Science.gov

Sample records for abordaje coronal estudio

  1. Abordaje a la Cisterna Ambiens

    PubMed Central

    Ajler, Pablo; Bravo, Michael Cruz; Garategui, Lucas; Goldschmidt, Ezequiel; Isolan, Gustavo; Campero, Álvaro

    2016-01-01

    Resumen Objetivo: Describir paso a paso el abordaje a la cisterna ambiens por la vía suboccipital retrosigmoidea supracerebelosa infratentorial (SRSI). Descripción: El abordaje SRSI se realiza de la misma manera que el abordaje suboccipital retrosigmoideo (SR), utilizado habitualmente para acceder a la patología del ángulo pontocerebeloso, con las siguientes modificaciones: (1) utilizamos siempre la posición semisentado, (2) la craneotomia-craniectomia debe exponer el seno transverso y extenderse 5 cm medialmente hacia el inion, (3) al realizar la apertura dural es necesario rebatir la duramadre junto con el seno transverso hacia cefálico con puntos de tracción, (4) bajo magnificación con microscopio quirúrgico se debe realizar la apertura de la cisterna cerebelobulbar para drenar líquido cefalorraquídeo, (5) en el plano supracerebeloso es fundamental cortar las bridas aracnoidales y de ser necesario debemos coagular y cortar las venas puente, todas estas maniobras sumadas al efecto de la gravedad brindan mayor apertura del corredor supracerebeloso. Conclusión: El abordaje a la cisterna ambiens por la vía SRSI es una opción segura para el acceso de patologías tumorales que se alojan en esta zona con un componente predominantemente infratentorial. PMID:27999709

  2. Coronation Chemicals

    NASA Image and Video Library

    2012-08-22

    This is the first laser spectrum from the ChemCam instrument on NASA Curiosity rover, sent back from Mars on Aug. 19, 2012, showing emission lines from different elements present in the target, a rock near the rover landing site dubbed Coronation.

  3. CORONAL CELLS

    SciTech Connect

    Sheeley, N. R. Jr.; Warren, H. P. E-mail: harry.warren@nrl.navy.mil

    2012-04-10

    We have recently noticed cellular features in Fe XII 193 A images of the 1.2 MK corona. They occur in regions bounded by a coronal hole and a filament channel, and are centered on flux elements of the photospheric magnetic network. Like their neighboring coronal holes, these regions have minority-polarity flux that is {approx}0.1-0.3 times their flux of majority polarity. Consequently, the minority-polarity flux is 'grabbed' by the majority-polarity flux to form low-lying loops, and the remainder of the network flux escapes to connect with its opposite-polarity counterpart in distant active regions of the Sun. As these regions are carried toward the limb by solar rotation, the cells disappear and are replaced by linear plumes projecting toward the limb. In simultaneous views from the Solar Terrestrial Relations Observatory and Solar Dynamics Observatory spacecraft, these plumes project in opposite directions, extending away from the coronal hole in one view and toward the hole in the other view, suggesting that they are sky-plane projections of the same radial structures. We conclude that these regions are composed of closely spaced radial plumes, extending upward like candles on a birthday cake and visible as cells when seen from above. We suppose that a coronal hole has this same discrete, cellular magnetic structure, but that it is not seen until the encroachment of opposite-polarity flux closes part or all of the hole.

  4. Coronal Holes.

    PubMed

    Cranmer, Steven R

    Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance), but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.

  5. Coronal and Prominence Plasmas

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I. (Editor)

    1986-01-01

    Various aspects of solar prominences and the solar corona are discussed. The formation of prominences, prominence diagnostics and structure, prominence dissappearance, large scale coronal structure, coronal diagnostics, small scale coronal structure, and non-equilibrium/coronal heating are among the topics covered.

  6. Elongated Coronal Hole

    NASA Image and Video Library

    2016-03-24

    NASA Solar Dynamics Observatory shows a long coronal hole has rotated so that was temporarily facing right towards Earth Mar. 23-25, 2016. Coronal holes appear dark when viewed in some wavelengths of extreme ultraviolet light.

  7. Implications for Coronal Heating from Coronal Rain

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Shibata, K.; Carlsson, M.; van der Voort, L. R.; Vissers, G.; Hansteen, V.

    2012-08-01

    Coronal rain is a phenomenon above active regions in which cool plasma condensations fall down from coronal heights. Numerical simulations of loops have shown that such condensations can naturally form in the case of footpoint concentrated heating through the “catastrophic cooling” mechanism. In this work we analize high resolution limb observations in Ca II H and Hα of coronal rain performed by Hinode/SOT and by Crisp of SST and derive statistical properties. We further investigate the link between coronal rain and the coronal heating mechanisms by performing 1.5-D MHD simulations of a loop subject to footpoint heating and to Alfvén waves generated in the photosphere. It is found that if a loop is heated predominantly from Alfvén waves coronal rain is inhibited due to the characteristic uniform heating they produce. Hence coronal rain can point both to the spatial distribution of the heating and to the agent of the heating itself, thus acting as a marker for coronal heating mechanisms.

  8. Coronal heating by waves

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1983-01-01

    Alfven waves or Alfvenic surface waves carry enough energy into the corona to provide the coronal energy requirements. Coronal loop resonances are an appealing means by which large energy fluxes enter active region loops. The wave dissipation mechanism still needs to be elucidated, but a Kolmogoroff turbulent cascade is fully consistent with the heating requirements in coronal holes and active region loops.

  9. Coronal Hole Coming Around

    NASA Image and Video Library

    2016-12-06

    A substantial coronal hole began to rotate into view over the past few days (Dec. 1-2, 2016). Coronal holes are magnetically open areas of the sun's magnetic field structure that spew streams of high speed solar wind into space. In about a week or so that coronal hole might send streams of particles in the direction of Earth. Often times these streams can interact with Earth's magnetosphere and generate aurora. The images were taken in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21208

  10. Returning Coronal Hole

    NASA Image and Video Library

    2017-02-06

    A substantial coronal hole rotated across the face of the sun this past week and is again streaming solar wind towards Earth (Jan. 30 - Feb. 2, 2017). This same coronal hole was facing Earth about a month ago and has rotated into a similar position again. Coronal holes are areas of open magnetic field from which solar wind particles stream into space. In this wavelength of extreme ultraviolet light it appears as a dark area near the center and lower portion of the sun. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11177

  11. Coronal Hole Faces Earth

    NASA Image and Video Library

    2017-08-14

    A substantial coronal hole rotated into a position where it is facing Earth (Aug. 9-11, 2017). Coronal holes are areas of open magnetic field that spew out charged particles as solar wind that spreads into space. If that solar wind interacts with our own magnetosphere it can generate aurora. In this view of the sun in extreme ultraviolet light, the coronal hole appears as the dark stretch near the center of the sun. It was the most distinctive feature on the sun over the past week. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21874

  12. Two Coronal Holes

    NASA Image and Video Library

    2015-04-03

    A pair of substantial coronal holes were the most notable features on the Sun over the week of Mar. 28 - Apr. 2, 2015. The images were taken in a wavelength of extreme ultraviolet light by NASA GSFC Solar Dynamics Observatory.

  13. Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Crooker, Nancy; Joselyn, Jo Ann; Feynman, Joan

    The early 1970's can be said to mark the beginning of The Enlightenment in the history of the Space Age, literally as well as by analogy to European history. Instruments blinded by Earth's atmosphere were lifted above and, for the first time, saw clearly and continuously the ethereal white light and sparkling x-rays from the solar corona. From these two bands of the light spectrum came images of coronal mass ejections and coronal holes, respectively. But whereas coronal holes were immediately identified as the source of high-speed solar wind streams, at first coronal mass ejections were greeted only by a sense of wonder. It took years of research to identify their signatures in the solar wind before the fastest ones could be identified with the well-known shock disturbances that cause the most violent space storms.

  14. Stellar Coronal Astronomy

    NASA Astrophysics Data System (ADS)

    Favata, Fabio; Micela, Giuseppina

    2003-10-01

    Coronal astronomy is by now a fairly mature discipline, with a quarter century having gone by since the detection of the first stellar X-ray coronal source (Capella), and having benefitted from a series of major orbiting observing facilities. Serveral observational characteristics of coronal X-ray and EUV emission have been solidly established through extensive observations, and are by now common, almost text-book, knowledge. At the same time the implications of coronal astronomy for broader astrophysical questions (e.g.Galactic structure, stellar formation, stellar structure, etc.) have become appreciated. The interpretation of stellar coronal properties is however still often open to debate, and will need qualitatively new observational data to book further progress. In the present review we try to recapitulate our view on the status of the field at the beginning of a new era, in which the high sensitivity and the high spectral resolution provided by Chandra and SMM-Newton will address new questions which were not accessible before.

  15. Substantial Coronal Holes

    NASA Image and Video Library

    2016-10-21

    A pair of large coronal holes rotated into view over the past few days (Oct. 20-21, 2016). Coronal holes appear dark in certain wavelengths of extreme ultraviolet light, such as in the wavelength used here. These holes are areas of open magnetic field that spew solar wind into space. Sometimes, when they are facing Earth, they can cause geomagnetic disturbances that generate aurora. The lines you see were drawn to represent how solar scientists are modeling the magnetic field lines. Movies are available at the Photojournal http://photojournal.jpl.nasa.gov/catalog/PIA15378

  16. Lengthy Coronal Hole

    NASA Image and Video Library

    2017-01-09

    An elongated coronal hole rotated across the face of the sun this past week so that it is now streaming solar wind towards Earth (Jan. 2-5, 2017). Coronal holes are areas of open magnetic field from which solar wind particles stream into space. In this wavelength of extreme ultraviolet light it appears as a dark area near the center and lower portion of the sun. The particle stream will likely generate aurora here on Earth. Check spaceweather.com for updates on auroral activity. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA14093

  17. Extensive Coronal Hole

    NASA Image and Video Library

    2017-09-02

    A large coronal hole has been spewing solar wind particles in the general direction of Earth over the past few days (Aug. 31- Sept. 1, 2017). It is the extensive dark area that stretches from the top of the sun and angles down to the right. Coronal holes are areas of open magnetic field, which allow charge particles to escape into space. They appear dark in certain wavelengths of extreme ultraviolet light such as shown here. These clouds of particles can cause aurora to appear, particularly in higher latitude regions. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21942

  18. Coronal Hole Front and Center

    NASA Image and Video Library

    2016-05-18

    A substantial coronal hole had rotated so that it temporarily faced right towards Earth May, 17-19, 2016. This coronal hole area is the dark area at the top center of this image from NASA Solar Dynamics Observatory.

  19. Global Coronal Waves

    NASA Astrophysics Data System (ADS)

    Chen, P. F.

    2016-02-01

    After the Solar and Heliospheric Observatory (SOHO) was launched in 1996, the aboard Extreme Ultraviolet Imaging Telescope (EIT) observed a global coronal wave phenomenon, which was initially named ``EIT wave" after the telescope. The bright fronts are immediately followed by expanding dimmings. It has been shown that the brightenings and dimmings are mainly due to plasma density increase and depletion, respectively. Such a spectacular phenomenon sparked long-lasting interest and debates. The debates were concentrated on two topics, one is about the driving source, and the other is about the nature of this wavelike phenomenon. The controversies are most probably because there may exist two types of large-scale coronal waves that were not well resolved before the Solar Dynamics Observatory (SDO) was launched: one is a piston-driven shock wave straddling over the erupting coronal mass ejection (CME), and the other is an apparently propagating front, which may correspond to the CME frontal loop. Such a two-wave paradigm was proposed more than 13 years ago, and now is being recognized by more and more colleagues. In this paper, we review how various controversies can be resolved in the two-wave framework and how important it is to have two different names for the two types of coronal waves.

  20. Coronal mass ejections and coronal structures

    NASA Technical Reports Server (NTRS)

    Hildner, E.; Bassi, J.; Bougeret, J. L.; Duncan, R. A.; Gary, D. E.; Gergely, T. E.; Harrison, R. A.; Howard, R. A.; Illing, R. M. E.; Jackson, B. V.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles even observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results.

  1. Coronal Magnetometry in the Future

    NASA Astrophysics Data System (ADS)

    Li, Hui; Tomczyk, Steven

    Coronal magnetic field plays a crucial role in solar activity. However, due to the high temperature, low density and weak magnetic field properties of the corona, it is hard to directly measure coronal magnetic field, especially for the vector magnetic field. In this presentation, I will briefly review the past endeavor to measure the coronal magnetic field and present current methodology. I will introduce in more detail about the proposed Coronal Magnetism Telescopes of China (COMTEC) and the Coronal Solar Magnetism Observatory (COSMO) in the United States of America. Both of them are dedicated to measure the vector magnetic field in the corona as well as chromospheric magnetic field. They, once established, will certainly contribute much to the comprehensive understanding of important questions in solar physics, such as coronal and chromospheric heating, solar wind acceleration, global and long-time variation of coronal magnetic field, etc.

  2. SNAPing Coronal Iron

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    2009-07-01

    This is a Snapshot Survey to explore two forbidden lines of highly ionized iron in late-type coronal sources. Fe XII 1349 {T 2 MK} and Fe XXI 1354 {T 10 MK} - well known to Solar Physics - have been detected in about a dozen cool stars, mainly with HST/STIS. The UV coronal forbidden lines are important because they can be observed with velocity resolution of better than 15 km/s, whereas even the state-of-the-art X-ray spectrometers on Chandra can manage only 300 km/s in the kilovolt band where lines of highly ionized iron more commonly are found. The kinematic properties of hot coronal plasmas, which are of great interest to theorists and modelers, thus only are accessible in the UV at present. The bad news is that the UV coronal forbidden lines are faint, and were captured only in very deep observations with STIS. The good news is that 3rd-generation Cosmic Origins Spectrograph, slated for installation in HST by SM4, in a mere 25 minute exposure with its G130M mode can duplicate the sensitivity of a landmark 25-orbit STIS E140M observation of AD Leo, easily the deepest such exposure of a late-type star so far. Our goal is to build up understanding of the properties of Fe XII and Fe XXI in additional objects beyond the current limited sample: how the lineshapes depend on activity, whether large scale velocity shifts can be detected, and whether the dynamical content of the lines can be inverted to map the spatial morphology of the stellar corona {as in "Doppler Imaging''}. In other words, we want to bring to bear in the coronal venue all the powerful tricks of spectroscopic remote sensing, well in advance of the time that this will be possible exploiting the corona's native X-ray radiation. The 1290-1430 band captured by side A of G130M also contains a wide range of key plasma diagnostics that form at temperatures from below 10,000 K {neutral lines of CNO}, to above 200,000 K {semi-permitted O V 1371}, including the important bright multiplets of C II at 1335 and

  3. Coronal streamers' theories

    NASA Astrophysics Data System (ADS)

    Schultz, C. Göran

    1994-10-01

    Some theoretical aspects of solar coronal streamers are discussed with emphasis on the current sheet and reconnection processes going on along the axis of the streamer. The dynamics of the streamer is a combination of MHD and transport, with acceleration of particles due to reconnection and leakage of plasma outwards as a “slow” solar wind as the observable results. The presence of the almost-closed magnetic bottles of streamers that can store high-energy particles for significant times provides the birdcage for solar cosmic rays, the reconnection in the sheet feeds medium-energy protons into the corona for the large-scale storage needed for certain flare models, and the build-up of excess density sets the stage for coronal mass ejections.

  4. Chromospheres of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.

  5. Coronal mass ejections

    SciTech Connect

    Steinolfson, R.S.

    1990-01-01

    Coronal mass ejections (CMEs) are now recognized as an important component of the large-scale evolution of the solar corona. Some representative observations of CMEs are reviewed with emphasis on more recent results. Recent observations and theory are examined as they relate to the following aspects of CMEs: (1) the role of waves in determining the white-light signature; and (2) the mechanism by which the CME is driven (or launched) into the corona.

  6. Coronal Diagnostics Spectrometer Observations of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Nasraoui, Kaouther; Schmelz, J. T.; Cirtain, J. W.; Del Zanna, G.; DeLuca, E. E.; Mason, H. E.

    2007-05-01

    Two side by side loops from the solar disk were analyzed. These two loops were observed with the Coronal Diagnostics Spectrometer on SOHO on 2003 January 17. The first loop was best seen in Mg IX at a wavelength of 368 angstroms and a peak formation temperature of Log T = 6.0. Seven pixels on the loop and one background pixel were chosen. The intensity of the background pixel was subtracted from each of the loop pixels. Only the lines that had a significant intensity after background subtraction were considered. A differential emission measure (DEM) curve was constructed for the background subtracted data using the forward folding technique. The DEM for most of these pixels had a spike shape at Log T equal to 5.85. This result shows that the loop is isothermal at most of these pixels. The second loop was best seen in Si XII at a wavelength of 520 angstroms and a peak formation temperature of Log T = 6.3. The same procedure was followed for the data analysis. After background subtraction only some hot lines had a significant intensity and a DEM curve was constructed for each loop pixel. This time the DEM is broader with a shape that shows that the loop plasma is multithermal with a log temperature range of 6.1 to 6.5. Solar physics research at the University of Memphis is supported by NSF ATM-0402729 and NASA NNG05GE68G.

  7. Measuring Coronal Magnetic Fields with Coronal Emission Line Polarimetry

    NASA Astrophysics Data System (ADS)

    Lin, H.

    2003-12-01

    Magnetic field is the dominating field in the solar corona, responsible for the majestic coronal structures and dynamic events. However, no direct measurements of the coronal magnetic fields are routinely available and we can only infer the coronal magnetic field structures from observed intensity images. Although several methods for the diagnostics of coronal magnetic fields have been demonstrated, measurement of the coronal magnetic fields remains a very challenging observational task. This paper reports on a concerted effort at the Institute for Astronomy (IfA) to establish routine vector coronal magnetic field measurement capabilities using spectropolarimetric observation of the near infrared Fe XIII 1074.7 nm coronal emission line. The IfA effort includes observations of two-dimensional circular polarization maps of the emission line which carry information about the coronal magnetic field strength. High resolution observation of the linear polarization maps which yield the projected direction of the coronal magnetic field in the plane of the sky will also be obtained. The latest results from these experiments will be presented.

  8. CORONAL RAIN AS A MARKER FOR CORONAL HEATING MECHANISMS

    SciTech Connect

    Antolin, P.; Vissers, G.; Shibata, K. E-mail: g.j.m.vissers@astro.uio.n

    2010-06-10

    Reported observations in H{alpha}, Ca II H, and K or other chromospheric lines of coronal rain trace back to the days of the Skylab mission. Corresponding to cool and dense plasma, coronal rain is often observed falling down along coronal loops in active regions. A physical explanation for this spectacular phenomenon has been put forward thanks to numerical simulations of loops with footpoint-concentrated heating, a heating scenario in which cool condensations naturally form in the corona. This effect has been termed 'catastrophic cooling' and is the predominant explanation for coronal rain. In this work, we further investigate the link between this phenomenon and the heating mechanisms acting in the corona. We start by analyzing observations of coronal rain at the limb in the Ca II H line performed by the Hinode satellite, and derive interesting statistical properties concerning the dynamics. We then compare the observations with 1.5-dimensional MHD simulations of loops being heated by small-scale discrete events concentrated toward the footpoints (that could come, for instance, from magnetic reconnection events), and by Alfven waves generated at the photospheric level. Both our observation and simulation results suggest that coronal rain is a far more common phenomenon than previously thought. Also, we show that the structure and dynamics of condensations are far more sensitive to the internal pressure changes in loops than to gravity. Furthermore, it is found that if a loop is predominantly heated from Alfven waves, coronal rain is inhibited due to the characteristic uniform heating they produce. Hence, coronal rain may not only point to the spatial distribution of the heating in coronal loops but also to the agent of the heating itself. We thus propose coronal rain as a marker for coronal heating mechanisms.

  9. Modeling Coronal Jets with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, L. A.; Pariat, E.; Antiochos, S. K.; Deforest, C. E.

    2008-05-01

    We report on a comparative study of coronal jet formation with and without reconnection using two different simulation strategies. Coronal jets are features on the solar surface that appear to have some properties in common with coronal mass ejections, but are less energetic, massive, and broad. Magnetic free energy is built up over time and then suddenly released, which accelerates plasma outward in the form of a coronal jet. We compare results from the ARMS adaptive mesh and FLUX reconnection-less codes to study the role of reconnection in this system. This is the first direct comparison between FLUX and a numerical model with a 3D spatial grid.

  10. Coronal and chromospheric physics

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.; Landman, D. A.; Orrall, F. Q.

    1983-01-01

    Achievements and completed results are discussed for investigations covering solar activity during the solar maximum mission and the solar maximum year; other studies of solar activity and variability; infrared and submillimeter photometry; solar-related atomic physics; coronal and transition region studies; prominence research; chromospheric research in quiet and active regions; solar dynamics; eclipse studies; and polarimetry and magnetic field measurements. Contributions were also made in defining the photometric filterograph instrument for the solar optical telescope, designing the combined filter spectrograph, and in expressing the scientific aims and implementation of the solar corona diagnostic mission.

  11. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  12. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  13. Coronal Heating and Structure

    NASA Astrophysics Data System (ADS)

    Antiochos, S. K.

    2008-05-01

    The existence of the Sun's million-degree corona is one of the oldest and most challenging problems in all space physics. It is generally accepted that the solar magnetic field is responsible for both the heating and the structure of coronal plasma, but the physical mechanisms are still not clearly understood. Gene Parker has made many seminal contributions to solving the coronal heating problem, in particular, his widely-used nano-flare model. Parker argued that in closed field regions the complex motions of the photosphere must lead to the formation of fine-scale electric currents in the corona and, consequently, to continual bursts of magnetic reconnection. We discuss the implications of these ideas for understanding the observed features of the corona. We show that the type of reconnection proposed by Parker may well account for all the well-known observations of both the closed and open field corona, and we discuss the implications of our results for upcoming NASA missions. This work was supported by the NASA HTP and TR&T programs.

  14. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2017-09-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  15. Coronal Rain, Solar Storm

    NASA Image and Video Library

    2017-09-28

    Explanation: In this picture, the Sun's surface is quite dark. A frame from a movie recorded on November 9th by the orbiting TRACE telescope, it shows coronal loops lofted over a solar active region. Glowing brightly in extreme ultraviolet light, the hot plasma entrained above the Sun along arching magnetic fields is cooling and raining back down on the solar surface. Hours earlier, on November 8th, astronomers had watched this particular active region produce a not so spectacular solar flare. Still, the M-class flare spewed forth an intense storm of particles, suddenly showering satellites near the Earth with high energy protons. The flare event was also associated with a large coronal mass ejection, a massive cloud of material which impacted our fair planet's magnetic field about 31 hours later. The result ... a strong geomagnetic storm. Credit: NASA/GSFC/TRACE To learn more go to: nasascience.nasa.gov/missions/trace To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  16. The Geometric Spreading of Coronal Plumes and Coronal Holes

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.; Wang, A. - H.; Wu, S. T.; Cuseri, I.

    1997-01-01

    The geometric spreading in plumes and in the interplume region in coronal holes is calculated, using analytic and numerical theoretical models, between 1.0 and 5.0 solar radius. We apply two scale approximation that permits the rapid local spreading at the base of plumes to be evaluated separately from the global spreading imposed by coronal hole geometry. We show that fl can be computed from a potential field model and fg can be computed from global magnetohydrodynamic simulations of coronal structure. The approximations are valid when the plasma beta is small with respect to unity and for a plume separation small with respect to a solar radius.

  17. The coronal fricative problem.

    PubMed

    Dinnsen, Daniel A; Dow, Michael C; Gierut, Judith A; Morrisette, Michele L; Green, Christopher R

    2013-07-01

    This paper examines a range of predicted versus attested error patterns involving coronal fricatives (e.g. [s, z, θ, ð]) as targets and repairs in the early sound systems of monolingual English-acquiring children. Typological results are reported from a cross-sectional study of 234 children with phonological delays (ages 3 years; 0 months to 7;9). Our analyses revealed different instantiations of a putative developmental conspiracy within and across children. Supplemental longitudinal evidence is also presented that replicates the cross-sectional results, offering further insight into the life-cycle of the conspiracy. Several of the observed typological anomalies are argued to follow from a modified version of Optimality Theory with Candidate Chains (McCarthy, 2007).

  18. The coronal fricative problem

    PubMed Central

    Dinnsen, Daniel A.; Dow, Michael C.; Gierut, Judith A.; Morrisette, Michele L.; Green, Christopher R.

    2013-01-01

    This paper examines a range of predicted versus attested error patterns involving coronal fricatives (e.g. [s, z, θ, ð]) as targets and repairs in the early sound systems of monolingual English-acquiring children. Typological results are reported from a cross-sectional study of 234 children with phonological delays (ages 3 years; 0 months to 7;9). Our analyses revealed different instantiations of a putative developmental conspiracy within and across children. Supplemental longitudinal evidence is also presented that replicates the cross-sectional results, offering further insight into the life-cycle of the conspiracy. Several of the observed typological anomalies are argued to follow from a modified version of Optimality Theory with Candidate Chains (McCarthy, 2007). PMID:24790247

  19. An overview of coronal seismology.

    PubMed

    De Moortel, I

    2005-12-15

    The idea of exploiting observed oscillations as a diagnostic tool for determining the physical conditions of the coronal plasma was first suggested several decades ago (Roberts et al. 1984 Astrophys. J. 279, 857). Until recently, the application of this idea has been very limited by a lack of high-quality observations of coronal oscillations. However, during the last few years, this situation has changed dramatically, especially due to space-based observations by the Solar and Heliospheric Observatory and the Transition Region and Coronal Explorer and waves and oscillations have now been observed in a wide variety of solar structures, such as coronal loops, polar plumes and prominences. This paper will briefly summarize MHD wave theory, which forms the basis for coronal seismology, as well as present an overview of the variety of recently observed waves and oscillations in the solar corona. The present state of coronal seismology will also be discussed. Currently, the uncertainty associated with the obtained parameters is still considerable and, hence, the results require a cautious interpretation. However, these examples do show that coronal seismology is rapidly being transformed from a theoretical possibility to a viable technique.

  20. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  1. A Triumvirate: Three Coronal Holes

    NASA Image and Video Library

    2015-09-10

    Three substantial coronal holes rotated across the face of the Sun the week of Sept. 8-10, 2015 as seen by NASA Solar Dynamics Observatory. Coronal holes are areas where the Sun magnetic field is open and a source of streaming solar wind. They appear darker in extreme ultraviolet light because there is less material in the hole areas being imaged in this specific wavelength of light. It is a little unusual to have three coronal holes at the same time, but neither is it a rare occurrence. http://photojournal.jpl.nasa.gov/catalog/PIA19950

  2. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress made in describing and interpreting coronal plasma processes and the relationship between the solar corona and its stellar counterparts is reported. Topics covered include: stellar X-ray emission, HEAO 2 X-ray survey of the Pleiades, closed coronal structures, X-ray survey of main-sequence stars with shallow convection zones, implications of the 1400 MHz flare emission, and magnetic field stochasticity.

  3. The Holely Coronal Graveyard

    NASA Astrophysics Data System (ADS)

    Ayres, T.

    A 100 ks FUSE pointing will probe the O VI and C III emissions of an archetype denizen of the coronal graveyard--Aldebaran (Alpha Tauri; K5 III). HST spectra suggest the possible--surprising--presence of solar-like magnetic activity on the old, spun-down red giant. But, many of the characteristic 1150-1500 A UV emissions apparently are extinguished by a cool absorber overlying the hot (100,000 K) structures. Detection of O VI by FUSE suggests that the cool absorber opacity thins out just above the LyC edge, so O VI 1032 (and C III 977) could be a sensitive probe of the submerged activity through the far-UV opacity hole. The deep pointing will achieve high S/N, to search for discrete absorption structure in the hot lines, impressed on them by the cool absorber; and will allow an assessment of temporal variability due to the heating process, which might be convective-acoustic but probably is magnetic. If the latter, the buried magnetic activity on red giants possibly plays a key role in driving their winds--a long-standing astrophysical mystery, and a crucial component of galactic chemical evolution. The existing FUSE spectrum is too low in S/N to unambiguously measure discrete absorption components, and its singular nature precludes any variability analysis.

  4. Solar coronal jets

    NASA Astrophysics Data System (ADS)

    Dobrzyck, D.

    The solar jets were first observed by SOHO instruments (EIT, LASCO, UVCS) during the previous solar minimum. They were small, fast ejections originating from flaring UV bright points within large polar coronal holes. The obtained data provided us with estimates of the jet plasma conditions, dynamics, evolution of the electron temperature and heating rate required to reproduce the observed ionization state. To follow the polar jets through the solar cycle a special SOHO Joint Observing Program (JOP 155) was designed. It involves a number of SOHO instruments (EIT, CDS, UVCS, LASCO) as well as TRACE. The coordinated observations have been carried out since April 2002. The data enabled to identify counterparts of the 1996-1998 solar minimum jets. Their frequency of several events per day appear comparable to the frequency from the previous solar minimum. The jets are believed to be triggered by field line reconnection between emerging magnetic dipole and pre-existing unipolar field. Existing models predict that the hot jet is formed together with another jet of a cool material. The particular goal of the coordinated SOHO and TRACE observations was to look for possible association of the hot and cool plasma ejections. Currently there is observational evidence that supports these models.

  5. The Geometric Spreading of Coronal Plumes and Coronal Holes

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.; Wang, A.-H.; Wu, S. T.; Cuseri, I.

    1998-01-01

    The geometric spreading in plumes and in the interplume region in coronal holes is calculated, using analytic and numerical theoretical models, between 1.0 and 5.0 solar radius. We apply a two-scale approximation that permits the rapid local spreading at the base of plumes (f(sub t)) to be evaluated separately from the global spreading (f(sub g)) imposed by coronal hole geometry. We show that f(sub t) can be computed from a potential-field model and f(sub g) can be computed from global magnetohydrodynamic simulations of coronal structure. The approximations are valid when the plasma beta is mail with respect to unity and for a plume separation small with respect to a solar radius.

  6. Coronal Seismology -- Achievements and Perspectives

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael

    Coronal seismology is a new and fast developing branch of the solar physics. The main idea of coronal seismology is the same as of any branches of seismology: to determine basic properties of a medium using properties of waves propagating in this medium. The waves and oscillations in the solar corona are routinely observed in the late space missions. In our brief review we concentrate only on one of the most spectacular type of oscillations observed in the solar corona - the transverse oscillations of coronal magnetic loops. These oscillations were first observed by TRACE on 14 July 1998. At present there are a few dozens of similar observations. Shortly after the first observation of the coronal loop transverse oscillations they were interpreted as kink oscillations of magnetic tubes with the ends frozen in the dense photospheric plasma. The frequency of the kink oscillation is proportional to the magnetic field magnitude and inversely proportional to the tube length times the square root of the plasma density. This fact was used to estimate the magnetic field magnitude in the coronal loops. In 2004 the first simultaneous observation of the fundamental mode and first overtone of the coronal loop transverse oscillation was reported. If we model a coronal loop as a homogeneous magnetic tube, then the ratio of the frequencies of the first overtone and the fundamental mode should be equal to 2. However, the ratio of the observed frequencies was smaller than 2. This is related to the density variation along the loop. If we assume that the corona is isothermal and prescribe the loop shape (usually it is assumed that it has the shape of half-circle), then, using the ratio of the two frequencies, we can determine the temperature of the coronal plasma. The first observation of transverse oscillations of the coronal loops showed that they were strongly damped. This phenomenon was confirmed by the subsequent observations. At present, the most reliable candidate for the

  7. Geometry of solar coronal rays

    NASA Astrophysics Data System (ADS)

    Filippov, B. P.; Martsenyuk, O. V.; Platov, Yu. V.; Den, O. E.

    2016-02-01

    Coronal helmet streamers are the most prominent large-scale elements of the solar corona observed in white light during total solar eclipses. The base of the streamer is an arcade of loops located above a global polarity inversion line. At an altitude of 1-2 solar radii above the limb, the apices of the arches sharpen, forming cusp structures, above which narrow coronal rays are observed. Lyot coronagraphs, especially those on-board spacecrafts flying beyond the Earth's atmosphere, enable us to observe the corona continuously and at large distances. At distances of several solar radii, the streamers take the form of fairly narrow spokes that diverge radially from the Sun. This radial direction displays a continuous expansion of the corona into the surrounding space, and the formation of the solar wind. However, the solar magnetic field and solar rotation complicate the situation. The rotation curves radial streams into spiral ones, similar to water streams flowing from rotating tubes. The influence of the magnetic field is more complex and multifarious. A thorough study of coronal ray geometries shows that rays are frequently not radial and not straight. Coronal streamers frequently display a curvature whose direction in the meridional plane depends on the phase of the solar cycle. It is evident that this curvature is related to the geometry of the global solar magnetic field, which depends on the cycle phase. Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima can be interpreted as the effects of changes in the general topology of the global solar magnetic field. There are sporadic temporal changes in the coronal rays shape caused by remote coronal mass ejections (CMEs) propagating through the corona. This is also a manifestation of the influence of the magnetic field on plasma flows. The motion of a large-scale flux rope associated with a CME away from the Sun creates changes in the structure of surrounding field

  8. Key aspects of coronal heating

    PubMed Central

    Klimchuk, James A.

    2015-01-01

    We highlight 10 key aspects of coronal heating that must be understood before we can consider the problem to be solved. (1) All coronal heating is impulsive. (2) The details of coronal heating matter. (3) The corona is filled with elemental magnetic stands. (4) The corona is densely populated with current sheets. (5) The strands must reconnect to prevent an infinite build-up of stress. (6) Nanoflares repeat with different frequencies. (7) What is the characteristic magnitude of energy release? (8) What causes the collective behaviour responsible for loops? (9) What are the onset conditions for energy release? (10) Chromospheric nanoflares are not a primary source of coronal plasma. Significant progress in solving the coronal heating problem will require coordination of approaches: observational studies, field-aligned hydrodynamic simulations, large-scale and localized three-dimensional magnetohydrodynamic simulations, and possibly also kinetic simulations. There is a unique value to each of these approaches, and the community must strive to coordinate better. PMID:25897094

  9. Ponderomotive Acceleration in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  10. Influence of Coronal Abundance Variations

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph (Technical Monitor); DeLuca, Edward

    2005-01-01

    During the final year of this program we concentrated on understanding the how to constrain the models with the best available observations. Work on developing accurate temperature and density diagnostics fkom TRACE and CDS together with constrained fits of non-potential force free fields will be extremely useful in the guiding the next generation of coronal models. The program has produced three fully operation numerical codes that model multi-species of ions in coronal loops: Static models and constant flow models. The time dependent numerical models have not been completed. We have extended the steady flow investigations to study the effect these flows have on coronal structure as observed with TRACE. Coronal observations derive from heavy-ion emission; thus, we focus on the extent to which flow may modify coronal abundances by examining the heavy-ion abundance stratification within long-lived loops. We discuss the magnitudes of the physical effects modeled and compare simulated results with TRACE observations. These results can have a profound effect on the interpretation of TRACE observations.

  11. Ponderomotive Acceleration in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Dahlburg, Russell B.; Laming, J. Martin; Taylor, Brian; Obenschain, Keith

    2017-08-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a ``byproduct'' of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets which act to heat the loop. As a consequence of coronal magnetic reconnection, small scale, high speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  12. Solar Coronal Structure Study

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  13. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1989-01-01

    Progress in observational, theoretical, and radio studies of coronal plasmas is summarized. Specifically work completed in the area of solar and stellar magnetic fields, related photospheric phenomena and the relationships between magnetism, rotation, coronal and chromospheric emission in solar-like stars is described. Also outlined are theoretical studies carried out in the following areas, among others: (1) neutral beams as the dominant energy transport mechanism in two ribbon-flares; (2) magneto hydrodynamic and circuit models for filament eruptions; and (3) studies of radio emission mechanisms in transient events. Finally, radio observations designed for coronal activity studies of the sun and of solar-type coronae are described. A bibliography of publications and talks is provided along with reprints of selected articles.

  14. Observational Analysis of Coronal Fans

    NASA Technical Reports Server (NTRS)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  15. Hybrid Stars and Coronal Evolution

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, TrA (K2 11-111). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars.

  16. Cascade model of coronal heating

    NASA Technical Reports Server (NTRS)

    Vanballegooijen, A. A.

    1986-01-01

    It is suggested that the quasi-static evolution of coronal magnetic structures is characterized by a cascade of magnetic energy to smaller length scales. This cascade process takes place on a time scale t sub b determined entirely by the photospheric motions. The Ohmic heating rate E sub H in the statistically stationary state was estimated using observational data on the diffusivity of photospheric motions; E sub H turned out to be too small by a factor of 40 when compared with observed coronal energy losses. However, given the fact that the theoretical estimate is based on a rather uncertain extrapolation to the diffusive regime, current heating cannot be ruled out as a viable mechanism of coronal heating.

  17. On-Disk Coronal Rain

    NASA Astrophysics Data System (ADS)

    Antolin, Patrick; Vissers, Gregal; Rouppe van der Voort, Luc

    2012-10-01

    Small and elongated, cool and dense blob-like structures are being reported with high resolution telescopes in physically different regions throughout the solar atmosphere. Their detection and the understanding of their formation, morphology, and thermodynamical characteristics can provide important information on their hosting environment, especially concerning the magnetic field, whose understanding constitutes a major problem in solar physics. An example of such blobs is coronal rain, a phenomenon of thermal non-equilibrium observed in active region loops, which consists of cool and dense chromospheric blobs falling along loop-like paths from coronal heights. So far, only off-limb coronal rain has been observed, and few reports on the phenomenon exist. In the present work, several data sets of on-disk Hα observations with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1- m Solar Telescope (SST) are analyzed. A special family of on-disk blobs is selected for each data set, and a statistical analysis is carried out on their dynamics, morphology, and temperature. All characteristics present distributions which are very similar to reported coronal rain statistics. We discuss possible interpretations considering other similar blob-like structures reported so far and show that a coronal rain interpretation is the most likely one. The chromospheric nature of the blobs and the projection effects (which eliminate all direct possibilities of height estimation) on one side, and their small sizes, fast dynamics, and especially their faint character (offering low contrast with the background intensity) on the other side, are found as the main causes for the absence until now of the detection of this on-disk coronal rain counterpart.

  18. CORONAL FOURIER POWER SPECTRA: IMPLICATIONS FOR CORONAL SEISMOLOGY AND CORONAL HEATING

    SciTech Connect

    Ireland, J.; McAteer, R. T. J.; Inglis, A. R.

    2015-01-01

    The dynamics of regions of the solar corona are investigated using Atmospheric Imaging Assembly 171 Å and 193 Å data. The coronal emission from the quiet Sun, coronal loop footprints, coronal moss, and from above a sunspot is studied. It is shown that the mean Fourier power spectra in these regions can be described by a power law at lower frequencies that tails to a flat spectrum at higher frequencies, plus a Gaussian-shaped contribution that varies depending on the region studied. This Fourier spectral shape is in contrast to the commonly held assumption that coronal time series are well described by the sum of a long timescale background trend plus Gaussian-distributed noise, with some specific locations also showing an oscillatory signal. The implications of the observed spectral shape on the fields of coronal seismology and the automated detection of oscillations in the corona are discussed. The power-law contribution to the shape of the Fourier power spectrum is interpreted as being due to the summation of a distribution of exponentially decaying emission events along the line of sight. This is consistent with the idea that the solar atmosphere is heated everywhere by small energy deposition events.

  19. Earth-Directed Coronal Hole

    NASA Image and Video Library

    2016-09-21

    A dark coronal hole that was facing towards Earth for several days spewed streams of solar wind in our direction (Sept. 18-21, 2016). A coronal hole is a magnetically open region. The magnetic fields have opened up allowing solar wind (comprised of charged particles) to stream into space. Gusts of solar wind can generate beautiful aurora when they reach Earth. The video clip shows the sun in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21067

  20. Cascading Post-coronal Loops

    NASA Image and Video Library

    2017-04-24

    An active region that had just rotated into view blasted out a coronal mass ejection, which was immediately followed by a bright series of post-coronal loops seeking to reorganize that region's magnetic field (April 19, 2017). We have observed this phenomenon numerous times, but this one was one of the longest and clearest sequences we have seen in years. The bright loops are actually charged particles spinning along the magnetic field lines. The action was captured in a combination of two wavelengths of extreme ultraviolet light over a period of about 20 hours. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21598

  1. Earth-Facing Coronal Holes

    NASA Image and Video Library

    2016-11-09

    Two good-sized coronal holes have rotated around to the center of the sun where they will be spewing solar wind towards Earth (Nov. 8-9, 2016). Coronal holes are areas of open magnetic field from which solar wind particles stream into space. In this wavelength of extreme ultraviolet light they appear as the two dark areas at the center and lower portion of the sun. The stream of particles should reach Earth in a few days and are likely to generate aurora. Videos are available at http://photojournal.jpl.nasa.gov/catalog/PIA16909

  2. Coronal alignment of patellofemoral arthroplasty.

    PubMed

    Thienpont, Emmanuel; Lonner, Jess H

    2014-01-01

    Patellofemoral arthroplasty (PFA) can yield successful results in appropriately selected patients. The varus-valgus position or coronal alignment of the trochlear implant is determined by how its transitional edges articulate with the condylar cartilage. Whilst variation in condylar anatomy will not influence the axis of the lower limb in PFA, it can impact on the Q-angle of the PF joint. The aim of this study was to analyze how the coronal alignment can be influenced by the choice of anatomical landmarks. Retrospective analysis of 57 PFAs with measurements of alignment from full leg radiographs. Coronal alignment following anterior condylar anatomy leads to a mean (SD) proximal valgus alignment of 100° (9°). Aligning the component with Whiteside's line gives a better alignment with less variance 89° (3°). A trochlear component with a higher Q-angle compensates for patellar maltracking if the condylar anatomy would tend to put the implant in a more proximal varus or neutral position. If the trochlear component is proximally aligned in valgus this may have the opposite effect. Aligning the trochlear component with the AP-axis in the coronal plane avoids maltracking and optimally utilizes the design features of the implant. Level III. © 2014 Elsevier B.V. All rights reserved.

  3. Dynamics of Coronal Hole Boundaries

    NASA Astrophysics Data System (ADS)

    Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Wyper, P. F.; Zurbuchen, T. H.

    2017-03-01

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  4. Coronal Heating by Magnetic Explosions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1998-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles.

  5. Coronal Dimmings and Energetic CMEs

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Cliver, E. W.; Nitta, N.; Delannee, C.; Delaboudiniere, J.-P.

    1999-01-01

    We have analyzed the coronal dimmings for seven fast (> 600 km/s) coronal mass ejections (CMEs) occurring between 23 April and 9 May which were associated with flares from NOAA active region (AR) 8210. These dimming regions were identified by their strong depletion in coronal emission within a half hour of the estimated time of CME lift-off. They included areas which were as dark as quiescent coronal holes as well as other regions with weaker brightness depletions. We found that the extended dimming areas in these events generally mapped out the apparent "footprint" of the CME. In two of the seven cases, a pair of dimmings were more or less symmetrically positioned north and south of the flare site. In the five remaining cases, the dimmings were most prominent to the north of AR 8210 (approximately S15 latitude) and extended well north of the solar equator, consistent with the locations of the CMEs. We discuss the implications of these results for the sigmoid/double dimming/flux rope model of CMEs.

  6. CORONAL EMISSION LINES AS THERMOMETERS

    SciTech Connect

    Judge, Philip G.

    2010-01-10

    Coronal emission-line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

  7. An equatorial coronal hole at solar minimum

    NASA Technical Reports Server (NTRS)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  8. Coronal Fourier power spectra: implications for coronal heating and coronal seismology

    NASA Astrophysics Data System (ADS)

    Ireland, J.; Mcateer, R. T. J.; Inglis, A. R.

    2014-12-01

    The dynamics of regions of the solar corona are investigated using AIA 171 and 193 Angstrom data. It is shown that the mean Fourier power spectra of emission from active region cores, above sunspots, in loop footpoints and in the quiet Sun, follow an approximate power-law behaviour. We show that power-law power-spectra can be formed by summing a distribution of exponentially decaying emission events along the line of sight, consistent with the idea that the corona is heated everywhere by small energy deposition events. We also examine changes in Fourier power spectrum as a function of coronal loop height to look for evidence of a preferred location to coronal heating. The observed power-law power spectra also have implications for coronal seismology, as all existing observational studies do not take into account the power-law power spectrum of the coronal emission and its attendant statistical properties. We show that random fluctuations in the emission can be mis-identified as oscillatory signal, and give suggestions on how to detect oscillatory motions above a background power-law power spectrum.

  9. Pre-flare coronal dimmings

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S.

    2017-01-01

    Context. Coronal dimmings are regions of decreased extreme-ultravoilet (EUV) and/or X-ray (originally Skylab, then Yohkoh/SXT) intensities, which are often associated with flares and coronal mass ejections (CMEs). The large-scale impulsive dimmings have been thoroughly observed and investigated. The pre-flare dimmings before the flare impulsive phase, however, have rarely been studied in detail. Aims: We focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME that was produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. Methods: The eruption was observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) on board SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white-light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) on board SOHO. Results: About 96 min before the onset of the flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly, with their intensities decreasing with time, while their apparent widths (8-9 Mm) continued to be nearly constant. During the impulsive and decay phases of flare, typical fan-like twin dimmings appeared and expanded, with a much larger extent and lower intensities than the pre-flare dimmings. The percentage of the 171 Å intensity decrease reaches 40%. The pre-flare dimmings are most striking in 171, 193, and 211 Å with formation temperatures of 0.6-2.5 MK. The northern part of the pre-flare dimmings could also be recognized in 131 and 335 Å. Conclusions: To our knowledge, this is the first detailed study of pre-flare coronal dimmings; they can be explained by density depletion as a result of the gradual

  10. Coroners' records of accidental deaths.

    PubMed Central

    Levene, S

    1991-01-01

    This study set out to provide a description of the children involved in fatal accidents and to ascertain which deaths might have been prevented and by what means. The records from a convenience sample of four coroners (jurisdictions of Inner North London, Birmingham, Bedfordshire, and Ipswich) of inquests opened in 1984-8 on children aged under 15 killed in accidents were reviewed for information on the deceased, the accident, and the injuries sustained. Altogether 225 records (150 boys, 75 girls) were examined. Accidents to pedestrians were the commonest cause of death (81 cases), and road safety engineering measures were the most likely means by which most fatalities might have been prevented. The records frequently omitted information on social circumstances, family structure, ethnic group, or the use of safety equipment. Cooperative coroners can contribute to child safety as their records are rich in information about accidents. This could be made available to parties interested in accident prevention, including community paediatricians. PMID:1953011

  11. Radio Studies of Coronal Holes.

    DTIC Science & Technology

    1981-03-01

    Maps Solar Wind Streams Radio Spectra Interplanetary Scintillation 20. A9 RACY (Continue an reveree side If necesary end Identify by block number...summarizes our efforts to identify individual high latitudecoronal holes with high speed solar wind streams far above or below the ecliptic,/The coronal...holes were identified from the Kitt Peak 10830 1 synoptic maps, while the high speed solar wind streams were identified from the interplanetary

  12. Impulsively generated fast coronal pulsations

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1986-01-01

    Rapid oscillations in the corona are discussed from a theoretical standpoint, developing some previous work on ducted, fast magnetoacoustic waves in an inhomogeneous medium. In the theory, impulsively (e.g., flare) generated mhd (magnetohydrodynamic) waves are ducted by regions of low Alfven speed (high density) such as coronal loops. Wave propagation in such ducts is strongly dispersive and closely akin to the behavior of Love waves in seismology, Pekeris waves in oceanography and guided waves in fiber optics. Such flare-generated magnetoacoustic waves possess distinctive temporal signatures consisting of periodic, quasi-periodic and decay phases. The quasi-periodic phase possesses the strongest amplitudes and the shortest time scales. Time scales are typically of the order of a second for inhomogeneities (coronal loop width) of 1000 km and Alfven speeds of 1000/kms, and pulse duration times are of tens of seconds. Quasi-periodic signatures have been observed in radio wavelengths for over a decade and more recently by SMM. It is hoped that the theoretical ideas outlined may be successfully related to these observations and thus aid the interpretation of oscillatory signatures recorded by SMM. Such signatures may also provide a diagnostic of coronal conditions. New aspects of the ducted mhd waves, for example their behavior in smoothly varying as opposed to tube-like inhomogeneities, are currently under investigation. The theory is not restricted to loops but applied equally to open field regions.

  13. Polarization of Coronal Forbidden Lines

    NASA Astrophysics Data System (ADS)

    Li, Hao; Landi Degl'Innocenti, Egidio; Qu, Zhongquan

    2017-03-01

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  14. THE CORONAL LOOP INVENTORY PROJECT

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S. S.; Paul, K. S.

    2015-11-01

    Most coronal physicists now seem to agree that loops are composed of tangled magnetic strands and have both isothermal and multithermal cross-field temperature distributions. As yet, however, there is no information on the relative importance of each of these categories, and we do not know how common one is with respect to the other. In this paper, we investigate these temperature properties for all loop segments visible in the 171-Å image of AR 11294, which was observed by the Atmospheric Imaging Assembly (AIA) on 2011 September 15. Our analysis revealed 19 loop segments, but only 2 of these were clearly isothermal. Six additional segments were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within measurement uncertainties. One loop had both isothermal transition region and multithermal coronal solutions. Another five loop segments require multithermal plasma to reproduce the AIA observations. The five remaining loop segments could not be separated reliably from the background in the crucial non-171-Å AIA images required for temperature analysis. We hope that the direction of coronal heating models and the efforts modelers spend on various heating scenarios will be influenced by these results.

