Science.gov

Sample records for abort flight test

  1. Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind

  2. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    NASA Technical Reports Server (NTRS)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  3. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly

  4. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  5. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the

  6. A Flight Dynamics Perspective of the Orion Pad Abort One Flight Test

    NASA Technical Reports Server (NTRS)

    Idicula, Jinu; Williams-Hayes, Peggy S.; Stillwater, Ryan; Yates, Max

    2009-01-01

    The Orion Crew Exploration Vehicle is America s next generation of human rated spacecraft. The Orion Launch Abort System will take the astronauts away from the exploration vehicle in the event of an aborted launch. The pad abort mode of the Launch Abort System will be flight-tested in 2009 from the White Sands Missile Range in New Mexico. This paper examines some of the efforts currently underway at the NASA Dryden Flight Research Center by the Controls & Dynamics group in preparation for the flight test. The concept of operation for the pad abort flight is presented along with an overview of the guidance, control and navigation systems. Preparations for the flight test, such as hardware testing and development of the real-time displays, are examined. The results from the validation and verification efforts for the aerodynamic and atmospheric models are shown along with Monte Carlo analysis results.

  7. The Max Launch Abort System - Concept, Flight Test, and Evolution

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  8. A Proposed Ascent Abort Flight Test for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Gilbert, Michael G.; Starr, Brett R.

    2016-01-01

    The NASA Engineering and Safety Center initiated the Max Launch Abort System (MLAS) Project to investigate alternate crew escape system concepts that eliminate the conventional launch escape tower by integrating the escape system into an aerodynamic fairing that fully encapsulates the crew capsule and smoothly integrates with the launch vehicle. This paper proposes an ascent abort flight test for an all-propulsive towerless escape system concept that is actively controlled and sized to accommodate the Orion Crew Module. The goal of the flight test is to demonstrate a high dynamic pressure escape and to characterize jet interaction effects during operation of the attitude control thrusters at transonic and supersonic conditions. The flight-test vehicle is delivered to the required test conditions by a booster configuration selected to meet cost, manufacturability, and operability objectives. Data return is augmented through judicious design of the boost trajectory, which is optimized to obtain data at a range of relevant points, rather than just a single flight condition. Secondary flight objectives are included after the escape to obtain aerodynamic damping data for the crew module and to perform a high-altitude contingency deployment of the drogue parachutes. Both 3- and 6-degree-of-freedom trajectory simulation results are presented that establish concept feasibility, and a Monte Carlo uncertainty assessment is performed to provide confidence that test objectives can be met.

  9. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  10. Pitch Guidance Optimization for the Orion Abort Flight Tests

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan Allanque

    2010-01-01

    The National Aeronautics and Space Administration created the Constellation program to develop the next generation of manned space vehicles and launch vehicles. The Orion abort system is initiated in the event of an unsafe condition during launch. The system has a controller gains schedule that can be tuned to reduce the attitude errors between the simulated Orion abort trajectories and the guidance trajectory. A program was created that uses the method of steepest descent to tune the pitch gains schedule by an automated procedure. The gains schedule optimization was applied to three potential abort scenarios; each scenario tested using the optimized gains schedule resulted in reduced attitude errors when compared to the Orion production gains schedule.

  11. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Koelfgen, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The NASA Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This paper provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles.

  12. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Brooks, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The National Aeronautics and Space Administration Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This report provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles

  13. The Orion Pad Abort 1 (PA-1) Flight Test: A Propulsion Success

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.

    2015-01-01

    This poster provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.

  14. GN and C Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Ryamond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system (LAS) already in development. The NESC was tasked with both formulating a conceptual objective system (OS) design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. The goal was to obtain sufficient flight test data to assess performance, validate models/tools, and to reduce the design and development risks for a MLAS OS. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. Overall, the as-flown flight performance was as predicted prior to launch. This paper provides an overview of the guidance navigation and control (GN&C) technical approaches employed on this rapid prototyping activity. This paper describes the methodology used to design the MLAS flight test vehicle (FTV). Lessons that were learned during this rapid prototyping project are also summarized.

  15. The Orion Pad Abort 1 Flight Test A Highly Successful Test

    NASA Technical Reports Server (NTRS)

    Sinclair, Robert; Taylor, Anthony P. (Tony); Johnston, Justin

    2011-01-01

    The Orion Pad Abort 1 (PA-1) flight test was designed as an early demonstration of the Launch Abort System (LAS) for the Orion capsule. The LAS was designed developed and manufactured by the Lockheed Martin/Orbital Sciences team. At inception it was realized that recovery of the Orion Capsule simulator would be useful from an engineering analysis and data recovery point of view. Additionally this test represented a flight opportunity for the Orion parachute system, which in a real abort would provide final landing deceleration. The Orion parachute program is named CPAS (CEV Parachute Assembly System). Thus CPAS became a part of the PA-1 flight, as a secondary test objective. At program kick off, the CPAS system was in the design state described below. Airbag land landing of the spacecraft was the program baseline. This affected the rigging of the parachutes. The system entry deployment conditions and vehicle mass have both evolved since that original design. It was decided to use the baseline CPAS Generation 1 (Gen 1) parachute system for the recovery of the PA-1 flight. As CPAS was a secondary test objective, the system would be delivered in its developmental state. As the PA-1 program evolved, the parachute recovery system (CPAS) moved from a secondary objective to a more important portion of the program. Tests were added, weights and deployment conditions changed and some hardware portions of the CPAS configuration were not up to the new challenges. Additional tests were added to provide confidence in the developmental system. This paper will review a few of these aspects with the goal of showing some preliminary and qualitative results from what we believe was a highly successful test.

  16. The Range Safety Debris Catalog Analysis in Preparation for the Pad Abort One Flight Test

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad M.; Pratt, William D.

    2010-01-01

    The Pad Abort One flight test of the Orion Abort Flight Test Program is currently under development with the goal of demonstrating the capability of the Launch Abort System. In the event of a launch failure, this system will propel the Crew Exploration Vehicle to safety. An essential component of this flight test is range safety, which ensures the security of range assets and personnel. A debris catalog analysis was done as part of a range safety data package delivered to the White Sands Missile Range in New Mexico where the test will be conducted. The analysis discusses the consequences of an overpressurization of the Abort Motor. The resulting structural failure was assumed to create a debris field of vehicle fragments that could potentially pose a hazard to the range. A statistical model was used to assemble the debris catalog of potential propellant fragments. Then, a thermodynamic, energy balance model was applied to the system in order to determine the imparted velocity to these propellant fragments. This analysis was conducted at four points along the flight trajectory to better understand the failure consequences over the entire flight. The methods used to perform this analysis are outlined in detail and the corresponding results are presented and discussed.

  17. The Range Safety Debris Catalog Analysis in Preparation for the Pad Abort One Flight Test

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Pratt, William

    2010-01-01

    With each flight test a Range Safety Data Package is assembled to understand the potential consequences of various failure scenarios. Debris catalog analysis considers an overpressure failure of the Abort Motor and the resulting debris field created 1. Characterize debris fragments generated by failure: weight, shape, and area 2. Compute fragment ballistic coefficients 3. Compute fragment ejection velocities.

  18. Open-Loop Pitch Table Optimization for the Maximum Dynamic Pressure Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan A.

    2009-01-01

    NASA has scheduled the retirement of the space shuttle orbiter fleet at the end of 2010. The Constellation program was created to develop the next generation of human spaceflight vehicles and launch vehicles, known as Orion and Ares respectively. The Orion vehicle is a return to the capsule configuration that was used in the Mercury, Gemini, and Apollo programs. This configuration allows for the inclusion of an abort system that safely removes the capsule from the booster in the event of a failure on launch. The Flight Test Office at NASA's Dryden Flight Research Center has been tasked with the flight testing of the abort system to ensure proper functionality and safety. The abort system will be tested in various scenarios to approximate the conditions encountered during an actual Orion launch. Every abort will have a closed-loop controller with an open-loop backup that will direct the vehicle during the abort. In order to provide the best fit for the desired total angle of attack profile with the open-loop pitch table, the table is tuned using simulated abort trajectories. A pitch table optimization program was created to tune the trajectories in an automated fashion. The program development was divided into three phases. Phase 1 used only the simulated nominal run to tune the open-loop pitch table. Phase 2 used the simulated nominal and three simulated off nominal runs to tune the open-loop pitch table. Phase 3 used the simulated nominal and sixteen simulated off nominal runs to tune the open-loop pitch table. The optimization program allowed for a quicker and more accurate fit to the desired profile as well as allowing for expanded resolution of the pitch table.

  19. Design, Development and Test Challenges: Separation Mechanisms for the Orion Pad Abort-1 Flight Test

    NASA Technical Reports Server (NTRS)

    Dinsel, Alison; Morrey, Jeremy M.; OMalley, Patrick; Park, Samuel

    2011-01-01

    On May 6, 2010, NASA launched the first successful integrated flight test, Pad Abort-1, of the Orion Project from the White Sands Missile Range in Las Cruces, New Mexico. This test demonstrated the ability to perform an emergency pad abort of a full-scale 4.8 m diameter, 8200 kg crew capsule. During development of the critical separation mechanisms for this flight test, various challenges were overcome related to environments definition, installation complications, separation joint retraction speed, thruster ordnance development issues, load path validation and significant design loads increases. The Launch Abort System retention and release (LAS R&R) mechanism consisted of 6 discrete structural connections between the LAS and the crew module (CM) simulator, each of which had a preloaded tension tie, Superbolt torque-nut and frangible nut. During the flight test, the frangible nuts were pyrotechnically split, permitting the CM to separate from the LAS. The LAS separation event was the driving case in the shock environment for many co-located hardware items. During development testing, it was necessary to measure the source shock during the separation event so the predicted shock environment could be validated and used for certification testing of multiple hardware items. The Lockheed Martin test team measured the source separation shock due to the LAS R&R function, which dramatically decreased the predicted environment by 90% at 100 Hz. During development testing a hydraulic tensioner was used to preload the joint; however, the joint relaxation with the tensioner proved unsatisfactory so the design was modified to include a Superbolt torque-nut. The observed preload creep during lab testing was 4% after 30 days, with 2.5% occurring in the first 24 hours. The conversion of strain energy (preload) to kinetic energy (retraction) was measured to be 50-75%. Design features and careful monitoring of multiple strain gauges on each tension tie allowed a pure tensile load

  20. Guidance, Navigation and Control (GN and C) Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Raymond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration Engineering and Safety Center designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system already in development. The NESC was tasked with both formulating a conceptual objective system design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. This paper provides an overview of the guidance navigation and control technical approaches employed on this rapid prototyping activity; describes the methodology used to design the MLAS flight test vehicle; and lessons that were learned during this rapid prototyping project are also summarized.

  1. RS-88 Pad Abort Demonstrator Thrust Chamber Assembly Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Sanders, Timothy M.

    1990-01-01

    This paper documents the effort conducted to collect hot-tire dynamic and acoustics environments data during 50,000-lb thrust lox-ethanol hot-fire rocket testing at NASA Marshall Space Flight Center (MSFC) in November-December 2003. This test program was conducted during development testing of the Boeing Rocketdyne RS-88 development engine thrust chamber assembly (TCA) in support of the Orbital Space Plane (OSP) Crew Escape System Propulsion (CESP) Program Pad Abort Demonstrator (PAD). In addition to numerous internal TCA and nozzle measurements, induced acoustics environments data were also collected. Provided here is an overview of test parameters, a discussion of the measurements, test facility systems and test operations, and a quality assessment of the data collected during this test program.

  2. Flight Reynolds Number Testing of the Orion Launch Abort Vehicle in the NASA Langley National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Brauckmann, Gregory J.

    2011-01-01

    A 6%-scale unpowered model of the Orion Launch Abort Vehicle (LAV) ALAS-11-rev3c configuration was tested in the NASA Langley National Transonic Facility to obtain static aerodynamic data at flight Reynolds numbers. Subsonic and transonic data were obtained for Mach numbers between 0.3 and 0.95 for angles of attack from -4 to +22 degrees and angles of sideslip from -10 to +10 degrees. Data were also obtained at various intermediate Reynolds numbers between 2.5 million and 45 million depending on Mach number in order to examine the effects of Reynolds number on the vehicle. Force and moment data were obtained using a 6-component strain gauge balance that operated both at warm temperatures (+120 . F) and cryogenic temperatures (-250 . F). Surface pressure data were obtained with electronically scanned pressure units housed in heated enclosures designed to survive cryogenic temperatures. Data obtained during the 3-week test entry were used to support development of the LAV aerodynamic database and to support computational fluid dynamics code validation. Furthermore, one of the outcomes of the test was the reduction of database uncertainty on axial force coefficient for the static unpowered LAV. This was accomplished as a result of good data repeatability throughout the test and because of decreased uncertainty on scaling wind tunnel data to flight.

