparison serves to identify and quantify the underlying thermal processes responsible for the observed dayside temperature structure. The VTGCM reproduces the dayside temperatures observed near 110 km at noon from 40°S to 40°N very well. In addition, the global winds generated by these warm dayside temperatures are shown to give rise to dayside upwelling (divergence) and nightside subsidence (convergence) resulting in nightside warming near the anti-solar point at ˜104 km. Corresponding nightside temperatures reach ˜198 K, in accord with averaged measurements. This agreement implies (1) it is important for GCMs to include the updated radiative heating and cooling rates presented in Roldán et al. (2000) and (2) the current VTS3 and VIRA empirical models are in-sufficient in representing the warm regions observed in the thermal structure of the dayside lower thermosphere (˜100 to 130 km) and need to be updated.

  12. Cross-terminator ion flow in the ionospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Fraenz, Markus; Dubinin, Eduard; Angsmann, Anne; Nielsen, Erling; Woch, Joachim; Barabash, Stas; Lundin, Rickard; Fedorov, A.

    The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question wether these fields can put the dense ionospheric plasma into motion. If so, the cross-terminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5km/s for O+ ions at Venus above 300km altitude at the terminator (Knudsen et al, GRL 1982). At Venus the flow has been explained by the pressure gradient force between dayside and nightside. It can explain the ion supply to the nightside ionosphere. At Mars comparable measurements have never been made. We here report on new measurements of the cross-terminator ion flow at Mars by the ASPERA 3 experiment onboard Mars Express with support from the MARSIS radar experiment which confirm O+ flow speeds of around 6km/s with fluxes of 1.2 ∗ 109 /cm2 s. We also discuss the complicated influence of the spacecraft potential on low energy measurements. At Mars the nightside ionosphere is much weaker than on Venus and the escape velocity only 5km/s. This means that the observed flow leads to escape from the planet. We discuss the implication of these new observation on the total ion escape and possible extensions of the analysis to dayside observations which might allow us to infer the flow structure imposed by the induced magnetic field. We then discuss the observational situation at Venus where the ASPERA-4 instrument allows similar measurements.

  13. Geologic map of the Artemis Chasma quadrangle (V-48), Venus

    USGS Publications Warehouse

    Bannister, Roger A.; Hansen, Vicki L.

    2010-01-01

    . So although it seems clear what Artemis is not, there is little consensus about what Artemis is, much less how Artemis formed. Debate during the past decade has resulted in the proposal of at least four hypotheses for Artemis' formation. The first (herein referred to as H1) is that Artemis Chasma represents a zone of northwest-directed convergence and subduction. The second hypothesis (herein referred to as H2) is that Artemis consists of a composite structure with a part of its interior region marking the exposure of deformed ductile deep-crustal rocks analogous to a terrestrial metamorphic core complex. The third (herein referred to as H3) is that Artemis reflects the surface expression of an ancient (>3.5 Ga) huge bolide impact event on cold strong lithosphere. The fourth hypothesis (herein referred to as H4) is that Artemis marks the surface expression of a deep mantle plume. Each of these hypotheses holds different implications for Venus geodynamics and evolution processes, and for terrestrial planet processes in general. Viability of H1 would provide support that terrestrial-like plate-tectonic processes once occurred on Earth's sister planet. The feasibility of H2 would require high values of crustal extension and therefore imply that significant horizontal displacements occurred on Venus-displacement that may or may not be related to terrestrial-like plate-tectonic processes. The possibility of H3 would suggest that Venus' surface is extremely old, and that Venus has experienced very little dynamic activity for the last 3.5 billion years or more; this would further imply that Venus is essentially tectonically dead, and has been for most of its history. This view contrasts strongly with studies that highlight a rich history of Venus including activity at least as young as 750 million years ago, and quite likely up to the present. If H4 has credibility, then Artemis could provide clues to cooling mechanisms of Earth's sister planet. Each of these hypotheses

  14. Validity of space weather prediction to Venus and Mars

    NASA Astrophysics Data System (ADS)

    Opitz, A.; Vech, D.; Sanchez-Diaz, E.; Szego, K.; Witasse, O.; Andre, N.