  15. Coronal Loops: Isothermal or Multithermal?

    NASA Astrophysics Data System (ADS)

    Kimble, Jason; Schmelz, J. T.; Nasraoui, K.; Cirtain, J. W.; Del Zanna, G.; DeLuca, E. E.; Mason, H. E.

    2007-05-01

    The coronal loop data used for this analysis were taken on 2003 January 17 at 14:24:45 UT by the Coronal Diagnostic Spectrometer (CDS) aboard the Solar and Heliospheric Observatory. We use the Chianti atomic physics data base and the hybrid coronal abundances to determine temperatures and densities for positions along several loops. The traditional method used to create our differential emission measure (DEM) curves has been forward folding, but we are now using both emission measure loci plots and DEM automatic inversion to support and confirm the original conclusions. In this poster, we will look specifically at the emission measure loci analysis of three loops visible in the CDS data set. We find different results for each of these loops. One of the loops seems to be composed of isothermal plasma with Log T = 5.8 MK. The temperature does not appear to change with position, from the footpoint to the loop leg. Unfortunately, the loop top is outside the CDS field of view. Each pixel examined in the second loop seems to require a multithermal DEM distribution. For the third loop, the temperature increases and the density appears to decrease with loop height, reminiscent of traditional hydrostatic loop models. Solar physics research at the University of Memphis is supported by NSF ATM-0402729 and NASA NNG05GE68G.

  16. The Structure of Coronal Loops

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    2009-01-01

    It is widely believed that the simple coronal loops observed by XUV imagers, such as EIT, TRACE, or XRT, actually have a complex internal structure consisting of many (perhaps hundreds) of unresolved, interwoven "strands". According to the nanoflare model, photospheric motions tangle the strands, causing them to reconnect and release the energy required to produce the observed loop plasma. Although the strands, themselves, are unresolved by present-generation imagers, there is compelling evidence for their existence and for the nanoflare model from analysis of loop intensities and temporal evolution. A problem with this scenario is that, although reconnection can eliminate some of the strand tangles, it cannot destroy helicity, which should eventually build up to observable scales. we consider, therefore, the injection and evolution of helicity by the nanoflare process and its implications for the observed structure of loops and the large-scale corona. we argue that helicity does survive and build up to observable levels, but on spatial and temporal scales larger than those of coronal loops. we discuss the implications of these results for coronal loops and the corona, in general .

  17. Motion Magnification in Coronal Seismology

    NASA Astrophysics Data System (ADS)

    Anfinogentov, Sergey; Nakariakov, Valery M.

    2016-11-01

    We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features that have been observed with imaging instruments. The method is based on the two-dimensional dual-tree complex wavelet transform (DTℂWT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes that imitated exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability, and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes, provided these are sufficiently small. In addition, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/AIA EUV data cubes of a non-flaring active region allowed for the improved detection of low-amplitude decay-less oscillations in the majority of loops.

  18. Coronal abundances determined from energetic particles

    NASA Technical Reports Server (NTRS)

    Reames, D. V.

    1995-01-01

    Solar energetic particles (SEPs) provide a measurement of coronal element abundances that is highly independent of the ionization states and temperature of the ions in the source plasma. The most complete measurements come from large 'gradual' events where ambient coronal plasma is swept up by the expanding shock wave from a coronal mass ejection. Particles from 'impulsive' flares have a pattern of acceleration-induced enhancements superimposed on the coronal abundances. Particles accelerated from high-speed solar wind streams at corotating shocks show a different abundance pattern corresponding to material from coronal holes. Large variations in He/O in coronal material are seen for both gradual and impulsive-flare events but other abundance ratios, such as Mg/Ne, are remarkably constant. SEP measurements now include hundreds of events spanning 15 years of high-quality measurement.

  19. Some Considerations about Inferring Coronal Magnetic Fields and Other Coronal Properties from Coronal Emission Line Polarization

    NASA Astrophysics Data System (ADS)

    Arnaud, J.; Habbal, S. R.; Arndt, M.; Woo, R.

    2003-12-01

    Ground based studies of Coronal Emission Lines (CEL) linear polarization had been carried out for the 530.3 nm FeXIV line at Pic du Midi and for the 1074.7 nm Fe XIII line at Sac Peak in the 1977-1980 period. The large scale organization of the polarization has clearly revealed the existence of a large scale structure of the coronal magnetic field. More recently, the first successful eclipse CEL polarimetric measurements were made in the 1074.7 nm line during the total solar eclipse of 21 June 2001, confirming earlier results of the predominance of a radial direction of the coronal magnetic field. A first measurement of the circular polarization in the 1074.7 nm line has also recently been performed. Circular polarization gives access to the strength of the LOS magnetic field while the linear polarization maps the transverse magnetic field direction. We will use ground based and eclipse 1074.7 nm line polarimetric data to provide examples of the properties (e.g., magnetic field, abundances, inhomogeneities) such observations can help to infer in this 3-D and optically thin medium.

  20. A SOLAR CORONAL JET EVENT TRIGGERS A CORONAL MASS EJECTION

    SciTech Connect

    Liu, Jiajia; Wang, Yuming; Shen, Chenglong; Liu, Kai; Pan, Zonghao; Wang, S.

    2015-11-10

    In this paper, we present multi-point, multi-wavelength observations and analysis of a solar coronal jet and coronal mass ejection (CME) event. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it to propagate at a high speed of over 1000 km s{sup −1}. The jet erupted before the CME and shared the same source region. The temporal and spacial relationship between these two events lead us to the possibility that the jet triggered the CME and became its core. This scenario hold the promise of enriching our understanding of the triggering mechanism of CMEs and their relations to coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the Solar Dynamics Observatory (SDO)/HMI instrument along with the off-limb inverse Y-shaped configuration observed by SDO/AIA in the 171 Å passband provide the first detailed observation of the three-dimensional reconnection process of a large-scale jet as simulated in Pariat et al. The eruption process of the jet highlights the importance of filament-like material during the eruption of not only small-scale X-ray jets, but likely also of large-scale EUV jets. Based on our observations and analysis, we propose the most probable mechanism for the whole event, with a blob structure overlaying the three-dimensional structure of the jet, to describe the interaction between the jet and the CME.

  1. EUV Coronal Dimming and its Relationship to Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Mason, James

    2016-05-01

    As a coronal mass ejection (CME) departs from the inner solar atmosphere, it leaves behind a void. This region of depleted plasma results in a corresponding decrease in coronal emissions that can be observed by instruments tuned to measure the extreme ultraviolet (EUV) part of the electromagnetic spectrum. These coronal dimmings can be observed with EUV imagers and EUV spectral irradiance instruments. Onboard the Solar Dynamics Observatory (SDO), the EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA) provide complementary observations; together they can be used to obtain high spatial and spectral resolution. AIA provides information about the location, extent, and spatial evolution of the dimming while EVE data are important to understand plasma temperature evolution. Concurrent processes with similar timescales to mass-loss dimming also impact the observations, which makes a deconvolution method necessary for the irradiance time series in order to have a “clean” mass-loss dimming light curve that can be parameterized and compared with CME kinematics. This presentation will first provide background on these various physical processes and the deconvolution method developed. Two case studies will then be presented, followed by a semi-statistical study (~30 events) to establish a correlation between dimming and CME parameters. In particular, the slope of the deconvolved irradiance dimming light curve is representative of the CME speed, and the irradiance dimming depth can serve as a proxy for CME mass. Finally, plans and early results from a more complete statistical study of all dimmings in the SDO era, based on an automated detection routine using EVE data, will be described and compared with independently derived dimmings automatically detected with AIA data.

  2. The relationship between coronal streamers and CMEs.

    NASA Astrophysics Data System (ADS)

    Du, Jinsheng; Tong, Yi; Yang, Jing; Eselevich, V. G.

    1999-06-01

    The variation of the polarization brightness of coronal streamer in Carrington Rotations 1591 - 1592 is investigated. The distribution of the polarization brightness along streamer belts is inhomogeneous; the degree of the inhomogeneity is 10% - 50%. In the absence of coronal mass ejection (CME) influence, the distribution of coronal streamers along the streamer belts can persist stable during nearly two Carrington Rotations. The rise velocity of the top of the cusp region in a coronal streamer may be more than 2 km/s, if the longitude angular size is more than 27° associated with a CME occurrence.

  3. Stability of solar coronal loops

    NASA Astrophysics Data System (ADS)

    Goedbloed, J. P.

    1990-05-01

    The equations of magnetohydrodynamics do not contain an intrinsic length scale determining the size of phenomena. Hence, size only enters through the external geometrical properties of the configurations considered. This is one of the reasons why tokamaks and solar coronal loops may be considered as similar objects. The equations of MHD do not distinguish between the two. It is only the geometry and, hence, the boundary conditions that discriminate between them. Whereas for tokamaks toroidal periodicity and normal confinement provide the appropriate boundary conditions, for coronal loops line-tying at the photosphere and some prescription for the behavior across the ``edge'' of the loop determine the solutions. The latter is a more complicated problem and gives rise to even more complex dynamics than encountered in tokamaks. Here, we consider the influence of the two mentioned groups of boundary conditions for the problem of the stability and disruption of a solar coronal loop. We consider the stability properties of a single loop with twisted magnetic field lines under the simultaneous influence of photospheric line-tying and constraining by neighboring flux loops. The loops would be violently unstable without these two ingredients (i.e. for the corresponding tokamak problem). It is shown that line-tying alone in not sufficient for stability, but the neighboring flux tubes provide a normal boundary condition similar to a conducting shell in tokamaks. This stabilization gets lost on the time scale associated with reconnection of the tangetial magnetic field discontinuities present in the many-loop system. On this time scale the magnetic energy, which has been built up during the twisting of the field lines, gets released, resulting in a disruption of the loop. This process may be considered as the single loop variant of Parker's solar flare model.

  4. On Recurrent/Homologous Coronal Jets Emission: Coronal Geyser Structures

    NASA Astrophysics Data System (ADS)

    Razvan Paraschiv, Alin; Donea, Alina

    2016-05-01

    Active region 11302 has shown a vast display of solar jets during its lifetime. We examine the emission mechanism responsible for multiple coronal jet events occurring at the center-east side of the active region. Identified jet events were detected in extreme-ultraviolet (EUV), hard X-ray (HXR) and radio emissions, observed by dedicated instruments such as SDO's AIA and HMI, STEREO's EUVI and WAVES, and RHESSI, respectively. We report the detection of a base-arch structure in the lower atmosphere. The site was labelled "Coronal Geyser". The structure had emitted jets quasi-periodically for the entire time the AR was visible in SDO'S field of view. The jets expand into the corona with an apparent line of sight velocity of ~200-300$ km/s. To our knowledge the long time-scale behaviour of jet recurrence and base geyser structure was not previously discussed and data analysis of this phenomena will provide new information for theoretical modelling and data interpretation of jets.

  5. Using Strong Solar Coronal Emission Lines as Coronal Flux Proxies

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Jordan, Studart D.; Davila, Joseph M.; Thomas, Roger J.; Andretta, Vincenzo; Brosius, Jeffrey W.; Hara, Hirosha

    1997-01-01

    A comparison of Skylab results with observations of the strong EUV lines of Fe XVI at 335 A and 361 A from the Goddard Solar EUV Rocket Telescope and Spectrograph (SERTS) flight of 1989 suggests that these lines, and perhaps others observed with SERTS, might offer good proxies for estimating the total coronal flux over important wavelength ranges. In this paper, we compare SERTS observations from a later, 1993 flight with simultaneous cospatial Yohkoh soft X-ray observations to test this suggestion over the energy range of the Soft X-ray Telescope (SXT) on Yohkoh. Both polynomial and power-law fits are obtained, and errors are estimated, for the SERTS lines of Fe XVI 335 A and 361 A, Fe XV 284 A and 417 A, and Mg IX 368 A. It is found that the power-law fits best cover the full range of solar conditions from quiet Sun through active region, though not surprisingly the 'cooler' Mg IX 368 A line proves to be a poor proxy. The quadratic polynomial fits yield fair agreement over a large range for all but the Mg IX line, but the linear fits fail conspicuously when extrapolated into the quiet Sun regime. The implications of this work for the He 11 304 A line formation problem are briefly considered. The paper concludes with a discussion of the value of these iron lines observed with SERTS for estimating stellar coronal fluxes, as observed for example with the EUVE satellite.

  6. Using Strong Solar Coronal Emission Lines as Coronal Flux Proxies

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Jordan, Studart D.; Davila, Joseph M.; Thomas, Roger J.; Andretta, Vincenzo; Brosius, Jeffrey W.; Hara, Hirosha

    1997-01-01

    A comparison of Skylab results with observations of the strong EUV lines of Fe XVI at 335 A and 361 A from the Goddard Solar EUV Rocket Telescope and Spectrograph (SERTS) flight of 1989 suggests that these lines, and perhaps others observed with SERTS, might offer good proxies for estimating the total coronal flux over important wavelength ranges. In this paper, we compare SERTS observations from a later, 1993 flight with simultaneous cospatial Yohkoh soft X-ray observations to test this suggestion over the energy range of the Soft X-ray Telescope (SXT) on Yohkoh. Both polynomial and power-law fits are obtained, and errors are estimated, for the SERTS lines of Fe XVI 335 A and 361 A, Fe XV 284 A and 417 A, and Mg IX 368 A. It is found that the power-law fits best cover the full range of solar conditions from quiet Sun through active region, though not surprisingly the 'cooler' Mg IX 368 A line proves to be a poor proxy. The quadratic polynomial fits yield fair agreement over a large range for all but the Mg IX line, but the linear fits fail conspicuously when extrapolated into the quiet Sun regime. The implications of this work for the He 11 304 A line formation problem are briefly considered. The paper concludes with a discussion of the value of these iron lines observed with SERTS for estimating stellar coronal fluxes, as observed for example with the EUVE satellite.

  7. Understanding Coronal Dimming and its Relation to Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Mason, J. P.; Woods, T. N.; Caspi, A.; Hock, R. A.

    2013-12-01

    When extreme ultraviolet (EUV) emitting material in the corona is lost during a coronal mass ejection (CME), the solar spectral irradiance is impacted and these effects are observed in data from the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA). This process is one of the physical mechanisms that can lead to the observation of 'coronal dimming,' a phenomenon lasting eight hours on average and rarely persisting longer than one day. Other mechanisms that can cause observed dimming include obscuration of bright material (e.g., flare arcade) by dark material (e.g., filament), temperature evolution (e.g., cool plasma being heated causing transient decreases in characteristic emission lines), and propagation of global waves. Each of these processes has a unique spectral signature, which will be explained and exemplified. In particular, the 7 August 2010 M1.0 flare with associated ~870 km/s CME will be analyzed in detail using both AIA and EVE to demonstrate new techniques for isolating dimming due to the CME ('core dimming'). Further analysis will estimate CME mass and velocity using only parameterization of core dimming and compare these estimates to traditionally calculated CME kinetics.

  8. From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Judge, P. G.; Habbal, S.; Landi, E.

    2013-12-01

    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are, in principle, no worse than more familiar remotely sensed photospheric vector fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe xi] line ( J=2 to J=1) at 789.2 nm as a prime target line (for the Advanced Technology Solar Telescope (ATST) for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe xiii] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possible with the new generation of coronagraphs, in three distinct ways: i) through single-point inversions (which encompasses also the analysis of MHD wave modes), ii) using direct comparisons of synthetic MHD or force-free models with polarization data, and iii) using tomographic techniques.

  9. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2005-01-01

    We have extended our study of the structure of coronas in cool stars to very young stars still accreting from their surrounding disks. In addition we are pursing the connection between coronal X-rays and a powerful diagnostic line in the infrared, the He I 10830Angstrom transition of helium. Highlights of these are summarized below including publications during this reporting period and presentations. Spectroscopy of the infrared He I (lambda10830) line with KECK/NIRSPEC and IRTF/CSHELL and of the ultraviolet C III (lambda977) and O VI (lambda1032) emission with FUSE reveals that the classical T Tauri star TW Hydrae exhibits P Cygni profiles, line asymmetries, and absorption indicative of a continuous, fast (approximately 400 kilometers per second), hot (approximately 300,000 K) accelerating outflow with a mass loss rate approximately 10(exp -11)-10(exp -12) solar mass yr(sup -1) or larger. Spectra of T Tauri N appear consistent with such a wind. The source of the emission and outflow seems restricted to the stars themselves. Although the mass accretion rate is an order of magnitude less for TW Hya than for T Tau, the outflow reaches higher velocities at chromospheric temperatures in TW Hya. Winds from young stellar objects may be substantially hotter and faster than previously thought. The ultraviolet emission lines, when corrected for absorption are broad. Emission associated with the accretion flow and shock is likely to show turbulent broadening. We note that the UV line widths are significantly larger than the X-ray line widths. If the X-rays from TW Hya are generated at the accretion shock, the UV lines may not be directly associated with the shock. On the other hand, studies of X-ray emission in young star clusters, suggest that the strength of the X-ray emission is correlated with stellar rotation, thus casting doubt on an accretion origin for the X-rays. We are beginning to access the infrared spectral region where the He I 108308Angstroms transition

  10. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  11. Magnetic shuffling of coronal downdrafts

    NASA Astrophysics Data System (ADS)

    Petralia, A.; Reale, F.; Orlando, S.

    2017-02-01

    Context. Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have recently been addressed based on an observation after a solar eruption. Aims: We study the possible back-effect of the magnetic field on the propagation of confined flows. Methods: We compared two 3D magnetohydrodynamic simulations of dense supersonic plasma blobs that fall down along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned with the magnetic field and the field is weaker. Results: The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merge through the chaotic shuffling of the field lines. They are structured into thinner filaments. Alfvén wave fronts are generated together with shocks ahead of the dense moving front. Conclusions: Downflowing plasma fragments can be chaotically and efficiently mixed if their motion is misaligned with field lines, with broad implications for disk accretion in protostars, coronal eruptions, and rain, for example. Movies associated to Figs. 2 and 3 are available at http://www.aanda.org

  12. Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2005-01-01

    This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.

  13. Coronal Modeling and Synchronic Maps

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Lionello, R.; Mikic, Z.; Riley, P.; Downs, C.; Henney, C. J.; Arge, C.

    2013-07-01

    MHD simulations of the solar corona rely on maps of the solar magnetic field (typically measured at the photosphere) for input as boundary conditions. These "synoptic" maps (available from a number of ground-based and space-based solar observatories), which are perhaps better described as "diachronic," are built up over a solar rotation. A well-known problem with this approach is that the maps contain data that is as much as 27 days old. The Sun's magnetic flux is always evolving, and these changes in the flux affect coronal and heliospheric structure. Flux evolution models can in principle provide a more accurate specification, by estimating the likely state of the photospheric magnetic field on unobserved portions of the Sun. The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model (Arge et al. 2010), which incorporates data assimilation techniques into the Worden and Harvey (2000) flux evolution model, is especially well-suited for this purpose. In this presentation we describe the use of such "synchronic" maps with coronal models. We compare results using synchronic maps versus the traditional synoptic maps. Research supported by AFOSR, NASA, and NSF.

  14. Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2005-01-01

    This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.

  15. SPINNING MOTIONS IN CORONAL CAVITIES

    SciTech Connect

    Wang, Y.-M.; Stenborg, G. E-mail: guillermo.stenborg.ctr.ar@nrl.navy.mi

    2010-08-20

    In movies made from Fe XII 19.5 nm images, coronal cavities that graze or are detached from the solar limb appear as continually spinning structures, with sky-plane projected flow speeds in the range 5-10 km s{sup -1}. These whirling motions often persist in the same sense for up to several days and provide strong evidence that the cavities and the immediately surrounding streamer material have the form of helical flux ropes viewed along their axes. A pronounced bias toward spin in the equatorward direction is observed during 2008. We attribute this bias to the poleward concentration of the photospheric magnetic flux near sunspot minimum, which leads to asymmetric heating along large-scale coronal loops and tends to drive a flow from higher to lower latitudes; this flow is converted into an equatorward spinning motion when the loops pinch off to form a flux rope. As sunspot activity increases and the polar fields weaken, we expect the preferred direction of the spin to reverse.

  16. Observational Signatures of Coronal Heating

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Einaudi, G.; Ugarte-Urra, I.; Warren, H. P.; Rappazzo, A. F.; Velli, M.; Taylor, B.

    2016-12-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numericalsimulations of the fully compressible three-dimensionalmagnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection,nonlinear thermal conduction and optically thin radiation.The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands arescattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla.To connect these simulations to observations the computed numberdensities and temperatures are used to synthesize the intensities expected inemission lines typically observed with the Extreme ultraviolet Imaging Spectrometer(EIS) on Hinode. These intensities are then employed to compute differentialemission measure distributions, which are found to be very similar to those derivedfrom observations of solar active regions.

  17. Coronal manifestations of preflare activity

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Webb, D. F.; Woodgate, B.; Waggett, P.; Bentley, R.; Hurford, G.; Schadee, A.; Schrijver, J.; Harrison, R.; Martens, P.

    1986-01-01

    A variety of coronal manifestations of precursors or preheating for flares are discussed. Researchers found that almost everyone with a telescope sees something before flares. Whether an all-encompassing scenario will ever be developed is not at all clear at present. The clearest example of preflare activity appears to be activated filaments and their manifestations, which presumably are signatures of a changing magnetic field. But researchers have seen two similar eruptions, one without any evidence of emerging flux (Kundu et al., 1985) and the other with colliding poles (Simon et al., 1984). While the reconnection of flux is generally agreed to be required to energize a flare, the emergence of flux from below (at least on short timescales and in compact regions) does not appear to be a necessary condition. In some cases the cancelling of magnetic flux (Martin, 1984) by horizontal motions instead may provide the trigger (Priest, 1985) Researchers found similarities and some differences between these and previous observations. The similarities, besides the frequent involvement of filaments, include compact, multiple precursors which can occur both at and near (not at) the flare site, and the association between coronal sources and activity lower in the atmosphere (i.e., transition zone and chromosphere).

  18. Professionalism in practice: the Coroner's Court.

    PubMed

    Griffith, Richard

    2017-01-02

    A coroner recently declared a district nursing service as unfit for purpose following the death of a patient and held the care given by district nurses was unprofessional and contributed to the patient's decline and death. In this article Richard Griffith considers the coroners concerns in relation to the professional standards imposed on district nurses.

  19. Deep coronal hole associated with quiescent filament

    NASA Astrophysics Data System (ADS)

    Kesumaningrum, Rasdewita; Herdiwidjaya, Dhani

    2014-03-01

    We present a study of the morphology of quiescent filament observed by H-alpha Solar Telescope at Bosscha Observatory in association with coronal hole observed by Atmospheric Imaging Assembly (AIA) instrument in 193 Å from Solar Dynamics Observatory. H-alpha images were processed by imaging softwares, namely Iris 5.59 and ImageJ, to enhance the signal to noise ratio and to identify the filament features associated with coronal hole. For images observed on October 12, 2011, November 14, 2011 and January 2, 2012, we identified distinct features of coronal holes above the quiescent filaments. This associated coronal holes have filament-like morphology with a thick long thread as it's `spine', defined as Deep Coronal Hole. Because of strong magnetic field of sunspot, these filaments and coronal holes emerged far from active region and lasted for several days. It is interesting as for segmented filament, deep coronal holes above the filaments lasted for a quite long period of time and merged. This association between filament and deep coronal hole can be explained by filament magnetic loop.

  20. Small-scale coronal structure, part 3

    NASA Technical Reports Server (NTRS)

    Webb, David F.

    1986-01-01

    Recent observations and models pertaining specifically to solar coronal bright points (BPs) and generally to small-scale coronal structure are reviewed. Two questions were addressed: What is the degree of correspondence among various alleged signatures of BPs at different levels of atmosphere and what can PBs tell about the emerging flux spectrum of the sun?

  1. An articulatory view of Kinyarwanda coronal harmony.

    PubMed

    Walker, Rachel; Byrd, Dani; Mpiranya, Fidèle

    2008-12-01

    Coronal harmony in Kinyarwanda causes alveolar fricatives to become postalveolar preceding a postalveolar fricative within a stem. Alveolar and postalveolar stops, affricates and palatals block coronal harmony, but the flap and non-coronal consonants are reported to be transparent. Kinematic data on consonant production in Kinyarwanda were collected using electromagnetic articulography. The mean angle for the line defined by receivers placed on the tongue tip and blade was calculated over the consonant intervals. Mean angle reliably distinguished alveolar and postalveolar fricatives, with alveolars showing a lower tip relative to blade. Mean angle during transparent non-coronal consonants showed a higher tip relative to blade than in contexts without harmony, and the mean angle during transparent [m] was not significantly different than during postalveolar fricatives. This is consistent with a model where Kinyarwanda coronal harmony extends a continuous tip-blade gesture, causing it to be present during 'transparent' segments, but without perceptible effect.

  2. An articulatory view of Kinyarwanda coronal harmony⁕

    PubMed Central

    Walker, Rachel; Byrd, Dani; Mpiranya, Fidèle

    2009-01-01

    Coronal harmony in Kinyarwanda causes alveolar fricatives to become postalveolar preceding a postalveolar fricative within a stem. Alveolar and postalveolar stops, affricates and palatals block coronal harmony, but the flap and non-coronal consonants are reported to be transparent. Kinematic data on consonant production in Kinyarwanda were collected using electromagnetic articulography. The mean angle for the line defined by receivers placed on the tongue tip and blade was calculated over the consonant intervals. Mean angle reliably distinguished alveolar and postalveolar fricatives, with alveolars showing a lower tip relative to blade. Mean angle during transparent non-coronal consonants showed a higher tip relative to blade than in contexts without harmony, and the mean angle during transparent [m] was not significantly different than during postalveolar fricatives. This is consistent with a model where Kinyarwanda coronal harmony extends a continuous tip-blade gesture, causing it to be present during ‘transparent’ segments, but without perceptible effect. PMID:20027237

  3. SOLAR WIND AND CORONAL BRIGHT POINTS INSIDE CORONAL HOLES

    SciTech Connect

    Karachik, Nina V.; Pevtsov, Alexei A. E-mail: apevtsov@nso.edu

    2011-07-01

    Observations of 108 coronal holes (CHs) from 1998-2008 were used to investigate the correlation between fast solar wind (SW) and several parameters of CHs. Our main goal was to establish the association between coronal bright points (CBPs; as sites of magnetic reconnection) and fast SW. Using in situ measurements of the SW, we have connected streams of the fast SW at 1 AU with their source regions, CHs. We studied a correlation between the SW speed and selected parameters of CHs: total area of the CH, total intensity inside the CH, fraction of area of the CH associated with CBPs, and their integrated brightness inside each CH. In agreement with previous studies, we found that the SW speed most strongly correlates with the total area of the CHs. The correlation is stronger for the non (de)projected areas of CHs (which are measured in image plane) suggesting that the near-equatorial parts of CHs make a larger contribution to the SW measured at near Earth orbit. This correlation varies with solar activity. It peaks for periods of moderate activity, but decreases slightly for higher or lower levels of activity. A weaker correlation between the SW speed and other studied parameters was found, but it can be explained by correlating these parameters with the CH's area. We also studied the spatial distribution of CBPs inside 10 CHs. We found that the density of CBPs is higher in the inner part of CHs. As such, results suggest that although the reconnection processes occurring in CBPs may contribute to the fast SW, they do not serve as the main mechanism of wind acceleration.

  4. Solar Wind and Coronal Bright Points inside Coronal Holes

    NASA Astrophysics Data System (ADS)

    Karachik, Nina V.; Pevtsov, Alexei A.

    2011-07-01

    Observations of 108 coronal holes (CHs) from 1998-2008 were used to investigate the correlation between fast solar wind (SW) and several parameters of CHs. Our main goal was to establish the association between coronal bright points (CBPs; as sites of magnetic reconnection) and fast SW. Using in situ measurements of the SW, we have connected streams of the fast SW at 1 AU with their source regions, CHs. We studied a correlation between the SW speed and selected parameters of CHs: total area of the CH, total intensity inside the CH, fraction of area of the CH associated with CBPs, and their integrated brightness inside each CH. In agreement with previous studies, we found that the SW speed most strongly correlates with the total area of the CHs. The correlation is stronger for the non (de)projected areas of CHs (which are measured in image plane) suggesting that the near-equatorial parts of CHs make a larger contribution to the SW measured at near Earth orbit. This correlation varies with solar activity. It peaks for periods of moderate activity, but decreases slightly for higher or lower levels of activity. A weaker correlation between the SW speed and other studied parameters was found, but it can be explained by correlating these parameters with the CH's area. We also studied the spatial distribution of CBPs inside 10 CHs. We found that the density of CBPs is higher in the inner part of CHs. As such, results suggest that although the reconnection processes occurring in CBPs may contribute to the fast SW, they do not serve as the main mechanism of wind acceleration.

  5. Recent advances in coronal heating

    PubMed Central

    De Moortel, Ineke; Browning, Philippa

    2015-01-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This ‘coronal heating problem’ requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue. PMID:25897095

  6. Coronal Loops Reveal Magnetic Dance

    NASA Image and Video Library

    2017-09-28

    Magnetic Dance: Solar material traces out giant magnetic fields soaring through the sun to create what's called coronal loops. Here they can be seen as white lines in a sharpened AIA image from Oct. 24, 2014, laid over data from SDO's Helioseismic Magnetic Imager, which shows magnetic fields on the sun's surface in false color. Credit: NASA/SDO/HMI/AIA/LMSAL Read more: www.nasa.gov/content/goddard/sdo-telescope-collects-its-1... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Coronal Structure: Legacy of EUVE

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K,

    1999-01-01

    During this past school year, the Smithsonian Predoctoral student, Jorge Sanz-Forcada, began work on this Ph.D. thesis research which will focus on the coronal structure of active cool binary stars. He developed a semi-automatic algorithm to derive the emission measure distribution from EUVE spectra using the latest atomic parameters. To date, he has modeled our long EUVE pointing on lambda And that occurred in the fall of 1998, and has reduced and modeled spectra from EUVE pointings on AR Lac and UX Ari. Some of these observations were made simultaneous with the Advanced Satellite for Cosmology and Physics (ASCA) satellite, and the results reported at the HEAD meeting in Spring 1999.

  8. Coronal Mass Ejections travel time

    NASA Astrophysics Data System (ADS)

    Braga, Carlos Roberto; Souza de Mendonça, Rafael Rodrigues; Dal Lago, Alisson; Echer, Ezequiel

    2017-10-01

    Coronal mass ejections (CMEs) are the main source of intense geomagnetic storms when they are earthward directed. Studying their travel time is a key-point to understand when the disturbance will be observed at Earth. In this work, we study the CME that originated the interplanetary disturbance observed on 2013/10/02. According to the observations, the CME that caused the interplanetary disturbance was ejected on 2013/09/29. We obtained the CME speed and estimate of the time of arrival at the Lagrangian Point L1 using the concept of expansion speed. We found that observed and estimated times of arrival of the shock differ between 2 and 23 hours depending on method used to estimate the radial speed.

  9. Simulations of coronal disconnection events

    SciTech Connect

    Linker, J.A.; Van Hoven, G. ); McComas, D.J. )

    1992-09-01

    The lack of evidence for magnetic disconnection of coronal mass ejection (CMEs) from the Sun has long been a puzzle, as it implies a buildup of the interplanetary magnetic field (IMF) magnitude over time. Such a buildup is ruled out by observations. Magnetic reconnection above helmet streamer configurations could provide a mechanism for maintaining the observed relative constancy of the (IMF) [McComas et al., 1989]; McComas et al. [1991] showed observational evidence of reconnection above a streamer. The authors investigate this interpretation using time-dependent MHD simulations. They model the opening of new magnetic flux on the Sun (as might occur in a CME or other transient event) as an increase in magnetic flux at the poles of a simulated corona. They find that this perturbation can in fact cause reconnection above an equatorial helmet streamer, and the resultant density signature is similar to the observations of McComas et al. [1991].

  10. Recent advances in coronal heating.

    PubMed

    De Moortel, Ineke; Browning, Philippa

    2015-05-28

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.

  11. Modeling Interplanetary Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Riley, Pete

    2004-01-01

    Heliospheric models of Coronal Mass Ejection (CME) propagation and evolution provide an important insight into the dynamics of CMEa and are a valuable tool for interpreting interplanetary in situ observations. Moreover, they represent a virtual laboratory for exploring conditions and regions of space that are not conveniently or currently accessible by spacecraft. In this review I summarize recent advances in modeling the properties and evolution of CMEs in the solar wind. In particular, I will focus on: (1) the types of ICME models; (2) the boundary conditions that are imposed, (3) the role of the ambient solar wind; (4) predicting new phenomena; and (5) distinguishing between competing CME initiation mechanisms. I will conclude by discussing what topics will likely be important for models to address in the future.

  12. Initiation of a coronal transient

    SciTech Connect

    Low, B.C.; Munro, R.H.; Fisher, R.R.

    1982-03-01

    This paper analyzes the coronal transient/eruptive prominence event of 1980 August 5 observed by the Mauna Loa experiment system. This event yielded data on the early development of the transient in the low corona between 1.2 R/sub sun/ and 2.2 R/sub sun/, information which was not available when earlier attempts were made to explain transient phenomena. The transient's initial appearance in the form of a rising density-depleted structure, prior to the eruption of the associated prominence, can be explained as an effect of magnetic buoyancy. The data indicate that this transient has a density depletion of 17% to 33% relative to an undisturbed corona which is approximately isothermal with a temperature of 1.5 x 10/sup 6/ K and a coronal density of 1.0 x 10/sup 9/ cm/sup -3/ at the base of the corona. The height versus base length relationship of the evolving transient resembles, remarkably well, the theoretical predictions obtained from a quasi-static model of a margnetically buoyant loop system. By matching this relationship with the theoretical model, we estimate the magnetic field at the base of the transient to be between 2 and 3 gauss. It is also shown that the initial, nearly constant speed of the top of the transient, 80 +- 20 km s/sup -1/, is consistent with a theoretical estimate calculated from the quasi-static model. These results suggest that some transients are not initiated impulsively, the initial stage of the development being driven by a quasi-static response to a slow change in magnetic field conditions at the base of the corona.

  13. FORWARD: A Toolset for Multiwavelength Coronal Magnetometry

    NASA Technical Reports Server (NTRS)

    Gibson, Sarah E.; Kucera, Therese A.; White, Stephen M.; Dove, James B.; Fan, Yuhong; Forland, Blake C.; Rachmeler, Laurel A.; Downs, Cooper; Reeves, Katharine K.

    2016-01-01

    Determining the 3D coronal magnetic field is a critical, but extremely difficult problem to solve. Since different types of multiwavelength coronal data probe different aspects of the coronal magnetic field, ideally these data should be used together to validate and constrain specifications of that field. Such a task requires the ability to create observable quantities at a range of wavelengths from a distribution of magnetic field and associated plasma i.e., to perform forward calculations. In this paper we describe the capabilities of the FORWARD SolarSoft IDL package, a uniquely comprehensive toolset for coronal magnetometry. FORWARD is a community resource that may be used both to synthesize a broad range of coronal observables, and to access and compare synthetic observables to existing data. It enables forward fitting of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties. FORWARD can also be used to generate synthetic test beds from MHD simulations in order to facilitate the development of coronal magnetometric inversion methods, and to prepare for the analysis of future large solar telescope data.

  14. FORWARD: A Toolset for Multiwavelength Coronal Magnetometry

    NASA Technical Reports Server (NTRS)

    Gibson, Sarah E.; Kucera, Therese A.; White, Stephen M.; Dove, James B.; Fan, Yuhong; Forland, Blake C.; Rachmeler, Laurel A.; Downs, Cooper; Reeves, Katharine K.

    2016-01-01

    Determining the 3D coronal magnetic field is a critical, but extremely difficult problem to solve. Since different types of multiwavelength coronal data probe different aspects of the coronal magnetic field, ideally these data should be used together to validate and constrain specifications of that field. Such a task requires the ability to create observable quantities at a range of wavelengths from a distribution of magnetic field and associated plasma i.e., to perform forward calculations. In this paper we describe the capabilities of the FORWARD SolarSoft IDL package, a uniquely comprehensive toolset for coronal magnetometry. FORWARD is a community resource that may be used both to synthesize a broad range of coronal observables, and to access and compare synthetic observables to existing data. It enables forward fitting of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties. FORWARD can also be used to generate synthetic test beds from MHD simulations in order to facilitate the development of coronal magnetometric inversion methods, and to prepare for the analysis of future large solar telescope data.

  15. FORWARD: A toolset for multiwavelength coronal magnetometry

    NASA Astrophysics Data System (ADS)

    Gibson, Sarah; Kucera, Therese; White, Stephen; Dove, James; Fan, Yuhong; Forland, Blake; Rachmeler, Laurel; Downs, Cooper; Reeves, Katharine

    2016-03-01

    Determining the 3D coronal magnetic field is a critical, but extremely difficult problem to solve. Since different types of multiwavelength coronal data probe different aspects of the coronal magnetic field, ideally these data should be used together to validate and constrain specifications of that field. Such a task requires the ability to create observable quantities at a range of wavelengths from a distribution of magnetic field and associated plasma -- i.e., to perform forward calculations. In this paper we describe the capabilities of the FORWARD SolarSoft IDL package, a uniquely comprehensive toolset for coronal magnetometry. FORWARD is a community resource that may be used both to synthesize a broad range of coronal observables, and to access and compare synthetic observables to existing data. It enables forward fitting of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties. FORWARD can also be used to generate synthetic test beds from MHD simulations in order to facilitate the development of coronal magnetometric inversion methods, and to prepare for the analysis of future large solar telescope data.

  16. Cavernomas de la región temporal mesial: Anatomía microquirúrgica y abordajes

    PubMed Central

    Campero, Alvaro

    2015-01-01

    Objetivo: Describir la anatomía microquirúrgica y los abordajes a la región temporal mesial (RTM), en relación a cavernomas de dicho sector. Materiales y Método: Cinco cabezas de cadáveres adultos, fijadas en formol e inyectadas con silicona coloreada, fueron estudiadas. Además, desde enero de 2007 a junio de 2014, 7 pacientes con cavernomas localizados en la RTM fueron operados por el autor. Resultados: Anatomia: La RTM fue dividida en 3 sectores: Anterior, medio y posterior. Pacientes: 7 enfermos con cavernomas de la RTM fueron operados por el autor. De acuerdo a la ubicacion en la RTM, 4 cavernomas se ubicaron en el sector anterior, 2 cavernomas se localizaron en el sector medio y 1 cavernoma se ubico en el sector posterior. Para el sector anterior de la RTM se utilizo un abordaje transsilviano-transinsular; para el sector medio de la RTM se utilizo un abordaje transtemporal (lobectomia temporal anterior); y para el sector posterior de la RTM se utilizo un abordaje supracerebeloso-transtentorial. Conclusión: Dividir la RTM en 3 sectores nos permite adecuar el abordaje en función a la localización de la lesión. Así, el sector anterior es bien abordable a través de la fisura silviana; el sector medio a través de una vía transtemporal; y el sector posterior por un abordaje supracerebeloso. PMID:26600986

  17. LOW-LATITUDE CORONAL HOLES, DECAYING ACTIVE REGIONS, AND GLOBAL CORONAL MAGNETIC STRUCTURE

    SciTech Connect

    Petrie, G. J. D.; Haislmaier, K. J.

    2013-10-01

    We study the relationship between decaying active-region magnetic fields, coronal holes, and the global coronal magnetic structure using Global Oscillations Network Group synoptic magnetograms, Solar TErrestrial RElations Observatory extreme-ultraviolet synoptic maps, and coronal potential-field source-surface models. We analyze 14 decaying regions and associated coronal holes occurring between early 2007 and late 2010, 4 from cycle 23 and 10 from cycle 24. We investigate the relationship between asymmetries in active regions' positive and negative magnetic intensities, asymmetric magnetic decay rates, flux imbalances, global field structure, and coronal hole formation. Whereas new emerging active regions caused changes in the large-scale coronal field, the coronal fields of the 14 decaying active regions only opened under the condition that the global coronal structure remained almost unchanged. This was because the dominant slowly varying, low-order multipoles prevented opposing-polarity fields from opening and the remnant active-region flux preserved the regions' low-order multipole moments long after the regions had decayed. Thus, the polarity of each coronal hole necessarily matched the polar field on the side of the streamer belt where the corresponding active region decayed. For magnetically isolated active regions initially located within the streamer belt, the more intense polarity generally survived to form the hole. For non-isolated regions, flux imbalance and topological asymmetry prompted the opposite to occur in some cases.

  18. Energy release in braided coronal loops

    NASA Astrophysics Data System (ADS)

    Pontin, David; Hornig, Gunnar; Galsgaard, Klaus; Candelaresi, Simon

    2017-04-01

    I will examine the dynamics of solar coronal loops containing non-trivial magnetic field line braiding, in the context of Parker's braiding mechanism for coronal heating. The existence of braided force-free equilibria will be discussed, including a demonstration that these equilibria must contain current layers whose thickness deceases for increasing field complexity. The implication for the corona is that if one considers a line-tied coronal loop that is driven by photospheric motions, then the eventual onset of reconnection and energy release is inevitable. Once the initial reconnection event is triggered a turbulent relaxation ensues. The properties of this relaxation will be discussed, together with the expected observational signatures of energy release in such a braided coronal loop.

  19. REVIEWS OF TOPICAL PROBLEMS: Coronal magnetic loops

    NASA Astrophysics Data System (ADS)

    Zaitsev, Valerii V.; Stepanov, Alexander V.

    2008-11-01

    The goal of this review is to outline some new ideas in the physics of coronal magnetic loops, the fundamental structural elements of the atmospheres of the Sun and flaring stars, which are involved in phenomena such as stellar coronal heating, flare energy release, charged particle acceleration, and the modulation of optical, radio, and X-ray emissions. The Alfvén-Carlqvist view of a coronal loop as an equivalent electric circuit allows a good physical understanding of loop processes. Describing coronal loops as MHD-resonators explains various ways in which flaring emissions from the Sun and stars are modulated, whereas modeling them by magnetic mirror traps allows one to describe the dynamics and emission of high-energy particles. Based on these approaches, loop plasma and fast particle parameters are obtained and models for flare energy release and stellar corona heating are developed.

  20. Results of coronal hole research: An overview

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1976-01-01

    An overview of the last 10 years of coronal hole research, in particular since 1970, is presented. The findings of the early investigations and the more recent results obtained with Skylab/Apollo Telescope Mount instrumentation are discussed.

  1. Aug. 31, 2012 Coronal Mass Ejection

    NASA Image and Video Library

    This two part movie shows an Aug. 31 coronal mass ejection (CME) from the sun , the same event that caused depletion and refilling of the radiation belts just after the Relativistic Electron-Proton...

  2. Observational Consequences of Coronal Heating Mechanisms

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; Cirtain, Jonathan C.; Golub, Leon; Kobayashi, Ken

    2014-01-01

    The coronal heating problem remains unsolved today, 80 years after its discovery, despite 50 years of suborbital and orbital coronal observatories. Tens of theoretical coronal heating mechanisms have been suggested, but only a few have been able to be ruled out. In this talk, we will explore the reasons for the slow progress and discuss the measurements that will be needed for potential breakthrough, including imaging the solar corona at small spatial scales, measuring the chromospheric magnetic fields, and detecting the presence of high temperature, low emission measure plasma. We will discuss three sounding rocket instruments developed to make these measurements: the High resolution Resolution Coronal Imager (Hi-C), the Chromospheric Lyman-Alpha Spectropolarimeter (CLASP), and the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS).

  3. Solar Coronal Cells as Seen by STEREO

    NASA Image and Video Library

    The changes of a coronal cell region as solar rotation carries it across the solar disk as seen with NASA's STEREO-B spacecraft. The camera is fixed on the region (panning with it) and shows the pl...

  4. Coronal Magnetism and Forward Solarsoft Idl Package

    NASA Astrophysics Data System (ADS)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  5. Relating magnetic reconnection to coronal heating

    PubMed Central

    Longcope, D. W.; Tarr, L. A.

    2015-01-01

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related—i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, , is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature. PMID:25897089

  6. Sept. 28, 2012 Coronal Mass Ejection

    NASA Image and Video Library

    This Sept. 28 coronal mass ejection (CME) from the sun, captured by NASA’s Solar Dynamics Observatory (SDO), is the event which caused the near total annihilation of the new radiation belt and sl...

  7. Relating magnetic reconnection to coronal heating.

    PubMed

    Longcope, D W; Tarr, L A

    2015-05-28

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related--i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, [Formula: see text], is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature.

  8. Deformation and deceleration of coronal wave

    NASA Astrophysics Data System (ADS)

    Xue, Z. K.; Qu, Z. Q.; Yan, X. L.; Zhao, L.; Ma, L.

    2013-08-01

    Aims: We studied the kinematics and morphology of two coronal waves to better understand the nature and origin of coronal waves. Methods: Using multi-wavelength observations of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the Extreme Ultraviolet Imager (EUVI) on board the twin spacecraft Solar-TErrestrial RElations Observatory (STEREO), we present morphological and dynamic characteristics of consecutive coronal waves on 2011 March 24. We also show the coronal magnetic field based on the potential field source surface model. Results: This event contains several interesting aspects. The first coronal wave initially appeared after a surge-like eruption. Its front was changed and deformed significantly from a convex shape to a line-shaped appearance, and then to a concave configuration during its propagation to the northwest. The initial speeds ranged from 947 km s-1 to 560 km s-1. The first wave decelerated significantly after it passed through a filament channel. After the deceleration, the final propagation speeds of the wave were from 430 km s-1 to 312 km s-1. The second wave was found to appear after the first wave in the northwest side of the filament channel. Its wave front was more diffused and the speed was around 250 km s-1, much slower than that of the first wave. Conclusions: The deformation of the first coronal wave was caused by the different speeds along different paths. The sudden deceleration implies that the refraction of the first wave took place at the boundary of the filament channel. The event provides evidence that the first coronal wave may be a coronal MHD shock wave, and the second wave may be the apparent propagation of the brightenings caused by successive stretching of the magnetic field lines.

  9. Energy conversion in the coronal plasma

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.

    1986-01-01

    Solar and stellar X-ray emission are the observed waste products of the interplay between magnetic fields and the motion of stellar plasma. Theoretical understanding of the process of coronal heating is of utmost importance, since the high temperature is what defines the corona in the first place. Most of the research described deals with the aspects of the several rivalling theories for coronal heating. The rest of the papers deal with processes of energy conversion related to flares.

  10. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    SciTech Connect

    Fang, X.; Xia, C.; Keppens, R.

    2013-07-10

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  11. Multidimensional Modeling of Coronal Rain Dynamics

    NASA Astrophysics Data System (ADS)

    Fang, X.; Xia, C.; Keppens, R.

    2013-07-01

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  12. Coronal rain in magnetic bipolar weak fields

    NASA Astrophysics Data System (ADS)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  13. Dynamic simulation of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Wu, S. T.

    1980-01-01

    A model is developed for the formation and propagation through the lower corona of the loop-like coronal transients in which mass is ejected from near the solar surface to the outer corona. It is assumed that the initial state for the transient is a coronal streamer. The initial state for the streamer is a polytropic, hydrodynamic solution to the steady-state radial equation of motion coupled with a force-free dipole magnetic field. The numerical solution of the complete time-dependent equations then gradually approaches a stationary coronal streamer configuration. The streamer configuration becomes the initial state for the coronal transient. The streamer and transient simulations are performed completely independent of each other. The transient is created by a sudden increase in the pressure at the base of the closed-field region in the streamer configuration. Both coronal streamers and coronal transients are calculated for values of the plasma beta (the ratio of thermal to magnetic pressure) varying from 0.1 to 100.

  14. The Global Coronal Structure Investigation

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    During the past year we have completed the changeover from the NIXT program to the new TXI sounding rocket program. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design, has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronics and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated x-ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The H-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. A new H-alpha camera has been built, with a high-resolution RS170 CCD camera output. Two papers, summarizing scientific results from the NIXT rocket program, have been written and published this year: 1. "The Solar X-ray Corona," by L. Golub, Astrophysics and Space Science, 237, 33 (1996). 2. "Difficulties in Observing Coronal Structure," Keynote Paper, Proceedings STEPWG1 Workshop on Measurements and Analyses of the Solar 3D Magnetic Field, Solar Physics, 174, 99 (1997).

  15. Composition of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Zurbuchen, T. H.; Weberg, M.; von Steiger, R.; Mewaldt, R. A.; Lepri, S. T.; Antiochos, S. K.

    2016-01-01

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) less than 10 electronvolts, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q (sub Fe) is greater than 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70 percent over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  16. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. In addition we are exploring the effects of coronas on the He I 1083081 transition that is observed in the infrared. Highlights of these are summarized below including publications during this reporting period and presentations. Ground-based magnetic Doppler imaging of cool stars suggests that active stars have active regions located at high latitudes on their surface. We have performed similar imaging in X-ray to locate the sites of enhanced activity using Chandra spectra. Chandra HETG observations of the bright eclipsing contact binary 44i Boo and Chandra LETG observations for the eclipsing binary VW Cep show X-ray line profiles that are Doppler-shifted by orbital motion. After careful analysis of the spectrum of each binary, a composite line-profile is constructed by adding the individual spectral lines. This high signal-to-noise ratio composite line-profile yields orbital velocities for these binaries that are accurate to 30 km/sec and allows their orbital motion to be studied at higher time resolutions. In conjunction with X-ray lightcurves, the phase-binned composite line-profiles constrain coronal structures to be small and located at high latitudes. These observations and techniques show the power of the Doppler Imaging Technique applied to X-ray line emission.