  3. Shuttle Abort Flight Management (SAFM) - Application Overview

    NASA Technical Reports Server (NTRS)

    Hu, Howard; Straube, Tim; Madsen, Jennifer; Ricard, Mike

    2002-01-01

    One of the most demanding tasks that must be performed by the Space Shuttle flight crew is the process of determining whether, when and where to abort the vehicle should engine or system failures occur during ascent or entry. Current Shuttle abort procedures involve paging through complicated paper checklists to decide on the type of abort and where to abort. Additional checklists then lead the crew through a series of actions to execute the desired abort. This process is even more difficult and time consuming in the absence of ground communications since the ground flight controllers have the analysis tools and information that is currently not available in the Shuttle cockpit. Crew workload specifically abort procedures will be greatly simplified with the implementation of the Space Shuttle Cockpit Avionics Upgrade (CAU) project. The intent of CAU is to maximize crew situational awareness and reduce flight workload thru enhanced controls and displays, and onboard abort assessment and determination capability. SAFM was developed to help satisfy the CAU objectives by providing the crew with dynamic information about the capability of the vehicle to perform a variety of abort options during ascent and entry. This paper- presents an overview of the SAFM application. As shown in Figure 1, SAFM processes the vehicle navigation state and other guidance information to provide the CAU displays with evaluations of abort options, as well as landing site recommendations. This is accomplished by three main SAFM components: the Sequencer Executive, the Powered Flight Function, and the Glided Flight Function, The Sequencer Executive dispatches the Powered and Glided Flight Functions to evaluate the vehicle's capability to execute the current mission (or current abort), as well as more than IS hypothetical abort options or scenarios. Scenarios are sequenced and evaluated throughout powered and glided flight. Abort scenarios evaluated include Abort to Orbit (ATO), Transatlantic

  4. STS-1 operational flight profile. Volume 6: Abort analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The abort analysis for the cycle 3 Operational Flight Profile (OFP) for the Space Transportation System 1 Flight (STS-1) is defined, superseding the abort analysis previously presented. Included are the flight description, abort analysis summary, flight design groundrules and constraints, initialization information, general abort description and results, abort solid rocket booster and external tank separation and disposal results, abort monitoring displays and discussion on both ground and onboard trajectory monitoring, abort initialization load summary for the onboard computer, list of the key abort powered flight dispersion analysis.

  5. Modeling the Launch Abort Vehicle's Subsonic Aerodynamics from Free Flight Testing

    NASA Technical Reports Server (NTRS)

    Hartman, Christopher L.

    2010-01-01

    An investigation into the aerodynamics of the Launch Abort Vehicle for NASA's Constellation Crew Launch Vehicle in the subsonic, incompressible flow regime was conducted in the NASA Langley 20-ft Vertical Spin Tunnel. Time histories of center of mass position and Euler Angles are captured using photogrammetry. Time histories of the wind tunnel's airspeed and dynamic pressure are recorded as well. The primary objective of the investigation is to determine models for the aerodynamic yaw and pitch moments that provide insight into the static and dynamic stability of the vehicle. System IDentification Programs for AirCraft (SIDPAC) is used to determine the aerodynamic model structure and estimate model parameters. Aerodynamic models for the aerodynamic body Y and Z force coefficients, and the pitching and yawing moment coefficients were identified.

  6. Testing Strategies and Methodologies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  7. Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.; Newman, John A.; Tyler, Erik D.; Sterling, William J.

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.

  8. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  9. [Abortion].

    PubMed

    Dourlen-rollier, A M

    1971-01-01

    The historical and current (1969) abortion laws in France as well as those in other Western countries are analyzed. France has had a series of punitive abortion codes since the Napoleonic Code of 1810 prescribing solitary confinement for the woman. The reforms of 1920 and 1923 made provocation of abortion or contraceptional propaganda a "crime" (felony), later a "delit" (misdemeanor), called for trial before magistr ate instead of jury, but resulted in only about 200 convictions a year. The decree of 1939 extended the misdemeanor to women who aborted even if they were not pregnant, and provided for professional licenses such as that of surgeon or pharmacist to be suspended. The law of 1942 made abortion a social crime and increased the maximum penalty to capital punishment, which was exercised in 2 cases. About 4000 per year were convicted from 1942-1944. Now the law still applies to all who intend to abort, whether or not pregnant or successful, but punishemnt is limited to 1-5 years imprisonment, and 72,000 francs fine, or suspension of medical practice for 5 years. About 500 have been convicted per year. Since 1955 legal abortion has been available (to about 130 women over 4 years) if it is the only means to save the woman's life. Although pregnancy tests are controlled, the population desregards the law by resorting to clandestine abortion. The wealthy travel to Switzerland (where 68% of legal abortions are done on French women) or to England. Numbers are estimated by the French government at 250,000-300,000 per year, or 1 for every 2 live births, but by hospital statistics at 400,000-1,000,000 per year. The rest of the review covers abortion laws in Scandinavian, Central European, and individual US states as of 1969.

  10. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  11. Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.

    1998-01-01

    The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.

  12. Orion PA-1 Flight Test Crew Module Back at Dryden

    NASA Video Gallery

    The boilerplate Orion crew module and separation ring that was flown in the Launch Abort system PA-1 flight test at White Sands Missile Range, N.M., May 6 were airlifted back to NASA Dryden at Edwa...

  13. Orion Launch Abort Vehicle Attitude Control Motor Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  14. Flight Test Techniques

    DTIC Science & Technology

    2009-07-01

    Fort Rucker, AL 36362-5276 8. PERFORMING ORGANIZATION REPORT NUMBER TOP 7-4-020 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES...2 3. REQUIRED TEST CONDITIONS ............................................. 3 3.1...3. REQUIRED TEST CONDITIONS . 3.1 Air Vehicle Flight Test Techniques. Many different flight test techniques are in existence. As technology

  15. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  16. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  17. Flight Performance Feasibility Studies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tarabini, Paul V.; Gilbert, Michael G.; Beaty, James R.

    2013-01-01

    In 2007, the NASA Engineering and Safety Center (NESC) initiated the Max Launch Abort System Project to explore crew escape system concepts designed to be fully encapsulated within an aerodynamic fairing and smoothly integrated onto a launch vehicle. One objective of this design was to develop a more compact launch escape vehicle that eliminated the need for an escape tower, as was used in the Mercury and Apollo escape systems and what is planned for the Orion Multi-Purpose Crew Vehicle (MPCV). The benefits for the launch vehicle of eliminating a tower from the escape vehicle design include lower structural weights, reduced bending moments during atmospheric flight, and a decrease in induced aero-acoustic loads. This paper discusses the development of encapsulated, towerless launch escape vehicle concepts, especially as it pertains to the flight performance and systems analysis trade studies conducted to establish mission feasibility and assess system-level performance. Two different towerless escape vehicle designs are discussed in depth: one with allpropulsive control using liquid attitude control thrusters, and a second employing deployable aft swept grid fins to provide passive stability during coast. Simulation results are presented for a range of nominal and off-nominal escape conditions.

  18. Design and Analysis of Outer Mold Line Close-outs for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Knutson, Jeffrey R.; Schuster, David M.; Tyler, Erik D.

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale, passive aerodynamically stabilized Max Launch Abort System (MLAS) pad abort demonstrator was successfully launched from NASA Goddard Space Flight Center's Wallops Flight Facility. Aerodynamic close-outs were required to cover openings on the MLAS fairing to prevent aerodynamic flow-through and to maintain the MLAS OML surface shape. Two-ply duct tape covers were designed to meet these needs. The duct tape used was a high strength fiber reinforced duct tape with a rubberized adhesive that demonstrated 4.6 lb/in adhesion strength to the unpainted fiberglass fairing. Adhesion strength was observed to increase as a function of time. The covers were analyzed and experimentally tested to demonstrate their ability to maintain integrity under anticipated vehicle ascent pressure loads and to not impede firing of the drogue chute mortars. Testing included vacuum testing and a mortar fire test. Tape covers were layed-up on thin Teflon sheets to facilitate installation on the vehicle. Custom cut foam insulation board was used to fill mortar hole and separation joint cavities and provide support to the applied tape covers. Flight test results showed that the tape covers remained adhered during flight.

  19. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.

  20. Abortion

    MedlinePlus

    An abortion is a procedure to end a pregnancy. It uses medicine or surgery to remove the embryo or ... personal. If you are thinking of having an abortion, most healthcare providers advise counseling.

  1. Abortion.

    PubMed

    1993-05-01

    The Alan Guttmacher Institute's State Reproductive Health Monitor "Legislative Proposals and Actions" provides US legislative information on abortion. The listing contains information on pending bills: the state, the identifying legislative number, the sponsor, the committee, the date the bill was introduced, a description of the bill, and when available the bill's status. The bills cover: 1) clinic licensing, e.g., requiring outpatient health care facilities in which abortions are performed, to have malpractice liability insurance; 2) comprehensive statues, which require parental notification before minor may obtain abortions, mandate abortion counseling to all women 24 hours before the abortion can be performed and prohibit disciplining or discharging a state employee for refusing to provide abortion counseling; 3) fetal personhood and rights, e.g. providing that life is vested in each person at fertilization; 4) fetal research and remains; 5) gender of fetus, which regulate abortions relative to sex selection in pregnancies; 6) harassment regulation; 7) informed consent and waiting periods detailing the risks and alternatives to abortion, and the 24-hour waiting period; 8) insurance coverage, e.g., eliminating language banning the coverage of abortions for state workers, and prohibiting disclosure by a health insurance carrier to the employer of a claimant that the claimant had a surgical abortion; 9) legality of abortion, urging Congress to reject he Freedom of Choice Act; 10) parental consent and notification; 11) postviability requirements; 12) public funding; 13) reporting requirements; 14) reproductive rights, and 15) spousal and paternal consent and notification.

  2. Weather and Flight Testing

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  3. ASTRID rocket flight test

    SciTech Connect

    Whitehead, J.C.; Pittenger, L.C.; Colella, N.J.

    1994-07-01

    On February 4, 1994, we successfully flight tested the ASTRID rocket from Vandenberg Air Force Base. The technology for this rocket originated in the Brilliant Pebbles program and represents a five-year development effort. This rocket demonstrated how our new pumped-propulsion technology-which reduced the total effective engine mass by more than one half and cut the tank mass to one fifth previous requirements-would perform in atmospheric flight. This demonstration paves the way for potential cost-effective uses of the new propulsion system in commercial aerospace vehicles, exploration of the planets, and defense applications.

  4. Ares I-X Flight Test Vehicle Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.

  5. Flight test of takeoff performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B.; Srivatsan, Raghavachari; Person, Lee H., Jr.

    1994-01-01

    The Takeoff Performance Monitoring System (TOPMS) is a computer software and hardware graphics system that visually displays current runway position, acceleration performance, engine status, and other situation advisory information to aid pilots in their decision to continue or to abort a takeoff. The system was developed at the Langley Research Center using the fixed-base Transport Systems Research Vehicle (TSRV) simulator. (The TSRV is a highly modified Boeing 737-100 research airplane.) Several versions of the TOPMS displays were evaluated on the TSRV B-737 simulator by more than 40 research, United States Air Force, airline and industry and pilots who rated the system satisfactory and recommended further development and testing. In this study, the TOPMS was flight tested on the TSRV. A total of 55 takeoff and 30 abort situations were investigated at 5 airfields. TOPMS displays were observed on the navigation display screen in the TSRV research flight deck during various nominal and off-nominal situations, including normal takeoffs; reduced-throttle takeoffs; induced-acceleration deficiencies; simulated-engine failures; and several gross-weight, runway-geometry, runway-surface, and ambient conditions. All tests were performed on dry runways. The TOPMS software executed accurately during the flight tests and the displays correctly depicted the various test conditions. Evaluation pilots found the displays easy to monitor and understand. The algorithm provides pretakeoff predictions of the nominal distances that are needed to accelerate the airplane to takeoff speed and to brake it to a stop; these predictions agreed reasonably well with corresponding values measured during several fully executed and aborted takeoffs. The TOPMS is operational and has been retained on the TSRV for general use and demonstration.

  6. Abortion.

    PubMed

    Somerville, A C

    1977-08-24

    A survey of 886 adults over 16 was conducted regarding abortion in Papanui, New Zealand. Only 7.79% thought a person should never have an abortion under any circumstances, 16.70% thought the decision to have an abortion should be decided by a panel of two doctors, a social worker, and a statutory committee set up by the government. 44.4% thought the decision should be between a woman and the doctor of her choice. 20.54% thought the decision should be made solely by the woman concerned. The respondants had thought about the question. Other surveys in different electorates reflected similar views. It is hoped that people's opinions will influence legislators to enact more liberal abortion laws.

  7. Onboard Determination of Vehicle Glide Capability for Shuttle Abort Flight Managment (SAFM)

    NASA Technical Reports Server (NTRS)

    Straube, Timothy; Jackson, Mark; Fill, Thomas; Nemeth, Scott

    2002-01-01

    When one or more main engines fail during ascent, the flight crew of the Space Shuttle must make several critical decisions and accurately perform a series of abort procedures. One of the most important decisions for many aborts is the selection ofa landing site. Several factors influence the ability to reach a landing site, including the spacecraft point of atmospheric entry, the energy state at atmospheric entry, the vehicle glide capability from that energy state, and whether one or more suitable landing sites are within the glide capability. Energy assessment is further complicated by the fact that phugoid oscillations in total energy influence glide capability. Once the glide capability is known, the crew must select the "best" site option based upon glide capability and landing site conditions and facilities. Since most of these factors cannot currently be assessed by the crew in flight, extensive planning is required prior to each mission to script a variety of procedures based upon spacecraft velocity at the point of engine failure (or failures). The results of this preflight planning are expressed in tables and diagrams on mission-specific cockpit checklists. Crew checklist procedures involve leafing through several pages of instructions and navigating a decision tree for site selection and flight procedures - all during a time critical abort situation. With the advent of the Cockpit Avionics Upgrade (CAU), the Shuttle will have increased on-board computational power to help alleviate crew workload during aborts and provide valuable situational awareness during nominal operations. One application baselined for the CAU computers is Shuttle Abort Flight Management (SAFM), whose requirements have been designed and prototyped. The SAFM application includes powered and glided flight algorithms. This paper describes the glided flight algorithm which is dispatched by SAFM to determine the vehicle glide capability and make recommendations to the crew for site

  8. The Road to Pad Abort 1

    NASA Video Gallery

    At the White Sands Missile Range in Las Cruces, N.M., engineers and technicians are preparing for the Pad Abort 1 flight test. The Launch Abort System is a sophisticated new rocket tower designed t...

  9. [Abortion].