    2015-10-01

    Both Venus and Mars have ionospheres, but no strong intrinsic magnetospheres, only Mars has some inhomogeneously distributed crustal field. The solar wind interaction with the ionosphere of these unmagnetized planets is highly important in defining the planets' plasma environment. The properties of their induced magnetospheres depend strongly on the solar input arriving at the planet. In order to study this interaction of the solar wind and the planetary plasma environment, ideally we would need measurements both in the solar wind and in this induced magnetosphere the same time. When there is only one spacecraft around the planet, it cannot perform such simultaneous observations, thus the prediction of solar wind properties and solar events to the different planetary objects becomes important. These predictions can be validated by in situ measurements onboard the planetary spacecraft such as Mars Express and Venus Express while these are located in the solar wind. The solar predictions are based on solar spacecraft observations such as SOHO, ACE, WIND, STEREO A and B, which are at different distances from the investigated planets. We show how the prediction accuracy depends on the spatial separation of the solar and the planetary spacecraft.

  15. Generation of a Tlx1(CreER-Venus) knock-in mouse strain for the study of spleen development.

    PubMed

    Nakahara, Ryo; Kawai, Yasuhiro; Oda, Akihisa; Nishimura, Miyuki; Murakami, Akikazu; Azuma, Takachika; Kaifu, Tomonori; Goitsuka, Ryo

    2014-11-01

    The spleen is a lymphoid organ that serves as a unique niche for immune reactions, extramedullary hematopoiesis, and the removal of aged erythrocytes from the circulation. While much is known about the immunological functions of the spleen, the mechanisms governing the development and organization of its stromal microenvironment remain poorly understood. Here we report the generation and analysis of a Tlx1(Cre) (ER) (-Venus) knock-in mouse strain engineered to simultaneously express tamoxifen-inducible CreER(T2) and Venus fluorescent protein under the control of regulatory elements of the Tlx1 gene, which encodes a transcription factor essential for spleen development. We demonstrated that Venus as well as CreER expression recapitulates endogenous Tlx1 transcription within the spleen microenvironment. When Tlx1(Cre) (ER) (-Venus) mice were crossed with the Cre-inducible reporter strain, Tlx1-expressing cells as well as their descendants were specifically labeled following tamoxifen administration. We also showed by cell lineage tracing that asplenia caused by Tlx1 deficiency is attributable to altered contribution of mesenchymal cells in the spleen anlage to the pancreatic mesenchyme. Thus, Tlx1(Cre) (ER) (-Venus) mice represent a new tool for lineage tracing and conditional gene manipulation of spleen mesenchymal cells, essential approaches for understanding the molecular mechanisms of spleen development.

  16. Extreme Environments Technologies for Probes to Venus and Jupiter

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Kolawa, Elizabeth A.; Peterson, Craig E.; Cutts, James A.; Belz, Andrea P.

    2007-01-01

    This viewgraph presentation reviews the technologies that are used to mitigate extreme environments for probes at Venus and Jupiter. The contents include: 1) Extreme environments at Venus and Jupiter; 2) In-situ missions to Venus and Jupiter (past/present/future); and 3) Approaches to mitigate conditions of extreme environments for probes with systems architectures and technologies.

  17. Lithospheric and atmospheric interaction on the planet Venus

    NASA Technical Reports Server (NTRS)

    Volkov, Vladislav P.

    1991-01-01

    Lithospheric and atmospheric interaction in the planet Venus are discussed. The following subject areas are covered: (1) manifestation of exogenic processes using photogeological data; (2) the chemical composition and a chemical model of the troposphere of Venus; (3) the mineral composition of surface rock on Venus; and (4) the cycles of volatile components.

  18. Venus: A search for clues to early biological possibilities

    NASA Technical Reports Server (NTRS)

    Colin, Larry; Kasting, James F.

    1992-01-01

    The extensive evidence that there is no extant life on Venus is summarized. The current atmospheric environment, which is far too hostile by terrestrial standards to support life, is described. However, exobiologists are interested in the possibility of extinct life on Venus. The early history of Venus is discussed in terms of its ability to sustain life that may now be extinct.

  19. Atmospheric tides and the rotation of Venus. II - Spin evolution

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    1980-01-01

    Tides in the atmosphere of Venus may help to stabilize its slow retrograde rotation. The frequency dependence of the body tides also affects its rotational stability. However, the obliquity is probably maintained near 180 deg by friction between the core and mantle of Venus. In any case, it appears most likely that Venus originated with an obliquity greater than 90 deg.