  17. Models for coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Jacobs, Carla; Poedts, Stefaan

    2011-06-01

    Coronal mass ejections (CMEs) play a key role in space weather. The mathematical modelling of these violent solar phenomena can contribute to a better understanding of their origin and evolution and as such improve space weather predictions. We review the state-of-the-art in CME simulations, including a brief overview of current models for the background solar wind as it has been shown that the background solar wind affects the onset and initial evolution of CMEs quite substantially. We mainly focus on the attempt to retrieve the initiation and propagation of CMEs in the framework of computational magnetofluid dynamics (CMFD). Advanced numerical techniques and large computer resources are indispensable when attempting to reconstruct an event from Sun to Earth. Especially the simulations developed in dedicated event studies yield very realistic results, comparable with the observations. However, there are still a lot of free parameters in these models and ad hoc source terms are often added to the equations, mimicking the physics that is not really understood yet in detail.

  18. EXPLOSIVE INSTABILITY AND CORONAL HEATING

    SciTech Connect

    Dahlburg, R. B.; Liu, J.-H.; Klimchuk, J. A.; Nigro, G.

    2009-10-20

    The observed energy-loss rate from the solar corona implies that the coronal magnetic field has a critical angle at which energy is released. It has been hypothesized that at this critical angle an 'explosive instability' would occur, leading to an enhanced conversion of magnetic energy into heat. In earlier investigations, we have shown that a shear-dependent magnetohydrodynamic process called 'secondary instability' has many of the distinctive features of the hypothetical 'explosive instability'. In this paper, we give the first demonstration that this 'secondary instability' occurs in a system with line-tied magnetic fields and boundary shearing-basically the situation described by Parker. We also show that, as the disturbance due to secondary instability attains finite amplitude, there is a transition to turbulence which leads to enhanced dissipation of magnetic and kinetic energy. These results are obtained from numerical simulations performed with a new parallelized, viscoresistive, three-dimensional code that solves the cold plasma equations. The code employs a Fourier collocation-finite difference spatial discretization, and uses a third-order Runge-Kutta temporal discretization.

  19. Characteristics of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Talukder, F.; Marchese, A. K.; Tulsee, T.

    2014-12-01

    A coronal mass ejection (CME) is a release of charged particles resulting from solar activity. These charged particles can affect electronics on spacecraft, airplanes, global positioning systems, and communication satellites. The purpose of this research was to study CME data from satellites and correlate these to other properties. Solar wind data collected by STEREO A/B and ACE satellites were analyzed. The data consisted of solar wind flux for various elements (helium through iron), as well as the components of the interplanetary magnetic field. CME events are known to cause a surge in the helium flux, as well as other particles. It is hypothesized that a CME event will cause an increase in the number of lighter elements relative to heavier particles. This is because for a given input of energy, lighter elements are expected to be accelerated to a greater extent than heavier elements. A significant increase was observed in the ratio between helium to oxygen (He/O) prior to intense CMEs. A CME event on November 4, 2003 caused an eleven-fold increase in the He/O ratio, while for another event on April 2, 2001 the He/O ratio increased from 80 to 700. A significant increase in He/O ratio is not observed during weaker CMEs. Furthermore, it was also observed that not all increases in the ratio were accompanied by CMEs. The increase in He/O ratio prior to the CME arrival might be used as a way to predict future events.

  20. Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Illing, R. M. E.; Hundhausen, A. J.

    1986-01-01

    The coronal mass ejection of August 18, 1980 is analyzed using images from the coronagraph on the Solar Maximum Mission (SMM) satellite. The event occurred at the site of a large coronal helmet streamer and evolved into the three-part structure of a bright frontal shell, followed by a relatively dark space surrounding a bright filamentary core as seen in many mass ejections of the SMM epoch. The bright core can be identified as material from a prominence whose eruption was observed from the ground. The mass of the frontal shell is equal to that of the coronal helmet streamer, indicating that the shell is the coronal material previously in the helmet streamer, displaced and set into motion by the erupting prominence and surrounding cavity. The mass ejected in the bright core (or prominences) is estimated to be 50 percent larger than the 'coronal' material in the front loop.

  1. Observational characteristics of coronal mass ejections without low-coronal signatures

    SciTech Connect

    D'Huys, E.; Seaton, D. B.; Berghmans, D.; Poedts, S.

    2014-11-01

    Solar eruptions are usually associated with a variety of phenomena occurring in the low corona before, during, and after the onset of eruption. Though easily visible in coronagraph observations, so-called stealth coronal mass ejections (CMEs) do not obviously exhibit any of these low-coronal signatures. The presence or absence of distinct low-coronal signatures can be linked to different theoretical models to establish the mechanisms by which the eruption is initiated and driven. In this study, 40 CMEs without low-coronal signatures occurring in 2012 are identified. Their observational and kinematic properties are analyzed and compared to those of regular CMEs. Solar eruptions without clear on-disk or low-coronal signatures can lead to unexpected space weather impacts, since many early warning signs for significant space weather activity are not present in these events. A better understanding of their initiation mechanism(s) will considerably improve the ability to predict such space weather events.

  2. Coronal Jet Plasma Properties and Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Farid, Samaiyah; Reeves, Kathy; Savcheva, Antonia; Soto, Natalia

    2017-08-01

    Coronal jets are transient eruptions of plasma typically characterized by aprominent long spire and a bright base, and sometimes accompanied by a small filament. Jets are thought to be produced by magnetic reconnection when small-scale bipolar magnetic fields emerge into an overlying coronal field or move into a locally unipolar region. Coronal jets are commonly divided into two categories: standard jets and blowout jets, and are found in both quiet and active regions. The plasma properties of jets vary across type and location, therefore understanding the underlying acceleration mechanisms are difficult to pin down. In this work, we examine both blow-out and standard jets using high resolution multi-wavelength data. Although reconnection is commonly accepted as the primary acceleration mechanism, we also consider the contribution chromospheric evaporation to jet formation. We use seven coronal channels from SDO/AIA , Hinode/XRT Be-thin and IRIS slit-jaw data. In addition, we separate the Fe-XVIII line from the SDO/94Å channel. We calculate plasma properties including velocity, Alfven speed, and density as a function of wavelength and Differential Emission Measure (DEM). Finally, we explore the magnetic topology of the jets using Coronal Modeling System (CMS) to construct potential and non-linear force free models based on the flux rope insertion method.

  3. Understanding the rotation of coronal holes

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    1993-01-01

    In an earlier study we found that the rotation of coronal holes could be understood on the basis of a nearly current-free coronal field, with the holes representing open magnetic regions. In this paper we illustrate the model by focusing on the case of CH1, the rigidly rotating boot-shaped hole observed by Skylab. We show that the interaction between the polar fields and the flux associated with active regions produces distortions in the coronal field configuration and thus in the polar-hole boundaries; these distortions corotate with the perturbing nonaxisymmetric flux. In the case of CH1, positive-polarity field lines in the northern hemisphere 'collided' with like-polarity field lines fanning out from a decaying active region complex located just below the equator, producing a midlatitude corridor of open field lines rotating at the rate of the active region complex. Sheared coronal holes result when nonaxisymmetric flux is present at high latitudes, or equivalently, when the photospheric neutral line extends to high latitudes. We demonstrate how a small active region, rotating at the local photospheric rate, can drift through a rigidly rotating hole like CH1. Finally, we discuss the role of field-line reconnection in maintaining a quasi-potential coronal configuration.

  4. Modeling eruptive coronal magnetohydrodynamic systems with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, L. A.

    In this dissertation I explore solar coronal energetic eruptions in the context of magnetic reconnection, which is commonly thought to be a required trigger mechanism for solar eruptions. Reconnection is difficult to directly observe in the corona, and current numerical methods cannot model reconnectionless control cases. Thus, it is not possible to determine if reconnection is a necessary component of these eruptions. I have executed multiple controlled simulations to determine the importance of reconnection for initiation and evolution of several eruptive systems using FLUX, a numerical model that uses the comparatively new fluxon technique. I describe two types of eruptions modeled with FLUX: a metastable confined flux rope theory for coronal mass ejection (CME) initiation, and symmetrically twisted coronal jets in a uniform vertical background field. In the former, I identified an ideal magnetohydrodynamic (MHD) instability that allows metastable twisted flux rope systems to suddenly lose stability and erupt even in the absence of reconnection, contradicting previous conjecture. The CME result is in contrast to the azimuthally symmetric coronal jet initiation model, where jet-like behavior does not manifest without reconnection. My work has demonstrated that some of the observed eruptive phenomena may be triggered by non-reconnective means such as ideal MHD instabilities, and that magnetic reconnection is not a required element in all coronal eruptions.

  5. The lower chromosphere in a coronal hole

    NASA Astrophysics Data System (ADS)

    Teplitskaya, R.; Turova, I.; Ozhogina, O.

    Coronal holes draw special attention of the Sun researchers In particular they are known as suppositional sources of fast solar wind flows A coronal hole was observed for three days of its passage near the central meridian of the Sun Spectrograms containing strong lines of ionized calcium were obtained The Ca II K H and lambda 854 2 nm line profiles in the region of the coronal hole and in the quiet Sun region outside its boundaries were measured Only the line profiles that were confidently identified as being undisturbed even by weak plages were selected All the profiles were averaged in each of the two chromospheric network components network cell and the average profiles were calculated using all of the available data network cell Comparing the profiles was carried out separately for cells and cell boundaries of the chromospheric network Our principal result is that space- and time- averaged observed profiles of the central self-reversal on the coronal hole sites differ from those remote from the hole intensities of the K 3 H 3 central depressions are increased in cell while unchanged in network height of the K 2 peaks is reduced in cell and particularly in network the central self-reversal asymmetry is intensified in network Distinctions appear at a high significance level Line wings as well as average characteristics of the infrared line remain practically invariable We discuss probable causes for the revealed behavior of the lower chromosphere lines at the base of a coronal hole

  6. Implications for coronal heating and magnetic field topology from coronal rain observations

    NASA Astrophysics Data System (ADS)

    Antolin, Patrick

    2012-05-01

    According to tropical wisdom, when the atmosphere feels hot and dense we can expect rain. Such thinking may also apply to the Sun, as this thesis explains. The presented new high-resolution observations with the Solar Optical Telescope (SOT) of Hinode and the CRISP spectropolarimeter at the Swedish 1-m Solar Telescope (SST) show a picture of the Sun in which coronal rain seems to be a far more common phenomenon of active regions (the hot and dense regions in the solar atmosphere) than previously thought. Coronal rain, a phenomenon of thermal instability in plasmas for the case of coronal loops, is composed of small cool and dense blobs observed in chromospheric lines such as Hα or Ca II H, rapidly forming and falling down from coronal heights along loop-like paths. Apart from suggesting its ubiquitous character, in this thesis the importance of coronal rain is highlighted in 3 different ways. First, its potential as a marker for coronal heating mechanisms is shown. More specifically, through numerical simulations the effects of Alfvén waves (a strong coronal heating candidate) on the thermal stability of loops is treated. The results indicate that coronae heated through shock heating from mode conversion of Alfvén waves cannot exhibit coronal rain, thus suggesting that this mechanism may not be important for the heating of active region coronae. Second, the role it plays in coronal seismology is shown. Transverse MHD oscillations in loops are put in evidence by coronal rain in observations with Hinode/SOT, thus offering a way to estimate the coronal magnetic field strength, one of the hardest physical quantities to measure accurately, yet lying at the root of most solar and heliospheric physics. Third, due to the very small sizes of the blobs of which it is composed of, it also serves as a probe for the internal structure and local thermodynamic conditions in loops. In the obtained picture with CRISP of the SST coronal loops appear with constant area cross

  7. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  8. The Fundamental Structure of Coronal Loops

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy; Warren, Harry; Cirtain, Jonathan; Kobayashi, Ken; Korreck, Kelly; Golub, Leon; Kuzin, Sergey; Walsh, Robert; DePontieu, Bart; Title, Alan; hide

    2012-01-01

    During the past ten years, solar physicists have attempted to infer the coronal heating mechanism by comparing observations of coronal loops with hydrodynamic model predictions. These comparisons often used the addition of sub ]resolution strands to explain the observed loop properties. On July 11, 2012, the High Resolution Coronal Imager (Hi ]C) was launched on a sounding rocket. This instrument obtained images of the solar corona was 0.2 ]0.3'' resolution in a narrowband EUV filter centered around 193 Angstroms. In this talk, we will compare these high resolution images to simultaneous density measurements obtained with the Extreme Ultraviolet Imaging Spectrograph (EIS) on Hinode to determine whether the structures observed with Hi ]C are resolved.

  9. Free Magnetic Energy and Coronal Heating

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy; Moore, Ron; Falconer, David

    2012-01-01

    Previous work has shown that the coronal X-ray luminosity of an active region increases roughly in direct proportion to the total photospheric flux of the active region's magnetic field (Fisher et al. 1998). It is also observed, however, that the coronal luminosity of active regions of nearly the same flux content can differ by an order of magnitude. In this presentation, we analyze 10 active regions with roughly the same total magnetic flux. We first determine several coronal properties, such as X-ray luminosity (calculated using Hinode XRT), peak temperature (calculated using Hinode EIS), and total Fe XVIII emission (calculated using SDO AIA). We present the dependence of these properties on a proxy of the free magnetic energy of the active region

  10. A contemporary view of coronal heating.

    PubMed

    Parnell, Clare E; De Moortel, Ineke

    2012-07-13

    Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures has long been a key problem. For decades, the problem has been known as the coronal heating problem, but it is now clear that 'coronal heating' cannot be treated or explained in isolation and that the heating of the whole solar atmosphere must be studied as a highly coupled system. The magnetic field of the star is known to play a key role, but, despite significant advancements in solar telescopes, computing power and much greater understanding of theoretical mechanisms, the question of which mechanism or mechanisms are the dominant supplier of energy to the chromosphere and corona is still open. Following substantial recent progress, we consider the most likely contenders and discuss the key factors that have made, and still make, determining the actual (coronal) heating mechanism (or mechanisms) so difficult.

  11. Disconnection of open coronal magnetic structures

    SciTech Connect

    McComas, D.J.; Phillips, J.L.; Hundhausen, A.J.; Burkepile, J.T.

    1991-01-01

    We have examined the Solar Maximum Mission coronagraph/polarimeter observations for evidence of magnetic disconnection of previously open magnetic structures and a number of likely examples have been found. Probable coronal disconnections typically appear as pinching off of helmet streamers followed by the release and outward acceleration of a large U or V-shaped structures. The observed sequence of events is consistent with reconnection across the heliospheric current sheet between previously open magnetic field regions, and the creation of a detached magnetic structure which is open to interplanetary space at both ends. Sunward of the reconnection point, coronal disconnection events would return previously open magnetic flux to the Sun as closed field arches. Here we (1) describe one clear disconnection event (1 June 1989); (2) examine the results of a limited survey of disconnection events; and (3) discuss the potential importance of coronal disconnections for maintaining flux in interplanetary space. 7 refs., 3 figs.

  12. Constraints on Nonuniform Expansion in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Kucera, Therese A.; DeForest, Craig; Klimchuk, James A.; Young, Peter R.

    2017-08-01

    We use measurements of coronal loop properties to constrain the hypothesis that coronal loops expand differently in different directions. A long standing problem in understanding coronal loops is that although the magnetic field is expected to expand with altitude and does indeed seem to do so on scales of active regions, individual loops seem to have fairly uniform diameters along the length of the loop. Malanushenko & Schrijver (2013) have suggested that loops may be expanding, but with a non-circular cross section. In this scenario a loop might have a constant width in the plane of the sky, but expand along the line of sight. Furthermore, such loops might be easier to see from the point of view that does not show expansion. We use Hinode/EIS and SDO/AIA data to measure loop intensities, electron densities, temperatures and dimensions in order to determine the extent to which loops may be expanding along the line of sight.

  13. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    SciTech Connect

    Kramar, M.; Lin, H.; Tomczyk, S. E-mail: lin@ifa.hawaii.edu

    2016-03-10

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  14. Polar Plumes Observed at Extreme Coronal Altitudes

    NASA Astrophysics Data System (ADS)

    Deforest, C. E.; Plunkett, S. P.

    1999-09-01

    Polar plumes, unipolar high density structures in the polar coronal holes, are key to our understanding of solar wind acceleration and coronal heating. Because unipolar magnetic flux concentrations in the coronal hole account for approximately 50 leaves the coronal hole (DeForest et al., 1996), plumes (which arise from some such concentrations) are tracers of a type of magnetic structure that fills nearly half of the solar system at solar minimum. Plumes have been observed up to altitudes of about 10 solar radii with the LASCO instrument (DeForest et al., 1996), above which they fade into the coronal background. There is some contention (Habbal and Woo, 1997; Paetzold and Bird, 1998) over whether plumes extend into the interplanetary medium or become mixed with the interplume solar wind at altitudes between 10 and 100 solar radii. Several mechanisms, including the Kelvin-Helmholtz two-stream instability and cross-mode resonant wave scattering near the alfvenic point in the wind's acceleration, have been proposed that could break up the structure of the observed plumes. Using the LASCO C-3 instrument aboard SOHO (Brueckner et al, 1995) to accumulate multiple images that we then recombine, we have generated coronal images with effective exposure times in the thousands of seconds and actual durations of less than four hours. These images clearly show polar plumes extending to altitudes of 25 solar radii or more, very close to the outer edge of the C-3 field of view and above the likely alfvenic point of the wind flow.

  15. Interchange Reconnection and Coronal Hole Dynamics

    NASA Technical Reports Server (NTRS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2011-01-01

    We investigate the effect of magnetic reconnection between open and closed field, (often referred to as "interchange" reconnection), on the dynamics and topology of coronal hole boundaries. The most important and most prevalent 3D topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully 3D MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed field. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary, and find that the field remains well-connected throughout this process. Our results imply that open flux cannot penetrate deeply into the closed field region below a helmet streamer and, hence, support the quasi-steady models in which open and closed flux remain topologically distinct. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. We discuss the implications of this work for coronal observations. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection Sun: coronal hole

  16. 3D Global Coronal Density, Temperature, and Vector Magnetic Field Derived from Coronal Observation.

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Lin, H.; Airapetian, V.; Tomczyk, S.

    2016-12-01

    Solar coronal magnetic fields play a key role in the energetics and dynamics of coronal heating, solar flares, coronal mass ejections (CME), filament eruptions, and determine space weather processes. Therefore, one of the central problems of solar physics is to measure the magnetic fields in the solar corona.The main techniques that are currently used to deduce the global magnetic structure of the solar corona include potential field, nonlinear force-free field (NLFFF), and magnetohydrodynamic (MHD) models. These methods are based on boundary conditions of the solar photospheric magnetic field that are derived directly from photospheric magnetograms. All of these methods are essentially extrapolation methods based on inner boundary conditions taken at the photosphere. However, the magnetic field at the photosphere and lower chromosphere is far from potential or force-free, because of the dominance of the plasma pressure there.We will present 3D reconstruction of the global coronal electron density, temperature during periods of minimum and maximum of solar activity cycle and derived from coronal STEREO/COR1 and EUVI observations. We find that the magnetic field configuration during maximum of solar activity (CR 2131) has a tendency to become radially open at heliocentric distances below 2.5 Rsun while during the solar minimum (CR 2066) they tend to open at higher distances.Moreover, the obtained 3D density and temperature has been used as additional input for recently developed vector tomography method to reconstruct the coronal vector magnetic field based on polarimetric observation of magnetically sensitive Fe XIII ion emission by Coronal Magnetic Polarimeter (CoMP). We validated the vector tomography inverted coronal magnetic fields with those constructed by MHD simulation based on observed photospheric magnetic fields as well as with the STEREO/EUVI 195 image and with the global 3D coronal electron density structure obtained by tomography based on STEREO/COR1

  17. Discrete changes in solar coronal hole boundaries

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Moses, D.

    1990-01-01

    Sequences of Skylab X-ray images near central meridian passages of a large solar coronal hole are used here to examine hole boundary changes with a time resolution of 90 min. It is found that X-ray bright points play a key role in both the expansion and contraction of the coronal hole. The size scale of the boundary changes is about 20,000 km, and the time scale is 3 hr or less. A scenario is suggested in which a large-scale closed magnetic field interacts with a bright point to effect a change in the hole boundary.

  18. Magnetohydrodynamic Modeling of Coronal Evolution and Disruption

    NASA Technical Reports Server (NTRS)

    Linker, Jon

    2002-01-01

    Flux cancellation, defined observationally as the mutual disappearance of magnetic fields of opposite polarity at the neutral line separating them, has been found to occur frequently at the site of filaments (called prominences when observed on the limb of the Sun). During the second year of this project, we have studied theoretically the role that flux cancellation may play in prominence formation, prominence eruption, and the initiation of coronal mass ejections. This work has been in published in two papers: "Magnetic Field Topology in Prominences" by Lionello, Mikic, Linker, and Amari and "Flux Cancellation and Coronal Mass Ejections" by Linker, Mikic, Riley, Lionello, Amari, and Odstrcil.

  19. Coronal and interplanetary Type 2 radio emission

    NASA Astrophysics Data System (ADS)

    Cane, H. V.

    1987-09-01

    Several observations suggest that the disturbances which generate coronal (meter wavelength) type II radio bursts are not driven by coronal mass ejections (CMEs). A new analysis using a large sample of metric radio bursts and associated soft X-ray events provides further support for the original hypothesis that type II-producing disturbances are blast waves generated at the time of impulsive energy release in flares. Interplanetary (IP) shocks, however, are closely associated with CMEs. The shocks responsible for IP type II events (observed at kilometer wavelengths) are associated with the most energetic CMEs.

  20. Halo Coronal Mass Ejections and Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2009-01-01

    In this letter, I show that the discrepancies in the geoeffectiveness of halo coronal mass ejections (CMEs) reported in the literature arise due to the varied definitions of halo CMEs used by different authors. In particular, I show that the low geoeffectiveness rate is a direct consequence of including partial halo CMEs. The geoeffectiveness of partial halo CMEs is lower because they are of low speed and likely to make a glancing impact on Earth. Key words: Coronal mass ejections, geomagnetic storms, geoeffectiveness, halo CMEs.

  1. Halo Coronal Mass Ejections and Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2009-01-01

    In this letter, I show that the discrepancies in the geoeffectiveness of halo coronal mass ejections (CMEs) reported in the literature arise due to the varied definitions of halo CMEs used by different authors. In particular, I show that the low geoeffectiveness rate is a direct consequence of including partial halo CMEs. The geoeffectiveness of partial halo CMEs is lower because they are of low speed and likely to make a glancing impact on Earth. Key words: Coronal mass ejections, geomagnetic storms, geoeffectiveness, halo CMEs.

  2. Magnetohydrodynamic waves in coronal polar plumes.

    PubMed

    Nakariakov, Valery M

    2006-02-15

    Polar plumes are cool, dense, linear, magnetically open structures that arise from predominantly unipolar magnetic footpoints in the solar polar coronal holes. As the Alfvén speed is decreased in plumes in comparison with the surrounding medium, these structures are natural waveguides for fast and slow magnetoacoustic waves. The simplicity of the geometry of polar plumes makes them an ideal test ground for the study of magnetohydrodynamic (MHD) wave interaction with solar coronal structures. The review covers recent observational findings of compressible and incompressible waves in polar plumes with imaging and spectral instruments, and interpretation of the waves in terms of MHD theory.

  3. On the theory of coronal heating mechanisms

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.; Spicer, D. S.

    1980-01-01

    Theoretical models describing solar coronal heating mechanisms are reviewed in some detail. The requirements of chromospheric and coronal heating are discussed in the context of the fundamental constraints encountered in modelling the outer solar atmosphere. Heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere is examined with particular emphasis on the shock wave theory. Also discussed are theories of heating by electrodynamic processes in the magnetic regions of the corona, either magnetohydrodynamic waves or current heating in the regions with large electric current densities (flare type heating). Problems associated with each of the models are addressed.

  4. Featuring dark coronal structures: physical signatures of filaments and coronal holes for automated recognition

    NASA Astrophysics Data System (ADS)

    Palacios, Judith; Cid, Consuelo; Saiz, Elena; Cerrato, Yolanda; Guerrero, Antonio

    2014-01-01

    Filaments may be mistaken for coronal holes when observed in extreme ultraviolet (EUV) images; however, a closer and more careful look reveals that their photometric properties are different. The combination of EUV images with photospheric magnetograms shows some characteristic differences between filaments and coronal holes. We have performed analyses with 7 different SDO/AIA wavelengths (94, 131, 171, 211, 193, 304, 335 Å) and SDO/HMI magnetograms obtained in September 2011 and March 2012 to study coronal holes and filaments from the photometric, magnetic, and also geometric point of view, since projection effects play an important role on the aforementioned traits.

  5. Stereoscopy and Tomography of Coronal Structures

    NASA Astrophysics Data System (ADS)

    de Patoul, J.

    2012-04-01

    The hot solar corona consists of a low density plasma, which is highly structured by the magnetic field. To resolve and study the corona, several solar Ultraviolet (UV) and X-ray telescopes are operated with high spatial and temporal resolution. EUV (Extreme UV) image sequences of the lower solar corona have revealed a wide variety of structures with sizes ranging from the Sun's diameter to the limit of the angular resolution. Active regions can be observed with enhanced temperature and density, as well as 'quiet' regions, coronal holes with lower density and numerous other transient phenomena such as plumes, jets, bright points, flares, filaments, coronal mass ejections, all structured by the coronal magnetic field. In this work, we analyze polar plumes in a sequence of Solar EUV images taken nearly simultaneously by the three telescopes on board of the spacecraft STEREO/SECCHI A and B, and SOHO/EIT. Plumes appear in EUV images as elongated objects starting on the surface of the Sun extending super-radially into the corona. Their formation and contribution to the fast solar wind and other coronal phenomena are still under debate. Knowledge of the polar plume 3-D geometry can help to understand some of the physical processes in the solar corona. In this dissertation we develop new techniques for the characterization of polar plume structures in solar coronal images (Part II) then we analyze these structures using the techniques (Part III): We design a new technique capable of automatically identifying plumes in solar EUV images close to the limb at 1.01-1.39 Ro. This plume identification is based on a multi-scale Hough-wavelet analysis. We show that the method is well adapted to identifying the location, width and orientation of plumes. Starting from Hough-wavelet analysis, we elaborate on two other techniques to determine 3-D plume localization and structure: (i) tomography employing data from a single spacecraft over more than half a rotation and (ii) stereoscopy

  6. Dynamics of plasma condensations in a gravitationally stratified coronal loop

    NASA Astrophysics Data System (ADS)

    Kohutova, P.; Verwichte, E.

    2017-06-01

    Context. Coronal rain composed of cool plasma condensations falling from coronal heights is a phenomenon occurring in footpoint-heated coronal loops as a result of thermal instability. High-resolution coronal rain observations suggest that condensations move with less than free-fall speed and can sometimes undergo longitudinal oscillations. Aims: We investigate the evolution and dynamics of plasma condensations in a gravitationally stratified coronal loop. Methods: We carried out 2.5 dimensional magnetohydrodynamic simulations of a cool plasma condensation in a gravitationally stratified coronal loop and analysed its evolution, kinematics, and the evolution of the forces acting on the condensation. We further propose a one-dimensional analytical model of the condensation dynamics. Results: The motion of plasma condensations is found to be strongly affected by the pressure of the coronal loop plasma. Maximum downward velocities are in agreement with recent coronal rain observations. A high coronal magnetic field or low condensation mass can lead to damped oscillatory motion of the condensations that are caused by the pressure gradient force and magnetic tension force that results from bending of the magnetic field in the lower part of the coronal loop. Period and damping scaling time of the oscillatory motion seen in the simulations are consistent with values predicted by the model. Conclusions: The combined effect of pressure gradients in the coronal loop plasma and magnetic tension force that results from changes in magnetic field geometry can explain observed sub-ballistic motion and longitudinal oscillations of coronal rain.

  7. Large-Scale Coronal Heating, Clustering of Coronal Bright Points, and Concentration of Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that on scales larger than a supergranule the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells.

  8. Large-Scale Coronal Heating, Clustering of Coronal Bright Points, and Concentration of Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that on scales larger than a supergranule the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells.

  9. Glimmers of Life in the Coronal Graveyard

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    Red giants represent the final stage in the life cycle of normal stars. Those evolving from low-mass dwarfs like the Sun were magnetically active for most of their main sequence phase, thanks to a spin-catalyzed convective dynamo. At the same time, such stars also experienced significant rotational braking by their coronal winds. Once they expanded into red giants, their spins further plummeted, and they should have become magnetically dead; an expectation seemingly confirmed by a conspicuous lack of coronal X-ray detections. However, reports of the deaths of red giant coronae were premature - far-UV C IV emissions (an important coronal proxy) have been detected in archetype members of the class by HST, and now O VI has been seen by FUSE in at least one case. Curiously, however, features formed at similar temperatures -- Si IV and N V -- are absent, apparently removed by a mysterious cool absorber. Our objective is to obtain additional detections of the O VI doublet in key red giants, to help address the question of the nature of the cool absorber, and the implications for smothering any coronal X-ray emission. If we can show that there is lingering magnetic activity on the red giants, we might have found a possible link to the acceleration of their chromospheric winds, which chemically enrich the ISM and themselves are a long-standing astrophysical puzzle.

  10. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  11. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  12. Are coronal type II shocks piston driven?

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Kundu, M. R.

    1992-01-01

    Flare blast waves and shocks piston driven by coronal mass ejections (CMEs) have been proposed to be responsible for generating type II radio bursts in the solar corona. The idea for piston-driven shocks came primarily from temporal association of shocks and CMEs. Our compilation of CME events with simultaneous radio observations with positional information supports idea of flare blast waves.

  13. MAGNETIC TOPOLOGY OF CORONAL HOLE LINKAGES

    SciTech Connect

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K. E-mail: mikicz@predsci.com E-mail: lionel@predsci.com

    2011-04-20

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open flux connecting seemingly disconnected coronal holes from the main polar holes and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the field with arbitrary resolution. Our analysis reveals three new important results. First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. It is known that such topologies are extremely favorable for magnetic reconnection, because they allow this process to occur over the entire length of the separators rather than being confined to a small region around the nulls. Finally, the coronal holes are not connected by an open-field corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to the motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  14. Magnetic Topology of Coronal Hole Linkages

    NASA Technical Reports Server (NTRS)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  15. Thermodynamic MHD Modeling of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Lionello, R.; Mikic, Z.; Riley, P.; Titov, V.

    2007-05-01

    Coronal mass ejections (CMEs) disrupt the large-scale coronal magnetic field and propel plasma and magnetic flux outward into interplanetary space. The most energetic CMEs typically originate from active regions on the Sun. Accurately modeling active regions while also capturing the entire corona requires MHD models that include energy transport (radiative losses,anisotropic thermal conduction, and coronal heating) in the transition region and solar corona. We refer to this as the thermodynamic MHD model. The more accurate representation of energy flow in the thermodynamic MHD model allows us to to compute simulated EUV and X-ray emission as would be observed from spacecraft such as SOHO, STEREO, and Hinode. With this approach, theorists no longer get to argue what emission they think their favorite model's magnetic field evolution implies; we can actually go compute the emission and compare with observations. As an example, we show a simulation of the May 12, 1997 CME, and compare the simulated emission with observations from the actual event of dimming regions, postflare loops, and reformation of loops near the northern polar coronal hole. Work supported by NASA, NSF and the Center for Integrated Space Weather Modeling (an NSF Science and Technology Center).

  16. Coronal Bright Points Associated with Minifilament Eruptions

    NASA Astrophysics Data System (ADS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong; Yang, Bo; Yang, Dan

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 109 cm-3. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  17. Coronal bright points associated with minifilament eruptions

    SciTech Connect

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong; Yang, Bo; Yang, Dan

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  18. Coronal Mass Ejections and Their Heliospheric Consequences

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    Coronal mass ejections (CMEs) have been recognized as the most energetic phenomenon in the heliosphere, deriving their energy from the stressed magnetic fields on the Sun. The Solar and Heliospheric Observatory (SOHO) mission has accumulated a wealth of information on CMEs with unprecedented extent, clarity, and uniformity. The CME data base has been useful in confirming results from past missions and obtaining a number of new results on the initiation, propagation, and heliospheric consequences of CMEs. This paper highlights some of the recent results on the morphological, physical, and kinematic properties of CMEs observed during solar cycle 23. White-light signatures of CMEs and their utility in inferring coronal magnetic fields near the Sun will be discussed. Presence of coronal holes near eruption regions have been shown to significantly modify the trajectories of CMEs. New results on the interaction of CMEs with large-scale structures such as coronal holes and other CMEs will be presented. Finally, the CME consequences in the heliosphere such as interplanetary shocks, type II radio bursts, energetic particles, geomagnetic storms, and cosmic ray modulation will be discussed

  19. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  20. Can Thermal Nonequilibrium Explain Coronal Loops?

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Antiochos, Spiro K.

    2010-01-01

    Any successful model of coronal loops must explain a number of observed properties. For warm (approx. 1 MK) loops, these include: 1. excess density, 2. flat temperature profile, 3. super-hydrostatic scale height, 4. unstructured intensity profile, and 5. 1000-5000 s lifetime. We examine whether thermal nonequilibrium can reproduce the observations by performing hydrodynamic simulations based on steady coronal heating that decreases exponentially with height. We consider both monolithic and multi-stranded loops. The simulations successfully reproduce certain aspects of the observations, including the excess density, but each of them fails in at least one critical way. -Xonolithic models have far too much intensity structure, while multi-strand models are either too structured or too long-lived. Storms of nanoflares remain the only viable explanation for warm loops that has been proposed so far. Our results appear to rule out the widespread existence of heating that is both highly concentrated low in the corona and steady or quasi-steady (slowly varying or impulsive with a rapid cadence). Active regions would have a very different appearance if the dominant heating mechanism had these properties. Thermal nonequilibrium may nonetheless play an important role in prominences and catastrophic cooling e(veen.gts..,coronal rain) that occupy a small fraction of the coronal volume. However, apparent inconsistencies between the models and observations of cooling events have yet to be understood.

  1. TRACE (Transition Region and Coronal Explorer)

    NASA Astrophysics Data System (ADS)

    Handy, B.; Murdin, P.

    2000-11-01

    The Transition Region and Coronal Explorer (TRACE) is a NASA Small-Explorer (SMEX) satellite developed to study the impact of magnetic fields on the solar outer atmosphere. The instrument observes the solar surface (SOLAR PHOTOSPHERE) and the hotter overlying domains (TRANSITION REGION and CORONA) with an angular resolution of 1 arcsec, equivalent to 725 km on the Sun, an average cadence of about...

  2. Modeling Eruptive Coronal Magnetohydrodynamic Systems with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, Laurel

    2010-05-01

    I explore solar coronal energetic eruptions in the context of magnetic reconnection, which is commonly thought to be a required trigger mechanism for solar eruptions. Reconnection is difficult to observe in the corona, and current numerical methods cannot model reconnectionless control cases. Thus, it is not possible to determine if it is a necessary component. I have executed multiple controlled simulations to determine the importance of reconnection for initiation and evolution of several eruptive systems using FLUX, a numerical model that uses the comparatively new fluxon technique. I describe two types of eruptions modeled with FLUX: a confined flux rope theory for CME initiation, and symmetrically twisted coronal jets in a uniform vertical background field. In the former, I identified an ideal MHD instability that allows metastable twisted flux rope systems to suddenly lose stability and erupt even in the absence of reconnection, contradicting previous conjecture. The CME result is in contrast to the azimuthally symmetric coronal jet initiation model, where jet-like behavior does not manifest without reconnection. I demonstrate that some eruptive phenomena may be triggered by non-reconnective means such as ideal MHD instabilities, and that magnetic reconnection is not a required element in all coronal eruptions.

  3. The Advanced Solar Coronal Explorer Mission (ASCE)

    NASA Astrophysics Data System (ADS)

    Kohl, J.; Cranmer, S.; Gardner, L.; Golub, L.; Raymond, J.; Smith, P. L.; Strachan, L.; Howard, R.; Moses, D.; Socker, D.; Wang, D.; Fisher, R. R.; Davila, J.; St. Cyr, C.; Noci, G.; Tondello, G.

    1999-05-01

    The Advanced Solar Coronal Explorer (ASCE) mission was selected for a Phase A Concept Study in the current round of proposed MIDEX missions. It addresses three fundamental problems: 1) What physical processes heat coronal holes and drive the fast solar wind? 2) What physical processes heat streamers and drive the slow solar wind? and 3) How are coronal mass ejections (CMEs) heated and accelerated, and what role to they play in the evolution of the solar magnetic field. ASCE has two instruments, the Spectroscopic and Polarimetric Coronagraph (SPC) and the Extreme Ultraviolet Imager (EUVI). A deployable boom supports a distant external occulter that allows large aperture optics for the SPC coronagraphic channels. SPC's EUV channels will provide spectroscopy of the extended solar corona with 30 - 200 times the sensitivity of UVCS/SOHO and the first He II 30.4 nm spectroscopy of the extended corona. SPC's Large Aperture Spectroscopic Coronagraph channel will provide two orders of magnitude improvement in stray light suppression for wide field visible spectroscopy and 2 arcsec resolution elements for imaging and polarimetry. EUVI provides full disk imaging with 0.9 arcsec resolution elements and extremely high cadence. ASCE is designed to determine the thermal, kinetic, and wave energy densities in coronal structures, determine the rates of transformation among these forms of energy, their flow in space, and their loss to radiation, and determine the composition and ionization state of the corona in static and transient conditions.

  4. Large-scale Globally Propagating Coronal Waves.

    PubMed

    Warmuth, Alexander

    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  5. Modelling the coronal hole -- coronal loop boundary as a compressible current-vortex sheet

    NASA Astrophysics Data System (ADS)

    Dahlburg, R.; Einaudi, G.

    Recent observations and theoretical developments have re-awakened interest in finding out what happens at the boundary between closed and open magnetic field regions in the solar corona, i.e., between coronal loops and coronal holes. Habbal et al. (2001) report the existence of a pervasive radial magnetic field in the solar corona These observations appear to indicate that closed and open magnetic fields are in close proximity in the solar corona, making it likely that that interactions between the two are common. However, it is not necessary that open magnetic field lines thread through closed magnetic fields. It is possible that coronal holes have a fractal boundary, and that instead "estuaries" of open field intrude into active regions. Theoretical interest is shown in the ideas behind coronal whips (Pneumann 1974) and more recently models based of the magnetic junkyard (Dowdy et al. 1986) and the magnetic furnace (Axford and McKenzie 1992). A model for the coronal hole - coronal loop boundary, based on the linear and nonlinear evolution of a compressible current-vortex sheet, is proposed. The loop is modelled as force-free and massive, with the plasma in motion along the magnetic field. The hole is modelled with a potential magnetic field containing a rarer, static plasma. Both linear and nonlinear properties are explored. An acceleration along the coronal hole magnetic field direction is observed which would enhance the fast solar wind speed. W. I. Axford and J. F. McKenzie, in Solar Wind Seven, eds. E. Marsch and R. Schwenn, (Oxford: Pergamon Press), pp 1-5 (1992). J. F. Dowdy, D. Rabin, and R. L. Moore, Solar Phys. 105, 35 (1986). S. R. Habbal, R. Woo, and J. Arnaud, Astrophys. J. 55, 852 (2001). G. W. Pneumann, in Coronal Disturbances, ed. G. Newkirk, (Dordrecht: Reidel), p 35 (1974).

  6. CORONAL SEISMOLOGY USING EIT WAVES: ESTIMATION OF THE CORONAL MAGNETIC FIELD STRENGTH IN THE QUIET SUN

    SciTech Connect

    West, M. J.; Zhukov, A. N.; Dolla, L.; Rodriguez, L.

    2011-04-01

    Coronal EIT waves have been observed for many years. The nature of EIT waves is still contentious, however, there is strong evidence that some of them might be fast magnetosonic waves, or at least have a fast magnetosonic wave component. The fast magnetosonic wave speed is formed from two components; the Alfven speed (magnetic) and the sound speed (thermal). By making measurements of the wave speed, coronal density and temperature it is possible to calculate the quiet-Sun coronal magnetic field strength through coronal seismology. In this paper, we investigate an EIT wave observed on 2009 February 13 by the SECCHI/EUVI instruments on board the STEREO satellites. The wave epicenter was observed at disk center in the STEREO B (Behind) satellite. At this time, the STEREO satellites were separated by approximately 90 deg., and as a consequence the STEREO A (Ahead) satellite observed the wave on the solar limb. These observations allowed us to make accurate speed measurements of the wave. The background coronal density was derived through Hinode/Extreme-ultraviolet Imaging Spectrometer observations of the quiet Sun and the temperature was estimated through the narrow temperature response in the EUVI bandpasses. The density, temperature, and speed measurements allowed us to estimate the quiet-Sun coronal magnetic field strength to be approximately 0.7 {+-} 0.7 G.

  7. Coronal Seismology Using EIT Waves: Estimation of the Coronal Magnetic Field Strength in the Quiet Sun

    NASA Astrophysics Data System (ADS)

    West, M. J.; Zhukov, A. N.; Dolla, L.; Rodriguez, L.

    2011-04-01

    Coronal EIT waves have been observed for many years. The nature of EIT waves is still contentious, however, there is strong evidence that some of them might be fast magnetosonic waves, or at least have a fast magnetosonic wave component. The fast magnetosonic wave speed is formed from two components; the Alfvén speed (magnetic) and the sound speed (thermal). By making measurements of the wave speed, coronal density and temperature it is possible to calculate the quiet-Sun coronal magnetic field strength through coronal seismology. In this paper, we investigate an EIT wave observed on 2009 February 13 by the SECCHI/EUVI instruments on board the STEREO satellites. The wave epicenter was observed at disk center in the STEREO B (Behind) satellite. At this time, the STEREO satellites were separated by approximately 90°, and as a consequence the STEREO A (Ahead) satellite observed the wave on the solar limb. These observations allowed us to make accurate speed measurements of the wave. The background coronal density was derived through Hinode/Extreme-ultraviolet Imaging Spectrometer observations of the quiet Sun and the temperature was estimated through the narrow temperature response in the EUVI bandpasses. The density, temperature, and speed measurements allowed us to estimate the quiet-Sun coronal magnetic field strength to be approximately 0.7 ± 0.7 G.

  8. Coronal Seismology Using EIT Waves: Estimation Of The Coronal Magnetic Field Strength In The Quiet Sun

    NASA Astrophysics Data System (ADS)

    West, Matthew; Rodriguez, Luciano; Zhukov, Andrei; Dolla, Laurent

    Coronal EIT waves have been observed for many years. The nature of EIT waves is still contentious, however there is strong evidence that some of them might be fast magnetosonic waves, or at least have a fast magnetosonic wave component. The wave speed is formed from two components; the Alfven speed (magnetic) and the sound speed (thermal). By making measurements of the wave speed, coronal density and temperature it is possible to calculate the quiet Sun coronal magnetic field strength through coronal seismology. In this work we investigate an EIT wave observed by the SECCHI/EUVI instruments on-board the STEREO satellites. The wave epicenter was observed at disk center in the STEREO B (Behind) satellite. At this time the STEREO satellites were separated by approximately 90 degrees, and as a consequence the STEREO A (Ahead) satellite observed the wave on the solar limb. These observations allowed us to make accurate speed measurements of the wave. The background coronal density was derived through Hinode/EIS observations of the quiet Sun and the temperature was estimated through the narrow temperature response in the EUVI passbands. The density, temperature and speed measurements allowed us to estimate the quiet Sun coronal magnetic field strength to be approximately 0.7 ± 0.7 G.

  9. Genesis Solar Wind Interstream, Coronal Hole and Coronal Mass Ejection Samples: Update on Availability and Condition

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2017-01-01

    Recent refinement of analysis of ACE/SWICS data (Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer) and of onboard data for Genesis Discovery Mission of 3 regimes of solar wind at Earth-Sun L1 make it an appropriate time to update the availability and condition of Genesis samples specifically collected in these three regimes and currently curated at Johnson Space Center. ACE/SWICS spacecraft data indicate that solar wind flow types emanating from the interstream regions, from coronal holes and from coronal mass ejections are elementally and isotopically fractionated in different ways from the solar photosphere, and that correction of solar wind values to photosphere values is non-trivial. Returned Genesis solar wind samples captured very different kinds of information about these three regimes than spacecraft data. Samples were collected from 11/30/2001 to 4/1/2004 on the declining phase of solar cycle 23. Meshik, et al is an example of precision attainable. Earlier high precision laboratory analyses of noble gases collected in the interstream, coronal hole and coronal mass ejection regimes speak to degree of fractionation in solar wind formation and models that laboratory data support. The current availability and condition of samples captured on collector plates during interstream slow solar wind, coronal hole high speed solar wind and coronal mass ejections are de-scribed here for potential users of these samples.

  10. A Two-Fluid, MHD Coronal Model

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1999-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].

  11. A Two-Fluid, MHD Coronal Model

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1998-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and momentum sources are required to produce high speed wind from coronal holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature in the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UVCS, and with the Ulysses/SWOOPS proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 solar radii and 5 solar radii (2RS and 5RS) is similar to the density reported from SPARTAN 201-01 measurements by Fisher and Guhathakurta. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer, the temperature and density are similar to those reported empirically by Li et al and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub s), as it is in all other MHD coronal streamer models.

  12. INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS

    SciTech Connect

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2010-05-01

    We investigate the effect of magnetic reconnection between open and closed fields, often referred to as 'interchange' reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.

  13. Interchange Reconnection and Coronal Hole Dynamics

    NASA Technical Reports Server (NTRS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2010-01-01

    We investigate the effect of magnetic reconnection between open and closed fields, often referred to as interchange reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.

  14. Management of distal humeral coronal shear fractures

    PubMed Central

    Yari, Shahram S; Bowers, Nathan L; Craig, Miguel A; Reichel, Lee M

    2015-01-01

    Coronal shear fractures of the distal humerus are rare, complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the radial head in a hyper-extended or semi-flexed elbow or from spontaneous reduction of a posterolateral subluxation or dislocation. Due to the small number of soft tissue attachments at this site, almost all of these fractures are displaced. The incidence of distal humeral coronal shear fractures is higher among women because of the higher rate of osteoporosis in women and the difference in carrying angle between men and women. Distal humeral coronal shear fractures may occur in isolation, may be part of a complex elbow injury, or may be associated with injuries proximal or distal to the elbow. An associated lateral collateral ligament injury is seen in up to 40% and an associated radial head fracture is seen in up to 30% of these fractures. Given the complex nature of distal humeral coronal shear fractures, there is preference for operative management. Operative fixation leads to stable anatomic reduction, restores articular congruity, and allows initiation of early range-of-motion movements in the majority of cases. Several surgical exposure and fixation techniques are available to reconstruct the articular surface following distal humeral coronal shear fractures. The lateral extensile approach and fixation with countersunk headless compression screws placed in an anterior-to-posterior fashion are commonly used. We have found a two-incision approach (direct anterior and lateral) that results in less soft tissue dissection and better outcomes than the lateral extensile approach in our experience. Stiffness, pain, articular incongruity, arthritis, and ulnohumeral instability may result if reduction is non-anatomic or if fixation fails. PMID:25984515

  15. Nonlinear Force-free Coronal Magnetic Stereoscopy

    NASA Astrophysics Data System (ADS)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO/HMI, SDO/AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  16. A Two-Fluid, MHD Coronal Model

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1999-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].

  17. Standing sausage modes in curved coronal slabs

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Nakariakov, V. M.

    2016-09-01

    Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological tool to determine coronal parameters. Aims: We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using straight loop models. Methods: We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage modes are excited by compressive perturbations of the loop and their properties are studied. Results: The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints. Conclusions: We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on 12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation accounts for the period ratio and spatial structure of the observed oscillations.

  18. DARK JETS IN SOLAR CORONAL HOLES

    SciTech Connect

    Young, Peter R.

    2015-03-10

    A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hr by the Extreme Ultraviolet Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8–10 as part of Hinode Operation Plan No. 177 (HOP 177). Line of sight (LOS) velocity maps derived from the coronal Fe xii λ195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 Å filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun–coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed LOS speeds increasing along the jet axis from 52 to 107 km s{sup −1} and a temperature of 1.2–1.3 MK. The low intensity of the jet was due either to a small filling factor of 2% or to a curtain-like morphology. From the HOP 177 sample, dark jets are as common as regular coronal hole jets, but their low intensity suggests a mass flux around two orders of magnitude lower.