    PubMed

    Nunes, J P

    1998-01-01

    Abortion is the interruption of a dynamic process in a final and irreversible form. The legalization of abortion is applied to human ontogenesis, that is, the development of the human being. However, the embryo that is growing in the uterus is not a human being because a human being is a complex organism with differentiated systems, its own identity and intrinsic autonomy in its process of development. There are basically four levels of the analysis of the problem of abortion: 1) fundamental emotional arguments; 2) profound ignorance of technical and scientific facts; 3) rational positions obfuscated by the dramatic intensity of everyday situations; and 4) the conjunction of deliberated position where culpability is avoided with solidarity for all subjects of the process with a socially oriented view. The phenomenon of abortion from an epidemiological point of view summons the facts with which it is associated: poverty, illiteracy, shortage or lack of community health resources, absence of centers for adolescents, degradation of the environment, and precariousness of employment.

  10. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  11. Fuel Subsystems Flight Test Handbook

    DTIC Science & Technology

    1981-12-01

    aircraft fuel subsystems and the requirements to which they are designed . Details are provided of individual testes, test support requirements and eval...Flight Test Engineering, AFFTC. It is designed to introduce a newly assigned flight test engineer to the subject and provide a working reference for...Refueling Subsystem 17 Fuel Dump Subsystem 18 Heat Exchangers 18 REVIEW OF DESIGN AND TEST REQUIREMENTS 19 Classification of Requirements Other Than 20

  12. Aerodynamic Testing of the Orion Launch Abort Tower Separation with Jettison Motor Jet Interactions

    NASA Technical Reports Server (NTRS)

    Rhode, Matthew N.; Chan, David T.; Niskey, Charles J.; Wilson, Thomas M.

    2011-01-01

    The aerodynamic database for the Orion Launch Abort System (LAS) was developed largely from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamics (CFD) simulations. The LAS contains three solid rocket motors used in various phases of an abort to provide propulsion, steering, and Launch Abort Tower (LAT) jettison from the Crew Module (CM). This paper describes a pair of wind tunnel experiments performed at transonic and supersonic speeds to determine the aerodynamic effects due to proximity and jet interactions during LAT jettison from the CM at the end of an abort. The tests were run using two different scale models at angles of attack from 150deg to 200deg , sideslip angles from -10deg to +10deg , and a range of powered thrust levels from the jettison motors to match various jet simulation parameters with flight values. Separation movements between the CM and LAT included axial and vertical translations as well as relative pitch angle between the two bodies. The paper details aspects of the model design, nozzle scaling methodology, instrumentation, testing procedures, and data reduction. Sample data are shown to highlight trends seen in the results.

  13. Design and test of the RHIC CMD10 abort kicker

    SciTech Connect

    Hahn, H.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Mi, J.; Meng, W.; Montag, C.; Pai, C.; Sandberg, J.; Tsoupas, N.; Tuozzolo, J. E.; Zhang, W.

    2015-05-03

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  14. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two design techniques for linear flight test trajectory controllers (FTTCs) are described: Eigenstructure assignment and the minimum error excitation technique. The two techniques are used to design FTTCs for an F-15 aircraft model for eight different maneuvers at thirty different flight conditions. An evaluation of the FTTCs is presented.

  15. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    NASA Technical Reports Server (NTRS)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  16. Max Launch Abort System (MLAS) Landing Parachute Demonstrator (LPD) Drop Test

    NASA Technical Reports Server (NTRS)

    Shreves, Christopher M.

    2011-01-01

    The Landing Parachute Demonstrator (LPD) was conceived as a low-cost, rapidly-developed means of providing soft landing for the Max Launch Abort System (MLAS) crew module (CM). Its experimental main parachute cluster deployment technique and off-the-shelf hardware necessitated a full-scale drop test prior to the MLAS mission in order to reduce overall mission risk. This test was successfully conducted at Wallops Flight Facility on March 6, 2009, with all vehicle and parachute systems functioning as planned. The results of the drop test successfully qualified the LPD system for the MLAS flight test. This document captures the design, concept of operations and results of the drop test.

  17. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two control law design techniques are compared and the performance of the resulting controllers evaluated. The design requirement is for a flight test trajectory controller (FTTC) capable of closed-loop, outer-loop control of an F-15 aircraft performing high-quality research flight test maneuvers. The maneuver modeling, linearization, and design methodologies utilized in this research, are detailed. The results of applying these FTTCs to a nonlinear F-15 simulation are presented.

  18. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    NASA Technical Reports Server (NTRS)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  19. Propulsion Flight-Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nate; Vachon, M. Jake; Richwine, Dave; Moes, Tim; Creech, Gray

    2003-01-01

    NASA Dryden Flight Research Center s new Propulsion Flight Test Fixture (PFTF), designed in house, is an airborne engine-testing facility that enables engineers to gather flight data on small experimental engines. Without the PFTF, it would be necessary to obtain such data from traditional wind tunnels, ground test stands, or laboratory test rigs. Traditionally, flight testing is reserved for the last phase of engine development. Generally, engines that embody new propulsion concepts are not put into flight environments until their designs are mature: in such cases, either vehicles are designed around the engines or else the engines are mounted in or on missiles. However, a captive carry capability of the PFTF makes it possible to test engines that feature air-breathing designs (for example, designs based on the rocket-based combined cycle) economically in subscale experiments. The discovery of unknowns made evident through flight tests provides valuable information to engine designers early in development, before key design decisions are made, thereby potentially affording large benefits in the long term. This is especially true in the transonic region of flight (from mach 0.9 to around 1.2), where it can be difficult to obtain data from wind tunnels and computational fluid dynamics. In January 2002, flight-envelope expansion to verify the design and capabilities of the PFTF was completed. The PFTF was flown on a specially equipped supersonic F-15B research testbed airplane, mounted on the airplane at a center-line attachment fixture, as shown in Figure 1. NASA s F-15B testbed has been used for several years as a flight-research platform. Equipped with extensive research air-data, video, and other instrumentation systems, the airplane carries externally mounted test articles. Traditionally, the majority of test articles flown have been mounted at the centerline tank-attachment fixture, which is a hard-point (essentially, a standardized weapon-mounting fixture

  20. Supersonic Retropropulsion Flight Test Concepts

    NASA Technical Reports Server (NTRS)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  1. Mars Balloon Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.; Pauken, Michael T.; Kerzhanovich, Viktor V.; Walsh, Gerald J.; Kulczycki, Eric A.; Fairbrother, Debora; Shreves, Chris; Lachenmeier, Tim

    2009-01-01

    This paper describes a set of four Earth atmosphere flight test experiments on prototype helium superpressure balloons designed for Mars. Three of the experiments explored the problem of aerial deployment and inflation, using the cold, low density environment of the Earth's stratosphere at an altitude of 30-32 km as a proxy for the Martian atmosphere. Auxiliary carrier balloons were used in three of these test flights to lift the Mars balloon prototype and its supporting system from the ground to the stratosphere where the experiment was conducted. In each case, deployment and helium inflation was initiated after starting a parachute descent of the payload at 5 Pa dynamic pressure, thereby mimicking the conditions expected at Mars after atmospheric entry and high speed parachute deceleration. Upward and downward looking video cameras provided real time images from the flights, with additional data provided by onboard temperature, pressure and GPS sensors. One test of a 660 cc pumpkin balloon was highly successful, achieving deployment, inflation and separation of the balloon from the flight train at the end of inflation; however, some damage was incurred on the balloon during this process. Two flight tests of 12 m diameter spherical Mylar balloons were not successful, although some lessons were learned based on the failure analyses. The final flight experiment consisted of a ground-launched 12 m diameter spherical Mylar balloon that ascended to the designed 30.3 km altitude and successfully floated for 9.5 hours through full noontime daylight and into darkness, after which the telemetry system ran out of electrical power and tracking was lost. The altitude excursions for this last flight were +/-75 m peak to peak, indicating that the balloon was essentially leak free and functioning correctly. This provides substantial confidence that this balloon design will fly for days or weeks at Mars if it can be deployed and inflated without damage.

  2. Morpheus Vertical Test Bed Flight Testing

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy; Devolites, Jennifer

    2014-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Morpheus onboard software is autonomous from ignition all the way through landing, and is designed to be capable of executing a variety of flight trajectories, with onboard fault checks and automatic contingency responses. The Morpheus 1.5A vehicle performed 26 integrated vehicle test flights including hot-fire tests, tethered tests, and two attempted freeflights between April 2011 and August 2012. The final flight of Morpheus 1.5A resulted in a loss of the vehicle. In September 2012, development began on the Morpheus 1.5B vehicle, which subsequently followed a similar test campaign culminating in free-flights at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. This paper describes the integrated test campaign, including successes and setbacks, and how the system design for handling faults and failures evolved over the course of the project.

  3. Flight Tests Validate Collision-Avoidance System

    NASA Video Gallery

    Flights tests of a smartphone-assisted automatic ground collision avoidance system at NASA's Dryden Flight Research Center consistently commanded evasive maneuvers when it sensed that the unmanned ...

  4. Orion Pad Abort 1 Crew Module Inertia Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2010-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  5. Orion Pad Abort 1 Crew Module Mass Properties Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2012-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module (CM). These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance coefficients to be calculated post-launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test setup that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  6. Ares I-X Flight Test Vehicle:Stack 1 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.

  7. Space shuttle orbiter test flight series

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Gordon, R.; Jackson, R. B.

    1977-01-01

    The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

  8. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  9. Challenges of CPAS Flight Testing

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Morris, Aaron L.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown via a series of Drogue, Pilot, and Main parachutes. Because Orion is considerably larger and heavier than Apollo, many of the flight test techniques developed during the Apollo program must be modified. The Apollo program had a dedicated C-133 aircraft, which was modified to allow a simple airdrop of "boilerplate" flight test vehicles. However, the CPAS program must use either commercial or military assets with minimal modifications to airframes or procedures. Conceptual envelopes from 2-Degree Of Freedom trajectories are presented for several existing and novel architectures. Ideally, the technique would deliver a representative capsule shape to the desired altitude and dynamic pressure at test initiation. However, compromises must be made on the characteristics of trajectories or the fidelity of test articles to production hardware. Most of the tests to date have used traditional pallet and weight tub or missile-shaped test vehicles. New test vehicles are being designed to better incorporate Orion structural components and deploy parachutes in a more representative fashion. The first attempt to test a capsule-shaped vehicle failed due to unexpected events while setting up the test condition through a series of complex procedures. In order to avoid the loss of another expensive test article which will delay the program, simpler deployment methods are being examined and more positive control of the vehicle will be maintained. Existing challenges include interfacing with parent aircraft, separating test vehicles, achieving test conditions, and landing within limited test ranges. All these challenges must be met within cost and schedule limits.

  10. System-level flight test

    SciTech Connect

    Cornwall, J.; Dyson, F.; Eardley, D.; Happer, W.; LeLevier, R.; Nierenberg, W.; Press, W.; Ruderman, M.; Sullivan, J.; York, H.

    1999-11-23

    System-level flight tests are an important part of the overall effort by the United States to maintain confidence in the reliability, safety, and performance of its nuclear deterrent forces. This study of activities by the Department of Energy in support of operational tests by the Department of Defense was originally suggested by Dr. Rick Wayne, Director, National Security Programs, Sandia National Laboratory/Livermore, and undertaken at the request of the Department of Energy, Defense Programs Division. It follows two 1997 studies by JASON that focused on the Department of Energy's Enhanced Surveillance Program for the physics package — i.e. the nuclear warhead.

  11. Flight test trajectory control analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  12. Technical Progress on the Ares I-X Flight Test

    NASA Technical Reports Server (NTRS)

    Davis, S.R.; Robinson, K.F.; Flynn, K.C.

    2008-01-01

    Ares I-X will be NASA's first test flight for a new human-rated launch vehicle since 1981, and the team is well on its way toward completing the vehicle's design and hardware fabrication for an April 2009 launch. This uncrewed suborbital development test flight gives NASA its first opportunities to: gather critical data about the flight dynamics of the integrated launch vehicle; understand how to control its roll during flight; better characterize the stage separation environments during future flight; and demonstrate the first stage recovery system. The Ares I-X Flight Test Vehicle (FTV) incorporates a mix of flight and mockup hardware. It is powered by a four-segment solid rocket booster, and will be modified to include a fifth, spacer segment; the upper stage, Orion crew exploration vehicle, and launch abort system are simulator hardware to make the FTV aerodynamically similar to the same size, shape, and weight of Ares I. The Ares IX first stage includes an existing Shuttle solid rocket motor and thrust vector control system controlled by an Ascent Thrust Vector Controller (ATVC) designed and built by Honeywell International. The avionics system will be tested in a dedicated System Integration Laboratory located at Lockheed Martin Space Systems (LMSS) in Denver, Colorado. The Upper Stage Simulator (USS) is made up of cylindrical segments that will be stacked and integrated at Kennedy Space Center (KSC) for launch. Glenn Research Center is already building these segments, along with their internal access structures. The active Roll Control System (RoCS) includes two thruster units harvested from Peacekeeper missiles. Duty cycle testing for RoCS was conducted, and fuel tanking and detanking tests will occur at KSC in early 2008. This important flight will provide valuable experience for the ground operations team in integrating, stacking, and launching Ares I. Data from Ares I-X will ensure the safety and reliability of America's newest launch vehicle.

  13. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft...) That the aircraft conforms with the type design; and (4) That the FAA received a flight test...

  14. Improved Flight Test Procedures for Flutter Clearance

    NASA Technical Reports Server (NTRS)

    Lind, Rick C.; Brenner, Martin J.; Freudinger, Lawrence C.