  20. Large Volcanic Rises on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  1. Understanding Venus to understand the Earth

    NASA Astrophysics Data System (ADS)

    Widemann, T.; Tanga, P.

    2012-12-01

    Despite having almost the same size and bulk composition as the Earth, Venus possesses an extreme climate with a surface pressure of 90 bars and temperatures of 740 K. At visible wavelengths the Venus disk appears covered by thick clouds.The core atmospheric processes of Venus and the Earth are similar, despite the different, extraordinary paths they took since their simultaneous formation in the solar system's habitable zone. There are several indications that the composition of the Venus atmosphere has undergone large changes, such as an early runaway climate, and it is likely that the planet has lost a large amount of water through dissociation in the upper atmosphere due to ultraviolet radiation and the subsequent escape of hydrogen. SO2 is thought to originate from volcanism. H2O and SO2 react to form H2SO4 which condenses to form clouds. In past centuries, astronomers and explorers including Captain James Cook observed transits to measure the scale of the solar system. On 5-6 June 2012 we observed the last transit of Venus in this century. Close to the ingress and egress phases, the fraction of Venus disk outside the solar photosphere appears outlined by a thin arc of light, called the aureole. We have shown that the deviation due to refraction and the luminosity of the aureole are related to the local density scale height and the altitude of the refraction layer. As different portions of the arc can yield different values of these parameters, the rare transit event thus provides a unique insight of the Venus mesosphere. The polar region, significantly brighter in initial phases due to larger scale height of the polar mesosphere, appears consistently offset toward morning terminator by about 15deg. latitude, peaking at 75N at 6:00 local time. This result reflects local latitudinal structure in the polar mesosphere, either in temperature or aerosol altitude distribution. Detailed comparative climatology of Venus, an Earth-size planet and understanding why it

  2. HAVOC: High Altitude Venus Operational Concept - An Exploration Strategy for Venus

    NASA Technical Reports Server (NTRS)

    Arney, Dale; Jones, Chris

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A lighter-than-air vehicle can carry either a host of instruments and probes, or a habitat and ascent vehicle for a crew of two astronauts to explore Venus for up to a month. The mission requires less time to complete than a crewed Mars mission, and the environment at 50 km is relatively benign, with similar pressure, density, gravity, and radiation protection to the surface of Earth. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30 day crewed mission into Venus's atmosphere. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. With advances in technology and further refinement of the concept, missions to the Venusian atmosphere can expand humanity's future in space.

  3. Comparative hypsometric analysis of Earth and Venus

    NASA Astrophysics Data System (ADS)

    Rosenblatt, P.; Pinet, P. C.; Thouvenot, E.

    1994-03-01

    The comparison between Earth and Venus global hypsometric distributions is reinvestigated on the basis of the high-resolution data provided by the recent Magellan global topographic coverage of Venus' surface, and the detailed ETOPO-5 topographic database for the Earth's surface. The study of the cumulative hypsometric curve for both planets reveals that there exists a domain of elevation for which the relationship between the elevation and the square root of cumulative area percentage is linear. This domain covers about 80% of the mapped venusian surface and nearly all the terrestrial oceanic surface (55% of the earth's surface) and corresponds to an elevation range of about 2000 m for both planets. Proposing the upper threshold elevation of this domain as a common geophysical reference level, it is shown that the terrestrial oceanic peak and the venusian peak coincide very closely. In addition, the terrestrial and venusian hypsometric distributions for elevations lower than this reference level are quite similar, in their amplitude, modal distribution, and pronounced symmetry. The correspondence of the venusian peak with the terrestrial oceanic peak is a striking feature, but it does not necessarily imply the occurrence of plate tectonics on Venus. The present observation is consistent with the existence of a similar thermal isostasy acting at the planetary scale. It places an upper bound at 90 +/- 10 km for the modal thermal lithospheric thickness of Venus, if the Venus mantle thermal conditions are earth-like. This estimate is reduced if hotter conditions occur.