  19. Reconnection and Spire Drift in Coronal Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David

    2015-04-01

    It is observed that there are two morphologically-different kinds of X-ray/EUV jets in coronal holes: standard jets and blowout jets. In both kinds: (1) in the base of the jet there is closed magnetic field that has one foot in flux of polarity opposite that of the ambient open field of the coronal hole, and (2) in coronal X-ray/EUV images of the jet there is typically a bright nodule at the edge of the base. In the conventional scenario for jets of either kind, the bright nodule is a compact flare arcade, the downward product of interchange reconnection of closed field in the base with impacted ambient open field, and the upper product of this reconnection is the jet-outflow spire. It is also observed that in most jets of either kind the spire drifts sideways away from the bright nodule. We present the observed bright nodule and spire drift in an example standard jet and in two example blowout jets. With cartoons of the magnetic field and its reconnection in jets, we point out: (1) if the bright nodule is a compact flare arcade made by interchange reconnection, then the spire should drift toward the bright nodule, and (2) if the bright nodule is instead a compact flare arcade made, as in a filament-eruption flare, by internal reconnection of the legs of the erupting sheared-field core of a lobe of the closed field in the base, then the spire, made by the interchange reconnection that is driven on the outside of that lobe by the lobe’s internal convulsion, should drift away from the bright nodule. Therefore, from the observation that the spire usually drifts away from the bright nodule, we infer: (1) in X-ray/EUV jets of either kind in coronal holes the interchange reconnection that generates the jet-outflow spire usually does not make the bright nodule; instead, the bright nodule is made by reconnection inside erupting closed field in the base, as in a filament eruption, the eruption being either a confined eruption for a standard jet or a blowout eruption (as

  20. Structure and Dynamics of Coronal Plasma

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    Brief summaries of the four published papers produced within the present performance period of NASA Grant NAGW-4081 are presented. The full text of the papers are appended to the report. The first paper titled "Coronal Structures Observed in X-rays and H-alpa Structures" was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. It was found that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. The second paper "Differential Magnetic Field Shear in an Active Region" has been published in The Astrophysical Journal. The study compared the three dimensional extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, the authors propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The third paper "Difficulties in Observing Coronal Structure" has been published in the journal Solar Physics. This paper discusses the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by the group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co-spatial at a given location in the corona, and that simple magnetic field

  1. Coronal Heating: Testing Models of Coronal Heating by Forward-Modeling the AIA Emission of the Ansample of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Malanushenko, A. V.

    2015-12-01

    We present a systemic exploration of the properties of coronal heating, by forward-modeling the emission of the ensemble of 1D quasi-steady loops. This approximations were used in many theoretical models of the coronal heating. The latter is described in many such models in the form of power laws, relating heat flux through the photosphere or volumetric heating to the strength of the magnetic field and length of a given field line. We perform a large search in the parameter space of these power laws, amongst other variables, and compare the resulting emission of the active region to that observed by AIA. We use a recently developed magnetic field model which uses shapes of coronal loops to guide the magnetic model; the result closely resembles observed structures by design. We take advantage of this, by comparing, in individual sub-regions of the active region, the emission of the active region and its synthetic model. This study allows us to rule out many theoretical models and formulate predictions for the heating models to come.

  2. Empirical scaling laws for coronal heating

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1983-01-01

    The origins and uses of scaling laws in studies of stellar outer atmospheres are reviewed with particular emphasis on the properties of coronal loops. Some evidence is presented for a fundamental structuring of the solar corona and the thermodynamics of scaling laws are discussed. It is found that magnetic field-related scaling laws can be obtained by relating coronal pressure, temperature, and magnetic field strength. Available data validate this method. Some parameters of the theory, however, must be treated as adjustable, and it is considered necessary to examine data from other stars in order to determine the validity of the parameters. Using detailed observational data, the applicability of single loop models is examined.

  3. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; hide

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  4. Damped transverse oscillations of interacting coronal loops

    NASA Astrophysics Data System (ADS)

    Soler, Roberto; Luna, Manuel

    2015-10-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.

  5. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  6. Geometrical Properties of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Cremades, Hebe; Bothmer, Volker

    Based on the SOHO/LASCO dataset, a collection of "structured" coronal mass ejections (CMEs) has been compiled within the period 1996-2002, in order to analyze their three-dimensional configuration. These CME events exhibit white-light fine structures, likely indicative of their possible 3D topology. From a detailed investigation of the associated low coronal and photospheric source regions, a generic scheme has been deduced, which considers the white-light topology of a CME projected in the plane of the sky as being primarily dependent on the orientation and position of the source region's neutral line on the solar disk. The obtained results imply that structured CMEs are essentially organized along a symmetry axis, in a cylindrical manner. The measured dimensions of the cylinder's base and length yield a ratio of 1.6. These CMEs seem to be better approximated by elliptic cones, rather than by the classical ice cream cone, characterized by a circular cross section.

  7. Empirical scaling laws for coronal heating

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1983-01-01

    The origins and uses of scaling laws in studies of stellar outer atmospheres are reviewed with particular emphasis on the properties of coronal loops. Some evidence is presented for a fundamental structuring of the solar corona and the thermodynamics of scaling laws are discussed. It is found that magnetic field-related scaling laws can be obtained by relating coronal pressure, temperature, and magnetic field strength. Available data validate this method. Some parameters of the theory, however, must be treated as adjustable, and it is considered necessary to examine data from other stars in order to determine the validity of the parameters. Using detailed observational data, the applicability of single loop models is examined.

  8. Coronal Structures Observed by Radio Propagation Measurements

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1995-01-01

    This paper summarizes (1) advances in our knowledge of coronal structures inferred from radio propagation measurements, and (2) gains in our understanding of the relationship between radio propagation and white-light coronagraph measurements. Radio propagation measurements confirm that streamers are ray-like structures as depicted in coronagraph pictures, but also reveal a hierarchy of filamentary structures throughout the corona, extending from the size of streamers down to scale sizes as small as about 1 km at the Sun (10(ghe) arcsec). Doppler scintillation measurements, therefore, open a new window on small-scale structure that has long eluded coronagraph measurements. In addition, high precision ranging measurements make it possible to investigate large-scale structures not yet observed in corona graphs, such as plumes in equatorial coronal regions.

  9. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; Török, T.; Mason, H.; Curdt, W.; Meyer, K.; Dalmasse, K.; Matsui, Y.

    2016-11-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  10. Novel Coronal Temperature Determinations using HETGS

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter

    2008-09-01

    We propose to determine the temperature of the coronal regions that are the source of the Fe XVII emission using dielectronic recombination satellite lines. These satellites are generally weak, but they can be observed in the HEG and MEG spectra of Capella formed by adding all available observations (596 ksec). The temperature derived by this method will be compared to the temperature derived from the differential emission measure (DEM), providing a much needed test of the accuracy of the udernlying charge fraction calculations. Our propsed analysis will open up a new way of determining the Fe XVII coronal temperature, which can be applied in the future to the analysis of the spectra from other stellar coronae.

  11. Solar Coronal Magneto- Seismology With Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Verth, G.; Erdéyi, R.

    2007-01-01

    MHD waves in solar coronal loops, which were previously only predicted by theory have now actually been detected with instruments such as TRACE and SUMER on-board SOHO. These observations have given the solar community an important and novel tool to measure fundamental parameters in the magnetically embedded solar corona. Theory has been developed to derive detailed diagnostic information, e.g., density, magnetic field look structure, geometry, and stratifications. In this paper we demonstrate through examples of case studies how the EUV imager on Solar Orbiter can be used for solar atmospheric (coronal) magneto-seismology. Possible methods will be discussed to determine (i) if magnetic field divergence or plasma density stratification is the dominating factor in transversal loop oscillations (ii) important parameters such as the density scale heigh and magnetic dipole depth of a loop.

  12. Coronal heating by stochastic magnetic pumping

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Uchida, Y.

    1980-01-01

    Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength.

  13. Sinonasal polyposis: investigation by direct coronal CT.

    PubMed

    Drutman, J; Harnsberger, H R; Babbel, R W; Sonkens, J W; Braby, D

    1994-08-01

    To demonstrate the typical clinical and CT features of sinonasal polyposis, we reviewed the clinical records and preoperative direct coronal CT scans of 35 patients with surgically proven disease. Symptoms included progressive nasal stuffiness (100%), rhinorrhea (69%), facial pain (60%), headache (43%) and anosmia (17%). We found associations with rhinitis (46%), asthma (29%) and aspirin sensitivity (9%). Coronal CT features included polypoid masses in the nasal cavity (91%), partial or complete pansinus opacification (90%), enlargement of infundibula (89%), bony attenuation of the ethmoid trabeculae (63%) and nasal septum (37%), opacified ethmoid sinuses with convex lateral walls (51%) and air-fluid levels (43%). The latter feature correlated with symptoms and signs of acute sinusitis in only 40% of patients. Recognition of sinonasal polyposis is important to the endoscopic surgeon since it can be the most troubling sinonasal inflammatory disease to manage due to its aggressive nature and tendency to recur despite appropriate treatment.

  14. Structure and dynamics of coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1995-01-01

    The Normal Incidence X-ray Telescope (NIXT) obtained a unique set of high resolution full disk solar images which were exposed simultaneously by X-rays in a passband at 63.5 A and by visible light. The perfect alignment of a photospheric visible light image with a coronal X-ray image enables us to present observations of X-ray intensity vs an accurately determined height above the visible limb. The height at which the observed X-ray intensity peak varies from 4000 km in active regions to 9000 km in quiet regions of the sun. The interpretation of the observations stems from the previously established fact that, for the coronal loops, emission in the NIXT bandpass peaks sharply just above the footpoints. Because there is not a sharp peak in the observed X-ray intensity vs off limb height, we conclude that the loop footpoints, when viewed at the limb, are obscured by absorption in chromospheric material along the line of sight. We calculate the X-ray intensity vs height predicted by a number of different idealizations of the solar atmosphere, and we compare these calculations with the observed X-ray intensity vs height. The calculations use existing coronal and chromospheric models. In order for the calculations to reproduce the observed off limb X-ray intensities, we are forced to assume an atmosphere in which the footpoints of coronal loops are interspersed along the line of sight with cooler chromospheric material extending to heights well above the loop footpoints. We argue that the absorption coefficient for NIXT X-rays by chromospheric material is roughly proportional to the neutral hydrogen density, and we estimate an average neutral hydrogen density and scale height implied by the data.

  15. ON THE ERUPTION OF CORONAL FLUX ROPES

    SciTech Connect

    Fan, Y.

    2010-08-10

    We present three-dimensional MHD simulations of the evolution of the magnetic field in the corona where the emergence of a twisted magnetic flux tube is driven at the lower boundary into a pre-existing coronal potential arcade field. Through a sequence of simulations in which we vary the amount of twisted flux transported into the corona before the emergence is stopped, we investigate the conditions that lead to a dynamic eruption of the resulting coronal flux rope. It is found that the critical condition for the onset of eruption is for the center of the flux rope to reach a critical height at which the corresponding potential field declines with height at a sufficiently steep rate, consistent with the onset of the torus instability of the flux rope. In some cases, immediately after the emergence is stopped, the coronal flux rope first settles into a quasi-static rise with an underlying sigmoid-shaped current layer developing. Preferential heating of field lines going through this current layer may give rise to the observed quiescent X-ray sigmoid loops before eruption. Reconnections in the current layer during the initial quasi-static stage is found to add detached flux to the coronal flux rope, allowing it to rise quasi-statically to the critical height and dynamic eruption of the flux rope then ensues. By identifying field lines whose tops are in the most intense part of the current layer during the eruption, we deduce the evolution and morphology of the post-flare X-ray loops and the flare ribbons at their footpoints.

  16. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    SciTech Connect

    Fuller, J.; Gibson, S. E.

    2009-08-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R{sub sun} and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R{sub sun} than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  17. Coronal microleakage: an online study guide.

    PubMed

    2008-05-01

    The Editorial Board of the Journal of Endodontics has developed a literature-based study guide of topical areas related to endodontics. This study guide is intended to give the reader a focused review of the essential endodontic literature and does not cite all possible articles related to each topic. Although citing all articles would be comprehensive, it would defeat the idea of a study guide. This section will cover coronal microleakage.

  18. The photospheric Poynting flux and coronal heating

    NASA Astrophysics Data System (ADS)

    Welsch, Brian T.

    2015-04-01

    Some models of coronal heating suppose that convective motions at the photosphere shuffle the footpoints of coronal magnetic fields and thereby inject sufficient magnetic energy upward to account for observed coronal and chromospheric energy losses in active regions. Using high-resolution observations of plage magnetic fields made with the Solar Optical Telescope aboard the Hinode satellite, we investigate this idea by estimating the upward transport of magnetic energy-the vertical Poynting flux, Sz-across the photosphere in a plage region. To do so, we combine the following: (i) estimates of photospheric horizontal velocities, vh, determined by local correlation tracking applied to a sequence of line-of-sight magnetic field maps from the Narrowband Filter Imager, with (ii) a vector magnetic field measurement from the SpectroPolarimeter. Plage fields are ideal observational targets for estimating energy injection by convection, because they are (i) strong enough to be measured with relatively small uncertainties, (ii) not so strong that convection is heavily suppressed (as within umbrae), and (iii) unipolar, so Sz in plage is not influenced by mixed-polarity processes (e.g., flux emergence) unrelated to heating in stable, active-region fields. In this plage region, we found that the average Sz varied in space, but was positive (upward) and sufficient to explain coronal heating, with values near (5 ± 1) × 107 erg cm-2 s-1. We find the energy input per unit magnetic flux to be on the order of 105 erg s-1 Mx-1. A comparison of intensity in a Ca II image co-registered with one plage magnetogram shows stronger spatial correlations with both total field strength and unsigned vertical field, |Bz|, than either Sz or horizontal flux density, Bh. The observed Ca II brightness enhancement, however, probably contains a strong contribution from a near-photosphere hot-wall effect, which is unrelated to heating in the solar atmosphere.

  19. The transition region and coronal explorer (TRACE)

    NASA Technical Reports Server (NTRS)

    Title, Alan; Bruner, M.; Jurcevich, B.; Lemen, J.; Strong, K.; Tarbell, Ted; Wolfson, C. Jacob; Golub, L.; Bookbinder, J.; Fisher, R.

    1995-01-01

    The transition region and coronal explorer (TRACE) NASA small explorer mission and instrument are presented. The TRACE scientific investigation explores the relationships between fine-scale magnetic fields and the associated solar plasma structures. The instrument collects images of solar plasmas at temperatures from 10(exp 4) to 10(exp 7) K with one arcsec spatial resolution. The design specifications of the trace instrument are presented.

  20. The Photosheric Poynting Flux and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.

    2014-12-01

    Some models of coronal heating suppose that convective motions at thephotosphere shuffle the footpoints of coronal magnetic fields andthereby inject sufficient magnetic energy upward to account forobserved coronal and chromospheric energy losses in active regions.Using high-resolution observations of plage magnetic fields made withthe Solar Optical Telescope aboard the Hinode satellite, weinvestigate this idea by estimating the upward transport of magneticenergy --- the vertical Poynting flux, S_z --- across the photospherein a plage region. To do so, we combine: (i) estimates ofphotospheric horizontal velocities, v_h, determined by localcorrelation tracking applied to a sequence of line-of-sight magneticfield maps from the Narrowband Filter Imager, with (ii) a vectormagnetic field measurement from the SpectroPolarimeter. Plage fieldsare ideal observational targets for estimating energy injection byconvection, because they are: (i) strong enough to be measured withrelatively small uncertainties; (ii) not so strong that convection isheavily suppressed (as within umbrae); and (iii) unipolar, so S_z inplage is not influenced by mixed-polarity processes (e.g., fluxemergence) unrelated to heating in stable, active-region fields. Inthis plage region, we found that the average S_z varied in space, butwas positive (upward) and sufficient to explain coronal heating, withvalues near (5 +/- 1) x 107 erg / cm2 / s. We find the energy inputper unit magnetic flux to be on the order of 105 erg / s / Mx. Acomparison of intensity in a Ca II image co-registered with one plagemagnetogram shows stronger spatial correlations with both total fieldstrength and unsigned vertical field, |B_z|, than either S_z orhorizontal flux density, B_h. The observed Ca II brightnessenhancement, however, probably contains a strong contribution from anear-photosphere hot-wall effect, which is unrelated to heating in thesolar atmosphere.

  1. The Photospheric Poynting Flux and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Welsch, Brian

    2014-06-01

    Some models of coronal heating suppose that random (cf., coherent) convective motions at the photosphere shuffle the footpoints of coronal magnetic fields and thereby inject sufficient magnetic energy upward to account for observed coronal and chromospheric energy losses in active regions. Using high-resolution observations of plage magnetic fields made with the Solar Optical Telescope aboard the Hinode satellite, we observationally test this idea by estimating the upward transport of magnetic energy --- the vertical Poynting flux, S_z --- across the photosphere in a plage region. To do so, we combine: (i) estimates of photospheric horizontal velocities, v_h, determined by local correlation tracking applied to a sequence of line-of-sight magnetic field maps from the Narrowband Filter Imager, with (ii) a vector magnetic field measurement from the SpectroPolarimeter. Plage fields are ideal observational targets for estimating energy injection by convection, because they are: (i) strong enough to be measured with relatively small uncertainties; (ii) not so strong that convection is heavily suppressed (as within umbrae); and (iii) unipolar, so S_z in plage is not influenced by mixed-polarity processes (e.g., flux emergence) that cannot explain steady heating in stable, active-region fields. In this and a previously analyzed plage region, we found that the average S_z varied between the regions, but was positive (upward) and sufficient to explain coronal heating, with values near 2 x 10^7 erg/ cm^2/ s. We find the energy input per unit magnetic flux to be on the order of a few times 10^4 erg/ s/ Mx. A comparison of intensity in a Ca II image co-registered with one plage magnetogram shows stronger spatial correlation with unsigned vertical field, |B_z|, than either S_z or horizontal flux density, |B_h|.

  2. Structure and dynamics of coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon (Principal Investigator)

    1996-01-01

    Progress for the period July 1995 - June 1996 included work on the differential magnetic field shear in an active region; observations and modeling of the solar chromosphere seen in soft X-ray absorption by NIXT; and modeling magnetic flux emergence. These were the subjects of three papers. The plans for the current year include projects on a converging flux model for point-like brightenings around sunspots, and difficulties in observing coronal structure.

  3. Coronal Plumes in the Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2011-01-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of approximately 50 km/s, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large di stances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  4. Coronal Plumes in the Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2011-01-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of approximately 50 km/s, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large di stances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  5. Bridging the Gap between Coronal and Non-Coronal Evolved Stars

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Nielsen, Krister E.; Kober, Gladys V.

    2017-01-01

    The Hubble Space Telescope (HST) Treasury Program "Advanced Spectral Library (ASTRAL)" enables investigations of a broad range of problems including the character and dynamics of the wind and chromosphere of cool stars. This paper presents an investigation of the change in spectral characteristics when transitioning from the cool non-coronal objects with fluorescent emission spectra from the iron group elements, molecular hydrogen, and carbon monoxide to the warmer stars on the blue side of the Linsky-Haish dividing line in the HR diagram. These warmer objects exhibit chromospheric emission from significantly hotter environments in addition to coronal signatures, while the hybrid stars overlap in the HR-diagram with some of the non-coronal objects and share many spectral characteristics but show differences in the wind properties. We show how the wind, fluorescent features, and hot stellar signatures dramatically change with spectral class by comparing the already analyzed non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem and Alpha Aqr) and the coronal object Beta Dra. We aim to gain understanding of the physical processes in these objects' outer atmospheres and their evolutionary tracks.

  6. Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki V.; Mulligan, Tamitha

    2017-09-01

    We present a study of the origin of coronal mass ejections (CMEs) that were not accompanied by obvious low coronal signatures (LCSs) and yet were responsible for appreciable disturbances at 1 AU. These CMEs characteristically start slowly. In several examples, extreme ultraviolet (EUV) images taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory reveal coronal dimming and a post-eruption arcade when we make difference images with long enough temporal separations, which are commensurate with the slow initial development of the CME. Data from the EUV imager and COR coronagraphs of the Sun Earth Connection Coronal and Heliospheric Investigation onboard the Solar Terrestrial Relations Observatory, which provide limb views of Earth-bound CMEs, greatly help us limit the time interval in which the CME forms and undergoes initial acceleration. For other CMEs, we find similar dimming, although only with lower confidence as to its link to the CME. It is noted that even these unclear events result in unambiguous flux rope signatures in in situ data at 1 AU. There is a tendency that the CME source regions are located near coronal holes or open field regions. This may have implications for both the initiation of the stealthy CME in the corona and its outcome in the heliosphere.

  7. The Coronal Magnetic Field, Signatures of Coronal Holes and Silicon Nanometer Dust Grains

    NASA Astrophysics Data System (ADS)

    Habbal, S. R.; Arndt, M. B.; Nayfeh, M.; Arnaud, J.; Woo, R.

    2003-12-01

    The near-infrared part of the solar spectrum is where some of the strongest coronal forbidden lines are formed. Polarized emission in these lines offers the only tool currently known for the inference of the direction of the coronal magnetic field. The first successful observations of the polarized emission from the 1074.7 nm Fe XIII line were made by Eddy, Lee and Emerson during the eclipse of 1966 in a limited region of the corona. The only subsequent polarimetric observations in this line were carried out with the coronagraph at Sac Peak from 1977-1980. We report on the first successful polarimetric measurements of the 1074.7 nm line in a field of view extending out to 3.5 solar radii which were made during the total solar eclipse of 21 June 2001. In addition to confirming earlier results of the predominance of a radial direction of the coronal magnetic field, these measurements yielded the first polarimetric signature of coronal holes, and the signature of nanometer size dust grains in the corona. These observations suggest the existence of a rich coronal spectrum of narrow lines in the near-infared produced by the fluorescence of silicon nanometer dust grains in the inner corona. This work was funded by NSF grant ATM-0003661 and NASA grant NAG5-10873 to the Smithsonian Astrophysical Observatory.

  8. Constructing the Coronal Magnetic Field: by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Gary, G. A.

    1998-01-01

    The reconstruction of the coronal magnetic field is carried out using a perturbation procedure. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal fluxtubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures (1) that the normal component of the photospheric field remains unchanged, (2) that the field is given in the entire corona, (3) that the field remains divergence free, and (4) that electrical currents are introduced into the field. It is demonstrated that a simple radial parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 Nov 26. At a coronal height of 30 km, the resulting magnetic field is a non-force free magnetic field with the maximum Lorentz force being on the order of 2.6 x 10(exp -9) dyn resulting from an electric current density of $0.13 mu A/ sq m. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  9. A New Coronal Loop Identification Method Based on Phase Congruency

    NASA Astrophysics Data System (ADS)

    Li, Hong-bo; Zhao, Ming-yu; Liu, Yu

    2017-07-01

    We have tried to apply the enhanced image by a phase congruency method to the identification of coronal loop structures, and proposed a new coronal loop identification method (simply called the PCB method) based on the enhanced image by the phase congruency method. On account of the smooth morphological variation in the direction along a coronal loop, the propelling direction of coronal loop identification is restricted in a small range for improving the identified result. Beyond that, inspired by the structural characteristics of coronal loops, we firstly suggest that both the variation of propelling direction in the identification process and the magnitude of phase congruency at the identified point are simultaneously taken as the criterion to terminate the identification. Finally, several coronal images are used for testing our coronal loop identification method, and the result indicates that the enhanced image by the phase congruency method is really suitable for the coronal loop identification, and the coronal loop structures identified by the PCB method have simultaneously a good completeness and a high accuracy, hence, the PCB method is a set of practical and feasible method of automated coronal loop identification.

  10. Temporal Intermittency in Solar Coronal Plasma

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    1998-11-01

    The nonlinear response of the solar coronal plasma against a continuous helicity injection is investigated by magnetohydrodynamic numerical simulations. Particularly, we perform a long time simulation to examine a self-consistent dynamics which hardly depends on the initial setting. The model is two-dimensional, and the helicity is supplied by a shearing motion at the feet of magnetic loops. The results show us that an intermittent cyclic process happens even though the helicity is constantly supplied. Each process, which is consist of the storage of helicity, the coronal loop instability, reconnection, and the plasmoid ejection, forms a limit cycle in a parameter space of energy and helicity. The limit cycle locates in a region between two branches of the bifurcated linear force free field. As the magnetic Reynolds number increases, the amplitude as well as the period of the cycle increases, and the temporal evolution indicates the saw-tooth like intermittency. They suggest that, even if there is no trigger, the coronal plasma is able to generates an intermittent dynamics like flares, when the magnetic Reynolds number is much larger than unity.

  11. Forward Modeling of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  12. A model for stealth coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Lynch, B. J.; Masson, S.; Li, Y.; DeVore, C. R.; Luhmann, J. G.; Antiochos, S. K.; Fisher, G. H.

    2016-11-01

    Stealth coronal mass ejections (CMEs) are events in which there are almost no observable signatures of the CME eruption in the low corona but often a well-resolved slow flux rope CME observed in the coronagraph data. We present results from a three-dimensional numerical magnetohydrodynamics (MHD) simulation of the 1-2 June 2008 slow streamer blowout CME that Robbrecht et al. (2009) called "the CME from nowhere." We model the global coronal structure using a 1.4 MK isothermal solar wind and a low-order potential field source surface representation of the Carrington Rotation 2070 magnetogram synoptic map. The bipolar streamer belt arcade is energized by simple shearing flows applied in the vicinity of the helmet streamer's polarity inversion line. The flows are large scale and impart a shear typical of that expected from the differential rotation. The slow expansion of the energized helmet streamer arcade results in the formation of a radial current sheet. The subsequent onset of expansion-induced flare reconnection initiates the stealth CME while gradually releasing the stored magnetic energy. We present favorable comparisons between our simulation results and the multiviewpoint SOHO-LASCO (Large Angle and Spectrometric Coronagraph) and STEREO-SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) coronagraph observations of the preeruption streamer structure and the initiation and evolution of the stealth streamer blowout CME.

  13. EIT Observations of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  14. Coronal and interplanetary magnetic field models

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1999-06-01

    We provide an historical perspective of coronal and interplanetary field models. The structure of the interplanetary medium is controlled by the coronal magnetic field from which the solar wind emanates. This field has been described with ``Source Surface'' (SS) and ``Heliospheric Current Sheet'' (HCS) models. The ``Source Surface'' model was the first to open the solar field into interplanetary space using volumetric coronal currents, which were a ``source'' for the IMF. The Heliospheric Current Sheet (HCS) model provided a more physically realistic solution. The field structure was primarily a dipole, however, without regard to sign, the shape appeared to be a monopole pattern (uniform field stress). Ulysses has observed this behavior. Recently, Sheeley and Wang have utilized the HCS field model to calculate solar wind structures fairly accurately. Fisk, Schwadron, and Zurbuchen have investigated small differences from the SS model. These differences allow field line motions reminiscent of a ``timeline'' or moving ``streakline'' in a flow field, similar to the smoke pattern generated by a skywriting plane. Differences exist in the magnetic field geometry, from the Parker ``garden hose'' model affecting both the ``winding angle'' as well as the amount of latitudinal ``wandering.''

  15. EIT Observations of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  16. Coronal Heating Observed with Hi-C

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.

    2013-01-01

    The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.

  17. Solar origins of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  18. Thermal Analysis of CDS Coronal Loops

    NASA Astrophysics Data System (ADS)

    Kimble, J. A.; Schmelz, J. T.; Nasraoui, K.; Rightmire, L. A.; Andrews, J. M.; Cirtain, J. W.

    2008-05-01

    The coronal loop data used for this analysis was obtained using the Coronal Diagnostic Spectrometer (CDS) aboard the Solar and Heliospheric Observatory on 2003 January 17 at 14:24:43 UT. We use the Chianti atomic physics database and the hybrid coronal abundances to determine temperatures and densities for positions along several loops. We chose six pixels along each loop as well as background pixels. The intensities of the background pixels are subtracted from each loop pixel to isolate the emission from the loop pixel, and then spectral lines with significant contributions to the loop intensities are selected. The loops were then analyzed with a forward folding process to produce differential emission measure (DEM) curves. Emission measure loci plots and DEM automatic inversions are then used to verify those conclusions. We find different results for each of these loops. One appears to be isothermal at each loop position, and the temperature does not change with height. The second appears to be multithermal at each position and the third seems to be consistent with two DEM spikes, which might indicate that there are two isothermal loops so close together, that they are not resolved by CDS. Solar physics research at the University of Memphis is supported by a Hinode subcontract from NASA/SAO as well as NSF ATM-0402729.

  19. Fast Waves in Smooth Coronal Slab

    NASA Astrophysics Data System (ADS)

    Lopin, I.; Nagorny, I.

    2015-03-01

    This work investigates the effect of transverse density structuring in coronal slab-like waveguides on the properties of fast waves. We generalized previous results obtained for the exponential and Epstein profiles to the case of an arbitrary transverse density distribution. The criteria are given to determine the possible (trapped or leaky) wave regime, depending on the type of density profile function. In particular, there are plasma slabs with transverse density structuring that support pure trapped fast waves for all wavelengths. Their phase speed is nearly equal to the external Alfvén speed for the typical parameters of coronal loops. Our findings are obtained on the basis of Kneser’s oscillation theorem. To confirm the results, we analytically solved the wave equation evaluated at the cutoff point and the original wave equation for particular cases of transverse density distribution. We also used the WKB method and obtained approximate solutions of the wave equation at the cutoff point for an arbitrary transverse density profile. The analytic results were supplemented by numerical solutions of the obtained dispersion relations. The observed high-quality quasi-periodic pulsations of flaring loops are interpreted in terms of the trapped fundamental fast-sausage mode in a slab-like coronal waveguide.

  20. VLA Observations of a High Coronal Flare

    NASA Astrophysics Data System (ADS)

    Raulin, J. P.; Gopalswamy, N.; Kundu, M. R.; Nitta, N.

    1993-12-01

    We present radio observations of a coronal flare which occurrred on 1993 April 22, in a weak magnetic field region to the west of AR 7477. The observations were made by the Very Large Array (VLA) at 20 and 90 cm. The event consists of bright (brightness temperature of 10(10) K) unpolarized bursts, followed by a longlasting unpolarized continuum with moderately high brightness temperature (2-3 10(9) K) in the high corona (90 cm observations). The low coronal counterpart of this flare is a weak and moderatly polarized 20 cm radio emission. Full disk Yohkoh images show that the corresponding radio emission is located in or above magnetic loops connecting AR 7477 and its neighborhood. The presence of permanent and non-varying noise storm associated with AR 7477 seems to indicate that the overall magnetic field structure of the active region is unaffected by the flare. The coronal radio source which is indicative of acceleration of electrons to nonthermal energies, is not associated with major Hα emissio n nor with bright X ray emission. The absence of any detectable circular polarization, as well as the high brightness temperature, seems to indicate that the 90 cm emission is second harmonic plasma emission.

  1. Observations and Modeling of Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Klimchuk, J.

    Coronal loops are often described as the fundamental building blocks of solar and stellar coronae. Clearly, therefore, a comprehensive understanding of coronae requires an explanation of the nature and origin of these loops, including the mechanism of their heating. Certain general aspects of coronal loops are reasonably well understood. For example, we know that the plasma is structured by the magnetic field and that strongly heated flux tubes tend to be hotter and denser than weakly heated flux tubes. Some observations suggest that loops are in quasi-static equilibrium, and scaling laws have been used to describe the relationships among physical variables and to test competing theories of coronal heating. Other observations raise serious doubts about whether the quasi-static description is valid. At this point, we cannot say with any certainty whether loops are isothermal or multithermal (i.e., monolithic structures or collections of unresolved strands) or whether they are heated steadily or in a highly episodic fashion (e.g., by nanoflares). This talk will address what we can learn about these important questions from a combination of observations and theoretical modeling.

  2. The formation of an equatorial coronal hole

    NASA Astrophysics Data System (ADS)

    Yang, Liheng; Jiang, Yunchun; Zhang, Jun

    2010-02-01

    The formation of an equatorial coronal hole (CH) from 2006 January 9 to 12 was simultaneously observed by GOES-12/SXI, SOHO/EIT and SOHO/MDI instruments. The varieties of soft X-ray and EUV brightness, coronal temperature, and total magnetic flux in the CH were examined and compared with that of a quiet-sun (QS) region nearby. The following results are obtained. (1) A preexisting dark lane appeared on the location of the followed CH and was reinforced by three enhanced networks. (2) The CH gradually formed in about 81 hours and was predominated by positive magnetic flux. (3) During the formation, the soft X-ray and EUV brightness, coronal temperature, and total magnetic flux obviously decreased in the CH, but were almost no change in the QS region. The decrease of the total magnetic flux may be the result of magnetic reconnection between the open and closed magnetic lines, probably indicating the physical mechanism for the birth of the CH.

  3. The Coronal X-ray Deficiency Syndrome

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    Something strange happens to M ~ 3 M(sun) stars during their post-MS evolution through the Hertzsprung gap (F--G0), on their way ultimately to the post-helium-flash ``Clump (G8--K0). The subcoronal emissions of the H-gap stars (traced by Mg II and C IV) appear to be normal for fast-rotating giants, but their coronal X-ray luminosities are depressed by an order of magnitude or more. The nearby binary Capella is the archetype: the G0 secondary has a C IV flux 10 times that of the G8 primary, and rotates faster by a similar factor. Yet, evidence points to near equality of the coronal X-ray fluxes. We propose to continue our broad-reaching exploration of the dichotomy (and its implications for coronal heating and the evolution of Dynamo action) through EUVE spectroscopy of key stars along the post-Main-Sequence trajectories connecting the Hertzsprung gap and the Clump.

  4. The Lower Chromosphere in a Coronal Hole

    NASA Astrophysics Data System (ADS)

    Teplitskaya, R. B.; Turova, I. P.; Ozhogina, O. A.

    2007-07-01

    We study the Ca ii K, H, and λ 849.8 nm line profiles in two regions of the quiet Sun, one being located in the extensive low-latitude coronal hole observed on 3 through 5 August 2003, and the other being located outside the coronal hole. Comparison of the profiles was carried out separately for cells and cell boundaries of the chromospheric network. Our principal result is that space- and time-averaged profiles of the central self-reversal in the coronal hole sites differ from those outside of the hole: Intensities of the K3 and H3 central depressions are increased in the cells but are unchanged in the network; the height of the K2 peaks is reduced in the cells and particularly in the network; the central self-reversal asymmetry is intensified in the network. Distinctions appear at a high confidence level. Line wings as well as average characteristics of the infrared line remain practically unchanged. We discuss probable causes for this behavior of the lower chromosphere lines.

  5. A unified theory of electrodynamic coupling in coronal magnetic loops - The coronal heating problem

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.

    1984-01-01

    The coronal heating problem is studied, and it is demonstrated that Ionson's (1982) LRC approach results in a unified theory of coronal heating which unveils a variety of new heating mechanisms and which links together previously proposed mechanisms. Ionson's LRC equation is rederived, focusing on various aspects that were not clarified in the original article and incorporating new processes that were neglected. A parameterized heating rate is obtained. It is shown that Alfvenic surface wave heating, stochastic magnetic pumping, resonant electrodynamic heating, and dynamical dissipation emerge as special cases of a much more general formalism. This generalized theory is applied to solar coronal loops and it is found that active region and large scale loops are underdamped systems. Young active region loops and (possibly) bright points are found to be overdamped systems.

  6. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field

    SciTech Connect

    Kong, Xiangliang Chen, Yao; Guo, Fan

    2016-03-25

    We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.

  7. Solar Coronal Jets in Active Regions

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Moore, R. L.; Martinez, F.; Falconer, D. A.

    2016-12-01

    Solar coronal jets are common in both coronal holes and in active regions. Recently, Sterling et al. (2015, Nature 523, 437), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different process, such as emerging flux. Here we present observations of NOAA active region 12259, over 13-20 Jan 2015, using observations from Hinode/XRT, and from SDO/AIA and HMI. We focused on 13 standout jets that we identified from an initial survey of the XRT X-ray images, and we found many more jets in the AIA data set, which have higher cadence and more continuous coverage than our XRT data. All 13 jets originated from identifiable magnetic neutral lines; we further found magnetic flux cancelation to be occurring at essentially all of these neutral lines. At least 6 of those 13 jets were homologous, developing with similar morphology from nearly the same location, and in fact there were many more jets in the homologous sequence apparent in the higher-fidelity AIA data. Each of these homologous jets was consistent with minifilament-like ejections at the start of the jets. Other jets displayed a variety of morphologies, at least some of which were consistent with minifilament eruptions. For other jets however we have not yet clearly deciphered the driving mechanism. Our overall conclusions are similar to those of our earlier study of active region jets (Sterling et al. 2016, ApJ, 821, 100), where we found: some jets clearly to

  8. Structure and Dynamics of Coronal Plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1997-01-01

    During the past year this grant has funded research in the interaction between magnetic fields and the hot plasma in the solar outer atmosphere. The following is a brief summary of the published papers, abstracts and talks which have been supported. The paper 'Coronal Structures Observed in X-rays and H-alpha Structures' was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. We find that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. A copy of the paper is appended to this report. The paper 'Differential Magnetic Field Shear in an Active Region' has been published in The Astrophysical Journal. We have compared the 3D extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, we propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The paper 'Difficulties in Observing Coronal Structure' has been accepted for publication in the journal Solar Physics. In this paper we discuss the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by our group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co

  9. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  10. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-05-20

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (∼36 Mm above the surface). We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as 'magnetic breakout', are operating during the emergence of new active regions.

  11. Constructing the Coronal Magnetic Field by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Allen, Gary G.; Alexander, David

    1999-01-01

    A method is presented for constructing the coronal magnetic field from photospheric magnetograms and observed coronal loops. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal flux tubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures that (1) the normal component of the photospheric field remains unchanged, (2) the field is given in the entire corona over an active region, (3) the field remains divergence-free, and 4electric currents are introduced into the field. It is demonstrated that a parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 November 26. The result is a non-force-free magnetic field with the Lorentz force being of the order of 10(exp -5.5) g per s(exp 2) resulting from an electric current density of 0.79 micro A per m(exp 2). Calculations show that the plasma beta becomes larger than unity at a strong non-radial currents requires low height of about 0.25 solar radii supporting the non-force-free conclusion. The presence of such strong non-radial currents requires large transverse pressure gradients fo maintain a magnetostatic atmosphere, required by the relatively persistent nature of the coronal structures observed in AR 7999. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  12. Reformation of a coronal helmet streamer by magnetic reconnection after a coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Hiei, E.; Hundhausen, A. J.; Sime, D. G.

    1993-01-01

    A bright feature observed on Jan. 24-26, 1992 with the soft X-ray telescope on the YOHKOH spacecraft and with the coronameter at the Mauna Loa Solar Observatory assumed the appearance of a coronal helmet streamer as it slowly expanded. Mauna Loa observations from Jan. 22-24 indicate that a prominence eruption and coronal mass ejection occurred before this feature was seen. We interpret the Jan. 24-26 observations as evidence for 'reformation' of a magnetically closed helmet structure as a consequence of magnetic reconnection that proceeded along a vertical magnetic neutral sheet formed by the mass ejection.

  13. Numerical Simulation of Reconnection Between Emerging Flux and Coronal Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Shibata, K.

    1994-07-01

    Two dimensional resistive MHD numerical simulation is performed for the reconnection between emerging flux and overlying coronal field. Two types of reconnection are investigated. The `two-sided-loop' type occurs when the coronal field is horizontal, and a pair of horizontal hot jets and cool magnetic island ejection is produced. The `anemone-jet' type reconnection occurs when the coronal field is vertical or oblique, and both a vertical hot jet and a cool jet are generated.

  14. LOS velocity as a tracer of coronal cavity magnetic structure

    NASA Astrophysics Data System (ADS)

    Bak-Steslicka, Urszula; Gibson, Sarah; Fan, Yuhong

    The Coronal Multi-Channel Polarimeter (CoMP) makes daily observations of the lower corona in linear polarization, but also measures Doppler shifts, which allows us to obtain the line-of-sight velocity of coronal plasma. CoMP observations of polarization of coronal emission allows, for the first time, an analysis of the coronal magnetic field direction in quiescent prominence cavities. We present an analysis of Doppler velocity measurements of the numerous quiescent prominence cavities. Such observations are common in cavities and characteristic concentric circles of different values of flow may appear. CoMP data analysis of quiescent cavities is important for understanding pre-CME configuration.

  15. Evidence linking coronal transients to the evolution of coronal holes. [solar X-ray observations on Skylab

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Nolte, J. T.; Solodyna, C. V.; Mcintosh, P. S.

    1978-01-01

    The positions of X-ray coronal transients outside of active regions observed during Skylab were superposed on H-alpha synoptic charts and coronal hole boundaries for seven solar rotations. A detailed spatial association between the transients and neutral lines was confirmed. It was found that most of the transients were related to large-scale changes in coronal hole area and tended to occur on the borders of evolving equatorial holes.

  16. Coronal Loops: Evolving Beyond the Isothermal Approximation

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  17. Coronal Structures in Cool Stars: XMM-NEWTON Hybrid Stars and Coronal Evolution

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K.; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Beta Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, alpha TrA (K2 II-III). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars. We are attempting to determine if this model of coronal evolution is correct by using XMM-NEWTON RGS spectra for the 2 targets we were allocated through the Guest Observer program.

  18. Coronal Structures in Cool Stars: XMM-NEWTON Hybrid Stars and Coronal Evolution

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K.; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Beta Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, alpha TrA (K2 II-III). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars. We are attempting to determine if this model of coronal evolution is correct by using XMM-NEWTON RGS spectra for the 2 targets we were allocated through the Guest Observer program.

  19. SOLAR JET–CORONAL HOLE COLLISION AND A CLOSELY RELATED CORONAL MASS EJECTION

    SciTech Connect

    Zheng, Ruisheng; Chen, Yao; Du, Guohui; Li, Chuanyang

    2016-03-10

    Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using high-quality imaging data from the Atmospheric Imaging Assembly/Solar Dynamics Observatory, we show a well-observed coronal jet event, in which the part of the jet with embedding coronal loops runs into a nearby coronal hole (CH) and gets bounced in the opposite direction. This is evidenced by the flat shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME with an initially narrow and jet-like front is observed by the LASCO C2 coronagraph propagating along the direction of the post-collision jet. We also observe some 304 Å dark material flowing from the jet–CH interaction region toward the CME. We thus suggest that the jet and the CME are physically connected, with the jet–CH collision and the large-scale magnetic topology of the CH being important in defining the eventual propagating direction of this particular jet–CME eruption.

  20. A multi-channel coronal spectrophotometer.

    NASA Technical Reports Server (NTRS)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  1. Coronal Heating, Spicules, and Solar-B

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Porter, Jason; Hathaway, David; Yamauchi, Yohei

    2003-01-01

    Falconer et al. investigated the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of the magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity was measured from Fe IX/X - Fe XII pairs of coronal images from SOHO/EIT, under the assumption that practically all of the coronal luminosity in these very quiet regions came from plasma in the temperature range 0.9 x 10(exp 6) K is less than or equal to T is less than or equal to 1.3 x 10(exp 6) K. The network magnetic flux content was measured from SOHO/MDI magnetograms. It was found that luminosity of the corona in these quiet regions increased roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network flux clumps. From 1) this result; 2) the observed occurrence of many fine-scale explosive events (e.g., spicules) at the edges of network flux clumps; and 3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of the network flux clumps, Falconer et al. infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. From their observational results together with their feasibility analysis, Falconer et al. predict that 1) At the edges of the network flux clumps there are many transient sheared core bipoles of the size and lifetime of granules and having transverse field strengths greater than approx. 100 G; 2) Approx. 30 of these bipoles are present per supergranule; and 3) Most spicules are produced by explosions of these bipoles. The photospheric vector magnetograms, chromospheric filtergrams, and EUV spectra from Solar-B are expected to have sufficient sensitivity

  2. Dynamics of Coronal Mass Ejections (CMEs)

    DTIC Science & Technology

    2008-01-01

    indicates the limb of the Sun. The circular disk of radius 2R corresponds to the occulter of the C2 telescope. The two legs of the CME connected to the...of instruments called Sun-Earth Connection Coronal and Heliospheric Investigation ( SECCHI )2 on board, it has now become possible to quantitatively...0.0 0.5 1.0 1.5 2.0 Sf (R ) 0.0 0.5 1.0 1.5 2.0 Z m ax (R ) s A B by SECCHI (COR2, HI 1, and HI 2) and LASCO

  3. Polarization of Forbidden Coronal Emission Lines

    NASA Astrophysics Data System (ADS)

    Li, Hao

    2017-08-01

    Since the magnetic field is responsible for most manifestations of solar ac- tivity in the corona, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields. We present our investigation on polarization of forbidden coronal emission lines ( Fe XIV 5303 A, Fe X 6374 A Fe XI 7892 A, Fe XIII 10747 A, Si X 14300 A, Mg VIII 30280 A and Si IX 39290 A), which shows that Si IX 39290 A line may be a suitable line for future observation.

  4. Coronal structure inferred from remote sensing observations

    SciTech Connect

    Feldman, W.C.

    1996-09-01

    Remote-sensing observations of the Sun and inner heliosphere are reviewed to appraise our understanding of the mix of the mechanisms that heat the corona and accelerate the solar wind. An assessment of experimental uncertainties and the basic assumptions needed to translate measurables into physical models, reveals very large fundamental uncertainties in our knowledge of coronal structure near the Sun. We develop a time-dependent, filamentary model of the extended corona that is consistent with a large number of remote sensing observations of the solar atmosphere and the solar wind.

  5. Coronal plasma diagnostics from eclipse observations

    NASA Astrophysics Data System (ADS)

    Landi, E.; Habbal, S. R.; Tomczyk, S.

    2015-12-01

    In this talk we will discuss the diagnostic potential of observationsof visible spectral lines formed in the extended solar corona that canbe obtained during eclipses. We will discuss the possible diagnosticapplications of visible eclipse observations to measure the physicalparameters of the extended corona, to understand solar wind origin andacceleration, and to determine the evolution of Coronal Mass Ejectionsduring onset.We will first review the mechanisms of formation of spectral lineintensities, we will then illustrate their diagnostic applications,and show some results from recent eclipse observations. We will alsoreview the spectral lines that are most likely to be observed inthe extended solar corona during the upcoming 2017 eclipse in thecontinental United States.

  6. Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Baikie, T. K.; Falconer, D. A.; Moore, R. L.; Savage, S. L.

    2016-12-01

    Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked at 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a "minifilament", and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 280 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 117 clearly-identifiable X-ray jet events. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex then presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program.

  7. Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection

    SciTech Connect

    Illing, R.M.E.; Hundhausen, A.J.

    1986-10-01

    We describe and analyze in detail the coronal mass ejection of 18 August 1980, using images from the coronagraph on the Solar Maximum Mission (SMM) satellite. The event occurred at the site of a large coronal helmet streamer and evolved into the three-part structure of a bright frontal shell, followed by a relatively dark space surrounding a bright filamentary core as seen in many mass ejections of the SMM epoch. The bright core can be identified as material from a prominence whose eruption was observed from the ground; this identification is based on (1) the looplike and filamented appearance of the core, (2) its motion along a trajectory that is a good extrapolation of the motion deduced from ground-based observations of the prominence eruption, and (3) direct observations of H..cap alpha.. emission when the core is in the coronagraph field of view. The mass of the frontal shell is equal to that of the coronal helmet streamer (to the --30% accuracy with which mass estimates can be made), indicating that the shell is the coronal material previously in the helmet streamer, displaced and set into motion by the erupting prominence and surrounding cavity. The mass ejected in the bright core (or prominence) is estimated to be --50% larger than the ''coronal'' material in the frontal loop. The total mass of 2.5 x 10/sup 15/ g and energy of 5 x 10/sup 31/ ergs estimated for this mass ejection are both greater than in typical ejections of the Skylab era but are comparable to the average mass and energy in an interplanetary shock wave.

  8. Relationship of EUV Irradiance Coronal Dimming Slope and Depth to Coronal Mass Ejection Speed and Mass

    NASA Astrophysics Data System (ADS)

    Mason, James Paul; Woods, Thomas N.; Webb, David F.; Thompson, Barbara J.; Colaninno, Robin C.; Vourlidas, Angelos

    2016-10-01

    Extreme ultraviolet (EUV) coronal dimmings are often observed in response to solar eruptive events. These phenomena can be generated via several different physical processes. For space weather, the most important of these is the temporary void left behind by a coronal mass ejection (CME). Massive, fast CMEs tend to leave behind a darker void that also usually corresponds to minimum irradiance for the cooler coronal emissions. If the dimming is associated with a solar flare, as is often the case, the flare component of the irradiance light curve in the cooler coronal emission can be isolated and removed using simultaneous measurements of warmer coronal lines. We apply this technique to 37 dimming events identified during two separate two-week periods in 2011 plus an event on 2010 August 7, analyzed in a previous paper to parameterize dimming in terms of depth and slope. We provide statistics on which combination of wavelengths worked best for the flare-removal method, describe the fitting methods applied to the dimming light curves, and compare the dimming parameters with corresponding CME parameters of mass and speed. The best linear relationships found are \\begin{eqnarray*}{v}{CME} ≤ft[\\displaystyle \\frac{{km}}{{{s}}}\\right] & ≈ & 2.36× {10}6 ≤ft[\\displaystyle \\frac{{km}}{ % }\\right]× {s}\\dim ≤ft[\\displaystyle \\frac{ % }{{{s}}}\\right]\\ {m}{CME} [{{g}}] & ≈ & 2.59× {10}15≤ft[\\displaystyle \\frac{g}{ % }\\right]× \\sqrt{{d}\\dim } [ % ].\\end{eqnarray*} These relationships could be used for space weather operations of estimating CME mass and speed using near-real-time irradiance dimming measurements.

  9. Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes

    NASA Technical Reports Server (NTRS)

    Baikie, Tomi K.; Sterling, Alphonse C.; Falconer, David; Moore, Ronald L.; Savage, Sabrina L.

    2016-01-01

    Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked as 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a 'minifilament', and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 180 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 130 clearly-identifiable X-ray jet events and thus determined an event rate of over 17 jets per day per in the Hinode/XRT field of view. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex than presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program.