    1997-01-01

    Flight flutter testing is an integral part of flight envelope clearance. This paper discusses advancements in several areas that are being investigated to improve efficiency and safety of flight test programs. Results are presented from recent flight testing of the F/A-18 Systems Research Aircraft. A wingtip excitation system was used to generate aeroelastic response data. This system worked well for many flight conditions but still displayed some anomalies. Wavelet processing is used to analyze the flight data. Filtered transfer functions are generated that greatly improve system identification. A flutter margin is formulated that accounts for errors between a model and flight data. Worst-case flutter margins are computed to demonstrate the flutter boundary may lie closer to the flight envelope than previously estimated. This paper concludes with developments for a distributed flight analysis environment and on-line health monitoring.

  15. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... certain flight tests. (a) No person may operate a civil aircraft (except a manned free balloon) that is... used for a flight test for an airline transport pilot certificate or a class or type rating on...

  16. Propfan Test Assessment (PTA): Flight test report

    NASA Technical Reports Server (NTRS)

    Little, B. H.; Bartel, H. W.; Reddy, N. N.; Swift, G.; Withers, C. C.; Brown, P. C.

    1989-01-01

    The Propfan Test Assessment (PTA) aircraft was flown to obtain glade stress and noise data for a 2.74m (9 ft.) diameter single rotation propfan. Tests were performed at Mach numbers to 0.85 and altitudes to 12,192m (40,000 ft.). The propfan was well-behaved structurally over the entire flight envelope, demonstrating that the blade design technology was completely adequate. Noise data were characterized by strong signals at blade passage frequency and up to 10 harmonics. Cabin noise was not so high as to preclude attainment of comfortable levels with suitable wall treatment. Community noise was not excessive.

  17. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft...) That the aircraft conforms with the type design; and (4) That the Administrator received a flight...

  18. ACAT Ground Collision Avoidance Flight Tests Over

    NASA Video Gallery

    NASA's Dryden Flight Research Center has concluded flight tests of an Automatic Ground Collision Avoidance System (Auto GCAS) under the joint U.S. Air Force/NASA F-16D Automatic Collision Avoidance...

  19. Controlled Hover Test Flight No. 4

    NASA Video Gallery

    This video collage provides several views of the robotic lander prototype during its second free flight test. The lander is captured in flight from overhead and side mounted cameras in high definit...

  20. Factors associated with frequency of abortions recorded through Dairy Herd Improvement test plans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frequency of abortions recorded through Dairy Herd Improvement (DHI) testing was summarized for cows with lactations completed from 2001 through 2009. Reported abortions were 1.3% for 8.5 million DHI lactations of cows with recorded breeding dates and that were >151 d pregnant at lactation terminati...

  1. Flight testing of airbreathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hicks, John W.

    1993-01-01

    Using the scramjet engine as the prime example of a hypersonic airbreathing concept, this paper reviews the history of and addresses the need for hypersonic flight tests. It also describes how such tests can contribute to the development of airbreathing technology. Aspects of captive-carry and free-flight concepts are compared. An incremental flight envelope expansion technique for manned flight vehicles is also described. Such critical issues as required instrumentation technology and proper scaling of experimental devices are addressed. Lastly, examples of international flight test approaches, existing programs, or concepts currently under study, development, or both, are given.

  2. Flight flutter testing the B-58 airplane

    NASA Technical Reports Server (NTRS)

    Mahaffey, P. T.

    1975-01-01

    The flight flutter tests on the B-58 airplane are described, and the philosophy of flight flutter testing is discussed. The instrumentation used in the airplane and in the telemetering receiving station on the ground is described along with the methods used for exciting the airplane and the flight test procedure. Also described is the type of data obtained and its reduction. An evaluation of the procedure and instrumentation is given with a discussion of desirable improvements for future testing.

  3. NASA test flights with increased flight stress indices

    NASA Technical Reports Server (NTRS)

    Smith, I. S., Jr.

    1991-01-01

    This paper presents the objectives, results, and conclusions stemming from a series of six test flights conducted for the National Aeronautics and Space Administration (NASA) by the National Scientific Balloon Facility (NSBF). Results from the test flights indicate that: (1) the current two U.S. balloon films are capable of being flown at significantly increased flight stress index values; (2) payload weights less than the design minimum payload can be reliably flown without fear of structural failure due to increased circumferential stress; and (3) large and rapid decreases in payload weight can be tolerated by current balloons without structural failure.

  4. Skylab rescue space vehicle flight readiness test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A Skylab Rescue Space Vehicle flight readiness test is described which ensures that space vehicle systems are in a state of flight readiness and are compatible with associated ground support equipment. The functions of propellant loading, umbilical ejection, ignition, holddown arm release, liftoff, and service arm and tail service mast retraction are simulated. The test outline is presented along with a list of references, intercommunications information, operations interface control chart, and flight test.

  5. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft type certificate (other than under §§ 21.24 through 21.29) must make the tests listed in paragraph...

  6. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft type certificate (other than under §§ 21.24 through 21.29) must make the tests listed in paragraph...

  7. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft type certificate (other than under §§ 21.24 through 21.29) must make the tests listed in paragraph...

  8. Flight testing of the Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Ottenstein, Laura; Ku, Jentung

    1995-01-01

    The Capillary Pumped Loop Flight Experiment (CAPL) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in micro-gravity, prior to implementation on EOS. CAPL was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Flight test results and post flight investigations will be addressed, along with a brief description of the experiment design.

  9. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  10. Flight Testing a Digital Flight Control System. Issues and Results

    DTIC Science & Technology

    1984-07-01

    Program is primarily oriented to the development, integration, and I - evaluation of new flight control technologies . The testbed used in this program is...will be tested for safe operations to give confidence in case of non-rUettable automatic IBU engagement. ISSUE: CONTROL LAW AND REDUNDANCY MAGEMENT CO...were available. Being an advanced development program evaluating new aspects of integrated flight control technology , the latter approach was chosen

  11. Rotationally Adaptive Flight Test Surface

    NASA Technical Reports Server (NTRS)

    Barrett, Ron

    1999-01-01

    Research on a new design of flutter exciter vane using adaptive materials was conducted. This novel design is based on all-moving aerodynamic surface technology and consists of a structurally stiff main spar, a series of piezoelectric actuator elements and an aerodynamic shell which is pivoted around the main spar. The work was built upon the current missile-type all-moving surface designs and change them so they are better suited for flutter excitation through the transonic flight regime. The first portion of research will be centered on aerodynamic and structural modeling of the system. USAF DatCom and vortex lattice codes was used to capture the fundamental aerodynamics of the vane. Finite element codes and laminated plate theory and virtual work analyses will be used to structurally model the aerodynamic vane and wing tip. Following the basic modeling, a flutter test vane was designed. Each component within the structure was designed to meet the design loads. After the design loads are met, then the deflections will be maximized and the internal structure will be laid out. In addition to the structure, a basic electrical control network will be designed which will be capable of driving a scaled exciter vane. The third and final stage of main investigation involved the fabrication of a 1/4 scale vane. This scaled vane was used to verify kinematics and structural mechanics theories on all-moving actuation. Following assembly, a series of bench tests was conducted to determine frequency response, electrical characteristics, mechanical and kinematic properties. Test results indicate peak-to-peak deflections of 1.1 deg with a corner frequency of just over 130 Hz.

  12. Flight Test Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  13. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  14. The NASA MLAS Flight Demonstration - A Review of a Highly Successful Test

    NASA Technical Reports Server (NTRS)

    Taylor, Anthony P.; Kelley, Christopher; Magner, Eldred; Peterson, David; Hahn, Jeffrey; Yuchnovicz, Daniel

    2010-01-01

    NASA has tested the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is not Maximum, but rather dedicated to Max Faget, The renowned NASA Spacecraft designer. In the fall of 2009, the mission was flown, with great success, from the NASA Wallops Flight Facility. The MLAS flight test vehicle prototype consists of a boost ring, coast ring, and the MLAS fairing itself, which houses an Orion Command Module (CM) boilerplate. The objective of the MLAS flight test is to reorient the fairing with the CM, weighing approximately 29,000 lbs and traveling 290 fps, 180 degrees to an orientation suitable for the release of the CM during a pad abort and low altitude abort. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft DO ribbon parachutes, and the remaining four are standard G-12 cargo parachutes. This paper presents an overview of the 27.6 ft DO ribbon parachute system employed on the MLAS flight test vehicle for coast ring separation, fairing reorientation, and as drogue parachutes for the CM after separation from the fairing. Discussion will include: the process used to select this design, previously proven as a spin/stall recovery parachute; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute to the MLAS program; the techniques used to analyze the parachute for the multiple roles it performs; a discussion of the rigging techniques used to interface the parachute system to the vehicle; a brief description of how the evolution of the program affected parachute usage and analysis; and a summary of the results of the flight test, including video of the flight test and subsequent summary analysis. . A discussion of the flight test which was

  15. Flight vehicle thermal testing with infrared lamps

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.

    1992-01-01

    The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.

  16. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  17. NASA Crew Launch Vehicle Flight Test Options

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2006-01-01

    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  18. SOFIA Flight Tests for Early Science Progress

    NASA Video Gallery

    NASA's Stratospheric Observatory for Infrared Astronomy is undergoing flight tests to prepare it for Early Science missions. These tests require the observatory to fly above 41,000 feet with the te...

  19. NASA Flight Tests Explore Supersonic Laminar Flow

    NASA Video Gallery

    In partnership with Aerion Corporation of Reno, Nevada, NASA's Dryden Flight Research Center’s tested supersonic airflow over a small experimental airfoil design on its F-15B Test Bed aircraft du...

  20. 737 Windshear Sensor Flight Tests, Orlando

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Langley Research Center's Boeing 737 test aircraft on the ramp at Orlando International Airport following a day of flight tests evaluating the performance of radar, lidar, and infrared wind shear detection sensors

  1. Joint Detect and Avoid Flight Testing

    NASA Technical Reports Server (NTRS)

    Maliska, Heather; Estrada, Ramon; Euteneuer, Eric; Gong, Chester; Arthur, Keith

    2015-01-01

    This presentation gives insight into a joint flight testing effort that included participation from NASA, Honeywell, and General Atomics. The presentation includes roles and responsibilities, test flow, and encounter requirements and summary.

  2. FT 3 Flight Test Cards for Export

    NASA Technical Reports Server (NTRS)

    Marston, Michael L.

    2015-01-01

    These flight test cards will be made available to stakeholders who participated in FT3. NASA entered into the relationship with our stakeholders, including the FAA, to develop requirements that will lead to routine flights of unmanned aircraft systems flying in the national airspace system.

  3. Dynamic assertion testing of flight control software

    NASA Technical Reports Server (NTRS)

    Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.

    1985-01-01

    Digital Flight Control System (DFCS) software was used as a test case for assertion testing. The assertions were written and embedded in the code, then errors were inserted (seeded) one at a time and the code executed. Results indicate that assertion testing is an effective and efficient method of detecting errors in flight software. Most errors are eliminate at an earlier stage in the development than before.

  4. X-48B Flight Test Progress Overview

    NASA Technical Reports Server (NTRS)

    Risch, Timoth K.; Cosentino, Gary B.; Regan, Christopher D.; Kisska, Michael; Princen, Norman

    2009-01-01

    The results of a series of 39 flight tests of the X-48B Low Speed Vehicle (LSV) performed at the NASA Dryden Flight Research Center from July 2007 through December 2008 are reported here. The goal of these tests is to evaluate the aerodynamic and controls and dynamics performance of the subscale LSV aircraft, eventually leading to the development of a control system for a full-scale vehicle. The X-48B LSV is an 8.5%-scale aircraft of a potential, full-scale Blended Wing Body (BWB) type aircraft and is flown remotely from a ground control station using a computerized flight control system located onboard the aircraft. The flight tests were the first two phases of a planned three-phase research program aimed at ascertaining the flying characteristics of this type of aircraft. The two test phases reported here are: 1) envelope expansion, during which the basic flying characteristics of the airplane were examined, and 2) parameter identification, stalls, and engine-out testing, during which further information on the aircraft performance was obtained and the airplane was tested to the limits of controlled flight. The third phase, departure limiter assaults, has yet to be performed. Flight tests in two different wing leading edge configurations (slats extended and slats retracted) as well as three weight and three center of gravity positions were conducted during each phase. Data gathered in the test program included measured airplane performance parameters such as speed, acceleration, and control surface deflections along with qualitative flying evaluations obtained from pilot and crew observations. Flight tests performed to-date indicate the aircraft exhibits good handling qualities and performance, consistent with pre-flight simulations.

  5. Ares I-X Flight Test Philosophy

    NASA Technical Reports Server (NTRS)

    Davis, S. R.; Tuma, M. L.; Heitzman, K.

    2007-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.

  6. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Sowards, Stephanie; Honeycutt, Timothy

    2008-01-01

    This paper discusses the benefits of conducting multi-system integration testing of space flight elements in lieu of merely shipping and shooting to the launch site and launching. "Ship and shoot" is a philosophy that proposes to transport flight elements directly from the factory to the launch site and begin the mission without further testing. Integration testing, relevant to validation testing in this context, is a risk mitigation effort that builds upon the individual element and system levels of qualification and acceptance tests, greatly improving the confidence of operations in space. The International Space Station Program (ISSP) experience is the focus of most discussions from a historical perspective, while proposed integration testing of the Constellation Program is also discussed. The latter will include Multi-Element Integration Testing (MElT) and Flight Element Integration Testing (FElT).

  7. Mighty Eagle 'Rocks' Flight Testing Series

    NASA Video Gallery

    The "Mighty Eagle," a NASA robotic prototype lander, recently completed a series of test objectives – even going as high as 100 feet for several free flights. The vehicle is a three-legged protot...

  8. Writing executable assertions to test flight software

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.