  4. Venus in Violet and Near Infrared Light

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These images of the Venus clouds were taken by Galileo's Solid State Imaging System February 13,1990, at a range of about 1 million miles. The smallest detail visible is about 20 miles. The two right images show Venus in violet light, the top one at a time six hours later than the bottom one. They show the state of the clouds near the top of Venus's cloud deck. A right to left motion of the cloud features is evident and is consistent with westward winds of about 230 mph. The two left images show Venus in near infrared light, at the same times as the two right images. Sunlight penetrates through the clouds more deeply at the near infrared wavelengths, allowing a view near the bottom of the cloud deck. The westward motion of the clouds is slower (about 150 mph) at the lower altitude. The clouds are composed of sulfuric acid droplets and occupy a range of altitudes from 30 to 45 miles. The images have been spatially filtered to bring out small scale details and de-emphasize global shading. The filtering has introduced artifacts (wiggly lines running north/south) that are faintly visible in the infrared image. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth.

  5. Deuterium on Venus: Observations from Earth

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.; Debergh, C.; Bezard, B.; Owen, T.; Crisp, D.; Maillard, J.-P.

    1991-01-01

    In view of the importance of the deuterium-to-hydrogen ratio in understanding the evolutionary scenario of planetary atmospheres and its relationship to understanding the evolution of our own Earth, we undertook a series of observations designed to resolve previous observational conflicts. We observed the dark side of Venus in the 2.3 micron spectral region in search of both H2O and HDO, which would provide us with the D/H ratio in Venus' atmosphere. We identified a large number of molecular lines in the region, belonging to both molecules, and, using synthetic spectral techniques, obtained mixing ratios of 34 plus or minus 10 ppm and 1.3 plus or minus 0.2 ppm for H2O and HDO, respectively. These mixing ratios yield a D/H ratio for Venus of D/H equals 1.9 plus or minus 0.6 times 10 (exp 12) and 120 plus or minus 40 times the telluric ratio. Although the detailed interpretation is difficult, our observations confirm that the Pioneer Venus Orbiter results and establish that indeed Venus had a period in its early history in which it was very wet, perhaps not unlike the early wet period that seems to have been present on Mars, and that, in contrast to Earth, lost much of its water over geologic time.

  6. Upward ion flow in the ionospheric holes on Venus

    SciTech Connect

    Hartle, R.E.; Grebowsky, J.M. )

    1990-01-01

    Ion composition measurements made by the orbiter ion mass spectrometer on the Pioneer Venus Orbiter are used to determine the ion flow characteristics within two ionospheric holes on the nightside of Venus. A comparison of the altitude profiles of the observed ion densities with those expected under diffusive equilibrium conditions indicates that the major ions O{sup +}, NO{sup +}, and O{sub 2}{sup +} and the minor ions H{sup +} and He{sup +} flow upward, away from Venus, along the axis of the holes. The result is substantiated by a quantitative evaluation of the ion flow speeds appearing in expressions derived from the equations for conservation of mass and momentum of the ions and electrons. The resulting equations for the ion flow speeds are functions of the observed ion and neutral species densities and the ion and electron temperatures. The analysis reveals that all ion species flow upward in the holes because the upward force produced by the plasma pressure gradient exceeds all downward forces. Furthermore, the ion flow speeds are found to increase with altitude as a result of the continual acceleration caused by the net upward force. In the acceleration region, where the observing altitudes were limited to the range extending from the (O{sup +}) peak ({approximately}170 km) to 250 km, none of the ion components attain their acoustic speeds, although the light ions come within about a factor of 2. The light ions H{sup +} and He{sup +} attain the greatest speeds because as minor ions they experience the largest polarization electric fields produced in the ion-electron gas.

  7. Glory on Venus cloud tops and the unknown UV absorber

    NASA Astrophysics Data System (ADS)

    Markiewicz, W. J.; Petrova, E.; Shalygina, O.; Almeida, M.; Titov, D. V.; Limaye, S. S.; Ignatiev, N.; Roatsch, T.; Matz, K. D.