  10. Relationship of EUV Irradiance Coronal Dimming Slope and Depth to Coronal Mass Ejection Speed and Mass

    NASA Technical Reports Server (NTRS)

    Mason, James Paul; Woods, Thomas N.; Webb, David F.; Thompson, Barbara J.; Colaninno, Robin C.; Vourlidas, Angelos

    2016-01-01

    Extreme ultraviolet (EUV) coronal dimmings are often observed in response to solar eruptive events. These phenomena can be generated via several different physical processes. For space weather, the most important of these is the temporary void left behind by a coronal mass ejection (CME). Massive, fast CMEs tend to leave behind a darker void that also usually corresponds to minimum irradiance for the cooler coronal emissions. If the dimming is associated with a solar are, as is often the case, the are component of the irradiance light curve in the cooler coronal emission can be isolated and removed using simultaneous measurements of warmer coronal lines. We apply this technique to 37dimming events identified during two separate two-week periods in 2011, plus an event on 2010 August 7 analyzed in a previous paper, to parameterize dimming in terms of depth and slope. We provide statistics on which combination of wavelengths worked best for the flare-removal method, describe the fitting methods applied to the dimming light curves, and compare the dimming parameters with corresponding CME parameters of mass and speed. The best linear relationships found are nu(sub CME) [km/s] approx. equals 2.36 x 10 6 [km/%] x s(sub dim) [%/s] m(sub CME) [g] approx. equals 2.59 x 10(exp.15 [g/%] x the square root of d(sub dim) [%].These relationships could be used for space weather operations of estimating CME mass and speed using near-real-time irradiance dimming measurements.

  11. Improved methods for determining the kinematics of coronal mass ejections and coronal waves

    NASA Astrophysics Data System (ADS)

    Byrne, J. P.; Long, D. M.; Gallagher, P. T.; Bloomfield, D. S.; Maloney, S. A.; McAteer, R. T. J.; Morgan, H.; Habbal, S. R.

    2013-09-01

    Context. The study of solar eruptive events and associated phenomena is of great importance in the context of solar and heliophysics. Coronal mass ejections (CMEs) and coronal waves are energetic manifestations of the restructuring of the solar magnetic field and mass motion of the plasma. Characterising this motion is vital for deriving the dynamics of these events and thus understanding the physics driving their initiation and propagation. The development and use of appropriate methods for measuring event kinematics is therefore imperative. Aims: Traditional approaches to the study of CME and coronal wave kinematics do not return wholly accurate nor robust estimates of the true event kinematics and associated uncertainties. We highlight the drawbacks of these approaches, and demonstrate improved methods for accurate and reliable determination of the kinematics. Methods: The Savitzky-Golay filter is demonstrated as a more appropriate fitting technique for CME and coronal wave studies, and a residual resampling bootstrap technique is demonstrated as a statistically rigorous method for the determination of kinematic error estimates and goodness-of-fit tests. Results: It is shown that the scatter on distance-time measurements of small sample size can significantly limit the ability to derive accurate and reliable kinematics. This may be overcome by (i) increasing measurement precision and sampling cadence; and (ii) applying robust methods for deriving the kinematics and reliably determining their associated uncertainties. If a priori knowledge exists and a pre-determined model form for the kinematics is available (or indeed any justified fitting-form to be tested against the data), then its precision can be examined using a bootstrapping technique to determine the confidence interval associated with the model/fitting parameters. Conclusions: Improved methods for determining the kinematics of CMEs and coronal waves are demonstrated to great effect, overcoming many

  12. A Statistical Study of Coronal Mass Ejections and Coronal Holes during 2010-2014

    NASA Astrophysics Data System (ADS)

    Zink, J. L.; Evans, R. M.; Muglach, K.

    2014-12-01

    When analyzing CMEs in real time for space weather forecasting, a lack of sufficient coronagraph images can make it difficult to determine the CME's location. In these cases, usually the location of significant disk signatures (for example, an associated flare) is used to estimate the CME's location. Although this assumption seems reasonable, observational and numerical studies have shown that CME locations can deviate by ten or more degrees from the source location close to the solar surface. In this work, we present a study of more than 50 events during 2010-2014 covering a range of CME speeds, widths, and source locations. We use the CCMC's space weather Database Of Notifications, Knowledge, and Information (DONKI) to select events, and use the SWPC's CME Analysis Tool to measure CMEs in the SOHO/LASCO and STEREO/SECCHI coronagraph images. We find a range of deflections, from less than 5 degrees to more than 15 degrees. It has been proposed that CMEs deflect during propagation due to interactions with other large-scale structures such as coronal holes, streamers, current sheets, and other CMEs. In this study we focus on the influence of coronal holes. We use a combination of SDO/AIA and SECCHI/EUVI images to locate coronal holes near the CME source locations. We present the calculated CME deflection angles as a function of height in the corona, average speed, average width, and coronal hole properties. The goal of this study is to determine appropriate ranges of latitudes and longitudes that can be used in CME ensemble modeling. This requires that coronal hole observations are more systematically incorporated in real time CME analysis for space weather forecasting. J. Zink conducted this research with support from the Undergraduate Research Scholars Program at GMU. R. Evans is supported through an appointment to the NASA Postdoctoral Program at GSFC, administered by Oak Ridge Associated Universities through a contract with NASA.

  13. BAYESIAN MAGNETOHYDRODYNAMIC SEISMOLOGY OF CORONAL LOOPS

    SciTech Connect

    Arregui, I.; Asensio Ramos, A. E-mail: aasensio@iac.es

    2011-10-10

    We perform a Bayesian parameter inference in the context of resonantly damped transverse coronal loop oscillations. The forward problem is solved in terms of parametric results for kink waves in one-dimensional flux tubes in the thin tube and thin boundary approximations. For the inverse problem, we adopt a Bayesian approach to infer the most probable values of the relevant parameters, for given observed periods and damping times, and to extract their confidence levels. The posterior probability distribution functions are obtained by means of Markov Chain Monte Carlo simulations, incorporating observed uncertainties in a consistent manner. We find well-localized solutions in the posterior probability distribution functions for two of the three parameters of interest, namely the Alfven travel time and the transverse inhomogeneity length scale. The obtained estimates for the Alfven travel time are consistent with previous inversion results, but the method enables us to additionally constrain the transverse inhomogeneity length scale and to estimate real error bars for each parameter. When observational estimates for the density contrast are used, the method enables us to fully constrain the three parameters of interest. These results can serve to improve our current estimates of unknown physical parameters in coronal loops and to test the assumed theoretical model.

  14. Data-Driven Global Coronal Models

    NASA Astrophysics Data System (ADS)

    Linker, Jon; Mikic, Zoran; Riley, Pete; Henney, Carl; Arge, Charles; Lionello, Roberto; Downs, Cooper

    MHD simulations of the solar corona based on maps of the solar magnetic field have been demonstrated to describe many aspects of coronal structure. However, these models are typically integrated to steady state, using synoptic or daily-updated magnetic maps to derive the boundary conditions. The Sun's magnetic flux is always evolving, and these changes in the flux affect the structure and dynamics of the corona and heliosphere. In this presentation, we describe an approach to evolutionary models of the corona and solar wind, using time-dependent boundary conditions. A key aspect of our approach is the use of the Air Force Data Assimilative Photospheric flux Transport (ADAPT) model to develop time-evolving boundary conditions for the magnetic field. ADAPT incorporates data assimilation techniques into the Worden and Harvey (2000) flux evolution model, making it an especially suitable candidate for providing boundary conditions to MHD models. We describe initial results and their implications for coronal hole evolution and the origin of the slow solar wind.

  15. Towards Automatic Tracking of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Stenborg, G. A.; Cobelli, P. J.; Gopalswamy, N.; Yashiro, S.

    2003-05-01

    Tracing identifiable features of dynamical phenomena such as coronal mass ejections (CMEs), as they propagate through the corona, is a real challenge. In particular, different features from a single event usually display different velocities. Moreover, the lack of sharpness of the structures involved on top of the subjective nature of the measuring process makes it difficult to track the event unambiguously. To overcome the lack of sharpness, we developed a multiresolution image processing technique applicable to any 2D data set to enhance both boundaries and internal details of originally faint and diffuse structures. The method implemented employs a multi-level decomposition scheme (splitting algorithm of a wavelet packet on non-orthogonal wavelets) via the `a trous' wavelet transform, local noise reduction and interactive weighted recomposition. This approach represents a major advance towards unambiguous image interpretation and provides a means for the quantification of stationary and dynamic coronal structures required for conducting morphological studies. Moreover, it proved to be a necessary step in the development of a non-subjective technique for automatic tracking of CMEs. Examples based on LASCO-C1, -C2, -C3, and EIT data sets are shown. Different reconstruction strategies are also discussed. This work is supported by NASA living with a Star and NSF/SHINE (ATM 0204588) Programs.

  16. Current-Driven Instabilities and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Spangler, Steven

    2008-11-01

    Radioastronomical observations of the solar corona have yielded measurements consistent with coronal currents ˜2.5 x10^9 Amperes inside an Amperian Loop with a width of about 35,000 km (Spangler, Astrophysical Journal, 670, 841, 2007). An estimate has been made of the coronal heating due to Joule heating by these currents. It is assumed that the current is concentrated in thin current sheets, as suggested by theories of MHD turbulence. If the Joule heating is to be astrophysically significant, the resistivity in the corona must be enhanced by about 6 orders of magnitude relative to the Spitzer value. In this paper, I explore the possibility that instabilities produced by these currents could be responsible for generating waves and turbulence which raise the resistivity to significant levels. Model-dependent calculations of the electron drift speed in the current sheets indicate that speeds of order the electron thermal speed are possible. Current-driven instabilities and their associated waves are therefore feasible. These drift speeds also exceed the ion acoustic speed, which would excite lower hybrid waves and enhance the resistivity.

  17. Analytical investigations on the Coronation Gospels manuscript

    NASA Astrophysics Data System (ADS)

    Aceto, Maurizio; Agostino, Angelo; Fenoglio, Gaia; Idone, Ambra; Crivello, Fabrizio; Griesser, Martina; Kirchweger, Franz; Uhlir, Katharina; Puyo, Patricia Roger

    2017-01-01

    The Coronation Gospels or Krönungsevangeliar is a manuscript kept in Vienna at the Kunsthistorisches Museum Wien, datable to the end of VIII century A.D. and produced at Charlemagne court. It is an example of a purple codex, i.e. its parchment is coloured in purple. It has to be considered as one of the most important medieval codices, according to its use to take oath in the coronation ceremony of kings and emperors of the Holy Roman Empire up to 1792. In order to gather information of the manufacture of the manuscript and its present conservation state, a diagnostic investigation campaign has been carried out in situ with totally non-invasive techniques. X-ray Fluorescence Spectrometry (XRF), UV-visible diffuse reflectance spectrophotometry with optical fibres (FORS), spectrofluorimetry, optical microscopy and multispectral analysis have been applied in order to identify the colourants used in the decoration of the manuscript, with the main concern to the dye used to impart the purple hue to the parchment. The information collected was useful in order to address some of the questions raised by art historians concerning its history.

  18. Particle Heating Resulting from Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Paul, Suman; Sundar De, Syam; Guha, Gautam

    2016-07-01

    Coronal Mass Ejection (CME) is a continuous phenomena occurring from the entire solar coronal zone responsible for the outflow of solar masses, viz., protons, electrons, neutrons and solar wind in the form of plasma. These perturb the Earth's atmosphere via magnetopause. Very high temperature plasma generator in the solar atmosphere produces huge magnetic dipoles with intense magnetic field. It traps the energetic charged particles released from the solar corona. These particles gyrate along the magnetic field lines and are gradually elongated outwards from the Sun. Due to this, the field lines get detached at some critical limit thereby enhancing the magnetic reconnection with the interplanetary magnetic field releasing huge energy in the form of X-rays and γ-rays. This perturbs the Earth's atmosphere. In this work, the situation has been investigated by momentum balance equation, energy balance equation along with the equations of continuity and states. From the analyses, the dispersive nature of the thermospheric medium is studied. Variation of normalized electron temperature with dimensionless time has been critically contemplated. The altitude dependent electric field in the medium is also investigated.

  19. Solar Cycle 23 in Coronal Bright Points

    NASA Astrophysics Data System (ADS)

    Sattarov, Isroil; Pevtsov, Alexei A.; Karachik, Nina V.; Sherdanov, Chori T.; Tillaboev, A. M.

    2010-04-01

    We describe an automatic routine to identify coronal bright points (CBPs) and apply this routine to SOHO/EIT observations taken in the 195 Å spectral range during solar cycle 23. We examine the total number of CBPs and its change in the course of this solar cycle. Unlike some other recent studies, we do find a modest ≈30% decrease in the number of CBPs associated with maximum of sunspot activity. Using the maximum brightness of CBPs as a criterion, we separate them on two categories: dim CBPs, associated with areas of a quiet Sun, and bright CBPs, associated with an active Sun. We find that the number of dim coronal bright points decreases at the maximum of sunspot cycle, while the number of bright CBPs increases. The latitudinal distributions suggest that dim CBPs are distributed uniformly over the solar disk. Active Sun CBPs exhibit a well-defined two-hump latitudinal profile suggestive of enhanced production of this type of CBPs in sunspot activity belts. Finally, we investigate the relative role of two mechanisms in cycle variations of CBP number, and conclude that a change in fraction of solar surface occupied by the quiet Sun’s magnetic field is the primary cause, with the visibility effect playing a secondary role.

  20. Featured Image: Waves in a Coronal Fan

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-09-01

    The inset in this Solar Dynamics Observatory image shows a close-up view of a stunning coronal fan extending above the Suns atmosphere. These sweeping loops were observed on 7 March 2012 by a number of observatories, revealing the first known evidence of standing slow magnetoacoustic waves in cool coronal fan loops. The oscillations of the loops, studied in a recent article led by Vaibhav Pant (Indian Institute of Astrophysics), were triggered by blast waves that were generated by X-class flares from the distant active region AR 11429 (marked withthe yellow box at left). The overplotted X-ray curve in the top right corner of the image (click for the full view) shows the evolution of the flares that perturbed the footpoints of the loops. You can check out the video of the action below, and follow the link to the original article to read more about what these oscillations tell us about the Suns activity. CitationV. Pant et al 2017 ApJL 847 L5. doi:10.3847/2041-8213/aa880f

  1. Modified Homogeneous Data Set of Coronal Intensities

    NASA Astrophysics Data System (ADS)

    Dorotovič, I.; Minarovjech, M.; Lorenc, M.; Rybanský, M.

    2014-07-01

    The Astronomical Institute of the Slovak Academy of Sciences has published the intensities, recalibrated with respect to a common intensity scale, of the 530.3 nm (Fe xiv) green coronal line observed at ground-based stations up to the year 2008. The name of this publication is Homogeneous Data Set (HDS). We have developed a method that allows one to successfully substitute the ground-based observations by satellite observations and, thus, continue with the publication of the HDS. For this purpose, the observations of the Extreme-ultraviolet Imaging Telescope (EIT), onboard the Solar and Heliospheric Observatory (SOHO) satellite, were exploited. Among other data the EIT instrument provides almost daily 28.4 nm (Fe xv) emission-line snapshots of the corona. The Fe xiv and Fe xv data (4051 observation days) taken in the period 1996 - 2008 have been compared and good agreement was found. The method to obtain the individual data for the HDS follows from the correlation analysis described in this article. The resulting data, now under the name of Modified Homogeneous Data Set (MHDS), are identical up to 1996 to those in the HDS. The MHDS can be used further for studies of the coronal solar activity and its cycle. These data are available at http://www.suh.sk.

  2. Slow Magnetoacoustic Waves in Coronal Loops?

    NASA Astrophysics Data System (ADS)

    Robbrecht, E.; Berghmans, D.; Nakariakov, V.; Poedts, S.

    1999-10-01

    On May 13, 1998 the EIT and TRACE instruments produced simultaneous high cadence image sequences of the same active region (AR 8218). TRACE achieved a 25 sec cadence in the 171 deg passband while EIT achieved a 15 sec cadence (operating in 'shutterless mode', SOHO JOP 80) in the 195 deg passband. These high cadence observations in two complementary wavelengths have revealed the existence of weak disturbances in an extended coronal loop system. The disturbances originate from small scale brightenings at the footpoints of the loops and propagate along the loops at an apparant speed of the order of 150 km/s which is close to the expected sound speed. To conclude whether these propagating disturbances should be interpreted as slow magnetoacoustic waves or as mass motions ('microflows'), we compare our observational findings with theoretical models. Our results suggest that the recent discovery of DeForest and Gurman (1998) of slow MHD waves in polar plumes, are in fact not typical of polar plumes but occur also in extended coronal structures elsewhere.

  3. Are Coronal Loops Isothermal Or Multithermal? Yes!

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.; Nasraoui, K.; Rightmire, L.; Garst, J.; Kimble, J.; Cirtain, J.; DeLuca, E. E.; Del Zanna, G.; Mason, H.

    2007-05-01

    Analysis of loops observed with the Coronal Diagnostics Spectrometer (CDS) and the Transition Region and Coronal Explorer (TRACE) reveal examples of both isothermal and multithermal plasma. These data were taken on 2003 January 17, and since the loops are on the disk, a lot of work was done on the details of background subtraction. The background-subtracted CDS intensities were analyzed using three methods: (1) Emission Measure Loci, (2) Forward-Folding DEM, and (3) Automatic-Inversion DEM. The first loop appears to be isothermal, with Log T = 5.8 MK. The forward-folding DEM shows a spike at this temperature and the EM Loci curves all intersect at this point. The automatic-inversion DEM results are broadened, however, as a result of the smoothing required for this method. This loop has a uniform temperature along the segment visible in the CDS field of view, and this result is confirmed using the TRACE data. The pixels along the second loop do not appear to be isothermal. The EM Loci curves do not intersect at a single point and both DEM methods show a broad curve. Other loops in this data set as well as loop evolution will be investigated if time permits. Solar physics research at the University of Memphis is supported by NSF ATM-0402729 and NASA NNG05GE68G.

  4. Energetics of solar coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Subramanian, P.; Vourlidas, A.

    2007-05-01

    Aims:We investigate whether solar coronal mass ejections are driven mainly by coupling to the ambient solar wind or through the release of internal magnetic energy. Methods: We examine the energetics of 39 flux-rope like coronal mass ejections (CMEs) from the Sun using data in the distance range ~2-20 R⊙ from the Large Angle Spectroscopic Coronograph (LASCO) aboard the Solar and Heliospheric Observatory (SOHO). This comprises a complete sample of the best examples of flux-rope CMEs observed by LASCO in 1996-2001. Results: We find that 69% of the CMEs in our sample experience a clearly identifiable driving power in the LASCO field of view. For those CMEs that are driven, we examine if they might be deriving most of their driving power by coupling to the solar wind. We do not find conclusive evidence in favor of this hypothesis. On the other hand, we find that their internal magnetic energy is a viable source of the required driving power. We have estimated upper and lower limits on the power that can possibly be provided by the internal magnetic field of a CME. We find that, on average, the lower limit to the available magnetic power is around 74% of what is required to drive the CMEs, while the upper limit can be as much as an order of magnitude larger.

  5. Magnetic Energy Storage in Coronal Active Regions

    NASA Astrophysics Data System (ADS)

    Wolfson, Richard; Drake, C.; Kennedy, M.

    2011-05-01

    We consider magnetic energy storage in a force-free coronal model that simulates an active region by superposing a strong, localized magnetic bipole on a global background dipole. As we found earlier for dipolar and quadrupolar boundary conditions, our solutions develop detached flux ropes, whose energy can exceed that of the corresponding open field; this excess energy is available to power eruptive events such as coronal mass ejections. Our earlier work, and that of others on related magnetic configurations, has generally yielded excess energies of at most approximately 25 percent of the corresponding potential-field energy. Our new active-region models greatly exceed that value, with stressed force-free fields whose energy excess above the open-field state can be well over 100 percent of the energy stored in the associated potential field. Moving the model active region poleward increases the maximum value of this excess stored energy. This work is funded by NSF grant AGS0940503 to Middlebury College.

  6. Slow shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1989-01-01

    The possibility that slow-mode shock compression may produce at least some of the increased brightness observed at the leading edge of coronal mass ejections is investigated. Among the reasons given for the possible existence of slow shocks are the following: (1) transient velocities are often greater than the upstream sound speed but less than the Alfven speed, (2) the presence of a slow shock is consistent with the flat top observed in some transients, and (3) the lateral extension of slow shocks may be responsible for distributing adjacent structures as also seen on the observations. It is shown that there may be some difficulties with this suggestion for transients originating inside the closed-field region at the base of a preexisting coronal streamer. First of all, slow mode characteristics have difficulty emerging from the closed-field region at the streamer base so they can merge to form a slow shock, unless a preceding, large-amplitude disturbance opens the field lines. In addition, a slow shock cannot exist at the center of the streamer current sheet. Finally, numerical simulations demonstrate that at least the last two (and possibly all) of the above reasons for slow shocks can be satisfied by a disturbance whose leading edge propagates at the local fast-mode speed without any shocks. The leading portion of the transient that would be seen in white-light coronagraphs propagates at a speed either less than or equal to the fast-mode speed.

  7. Coronal heating by stochastic magnetic pumping

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Uchida, Y.

    1981-01-01

    Recent observational data cast serious doubt on the widely held view that the sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is here proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength as proposed by Tarbell et al. (1979). On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, scaling laws are obtained for density and temperature in terms of length and coronal magnetic field strength.

  8. Filament Eruption without Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Moore, Ronald L.

    2003-01-01

    We report characteristics of quiescent filament eruptions that were not associated with coronal mass ejections (CMEs). We examined 12 quiescent filament eruptions, each of which was located far from disk center (20.7 R(sub sun)) in diffuse remnant magnetic fields of decayed active regions, was well observed in full-disk movies in Ha and Fe XI, and had good coronagraph coverage. Of the 12 events, 9 were associated with CMEs and 3 were not. Even though the two kinds of eruption were indistinguishable in their magnetic setting and in the eruptive motion of the filament in the Ha movies, each of the CME-producing eruptions produced a two-ribbon flare in Ha and a coronal arcade and/or two-ribbon flare in Fe XII, and each of the non-CME-producing eruptions did not. From this result, and the appearance of the eruptive motion in the Fe XII movies, we conclude that the non-CME-associated filament eruptions are confined eruptions like the confined filament eruptions in active regions.

  9. A Moreton Wave and its Coronal Counterparts

    NASA Astrophysics Data System (ADS)

    Francile, Carlos N.; Mandrini, Cristina H.; Long, David; Cremades, Hebe; Lopez, Fernando M.; Luoni, Maria Luisa

    2016-07-01

    On 29 March 2014, a Moreton wave was detected in AR 12017 with the Halpha Solar Telescope for Argentina (HASTA) in association with an X1 flare. Several phenomena took place in various regimes in connection with this event, such as low coronal waves and a coronal mass ejection (CME). We investigate their role and relationship with the Moreton wave to shed light on issues so far under debate. We analyze its connection with waves observed in the low corona with the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory (SDO/AIA), as well as with the ensuing CME, via kinematics analyses. We build stack plots from sequences of images obtained at different wavelengths to track wave fronts along several directions and find links between the features observed in the chromosphere and low corona, as well as in the associated CME. We also derive the shock front properties. We propose a geometrical model of the wave to explain the observed wave fronts as the photospheric and chromospheric traces of an expanding and outward-traveling bubble intersecting the Sun.

  10. SAUSAGE OSCILLATIONS OF CORONAL PLASMA STRUCTURES

    SciTech Connect

    Nakariakov, V. M.; Hornsey, C.; Melnikov, V. F.

    2012-12-20

    The dependence of the period of sausage oscillations of coronal loops on length together with the depth and steepness of the radial profile are determined. We performed a parametric study of linear axisymmetric fast magnetoacoustic (sausage) oscillations of coronal loops modeled as a field-aligned low-{beta} plasma cylinder with a smooth inhomogeneity of the plasma density in the radial direction. The density decreases smoothly in the radial direction. Sausage oscillations are impulsively excited by a perturbation of the radial velocity, localized at the cylinder axis and with a harmonic dependence on the longitudinal coordinate. The initial perturbation results in either a leaky or a trapped sausage oscillation, depending upon whether the longitudinal wavenumber is smaller or greater than a cutoff value, respectively. The period of the sausage oscillations was found to always increase with increasing longitudinal wavelength, with the dependence saturating in the long-wavelength limit. Deeper and steeper radial profiles of the Alfven speed correspond to more efficient trapping of sausage modes: the cutoff value of the wavelength increases with the steepness and the density (or Alfven speed) contrast ratio. In the leaky regime, the period is always longer than the period of a trapped mode of a shorter wavelength in the same cylinder. For shallow density profiles and shorter wavelengths, the period increases with wavelength. In the long-wavelength limit, the period becomes independent of the wavelength and increases with the depth and steepness of the radial profile of the Alfven speed.

  11. Multi-instrument observations of coronal loops

    NASA Astrophysics Data System (ADS)

    Scott, Jason Terrence

    This document exhibits results of analysis from data collected with multiple EUV satellites (SOHO, TRACE, STEREO, Hinode, and SDO). The focus is the detailed observation of coronal loops using multiple instruments, i.e. filter imagers and spectrometers. Techniques for comparing the different instruments and deriving loop parameters are demonstrated. Attention is given to the effects the different instruments may introduce into the data and their interpretation. The assembled loop parameters are compared to basic energy balance equations and scaling laws. Discussion of the blue-shifted, asymmetric, and line broadened spectral line profiles near the footpoints of coronal loops is made. The first quantitative analysis of the anti-correlation between intensity and spectral line broadening for isolated regions along loops and their footpoints is presented. A magnetic model of an active region shows where the separatrices meet the photospheric boundary. At the boundary, the spectral data reveal concentrated regions of increased blue-shifted outflows, blue wing asymmetry, and line broadening. This is found just outside the footpoints of bright loops. The intensity and line broadening in this region are anti-correlated. A comparison of the similarities in the spectroscopic structure near the footpoints of the arcade loops and more isolated loops suggests the notion of consistent structuring for the bright loops forming an apparent edge of an active region core.

  12. Guide Field Reconnection Turbulence and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Told, D.; Terry, P. W.; Jenko, F.; Zweibel, E. G.; Zhdankin, V.; Lesch, H.

    2014-10-01

    Magnetic reconnection is a prime contender for explaining plasma heating in the solar corona. This work focuses on turbulent reconnection simulations in the strong-guide-field limit, where the gyrokinetics both captures all relevant physical effects and is numerically efficient. Continuously replenished current sheets force a quasi-stationary turbulent state, where significant levels of j . E heating can be measured. In addition, plasmoids are observed to form in the turbulence, causing secondary reconnection events through mergers. Under coronal conditions, the volumetric heating rate is evaluated as 1 . 5 ×10-3 erg cm-3 s-1, in good agreement with observations. This value scales as, in particular, the reconnecting field to the power of 1 . 8 , and the characteristic current sheet width to the power of 0 . 75 . Moreover, heating bursts associated with plasmoid mergers conform with time scales associated observationally with nanoflares. For further details on this work, as well as on the emergence of temperature anisotropies, see [M.J. Pueschel et al., Magnetic Reconnection Turbulence in Strong Guide Fields: Basic Properties and Application to Coronal Heating, accepted for publication in Astrophys. J. Suppl. Ser.].

  13. Coronal magnetohydrodynamic waves and oscillations: observations and quests.

    PubMed

    Aschwanden, Markus J

    2006-02-15

    Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.

  14. Association of solar coronal loops to photospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Pradeep Chitta, Lakshmi; Peter, Hardi; Solanki, Sami

    2017-08-01

    Magnetic connectivity and its evolution from the solar photosphere to the corona will play a crucial role in the energetics of the solar atmosphere. To explore this connectivity, we use high spatial resolution magnetic field observations of an active region from the balloon-borne SUNRISE telescope, in combination with the observations of coronal loops imaged in extreme ultraviolet by SDO/AIA. We show that photospheric magnetic field at the base of coronal loops is rapidly evolving through small-scale flux emergence and cancellation events with rates on the order of 10^15 Mx/s. When observed at high spatial resolution better than 0.5 arcsec, we find that basically all coronal loops considered so far are rooted in the photosphere above small-scale opposite polarity magnetic field patches. In the photosphere, the magnetic field threading coronal loops is interacting with opposite polarity parasitic magnetic concentrations leading to dynamic signatures in the upper atmosphere. Chromospheric small-scale jets aligned to coronal loops are observed at these locations. We will present preliminary results from 3D MHD simulations of coronal loops driven by realistic magneto-convection and discuss what role the magnetic interactions at coronal loop footpoints could play in the evolution of coronal loops and their heating.

  15. Magnetism Matters: Coronal Magnetometry Using Multi-Wavelength Polarimetry

    NASA Astrophysics Data System (ADS)

    Gibson, Sarah E.

    2015-08-01

    The solar coronal magnetic field is key both to solving fundamental problems in solar physics such as coronal heating and solar wind acceleration, and to predicting the internal magnetic structure and thus space-weather impact of coronal mass ejections. I will describe the current state of the art in coronal magnetometry, and present results from the Coronal Multichannel Polarimeter (CoMP) at Mauna Loa Solar Observatory (MLSO), which since 2011 has taken polarimetric observations of the solar corona in the near-infrared on a near-daily basis. I will discuss work in progress that utilizes forward modeling to synthesize polarimetric data at multiple heights and vantage points, and at wavelengths from radio to infrared to visible to ultraviolet. The goal is to use such synthetic testbeds to determine the ideal set of observations for constraining the coronal magnetic field, and to establish a Data-Optimized Coronal Field Model (DOC-FM) that efficiently incorporates these data into global magnetic models. This work will provide essential tools and motivation for the planning and implementation of future coronal polarimetric projects and missions spanning a broad range of wavelengths.

  16. NASA’s SDO Spies an Elongated Coronal Hole

    NASA Image and Video Library

    A long coronal hole can be seen right down the middle of the sun in this video captured by NASA’s Solar Dynamics Observatory on March 23-25, 2016. Coronal holes are areas on the sun where the solar...

  17. Segmentation of Coronal Holes Using Active Contours Without Edges

    NASA Astrophysics Data System (ADS)

    Boucheron, L. E.; Valluri, M.; McAteer, R. T. J.

    2016-10-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. The detection and characterization of these regions is important for testing theories of their formation and evolution, and also from a space weather perspective because they are the source of the fast solar wind. Coronal holes are detected in full-disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than the surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind observations, and qualitatively match the coronal holes segmented by other methods. The means to identify a coronal hole without specifying a final intensity threshold may allow this algorithm to be more robust across multiple datasets, regardless of data type, resolution, and quality.

  18. A Perceptual Correlate of the Labial-Coronal Effect

    ERIC Educational Resources Information Center

    Sato, Marc; Vallee, Nathalie; Schwartz, Jean-Luc; Rousset, Isabelle

    2007-01-01

    Purpose: Statistical studies conducted in various languages on both infants and adults have revealed an intersyllabic preference for initiating words with a labial consonant-vowel-coronal consonant sequence. Speech motor constraints have been proposed to explain this so-called "labial-coronal effect." This study was designed to test for a possible…

  19. View of coronal hole processed from television transmission of ATM

    NASA Image and Video Library

    1973-08-20

    S73-32883 (20 Aug. 1973) --- This false color isophote, processed from an Aug. 20, 1973 television transmission of Apollo Telescope Mount (ATM) experiments from Skylab 3, dramatically reveals a significant change in the coronal hole as compared to the previous day. Solar rotation accounts for the new location of the coronal hole. Photo credit: NASA

  20. Coronal disturbances and their terrestrial effects /Tutorial Lecture/

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1983-01-01

    An assessment is undertaken of recent approaches to the prediction of the interplanetary consequences of coronal disturbances, with attention to the relationships of shocks and energetic particles to coronal transients, of proton events to gamma-ray and microwave bursts, of geomagnetic storms to filament eruptions, and of solar wind increases to the flare site magnetic field direction. A discussion is given concerning the novel phenomenon of transient coronal holes, which appear astride the long decay enhancements of 2-50 A X-ray emission following H-alpha filament eruptions. These voids in the corona are similar to long-lived coronal holes, which are the sources of high speed solar wind streams. The transient coronal holes may also be associated with transient solar wind speed increases.

  1. Evidence of outward flow of plasma in a coronal hole

    NASA Technical Reports Server (NTRS)

    Cushman, G. W.; Rense, W. A.

    1976-01-01

    The solar spectrum was photographed in the range 200-700 A with a grazing-incidence stigmatic rocket spectrograph. Doppler shifts of the three coronal lines Si XI (303 A), Mg X (610 A), and Mg IX (368 A) were measured for various regions of the solar disk, including a coronal hole. From the relative shifts in the latter region, an average outward velocity of 16 km/s was computed for the plasma in the coronal hole. The full widths at half-maximum for the above lines were appreciably less in the coronal-hole region than in a quiet region, indicating a lower temperature in the hole. Both the measured velocity and the temperature results are consistent with solar-wind data and with current theories of coronal holes.

  2. Determination of coronal magnetic fields from vector magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1993-01-01

    This report covers technical progress during the second year of the contract entitled 'Determination of Coronal Magnetic Fields from Vector Magnetograms,' NASW-4728, between NASA and Science Applications International Corporation, and covers the period January 1, 1993 to December 31, 1993. Under this contract SAIC has conducted research into the determination of coronal magnetic fields from vector magnetograms, including the development and application of algorithms to determine force-free coronal fields above selected observations of active regions. The contract began on June 30, 1992 and has a completion date of December 31, 1994. This contract is a continuation of work started in a previous contract, NASW-4571, which covered the period November 15, 1990 to December 14, 1991. During this second year we have concentrated on studying additional active regions and in using the estimated coronal magnetic fields to compare to coronal features inferred from observations.

  3. Coronal disturbances and their terrestrial effects /Tutorial Lecture/

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1983-01-01

    An assessment is undertaken of recent approaches to the prediction of the interplanetary consequences of coronal disturbances, with attention to the relationships of shocks and energetic particles to coronal transients, of proton events to gamma-ray and microwave bursts, of geomagnetic storms to filament eruptions, and of solar wind increases to the flare site magnetic field direction. A discussion is given concerning the novel phenomenon of transient coronal holes, which appear astride the long decay enhancements of 2-50 A X-ray emission following H-alpha filament eruptions. These voids in the corona are similar to long-lived coronal holes, which are the sources of high speed solar wind streams. The transient coronal holes may also be associated with transient solar wind speed increases.

  4. Small-Scale Magnetic Reconnection at Equatorial Coronal Hole Boundaries

    NASA Astrophysics Data System (ADS)

    Lamb, Derek; DeForest, C. E.

    2011-05-01

    Coronal holes have long been known to be the source of the fast solar wind at both high and low latitudes. The equatorial extensions of polar coronal holes have long been assumed to have substantial magnetic reconnection at their boundaries, because they rotate more rigidly than the underlying photosphere. However, evidence for this reconnection has been sparse until very recently. We present some evidence that reconnection due to the evolution of small-scale magnetic fields may be sufficient to drive coronal hole boundary evolution. We hypothesize that a bias in the direction of that reconnection is sufficient to give equatorial coronal holes their rigid rotation. We discuss the prospects for investigating this using FLUX, a reconnection-controlled coronal MHD simulation framework. This work was funded by the NASA SHP-GI program.

  5. A DATA-DRIVEN MODEL FOR THE GLOBAL CORONAL EVOLUTION

    SciTech Connect

    Feng Xueshang; Jiang Chaowei; Xiang Changqing; Zhao Xuepu; Wu, S. T. E-mail: cwjiang@spaceweather.ac.cn E-mail: xpzhao@sun.stanford.edu

    2012-10-10

    This work is devoted to the construction of a data-driven model for the study of the dynamic evolution of the global corona that can respond continuously to the changing of the photospheric magnetic field. The data-driven model consists of a surface flux transport (SFT) model and a global three-dimensional (3D) magnetohydrodynamic (MHD) coronal model. The SFT model is employed to produce the global time-varying and self-consistent synchronic snapshots of the photospheric magnetic field as the input to drive our 3D numerical global coronal AMR-CESE-MHD model on an overset grid of Yin-Yang overlapping structure. The SFT model and the 3D global coronal model are coupled through the boundary condition of the projected characteristic method. Numerical results of the coronal evolution from 1996 September 4 to October 29 provide a good comparison with multiply observed coronal images.

  6. Observaciones de la corona solar interior con un coronógrafo de espejo

    NASA Astrophysics Data System (ADS)

    Stenborg, G.; Schwenn, R.; Francile, C.; Rovira, M.

    El plasma de la corona solar es un buen indicador de las líneas de fuerza del campo magnético. Por lo tanto, el análisis de estructuras coronales cuasiestacionarias en la corona da importante información sobre el campo magnético y la actividad asociada. Se trata de poner límites a los modelos teóricos existentes mediante el estudio de distintas estructuras en la corona interior. En agosto de 1997 comenzó a operar el coronógrafo solar (MICA) en El Leoncito como parte del Observatorio Solar Alemán-Argentino. Desde su instalación obtiene imágenes de la corona solar (1.05 a 2.0 radios solares) en 2 líneas espectrales correspondientes a la emisión de Fe XIV y Fe X. El instrumento puede obtener imágenes cada minuto por lo que es ideal para estudiar procesos rápidos. Presentamos observaciones recientes que muestran la capacidad del coronógrafo así como la evolución de algunos eventos dinámicos observados por MICA.

  7. SOLAR CYCLE VARIATIONS OF CORONAL NULL POINTS: IMPLICATIONS FOR THE MAGNETIC BREAKOUT MODEL OF CORONAL MASS EJECTIONS

    SciTech Connect

    Cook, G. R.; Mackay, D. H.; Nandy, Dibyendu E-mail: duncan@mcs.st-and.ac.u

    2009-10-20

    In this paper, we investigate the solar cycle variation of coronal null points and magnetic breakout configurations in spherical geometry, using a combination of magnetic flux transport and potential field source surface models. Within the simulations, a total of 2843 coronal null points and breakout configurations are found over two solar cycles. It is found that the number of coronal nulls present at any time varies cyclically throughout the solar cycle, in phase with the flux emergence rate. At cycle maximum, peak values of 15-17 coronal nulls per day are found. No significant variation in the number of nulls is found from the rising to the declining phase. This indicates that the magnetic breakout model is applicable throughout both phases of the solar cycle. In addition, it is shown that when the simulations are used to construct synoptic data sets, such as those produced by Kitt Peak, the number of coronal nulls drops by a factor of 1/6. The vast majority of the coronal nulls are found to lie above the active latitudes and are the result of the complex nature of the underlying active region fields. Only 8% of the coronal nulls are found to be connected to the global dipole. Another interesting feature is that 18% of coronal nulls are found to lie above the equator due to cross-equatorial interactions between bipoles lying in the northern and southern hemispheres. As the majority of coronal nulls form above active latitudes, their average radial extent is found to be in the low corona below 1.25 R {sub sun} (175, 000 km above the photosphere). Through considering the underlying photospheric flux, it is found that 71% of coronal nulls are produced though quadrupolar flux distributions resulting from bipoles in the same hemisphere interacting. When the number of coronal nulls present in each rotation is compared to the number of bipoles emerging, a wide scatter is found. The ratio of coronal nulls to emerging bipoles is found to be approximately 1/3. Overall

  8. Buried Alive in the Coronal Graveyard

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.; Brown, A.; Harper, G. M.

    2002-12-01

    We have used the highly sensitive ``solar-blind'' Chandra High Resolution Camera (HRC-I) to search for 0.2--10 keV coronal X-ray emission from the key ``noncoronal'' red giants Arcturus (α Boo: K1 III) and Aldebaran (α Tauri: K5 III). Our program follows up previous detections of subcoronal (T ~ 105 K) emission lines, such as C 4 λ 1548, by HST STIS, and its predecessor GHRS. The two deep (19 ks) HRC-I pointings failed to detect either red giant, however, with 3 σ upper limits of 1x 10-4 cnts s-1 and 2x 10-4 cnts s-1 for Arcturus and Aldebaran, respectively. The corresponding 0.2--2.0 keV L X/L bol levels are a factor of a thousand lower than the Sun (itself already an inconspicuous coronal object), establishing new limits of coronal futility among late-type stars. At the same time, STIS far-ultraviolet spectra suggest the presence of a ``cool absorber'' in the red giant atmosphere capable of selectively extinguishing the subcoronal spectrum shortward of ~ 1500 Å. The cool absorber must lie beneath the extensive chromospheric (T ~ 7000 K) envelope, because the chromospheric lines lack absorption signatures from the cool layer. As a result, the hot-line structures must be doubly buried under a large column of neutral hydrogen, undoubtedly smothering any soft X-ray emission that might be present. If small-scale magnetic active regions indeed exist in the lower atmospheres of red giants like Arcturus and Aldebaran, they might in some way be responsible for initiating and sustaining the cool outflows of such stars. The source of the near surface magnetism could be analogous to that of the small-scale ephemeral bipolar regions seen ubiquitously on the Sun throughout the sunspot cycle, and thought to be of direct convective origin. [-3mm] This work was supported by Chandra grant G02-3014X and HST grant GO-09273.01--A to the University of Colorado.

  9. Buried Alive in the Coronal Graveyard

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Brown, Alexander; Harper, Graham M.

    2003-11-01

    We have used the High Resolution Camera (HRC-I) of the Chandra X-Ray Observatory to search for coronal (T~106 K) emission from the archetype ``noncoronal'' red giants Arcturus (α Bootis=HD 124897, K1 III) and Aldebaran (α Tauri=HD 29139, K5 III). Our program follows up previous detections of ultraviolet coronal proxies such as C IV λ1548 (T~1×105 K) and O VI λ1031 (T~3×105 K). The deep (~19 ks) HRC-I pointings obtained a tentative 3 σ detection of Arcturus, with fX(0.2-2keV)=1.0+1.8-0.8×10-15 ergs cm-2 s-1 (95% confidence limits [CLs]), but failed to record Aldebaran, with an upper limit of <~1.5×10-15 ergs cm-2 s-1 (also at 95% CL). The corresponding LX/Lbol ratios are a factor of ten thousand less than the Sun, a low-activity coronal dwarf. At the same time, Hubble Space Telescope Imaging Spectrograph far-ultraviolet spectra suggest the presence of a ``cool absorber,'' probably near the base of the red giant chromosphere, imprinting discrete low-excitation absorptions on top of highly ionized features such as Si IV λ1393. The hot emission zones thus are at least partially buried under a large column of chromospheric material, which would severely attenuate any soft X-rays that might be emitted. The submerged hot structures presumably are magnetic because of their high temperatures and broad C IV profiles (FWHM~130 km s-1). Perhaps these structures are analogous to small-scale ephemeral bipolar regions seen ubiquitously on the Sun throughout the sunspot cycle and thought to be of direct convective origin. If small-scale magnetic fields indeed are present in the lower atmospheres of red giants such as Arcturus and Aldebaran, they might play a role in initiating the cool winds of such stars, perhaps through a mechanism similar to solar spicules.

  10. Origin of Coronal Shocks without Mass Ejections

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Moon, Y.-J.; Cho, K.-S.; Dryer, M.; Umapathy, S.

    2006-01-01

    We present an analysis of all the events (around 400) of coronal shocks for which the shock-associated metric type IIs were observed by many spectrographs during the period April 1997 December 2000. The main objective of this analysis is to give evidence for the type IIs related to only flare-blast waves, and thus to find out whether there are any type II-associated coronal shocks without mass ejections. By carefully analyzing the data from multi-wavelength observations (Radio, GOES X-ray, Hα, SOHO/LASCO and SOHO/EIT-EUV data), we have identified only 30 events for which there were actually no reports of CMEs. Then from the analysis of the LASCO and EIT running difference images, we found that there are some shocks (nearly 40%, 12/30) which might be associated with weak and narrow mass ejections. These weak and narrow ejections were not reported earlier. For the remaining 60% events (18/30), there are no mass ejections seen in SOHO/LASCO. But all of them are associated with flares and EIT brightenings. Pre-assuming that these type IIs are related to the flares, and from those flare locations of these 18 cases, 16 events are found to occur within the central region of the solar disk (longitude ≤45^∘). In this case, the weak CMEs originating from this region are unlikely to be detected by SOHO/LASCO due to low scattering. The remaining two events occurred beyond this longitudinal limit for which any mass ejections would have been detected if they were present. For both these events, though there are weak eruption features (EIT dimming and loop displacement) in the EIT images, no mass ejection was seen in LASCO for one event, and a CME appeared very late for the other event. While these two cases may imply that the coronal shocks can be produced without any mass ejections, we cannot deny the strong relationship between type IIs and CMEs.

  11. Gravitational steady states of solar coronal loops

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda E.; Asgari-Targhi, M.

    2017-02-01

    Coronal loops on the surface of the sun appear to consist of curved, plasma-confining magnetic flux tubes or "ropes," anchored at both ends in the photosphere. Toroidal loops carrying current are inherently unstable to expansion in the major radius due to toroidal-curvature-induced imbalances in the magnetic and plasma pressures. An ideal MHD analysis of a simple isolated loop with density and pressure higher than the surrounding corona, based on the theory of magnetically confined toroidal plasmas, shows that the radial force balance depends on the loop internal structure and varies over parameter space. It provides a unified picture of simple loop steady states in terms of the plasma beta βo, the inverse aspect ratio ɛ =a /Ro , and the MHD gravitational parameter G ̂≡g a /vA2 , all at the top of the loop, where g is the acceleration due to gravity, a the average minor radius, and vA the shear Alfvén velocity. In the high and low beta tokamak orderings, βo=2 noT /(Bo2/2 μo)˜ɛ1 and ɛ2 , that fit many loops, the solar gravity can sustain nonaxisymmetric steady states at G ̂˜ɛ βo that represent the maximum stable height. At smaller G ̂≤ɛ2βo , the loop is axisymmetric to leading order and stabilized primarily by the two fixed loop ends. Very low beta, nearly force-free, steady states with βo˜ɛ3 may also exist, with or without gravity, depending on higher order effects. The thin coronal loops commonly observed in solar active regions have ɛ ≃0.02 and fit the high beta steady states. G ̂ increases with loop height. Fatter loops in active regions that form along magnetic neutral lines and may lead to solar flares and Coronal Mass Ejections have ɛ ≃0.1 -0.2 and may fit the low beta ordering. Larger loops tend to have G ̂>ɛ βo and be unstable to radial expansion because the exponential hydrostatic reduction in the density at the loop-top reduces the gravitational force -ρG ̂ R ̂ below the level that balances expansion, in agreement with

  12. Determination of Coronal Magnetic Fields from Vector Magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  13. A Catalog of Coronal "EIT Wave" Transients

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Myers, D. C.

    2005-01-01

    SOHO Extreme Ultraviolet Imaging Telescope (EIT) data have been visually searched for coronal "EIT wave" transients over the period beginning 24 March 1997 extending through 24 June 1998. The dates covered start at the beginning of regular high-cadence (more than 1 image every 20 minutes) observations, ending at the 4-month interruption of SOHO observations in mid-1998. 176 events are included in this catalog. The observations range from "candidate" events, which were either weak or had insufficient data coverage, to events which were well-defined and were clearly distinguishable in the data. Included in the catalog are times of the EIT images in which the events are observed, diagrams indicating the observed locations of the wavefronts and associated active regions, and the speeds of the wavefronts. The measured speeds of the wavefronts varied from less than 50 to over 700 km/sec with "typical" speeds of 200-400 Msec.

  14. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  15. Image-optimized Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.

    2017-08-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.

  16. Forced reconnection, current sheets, and coronal heating

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Bhattacharjee, A.

    1992-12-01

    The formation of current sheets in the solar corona is investigated by a simple model in which forced reconnection occurs due to the perturbation caused at the photospheric boundary of footpoint motion. The time dependence of the process is considered by means of an initial-value calculation. It is found that on the Alfvenic time scale, current sheets tend to develop with an amplitude that increases linearly with time. The effect of resistivity becomes important subsequently, and the reconnected flux at the separatrix increases quadratically with time. In the nonlinear phase, helicity-conserving islands support current sheets, and the rate of reconnection is given by a modified Sweet-Parker model. Implications for coronal heating are discussed.

  17. Turbulent resistive heating of solar coronal arches

    NASA Technical Reports Server (NTRS)

    Benford, G.

    1983-01-01

    The possibility that coronal heating occurs by means of anomalous Joule heating by electrostatic ion cyclotron waves is examined, with consideration given to currents running from foot of a loop to the other. It is assumed that self-fields generated by the currents are absent and currents follow the direction of the magnetic field, allowing the plasma cylinder to expand radially. Ion and electron heating rates are defined within the cylinder, together with longitudinal conduction and convection, radiation and cross-field transport, all in terms of Coulomb and turbulent effects. The dominant force is identified as electrostatic ion cyclotron instability, while ion acoustic modes remain stable. Rapid heating from an initial temperature of 10 eV to 100-1000 eV levels is calculated, with plasma reaching and maintaining a temperature in the 100 eV range. Strong heating is also possible according to the turbulent Ohm's law and by resistive heating.

  18. Coronal Mass Ejections: From Sun to Earth

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.

    2016-06-01

    Coronal Mass Ejections (CMEs) are gigantic expulsions of magnetized plasmas from the solar corona into the interplanetary (IP) space. CMEs spawn ~ 1015 gr of mass and reach speeds ranging between several hundred to a few thousand km/s (e.g., Gopalswamy et al. 2009; Vourlidas et al. 2010). It takes 1-5 days for a CME to reach Earth. CMEs are one of the most energetic eruptive manifestations in the solar system and are major drivers of space weather via their magnetic fields and energetic particles, which are accelerated by CME-driven shocks. In this review we give a short account of recent, mainly observational, results on CMEs from the STEREO and SDO missions which include the nature of their pre-eruptive and eruptive configurations and the CME propagation from Sun to Earth. We conclude with a discussion of the exciting capabilities in CME studies that will soon become available from new solar and heliospheric instrumentation.