  9. X-48B Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2009-01-01

    This slide presentation reviews the preliminary Flight tests of the X-48B development program. The X-48B is a blended wing body aircraft that is being used to test various features of the BWB concept. The research concerns the following: (1) Turbofan Development, (2) Intelligent Flight Control and Optimization, (3) Airdata Calibration (4) Parameter Identification (i.e., Determination of the parameters of a mathematical model of a system based on observation of the system inputs and response.)

  10. Development of a flight software testing methodology

    NASA Technical Reports Server (NTRS)

    Mccluskey, E. J.; Andrews, D. M.

    1985-01-01

    The research to develop a testing methodology for flight software is described. An experiment was conducted in using assertions to dynamically test digital flight control software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters. In addition, a prototype watchdog task system was built to evaluate the effectiveness of executing assertions in parallel by using the multitasking features of Ada.

  11. NASA crew launch vehicle flight test options

    NASA Astrophysics Data System (ADS)

    Cockrell, Charles E.; Davis, Stephan R.; Robinson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2007-06-01

    Options for development flight testing (DFT) of the Ares I crew launch vehicle (CLV) are discussed. The Ares I CLV is being developed by the US National Aeronautics and Space Administration (NASA) to launch the crew exploration vehicle (CEV) into low Earth orbit (LEO). The Ares I implements one of the components of the vision for space exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the space shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of DFT is to demonstrate key subsystems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, space shuttle, and other flight programs are examined along with key Ares I technical risks in order to provide insight into possible DFT strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  12. Fused Reality for Enhanced Flight Test Capabilities

    NASA Technical Reports Server (NTRS)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  13. The 757 NLF glove flight test results

    NASA Technical Reports Server (NTRS)

    Runyan, L. Jim; Bielak, G. W.; Behbehani, R. A.; Chen, A. W.; Rozendaal, Roger A.

    1987-01-01

    A major concern in the application of a laminar flow wing design to commercial transports is whether laminar flow can be sustained in the presence of the noise environment due to wing mounted turbofan engines. To investigate this issue, a flight test program was conducted using the Boeing 757 flight research airplane with a portion of the wing modified to obtain natural laminar flow. The flight test had two primary objectives. The first was to measure the noise levels on the upper and lower surface of the wing for a range of flight conditions. The second was to investigate the effect of engine noise on laminar boundary layer transition. The noise field on the wing and transition location on the glove were then measured as a function of the engine power setting at a given flight condition. The transition and noise measurement on the glove show that there is no apparent effect of engine noise on the upper surface transition location. On the lower surface, the transition location moved forward 2 to 3 percent chord. A boundary layer stability analysis to the flight data showed that cross flow disturbances were the dominant cause of transition at most flight conditions.

  14. Autonomous Flight Safety System Road Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.

    2005-01-01

    On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.

  15. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... certain flight tests. (a) No person may operate a civil aircraft (except a manned free balloon) that is... transport pilot certificate or a class or type rating on that certificate, or for a part 121...

  16. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... certain flight tests. (a) No person may operate a civil aircraft (except a manned free balloon) that is... transport pilot certificate or a class or type rating on that certificate, or for a part 121...

  17. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... certain flight tests. (a) No person may operate a civil aircraft (except a manned free balloon) that is... transport pilot certificate or a class or type rating on that certificate, or for a part 121...

  18. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  19. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  20. Reentry vehicle flight testing and recovery techniques

    NASA Astrophysics Data System (ADS)

    Rigali, D. J.; Sterk, M. W.; Randmaa, J.

    1980-07-01

    A technique to soft-recover high ballistic coefficient reentry vehicles from ICBM reentry conditions has been developed and demonstrated. To date, two different types of vehicles have been soft-recovered, utilizing the mass jettison, parachute recovery technique described herein. The fabrication and assembly of two additional RVs of different designs are presently underway in preparation for flight test. A technique to allow an increase in the severity of the environment from which an RV can be recovered is presently being analyzed and ground-tested with plans to flight-test it within two years. Descriptions of all of these vehicles and a summary of the flight-test results are presented.

  1. X-31A Tactical Utility Flight Testing

    NASA Technical Reports Server (NTRS)

    Friehmelt, Holger; Guetter, Richard; Kim, Quirin

    1997-01-01

    The two X-31A were jointly built by Daimler-Benz Aerospace AG and Rockwell International. These German-American experimental aircraft were designed to explore the new realm of flight far beyond stall by employing advanced technologies like thrust vectoring and sophisticated flight control systems. The X-31A aircraft is equipped with a thrust vectoring system consisting of three aft mounted paddles to deflect the thrust vector in both pitch and yaw axes, thus providing the X-31A in this 'Enhanced Fighter Maneuverability program with an agility and maneuverability never seen before. The tactical utility of the X-31A using post stall technologies has been revealed in an extensive flight test campaign against various current state-of-the-art fighter aircraft in a close-in combat arena. The test philosophy included both simulation and flight test. The tremendous tactical advantage of the X-31A during the tactical utility evaluation flight test phase was accompanied by a deepened insight into post stall tactics its typical maneuvers, impacts on pilot-aircraft interfaces and requirements for future weapons to both engineers and the military community. Some selected aspects of the tactical utility of the X-31A using post stall technologies unveiled by the International Test Organization are presented here.

  2. Flight test results of the Strapdown hexad Inertial Reference Unit (SIRU). Volume 1: Flight test summary

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Flight test results of the strapdown inertial reference unit (SIRU) navigation system are presented. The fault-tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance.

  3. Dynamic assertion testing of flight control software

    NASA Technical Reports Server (NTRS)

    Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.

    1985-01-01

    An experiment in using assertions to dynamically test fault tolerant flight software is described. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters.

  4. Dynamic assertion testing of flight control software

    NASA Technical Reports Server (NTRS)

    Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.

    1985-01-01

    Assertions are used to dynamically test fault tolerant flight software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters.

  5. Dual control vibration tests of flight hardware

    NASA Astrophysics Data System (ADS)

    Scharton, Terry D.

    A vibration retest of a spacecraft flight instrument, the Mars Observer Camera (MOC), was conducted using extremal dual control to automatically limit the shaker force and notch the shaker acceleration at resonances. This was the first application of extremal dual control with flight hardware at JPL. The retest was successful in that the environment was representative of flight plus some margin, the instrument survived without any structural or performance degradation, and the force limiting worked very well. The test set-up, force limiting procedure, and test results are described herein. It is concluded that dual control should be utilized when there is a concern about overtesting in hard-base-drive tests and the instrumentation for force measurement and control is available. Recommendations for improving the implementation of dual control are provided as a result of this first experience.

  6. Simulation Testing of Embedded Flight Software

    NASA Technical Reports Server (NTRS)

    Shahabuddin, Mohammad; Reinholtz, William

    2004-01-01

    Virtual Real Time (VRT) is a computer program for testing embedded flight software by computational simulation in a workstation, in contradistinction to testing it in its target central processing unit (CPU). The disadvantages of testing in the target CPU include the need for an expensive test bed, the necessity for testers and programmers to take turns using the test bed, and the lack of software tools for debugging in a real-time environment. By virtue of its architecture, most of the flight software of the type in question is amenable to development and testing on workstations, for which there is an abundance of commercially available debugging and analysis software tools. Unfortunately, the timing of a workstation differs from that of a target CPU in a test bed. VRT, in conjunction with closed-loop simulation software, provides a capability for executing embedded flight software on a workstation in a close-to-real-time environment. A scale factor is used to convert between execution time in VRT on a workstation and execution on a target CPU. VRT includes high-resolution operating- system timers that enable the synchronization of flight software with simulation software and ground software, all running on different workstations.

  7. Orion Launch Abort System (LAS) Propulsion on Pad Abort 1 (PA-1)

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.

    2015-01-01

    This presentation provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.

  8. Wavelet Applications for Flight Flutter Testing

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty; Freudinger, Lawrence C.

    1999-01-01

    Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.

  9. Development Of Maneuvering Autopilot For Flight Tests

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1992-01-01

    Report describes recent efforts to develop automatic control system operating under supervision of pilot and making airplane follow prescribed trajectories during flight tests. Report represents additional progress on this project. Gives background information on technology of control of test-flight trajectories; presents mathematical models of airframe, engine and command-augmentation system; focuses on mathematical modeling of maneuvers; addresses design of autopilots for maneuvers; discusses numerical simulation and evaluation of results of simulation of eight maneuvers under control of simulated autopilot; and presents summary and discussion of future work.

  10. Hypersonic Flight Test Windows for Technology Development Testing

    DTIC Science & Technology

    2013-11-01

    hypersonic vehicles requires the application of a significant amount of thermal protection or use of a hot structures concept, which can be a major cost...AFRL-RQ-WP-TM-2013-0260 HYPERSONIC FLIGHT TEST WINDOWS FOR TECHNOLOGY DEVELOPMENT TESTING Barry M. Hellman Vehicle Technology Branch...DATES COVERED (From - To) November 2013 Final 01 November 2013 – 25 November 2013 4. TITLE AND SUBTITLE HYPERSONIC FLIGHT TEST WINDOWS FOR

  11. Genetic testing likelihood: the impact of abortion views and quality of life information on women's decisions.

    PubMed

    Wilson, Jessica L; Ferguson, Gail M; Thorn, Judith M

    2011-04-01

    Little is known about factors predicting the likelihood of choosing genetic testing in college aged women versus older women, including knowledge of quality of life (QOL) associated with a disorder. Using vignettes with female college students (Experiment 1: n=257, mean age=19.70 yrs) and female faculty/staff/alumni (Experiment 2: n (nulliparous)=83, mean age=30.20 yrs; n (mothers)=53, mean age=33.77 yrs), we examined the contribution of multiple factors to predicting genetic testing likelihood for cystic fibrosis. We investigated malleable situational factors (style of genetic risk presentation and providing QOL information including physical and social aspects) and stable dispositional factors (abortion views). Parity (i.e., prior births) was more influential in women's genetic testing likelihood than was age. Greater acceptability of abortion for oneself and self-assessed knowledge following QOL information were predictors of higher testing likelihood for college students. Greater acceptability of abortion for another person was a predictor for nulliparous women. Abortion views moderated the effect of predictors for nulliparous women and mothers. Findings encourage genetic counselors to utilize QOL information to promote informed decision making through genetic testing.

  12. GENIE Flight Test Results and System Overview

    NASA Technical Reports Server (NTRS)

    Brady, Tye; Paschall, Stephen, II; Crain, Timothy P., II; Demars, Kyle; Bishop, Robert

    2011-01-01

    NASA has envisioned a suite of lander test vehicles that will be flown in Earth s atmosphere to incrementally demonstrate applicable lunar lander performance in the terrestrial environment. As each terrestrial rocket progresses in maturity, relevant space flight technology matures to a higher technology readiness level, preparing it for inclusion on a future lunar lander design.. NASA s "Project M" lunar mission concept flew its first terrestrial rocket, RR1, in June 2010 in Caddo Mills, Texas. The Draper Laboratory built GENIE (Guidance Embedded Navigator Integration Environment) successfully demonstrated accurate, real time, embedded performance of Project M navigation and guidance algorithms in a highly dynamic environment. The RR1 vehicle, built by Armadillo Aerospace, performed a successful 60 second free flight and gave the team great confidence in Project M s highly reliable and robust GNC system design and implementation. This paper provides an overview of the GENIE system and describes recent flight performance test results onboard the RR1 terrestrial rocket.

  13. A historical overview of flight flutter testing

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1995-01-01

    This paper reviews the test techniques developed over the last several decades for flight flutter testing of aircraft. Structural excitation systems, instrumentation systems, digital data preprocessing, and parameter identification algorithms (for frequency and damping estimates from the response data) are described. Practical experiences and example test programs illustrate the combined, integrated effectiveness of the various approaches used. Finally, comments regarding the direction of future developments and needs are presented.

  14. Teenagers: fertility control behavior and attitudes before and after abortion, childbearing or negative pregnancy test.

    PubMed

    Evans, J R; Selstad, G; Welcher, W H

    1976-01-01

    Following abortion or delivery, teenagers' knowledge and use of effective contraception improved markedly; but those who had negative pregnancy tests continued to take risks--and to get pregnant--subsequently. Most sexually active teenagers were poorly educated on the facts of reproduction, and began to have intercourse before seeking contraception.

  15. Orlando 737 Windshear Sensor Flight Tests

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Langley Research Center's 737 'flying laboratory' flight tested three advance warning windshear sensors. The laser beams seen in the photograph were used to align the optical hardware of the infrared (located in front of the windows) and LIDAR (Light Detecting And Ranging) systems. In addition, a microwave doppler radar system is installed in the aircraft nose.

  16. Loran-C flight test software

    NASA Technical Reports Server (NTRS)

    Nickum, J. D.

    1978-01-01

    The software package developed for the KIM-1 Micro-System and the Mini-L PLL receiver to simplify taking flight test data is described along with the address and data bus buffers used in the KIM-1 Micro-system. The interface hardware and timing are also presented to describe completely the software programs.

  17. The X-33 Flight Test Challenge

    NASA Technical Reports Server (NTRS)

    Borden, David; Ramiscal, Ermin; Howell, John

    1999-01-01

    Low cost access to space has eluded present launch system technologies. Our objective is to reduce the cost of putting a payload into space from $10,000 per pound to $1000 per pound. In July 1996, a cooperative agreement was initiated between the Lockheed Martin Skunk Works and NASA to help accomplish this goal. The X-33 is the first step in the process to make low cost space access a reality. The X-33 is a suborbital, hypersonic lifting body, proof of concept of a reusable launch vehicle. The X-33 flight test program will validate technologies such as a metallic thermal protection system, Linear Aerospike Engines, use of tanks and struts as fundamental structural elements, as well as quick turnaround time. Flight testing will begin in July 2000, with launches originating from Edwards Air Force Base and initial landings at Michael Army Airfield in Utah. Data collected from these flight tests will aid in the decision to build an economically viable single stage to orbit reusable launch vehicle. This paper will explore the technical challenges facing the X-33 Flight Test Team.