    2014-05-01

    We report on the implications of the observations of the glory phenomenon made recently by Venus Express orbiter. Glory is an optical phenomenon that poses stringent constraints on the cloud properties. These observations thus enable us to constrain two properties of the particles at the cloud tops (about 70 km altitude) which are responsible for a large fraction of the solar energy absorbed by Venus. Firstly we obtain a very accurate estimate of the cloud particles size to be 1.2 μm with a very narrow size distribution. We also find that for the two observations presented here the clouds are homogenous, as far as cloud particles sizes are concerned, on scale of at least 1200 km. This is in contrast to previous estimates that were either local, from entry probes data, or averaged over space and time from polarization data. Secondly we find that the refractive index for the data discussed here is higher than that of sulfuric acid previously proposed for the clouds composition (Hansen, J.E., Hovenier, J.W. [1974]. J. Atmos. Sci. 31, 1137-1160; Ragent, B. et al. [1985]. Adv. Space Res. 5, 85-115). Assuming that the species contributing to the increase of the refractive index is the same as the unknown UV absorber, we are able to constrain the list of candidates. We investigated several possibilities and argue that either small ferric chloride (FeCl3) cores inside sulfuric acid particles or elemental sulfur coating their surface are good explanations of the observation. Both ferric chloride and elemental sulfur have been suggested in the past as candidates for the as yet unknown UV absorber (Krasnopolsky, V.A. [2006]. Planet. Space Sci. 54, 1352-1359; Mills, F.P. et al. [2007]. In: Esposito, L.W., Stofan, E.R., Cravens, T.E. (Eds.), Exploring Venus as a Terrestrial Planet, vol. 176. AGU Monogr. Ser., Washington, DC, pp. 73-100).

  8. Coupled Sulfur and Chlorine Chemistry in Venus' Upper Cloud Layer

    NASA Astrophysics Data System (ADS)

    Mills, Franklin P.

    2006-09-01

    Venus' atmosphere likely contains a rich variety of sulfur and chlorine compounds because HCl, SO2, and OCS have all been observed. Photodissociation of CO2 and SO2 in the upper cloud layer produces oxygen which can react directly or indirectly with SO2 to form SO3 and eventually H2SO4. Photodissociation of HCl within and above the upper cloud layer produces chlorine which can react with CO and O2 to form ClCO and ClC(O)OO. These two species have been identified as potentially critical intermediaries in the production of CO2. Much less work has been done on the potential coupling between sulfur and chlorine chemistry that may occur within the upper cloud layer. Several aspects have been examined in recent modeling: (1) linkage of the CO2 and sulfur oxidation cycles (based on ideas from Yung and DeMore, 1982), (2) reaction of Cl with SO2 to form ClSO2 (based on ideas from DeMore et al., 1985), and (3) the chemistry of SmCln for m,n = 1,2 (based on preliminary work in Mills, 1998). Initial results suggest the chemistry of SmCln may provide a pathway for accelerated production of polysulfur, Sx, if the oxygen abundance in the upper cloud layer is as small as is implied by the observational limit on O2 (Trauger and Lunine, 1983). Initial results also suggest that ClSO2 can act as a buffer which helps increase the scale height of SO2 and decrease the rate of production of H2SO4. This presentation will describe the results from this modeling; discuss their potential implications for the CO2, sulfur oxidation, and polysulfur cycles; and outline key observations from Venus Express that can help resolve existing questions concerning the chemistry of Venus' upper cloud. Partial funding for this research was provided by the Australian Research Council.

  9. Properties of planetward ion flows in Venus' magnetotail

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Brandt, P. C.; Collinson, G.; Rong, Z. J.; Futaana, Y.; Zhang, T. L.

    2016-08-01

    Venus is gradually losing some of its atmosphere in the form of ions through its induced magnetotail. Some of these ions have been reported previously to flow back to the planet. Proposed drivers are magnetic reconnection and deflection of pickup ions in the magnetic field. We analyze protons and oxygen ions with eV to keV energies acquired by the ASPERA-4/IMA instrument throughout the entire Venus Express mission. We find that venusward flowing ions are important in the sense that their density and deposition rate into the atmosphere is of the same order of magnitude as the density and escape rate of downtail flowing ions. Our analysis shows that during strong EUV irradiance, which occurs during solar maximum, the flux of venusward flowing protons is weaker and of oxygen ions is stronger than during weak irradiance. Since such a behavior was observed when tracing oxygen ions through a MHD model, the ultimate driver of the venusward flowing ions may simply be the magnetic field configuration around Venus. Although the pure downtail oxygen flux stays mostly unchanged for all observed EUV conditions, the increase in venusward oxygen flux for high irradiance results in a lower net atmospheric escape rate. Venusward bulk flows are mostly found in locations where the magnetic field is weak relative to the interplanetary conditions. Although a weak field is generally an indicator of proximity to the magnetotail current sheet, these flows do not cluster around current sheet crossings, as one may expect if they would be driven by magnetic reconnection.

  10. First laboratory high-temperature emissivity measurements of Venus analog measurements in the near-infrared atmospheric windows

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Smrekar, S. E.