  19. Mass flow in loop type coronal transients

    NASA Technical Reports Server (NTRS)

    Anzer, U.; Poland, A. I.

    1979-01-01

    Coronal transients having characteristics of a well-defined loop structure are examined, particularly with respect to temporal changes in the density and mass per unit length along the loop over periods of several days after the initial eruption. Measurements of mass distributions as a function of time are presented for eight transients, and one particular transient with a fairly simple configuration is investigated in more detail. Theoretical calculations are combined with the masses and densities derived from the observations to obtain estimates of the material flow in the transients; this flow is modeled on the assumption that magnetic forces drive and confine the loop. The flow field is found to be diverging everywhere, indicating that the density decreases in time. It is inferred that the transient legs are approximately in hydrostatic equilibrium and that most of the mass of the transient is lost from the sun during the initial phase.

  20. The evolution of the polar coronal holes

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1980-01-01

    He I 10830 A synoptic maps, obtained at the Kitt Peak National Observatory during 1974-1979, show that the sun's polar coronal holes have contracted significantly during 1977-1978. Prior to the accelerated increase of sunspot activity in mid-1977, the area of each polar cap was on the order of 8% of the sun's total surface area, whereas toward the end of 1978 these areas fell below 2% of the total surface area. Synoptic polar plots show that the vestigial holes had irregular shapes and were often well removed from the poles themselves. These results are consistent with the changes that one would expect when the polar magnetic fields are weakening just prior to sunspot maximum

  1. Dynamic phenomena in coronal flux tubes

    NASA Technical Reports Server (NTRS)

    Mariska, J. T.; Boris, J. P.

    1981-01-01

    The study of stellar atmospheres and the determination of specific physical mechanisms, geometries, and magnetic structures by which coronae are maintained is examined. Ultraviolet and soft X-ray components observed in the radiative output of cool stars and the Sun require counterentropic temperature gradients for their explanation. The existence of a hot corona is recognized as a result of mechanical or fluid dynamic effects and the importance of the magnetic field in the heating is accepted. Magnetohydrodynamic energy release associated with the emergence of magnetic flux through the chromosphere and its dynamic readjustment in the corona are major counterentropic phenomena which are considered as primary candidates for corona heating. Systematic plows in coronal flux tubes result from asymmetric heating and systematic flows can exist without substantial chromospheric pressure differences.

  2. Observation of oscillations in coronal loops

    NASA Astrophysics Data System (ADS)

    De Moortel, I.; Walsh, R. W.; Ireland, J.

    2000-10-01

    High cadence TRACE data (JOP 83) in the 171 Å bandpass are used to report on several examples of outward propagating oscillations in the footpoints of large diffuse coronal loop structures close to active regions. The disturbances travel outward with a propagation speed between 70 and 160 km s-1. The variations in intensity are of the order of 2%-4%, compared to the background brightness and these get weaker as the disturbance propagates along the structure. From a wavelet analysis at different positions along the structures, periods in the 200-400 seconds range are found. It is suggested that these oscillations are slow magneto-acoustic waves propagating along the loop, carrying an estimated energy flux of 4×102 ergs cm-2 s-1. .

  3. A magnetohydrodynamic theory of coronal loop transients

    NASA Technical Reports Server (NTRS)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  4. Flux Accretion and Coronal Mass Ejection Dynamics

    NASA Astrophysics Data System (ADS)

    Welsch, Brian

    2017-08-01

    Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. The equations of ideal magnetohydrodynamics (MHD) have been used to model the onset and, in some cases, the subsequent acceleration of ejections. Both observations and numerical modeling, however, suggest that magnetic reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the dynamical effects of accretion of magnetic flux onto a rising ejection by reconnection involving the ejection's background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying forces acting during the eruption, generically leading to faster acceleration of the CME. Our ultimate aim is to characterize changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux, deduced from observations of flare ribbons and photospheric magnetic fields.

  5. Photospheric origins of chromospheric and coronal activity

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore

    1994-01-01

    This contract is for a two-year research study of the origins of activity in the upper atmosphere of the sun. The approach is to collect high resolution images of the lower atmosphere on observing runs at the Swedish Solar Observatory on La Palma, Canary Islands, Spain. The best observations are analyzed and compared with data from other telescopes and/or theoretical models, to study magnetic flux emergence, coronal heating, and various dynamic phenomena and transients. Software for analysis and visualization of the data is developed as needed. The contract is being performed by the Solar and Astrophysics Laboratory, part of the Lockheed Palo Alto Research Laboratory (LPARL) of the Research and Development Division (RDD) of Lockheed Missiles and Space Co., Inc. (LMSC).

  6. A magnetohydrodynamic theory of coronal loop transients

    NASA Technical Reports Server (NTRS)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  7. Coronal mass ejections and large geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Bame, S. J.; Mccomas, D. J.; Phillips, J. L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, it is found that most large geomagnetic storms during the interval surrounding the last solar maximum (August 1978 - October 1982) were associated with earth-passage of interplanetary disturbances in which the earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense.

  8. Magnetic field strength in solar coronal waveguides

    NASA Astrophysics Data System (ADS)

    Arregui, I.; Asensio Ramos, A.

    2017-03-01

    We applied Bayesian techniques to the problem of inferring the magnetic field strength in transversely oscillating solar coronal loops from observed periods and damping times. This was done by computing the marginal posterior probability density for parameters such as the waveguide density, the density contrast, the transverse inhomogeneity length scale, and the magnetic field strength under the assumption that the observed waves can be modelled as standing or propagating magnetohydrodynamic (MHD) kink modes of magnetic flux tubes. Our results indicate that the magnetic field strength can be inferred, even if the densities inside and outside the structure are largely unknown. When information on plasma density is available, the method enables to self-consistently include this knowledge to further constrain the inferred magnetic field strength. The inclusion of the observed oscillation damping enables to obtain information on the transverse density structuring and considerably alters the obtained posterior for the magnetic field strength.

  9. On the theory of coronal heating mechanisms

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.; Spicer, D. S.

    1981-01-01

    The present state-of-the-art of two classes of theories of coronal heating is examined: (1) heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere (the shock-wave theory is an example); and (2) heating by electrodynamic processes in the magnetic regions of the corona (beta much less than 1) either by MHD waves or current heating in regions with high electric current densities (flare-type heating). It is concluded that the mechanism of the heating of the solar chromosphere and corona remains an open question, especially in explaining detailed atmospheric structures. The acoustic theory might be correct with little modification for most of the chromosphere, but as soon as the atmosphere shows a high degree of structure as in the corona and transition layer the magnetic field must play a dominant role. It appears that the current heating theories have a small range of applicability, while the MHD-wave theories are the most promising.

  10. Solar wind origin in coronal funnels.

    PubMed

    Tu, Chuan-Yi; Zhou, Cheng; Marsch, Eckart; Xia, Li-Dong; Zhao, Liang; Wang, Jing-Xiu; Wilhelm, Klaus

    2005-04-22

    The origin of the solar wind in solar coronal holes has long been unclear. We establish that the solar wind starts flowing out of the corona at heights above the photosphere between 5 megameters and 20 megameters in magnetic funnels. This result is obtained by a correlation of the Doppler-velocity and radiance maps of spectral lines emitted by various ions with the force-free magnetic field as extrapolated from photospheric magnetograms to different altitudes. Specifically, we find that Ne7+ ions mostly radiate around 20 megameters, where they have outflow speeds of about 10 kilometers per second, whereas C3+ ions with no average flow speed mainly radiate around 5 megameters. Based on these results, a model for understanding the solar wind origin is suggested.

  11. Characteristics of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  12. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K.; Patsourakos, S.; Anastasiadis, A.

    2013-07-10

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  13. A gigantic coronal jet ejected from a compact active region in a coronal hole

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Nitta, N.; Strong, K. T.; Matsumoto, R.; Yokoyama, T.; Hirayama, T.; Hudson, H.; Ogawara, Y.

    1994-08-01

    A gigantic coronal jet greater than 3 x 105 km long (nearly half the solar radius) has been found with the soft X-ray telescope (SXT) on board the solar X-ray satellite, Yohkoh. The jet was ejected on 1992 January 11 from an 'anemone-type' active region (AR) appearing in a coronal hole and is one of the largest coronal X-ray jets observed so far by SXT. This gigantic jet is the best observed example of many other smaller X-ray jets, because the spatial structures of both the jet and the AR located at its base are more easily resolved. The range of apparent translational velocities of the bulk of the jet was between 90 and 240 km s-1, with the corresponding kinetic energy estimated to be of order of 1028 ergs. A detailed analysis reveals that the jet was associated with a loop brightening (a small flare) that occurred in the active region. Several features of this observation suggest and are consistent with a magnetic reconnection mechanism for the production of such a 'jet-loop-brightening' event.

  14. Numerical Simulation of DC Coronal Heating

    NASA Astrophysics Data System (ADS)

    Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco

    2016-05-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.

  15. Stealthy but Geoeffective Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki; Mulligan, Tamitha

    2017-08-01

    We have long known about the existence of "problem" geomagnetic storms whose origins are elusive. In more general terms, not all the 1 AU disturbances can be clearly attributed to coronal mass ejections (CMEs), high speed streams (HSSs) or corotation interaction regions (CIRs.) When interplanetary CME (ICME) signatures are found in in situ data, there is not always a flare or filament eruption on the Sun or even an obvious CME observed close to the Sun that correlates with the ICME within a reasonable time range. These ICMEs sometimes result in intense storms. Furthermore, there is a possibility that some of the more severe storms could be partly contributed by such ICMEs of unclear origin. Therefore space weather prediction will remain incomplete without properly understanding these ICMEs. Even if the ICME is paired with a CME, it is sometimes difficult to find where the latter comes from. This is often called the “stealth CME” that apparently lacks low coronal signatures (LCSs). STEREO's second and third view points have tremendously helped us determine its front-side origin and find when and where it forms and accelerates, which is important for isolating possible LCSs. Although SDO/AIA has been continuously taking full-disk EUV images in a wide temperature range since 2010, there are still a number of stealthy CMEs whose LCSs are unclear or ambiguous. It is assumed that they start at high altitudes, leaving weak or negligible LCSs. Some of them seem to involve multiple magnetic domains, and weak or open field regions. We present AIA observations of several stealthy CMEs, including recent ones, that were responsible for geomagnetic storms, emphasizing the need to compare images with long time differences and to find the periods at which the CME forms and accelerates. We also discuss uncertainties in interpreting in situ data as to whether a CME is present when data are dominated by other solar wind features, such as HSS and CIR.

  16. The Dynamics of Coronal-Hole Boundaries

    NASA Astrophysics Data System (ADS)

    Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Wyper, P. F.; Zurbuchen, T.

    2015-12-01

    The source of the slow solar wind at the Sun is the subject of intense debate in solar and heliospheric physics. Because the majority of the solar wind observed at Earth is slow wind, understanding its origin is essential for understanding and predicting Earth's space weather environment. In-situ and remote observations show that, compared to the fast wind, the slow solar wind corresponds to higher freeze-in temperatures, as indicated by charge-state ratios, and more corona-like elemental abundances. These results indicate that the most likely source for the slow wind is the hot plasma in the closed-field corona; however, the release mechanism for the wind from the closed-field regions is far from understood. Here we present the first fully dynamic, 3D MHD simulations of a coronal-hole boundary driven by photospheric convective flows. We determine in detail the opening and closing of coronal flux due to photospheric motions at the base of a helmet streamer. These changes should lead to the release of plasma from the closed magnetic field at the edge of the streamer. Our analysis demonstrates that the bulk of the release is due to interchange reconnection. We calculate the effective of numerical Lundquist number on the dynamics and discuss the implications of our results for theories of slow-wind origin, in particular the S-Web model. We also discuss the implications of our results for observations, in particular from the upcoming Solar Orbiter and Solar Probe Plus missions. This work was supported by the NASA SR&T and TR&T Programs.

  17. FOXSI-2 Observations and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S. N.; Buitrago Casas, J. C.; Takahashi, T.; Foster, N.

    2015-12-01

    Energy release and particle acceleration on the Sun is a frequent occurrence associated with a number of different solar phenomenon including but not limited to solar flares, coronal mass ejections and nanoflares. The exact mechanism through which particles are accelerated and energy is released is still not well understood. This issue is related to the unsolved coronal heating problem, the mystery of the heating mechanism for the million degree solar corona. One prevalent theory posits the existence of a multitude of small flares, dubbed nanoflares. Recent observations of active region AR11890 by IRIS (Testa et al. 2014) are consistent with numerical simulations of heating by impulsive beams of nonthermal electrons, suggesting that nanoflares may be similar to large flares in that they accelerate particles. Furthermore, observations by the EUNIS sounding rocket (Brosius et al. 2014) of faint Fe XIX (592.2 Angstrom) emission in an active region is indicative of plasma at temperatures of at least 8.9 MK providing further evidence of nanoflare heating. One of the best ways to gain insight into accelerated particles on the Sun and the presence of hot plasma is by observing the Sun in hard X-rays (HXR). We present on observations taken during the second successful flight of the Focusing Optics X-ray Solar Imager (FOXSI-2). FOXSI flew on December 11, 2014 with upgraded optics as well as new CdTe strip detectors. FOXSI-2 observed thermal emission (4-15 keV) from at least three active regions (AR#12234, AR#12233, AR#12235) and observed regions of the Sun without active regions. We present on using FOXSI observations to test the presence of hot temperatures in and outside of active regions.

  18. A Model for Stealth Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Lynch, Benjamin J.; Masson, Sophie; Li, Yan; DeVore, C. Richard; Luhmann, Janet; Antiochos, Spiro K.; Fisher, George H.

    2016-05-01

    Stealth coronal mass ejections (CMEs) are events in which there are almost no observable signatures of the CME eruption in the low corona but often a well-resolved slow flux rope CME observed in the coronagraph data. We present results from a three-dimensional numerical magnetohydrodynamics (MHD) simulation of the 2008 June 1-2 slow streamer blowout CME that Robbrecht et al. [2009] called “the CME from nowhere.” We model the global coronal structure using a 1.4 MK isothermal solar wind and a low-order potential field source surface representation of the Carrington Rotation 2070 magnetogram synoptic map. The bipolar streamer belt arcade is energized by simple shearing flows applied in the vicinity of the helmet streamer’s polarity inversion line. The slow expansion of the energized helmet-streamer arcade results in the formation of a radial current sheet. The subsequent onset of expansion-driven flare reconnection initiates the stealth CME while gradually releasing ~1.5E+30 erg of stored magnetic energy over the 20+ hour eruption duration. We show the energy flux available for flare heating and flare emission during the eruption is approximately two orders of magnitude below the energy flux required to heat the ambient background corona, thus confirming the “stealth” character of the 2008 June 1-2 CME’s lack of observable on disk signatures. We also present favorable comparisons between our simulation results and the multi-viewpoint SOHO-LASCO and STEREO-SECCHI coronagraph observations of the pre-eruption streamer structure and the initiation and evolution of the stealth streamer blowout CME.

  19. PROMINENCE ACTIVATION BY CORONAL FAST MODE SHOCK

    SciTech Connect

    Takahashi, Takuya; Asai, Ayumi; Shibata, Kazunari

    2015-03-01

    An X5.4 class flare occurred in active region NOAA11429 on 2012 March 7. The flare was associated with a very fast coronal mass ejection (CME) with a velocity of over 2500 km s{sup −1}. In the images taken with the Solar Terrestrial Relations Observatory-B/COR1, a dome-like disturbance was seen to detach from an expanding CME bubble and propagated further. A Type-II radio burst was also observed at the same time. On the other hand, in extreme ultraviolet images obtained by the Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA), the expanding dome-like structure and its footprint propagating to the north were observed. The footprint propagated with an average speed of about 670 km s{sup −1} and hit a prominence located at the north pole and activated it. During the activation, the prominence was strongly brightened. On the basis of some observational evidence, we concluded that the footprint in AIA images and the ones in COR1 images are the same, that is, the MHD fast mode shock front. With the help of a linear theory, the fast mode Mach number of the coronal shock is estimated to be between 1.11 and 1.29 using the initial velocity of the activated prominence. Also, the plasma compression ratio of the shock is enhanced to be between 1.18 and 2.11 in the prominence material, which we consider to be the reason for the strong brightening of the activated prominence. The applicability of linear theory to the shock problem is tested with a nonlinear MHD simulation.

  20. Transverse Oscillations in a Coronal Loop Triggered by a Jet

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Pant, V.; Srivastava, A. K.; Banerjee, D.

    2016-11-01

    We detect and analyse transverse oscillations in a coronal loop, lying at the south-east limb of the Sun as seen from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The jet is believed to trigger transverse oscillations in the coronal loop. The jet originates from a region close to the coronal loop on 19 September 2014 at 02:01:35 UT. The length of the loop is estimated to be between 377 - 539 Mm. Only one complete oscillation is detected with an average period of about 32±5 min. Using magnetohydrodynamic (MHD) seismologic inversion techniques, we estimate the magnetic field inside the coronal loop to be between 2.68 - 4.5 G. The velocity of the hot and cool components of the jet is estimated to be 168 km s^{-1} and 43 km s^{-1}, respectively. The energy density of the jet is found to be greater than the energy density of the oscillating coronal loop. We therefore conclude that the jet triggered transverse oscillations in the coronal loop. To our knowledge, this is the first coronal loop seismology study using the properties of a jet propagation to trigger oscillations.

  1. White-Light Polarization and Large-Scale Coronal Structures

    NASA Astrophysics Data System (ADS)

    Badalyan, O. G.; Livshits, M. A.; Sýkora, J.

    1997-06-01

    The results of the white-light polarization measurements performed during three solar eclipses (1973, 1980, 1991) are presented. The eclipse images were processed and analysed by the same technique and method and, consequently, the distributions of the polarization and coronal intensity around the Sun were obtained in unified form for all three solar eclipses. The mutual comparisons of our results, and their comparison with the distributions found by other authors, allowed the real accuracy of the current measurements of the white-light corona polarization, which is not worse than +/-5%, to be estimated. We have investigated the behaviour of the polarization in dependence on heliocentric distance in helmet streamers and coronal holes. Simultaneous interpretation of the data on polarization and intensity in white-light helmet streamers is only possible if a considerable concentration of coronal matter (plasma) towards the plane of the sky is assumed. The values obtained for the coronal hole regions can be understood within the framework of a spherically symmetrical model of the low density solar atmosphere. A tendency towards increasing polarization in coronal holes, connected with the decrease of the hole's size and with the transition from the minimum to the maximum of the solar cycle, was noticed. The problem of how the peculiarities of the large-scale coronal structures are related to the orientation of the global (dipole) solar magnetic field and to the degree of the goffer character of the coronal and interplanetary current sheet is discussed briefly.

  2. Improving Heliospheric Field Models with Optimized Coronal Models

    NASA Astrophysics Data System (ADS)

    Jones, S. I.; Davila, J. M.; Uritsky, V. M.

    2015-12-01

    The Solar Orbiter and Solar Probe Plus missions will travel closer to the sun than any previous mission, collecting unprecedented in situ data. This data can provide insight into coronal structure, energy transport, and evolution in the inner heliosphere. However, in order to take full advantage of this data, researchers need quality models of the inner heliosphere to connect the in situ observations to their coronal and photospheric sources. Developing quality models for this region of space has proved difficult, in part because the only part of the field that is accessible for routine measurement is the photosphere. The photospheric field measurements, though somewhat problematic, are used as boundary conditions for coronal models, which often neglect or over-simplify chromospheric conditions, and these coronal models are then used as boundary conditions to drive heliospheric models. The result is a great deal of uncertainty about the accuracy and reliability of the heliospheric models. Here we present a technique we are developing for improving global coronal magnetic field models by optimizing the models to conform to the field morphology observed in coronal images. This agreement between the coronal model and the basic morphology of the corona is essential for creating accurate heliospheric models. We will present results of early tests of two implementations of this idea, and its first application to real-world data.

  3. Stellar Coronal Spectroscopy with the XMM-Newton RGS

    NASA Astrophysics Data System (ADS)

    Guedel, M.; Audard, M.; Behar, E.; Cottam, J.; Kahn, S. M.; Paerels, F. B. S.; Peterson, J. M.; Rasmussen, A. P.; Branduardi-Raymont, G.; Sakelliou, I.; den Boggende, A. J.; Brinkman, A. C.; den Herder, J. W.; Kaastra, J. S.; Mewe, R.; Tamura, T.; de Vries, C.; Erd, C.; XMM Collaboration

    2000-10-01

    High resolution X-ray spectroscopy opens new windows to the study of the structuring and energetics of stellar coronae. XMM-Newton has obtained excellent spectra of several stellar coronal sources (e.g., HR1099, Capella, YY Gem, and AB Dor) with its two Reflection Grating Spectrometers (RGS). These sources represent coronae of various activity levels, comprising a wide range of plasma temperatures. Several flares were observed in the course of the observations for which time-resolved RGS spectroscopy will be presented. The RGS spectra offer important diagnostics to probe properties of the coronal plasma. The large number of detected lines from various elements offer the possibility to determine emission measure distributions between approximately 1-20 MK. He-like triplets further provide information on electron densities at various temperatures. Coronal elemental abundances are found to vary between quiescent and flare states. Abundance anomalies may shed light on the coronal heating mechanism. We discuss implications from spectral modeling on coronal structuring, including the size of coronal structures, the abundance stratification, and possible optical depth effects. We complement this information with geometric modeling obtained from stellar eclipses and rotational modulation. Implications for the coronal heating scenario are discussed.

  4. Magnetohydrodynamic waves and coronal seismology: an overview of recent results.

    PubMed

    De Moortel, Ineke; Nakariakov, Valery M

    2012-07-13

    Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares.

  5. EUV Coronal Waves: Atmospheric and Heliospheric Connections and Energetics

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.

    2015-12-01

    Since their discovery in late 90's by EIT on SOHO, the study EUV coronal waves has been a fascinating andfrequently strongly debated research area. While it seems as ifan overall consensus has been reached about the nurture and nature of this phenomenon,there are still several important questions regarding EUV waves. By focusing on the most recentobservations, we will hereby present our current understanding about the nurture and nature of EUV waves,discuss their connections with other atmospheric and heliospheric phenomena (e.g.,flares and CMEs, Moreton waves, coronal shocks, coronal oscillations, SEP events) and finallyassess their possible energetic contribution to the overall budget of relatederuptive phenomena.

  6. Coronal Plasmas on the Sun and Nearby Stars,

    DTIC Science & Technology

    1986-09-01

    D-Al73 265 CORONAL PLASMAS ON THE SUN AND NEARBY STARS(U) TUFTS UNIV MEDFORD MA DEPT OF PHYSICS K R LANG 81 SEP 86 AFOSR-TR- 6-89 6 AFOSR-83-6819...TYPE OF REPORT & PERIOD COVERED CORONAL PLASMAS ON THE SUN AND NEARBY STARS G. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(q) U. CONTRACT OR GRANT NUMBER...research opportunities for the future." Z’A It -’I /I JS AFGSR.TR 9- 6- 0 9 86 CORONAL PLASMAS ON THE SUN AND NEARBY STARS* 4 KENNETH R. LANG

  7. Guided MHD waves as a coronal diagnostic tool

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    A description is provided of how fast magnetoacoustic waves are ducted along regions of low Alfven velocity (high density) in the corona, exhibiting a distinctive wave signature which may be used as a diagnostic probe of in situ coronal conditions (magnetic field strength, density inhomogeneity, etc.). Some observational knowledge of the start time of the impulsive wave source, possibly a flare, the start and end times of the generated wave event, and the frequency of the pulsations in that event permits a seismological deduction of the physical properties of the coronal medium in which the wave propagated. With good observations the theory offers a new means of probing the coronal atmosphere.

  8. Temperature, Density, and Heating Profiles of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Plowman, Joseph; Martens, P. C.; Kankelborg, C.; Ritchie, M.; Scott, J.; Sharma, R.

    2013-07-01

    We show detailed results of a combined DEM and density-sensitive line ratio analysis of coronal loops observed simultaneously by EIS and AIA. The temperature and density profiles of the loop are compared to and isolated from those of the surrounding material, and these properties are fit to an analytic strand heating model developed by Martens (2010). This research builds on our previously reported work by analyzing a number of coronal loops (including one observed by the Hi-C rocket), improved background subtraction and loop fitting. These improvements allow us to place significant constraints on the heating distribution of coronal loops.

  9. HINODE/XRT AND STEREO OBSERVATIONS OF A DIFFUSE CORONAL 'WAVE'-CORONAL MASS EJECTION-DIMMING EVENT

    SciTech Connect

    Attrill, Gemma D. R.; Engell, Alexander J.; Wills-Davey, Meredith J.; Grigis, Paolo; Testa, Paola

    2009-10-20

    We report on observations of the first diffuse coronal wave detected by Hinode/XRT. The event occurred near the west solar limb on 2007 May 23, originating from active region (AR) 10956 and was associated with a coronal mass ejection (CME) and coronal dimmings. The bright emission forming the coronal wave expanded predominantly to the east and south of the AR. We use X-Ray Telescope (XRT) and STEREO Behind (B) data combined with a potential magnetic field extrapolation to derive an understanding of the global magnetic field connectivity. We attribute the brightening to the east of the AR to compression and channeling of the plasma along large-scale loops. The brightening to the south of the AR expands across the quiet Sun, making the southern component a likely candidate for identification as a diffuse coronal wave. We analyze the bright front in STEREO/EUVI (B) 171, 195, and 284 A images, as well as in XRT data, finding the strongest components to be largely cospatial in all bandpasses. We also exploit the near-limb location of this event by combining STEREO/COR1 and Extreme Ultra-Violet Imaging Telescope (EUVI) data. Using all the data, we derive a full picture of the low-coronal development of the eruption. The COR1 data show that the southernmost outer edge of the CME is progressively displaced southward during the expansion. EUVI data below the COR1 occulting disk show that the CME is significantly distorted in the low corona as a result of the associated filament eruption. The core coronal dimmings map to the core of the CME; the secondary coronal dimmings map to the CME cavity; and the diffuse coronal wave maps to the outermost edge of the expanding CME shell. The analysis of this near-limb event has important implications for understanding earlier eruptions originating from the same AR on 2007 May 16, 19, and 20.

  10. Photospheric magnetic field of an eroded-by-solar-wind coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Cid, C.; Saiz, E.; Guerrero, A.

    2017-10-01

    We have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.

  11. Long-term Trend of Solar Coronal Hole Distribution from 1975 to 2014

    NASA Astrophysics Data System (ADS)

    Fujiki, K.; Tokumaru, M.; Hayashi, K.; Satonaka, D.; Hakamada, K.

    2016-08-01

    We developed an automated prediction technique for coronal holes using potential magnetic field extrapolation in the solar corona to construct a database of coronal holes appearing from 1975 February to 2015 July (Carrington rotations from 1625 to 2165). Coronal holes are labeled with the location, size, and average magnetic field of each coronal hole on the photosphere and source surface. As a result, we identified 3335 coronal holes and found that the long-term distribution of coronal holes shows a similar pattern known as the magnetic butterfly diagram, and polar/low-latitude coronal holes tend to decrease/increase in the last solar minimum relative to the previous two minima.

  12. Coronal Activity and Extended Solar Cycles

    NASA Astrophysics Data System (ADS)

    Altrock, R. C.

    2012-12-01

    Wilson et al. (1988, Nature 333, 748) discussed a number of solar parameters, which appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". They found that this concept had been identified by earlier investigators extending back to 1957. They named this process the "Extended Solar Cycle" (ESC). Altrock (1997, Solar Phys. 170, 411) found that this process continued in Fe XIV 530.3 nm emission features. In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Other recent studies have shown that Torsional Oscillation (TO) negative-shear zones are co-located with the ESC from at least 50° down to the equator and also in the zones where the Rush to the Poles occur. These phenomena indicate that coronal activity occurring up to 50° and higher latitudes is related to TO shear zones, another indicator that the ESC is an important solar process. Another high-latitude process, which appears to be connected with the ESC, is the "Rush to the Poles" ("Rush") of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Applying the above conclusions to Cycle 24 is difficult due to the unusual nature of this cycle. Cycle 24 displays an intermittent "Rush" that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. This early fit to the Rush would have reached 76° at 2014.6. However, in 2010 the slope increased to 7.5°/yr (an increase

  13. Coronal reconstruction following anterior teeth traumatism: multidisciplinary treatment.

    PubMed

    Cohen-Carneiro, Flavio; Sponchiado, Emilio Carlos; Garcia, Lucas do Fonseca Roberti; Yurtsever, Fikriye Viga; Pontes, Danielson Guedes; Sena, Amilen

    2013-08-01

    This study describes how periodontology, endodontology, and dentistry were integrated for the coronal reconstruction of anterior teeth extensively destroyed by dental trauma. A 15-year-old girl suffered a bicycle accident that resulted in the fracture of teeth No. 8 and 9. Clinical and radiographic examinations confirmed coronal fracture in both teeth, in addition to compromised pulp vitality, invasion of the biologic periodontal space, and loss of coronal space due to mesialization of the neighboring teeth. The protocol consisted of endodontic treatment for the fractured teeth, periodontal surgery to augment the clinical crown and gingival recontouring, intracanal cementation of esthetic glass fiber posts, and coronal reconstruction with resin composite. At a longitudinal follow-up visit 1 year later, clinical and radiographic examinations revealed successful rehabilitation of the fractured teeth.

  14. Non-polar Coronal Holes and Solar Wind

    NASA Astrophysics Data System (ADS)

    Karachik, N.; Pevtsov, A. A.

    2010-12-01

    We investigate properties of non-polar coronal holes (CHs) and their correlation with fast solar wind at 1 AU. Using EIT/SOHO observations taken from 1998-2008 in 195A and 284A wavelength bands, we identify boundaries of coronal holes, and compute their area, total brightness of corona integrated over the CH, as well as the area and total brightness of pixels inside the CH associated with coronal bright points (CBPs). We investigate the effect of each parameter on solar wind speed, the mutual dependency of the parameters, and their changes with the sunspot activity. Our findings suggest that the reconnection events associated with coronal bright points situated in CHs do not play a major role in acceleration of the fast solar wind.

  15. New Instruments to Isolate the Coronal Heating Mechanism

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy

    2014-01-01

    The coronal heating problem remains unsolved today, 80 years after its discovery, despite 50 years of suborbital and orbital coronal observatories. Tens of theoretical coronal heating mechanisms have been suggested, but only a few have been able to be ruled out. In this talk, we will explore the reasons for the slow progress and discuss the measurements that will be needed for potential breakthrough, including imaging the solar corona at small spatial scales, measuring the chromospheric magnetic fields, and detecting the presence of high temperature, low-emission measure plasma. We will discuss three sounding rocket instruments developed to make these measurements: the High-resolution Resolution Coronal Imager (Hi-C), the Chromospheric Lyman-Alpha Spectropolarimeter (CLASP), and the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS).

  16. The X-ray signature of solar coronal mass

    NASA Technical Reports Server (NTRS)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  17. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  18. Energy released by the interaction of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1976-01-01

    Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field-line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields is continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared with the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares.

  19. Coronal Dynamics at Recent Total Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.; Lu, M.; Davis, A. B.; Demianski, M.; Rusin, V.; Saniga, M.; Seaton, D. B.; Lucas, R.; Babcock, B. A.; Dantowitz, R.; Gaintatzis, P.; Seeger, C. H.; Malamut, C.; Steele, A.

    2014-12-01

    Our composite images of the solar corona based on extensive imaging at the total solar eclipses of 2010 (Easter Island), 2012 (Australia), and 2013 (Gabon) reveal several coronal mass ejections and other changes in coronal streamers and in polar plumes. Our resultant spatial resolution is finer than that available in imaging from spacecraft, including that from SOHO/LASCO or STEREO. We trace the eruptions back to their footpoints on the sun using imaging from SDO and SWAP, and follow them upwards through the corona, measuring velocities. The high-resolution computer compositing by Miloslav Druckmüller and Hana Druckmüllerová (2010 and 2013) and Pavlos Gaintatzis (2012) allows comparison of our images with those taken at intervals of minutes or hours along the totality path. Williams College's 2013 eclipse expedition was supported in part by grant 9327-13 from National Geographic Society/Committee for Research and Exploration. Our work on the 2012 eclipse is supported in part by grant AGS-1047726 from Solar Terrestrial Research/NSF AGS. V.R. and M.S. were partially supported by the VEGA grant agency project 2/0098/10 and 2/0003/13 (Slovak Academy of Sciences) and Grant 0139-12 from NG/CRE, and Hana Druckmüllerová by grant 205/09/1469 of the Czech Science Foundation. M.L. was supported by Sigma Xi. C.M. was a Keck Northeast Astronomy Consortium Summer Fellow, supported at Williams College by REU/NSF grant AST-1005024. Partial support was provided by U.S. Department of Defense's ASSURE program. J.M.P. thanks Caltech's Planetary Sciences Department for hospitality. Support for D.B.S. and SWAP came from PRODEX grant C90345 managed by ESA in collaboration with the Belgian Federal Science Policy Office (BELSPO) in support of the PROBA2/SWAP mission, and from the EC's Seventh Framework Programme (FP7/2007-2013) under grant 218816 (SOTERIA project, www.soteria-space.eu). SWAP is a project of the Centre Spatial de Liège and the Royal Observatory of Belgium funded by

  20. Are Spicules the Primary Source of Hot Coronal Plasma?

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2011-01-01

    The recent discovery of Type II spicules has generated considerable excitement. It has even been suggested that these ejections can account for a majority of the hot plasma observed in the corona, thus obviating the need for "coronal" heating. If this is the case, however, then there should be observational consequences. We have begun to examine some of these consequences and find reason to question the idea that spicules are the primary source of hot coronal plasma.

  1. Balance and recovery on coronally-uneven and unpredictable terrain.

    PubMed

    Yeates, Kyle H; Segal, Ava D; Neptune, Richard R; Klute, Glenn K

    2016-09-06

    Stepping on coronally-uneven and unpredictable terrain is a common gait disturbance that can lead to injurious falls. This study identified the biomechanical response to a step on coronally-uneven and unpredictable terrain through observation of participants traversing a walkway with a middle step that could be blinded to participants, and positioned either 15° inverted, 15° everted, or flush. The isolated disturbance was intended to simulate stepping on a rock, object, or other transient coronal disturbance and allow for observation of the subsequent balance recovery. Gait balance was affected by the disturbance, and was measured by the range of coronal whole-body angular momentum, which compared to unblinded flush, increased during blinded eversion, and decreased during blinded inversion. Analysis of external coronal moments applied to the body about the center-of-mass by the disturbed and recovery legs suggested the disturbed leg contributed more to differences in the range of coronal angular momentum, and thus more to balance recovery. The stepping strategy for the disturbed and recovery steps was measured by mediolateral foot position, and appeared to have been mostly affected by anticipatory actions taken by participants before stepping on the blinded terrain, and not by the terrain angle. In contrast, on the disturbed step, distinct differences between blinded inversion and eversion in the coronal moments of the hip and ankle suggested the hip and ankle joint moment strategies were important for adapting to the terrain angle. A clinical implication of this result was interventions that augment these moments may improve gait balance control on coronally-uneven and unpredictable terrain. Copyright © 2016. Published by Elsevier Ltd.

  2. MHD Modeling of Differential Rotation in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete

    2004-01-01

    The photosphere and the magnetic flux therein undergo differential rotation. Coronal holes appear to rotate almost rigidly. Magnetic reconnection has been invoked to reconcile these phenomena. Mechanism relevant to the formation of the slow solar wind. We have used our MHD model in spherical coordinates to study the effect of differential rotation on coronal holes. We have imposed a magnetic flux distribution similar to and applied differential rotation for the equivalent of 5 solar rotations.

  3. The Contribution of Coronal Jets to the Solar Wind

    NASA Astrophysics Data System (ADS)

    Lionello, R.; Török, T.; Titov, V. S.; Leake, J. E.; Mikić, Z.; Linker, J. A.; Linton, M. G.

    2016-11-01

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4-3.0)% and (0.3-1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.

  4. Strong variability of the coronal line region in NGC 5548

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Steenbrugge, Katrien C.; Ferland, Gary J.

    2015-12-01

    We present the second extensive study of the coronal line variability in an active galaxy. Our data set for the well-studied Seyfert galaxy NGC 5548 consists of five epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about five years and three epochs of X-ray spectroscopy overlapping in time with it. Whereas the broad emission lines and hot dust emission varied only moderately, the coronal lines varied strongly. However, the observed high variability is mainly due to a flux decrease. Using the optical [Fe VII] and X-ray O VII emission lines we estimate that the coronal line gas has a relatively low density of ne ˜ 103 cm-3 and a relatively high ionisation parameter of log U ˜ 1. The resultant distance of the coronal line gas from the ionizing source of about eight light-years places this region well beyond the hot inner face of the dusty torus. These results imply that the coronal line region is an independent entity. We find again support for the X-ray heated wind scenario of Pier & Voit; the increased ionizing radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion. The much stronger coronal line variability of NGC 5548 relative to that of NGC 4151 can also be explained within this picture. NGC 5548 has much stronger coronal lines relative to the low-ionization lines than NGC 4151 indicating a stronger wind, in which case a stronger adiabatic expansion of the gas and so fading of the line emission is expected.

  5. Exploración del modelo coronal MHD de Uchida

    NASA Astrophysics Data System (ADS)

    Francile, C.; Castro, J. I.; Flores, M.

    We present an analysis of the MHD model of an isothermal solar corona with radially symmetrical magnetic field and gravity. The solution in the approximation "WKB" was presented by Uchida (1968). The model is ex- plored for different coronal conditions and heights of initial perturbation to study the propagation of coronal waves and reproduce the observed char- acteristics of phenomena such as Moreton waves. Finally we discuss the obtained results. FULL TEXT IN SPANISH

  6. Associations between coronal mass ejections and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Howard, R. A.; Koomen, M. J.; Michels, D. J.; Schwenn, R.; Muhlhauser, K. H.; Rosenbauer, H.

    1983-01-01

    Nearly continuous complementary coronal observations and interplanetary plasma measurements for the years 1979-1982 are compared. It is shown that almost all low latitude high speed coronal mass ejections (CME's) were associated with shocks at HELIOS 1. Some suitably directed low speed CME's were clearly associated with shocks while others may have been associated with disturbed plasma (such as NCDE's) without shocks. A few opposite hemisphere CME's associated with great flares seem to be associated with shocks at HELIOS.

  7. The Multithermal and Multi-stranded Nature of Coronal Rain

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Vissers, G.; Pereira, T. M. D.; Rouppe van der Voort, L.; Scullion, E.

    2015-06-01

    We analyze coordinated observations of coronal rain in loops, spanning chromospheric, transition region (TR), and coronal temperatures with sub-arcsecond spatial resolution. Coronal rain is found to be a highly multithermal phenomenon with a high degree of co-spatiality in the multi-wavelength emission. EUV darkening and quasi-periodic intensity variations are found to be strongly correlated with coronal rain showers. Progressive cooling of coronal rain is observed, leading to a height dependence of the emission. A fast-slow two-step catastrophic cooling progression is found, which may reflect the transition to optically thick plasma states. The intermittent and clumpy appearance of coronal rain at coronal heights becomes more continuous and persistent at chromospheric heights just before impact, mainly due to a funnel effect from the observed expansion of the magnetic field. Strong density inhomogeneities of 0\\buildrel{\\prime\\prime}\\over{.} 2-0\\buildrel{\\prime\\prime}\\over{.} 5 are found, in which a transition from temperatures of 105 to 104 K occurs. The 0\\buildrel{\\prime\\prime}\\over{.} 2-0\\buildrel{\\prime\\prime}\\over{.} 8 width of the distribution of coronal rain is found to be independent of temperature. The sharp increase in the number of clumps at the coolest temperatures, especially at higher resolution, suggests that the bulk distribution of the rain remains undetected. Rain clumps appear organized in strands in both chromospheric and TR temperatures. We further find structure reminiscent of the magnetohydrodynamic (MHD) thermal mode (also known as entropy mode), thereby suggesting an important role of thermal instability in shaping the basic loop substructure. Rain core densities are estimated to vary between 2 × 1010 and 2.5× {{10}11} cm-3, leading to significant downward mass fluxes per loop of 1-5 × 109 g s-1, thus suggesting a major role in the chromosphere-corona mass cycle.

  8. Models of material ejection. [of solar coronal mass

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1990-01-01

    Some recently developed models related to the formation of a coronal mass ejection (CME) are reviewed. The models individually consider the stability of a prominence, the eruption of a coupled prominence and CME configuration with driven reconnection below the prominence, magnetic arcade equilibrium, and coronal evolution due to shear motion. No effort is made to critique the various models. Their relevance to actual observed material ejections will ultimately be determined by detailed comparison with present and future observations.

  9. Coronal Observations at the 29 March 2006 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.; Babcock, B. A.; Souza, S. P.; Bruck, M. A.; Hess, P. W.; Kimmel, S. B.; Levitt, J. S.; Steele, A. S.; Tsykalova, A. E.; Rust, D. M.; Noble, M. W.; Wittenmyer, R.; Kern, J.; Hawkins, R. L.; Seiradakis, J. H.; Voulgaris, A.; Pistikoudis, G.; Nestoras, J.; Demianski, M.

    2006-06-01

    We report on our eclipse expedition to Kastellorizo, Greece, in the Dodecanese off the Turkish coast. We observed 3 min 00 sec of totality on 29 March 2006. All our observations worked very well. One of them was high-time-resolution (10 Hz) observations in the coronal green line looking at coronal loops; another was similar observations in the coronal red line; both are to determine among theories of coronal heating and continue earlier reports of excess Fourier power in the 1 Hz range. As we knew from SOHO observations from the day before the eclipse, an active region was stationed right on the east limb and it gave us very suitable loops to study, with pointing in agreement with TRACE. A third set of observations used a very narrow-band filter (Fabry-Perot), with 1/6 angstrom resolution, to make velocity (Doppler) images of the same coronal loops. A fourth set of observations used a telescope we had built to match the size of the now defunct innermost coronagraph on the NASA/ESA SOHO, and it indeed was used to merge with SOHO EIT disk coronal images and SOHO LASCO outer coronal coronagraph images. Further, radial-filter "Newkirk camera" images captured the role of magnetic fields in shaping coronal streamers, which we also display in mergers of images with sequential exposure times. The expedition was supported by NSF (ATM-0552116), the Committee for Research and Exploration of the National Geographic Society, NASA's Planetary Astronomy Division for the CCD cameras (NNG04GE48G), Sigma Xi, and the Rob Spring Fund and the Ryan Patrick Gaishin Fund at Williams College.

  10. Coronal Streamers in the Solar Wind at 1 AU

    DTIC Science & Technology

    1981-07-01

    our at- tempts to relate these events directly to maps or isophotes 7- i of solar coronal brightness at 1.5 solar radii (R.). This ,"-. study...respectively, where the middle of the streamer belt locally predicted from the 1.5 R. coronal brightness isophotes of is at the same latitude as the... isophotes at those particular longitudes. The shaded intervals in Figure 6 map into the longitudes indicated by the vertical shadings in this figure

  11. Coronal transverse magnetohydrodynamic waves in a solar prominence.

    PubMed

    Okamoto, T J; Tsuneta, S; Berger, T E; Ichimoto, K; Katsukawa, Y; Lites, B W; Nagata, S; Shibata, K; Shimizu, T; Shine, R A; Suematsu, Y; Tarbell, T D; Title, A M

    2007-12-07

    Solar prominences are cool 10(4) kelvin plasma clouds supported in the surrounding 10(6) kelvin coronal plasma by as-yet-undetermined mechanisms. Observations from Hinode show fine-scale threadlike structures oscillating in the plane of the sky with periods of several minutes. We suggest that these represent Alfvén waves propagating on coronal magnetic field lines and that these may play a role in heating the corona.

  12. Culex coronator Dyar and Knab: a new Florida species record.

    PubMed

    Smith, John P; Walsh, Jimmy D; Cope, Eric H; Tennant, Richard A; Kozak, John A; Darsie, Richard F

    2006-06-01

    We report the first finding of Culex coronator Dyar and Knab in Florida, based on multiple adult collections from several locations in the western panhandle of Florida. GPS coordinates and habitat descriptions are given and disease implications are discussed. These records extend the known distribution of Cx. coronator from six other states (Arizona, Louisiana, Mississippi, New Mexico, Oklahoma, and Texas), and from Mexico to Argentina.

  13. Inferences on Coronal Magnetic Fields from SOHO UVCS Observations

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Romoli, M.; Suess, S. T.; Wang, A. H.; Wu, S. T.

    1996-01-01

    The characteristics of the magnetic field ubiquitously permeating the coronal plasma are still largely unknown. In this paper we analyze some aspects of coronal physics, related to the magnetic field behavior, which forthcoming SOHO UVCS observations can help better understand. To this end, three coronal structures will be examined: streamers, coronal mass ejections (CME's) and coronal holes. As to streamers and CME's, we show, via simulations of the Ly-alpha and white light emission from these objects, calculated on the basis of recent theoretical models, how new data from SOHO can help advancing our knowledge of the streamer/CME magnetic configuration. Our discussion highlights also those observational signatures which might offer clues on reconnection processes in streamers' current sheets. Coronal holes (CH's) are discussed in the last section of the paper. Little is known about CH flux tube geometry, which is closely related to the behavior of the solar wind at small heliocentric distances. Indirect evidence for the flux tube spreading factors, within a few solar radii, is here examined.

  14. New Evidence that Magnetoconvection Drives Solar-Stellar Coronal Heating

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy R.

    2017-07-01

    How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body.

  15. TRANSVERSE OSCILLATIONS OF A LONGITUDINALLY STRATIFIED CORONAL LOOP SYSTEM

    SciTech Connect

    Fathalian, N.; Safari, H. E-mail: safari@znu.ac.i

    2010-11-20

    Collective transverse coronal loop oscillations seem to be detected in observational studies. In this regard, Luna et al. modeled the collective kink-like normal modes of several cylindrical loop systems using the T-matrix theory. This paper investigates the effects of longitudinal density stratification along the loop axis on the collective kink-like modes of the system of coronal loops. The coronal loop system is modeled as cylinders of parallel flux tubes, with two ends of each loop at the dense photosphere. The flux tubes are considered as uniform magnetic fields, with stratified density along the loop axis which changes discontinuously at the lateral surface of each cylinder. The MHD equations are reduced to solve a set of two coupled dispersion relations for frequencies and wavenumbers, in the presence of a stratification parameter. The fundamental and first overtone frequencies and longitudinal wavenumbers are computed. The previous results are verified for an unstratified coronal loop system. Finally, we conclude that an increased longitudinal density stratification parameter will result in an increase of the frequencies. The frequency ratios, first overtones to fundamentals, are very sensitive functions of the density scale height parameter. Therefore, stratification should be included in dynamics of coronal loop systems. For unstratified coronal loop systems, these ratios are the same as monoloop ones.

  16. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Hildner, E.

    1983-01-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.

  17. A perceptual correlate of the labial-coronal effect.

    PubMed

    Sato, Marc; Vallée, Nathalie; Schwartz, Jean-Luc; Rousset, Isabelle

    2007-12-01

    Statistical studies conducted in various languages on both infants and adults have revealed an intersyllabic preference for initiating words with a labial consonant-vowel-coronal consonant sequence. Speech motor constraints have been proposed to explain this so-called labial-coronal effect. This study was designed to test for a possible perceptual correlate of the labial-coronal effect in French adults. The authors examined the perceptual stabilities of repeatedly presented disyllabic sequences, involving either a labial-vowel-coronal-vowel (LC) or a coronal-vowel-labial-vowel (CL) phonological structure. With this aim, they exploited the verbal transformation effect, which refers to the perceptual changes experienced while listening to a speech form cycled in rapid and continuous repetition. Two experiments were carried out, involving either voiced or unvoiced plosive consonants. In both experiments, a greater stability and attractiveness was observed for LC stimuli, which suggests that in a (...)LCLC(...) flow, the listener could more naturally provide a segmentation into LC chunks. This study demonstrates that the labial-coronal effect also occurs in the course of online speech processing. This result is interpreted in relation with theories assuming a link between perception and action in the human speech processing system.

  18. Coronal Magnetism: Hanle Effect in UV and IR Spectral Lines

    NASA Astrophysics Data System (ADS)

    Raouafi, N. E.; Riley, P.

    2014-12-01

    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for the progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. Here we use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Lyman series (i.e., α, β, and γ), O VI 103.2 nm line, and the He I 1083 nm line. We show that the selected lines may be useful for the diagnostic of coronal magnetic fields. We also show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for the interpretation of the data. We propose that UV coronal magnetic field mapper should be a central part of the science payload of any future spacebased solar observatory.

  19. Are chromospheric nanoflares a primary source of coronal plasma?

    SciTech Connect

    Klimchuk, J. A.; Bradshaw, S. J. E-mail: stephen.bradshaw@rice.edu

    2014-08-10

    It has been suggested that the hot plasma of the solar corona comes primarily from impulsive heating events, or nanoflares, that occur in the lower atmosphere, either in the upper part of the ordinary chromosphere or at the tips of type II spicules. We test this idea with a series of hydrodynamic simulations. We find that synthetic Fe XII (195) and Fe XIV (274) line profiles generated from the simulations disagree dramatically with actual observations. The integrated line intensities are much too faint; the blueshifts are much too fast; the blue-red asymmetries are much too large; and the emission is confined to low altitudes. We conclude that chromospheric nanoflares are not a primary source of hot coronal plasma. Such events may play an important role in producing the chromosphere and powering its intense radiation, but they do not, in general, raise the temperature of the plasma to coronal values. Those cases where coronal temperatures are reached must be relatively uncommon. The observed profiles of Fe XII and Fe XIV come primarily from plasma that is heated in the corona itself, either by coronal nanoflares or a quasi-steady coronal heating process. Chromospheric nanoflares might play a role in generating waves that provide this coronal heating.