  18. 10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  19. The development of an automated flight test management system for flight test planning and monitoring

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.

    1988-01-01

    The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.

  20. NASA Synthetic Vision EGE Flight Test

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J.; Kramer, Lynda J.; Comstock, J. Raymond; Bailey, Randall E.; Hughes, Monica F.; Parrish, Russell V.

    2002-01-01

    NASA Langley Research Center conducted flight tests at the Eagle County, Colorado airport to evaluate synthetic vision concepts. Three display concepts (size 'A' head-down, size 'X' head-down, and head-up displays) and two texture concepts (photo, generic) were assessed for situation awareness and flight technical error / performance while making approaches to Runway 25 and Runway 07 and simulated engine-out Cottonwood 2 and KREMM departures. The results of the study confirm the retrofit capability of the HUD and Size 'A' SVS concepts to significantly improve situation awareness and performance over current EFIS glass and non-glass instruments for difficult approaches in terrain-challenged environments.

  1. Preliminary Report on Free Flight Tests

    NASA Technical Reports Server (NTRS)

    Warner, E P; Norton, F H

    1920-01-01

    Results are presented for a series of tests made by the Advisory Committee's staff at Langley Field during the summer of 1919 with the objectives of determining the characteristics of airplanes in flight and the extent to which the actual characteristics differ from those predicted from tests on models in the wind tunnel, and of studying the balance of the machines and the forces which must be applied to the controls in order to maintain longitudinal equilibrium.

  2. YF-16 flight flutter test procedures

    NASA Technical Reports Server (NTRS)

    Brignac, W. J.; Ness, H. B.; Johnson, M. K.; Smith, L. M.

    1976-01-01

    The Random Decrement technique (Randomdec) was incorporated in procedures for flight testing of the YF-16 lightweight fighter prototype. Damping values obtained substantiate the adequacy of the flutter margin of safety. To confirm the structural modes which were being excited, a spectral analysis of each channel was performed using the AFFTC time/data 1923/50 time series analyzer. Inflight test procedure included the careful monitoring of strip charts, three axis pulses, rolls, and pullups.

  3. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  4. Testing Flight Systems with Machine Executable Scripts

    NASA Technical Reports Server (NTRS)

    Gibbs, Don; Bone, Brian

    2009-01-01

    The MSAP project at JPL has been testing spacecraft avionics and flight software since 2005, in part using computer executable scripts. The scripts are document files of a common word processor and comply with the format of a traditional, formal test procedure common at JPL. These procedures use keywords to issue commands and evaluate responses, mimicking a human test operator. In effect, script lines are inserted into a normal procedure. Even though the executable structure of the procedures is limited to linear sequences of fairly simple operations, we have found significant value in certain test regimes given the repeatability, ease of execution, and readily understandable intent of these procedures.

  5. Marshall Space Flight Center Test Capabilities

    NASA Technical Reports Server (NTRS)

    Hamilton, Jeffrey T.

    2005-01-01

    The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.

  6. Flight Testing an Integrated Synthetic Vision System

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  7. Orion: Exploration Flight Test-1 Animation (no narration)

    NASA Video Gallery

    This animation depicts the proposed test flight of the Orion spacecraft in 2014. During the test, which is called Exploration Flight Test-1 (EFT-1), Orion will launch from Cape Canaveral, Fla., per...

  8. Induced Abortion

    MedlinePlus

    ... Education & Events Advocacy For Patients About ACOG Induced Abortion Home For Patients Search FAQs Induced Abortion Page ... Induced Abortion FAQ043, May 2015 PDF Format Induced Abortion Special Procedures What is an induced abortion? What ...

  9. ACAS-Xu Initial Self-Separation Flight Tests

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Baca, Gabe

    2015-01-01

    The purpose of this flight test report is to document and report the details of the ACAS Xu (Airborne Collision Avoidance System For Unmanned Aircraft) / Self-Separation flight test series performed at Edwards AFB from November to December of 2014. Included in this document are details about participating aircraft, aircrew, mission crew, system configurations, flight data, flight execution, flight summary, test results, and lessons learned.

  10. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, Jim

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, th Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and grou handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early the United States prepares to take its next giant leaps to the Moon and beyond.

  11. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  12. Douglas Experience in Flight Flutter Testing

    NASA Technical Reports Server (NTRS)

    Philbrick, J.

    1975-01-01

    Douglas Aircraft Company experience in flight flutter testing is reviewed briefly, with comments on state-of-the-art excitation and instrumentation techniques used up to the present time. The limitations of previous techniques are discussed with emphasis on the problem of: (1) establishing a flutter margin of safety for predicted marginal flutter modes; (2) resolving instances of flutter not predicted by theoretical calculations in advance; and (3) delaying the airplane demonstration by time consumed in acquisition and reduction of flutter data. Current Douglas philosophy in flight flutter testing is presented and a description given of steady-state vane excitation system development, automatic data handling system, and the potential application of automatic computing methods for increasing flutter data yield.

  13. Flight Test Experiments Foreseen for USV

    DTIC Science & Technology

    2005-10-01

    RTO-EN-AVT-130 Russo, G. (2007) Flight Test Experiments Foreseen for USV. In Flig Educational Notes RTO-EN-AVT-130, Paper 12 . Neuilly-sur-Seine...Manager CH Project Manager 12 - 1 ht Experiments for Hypersonic Vehicle Development (pp. 12 -1 – 12 -38). France: RTO. Available from: http... 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES See also ADM002057., The

  14. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2016-07-12

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  15. Los Alamos Novel Rocket Design Flight Tested

    SciTech Connect

    Tappan, Bryce

    2014-10-23

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  16. Current Hypersonic and Space Vehicle Flight Test and Instrumentation

    DTIC Science & Technology

    2015-06-22

    412TW-PA-15264 CURRENT HYPERSONIC AND SPACE VEHICLE FLIGHT TEST AND INSTRUMENTATION John J. Spravka* and Timothy R. Jorris† AIR FORCE TEST...DATES COVERED (From - To) 22 – 26 July 2015 4. TITLE AND SUBTITLE Current Hypersonic and Space Vehicle Flight Test and Instrumentation...utility can be leveraged by a wide range of flight test programs. 15. SUBJECT TERMS Hypersonic, flight test, instrumentation, space access, space

  17. Integrated Test and Evaluation (ITE) Flight Test Series 4

    NASA Technical Reports Server (NTRS)

    Marston, Michael

    2016-01-01

    The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.

  18. Digital signal conditioning for flight test instrumentation

    NASA Technical Reports Server (NTRS)

    Bever, Glenn A.

    1991-01-01

    An introduction to digital measurement processes on aircraft is provided. Flight test instrumentation systems are rapidly evolving from analog-intensive to digital intensive systems, including the use of onboard digital computers. The topics include measurements that are digital in origin, as well as sampling, encoding, transmitting, and storing data. Particular emphasis is placed on modern avionic data bus architectures and what to be aware of when extracting data from them. Examples of data extraction techniques are given. Tradeoffs between digital logic families, trends in digital development, and design testing techniques are discussed. An introduction to digital filtering is also covered.

  19. Flight Testing of Hybrid Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Story, George; Arves, Joe

    2006-01-01

    Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.

  20. Comparisons Between Pretest Prediction and Flight Test Data of Aerodynamic Loading for EFT-1

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.

    2016-01-01

    Exploration Flight Test One (EFT-1) was an incredible milestone in the development NASA's Orion spacecraft. It incorporated hundreds of articles of flight test instrumentation and returned with a wealth of data. Aerodynamic surface pressures were collected during launch vehicle ascent and capsule reentry and descent. These discrete surface pressure measurements enable comparisons to computational results and ground test data. This paper details the comparisons between pre-test predictions and flight test data for the Orion MPCV Crew Module (CM) and Launch Abort Tower (LAT) during all phases of flight. Regions with strong comparisons, poor predictions, and lessons learned are discussed. 38 pressure measurements were made on the LAT during ascent. Nine of the gauges were Honeywell PPTs and the remainder were Kulite pressure transducers. In order to address bias in the Kulites, a two-point linear calibration was used and the details are discussed. Results from the flight are compared to existing database products. 44 pressure measurements were made on the CM during reentry and descent. Nine of the gauges were Honeywell PPTs and the remainder were Kulite pressure transducers. In order to address bias in the Kulites, a tare was made against the vacuum measurements as described below. Once the bias was removed from the gauges, comparisons between predicted loading and the measured results are compared.

  1. A flight test facility design for examining digital information transfer

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1990-01-01

    Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.

  2. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  3. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  4. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  5. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  6. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  7. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    NASA Technical Reports Server (NTRS)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  8. Automation of Flight Software Regression Testing

    NASA Technical Reports Server (NTRS)

    Tashakkor, Scott B.

    2016-01-01

    NASA is developing the Space Launch System (SLS) to be a heavy lift launch vehicle supporting human and scientific exploration beyond earth orbit. SLS will have a common core stage, an upper stage, and different permutations of boosters and fairings to perform various crewed or cargo missions. Marshall Space Flight Center (MSFC) is writing the Flight Software (FSW) that will operate the SLS launch vehicle. The FSW is developed in an incremental manner based on "Agile" software techniques. As the FSW is incrementally developed, testing the functionality of the code needs to be performed continually to ensure that the integrity of the software is maintained. Manually testing the functionality on an ever-growing set of requirements and features is not an efficient solution and therefore needs to be done automatically to ensure testing is comprehensive. To support test automation, a framework for a regression test harness has been developed and used on SLS FSW. The test harness provides a modular design approach that can compile or read in the required information specified by the developer of the test. The modularity provides independence between groups of tests and the ability to add and remove tests without disturbing others. This provides the SLS FSW team a time saving feature that is essential to meeting SLS Program technical and programmatic requirements. During development of SLS FSW, this technique has proved to be a useful tool to ensure all requirements have been tested, and that desired functionality is maintained, as changes occur. It also provides a mechanism for developers to check functionality of the code that they have developed. With this system, automation of regression testing is accomplished through a scheduling tool and/or commit hooks. Key advantages of this test harness capability includes execution support for multiple independent test cases, the ability for developers to specify precisely what they are testing and how, the ability to add

  9. Post-Flight Assessment of Low Density Supersonic Decelerator Flight Dynamics Test 2 Simulation

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; White, Joseph P.; Striepe, Scott A.; Queen, Eric M.; O'Farrel, Clara; Ivanov, Mark C.

    2016-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its second Supersonic Flight Dynamics Test (SFDT-2) on June 8, 2015. The Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics tools used to simulate and predict the flight performance and was a major tool used in the post-flight assessment of the flight trajectory. This paper compares the simulation predictions with the reconstructed trajectory. Additionally, off-nominal conditions seen during flight are modeled in the simulation to reconcile the predictions with flight data. These analyses are beneficial to characterize the results of the flight test and to improve the simulation and targeting of the subsequent LDSD flights.

  10. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  11. Environmental testing for new SOFIA flight hardware

    NASA Astrophysics Data System (ADS)

    Lachenmann, Michael; Wolf, Jürgen; Strecker, Rainer; Weckenmann, Benedikt; Trimpe, Fritz; Hall, Helen J.

    2014-07-01

    New flight hardware for the Stratospheric Observatory for Infrared Astronomy (SOFIA) has to be tested to prove its safety and functionality and to measure its performance under flight conditions. Although it is not expected to experience critical issues inside the pressurized cabin with close-to-normal conditions, all equipment has to be tested for safety margins in case of a decompression event and/or for unusual high temperatures, e.g. inside an electronic unit caused by a malfunction as well as unusual high ambient temperatures inside the cabin, when the aircraft is parked in a desert. For equipment mounted on the cavity side of the telescope, stratospheric conditions apply, i.e., temperatures from -40 °C to -60°C and an air pressure of about 0.1 bar. Besides safety aspects as not to endanger personnel or equipment, new hardware inside the cavity has to function and to perform to specifications under such conditions. To perform these tests, an environmental test laboratory was set up at the SOFIA Science Center at the NASA Ames Research Center, including a thermal vacuum chamber, temperature measurement equipment, and a control and data logging workstation. This paper gives an overview of the test and measurement equipment, shows results from the commissioning and characterization of the thermal vacuum chamber, and presents examples of the component tests that were performed so far. To test the focus position stability of optics when cooling them to stratospheric temperatures, an auto-collimation device has been developed. We will present its design and results from measurements on commercial off-the-shelf optics as candidates for the new Wide Field Imager for SOFIA as an example.

  12. Flight test of a MMW imaging radarometer

    NASA Astrophysics Data System (ADS)

    Ewen, Doc; Huddleston, Darryl G.; Smith, Roger M.; Belcher, Byron W.

    2001-08-01

    An imaging 'radarometer' mode integrates a radar with a radiometer in a manner which allows simultaneous use of a common imaging antenna. The goal of this research effort was the design of a MMW camera capable of obtaining simultaneous passive and active airborne images, in the radarometer mode. An ETU was assembled to verify the design of an Engineering Model and to determine if any significant design changes were needed. ETU flight test data is presented and discussed in terms of sensor system capabilities and the Engineering Model design approach.

  13. Optimization models for flight test scheduling

    NASA Astrophysics Data System (ADS)

    Holian, Derreck

    with restriction removal is based on heuristic approaches to support the reality of flight test in both solution space and computational time. Exact methods for yielding an optimized solution will be discussed however they are not directly applicable to the flight test problem and therefore have not been included in the system.

  14. Development flight tests of JetStar LFC leading-edge flight test experiment

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  15. Flight testing air-to-air missiles for flutter

    NASA Technical Reports Server (NTRS)

    Kutschinski, C. R.