    2014-12-01

    The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques over most of the visible spectral range. Venus' CO2 atmosphere is transparent exclusively in small spectral windows near 1 μm. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) team on the European Space Agency Venus-Express mission have recently used these windows successfully to map the southern hemisphere from orbit. VIRTIS is showing variations in surface brightness, which can be interpreted as variations in surface emissivity. Deriving surface composition from these variations is a challenging task. Comparison with laboratory analogue spectra are complicated by the fact that Venus has an average surface temperature of 730K. Mineral crystal structures and their resultant spectral signatures are notably affected by temperature, therefore any interpretations based on room temperature laboratory spectra database can be misleading. In order to support the interpretation of near-infrared data from Venus we have started an extensive measurement campaign at the Planetary Emissivity Laboratory (PEL, Institute of Planetary Research of the German Aerospace Center, Berlin). The PEL facility, which is unique in the world, allows emission measurements covering the 1 to 2 μm wavelength range at sample temperatures of up to 770K. Conciliating the expected emissivity variation between felsic and mafic minerals with Venera and VEGA geochemical data we have started with a set of five analog samples. This set includes basalt, gneiss, granodiorite, anorthosite and hematite, thus covering the range of mineralogies. Preliminary results show significant spectral contrast, thus allowing different samples to be distinguished with only 5 spectral points and validating the use of thermal emissivity for investigating composition. This unique new dataset from PEL not only allows interpretation of the Venus Express VIRTIS data but also provide a baseline for considering

  11. A radar image of Venus.

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Rumsey, H. C.

    1972-01-01

    Radar scans of Venus have yielded a brightness map of a large portion of the surface. The bright area in the south (alpha) and the twin such areas in the north (beta and delta) were first discovered by spectral analysis of radar echos. When range-gating is also applied, their shapes are revealed, and they are seen to be roundish and about 1000 km across. Although radar brightness can be the result of either intrinsic reflectivity or surface roughness, polarization studies show these features to be rough (to the scale of the wavelength, 12.5 cm). Dark, circular areas can also be seen, many with bright central spots. The dark areas are probably smooth. The blurring of the equatorial strip is an artifact of the range-Doppler geometry; all resolution disappears at the equator. Another artifact of the method is the 'ghost', in the south, of the images of beta and delta. Such ghosts appear only at the eastern and western extremes of the map.

  12. Venus Balloons using Water Vapor

    NASA Astrophysics Data System (ADS)

    Izutsu, N.; Yajima, N.; Honda, H.; Imamura, T.

    We propose an inflatable balloon using water vapor for the lifting gas, which is liquid in the transportation stage before entry into the high temperature atmosphere. The envelope of the balloon has an outer layer for gas barrier (a high-temperature resistant film) and an inner layer for liquid water keeping. In the descent stage using a parachute, water widely held just inside the balloon envelope can be quickly vaporized by a lot of heat flux from the surrounding high-temperature atmosphere owing to the large surface area of the balloon. As neither gas containers nor heat exchangers are necessary, we can construct a simple, lightweight and small size Venus balloon probe system. Tentative floating altitude is 35 km below the thick clouds in the Venusian atmosphere. Selection of balloon shape and material for balloon envelope are discussed in consideration of the Venusian environment such as high-temperature, high-pressure, and sulfuric acid. Balloon deployment and inflation sequence is numerically simulated. In case of the total floating mass of 10 kg at the altitude of 35 km, the volume and mass of the balloon is 1.5 cubic meters, and 3.5 kg, respectively. The shape of the balloon is chosen to be cylindrical with a small diameter. The mass of li fting gas can be determined as 4.3 kg and the remaining 2.2 kg becomes the payload mass. The mass of the total balloon system is also just 10 kg excluding the entry capsule.

  13. Venus - Sag Caldera 'Sachs Patera

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This image of Sachs Patera on Venus is centered at 49 degrees north, 334 degrees east. Defined as a sag-caldera, Sachs is an elliptical depression 130 meters (81 feet) in depth, spanning 40 kilometers (25 miles) in width along its longest axis. The morphology implies that a chamber of molten material drained and collapsed, forming a depression surrounded by concentric scarps spaced 2-to-5 kilometers (1.2- to-3 miles) apart. The arc-shaped set of scarps, extending out to the north from the prominent ellipse, is evidence for a separate episode of withdrawal; the small lobe-shaped extension to the southwest may represent an additional event. Solidified lava flows 10-to-25 kilometers (6-to-16 miles) long, give the caldera its flower-like appearance. The flows are a lighter tone of gray in the radar data because the lava is blockier in texture and consequently returns more radar waves. Much of the lava, which was evacuated from the chamber, probably traveled to other locations underground, while some of it may have surfaced further south. This is unlike calderas on Earth, where a rim of lava builds up in the immediate vicinity of the caldera.