  20. MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers

    NASA Astrophysics Data System (ADS)

    Fan, Yuhong

    2017-07-01

    Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β. As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.

  1. Coronal seismology of flare-excited longitudinal slow magnetoacoustic waves in hot coronal loops

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ofman, L.; Sun, X.; Provornikova, E. A.; Davila, J. M.

    2015-12-01

    The flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 bandpasses. These oscillations show similar physical properties (such as period, decay time, and trigger) as those slow-mode standing waves previously detected by the SOHO/SUMER spectrometer in Doppler shift of flare lines formed above 6 MK. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage enable us to measure both thermal and wave properties of the oscillating hot plasma with unprecedented accuracy. These new measurements can be used to diagnose the complicated energy transport processes in flare plasma by a technique called coronal seismology based on the combination of observations and MHD wave theory. From a detailed case study we have found evidence for thermal conduction suppression in hot loops by measuring the polytropic index and analyzing the phase relationship between the temperature and density wave signals. This result is not only crucial for better understanding the wave dissipation mechanism but also provides an alternative mechanism to explain the puzzles of long-duration events and X-ray loop-top sources which show much slower cooling than expected by the classical Spitzer conductive cooling. This finding may also shed a light on the coronal heating problem because weak thermal conductivity implies slower cooling of hot plasma in nanoflares, so increasing the average coronal temperature for the same heating rate. We will discuss the effects of thermal conduction suppression on the wave damping and loop cooling based on MHD simulations.

  2. Surface Flux Emergence and Coronal Eruption

    NASA Astrophysics Data System (ADS)

    Fang, Fang

    2016-05-01

    Among various active regions, delta-sunspots of aggregated spots of opposite polarities, are of particular interest due to their high productivity in energetic and recurrent eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact delta-sunspot with a sharp polarity inversion line (PIL). The formation of the delta-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  3. Why are halo coronal mass ejections faster?

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Min; Guo, Yang; Chen, Peng-Fei; Ding, Ming-De; Fang, Cheng

    2010-05-01

    Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loop-shaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523 km s-1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light intensity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of “detectable" halo CMEs is ~922 km s-1 very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed.

  4. Geometric Model of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  5. A Catalog of Coronal "EIT Wave" Transients

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Myers, D. C.

    2009-01-01

    Solar and Heliospheric Observatory (SOHO) Extreme ultraviolet Imaging Telescope (EIT) data have been visually searched for coronal "EIT wave" transients over the period beginning from 1997 March 24 and extending through 1998 June 24. The dates covered start at the beginning of regular high-cadence (more than one image every 20 minutes) observations, ending at the four-month interruption of SOHO observations in mid-1998. One hundred and seventy six events are included in this catalog. The observations range from "candidate" events, which were either weak or had insufficient data coverage, to events which were well defined and were clearly distinguishable in the data. Included in the catalog are times of the EIT images in which the events are observed, diagrams indicating the observed locations of the wave fronts and associated active regions, and the speeds of the wave fronts. The measured speeds of the wave fronts varied from less than 50 to over 700 km s(exp -1) with "typical" speeds of 200-400 km s(exp -1).

  6. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  7. Coronal Mass Ejections and Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2010-01-01

    Coronal mass ejections (CMEs) have important connections to various types of radio emissions from the Sun. The persistent noise storm radiation (type I storm at metric wavelengths, type III storms at longer wavelengths) can be clearly interrupted by the occurrence of a CME in the active region that produces the storm. Sometimes the noise storm completely disappears and other times, it reappears in the active region. Long-lasting type III bursts are associated with CME eruption, thought to be due to the reconnection process taking place beneath the erupting CME. Type II bursts are indicative of electron acceleration in the CME-driven shocks and hence considered to be the direct response of the CME propagation in the corona and interplanetary medium. Finally type IV bursts indicate large-scale post-eruption arcades containing trapped electrons that produce radio emission. This paper summarizes some key results that connect CMEs to various types of radio emission and what we can learn about particle acceleration in the corona) and interplanetary medium. Particular emphasis will be placed on type If bursts because of their connection to interplanetary shocks detected in situ.

  8. Anatomy of Depleted Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B., IV

    2017-01-01

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE/SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C6+/C5+ and O7+/O6+ depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  9. Magnetic Helicity Injection and Sigmoidal Coronal Loops

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuya T.; Kusano, K.; Maeshiro, T.; Yokoyama, T.; Sakurai, T.

    2005-05-01

    We studied the relationship between magnetic helicity injection and the formation of sigmoidal loops. We analyzed seven active regions: three regions showed coronal loops similar to the potential field, and four regions showed the sigmoidal loops. The magnetic helicity injection rate was evaluated using the method proposed by Kusano et al. In order to compare the helicity of regions of various sizes, we defined the normalized helicity injection rate as the magnetic helicity injection rate divided by the magnetic flux squared. We found that the sigmoidal regions and nonsigmoidal regions have comparable normalized helicity injection rates. Next, we calculated the magnetic helicity content of the sigmoidal loops by using the magnetic flux tube model (Longcope & Welsch) and compared it with the magnetic helicity injected from around the footpoints of three sigmoidal loops. For two sigmoidal loops, it is found that these values are comparable. Another loop showed significant disagreement between helicity injection rate and its magnetic helicity content. Excluding this region on the basis of its complexity (perhaps multiple loops forming a sigmoidal loop), we can conclude that geometric twist of the sigmoidal loops is consistent with the magnetic helicity injected from around the footpoints of the sigmoidal loops.

  10. Coronal Mass Ejections and Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2010-01-01

    Coronal mass ejections (CMEs) have important connections to various types of radio emissions from the Sun. The persistent noise storm radiation (type I storm at metric wavelengths, type III storms at longer wavelengths) can be clearly interrupted by the occurrence of a CME in the active region that produces the storm. Sometimes the noise storm completely disappears and other times, it reappears in the active region. Long-lasting type III bursts are associated with CME eruption, thought to be due to the reconnection process taking place beneath the erupting CME. Type II bursts are indicative of electron acceleration in the CME-driven shocks and hence considered to be the direct response of the CME propagation in the corona and interplanetary medium. Finally type IV bursts indicate large-scale post-eruption arcades containing trapped electrons that produce radio emission. This paper summarizes some key results that connect CMEs to various types of radio emission and what we can learn about particle acceleration in the corona) and interplanetary medium. Particular emphasis will be placed on type If bursts because of their connection to interplanetary shocks detected in situ.

  11. Kinematical properties of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Temmer, M.

    2016-11-01

    Coronal mass ejections (CMEs) are the most dynamic phenomena in our solar system. They abruptly disrupt the continuous outflow of solar wind by expelling huge clouds of magnetized plasma into interplanetary space with velocities enabling to cross the Sun-Earth distance within a few days. Earth-directed CMEs may cause severe geomagnetic storms when their embedded magnetic fields and the shocks ahead compress and reconnect with the Earth's magnetic field. The transit times and impacts in detail depend on the initial CME velocity, size, and mass, as well as on the conditions and coupling processes with the ambient solar wind flow in interplanetary space. The observed CME parameters may be severely affected by projection effects and the constant changing environmental conditions are hard to derive. This makes it difficult to fully understand the physics behind CME evolution, preventing to do a reliable forecast of Earth-directed events. This short review focusing on observational data, shows recent methods which were developed to derive the CME kinematical profile for the entire Sun-Earth distance range as well as studies which were performed to shed light on the physical processes that CMEs encounter when propagating from Sun to Earth.

  12. Potential Method of Predicting Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Imholt, Timothy

    2001-10-01

    Coronal Mass Ejections (CME) may be described as a blast of gas and highly charged solar mass fragments ejected into space. These ejections, when directed toward Earth, have many different effects on terrestrial systems ranging from the Aurora Borealis to changes in wireless communication. The early prediction of these solar events cannot be overlooked. There are several models currently accepted and utilized to predict these events, however, with earlier prediction of both the event and the location on the sun where the event occurs allows us to have earlier warnings as to when they will affect man-made systems. A better prediction could perhaps be achieved by utilizing low angular resolution radio telescope arrays to catalog data from the sun at different radio frequencies on a regular basis. Once this data is cataloged a better predictor for these CME’s could be found. We propose a model that allows a prediction to be made that appears to be longer than 24 hours.

  13. Potential Method of Predicting Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Imholt, Timothy; Roberts, J. A.; Scott, J. B.; University Of North Texas Team

    2000-10-01

    Coronal Mass Ejections (CME) may be described as a blast of gas and highly charged solar mass fragments ejected into space. These ejections, when directed toward Earth, have many different effects on terrestrial systems ranging from the Aurora Borealis to changes in wireless communications. The importance of an early prediction of these solar events cannot be overlooked. There are several models currently accepted and utilized to predict these events, however, with earlier prediction of both the event and the location on the sun where the event occur allows us to have earlier warnings as to when they will effect man-made systems. A better prediction could perhaps be achieved by utilizing low angular resolution radio telescope arrays to catalog data from the sun at different radio frequencies on a regular basis. Once this data is cataloged a better predictor for these CME's could be found. We propose a model that allows a prediction to be made that appears to be longer than 24 hours.

  14. Highly Efficient Modeling of Dynamic Coronal Loops

    NASA Astrophysics Data System (ADS)

    Klimchuk, J. A.; Patsourakos, S.; Cargill, P. J.

    2005-05-01

    It now seems clear that many coronal loops, especially those observed by TRACE and EIT, are inherently dynamic and composed of large numbers of impulsively-heated strands. Modeling these loops in full detail is extremely challenging, and modeling entire active regions or the whole Sun is completely out of the question unless approximate techniques are used. We have developed a simplified set of equations that is remarkably accurate at describing the evolution of the thermodynamic variables (T, P, n, v) averaged along the magnetic field of an individual strand. The equations can be solved ten thousand times more quickly than the full 1D hydro equations. This "0D" model relaxes two key assumptions of Cargill's (1994) nanoflare model: (1) the heating can have any time-dependent profile and need not be instantaneous; and (2) thermal conduction cooling and radiation cooling occur together at all times, in varying proportions. We here describe the essential features of the model and show examples of how well it works.

  15. Multiscale Modeling of Solar Coronal Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Antiochos, S. K.; Karpen, J. T.; DeVore, C. R.

    2010-12-01

    Magnetic reconnection is widely believed to be the primary process by which the magnetic field releases energy to plasma in the Sun's corona. For example, in the breakout model for the initiation of coronal mass ejections/eruptive flares, reconnection is responsible for the catastrophic destabilizing of magnetic force balance in the corona, leading to explosive energy release. A critical requirement for the reconnection is that it have a "switch-on' nature in that the reconnection stays off until a large store of magnetic free energy has built up, and then it turn on abruptly and stay on until most of this free energy has been released. We discuss the implications of this requirement for reconnection in the context of the breakout model for CMEs/flares. We argue that it imposes stringent constraints on the properties of the flux breaking mechanism, which is expected to operate in the corona on kinetic scales. We present numerical simulations demonstrating how the reconnection and the eruption depend on the effective resistivity, i.e., the effective Lundquist number, and propose a model for incorporating kinetic flux-breaking mechanisms into MHD calculation of CMEs/flares. This work has been supported by the NASA HTP, SR&T, and LWS programs. High-resolution simulation of a breakout CME showing details of the reconnection region (Karpen et al 2010).

  16. Numerical simulation of solar coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Dahlburg, Russell B.; Antiochos, Spiro K.; Zang, T. A.

    1990-01-01

    Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity.

  17. Hunting for Stellar Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi; Vida, Krisztián; Leitzinger, Martin; Odert, Petra; Kovács, Orsolya Eszter

    2017-10-01

    Coronal mass ejections (CMEs) are explosive events that occur basically daily on the Sun. It is thought that these events play a crucial role in the angular momentum and mass loss of late-type stars, and also shape the environment in which planets form and live. Stellar CMEs can be detected in optical spectra in the Balmer lines, especially in Hα, as blue-shifted extra emission/absorption. To increase the detection probability one can monitor young open clusters, in which the stars are due to their youth still rapid rotators, and thus magnetically active and likely to exhibit a large number of CMEs. Using ESO facilities and the Nordic Optical Telescope we have obtained time series of multi-object spectroscopic observations of late-type stars in six open clusters with ages ranging from 15 Myrs to 300 Myrs. Additionally, we have studied archival data of numerous active stars. These observations will allow us to obtain information on the occurrence rate of CMEs in late-type stars with different ages and spectral types. Here we report on the preliminary outcome of our studies.

  18. Geometric Model of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; Schmidt, D. J.; Sterling, A. C.; Tripathi, D. K.; Williams, D. R.; Zhang, M.

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  19. Understanding Coronal Heating with Emission Measure Distributions

    NASA Technical Reports Server (NTRS)

    Klimchik, James A.; Tripathi, Durgesh; Bradshaw, Stephen J.; Mason, Helen E.

    2011-01-01

    It is widely believed that the cross-field spatial scale of coronal heating is small, so that the fundamental plasma structures (loop strands) are spatially unresolved. We therefore must appeal to diagnostic techniques that are not strongly affected by spatial averaging. One valuable observable is the emission measure distribution, EM(T), which indicates how much material is present at each temperature. Using data from the Extreme-ultraviolet Imaging Spectrograph on the Hinode mission, we have determined emission measure distributions in the cores of two active regions. The distributions have power law slopes of approximately 2.4 coolward of the peak. We compare these slopes, as well as the amount of emission measure at very high temperature, with the predictions of a series of models. The models assume impulsive heating (nanoflares) in unresolved strands and take full account of non equilibrium ionization. A variety of nanoflare properties and initial conditions are considered. We also comment on the selection of spectral lines for upcoming missions like Solar Orbiter.

  20. L-alpha intensity in coronal streamers

    NASA Technical Reports Server (NTRS)

    Noci, G.; Poletto, G.; Suess, S. T.; Wang, A.-H.; Wu, S. T.

    1993-01-01

    White-light images are presently the primary source of information on physical conditions in the solar corona at distances greater than a few tenths of a solar radius above the limb. As a consequence, we still only have an incomplete description of structures extending beyond the solar limb. In particular, streamers, although observed for decades, represent a poorly known phenomenon. SOHO, to be launched in 1995, will be able to make long-term observations of these features up to heights of a few solar radii, both in white light and UV. In this paper we present simulations of L-alpha intensity in coronal streamers, based on the two-dimensional (2D) model developed by Wang et at. (1992, 1993) via a time-dependent numerical relaxation approach. Because the model is 2D, we make an a priori hypothesis about the extension of streamers in the third dimension. L-alpha data, obtained from a rocket (Kohl et al., 1983), allowed us to identify a shape which fits the observations.

  1. Energy Release in Driven Twisted Coronal Loops

    NASA Astrophysics Data System (ADS)

    Bareford, M. R.; Gordovskyy, M.; Browning, P. K.; Hood, A. W.

    2016-01-01

    We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

  2. Speeds and accelerations of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    St.cyr, O. Chris; Hundhausen, A. J.; Burkepile, J. T.

    1992-01-01

    More than 1300 coronal mass ejections have been detected in observations made by the coronagraph aboard SMM during 1980 and 1984-1989. The speed (projected onto the plane of the sky) for at least one morphoplogical feature in about half of these mass ejections could be measured. The average speed of all mass ejection features was about 350 km/s, but speeds range from a few 10s of km/s to more than 2000 km/s. There also appear to be significant variations between the speed distributions for different years. When a mass ejection feature appeared in three or more sequential images, its acceleration could also be calculated. But, because of the limited time a mass ejection remained in the SMM field of view, the ability to detect any given acceleration diminished with increasing mass ejection speed. In fact, the SMM observations do not reveal a discernable acceleration for most mass ejections. A modest yet credible acceleration was detected in 136 cases, while a deceleration was detected in only 7 cases. The LASCO coronagraph will have a more extensive field of view than the SMM instrument; hence, with these new SOHO (Solar and Heliospheric Observatory) observations, some of the challenging questions concerning mass ejection dynamics can be addressed. How far away from the Sun does the material in a mass ejection continue being accelerated? At what radial distance is the motion of the mass ejection dominated by deceleration as it interacts with the ambient interplanetary material?

  3. Active Longitude and Coronal Mass Ejection Occurrences

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Singh, T.; Kiss, T. S.; Srivastava, A. K.; Erdélyi, R.

    2017-03-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  4. Coronal Jets in Closed Magnetic Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Wyper, Peter Fraser; DeVore, C. R.

    2015-04-01

    Coronal jets are dynamic, collimated structures observed in solar EUV and X-ray emission. They appear predominantly in the open field of coronal holes, but are also observed in areas of closed field, especially active regions. A common feature of coronal jets is that they originate from the field above a parasitic polarity of opposite sign to the surrounding field. Some process - such as instability onset or flux emergence - induces explosive reconnection between the closed “anemone” field and the surrounding open field that generates the jet. The lesser number of coronal jets in closed-field regions suggests a possible stabilizing effect of the closed configuration with respect to coronal jet formation. If the scale of the jet region is small compared with the background loop length, as in for example type II spicules, the nearby magnetic field may be treated as locally open. As such, one would expect that if a stabilizing effect exists it becomes most apparent as the scale of the anemone region approaches that of the background coronal loops.To investigate if coronal jets are indeed suppressed along shorter coronal loops, we performed a number of simulations of jets driven by a rotation of the parasitic polarity (as in the previous open-jet calculations by Pariat et. al 2009, 2010, 2015) embedded in a large-scale closed bipolar field. The simulations were performed with the state of the art Adaptively Refined Magnetohydrodynamics Solver. We will report here how the magnetic configuration above the anemone region determines the nature of the jet, when it is triggered, and how much of the stored magnetic energy is released. We show that regions in which the background field and the parasitic polarity region are of comparable scale naturally suppress explosive energy release. We will also show how in the post-jet relaxation phase a combination of confined MHD waves and weak current layers are generated by the jet along the background coronal loops, both of which

  5. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Previously, from analysis of SOHO/EIT coronal images in combination with Kitt Peak magnetograms (Falconer et al 1998, ApJ, 501, 386-396), we found that the quiet corona is the sum of two components: the e-scale corona and the coronal network. The large-scale corona consists of all coronal-temperature (T approx. 10(exp 6) K) structures larger than supergranules (>approx.30,000 km). The coronal network (1) consists of all coronal-temperature structures smaller than supergranules, (2) is rooted in and loosely traces the photospheric magnetic network, (3) has its brightest features seated on polarity dividing fines (neutral lines) in the network magnetic flux, and (4) produces only about 5% of the total coronal emission in quiet regions. The heating of the coronal network is apparently magnetic in origin. Here, from analysis of EIT coronal images of quiet regions in combination with magnetograms of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine the other 95% of the quiet corona and its relation to the underlying magnetic network. We find: (1) Dividing the large-scale corona into its bright and dim halves divides the area into bright "continents" and dark "oceans" having spans of 2-4 supergranules. (2) These patterns are also present in the photospheric magnetograms: the network is stronger under the bright half and weaker under the dim half. (3) The radiation from the large-scale corona increases roughly as the cube root of the magnetic flux content of the underlying magnetic network. In contrast, Fisher et A (1998, ApJ, 508, 985-998) found that the coronal radiation from an active region increases roughly linearly with the magnetic flux content of the active region. We assume, as is widely held, that nearly all of the large-scale corona is magnetically rooted in the network. Our results, together with the result of Fisher et al (1999), suggest that either the coronal heating in quiet regions has a large non-magnetic component, or, if the heating

  6. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Astrophysics Data System (ADS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    2001-05-01

    Previously, from analysis of SOHO/EIT coronal images in combination with Kitt Peak magnetograms (Falconer et al 1998, ApJ, 501, 386-396), we found that the quiet corona is the sum of two components: the large-scale corona and the coronal network. The large-scale corona consists of all coronal-temperature ( million-degree) structures larger than the width of a chromospheric network lane (> 10,000 km). The coronal network (1) consists of all coronal-temperature structures of the scale of the network lanes and smaller (< 10,000 km), (2) is rooted in and loosely traces the photospheric magnetic network, (3) has its brightest features seated on polarity dividing lines (neutral lines) in the network magnetic flux, and (4) produces only about 5% of the total coronal emission in quiet regions. The heating of the coronal network is apparently magnetic in origin. Here, from analysis of EIT coronal images of quiet regions in combination with magnetograms of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine the other 95% of the quiet corona and its relation to the underlying magnetic network. We find: (1) Dividing the large-scale corona into its bright and dim halves divides the area into bright "continents" and dark "oceans" having spans of 2-4 supergranules. (2) These patterns are also present in the photospheric magnetograms: the network is stronger under the bright half and weaker under the dim half. (3) The radiation from the large-scale corona increases roughly as the cube root of the magnetic flux content of the underlying magnetic network. In contrast, Fisher et al (1998, ApJ, 508, 985-998) found that the coronal radiation from an active region increases roughly linearly with the magnetic flux content of the active region. We assume, as is widely held, that nearly all of the large-scale corona is magnetically rooted in the network. Our results, together with the result of Fisher et al (1998), suggest that either the coronal heating in quiet regions

  7. Gradual Solar Coronal Dimming and Evolution of Coronal Mass Ejection in the Early Phase

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong; Cheng, Jianxia

    2017-03-01

    We report observations of a two-stage coronal dimming in an eruptive event of a two-ribbon flare and a fast coronal mass ejection (CME). Weak gradual dimming persists for more than half an hour before the onset of the two-ribbon flare and the fast rise of the CME. It is followed by abrupt rapid dimming. The two-stage dimming occurs in a pair of conjugate dimming regions adjacent to the two flare ribbons, and the flare onset marks the transition between the two stages of dimming. At the onset of the two-ribbon flare, transient brightenings are also observed inside the dimming regions, before rapid dimming occurs at the same places. These observations suggest that the CME structure, most probably anchored at the twin dimming regions, undergoes a slow rise before the flare onset, and its kinematic evolution has significantly changed at the onset of flare reconnection. We explore diagnostics of the CME evolution in the early phase with analysis of the gradual dimming signatures prior to the CME eruption.

  8. Is caching the key to exclusion in corvids? The case of carrion crows (Corvus corone corone).

    PubMed

    Mikolasch, Sandra; Kotrschal, Kurt; Schloegl, Christian

    2012-01-01

    Recently, two corvid species, food-caching ravens and non-caching jackdaws, have been tested in an exclusion performance (EP) task. While the ravens chose by exclusion, the jackdaws did not. Thus, foraging behaviour may affect EP abilities. To investigate this possibility, another food-caching corvid species, the carrion crow (Corvus corone corone), was tested in the same exclusion task. We hid food under one of two cups and subsequently lifted either both cups, or the baited or the un-baited cup. The crows were significantly above chance when both cups were lifted or when only the baited cup was lifted. When the empty cup was lifted, we found considerable inter-individual variation, with some birds having a significant preference for the un-baited but manipulated cup. In a follow-up task, we always provided the birds with the full information about the food location, but manipulated in which order they saw the hiding or the removal of food. Interestingly, they strongly preferred the cup which was manipulated last, even if it did not contain any food. Therefore, we repeated the first experiment but controlled for the movement of the cups. In this case, more crows found the food reliably in the un-baited condition. We conclude that carrion crows are able to choose by exclusion, but local enhancement has a strong influence on their performance and may overshadow potential inferential abilities. However, these findings support the hypothesis that caching might be a key to exclusion in corvids.

  9. Coronal evolution during the sunspot cycle: Coronal holes observed with the Mauna Loa K-coronameters

    SciTech Connect

    Hundhausen, A.J.; Hansen, R.T.; Hansen, S.F.

    1981-04-01

    The white-light corona was observed regularly at the Mauna Loa Observatory during the years 1965--1967 and 1969--1978. Display of the measured polarization brightness in the form of synoptic maps permits the identification of large coronal holes and the study of their slow evolution during the sunspot cycle. The polar coronal holes were clearly seen to shrink in size during the ascending phase of cycle 20 (1965--1967), to be absent during a two-year period (1969--1970) just after sunspot maximum, to reappear near the end of 1970, and to remain as prominent features of the corona for the years 1971--1978. During the sunspot maximum epoch the corona was dominated by 'mid-latitude' holes, elongated in the direction parallel to the solar equator. Large equatorial holes or equatorward extensions of the polar holes were observed during the ascending, maximum, and descending phases of cycle 20 and appear to be sources of solar wind streams with maximum speeds over 600 km s/sup -1/ at all of these epochs. The lifetimes of these holes and streams were greatest during the descending phase of the cycle, or in 1974--1975.

  10. ORIGIN OF CORONAL SHOCK WAVES ASSOCIATED WITH SLOW CORONAL MASS EJECTIONS

    SciTech Connect

    Magdalenic, J.; Marque, C.; Zhukov, A. N.; Vrsnak, B.; Zic, T.

    2010-07-20

    We present a multiwavelength study of five coronal mass ejection/flare events (CME/flare) and associated coronal shock waves manifested as type II radio bursts. The study is focused on the events in which the flare energy release, and not the associated CME, is the most probable source of the shock wave. Therefore, we selected events associated with rather slow CMEs (reported mean velocity below 500 km s{sup -1}). To ensure minimal projection effects, only events related to flares situated close to the solar limb were included in the study. We used radio dynamic spectra, positions of radio sources observed by the Nancay Radioheliograph, GOES soft X-ray flux measurements, Large Angle Spectroscopic Coronagraph, and Extreme-ultraviolet Imaging Telescope observations. The kinematics of the shock wave signatures, type II radio bursts, were analyzed and compared with the flare evolution and the CME kinematics. We found that the velocities of the shock waves were significantly higher, up to one order of magnitude, than the contemporaneous CME velocities. On the other hand, shock waves were closely temporally associated with the flare energy release that was very impulsive in all events. This suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. In four events the shock wave was most probably flare-generated, and in one event results were inconclusive due to a very close temporal synchronization of the CME, flare, and shock.

  11. CME Interaction with Coronal Holes and Their Interplanetary Consequences

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Xie, H.; Akiyama, S.; Yashiro, S.

    2008-01-01

    A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.

  12. Space- and Ground-based Coronal Spectro-Polarimetry

    NASA Astrophysics Data System (ADS)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  13. Contagious Coronal Heating from Recurring Emergence of Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Moore, R. L.; Falconer, D. A.; Sterling, A. C.

    2002-01-01

    For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal heating in and around the old bipole in response to new magnetic flux emergence within the old bipole. The observations show: 1. In each active region, new flux emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal heating, and enhanced coronal heating occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the flux emergence. 4. There are episodes of enhanced coronal heating in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged flux within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal heating. We Also Note That The Reason For The recurrence of flux emergence in old active regions may be that active-region flux tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.

  14. Contagious Coronal Heating from Recurring Emergence of Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David; Sterling, Alphonse; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal heating in and around the old bipole in response to new magnetic flux emerge= within the old bipole. The observations show: 1. In each active region, new flux emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal heating, and enhanced coronal heating occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the flux emergence. 4. There are episodes of enhanced coronal heating in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged flux within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal heating. We also note that the reason for the recurrence of flux emergence in old active regions may be that active region flux tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.

  15. Contagious Coronal Heating from Recurring Emergence of Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David; Sterling, Alphonse; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal heating in and around the old bipole in response to new magnetic flux emerge= within the old bipole. The observations show: 1. In each active region, new flux emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal heating, and enhanced coronal heating occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the flux emergence. 4. There are episodes of enhanced coronal heating in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged flux within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal heating. We also note that the reason for the recurrence of flux emergence in old active regions may be that active region flux tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.

  16. ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION

    SciTech Connect

    Lynch, B. J.; Li, Y.; Luhmann, J. G.; Antiochos, S. K.; DeVore, C. R. E-mail: yanli@ssl.berkeley.edu E-mail: spiro.k.antiochos@nasa.gov

    2009-06-01

    Understanding the connection between coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) is one of the most important problems in solar-terrestrial physics. We calculate the rotation of erupting field structures predicted by numerical simulations of CME initiation via the magnetic breakout model. In this model, the initial potential magnetic field has a multipolar topology and the system is driven by imposing a shear flow at the photospheric boundary. Our results yield insight on how to connect solar observations of the orientation of the filament or polarity inversion line (PIL) in the CME source region, the orientation of the CME axis as inferred from coronagraph images, and the ICME flux rope orientation obtained from in situ measurements. We present the results of two numerical simulations that differ only in the direction of the applied shearing motions (i.e., the handedness of the sheared-arcade systems and their resulting CME fields). In both simulations, eruptive flare reconnection occurs underneath the rapidly expanding sheared fields transforming the ejecta fields into three-dimensional flux rope structures. As the erupting flux ropes propagate through the low corona (from 2 to 4 R{sub sun}) the right-handed breakout flux rope rotates clockwise and the left-handed breakout flux rope rotates counterclockwise, in agreement with recent observations of the rotation of erupting filaments. We find that by 3.5 R {sub sun} the average rotation angle between the flux rope axes and the active region PIL is approximately 50 deg. We discuss the implications of these results for predicting, from the observed chirality of the pre-eruption filament and/or other properties of the CME source region, the direction and amount of rotation that magnetic flux rope structures will experience during eruption. We also discuss the implications of our results for CME initiation models.

  17. Nanodust dynamics during a coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Czechowski, Andrzej; Kleimann, Jens

    2017-09-01

    The dynamics of nanometer-sized grains (nanodust) is strongly affected by electromagnetic forces. High-velocity nanodust was proposed as an explanation for the voltage bursts observed by STEREO. A study of nanodust dynamics based on a simple time-stationary model has shown that in the vicinity of the Sun the nanodust is trapped or, outside the trapped region, accelerated to high velocities. We investigate the nanodust dynamics for a time-dependent solar wind and magnetic field configuration in order to find out what happens to nanodust during a coronal mass ejection (CME). The plasma flow and the magnetic field during a CME are obtained by numerical simulations using a 3-D magnetohydrodynamic (MHD) code. The equations of motion for the nanodust particles are solved numerically, assuming that the particles are produced from larger bodies moving in near-circular Keplerian orbits within the circumsolar dust cloud. The charge-to-mass ratios for the nanodust particles are taken to be constant in time. The simulation is restricted to the region within 0.14 AU from the Sun. We find that about 35 % of nanodust particles escape from the computational domain during the CME, reaching very high speeds (up to 1000 km s-1). After the end of the CME the escape continues, but the particle velocities do not exceed 300 km s-1. About 30 % of all particles are trapped in bound non-Keplerian orbits with time-dependent perihelium and aphelium distances. Trapped particles are affected by plasma ion drag, which causes contraction of their orbits.

  18. MAGNETIC FLUX SUPPLEMENT TO CORONAL BRIGHT POINTS

    SciTech Connect

    Mou, Chaozhou; Huang, Zhenghua; Xia, Lidong; Li, Bo; Fu, Hui; Jiao, Fangran; Hou, Zhenyong; Madjarska, Maria S.

    2016-02-10

    Coronal bright points (BPs) are associated with magnetic bipolar features (MBFs) and magnetic cancellation. Here we investigate how BP-associated MBFs form and how the consequent magnetic cancellation occurs. We analyze longitudinal magnetograms from the Helioseismic and Magnetic Imager to investigate the photospheric magnetic flux evolution of 70 BPs. From images taken in the 193 Å passband of the Atmospheric Imaging Assembly (AIA) we dermine that the BPs’ lifetimes vary from 2.7 to 58.8 hr. The formation of the BP MBFs is found to involve three processes, namely, emergence, convergence, and local coalescence of the magnetic fluxes. The formation of an MBF can involve more than one of these processes. Out of the 70 cases, flux emergence is the main process of an MBF buildup of 52 BPs, mainly convergence is seen in 28, and 14 cases are associated with local coalescence. For MBFs formed by bipolar emergence, the time difference between the flux emergence and the BP appearance in the AIA 193 Å passband varies from 0.1 to 3.2 hr with an average of 1.3 hr. While magnetic cancellation is found in all 70 BPs, it can occur in three different ways: (I) between an MBF and small weak magnetic features (in 33 BPs); (II) within an MBF with the two polarities moving toward each other from a large distance (34 BPs); (III) within an MBF whose two main polarities emerge in the same place simultaneously (3 BPs). While an MBF builds up the skeleton of a BP, we find that the magnetic activities responsible for the BP heating may involve small weak fields.

  19. Statistical Properties of Solar Coronal Bright Points

    NASA Astrophysics Data System (ADS)

    Alipour, N.; Safari, H.

    2015-07-01

    Here, we aim to study the statistical properties (i.e., spatial, temporal, and magnetic structures) of extreme ultraviolet coronal bright points (CBPs) observed by SDO during a 4.4 yr period (2010 June 1 to 2014 October 31). We developed the automatic detection method for CBPs based on the machine-learning technique and Zernike image moments. The average number and the mean density of CBPs are estimated to be about 572 (per full disk image taken at 193 Å) and 1.9× {10}-4 Mm-2, respectively. There is a negative correlation (-0.7) between the number of CBPs and the number of sunspots. The size and lifetime frequency distribution of CBPs show the lognormal and power-law (exponent equal to -1.6) behaviors, respectively. The relationship between the lifetime and size of CBPs is clearly treated by a power-law function with an exponent equal to 0.13. Around 1.3% of the solar surface is covered by the bright cores of CBPs and 2.6% of that is covered by their total area. About 52% of CBPs have lifetimes of less than 20 minutes and the remaining 48% have mean lifetimes of 6 hr. More than 95% of CBPs with lifetimes of less than 20 hr and nine CBPs with lifetimes of more than 72 hr are detected. The average number of the new CBPs emerging every 45 s in the whole of the Sun is about 27 ± 3. The temporal self-affinity of the time series of CBPs that emerged, indexed by the Hurst exponent determined using both detrended fluctuation analysis and R/S analysis, is 0.78. This long-temporal correlation suggests that CBPs form a system of self-organized criticality.

  20. Chromospheric evaporation in sympathetic coronal bright points

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Ji, H. S.

    2013-09-01

    Context. Chromospheric evaporation is a key process in solar flares that has been extensively investigated using spectroscopic observations. However, direct soft X-ray (SXR) imaging of the process is rare, especially in remote brightenings associated with the primary flares that have recently attracted a great deal of attention. Aims: We intend to find the evidence for chromospheric evaporation and figure out the cause of the process in sympathetic coronal bright points (CBPs), i.e., remote brightenings induced by the primary CBP. Methods: We utilised the high-cadence and high-resolution SXR observations of CBPs from the X-ray Telescope (XRT) aboard the Hinode spacecraft on 2009 August 23. Results: We discovered a thermal conduction front propagating from the primary CBP (hereafter BP1) to the first of the sympathetic CBPs (hereafter BP2) that is 60″ away from BP1. The apparent velocity of the thermal conduction is ~138 km s-1. Afterwards, hot plasma flowed upwards into the loop connecting BP1 and BP2 at a speed of ~76 km s-1, a clear signature of chromospheric evaporation. Similar upflow was also observed in the loop connecting BP1 and the other sympathetic CBP (hereafter BP3) that is 80″ away from BP1, though less significant than BP2. The apparent velocity of the upflow is ~47 km s-1. The thermal conduction front propagating from BP1 to BP3 was not well identified except for the jet-like motion also originating from BP1. Conclusions: We propose that the gentle chromospheric evaporation in the sympathetic CBPs were caused by thermal conduction originating from the primary CBP.

  1. Magnetic Flux Supplement to Coronal Bright Points

    NASA Astrophysics Data System (ADS)

    Mou, Chaozhou; Huang, Zhenghua; Xia, Lidong; Madjarska, Maria S.; Li, Bo; Fu, Hui; Jiao, Fangran; Hou, Zhenyong

    2016-02-01

    Coronal bright points (BPs) are associated with magnetic bipolar features (MBFs) and magnetic cancellation. Here we investigate how BP-associated MBFs form and how the consequent magnetic cancellation occurs. We analyze longitudinal magnetograms from the Helioseismic and Magnetic Imager to investigate the photospheric magnetic flux evolution of 70 BPs. From images taken in the 193 Å passband of the Atmospheric Imaging Assembly (AIA) we dermine that the BPs’ lifetimes vary from 2.7 to 58.8 hr. The formation of the BP MBFs is found to involve three processes, namely, emergence, convergence, and local coalescence of the magnetic fluxes. The formation of an MBF can involve more than one of these processes. Out of the 70 cases, flux emergence is the main process of an MBF buildup of 52 BPs, mainly convergence is seen in 28, and 14 cases are associated with local coalescence. For MBFs formed by bipolar emergence, the time difference between the flux emergence and the BP appearance in the AIA 193 Å passband varies from 0.1 to 3.2 hr with an average of 1.3 hr. While magnetic cancellation is found in all 70 BPs, it can occur in three different ways: (I) between an MBF and small weak magnetic features (in 33 BPs); (II) within an MBF with the two polarities moving toward each other from a large distance (34 BPs); (III) within an MBF whose two main polarities emerge in the same place simultaneously (3 BPs). While an MBF builds up the skeleton of a BP, we find that the magnetic activities responsible for the BP heating may involve small weak fields.

  2. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    NASA Technical Reports Server (NTRS)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  3. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    NASA Technical Reports Server (NTRS)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  4. Standing Kink modes in three-dimensional coronal loops

    SciTech Connect

    Pascoe, D. J.; De Moortel, I.

    2014-04-01

    So far, the straight flux tube model proposed by Edwin and Roberts is the most commonly used tool in practical coronal seismology, in particular, to infer values of the (coronal) magnetic field from observed, standing kink mode oscillations. In this paper, we compare the period predicted by this basic model with three-dimensional (3D) numerical simulations of standing kink mode oscillations, as the period is a crucial parameter in the seismological inversion to determine the magnetic field. We perform numerical simulations of standing kink modes in both straight and curved 3D coronal loops and consider excitation by internal and external drivers. The period of oscillation for the displacement of dense coronal loops is determined by the loop length and the kink speed, in agreement with the estimate based on analytical theory for straight flux tubes. For curved coronal loops embedded in a magnetic arcade and excited by an external driver, a secondary mode with a period determined by the loop length and external Alfvén speed is also present. When a low number of oscillations is considered, these two periods can result in a single, non-resolved (broad) peak in the power spectrum, particularly for low values of the density contrast for which the two periods will be relatively similar. In that case (and for this particular geometry), the presence of this additional mode would lead to ambiguous seismological estimates of the magnetic field strength.

  5. Development of coronal cementum in hypsodont horse cheek teeth.

    PubMed

    Sahara, Noriyuki

    2014-04-01

    The horse is a grazing herbivore whose cheek teeth are hypsodon; that is, they possess long crowns that are completely covered by coronal cement at eruption. For elucidation of the sequential events in the formation of this coronal cementum in the mandibular horse cheek teeth, in the present study the lower 3rd permanent premolar teeth (PM4 ) from 3.5-, 4-, and 5-year-old horses were compared by using radiography, microcomputed tomography (Miro-CT), light microscopy (LM), and scanning electron microscopy (SEM). The present study clearly showed that prior to coronal cementogenesis tartrate-resistant acid phosphatase (TRAP)-positive odontoclasts resorbed on the enamel surface of the reserve crown in horse cheek tooth. Enamel resorption areas were relatively narrow, and started from the cuspal tips, and moved in the apical direction during tooth development. A primary cementum was initially deposited on the irregularly pitted enamel-cementum junction (ECJ) of the infolding and peripheral enamel. The infolding cementum filled grooves completely by the time of tooth eruption. On the other hand, in the peripheral cementum, the secondary and tertiary cementum layers were sequentially deposited on the primary cementum. These two cementum layers were sites for the insertion of the periodontal ligaments, and were continually laid down on the primary cementum coronally rather than apically throughout the life. The results of the present study suggest that the coronal cementum of horse cheek teeth is a multistructural and multifunctional tissue, meeting the requirements of its many different functions.

  6. Coronal roots of solar wind streams: 3-D MHD modeling

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    Weak (discontinuous) solutions of the 3-D MHD equations look like a promising tool to model the transonic solar wind with structural elements: current sheets, coronal plumes etc. Using the observational information about various coronal emissions one can include these structural elements into the 3-D MHD solar wind model by embedding the discontinuities of given type. Such 3-D MHD structured solar wind is calculated self-consistently: variants are examined via numerical experiments. In particular, the behavior of coronal plumes in the transonic solar wind flow, is modeled. The input information for numerical modeling (for example, the magnetic field map at the very base of the solar corona) can be adjusted so that fast stream arises over the center of the coronal hole, over the coronal hole boundaries and, even, over the region with closed magnetic topology. 3-D MHD equations have the analytical solution which can serve as a model of supersonic trans-alfvenic solar wind in the (5-20) solar radii heliocentric distance interval. The transverse, nonradial total (gas + magnetic field) pressure balance in the flow is the corner-stone of this solution. The solution describes the filamentation (ray-like structure of the solar corona) and streaming (formation of high-speed streams with velocities up to 800 km/sec) as a consequence of the magnetic field spatial inhomogeneous structure and trans-alfvenic character of the flow. The magnetic field works in the model as a 'controller' for the solar wind streaming and filamentation.

  7. Slow Magnetoacoustic Wave Oscillation of an Expanding Coronal Loop

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Ofman, L.

    2011-10-01

    We simulated an expanding loop or slow coronal mass ejection (CME) in the solar corona dimensioned with size parameters taken from real coronal expanding loops observed with the STEREO spacecraft. We find that the loop expands to Sun's size within about one hour, consistent with slow CME observations. At the top of the loop, plasma is being blown off the loop, enabled with the reconnection between the loop's flux rope magnetic field and the radial magnetic field of the Sun, thus yielding feeding material for the formation of the slow solar wind. This mechanism is in accordance with the observed blob formation of the slow solar wind. We find wave packets traveling with local sound speed downward toward the footpoints of the loop, already seen in coronal seismology observations and simulations of stationary coronal loops. Here, we generalize these results for an expanding medium. We also find a reflection of the wave packets, identified as slow magnetoacoustic waves, at the footpoints of the loop. This confirms the formation of standing waves within the coronal loop. In particular, the reflected waves can partly escape the loop top and contribute to the heating of the solar wind. The present study improves our understanding on how loop material can emerge to form blobs, major ingredients of slow CMEs, and how the release of the wave energy stored in slow magnetoacoustic waves, and transported away from the Sun within expanding loops, contributes to the acceleration and formation of the slow solar wind.

  8. Solar wind heavy ions from flare-heated coronal plasma

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Fenimore, E. E.; Gosling, J. T.

    1979-01-01

    Information concerning the coronal expansion is carried by solar-wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy-ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to originate from coronal holes. Although the sources of the IS plasma are uncertain, the heavy-ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at a temperature of approximately 1.6 million K, while that of Fe is frozen in farther out at about 1.5 million K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe(16+) ions, not usually found in IS flows, and the derived coronal freezing-in temperatures are significantly higher. The coronal sources of some of these ionizationally hot flows are identified as solar flares.

  9. Coronal and apical sealing ability of a new endodontic cement

    PubMed Central

    Zafar, Morvarid; Iravani, Maryam; Eghbal, Mohammad Jafar; Asgary, Saeed

    2009-01-01

    INTRODUCTION: This in vitro study aims to evaluate the coronal and apical sealing ability of gutta-percha (GP) root filling used with either mineral trioxide aggregate (MTA), new endodontic cement (NEC) or AH26 as filler/sealers. MATERIALS AND METHODS: Forty eight single-rooted extracted teeth were selected, decoronated and then instrumented. Samples were randomly divided into three experimental (n=12) and two control groups (n=6). In group 1, root canals were filled using lateral condensation technique (L); while single cone technique (S) was used for groups 2 and 3. AH26, MTA and NEC were the root canal sealer/fillers in groups 1, 2 and 3, respectively. Samples were immersed in 1% methylene-blue dye and then independently centrifuged apically and coronally. The roots were split longitudinally and linear extent of dye penetration was measured with a stereomicroscope from apical and coronal directions. Data were analyzed using One-way ANOVA and T-test. RESULTS: No statistical differences in mean apical dye penetration between groups LGP/AH26, SGP/MTA and SGP/NEC were found; SGP/NEC group showed significantly less coronal dye penetration (P<0.001). CONCLUSION: Considering the limitations of this in vitro study, it was concluded that the simple single cone technique with NEC can provide favorable coronal and apical seal. PMID:23864871

  10. An Evaluation of MTA Cements as Coronal Barrier

    PubMed Central

    Mohammadi, Zahed; Khademi, Abbasali

    2006-01-01

    INTRODUCTION: Coronal leakage seems to play an important role in the failure of endodontic treatment. A double seal over root canal filling has been suggested as a means of improving the coronal seal. Several restorative materials have been used in an attempt to produce a coronal barrier. The purpose of this study was to assess gray-coloured mineral trioxide aggregate (GMTA), white-coloured mineral trioxide aggregate MTA (WMTA), and Principle (a resin-modified glass ionomer) as coronal barriers to bacterial leakage. MATERIALS AND METHODS: Fifty-one human anterior teeth were cleaned and obturated with gutta-percha and sealer. In group 1, teeth received a 3 mm barrier of GMTA. In groups 2 and 3, samples received WMTA and Principle, respectively. Obturated teeth without barrier were used as positive control and obturated teeth covered with epoxy resin were used as negative control. A leakage model utilizing Enterococcus faecalis used for the evaluation. Leakage was recorded when turbidity was observed. RESULTS: All controls behaved as expected. Three samples in group 1, three samples in group 2, and four samples leaked in group 3. There was no statistically significant difference in leakage between GMTA and WMTA or between GMTA and Principle. CONCLUSION: It seems that GMTA, WMTA and Principle can be recommended as a coronal barrier for up to 90 days. PMID:24454453

  11. Estudio del CH interestelar

    NASA Astrophysics Data System (ADS)

    Olano, C.; Lemarchand, G.; Sanz, A. J.; Bava, J. A.

    El objetivo principal de este proyecto consiste en el estudio de la distribución y abundancia del CH en nubes interestelares a través de la observación de las líneas hiperfinas del CH en 3,3 GHz. El CH es una molécula de amplia distribución en el espacio interestelar y una de las pocas especies que han sido observadas tanto con técnicas de radio como ópticas. Desde el punto de vista tecnológico se ha desarrollado un cabezal de receptor que permitirá la realización de observaciones polarimétricas en la frecuencia de 3,3 GHz, con una temperatura del sistema de 60 K y un ancho de banda de 140 MHz, y que será instalado en el foco primario de la antena parabólica del IAR. El cabezal del receptor es capaz de detectar señales polarizadas, separando las componentes de polarización circular derecha e izquierda. Para tal fin el cabezal consta de dos ramas receptoras que amplificarán la señal y la trasladarán a una frecuencia más baja (frecuencia intermedia), permitiendo de esa forma un mejor transporte de la señal a la sala de control para su posterior procesamiento. El receptor además de tener características polarimétricas, podrá ser usado en el continuo y en la línea, utilizando las ventajas observacionales y de procesamiento de señal que actualmente posee el IAR.

  12. Spherically-shaped coronal shock waves associated with Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kwon, R. Y.; Vourlidas, A.

    2016-12-01

    Knowing the three-dimensional (3D) geometry of Coronal mass ejections (CMEs) and associated shock waves is crucial for interpretations of in-situ measurements close to the Sun that will be carried out by Solar Probe Plus and Solar Orbiter. Here, we obtain the 3D geometries of three CMEs and associated shock waves using multiple perspective observations from STEREO-Ahead, -Behind, SDO, and SOHO. These CMEs appeared as halo CMEs in all three viewing perspectives and were accompanied by solar energetic particle (SEP) events. The 3D structures and kinematics of the halo fronts were determined by applying a forward modeling method. We find that the angular widths of the halos are at least 192 degrees while those of the CMEs are at most 100 degrees, implying the presence of a spherically-shaped wave, extending out much further than the CME. The peak speeds of the CMEs are in the range of 1355- 2157 km/s, but the speeds of the halo flanks seem to reach the local fast-mode speed of the coronal medium 500 km/s. To further investigate the physical nature of the halo flanks, we compare the 3D properties of the halos with a fast-mode wave model given in Uchida (1970). The model reproduced the halo flanks with the local fast-mode speed profiles of the coronal medium. The modeled waves refract toward the lower altitudes as propagating through the inhomogeneous medium, and these fast-mode waves lead to the spherically-shaped fronts. In addition, the azimuthal extents of the halos are consistent with the SEP injection sites far away from the flare sites, supporting that the halo fronts are truly the signatures of the fast-mode wave. Our results suggest that the halo-shaped fronts are likely spherically-shaped fast-mode waves, extending out much further than the CMEs. The unprecedented in-situ measurements of Solar Probe Plus and Solar Orbiter will probe into the detailed physical properties of such large-scale disturbances in the corona.

  13. The Search for Stellar Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Villadsen, Jacqueline Rose

    2017-05-01

    Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. This thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs. Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (VLA), detecting coherent radio bursts in 13 out of 23 epochs, over a total of 58 hours. This survey's ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light. To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the VLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission. These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially

  14. Coronal Reconstruction using LASCO and UVCS Observations

    NASA Technical Reports Server (NTRS)

    Hick, P. P.