    1975-01-01

    The philosophy of the design of air-to-air missiles and hence of flight testing them for flutter differs from that of manned aircraft. Primary emphasis is put on analytical and laboratory evaluation of missile susceptibility to aeroelastic and aero-servo-elastic instabilities and uses flight testing for confirmation of the absence of such instabilities. Flight testing for flutter is accomplished by using specially instrumented programmed missiles, air or ground launched with a booster to reach the extreme flight conditions of tactical use, or by using guided missiles with telemetered performance data. The instrumentation and testing techniques are discussed along with the success of recent flight tests.

  16. UAS-NAS Flight Test Series 3: Test Environment Report

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communications (Comm), and Certification to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Detect and Avoid (DAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project is conducting a series of human-in-the-loop (HITL) and flight test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity, and

  17. Comparison of diagnostic tests for diagnosis of infectious bovine rhinotracheitis in natural cases of bovine abortion.

    PubMed

    Mahajan, V; Banga, H S; Deka, D; Filia, G; Gupta, A

    2013-11-01

    Rapid and precise diagnosis plays a pivotal role in implementing suitable control measures in natural field cases of bovine abortion due to infection with bovine herpesvirus (BHV)-1. In the present study, serology, virus isolation, histopathology, immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR) for amplification of the gene encoding glycoprotein B were applied for diagnosis of infectious bovine rhinotracheitis (IBR) in cases of abortion. The seroprevalence of IBR in the population studied was 26.3% as determined by indirect enzyme-linked immunosorbent assay. BHV-1 abortions occurred between 4 and 8 months of gestation with an average gestational age of 6 months. Affected placentae showed necrosis of chorionic villi and of the endothelium of small villous blood vessels with characteristic intranuclear (IN) acidophilic inclusion bodies. Similar inclusions were also seen in most of the tissues examined. BHV-1 antigen was identified immunohistochemically in necrotic foci in the liver, the endothelium of placental blood vessels, the bronchial epithelium and hepatocytes. Lesions in the brain also had IN inclusion bodies that labelled positively by IHC. Eighteen samples (nine of stomach content, two of placental cotyledons, five of pooled fetal tissue and two of vaginal discharge) out of 84 tested were positive by real-time PCR for BHV-1.

  18. Abortion - surgical

    MedlinePlus

    Suction curettage; Surgical abortion; Elective abortion - surgical; Therapeutic abortion - surgical ... Surgical abortion involves dilating the opening to the uterus (cervix) and placing a small suction tube into the uterus. ...

  19. Atmospheric reentry flight test of winged space vehicle

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto

    A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.

  20. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  1. A teleoperated unmanned rotorcraft flight test technique

    NASA Technical Reports Server (NTRS)

    Walker, Gregory W.; Phelps, Arthur E., III; Hodges, W. Todd

    1993-01-01

    NASA and the U.S. Army are jointly developing a teleoperated unmanned rotorcraft research platform at the National Aeronautics and Space Administration (NASA) Langley Research Center. This effort is intended to provide the rotorcraft research community an intermediate step between wind tunnel rotorcraft studies and full scale flight testing. The research vehicle is scaled such that it can be operated in the NASA Langley 14- by 22-Foot Subsonic Tunnel or be flown freely at an outside test range. This paper briefly describes the system's requirements and the techniques used to marry the various technologies present in the system to meet these requirements. The paper also discusses the status of the development effort.

  2. Imaging Sensor Flight and Test Equipment Software

    NASA Technical Reports Server (NTRS)

    Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa

    2007-01-01

    The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes

  3. Compilation of reinforced carbon-carbon transatlantic abort landing arc jet test results

    NASA Technical Reports Server (NTRS)

    Milhoan, James D.; Pham, Vuong T.; Yuen, Eric H.

    1993-01-01

    This document consists of the entire test database generated to support the Reinforced Carbon-Carbon Transatlantic Abort Landing Study. RCC components used for orbiter nose cap and wing leading edge thermal protection were originally designed to have a multi-mission entry capability of 2800 F. Increased orbiter range capability required a predicted increase in excess of 3300 F. Three test series were conducted. Test series #1 used ENKA-based RCC specimens coated with silicon carbide, treated with tetraethyl orthosilicate, sealed with Type A surface enhancement, and tested at 3000-3400 F with surface pressure of 60-101 psf. Series #2 used ENKA- or AVTEX-based RCC, with and without silicon carbide, Type A or double Type AA surface enhancement, all impregnated with TEOS, and at temperatures from 1440-3350 F with pressures from 100-350 psf. Series #3 tested ENKA-based RCC, with and without silicon carbide coating. No specimens were treated with TEOS or sealed with Type A. Surface temperatures ranged from 2690-3440 F and pressures ranged from 313-400 psf. These combined test results provided the database for establishing RCC material single-mission-limit temperature and developing surface recession correlations used to predict mass loss for abort conditions.

  4. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    NASA Technical Reports Server (NTRS)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  5. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  6. The Orion Exploration Flight Test Post Flight Solid Particle Flight Environment Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, Joshua E.

    2016-01-01

    Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.

  7. Panoramic night vision goggle flight test results

    NASA Astrophysics Data System (ADS)

    Franck, Douglas L.; Geiselman, Eric E.; Craig, Jeffrey L.

    2000-06-01

    The Panoramic Night Vision Goggle (PNVG) has begun operational test and evaluation with its 100-degree horizontal by 40-degree vertical field of view (FOV) on different aircraft and at different locations. Two configurations of the PNVG are being evaluated. The first configuration design (PNVG I) is very low in profile and fits underneath a visor. PNVG I can be retained by the pilot during ejection. This configuration is interchangeable with a day helmet mounted tracker and display through a standard universal connector. The second configuration (PNVG II) resembles the currently fielded 40-degree circular FOV Aviator Night Vision Imaging Systems (ANVIS) and is designed for non-ejection seat aircraft and ground applications. Pilots completed subjective questionnaires after each flight to compare the capability of the 100-degree horizontal by 40-degree vertical PNVG to the 40-degree circular ANVIS across different operational tasks. This paper discusses current findings and pilot feedback from the flight trials objectives of the next phase of the PNVG program are also discussed.

  8. Mars Science Laboratory Flight Software Internal Testing

    NASA Technical Reports Server (NTRS)

    Jones, Justin D.; Lam, Danny

    2011-01-01

    The Mars Science Laboratory (MSL) team is sending the rover, Curiosity, to Mars, and therefore is physically and technically complex. During my stay, I have assisted the MSL Flight Software (FSW) team in implementing functional test scripts to ensure that the FSW performs to the best of its abilities. There are a large number of FSW requirements that have been written up for implementation; however I have only been assigned a few sections of these requirements. There are many stages within testing; one of the early stages is FSW Internal Testing (FIT). The FIT team can accomplish this with simulation software and the MSL Test Automation Kit (MTAK). MTAK has the ability to integrate with the Software Simulation Equipment (SSE) and the Mission Processing and Control System (MPCS) software which makes it a powerful tool within the MSL FSW development process. The MSL team must ensure that the rover accomplishes all stages of the mission successfully. Due to the natural complexity of this project there is a strong emphasis on testing, as failure is not an option. The entire mission could be jeopardized if something is overlooked.

  9. Test flights of the NASA ultra long duration balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H.

    The NASA Ultra Long Duration Balloon development project is attempting to extend the potential flight durations for large scientific balloon payloads. The culmination of each of the development steps has been the fabrication and test flight of progressively larger balloons. This new super-pressure balloon is a pumpkin balloon design. This paper concentrates on the super-pressure balloon development test flights that have been, and are currently being planned by the National Aeronautics and Space Administration (NASA) Balloon Program Office at Goddard Space Flight Center's Wallops Flight Facility. Two Ultra Long Duration balloon test flights took place from Australia in early 2001. The results from these flights, as well as the challenges presented, will be discussed. With these lessons learned and incorporating both material and design improvements, a test flight of a full-scale 610,500m3 balloon with a 2,800 kg suspended load will be completed in Spring of 2002 from Ft. Sumner, New Mexico. This balloon, the largest single celled super- pressure balloon ever flown, has been sized to satisfy the requirements for the planned ULDB CREAM mission in late 2003. A description of the balloon design, including the modifications made as a result of the lessons learned from the two Australia flights, will be presented. The results, highlighting balloon performance, from the Spring 2002 test flight will be presented. This will include information related to the balloon preparation, flight operations, and flight performance. A review of the radiative environmental influences on the balloon related to this flight will be presented. A second test flight of a full-scale Ultra Long Duration Balloon is scheduled for December of 2002. This flight is expected to be one orbit or approximately 15 days. The plans for this Southern Hemisphere, Australia launched, global flight will also be presented.

  10. Mars Pathfinder flight system integration and test.

    NASA Astrophysics Data System (ADS)

    Muirhead, B. K.

    This paper describes the system integration and test experiences, problems and lessons learned during the assembly, test and launch operations (ATLO) phase of the Mars Pathfinder flight system scheduled to land on the surface of Mars on July 4, 1997. The Mars Pathfinder spacecraft consists of three spacecraft systems: cruise stage, entry vehicle and lander. The cruise stage carries the entry and lander vehicles to Mars and is jettisoned prior to entry. The entry vehicle, including aeroshell, parachute and deceleration rockets, protects the lander during the direct entry and reduces its velocity from 7.6 to 0 km/s in stages during the 5 min entry sequence. The lander's touchdown is softened by airbags which are retracted once stopped on the surface. The lander then uprights itself, opens up fully and begins surface operations including deploying its camera and rover. This paper overviews the system design and the results of the system integration and test activities, including the entry, descent and landing subsystem elements. System test experiences including science instruments, the microrover, Sojourner, and software are discussed. The final qualification of the entry, descent and landing subsystems during this period is also discussed.

  11. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  12. UAS in the NAS Flight Test Series 3 Overview

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2015-01-01

    The UAS Integration in the NAS Project is conducting a series of flight tests to acheive the following objectives: 1.) Validate results previously collected during project simulations with live data 2.) Evaluate TCAS IISS interoperability 3.) Test fully integrated system in a relevant live test environment 4.) Inform final DAA and C2 MOPS 5.) Reduce risk for Flight Test Series 4.

  13. Test flights of the NASA ultra-long duration balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Ultra-Long Duration Balloon development project is attempting to extend the potential flight durations for large scientific balloon payloads. The culmination of each of the development steps has been the fabrication and test flight of progressively larger balloons. This new super-pressure balloon is a pumpkin balloon design. This paper concentrates on the super-pressure balloon development test flights that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center's Wallops Flight Facility. Descriptions of two test flights from early 2001 are presented along with lessons learned. Results are also presented of a July 2002 test flight of a full-scale 610,500 m 3 balloon with a 2800 kg suspended load that incorporated the lessons learned.

  14. Enhancing the usability of CRT displays in test flight monitoring

    NASA Technical Reports Server (NTRS)

    Granaas, Michael M.; Sredinski, Victoria E.

    1991-01-01

    Enhancing the usability of Mission Control Center (MCC) CRT displays stands to improve the quality, productivity, and safety of flight-test research at the NASA Ames-Dryden Flight Research Facility. The results of this research suggests that much can be done to assist the user and improve the quality of flight research through the enhancement of current displays. This research has applications to a variety of flight data monitoring displays.

  15. HIDEC F-15 adaptive engine control system flight test results

    NASA Technical Reports Server (NTRS)

    Smolka, James W.

    1987-01-01

    NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.

  16. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  17. The Parachute System Recovery of the Orion Pad Abort Test 1

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo; Evans, Carol; Madsen, Chris; Morris, Aaron

    2011-01-01

    The Orion Pad Abort Test 1 was conducted at the US Army White Sands Missile range in May 2010. The capsule was successfully recovered using the original design for the parachute recovery system, referred to as the CEV Parachute Assembly System (CPAS). The CPAS was designed to a set of requirements identified prior to the development of the PA-1 test; these requirements were not entirely consistent with the design of the PA-1 test. This presentation will describe the original CPAS design, how the system was modified to accommodate the PA-1 requirements, and what special analysis had to be performed to demonstrate positive margins for the CPAS. The presentation will also discuss the post test analysis and how it compares to the models that were used to design the system.

  18. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  19. Liquid Motion Experiment Flight Test Results

    NASA Technical Reports Server (NTRS)

    Chato David J.; Dalton, Penni J.; Dodge, Franklin T.; Green, Steve

    1998-01-01

    The Liquid Motion Experiment (LME), designed to study the effects of liquid motion in rotating tanks, was flown on STS 84. LME was essentially a spin table that created a realistic nutation motion of scale-model tanks containing liquid. TWo spherical and two cylindrical transparent tanks were tested simultaneously, and three sets of such tanks were employed to vary liquid viscosity, fill level, and propellant management device (PMD) design. All the tanks were approximately 4.5 inches diameter. The primary test measurements were the radial and tangential torques exerted on the tanks by the liquid. Resonant frequencies and damping of the liquid oscillations were determined by sine sweep tests. For a given tank shape, the resonant frequency depended on fill level. For the cylindrical tanks, the resonances had somewhat different frequencies for the tangential axis (0.55 to 0.75 times spin rate) and the radial axis (0.73 to 0.78 times spin rate), and the tangential axis resonance agreed more closely with available analytical models. For the spherical tanks, the resonant frequencies were between 0.74 to 0.77 times the spin rate and were the same for the tangential and radial axes. The damping coefficients varied from about I% to 3% of critical, depending on tank shape, fill level, and liquid viscosity. 'Me viscous energy dissipation rates of the liquid oscillations were determined from sine dwell tests. The LME energy dissipation rates varied from 0.3 to 0.5 times the estimates obtained from scaling previous ground tests and spacecraft flight data. The PNDs sometimes enhanced the resonances and energy dissipation rates and sometimes decreased them, which points out the need to understand better the effects of PMD on liquid motion as a function of PMD and tank design.