  14. (abstract) Venus Gravity Data Reduction

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Sjogren, W. L.; Graat, E.; Arkani-Hamed, J.

    1994-01-01

    The Magellan spacecraft has provided high resolution gravity data to its very end, October 13, 1994, when it was consumed by the Venusian atmosphere. After aerobraking in August of 1993 to attain a near circular orbit, excellent high latitude data were acquired which previously were very weak during the elliptical orbit coverage. There are 1500 orbits during the near circular orbit, supplying redundant coverage at different geometries over many features. This allowed the relaxation of apriori constraints, so true amplitudes are being extracted from the data. In this paper we present the results of a 75(sup th) degree and order field that incorporates all the old Pioneer Venus Orbiter data as well as all the Magellan data to September 1994. The new results reflect even higher correlation with topography, higher amplitude values for the highs and lows, and global results that have essentially very little apriori constraint on the solution parameters. We also correlate our new model with the earlier ones based on 60(sup th) and 40(sup th) degree and order presentations.

  15. Ion populations in the tail of Venus

    NASA Technical Reports Server (NTRS)

    Vaisberg, O.; Fedorov, A.; Dunjushkin, F.; Kozhukhovsky, A.; Smirnov, V.; Avanov, L.; Russell, C. T.; Luhmann, J. G.

    1995-01-01

    Plasma measurements in the tails of Venus showed the existence of several ion populations. Measurements performed on Venera and Pioneer Venus spacecraft at different planetocentric distances showed the evolution of the plasma parameters along the tail. Low-energy ion fluxes measured in the tail at close downstream distances, are also observed farther downstream, and show low acceleration from 0.5 R(sub V) to 12 R(sub V). High energy ions (energetic O(+) ions) reported from Pioneer Venus Orbiter (PVO) observations in the tail at 10-12 R(sub V) seem to be the same ion component that was observed as energetic ions at the tail boundary close to the planet on Venera spacecraft. We give evidence that these ions are accelerated in the narrow shear layer near the tail boundary.

  16. Origin of flux ropes in Venus' ionosphere

    NASA Astrophysics Data System (ADS)

    Cole, Keith D.

    1994-08-01

    The joule dissipation inside flux ropes in Venus' ionosphere is so great that they must be formed near, and maintained at, the place where they are observed. Thus ropes are not formed by a Kelvin-Helmholtz instability of the ionopause. The hypothesis that ropes may be formed by the dynamo action of internal gravity waves in Venus' thermosphere (Luhmann and Elphic, 1985; Cole, 1993) is strengthened by discussion of a magnetic evolution equation which includes neutral air motion. However, the dynamo process would work only at altitudes at which vin is greater than or equal to omegai. At altitudes or parts of a rope where vin is much less than omegai, the process does not work. A solar wind dynamo is therefore examined to account for the ropes. Thereby a major new heat source for ions of the Venus ionosphere associated with the ropes is uncovered.

  17. Dynamics of the Venus atmospheric superrotation

    NASA Astrophysics Data System (ADS)

    Takagi, Masahiro

    It has been shown by Takagi and Matsuda (2006, 2007) that the thermal tides excited at the cloud levels propagate downward to the ground, and induce mean flow in the opposite direction to the Venus rotation at about 0-10 km levels. Surface friction acting on this counter flow can provide the Venus atmosphere with net angular momentum required for its superrotation. By using a nonlinear dynamical model, it has been confirmed that this mechanism generates the atmospheric superrotation extending from the ground to 80 km, whose vertical structure is consistent with observations. However, a mean zonal component of the solar heating is excluded in this model. Numerical experiments with the mean zonal solar heating imply that dynamical effects of the mean meridional circulation cannot be neglected. It is also necessary to construct a radiation scheme suitable for the Venus atmosphere with enormous optical depth. We are currently working on these tasks.