    2000-01-01

    The main goal of the research described in the original proposal was to develop methods to quantify coronal and inner-heliospheric velocity fields of the 'quiet' solar wind. For this we planned to use several sources of observations:(1) SOHO/UVCS velocity information in the range 1.5-3 Solar Radii obtained from Doppler dimming observations; (2) projected solar wind velocities (into the plane of the sky) obtained from SOHO/ LASCO images (1.1-30 Solar Radii), primarily derived from two-dimensional correlation tracking techniques; (3) Interplanetary scintillation observations of the heliospheric (> 26 Solar Radii) solar wind velocity from the Solar-Terrestrial Environment Laboratory (STELab) in Nagoya, Japan; (4) Ecliptic in situ observations: data for the ecliptic solar wind are available from the MIT and Los Alamos plasma experiments on the Earth-orbiting IMP-8 spacecraft, from the Cellas instrument on SOHO near the LI Lagrange point, and from the WIND spacecraft; (5) Out-of-ecliptic in situ observations: these data are available primarily from the Los Alamos SWOOPS instrument on Ulysses, which passed over the solar north pole in August 1995, about one year prior to the Whole Sun Month period. Where ever possible we planned to use the first Whole Sun Month as the main time period for the analysis, since we expected that for this period it would be easiest to obtain adequate coverage over the extended period of time required to analyze 'quiet' solar wind patterns. Beyond the observations mentioned above (primarily SOHO data) we extended our selection of data to several events identified in the Yohkoh/SXT data base which directly promised to provide us with clues about the connection between the slow solar wind observed by IPS in the inner heliosphere and their sources in the low corona, in particular active regions. We also obtained valuable results using SWOOPS ill situ observations from the pole-to-pole passage of Ulysses in a comparison with solar wind velocities

  15. The Search for Stellar Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Villadsen, Jacqueline; Hallinan, Gregg; Monroe, Ryan; Bourke, Stephen; Starburst Program Team

    2017-01-01

    Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. My thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs.Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (JVLA), detecting 12 bright (>10 mJy) radio bursts in 58 hours. This survey’s ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light.To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the JVLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission.These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially with the advent of large low

  16. Mechanisms of Plasma Acceleration in Coronal Jets

    NASA Astrophysics Data System (ADS)

    Soto, N.; Reeves, K.; Savcheva, A. S.

    2016-12-01

    Jets are small explosions that occur frequently in the Sun possibly driven by the local reconfiguration of the magnetic field, or reconnection. There are two types of coronal jets: standard jets and blowout jets. The purpose of this project is to determine which mechanisms accelerate plasma in two different jets, one that occurred in January 17, 2015 at the disk of the sun and another in October 24, 2015 at the limb. Two possible acceleration mechanisms are chromospheric evaporation and magnetic acceleration. Using SDO/AIA, Hinode/XRT and IRIS data, we create height-time plots, and calculate the velocities of each wavelength for both jets. We calculate the potential magnetic field of the jet and the general region around it to gain a more detailed understanding of its structure, and determine if the jet is likely to be either a standard or blowout jet. Finally, we calculate the magnetic field strength for different heights along the jet spire, and use differential emission measures to calculate the plasma density. Once we have these two values, we calculate the Alfven speed. When analyzing our results we are looking for certain patterns in our velocities. If the plasma in a jet is accelerated by chromospheric evaporation, we expect the velocities to increase as function of temperature, which is what we observed in the October 24th jet. The magnetic models for this jet also show the Eiffel Tower shaped structure characteristic of standard jets, which tend to have plasma accelerated by this mechanism. On the other hand, if the acceleration mechanism were magnetic acceleration, we would expect the velocities to be similar regardless of temperature. For the January 17th jet, we saw that along the spire, the velocities where approximately 200 km/s in all wavelengths, but the velocities of hot plasma detected at the base were closer to the Alfven speed, which was estimated to be about 2,000 km/s. These observations suggest that the plasma in the January 17th jet is

  17. A Microwave Study of Coronal Ejecta

    NASA Astrophysics Data System (ADS)

    Kundu, M. R.; Nindos, A.; Raulin, J.-P.; Shibasaki, K.; White, S. M.; Nitta, N.; Shibata, K.; Shimojo, M.

    1999-07-01

    Using Nobeyama 17 GHz data, we have studied the radio properties of 19 coronal jets identified in Yohkoh soft X-ray imaging telescope (SXT) X-ray observations. The radio data provide information on the physical conditions in the jets, which complements the data from the X-ray surveys. Microwave emission was associated with the majority of the X-ray jets in our sample. The radio emission typically came from the base or the base and lower part of the jets. We detected radio emission from almost all jets that showed flarelike activity at their bases. The jets that were not associated with radio emission did not show any significant increase in X-ray emission at their bases. The strongest radio emission came from two of the largest jets in our sample. Our data show a general correlation between the X-ray jet fluxes and the associated radio fluxes. The 17 GHz time profiles were gradual and unpolarized, implying that the emission was thermal. In a two-sided-loop jet (1992 July 22 event) and one anemone-type jet (1993 February 9 event), the observed microwave fluxes from the lower part of the jets were well above the fluxes calculated from the computed physical parameters of the soft X-ray-emitting material on the basis of thermal free-free emission. We interpret the large discrepancies in terms of the presence of lower temperature material, which cannot be detected by the SXT (the SXT is most sensitive to hot plasma above 2×106 K), but which produces strong microwave free-free emission. This is the first time that such material has been observed in two-sided-loop-type jets. We also observed motion of a jet-associated microwave source with a velocity of 55 km s-1. The microwave motion occurred after the appearance of the X-ray jet. There is clear evidence that the microwave emission of that source was associated with the jet and not with the associated small flare.

  18. A Microwave Study of Coronal Ejecta

    NASA Astrophysics Data System (ADS)

    Kundu, M. R.; Nindos, A.; Raulin, J.-P.; Shibasaki, K.; White, S. M.; Nitta, N.; Shibata, K.; Shimojo, M.

    1999-05-01

    Using Nobeyama 17 GHz data, we have studied the radio properties of 19 coronal jets identified in Yohkoh SXT X-ray observations. The radio data provide information on the physical conditions in the jets which complements the data from the X-ray surveys. Microwave emission was associated with the majority of the X-ray jets in our sample. The radio emission typically came from the base or the base and lower part of the jets. We detected radio emission from almost all jets which showed flare-like activity at their bases. The jets which were not associated with radio emission did not show any significant increase in X-ray emission at their bases. The strongest radio emission came from two of the largest jets in our sample. Our data show a general correlation between the X-ray jet fluxes and the associated radio fluxes. The 17 GHz time profiles were gradual and unpolarized, implying that the emission was thermal. In a two-sided-loop jet (July 22, 1992 event) and one anemone-type jet (February 9, 1993 event), the observed microwave fluxes from the lower part of the jets were well above the fluxes calculated from the computed physical parameters of the soft X-ray-emitting material on the basis of thermal free-free emission. We interpret the large discrepancies in terms of the presence of lower temperature material which cannot be detected by the SXT (the SXT is most sensitive to hot plasma above 2 x 10(6) K) but which produces strong microwave free-free emission. This is the first time that such material has been observed in two-sided-loop type jets. We also observed motion of a jet-associated microwave source with a velocity of 55 km/sec. The microwave motion occurred after the appearance of the X-ray jet. There is clear evidence that the microwave emission of that source was associated with the jet and not with the associated small flare.

  19. Influence of coronal holes on CMEs in causing SEP events

    NASA Astrophysics Data System (ADS)

    Shen, Cheng-Long; Yao, Jia; Wang, Yu-Ming; Ye, Pin-Zhong; Zhao, Xue-Pu; Wang, Shui

    2010-10-01

    The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events.

  20. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  1. Observations of the birth of a small coronal hole

    NASA Technical Reports Server (NTRS)

    Solodyna, C. V.; Krieger, A. S.; Nolte, J. T.

    1977-01-01

    Using soft X-ray data from the S-054 X-ray spectrographic telescope aboard Skylab, we observed temporal changes in the emission structure of the X-ray corona associated with the birth of a small coronal hole. Designated as CH6, this coronal hole was born near the equator in a time interval less than 9-1/2 hr. By constructing a light curve for a point near the center of CH6, we observed a sudden 40% decrease in X-ray emission associated with the birth of this coronal hole. On a time scale of hours, the growth of CH6 in area proceeded faster than the average rate predicted by the diffusion of solar fields. The short term decay of CH6 followed the diffusive rate to within experimental uncertainty. On a time scale of one rotation, the subsequent development of CH6 was not consistent with steady growth at the average rate predicted by diffusion.

  2. Examining the Properties of Jets in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    We examined both X-ray and Magnetic field data in order to determine if there is a correlation between emerging magnetic flux and the production of Coronal jets. It was proposed that emerging flux can be a trigger to a coronal jet. The jet is thought to be caused when local bipoles reconnect or when a region of magnetic polarity emerges through a uniform field. In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was centered on the disk. Of the 15 that we studied 6 were shown to have an increase of magnetic flux within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  3. Observations of the birth of a small coronal hole

    NASA Technical Reports Server (NTRS)

    Solodyna, C. V.; Krieger, A. S.; Nolte, J. T.

    1977-01-01

    Using soft X-ray data from the S-054 X-ray spectrographic telescope aboard Skylab, we observed temporal changes in the emission structure of the X-ray corona associated with the birth of a small coronal hole. Designated as CH6, this coronal hole was born near the equator in a time interval less than 9-1/2 hr. By constructing a light curve for a point near the center of CH6, we observed a sudden 40% decrease in X-ray emission associated with the birth of this coronal hole. On a time scale of hours, the growth of CH6 in area proceeded faster than the average rate predicted by the diffusion of solar fields. The short term decay of CH6 followed the diffusive rate to within experimental uncertainty. On a time scale of one rotation, the subsequent development of CH6 was not consistent with steady growth at the average rate predicted by diffusion.

  4. Characterizing the Properties of Coronal Magnetic Null Points

    NASA Astrophysics Data System (ADS)

    Barnes, Graham; DeRosa, Marc; Wagner, Eric

    2015-08-01

    The topology of the coronal magnetic field plays a role in a wide range of phenomena, from Coronal Mass Ejections (CMEs) through heating of the corona. One fundamental topological feature is the null point, where the magnetic field vanishes. These points are natural sites of magnetic reconnection, and hence the release of energy stored in the magnetic field. We present preliminary results of a study using data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory to characterize the properties and evolution of null points in a Potential Field Source Surface model of the coronal field. The main properties considered are the lifetime of the null points, their distribution with height, and how they form and subsequently vanish.This work is supported by NASA/LWS Grant NNX14AD45G, and by NSF/SHINE grant 1357018.

  5. Extreme-ultraviolet observations of global coronal wave rotation

    SciTech Connect

    Attrill, G. D. R.; Long, D. M.; Green, L. M.; Harra, L. K.; Van Driel-Gesztelyi, L.

    2014-11-20

    We present evidence of global coronal wave rotation in EUV data from SOHO/EIT, STEREO/EUVI, and SDO/AIA. The sense of rotation is found to be consistent with the helicity of the source region (clockwise for positive helicity, anticlockwise for negative helicity), with the source regions hosting sigmoidal structures. We also study two coronal wave events observed by SDO/AIA where no clear rotation (or sigmoid) is observed. The selected events show supporting evidence that they all originate with flux rope eruptions. We make comparisons across this set of observations (both with and without clear sigmoidal structures). On examining the magnetic configuration of the source regions, we find that the nonrotation events possess a quadrupolar magnetic configuration. The coronal waves that do show a rotation originate from bipolar source regions.

  6. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    NASA Astrophysics Data System (ADS)

    Kliem, Bernhard; Green, L. M.

    2009-12-01

    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  7. Coronal Activity in the R CrA T Association

    NASA Technical Reports Server (NTRS)

    Patten, Brian M.; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    For this project we intend to extract net counts and variability information for the X-ray sources found in 9 archival ROSAT PSPC and 6 archival ROSAT HRI images in the region of the R CrA T association. These data will be merged with an extensive database of optical photometry and spectroscopy plus published near-infrared photometry to (1) identify new association members and (2) derive, for the first time, an accurate coronal luminosity function for the T Tauri members of this T association. These data will be used to make direct comparisons between the coronal luminosity functions for other T associations and those of large clusters to assess (a) the importance of the star-formation environment in initial coronal activity levels, (b) the effects of PMS evolution on dynamo activity as a function of mass and age, and (c) the level of contamination by field post-T Tauri stars on association membership surveys.

  8. Coronal Loop Evolution Observed with AIA and Hi-C

    NASA Technical Reports Server (NTRS)

    Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.; Weber, M.

    2012-01-01

    Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.

  9. Shock Formation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred; Suess, Steve; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We investigate the height of shock formation in coronal plumes for slow magnetosonic waves. The models take into account plume geometric spreading, heat conduction, and radiative damping. The wave parameters as well as the spreading functions of the plumes and the base magnetic field strengths are given by empirical constraints mostly from Solar and Heliospheric Observatory (SOHO)/ Ultraviolet Coronograph Spectrometer (UVCS), Extreme Ultraviolet Imaging Telescope (EIT), Michelson Doppler Imager (MDI), and Large Angle Spectrometric Coronagraph (LASCO). Our models show that shock formation occurs at relatively low coronal heights, typically within 1.2 RsuN, depending on the model parameters. The shock formation is calculated using the well-established wave breaking criterion given by the intersection of C+ characteristics in the space-time plane. Our models show that shock heating by slow magnetosonic waves is expected to be relevant at most heights in solar coronal plumes, although such waves are probably not the main energy supply mechanism.

  10. Shock Formation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred; Suess, Steven T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We investigate the height of shock formation in coroner plumes for slow magnetosonic waves. The models take into account plume geometric spreading, heat conduction and radiative damping. The wave parameters as well as the spreading functions of the plumes and the base magnetic field strengths are given by empirical constraints mostly from Solar and Heliospheric Observatory/Ultraviolet Coronagraph Spectrometer (SOHO/UVCS). Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 solar radius, depending on the model parameters. The shock formation is calculated using the well-established wave breaking condition given by the intersection of C+ characteristics in the space-time plane. Our models show that shock heating by slow magnetosonic waves is expected to be relevant at most heights in solar coronal plumes, although slow magnetosonic waves are most likely not a solely operating energy supply mechanism.

  11. The quasi-rigid rotation of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.; Shampine, L. R.

    1988-01-01

    Spherical harmonic analysis and numerical simulations are used to study the rotational properties of the coronal magnetic field under the assumption that it can be approximated by a current-free extension of the photospheric field. It is found that the rotation rate in the outer corona is determined, principally, by coronal filtering, the global averages of the photospheric rotation rate, and ongoing source eruptions. The present model is able to account for observationally inferred rotational properties. It is suggested that the coronal rotation rate accelerates gradually due to the equatorward migration of sunspots, and that the 27-day equatorial period is approached toward sunspot minimum as the decaying photospheric flux becomes localized near the equator.

  12. Coronal Activity in the R CrA T Association

    NASA Technical Reports Server (NTRS)

    Patten, Brian M.; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    For this project we intend to extract net counts and variability information for the X-ray sources found in 9 archival ROSAT PSPC and 6 archival ROSAT HRI images in the region of the R CrA T association. These data will be merged with an extensive database of optical photometry and spectroscopy plus published near-infrared photometry to (1) identify new association members and (2) derive, for the first time, an accurate coronal luminosity function for the T Tauri members of this T association. These data will be used to make direct comparisons between the coronal luminosity functions for other T associations and those of large clusters to assess (a) the importance of the star-formation environment in initial coronal activity levels, (b) the effects of PMS evolution on dynamo activity as a function of mass and age, and (c) the level of contamination by field post-T Tauri stars on association membership surveys.

  13. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  14. Shock Formation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred; Suess, Steve; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We investigate the height of shock formation in coronal plumes for slow magnetosonic waves. The models take into account plume geometric spreading, heat conduction, and radiative damping. The wave parameters as well as the spreading functions of the plumes and the base magnetic field strengths are given by empirical constraints mostly from Solar and Heliospheric Observatory (SOHO)/ Ultraviolet Coronograph Spectrometer (UVCS), Extreme Ultraviolet Imaging Telescope (EIT), Michelson Doppler Imager (MDI), and Large Angle Spectrometric Coronagraph (LASCO). Our models show that shock formation occurs at relatively low coronal heights, typically within 1.2 RsuN, depending on the model parameters. The shock formation is calculated using the well-established wave breaking criterion given by the intersection of C+ characteristics in the space-time plane. Our models show that shock heating by slow magnetosonic waves is expected to be relevant at most heights in solar coronal plumes, although such waves are probably not the main energy supply mechanism.

  15. Coronal element abundances derived from solar energetic particles

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1994-01-01

    The large gradual solar-energetic-particle (SEP) events, where abundances are commonly measured, are produced when coronal mass ejections (CMEs) drive shock waves through the corona and the interplanetary medium. The shock accelerates particles from the highly-ionized, approximately 1.5 MK, plasma in a manner that depends only weakly upon the Q/A of the ion, except at very high energies. Averaging the approximately 1 MeV/amu abundances over many events compensates for the acceleration effects to produce abundances that appear to correspond directly to those in the coronal source for all observed elements, including H. The resulting abundances reflect the 4 x enhancement of ions with low values of first ionization potential (FIP) arising from ion-neutral fractionation that occurs as the atoms are transported up from the photosphere. A different pattern of fractionation is found for ions that are shock-accelerated from the high speed solar wind emerging from coronal holes.

  16. Using Coronal Hole Maps to Constrain MHD Models

    NASA Astrophysics Data System (ADS)

    Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran

    2017-08-01

    In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.

  17. Coronal hole differential rotation rate observed with SWICS/Ulysses

    NASA Astrophysics Data System (ADS)

    Zurbuchen, Th.; Bochsler, P.; von Steiger, R.

    1996-07-01

    We discuss the latitude variation of the coronal hole differential rotation investigating persistent structures in high speed streams as observed from SWICS Ulysses during its first passage of the southern polar hole in 1993-1994. We find a slower rotation rate near the ecliptic than what is inferred from averaged photospheric features, e.g. from sunspots. At intermediate latitudes we find a rate similar to the equatorial rotation rate indicating a quasi-rigid rotation of the polar coronal hole. At latitudes >65° no persistent structures to determine the polar rotation have been observed. For the passage of the southern heliosphere in 1993/94 we find a latitudinal dependence of the sidereal rotation rate of the coronal hole which can be approximated by ωSW=[13.13+1.94 sin2(Θ)]°/day, where Θ denotes the solar latitude.

  18. Identification of the Coronal Sources of the Fast Solar Wind.

    PubMed

    Giordano; Antonucci; Noci; Romoli; Kohl

    2000-03-01

    The present spectroscopic study of the ultraviolet coronal emission in a polar hole, detected on 1996 April 6-9 with the Ultraviolet Coronagraph Spectrometer aboard the Solar and Heliospheric Observatory spacecraft, identifies the interplume lanes and background coronal hole regions as the channels in which the fast solar wind is preferentially accelerated. In interplume lanes, at heliocentric distance 1.7 R middle dot in circle, the corona expands at a rate between 105 and 150 km s-1, that is, much faster than in plumes in which the outflow velocity is between 0 and 65 km s-1. The wind velocity is inferred from the Doppler dimming of the O vi lambdalambda1032, 1037 lines, within a range of values, whose lower and upper limit corresponds to anisotropic and isotropic velocity distribution of the oxygen coronal ions, respectively.

  19. SIMULATIONS OF SOLAR JETS CONFINED BY CORONAL LOOPS

    SciTech Connect

    Wyper, P. F.; DeVore, C. R. E-mail: c.richard.devore@nasa.gov

    2016-03-20

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.

  20. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  1. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop Hα macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Å snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T ~ 104 - 105 K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  2. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  3. Two Coronal Holes on the Sun Viewed by SDO

    NASA Image and Video Library

    2017-09-28

    NASA’s Solar Dynamics Observatory, or SDO, captured this solar image on March 16, 2015, which clearly shows two dark patches, known as coronal holes. The larger coronal hole of the two, near the southern pole, covers an estimated 6- to 8-percent of the total solar surface. While that may not sound significant, it is one of the largest polar holes scientists have observed in decades. The smaller coronal hole, towards the opposite pole, is long and narrow. It covers about 3.8 billion square miles on the sun - only about 0.16-percent of the solar surface. Coronal holes are lower density and temperature regions of the sun’s outer atmosphere, known as the corona. Coronal holes can be a source of fast solar wind of solar particles that envelop the Earth. The magnetic field in these regions extends far out into space rather than quickly looping back into the sun’s surface. Magnetic fields that loop up and back down to the surface can be seen as arcs in non-coronal hole regions of the image, including over the lower right horizon. The bright active region on the lower right quadrant is the same region that produced solar flares last week. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. THE CORONAL ABUNDANCES OF MID-F DWARFS

    SciTech Connect

    Wood, Brian E.; Laming, J. Martin

    2013-05-10

    A Chandra spectrum of the moderately active nearby F6 V star {pi}{sup 3} Ori is used to study the coronal properties of mid-F dwarfs. We find that {pi}{sup 3} Ori's coronal emission measure distribution is very similar to those of moderately active G and K dwarfs, with an emission measure peak near log T = 6.6 seeming to be ubiquitous for such stars. In contrast to coronal temperature, coronal abundances are known to depend on spectral type for main sequence stars. Based on this previously known relation, we expected {pi}{sup 3} Ori's corona to exhibit an extremely strong ''first ionization potential (FIP) effect'', a phenomenon first identified on the Sun where elements with low FIP are enhanced in the corona. We instead find that {pi}{sup 3} Ori's corona exhibits a FIP effect essentially identical to that of the Sun and other early G dwarfs, perhaps indicating that the increase in FIP bias toward earlier spectral types stops or at least slows for F stars. We find that {pi}{sup 3} Ori's coronal characteristics are significantly different from two previously studied mid-F stars, Procyon (F5 IV-V) and {tau} Boo (F7 V). We believe {pi}{sup 3} Ori is more representative of the coronal characteristics of mid-F dwarfs, with Procyon being different because of luminosity class, and {tau} Boo being different because of the effects of one of two close companions, one stellar ({tau} Boo B: M2 V) and one planetary.

  5. The calcium K-line network in coronal holes

    NASA Technical Reports Server (NTRS)

    Marsh, K. A.

    1977-01-01

    Microphotometry of calcium K-line photographs in the regions of polar coronal holes shows that the chromospheric network exterior to a hole has a slightly broader intensity distribution than that inside the hole itself, a fact which can be attributed to a greater number of bright network elements outside the hole. These bright elements presumably represent the enhanced network resulting from the dispersal of magnetic flux from old active regions, a hypothesis which is consistent with current ideas of coronal-hole formation.

  6. Preliminary results from SPARTAN 201: coronal streamer observations

    NASA Astrophysics Data System (ADS)

    Strachan, L.; Gardner, L. D.; Hassler, D. M.; Kohl, J. L.

    1994-10-01

    The Ultraviolet Coronal Spectrometer on Spartan 201 obtained measurements of HI Ly α line profiles and O VI λ103.2/103.7 nm integrated intensities in a helmet streamer. Similar measurements were made on the solar disk to characterize the incident radiation which is the source for the resonantly scattered component of the lines. A description of the H I Ly α observations in the streamer will be presented. A more complete physical description of the observed coronal regions will become available after the analysis of additional data from coordinated observations made by visible coronagraphs and x-ray telescopes.

  7. Employing analogies for ducted MHD waves in dense coronal structures

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1988-01-01

    Analogies of fast MHD waves propagating along a dense coronal structure are exploited to examine how the size and shape of the inhomogeneity affect the properties of the Love- and Pekeris-type waves. The profile's shape determines the dispersive nature of the waves. Excited impulsively, magnetic Love and Pekeris waves give rise to quasi-periodic oscillations with a duration and time scale that depend on the cross-sectional area and strength of the inhomogeneity. More diffuse coronal inhomogeneities support impulsively generated periodic oscillations, with the quasi-periodic signature being absent.

  8. Coronal mass ejections and magnetic flux ropes in interplanetary space

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1990-01-01

    Coronal mass ejections (CMEs) are formed in the solar corona by the ejection of material from closed field regions that were not previously participating in the solar wind expansion. CMEs commonly exhibit a signature consisting of a counterstreaming flux of suprathermal electrons with energies above about 80 eV, indicating closed field structures that are either rooted at both ends in the sun or entirely disconnected from it. About 30 percent of all CME events at 1 AU exhibit large, coherent internal field rotations typical of magnetic flux ropes. It is suggested that interplanetary magnetic flux ropes form as a result of reconnection within rising, previously sheared coronal magnetic loops.

  9. Quasi-static evolution of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Longcope, D. W.; Sudan, R. N.

    1992-01-01

    A formalism is developed to describe the purely quasi-static part of the evolution of a coronal loop driven by its footpoints. This is accomplished under assumptions of a long, thin loop. The quasi-static equations reveal the possibility for sudden 'loss of equilibrium' at which time the system evolves dynamically rather than quasi-statically. Such quasi-static crises produce high-frequency Alfven waves and, in conjunction with Alfven wave dissipation models, form a viable coronal heating mechanism. Furthermore, an approximate solution to the quasi-static equations by perturbation method verifies the development of small-scale spatial current structure.

  10. Solwind observations of coronal mass ejections during 1979-1985

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Howard, R. A.; Koomen, M. J.; Michels, D. J.

    1986-01-01

    Coronal observations have been processed for parts of each year during the interval 1979-1985. Around sunspot maximum, coronal mass ejections (CMEs) occurred at the rate of approximately 2 per day, and had a wide range of physical and morphological properties. During the recent years of relatively low sunspot number, CMEs occurred at the rate of only 0.2 per day, and were dominated by the class of so-called streamer blowout. These special CMEs maintained a nearly constant occurrence rate of roughly 0.1 per day during the entire interval.

  11. UVCS/SOHO empirical models of solar coronal holes

    NASA Technical Reports Server (NTRS)

    Cranmer, S. R.; Kohl, J. L.; Noci, G.; Strachan, L.; Panasyuk, A. V.; Romoli, M.; Fineschi, S.; Dobrzycka, D.; Raymond, J. C.; Suleiman, R. M.; ONeal, R. H.

    1997-01-01

    A self-consistent empirical model for the major plasma parameters in a solar-minimum coronal hole was developed using the ultraviolet coronagraph spectrometer (UVCS) operating onboard the Solar and Heliospheric Observatory (SOHO). The radial and latitudinal distribution of density, velocity, and kinetic temperature for electrons, neutral hydrogen, and ionized oxygen was obtained. The data were acquired during November 1996 and April 1997. The model provides experimental values which can be used to constrain theoretical models of the fast solar wind. The implications on various models of coronal heating and acceleration are discussed.

  12. A Doppler dimming determination of coronal outflow velocity

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Kohl, John L.; Weiser, Heinz; Withbroe, George L.; Munro, Richard H.

    1993-01-01

    Outflow velocities in a polar coronal hole are derived from observations made during a 1982 sounding rocket flight. The velocity results are derived from a Doppler dimming analysis of resonantly scattered H I Ly-alpha. This analysis indicates radial outflow velocities of 217 km/s at 2 solar radii from sun-center with an uncertainty range of 153 to 251 km/s at a confidence level of 67 percent. These results are best characterized as strong evidence for supersonic outflow within 2 solar radii of sun-center in a polar coronal hole. Several means for obtaining improved accuracy in future observations are discussed.

  13. Predicting Ly-alpha intensities in coronal streamers

    NASA Technical Reports Server (NTRS)

    Noci, Giancarlo; Poletto, Giannina; Suess, Steven T.; Wang, A.-H.; Wu, S. T.

    1992-01-01

    SOHO (Solar and Heliospheric Observatory) UVCS (Ultraviolet Coronagraph Spectrometer) will make long term observations of coronal streamers in UV lines, providing a new tool for the analysis of structures which have been known for decades but are still far from being adequately described. Work to evaluate the Lyman alpha brightness of coronal streamers is reported, adopting the streamer models obtained, via a time dependent numerical relaxation technique. This will yield understanding on the role of geometric versus physical factors in determining the streamer lyman alpha intensity and provide guidelines for UVCS observational operations. Future prospects along this line of research are summarized.

  14. Self-organized braiding in solar coronal loops

    NASA Astrophysics Data System (ADS)

    Berger, M. A.; Asgari-Targhi, M.; Deluca, E. E.

    2015-08-01

    In this paper, we investigate the evolution of braided solar coronal loops. We assume that coronal loops consist of several internal strands which twist and braid about each other. Reconnection between the strands leads to small flares and heating of the loop to x-ray temperatures. Using a method of generating and releasing braid structure similar to a forest fire model, we show that the reconnected field lines evolve to a self-organised critical state. In this state, the frequency distributions of coherent braid sequences as well as flare energies follow power law distributions. We demonstrate how the presence of net helicity in the loop alters the distribution laws.

  15. Parametric interaction of coronal loops with p modes

    NASA Astrophysics Data System (ADS)

    Stepanov, A. V.; Zaitsev, V. V.; Kisliakov, A. G.; Urpo, S.

    2009-03-01

    Parametric resonance between p modes and eigenoscillations of coronal loops is studied. Observations of solar radio bursts revealed this effect in simultaneous excitation of loop oscillations with periods corresponding to the pumping-up frequency (5 min), subharmonic (10 min), and to the first upper frequency of parametric resonance (3.3 min). An interpretation in terms of a coronal magnetic loop as an equivalent electric circuit is given. Parametric resonance can work as a channel for transfer of energy from photospheric motions to stellar coronae.

  16. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    NASA Astrophysics Data System (ADS)

    Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin

    2017-06-01

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  17. Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Verena; Peleikis, Thies; Kruse, Martin; Berger, Lars; Wimmer-Schweingruber, Robert F.

    2017-07-01

    Context. The Sun is a highly dynamic environment that exhibits dynamic behavior on many different timescales. Variability is observed both in closed and in open field line regions in the solar corona. In particular, coronal holes exhibit temporal and spatial variability. Signatures of these coronal dynamics are inherited by the coronal hole wind streams that originate in these regions and can effect the Earth's magnetosphere. Both the cause of the observed variabilities and how these translate to fluctuations in the in situ observed solar wind is not yet fully understood. Aims: During solar activity minimum the structure of the magnetic field typically remains stable over several Carrington rotations (CRs). But how stable is the solar magnetic field? Here, we address this question by analyzing the evolution of a coronal hole structure and the corresponding coronal hole wind stream emitted from this source region over 12 consecutive CRs in 2006. Methods: To this end, we link in situ observations of Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) with synoptic maps of Michelson Doppler imager (MDI) on the Solar and Heliospheric Observatory (SOHO) at the photospheric level through a combination of ballistic back-mapping and a potential field source surface (PFSS) approach. Together, these track the evolution of the open field line region that is identified as the source region of a recurring coronal hole wind stream. Under the assumptions of the freeze-in scenario for charge states in the solar wind, we derive freeze-in temperatures and determine the order in which the different charge state ratios of ion pairs appear to freeze-in. We call the combination of freeze-in temperatures derived from in situ observed ion density ratios and freeze-in order a minimal electron temperature profile and investigate its variability. Results: The in situ properties and the PFSS model together probe the lateral magnetic field

  18. A new way to convert Alfven waves into heat in solar coronal holes - Intermittent magnetic levitation

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.

    1992-01-01

    In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.

  19. Turbulent coronal heating mechanisms: coupling of dynamics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Einaudi, G.; Rappazzo, A. F.; Velli, M.

    2012-08-01

    Context. Photospheric motions shuffle the footpoints of the strong axial magnetic field that threads coronal loops, which gives rise to turbulent nonlinear dynamics that are characterized by the continuous formation and dissipation of field-aligned current sheets in which energy is deposited at small-scales and the heating occurs. Previous studies showed that the current sheet thickness is several orders of magnitude smaller than present-day state-of-the-art observational resolution (~700 km). Aims: To understand coronal heating and correctly interpret observations it is crucial to study the thermodynamics of such a system in which energy is deposited at unresolved small-scales. Methods: Fully compressible three-dimensional magnetohydrodynamic simulations were carried out to understand the thermodynamics of coronal heating in the magnetically confined solar corona. Results: We show that temperature is highly structured at scales below observational resolution. It is also nonhomogeneously distributed so that only a fraction of the coronal mass and volume is heated at each time. Conclusions: This is a multi-thermal system in which hotter and cooler plasma strands are also found next to each other at sub-resolution scales and exhibit a temporal dynamics.

  20. Coronal Activity in the R CrA T Association

    NASA Astrophysics Data System (ADS)

    Patten, Brian M.; Oliversen, Ronald J.

    2005-09-01

    Brian Patten is the Principal Investigator of the NASA ROSS-ADP project Coronal Activity in the R CrA T Association. For this project we have extracted net counts and variability information for all of the X-ray sources found in 23 archival ROSAT PSPC and HRI images in the region of the R CrA T association. These data have been merged with an extensive database of optical and near-infrared photometry, optical spectroscopy, and parallax data. These data have been used to (1) identify new association members and clarify the membership status of a number of previously suspected members of the association, and (2) derive, for the first time, an accurate coronal luminosity function for the T Tauri members of this T association and make direct comparisons between the coronal luminosity functions for other T associations and those of large clusters. We have used our survey data to assess (a) the importance of the star-formation environment in initial coronal activity levels, (b) the effects of PMS evolution on dynamo activity as a function of mass and age, and (c) the level of contamination by field post-T Tauri stars on association membership surveys.

  1. Measurements of outflow from the base of solar coronal holes

    NASA Technical Reports Server (NTRS)

    Rottman, G. J.; Orrall, F. Q.; Klimchuk, J. A.

    1982-01-01

    New evidence is presented that EUV emission lines formed at the levels of the base of the corona and the transition region are systematically shifted to shorter wavelengths within coronal holes relative to the rest of the solar disk, and that moreover this shift increases with height in the atmosphere. Measurements were made with a rocket-borne EUV spectrometer having high spectroscopic resolution and stability flown on July 15, 1980. Repeated measurements were made along a chord of the solar disk that crossed a compact coronal hole near sun center identified on gamma 10830 He I spectroheliograms. The maximum measured shift corresponded to a velocity of 12 km/sec in gamma 625 Mg X and 7 km/sec in gamma 629 O V. If these velocities correspond to a true mass flux, they provide important data on the acceleration of coronal plasma in open magnetic field regions. These observed Doppler displacements are a strong and significant signature of coronal holes, now measured on three rocket flights.

  2. Investigation of Coronal Large Scale Structures Utilizing Spartan 201 Data

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Madhulika

    1998-01-01

    Two telescopes aboard Spartan 201, a small satellite has been launched from the Space Shuttles, on April 8th, 1993, September 8th, 1994, September 7th, 1995 and November 20th, 1997. The main objective of the mission was to answer some of the most fundamental unanswered questions of solar physics-What accelerates the solar wind and what heats the corona? The two telescopes are 1) Ultraviolet Coronal Spectrometer (UVCS) provided by the Smithsonian Astrophysical Observatory which uses ultraviolet emissions from neutral hydrogen and ions in the corona to determine velocities of the coronal plasma within the solar wind source region, and the temperature and density distributions of protons and 2) White Light Coronagraph (WLC) provided by NASA's Goddard Space Flight Center which measures visible light to determine the density distribution of coronal electrons within the same region. The PI has had the primary responsibility in the development and application of computer codes necessary for scientific data analysis activities, end instrument calibration for the white-light coronagraph for the entire Spartan mission. The PI was responsible for the science output from the WLC instrument. PI has also been involved in the investigation of coronal density distributions in large-scale structures by use of numerical models which are (mathematically) sufficient to reproduce the details of the observed brightness and polarized brightness distributions found in SPARTAN 201 data.

  3. Solar coronal non-thermal processes (Solar Maximum Mission)

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1983-01-01

    The Solar Maximum Mission was used to study solar coronal phenomena in hard X-radiation, since its instrument complement included the first solar hard X-ray telescope. Phenomena related to those discovered from OSO-5 and OSO-7 observations were emphasized.

  4. First record of Culex (Culex) coronator in Louisiana, USA.

    PubMed

    Debboun, Mustapha; Kuhr, Dennis D; Rueda, Leopoldo M; Pecor, James E

    2005-12-01

    The 1st confirmed record of Culex coronator for Louisiana was made at Fort Polk, LA, from carbon dioxide-baited light trap and gravid trap collections performed from April to October 2004. In addition to the new record, 17 mosquito species in 5 genera (Aedes, Anopheles, Coquillettidia, Culex, and Psorophora) were collected. Collection-site and species distribution data are included.

  5. More Macrospicule Jets in On-Disk Coronal Holes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  6. What can observations tell us about coronal heating?

    PubMed

    Schmelz, J T; Winebarger, A R

    2015-05-28

    The actual source of coronal heating is one of the longest standing unsolved mysteries in all of astrophysics, but it is only in recent years that observations have begun making significant contributions. Coronal loops, their structure and sub-structure, their temperature and density details, and their evolution with time, may hold the key to solving this mystery. Because spatial resolution of current observatories cannot resolve fundamental scale lengths, information about the heating of the corona must be inferred from indirect observations. Loops with unexpectedly high densities and multi-thermal cross-field temperatures were not consistent with results expected from steady uniform heating models. The hot (T>5 MK) plasma component of loops may also be a key observation; a new sounding rocket instrument called the Marshall Grazing Incidence X-ray Spectrometer will specifically target this observable. Finally, a loop is likely to be a tangle of magnetic strands. The High Resolution Coronal Imager observed magnetic braids untwisting and reconnecting, dispersing enough energy to heat the surrounding plasma. The existence of multi-thermal, cooling loops and hot plasma provides observational constraints that all viable coronal heating models will need to explain.

  7. Two types of coronal bright points their characteristics, and evolution

    NASA Astrophysics Data System (ADS)

    Sattarov, Isroil; Karachik, Nina V.; Sherdanov, Chori T.; Tillaboev, Azlarxon M.; Pevtsov, Alexei A.

    2011-08-01

    Using maximum brightness of coronal bright point's (CBP) as a criterion, we separate them on two categories: dim CBPs, associated with areas of a quiet Sun, and bright CBPs, associated with an active Sun. This study reports on characteristics of two types of CBPs and their evolution.

  8. Competition between shock and turbulent heating in coronal loop system

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma

    2016-11-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of this study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 per cent of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in this study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  9. Coronal Activity in the R CrA T Association

    NASA Technical Reports Server (NTRS)

    Patten, Brian M.; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    Brian Patten is the Principal Investigator of the NASA ROSS-ADP project Coronal Activity in the R CrA T Association. For this project we have extracted net counts and variability information for all of the X-ray sources found in 23 archival ROSAT PSPC and HRI images in the region of the R CrA T association. These data have been merged with an extensive database of optical and near-infrared photometry, optical spectroscopy, and parallax data. These data have been used to (1) identify new association members and clarify the membership status of a number of previously suspected members of the association, and (2) derive, for the first time, an accurate coronal luminosity function for the T Tauri members of this T association and make direct comparisons between the coronal luminosity functions for other T associations and those of large clusters. We have used our survey data to assess (a) the importance of the star-formation environment in initial coronal activity levels, (b) the effects of PMS evolution on dynamo activity as a function of mass and age, and (c) the level of contamination by field post-T Tauri stars on association membership surveys.

  10. The sources of material comprising a mass ejection coronal transient

    NASA Technical Reports Server (NTRS)

    Hildner, E.; Gosling, J. T.; Hansen, R. T.; Bohlin, J. D.

    1975-01-01

    The origin of the material ejected during a white-light coronal transient on August 26 and 27, 1973, is investigated using simultaneous observations of a slowly ascending prominence and the more rapid accompanying coronal transient. Nearly identical simultaneous images of the prominence were obtained over a six-hour period in the H-alpha and He II (304 A) emission lines; contemporaneous Skylab coronograph observations over approximately 1.5 hours showed that the mass-ejection coronal transient rose above the ascending prominence. Based on analysis of these observations, it is concluded that: (1) the bulk of the ejected material originated in the lower corona, despite the lack of an observed depletion there; (2) the material in the transient was at coronal temperature and was visible in polarized radiation due to Thomson scattering of photospheric light by free electrons; and (3) the total event was far larger, more energetic, and longer lasting than would have been inferred from the prominence observations alone.

  11. On-disk Observations of Macrospicules in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Yamauchi, Y.; Wang, H.; Moore, R. L.

    2004-05-01

    Small-scale solar dynamics, e.g., spicules and macrospicules, in coronal holes are believed to play an important role in the coronal heating and solar wind acceleration. Since photospheric magnetic flux observations have shown that there is a small fraction of opposite polarity in the coronal holes [e.g., DeForest et al., 1997, Sol. Phys., v175(2), 393-410], network magnetic fields in supergranule boundary are likely to be the most important factors responsible for the dynamics. However, the formation mechanism of macrospicules remains controversial, in particular in the relation with magnetic field arrangement at the base of macrospicules. At the last SPD meeting, from H-alpha limb observations from Big Bear Solar Observatory (BBSO), we reported that most macrospicules have one or the other of two forms, that of an erupting loop or that of a spiked jet. Each of these magnetic structural forms indicates that the macrospicule is rooted in mixed polarity magnetic flux [Yamauchi et al 2004, ApJ, in press]. Here, we have investigated BBSO on-disk H-alpha and magnetic data in coronal holes to find the disk counterparts of each type of macrospicules on the limb, such as microflares, mini-filament eruptions, or H-alpha jets. We will report results from the analysis and discuss the production of macrospicules in relation to the polarity arrangement and evolution of the network magnetic flux.

  12. OBSERVATIONAL SIGNATURES OF THE CORONAL KINK INSTABILITY WITH THERMAL CONDUCTION

    SciTech Connect

    Botha, G. J. J.; Arber, T. D.; Srivastava, Abhishek K. E-mail: T.D.Arber@warwick.ac.uk

    2012-01-20

    It is known from numerical simulations that thermal conduction along magnetic field lines plays an important role in the evolution of the kink instability in coronal loops. This study presents the observational signatures of the kink instability in long coronal loops when parallel thermal conduction is included. The three-dimensional nonlinear magnetohydrodynamic equations are solved numerically to simulate the evolution of a coronal loop that is initially in an unstable equilibrium. The loop has length 80 Mm, width 8 Mm, and an initial maximum twist of {Phi} = 11.5{pi}, where {Phi} is a function of the radius. The initial loop parameters are obtained from a highly twisted loop observed in the Transition Region and Coronal Explorer (TRACE) 171 A wave band. Synthetic observables are generated from the data. These observables include spatial and temporal averaging to account for the resolution and exposure times of TRACE images. Parallel thermal conduction reduces the maximum local temperature by up to an order of magnitude. This means that different spectral lines are formed and different internal loop structures are visible with or without the inclusion of thermal conduction. However, the response functions sample a broad range of temperatures. The result is that the inclusion of parallel thermal conductivity does not have as large an impact on observational signatures as the order of magnitude reduction in the maximum temperature would suggest; the net effect is a blurring of internal features of the loop structure.

  13. Extension of the Polar Coronal Hole Boundary into Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Woo, R.; Habbal, S. R.; Howard, R. A.; Korendyke, C. M.

    1998-01-01

    White-light measurements made by the Mk III Mauna Loa K-coronameter and the SOHO LASCO C2 and C3 coronagraphs, extending from 1.15 to 30 Ro, have been combined to show that the boundaries of polar coronal holes, as determined by measurements of path-integrated density, extend approximately radially into interplanetery space.

  14. Coronal Activity in the R CrA T Association

    NASA Technical Reports Server (NTRS)

    Patten, Brian M.; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    Brian Patten is the Principal Investigator of the NASA ROSS-ADP project Coronal Activity in the R CrA T Association. For this project we have extracted net counts and variability information for all of the X-ray sources found in 23 archival ROSAT PSPC and HRI images in the region of the R CrA T association. These data have been merged with an extensive database of optical and near-infrared photometry, optical spectroscopy, and parallax data. These data have been used to (1) identify new association members and clarify the membership status of a number of previously suspected members of the association, and (2) derive, for the first time, an accurate coronal luminosity function for the T Tauri members of this T association and make direct comparisons between the coronal luminosity functions for other T associations and those of large clusters. We have used our survey data to assess (a) the importance of the star-formation environment in initial coronal activity levels, (b) the effects of PMS evolution on dynamo activity as a function of mass and age, and (c) the level of contamination by field post-T Tauri stars on association membership surveys.

  15. Gravitational Steady States of Coronal Loops as Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Sugiyama, L.; Asgari-Targhi, M.

    2016-12-01

    Many coronal loops observed on the surface of the sun appear to bemagnetic flux ropes containing plasma, with ends tied in the photosphere. Different types of loops contribute to important solar processes, but relatively little is known about their configuration.Like all toroidal confined, curved plasmas carrying current,they are intrinsically unstable to expansion in major radius.Consistent 3D MHD steady states are derived for the coronal partof the loop, including non-negligible effects due to the plasma pressure and solar gravity. Most loops have relativelyslender inverse aspect ratios ɛ =a/R≤ 1.For predominantly simple, non-helical loops, three gravitationally stabilized asymptotic solutions can be foundthat can be related to toroidal magnetically confined plasams.Comparison to observations shows thattwo solutions bracket the observed heights R<108m of the common thin coronal loops (ɛ ˜ 0.02) in solar active regions.The third solution better describes the fatter loops (ɛ ˜ 0.1)that sometimes appear along the magnetic neutral line in an active regionand grow to produce solar flares or coronal mass ejections.Since radial expansion is higher order than the basic flux ropeconfinement, the states also approximately describe radially unstable loops over similar heights.The solutions can also be generalized to other stabilizing mechanismsand may provide a useful basis for studies of loop dynamics.

  16. Initiation of Coronal Mass Ejections by Tether-Cutting Reconnection

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present and interpret examples of the eruptive motion and flare brightening observed in the onset of magnetic explosions that produce coronal mass ejections. The observations are photospheric magnetograms and sequences of coronal and/or chromospheric images. In our examples, the explosion is apparently driven by the ejective eruption of a sigmoidal sheared-field flux rope from the core of an initially closed bipole. This eruption is initiated (triggered and unleashed) by reconnection located either (1) internally, low in the sheared core field, or (2) externally, at a magnetic null above the closed bipole. The internal reconnection is commonly called 'tether-cutting" reconnection, and the external reconnection is commonly called "break-out' reconnection. We point out that break-out reconnection amounts to external tether cutting. In one example, the eruptive motion of the sheared core field starts several minutes prior to any detectable brightening in the coronal images. We suggest that in this case the eruption is triggered by internal tether-cutting reconnection that at first is too slow and/or too localized to produce detectable heating in the coronal images. This work is supported by NASA's Office of Space Science through its Solar & Heliospheric Physics Supporting Research & Technology program and its Sun-Earth Connection Guest Investigator program.

  17. Arthroscopic Treatment of Medial Femoral Condylar Coronal Fractures and Nonunions

    PubMed Central

    Ercin, Ersin; Bilgili, M. Gokhan; Basaran, S. Hakan; Baca, Emre; Kural, Cemal; Avkan, M. Cevdet

    2013-01-01

    Nonunion of medial femoral condylar coronal fractures are uncommon. In neglected Hoffa fractures despite nonunion, there is a risk of missing accompanying ligamentous and intra-articular injuries. Neither preoperative clinical examination nor magnetic resonance imaging showed these injuries before arthroscopy. Arthroscopy before internal fixation gives additional information and changes the surgical protocol for these fractures and nonunions. PMID:24400191

  18. Initiation of Coronal Mass Ejections by Tether-Cutting Reconnection

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present and interpret examples of the eruptive motion and flare brightening observed in the onset of magnetic explosions that produce coronal mass ejections. The observations are photospheric magnetograms and sequences of coronal and/or chromospheric images. In our examples, the explosion is apparently driven by the ejective eruption of a sigmoidal sheared-field flux rope from the core of an initially closed bipole. This eruption is initiated (triggered and unleashed) by reconnection located either (1) internally, low in the sheared core field, or (2) externally, at a magnetic null above the closed bipole. The internal reconnection is commonly called 'tether-cutting" reconnection, and the external reconnection is commonly called "break-out' reconnection. We point out that break-out reconnection amounts to external tether cutting. In one example, the eruptive motion of the sheared core field starts several minutes prior to any detectable brightening in the coronal images. We suggest that in this case the eruption is triggered by internal tether-cutting reconnection that at first is too slow and/or too localized to produce detectable heating in the coronal images. This work is supported by NASA's Office of Space Science through its Solar & Heliospheric Physics Supporting Research & Technology program and its Sun-Earth Connection Guest Investigator program.

  19. Resonant heating - An interpretation of coronal loop data

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.; Sterling, A. C.

    1984-01-01

    It is shown that the resonant heating theory of Hollweg can be used to organize the coronal loop data of Golub et al. (1980). When combined with a reasonable form for the input power spectrum, the resonant heating theory is fully compatible with the loop data.

  20. Heating coronal holes and accelerating the solar wind

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1992-01-01

    The special energy requirements of a coronal hole combined with current knowledge of the limited dissipation of Alfven and fast mode MHD waves in the solar corona suggest a unique source of heat for the coronal hole. The near coronal hole requires approximately 3 - 4 x 10 exp 5 ergs/sq cm s, which can come only from the fluid jets, fast particles, and short period MHD waves from the network activity. The high speed streams of solar wind from coronal holes show that there is substantial heating, of 1 - 2 x 10 exp 5 ergs/sq cm s, beyond the sonic point in the wind, which can come only from the dissipation by thermal conduction of long period (approximately equal or greater than 100 sec) MHD waves from subphotospheric convection. Although the Alfven wave flux from the photosphere is generally taken for granted in the literature, we point out that it is a crucial phenomenon that has yet to be established on either a theoretical or observational scientific basis.