  20. Presyncopal/Non-Presyncopal Outcomes of Post Spaceflight Stand Tests are Consistent from Flight to Flight

    NASA Technical Reports Server (NTRS)

    Martin, D. S.; Meck, J. V.

    2004-01-01

    The overall prevalence of orthostatic hypotension after short duration (6-18 d) spaceflight is 20% with existing countermeasures. However, it is not known if the outcomes of stand tests for orthostatic tolerance are consistent within individuals on subsequent flights, or if first time fliers are more (or less) likely to experience orthostatic hypotension and presyncope than are veteran astronauts. Fifty astronauts were studied retrospectively. Stand test data, which had been collected before and after spaceflight, were compared from at least two flights for each astronaut. For twenty-five of these astronauts, their first flight in this database was also their first time to fly into space. For the remaining 25, their first flight in this database was their second, third or fourth flight, as data were available. No subject became presyncopal during preflight testing. Of the 50 subjects, 45 (90%) had the same outcome on their first and second fligh ts of this study. Of 14 subjects on whom we had data from a third mission, 12 had the same stand test outcome on all three flights (86% same outcome across three flights). There was no correlation between flight duration and orthostatic tolerance (r = 0.39). These data support the idea that astronauts are predisposed to orthostatic tolerance/intolerance after spaceflight and that this predisposition is not altered by subsequent flights. Flight durations within this data set did not alter the likelihood of orthostatic intolerance and rookie fliers were no more likely to experience orthostatic intolerance than were veteran astronauts.

  1. Engineering evaluation of 24 channel multispectral scanner. [from flight tests

    NASA Technical Reports Server (NTRS)

    Lambeck, P. F.

    1973-01-01

    The results of flight tests to evaluate the performance of the 24 channel multispectral scanner are reported. The flight plan and test site are described along with the time response and channel registration. The gain and offset drift, and moire patterns are discussed. Aerial photographs of the test site are included.

  2. Flight Instructor: Airplane. Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The Flight Standards Service of the Federal Aviation Administration developed the guide to assist applicants who are preparing for the Flight Instructor Certificate with Airplane Rating. The guide contains comprehensive study outlines and a list of recommended study materials and tells how to obtain those publications. It also includes sample test…

  3. A Perspective on Development Flight Instrumentation and Flight Test Analysis Plans for Ares I-X

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Richards, James S.; Brunty, Joseph A.; Smith, R. Marshall; Trombetta, Dominic R.

    2009-01-01

    NASA. s Constellation Program will take a significant step toward completion of the Ares I crew launch vehicle with the flight test of Ares I-X and completion of the Ares I-X post-flight evaluation. The Ares I-X flight test vehicle is an ascent development flight test that will acquire flight data early enough to impact the design and development of the Ares I. As the primary customer for flight data from the Ares I-X mission, Ares I has been the major driver in the definition of the Development Flight Instrumentation (DFI). This paper focuses on the DFI development process and the plans for post-flight evaluation of the resulting data to impact the Ares I design. Efforts for determining the DFI for Ares I-X began in the fall of 2005, and significant effort to refine and implement the Ares I-X DFI has been expended since that time. This paper will present a perspective in the development and implementation of the DFI. Emphasis will be placed on the process by which the list was established and changes were made to that list due to imposed constraints. The paper will also discuss the plans for the analysis of the DFI data following the flight and a summary of flight evaluation tasks to be performed in support of tools and models validation for design and development.

  4. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  5. Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barker, Lee; Mamich, Harvey; McGregor, John

    2016-01-01

    On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.

  6. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  7. Space Shuttle Abort Evolution

    NASA Technical Reports Server (NTRS)

    Henderson, Edward M.; Nguyen, Tri X.

    2011-01-01

    This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.

  8. A three-axis flight simulator. [for testing and evaluating inertial measuring units, and flight platforms

    NASA Technical Reports Server (NTRS)

    Mason, M. G.

    1975-01-01

    A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.

  9. Abortion in Indonesia.

    PubMed

    Sedgh, Gilda; Ball, Haley

    2008-09-01

    Each year in Indonesia, millions of women become pregnant unintentionally, and many choose to end their pregnancies, despite the fact that abortion is generally illegal. Like their counterparts in many developing countries where abortion is stigmatized and highly restricted, Indonesian women often seek clandestine procedures performed by untrained providers, and resort to methods that include ingesting unsafe substances and undergoing harmful abortive massage. Though reliable evidence does not exist, researchers estimate that about two million induced abortions occur each year in the country and that deaths from unsafe abortion represent 14-16% of all maternal deaths in Southeast Asia. Preventing unsafe abortion is imperative if Indonesia is to achieve the fifth Millennium Development Goal of improving maternal health and reducing maternal mortality. Current Indonesian abortion law is based on a national health bill passed in 1992. Though the language on abortion was vague, it is generally accepted that the law allows abortion only if the woman provides confirmation from a doctor that her pregnancy is life-threatening, a letter of consent from her husband or a family member, a positive pregnancy test result and a statement guaranteeing that she will practice contraception afterwards. This report presents what is currently known about abortion in Indonesia. The findings are derived primarily from small-scale, urban, clinic-based studies of women's experiences with abortion. Some studies included women in rural areas and those who sought abortions outside of clinics, but none were nationally representative. Although these studies do not give a full picture of who is obtaining abortions in Indonesia or what their experiences are, the evidence suggests that abortion is a common occurrence in the country and that the conditions under which abortion takes place are often unsafe.

  10. X-29A aircraft structural loads flight testing

    NASA Technical Reports Server (NTRS)

    Sims, Robert; Mccrosson, Paul; Ryan, Robert; Rivera, Joe

    1989-01-01

    The X-29A research and technology demonstrator aircraft has completed a highly successful multiphase flight test program. The primary research objective was to safely explore, evaluate, and validate a number of aerodynamic, structural, and flight control technologies, all highly integrated into the vehicle design. Most of these advanced technologies, particularly the forward-swept-wing platform, had a major impact on the structural design. Throughout the flight test program, structural loads clearance was an ongoing activity to provide a safe maneuvering envelope sufficient to accomplish the research objectives. An overview is presented of the technologies, flight test approach, key results, and lessons learned from the structural flight loads perspective. The overall design methodology was considered validated, but a number of structural load characteristics were either not adequately predicted or totally unanticipated prior to flight test. While conventional flight testing techniques were adequate to insure flight safety, advanced analysis tools played a key role in understanding some of the structural load characteristics, and in maximizing flight test productivity.

  11. Space Shuttle Orbiter Approach and Landing Test Evaluation Report. Captive-Active Flight Test Summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Captive-active tests consisted of three mated carrier aircraft/Orbiter flights with an active manned Orbiter. The objectives of this series of flights were to (1) verify the separation profile, (2) verify the integrated structure, aerodynamics, and flight control system, (3) verify Orbiter integrated system operations, and (4) refine and finalize carrier aircraft, Orbiter crew, and ground procedures in preparation for free flight tests. A summary description of the flights is presented with assessments of flight test requirements, and of the performance operations, and of significant flight anomalies is included.

  12. Technical Evaluation Report on the Flight Mechanics Panel Symposium on Flight Test Techniques,

    DTIC Science & Technology

    1984-12-01

    Computer Sciences Corporation Camarillo, California, USA . I NTRODUCT ION *symposia on the subject of flight testing and flight test techniques have been...specifically cover this subject area plus the related areas of environmental testing and instrumentation capabilities. This lead to the Subsystem...system/subsystem testing. Subjects ranged from micro-miniaturized avionics to the ’heavy’ engineering of landing gear and guns; from impact of

  13. Development and flight testing of the HL-10 lifting body

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.

    1993-01-01

    The Horizontal Lander 10 (HL-10) lifting body successfully completed 37 flights, achieved the highest Mach number and altitude of this class of vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies. Design, development, and flight testing of this low-speed, air-launched, rocket-powered, lifting body was part of an unprecedented effort by NASA and the Northrop Corporation. This paper describes the evolution of the HL-10 lifting body from theoretical design, through development, to selection as one of two low-speed flight vehicles chosen for fabrication and piloted flight testing. Interesting and unusual events which occurred during the program and flight tests, review of significant problems encountered during the first flight, and discussion of how these problems were solved are presented. In addition, impressions of the pilots who flew the HL-10 lifting body are given.

  14. Flight Testing the X-36: The Test Pilots Perspective

    NASA Technical Reports Server (NTRS)

    Walker, Laurence A.

    1997-01-01

    The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.

  15. Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument…

  16. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  17. Flight testing of a luminescent surface pressure sensor

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  18. Simulation to Flight Test for a UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  19. Cassini's Test Methodology for Flight Software Verification and Operations

    NASA Technical Reports Server (NTRS)

    Wang, Eric; Brown, Jay

    2007-01-01

    The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).

  20. Overview of NASA PTA propfan flight test program

    NASA Technical Reports Server (NTRS)

    Graber, Edwin J.

    1990-01-01

    The progress is covered of the NASA sponsored Propfan Test Assessment (PTA) flight test program. In PTA, a 9 ft. diameter propfan was installed on the left wing of a Gulfstream GII executive jet and is undergoing extensive flight testing to evaluate propfan structural integrity, near and far field noise, and cabin interior noise characteristics. This research testing includes variations in propeller tip speed and power loading, nacelle tilt angle, and aircraft Mach number and altitude. As a result, extensive parametric data will be obtained to verify and improve computer codes for predicting propfan aeroelastic, aerodynamic, and aeroacoustic characteristics. Over 600 measurements are being recorded for each of approx. 600 flight test conditions.

  1. Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test S

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test Sets and Networks Integration Management Office Testing for the Tracking and Data Relay Satellite System

  2. An Overview of Flight Test Results for a Formation Flight Autopilot

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  3. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  4. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  5. Light airplane crash tests at three flight-path angles

    NASA Technical Reports Server (NTRS)

    Castle, C. B.; Alfaro-Bou, E.

    1978-01-01

    Three similar twin engine general aviation airplane specimens were crash tested at Langley impact dynamics research facility at 27 m/sec and at flight-path angles of -15 deg, -30 deg, and -45 deg. Other flight parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  6. Space Shuttle stability and control flight test techniques

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.

    1980-01-01

    A unique approach for obtaining vehicle aerodynamic characteristics during entry has been developed for the Space Shuttle. This is due to the high cost of Shuttle testing, the need to open constraints for operational flights, and the fact that all flight regimes are flown starting with the first flight. Because of uncertainties associated with predicted aerodynamic coefficients, nine flight conditions have been identified at which control problems could occur. A detailed test plan has been developed for testing at these conditions and is presented. Due to limited testing, precise computer initiated maneuvers are implemented. These maneuvers are designed to optimize the vehicle motion for determining aerodynamic coefficients. Special sensors and atmospheric measurements are required to provide stability and control flight data during an entire entry. The techniques employed in data reduction are proven programs developed and used at NASA/DFRC.

  7. A Concept for the HIFiRE 8 Flight Test

    NASA Astrophysics Data System (ADS)

    Alesi, H.; Paull, A.; Smart, M.; Bowcutt, K. G.

    2015-09-01

    HIFiRE 8 is a hypersonic flight test experiment scheduled for launch in late 2018 from the Woomera Test Center in Australia. This project aims to develop a Flight Test Vehicle that will, for the first time, complete 30 seconds of scramjet powered hypersonic flight at a Mach Number of 7.0. The engine used for this flight will be a rectangular to elliptic shape transition scramjet. It will be fuelled with gaseous hydrogen. The flight test engine configuration will be derived using scientific and engineering evaluation in the UQ shock tunnel T4 and other potential ground-based facilities. This paper presents current plans for the HIFiRE 8 trajectory, mission events, airframe and engine designs and also includes descriptions of critical subsystems and associated modelling, simulation and analysis activities.

  8. Design and flight test of the Propulsion Controlled Aircraft (PCA) flight control system on the NASA F-15 test aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1994-01-01

    This report describes the design, development and flight testing of the Propulsion Controlled Aircraft (PCA) flight control system performed at McDonnell Douglas Aerospace (MDA), St. Louis, Missouri and at the NASA Dryden Flight Research Facility, Edwards Air Force Base, California. This research and development program was conducted by MDA and directed by NASA through the Dryden Flight Research Facility for the period beginning January 1991 and ending December 1993. A propulsion steering backup to the aircraft conventional flight control system has been developed and flight demonstrated on a NASA F-15 test aircraft. The Propulsion Controlled Aircraft (PCA) flight system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The PCA flight control research has shown that propulsion steering is a viable backup flight control mode and can assist the pilot in safe landing recovery of a fighter aircraft that has damage to or loss of the flight control surfaces. NASA, USAF and Navy evaluation test pilots stated that the F-15 PCA design provided the control necessary to land the aircraft. Moreover, the feasibility study showed that PCA technology can be directly applied to transport aircraft and provide a major improvement in the survivability of passengers and crew of controls damaged aircraft.

  9. Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.

    2016-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.

  10. Measurement resolution of noise directivity patterns from acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Conner, David A.

    1989-01-01

    The measurement resolution of noise directivity patterns from acoustic flight tests was investigated. Directivity angle resolution is affected by the data reduction parameters, the aircraft velocity and flyover altitude, and by deviations of the aircraft from the desired flight path. Equations are developed which determine bounds for the lateral and longitudinal directivity angle resolution as a function of the nominal directivity angle. The equations are applied to a flight test data base and the effects of several flight conditions and data reduction parameters on the directivity angle resolution are presented. The maximum directivity angle resolution typically occurs when the aircraft is at or near the overhead position. In general, directivity angle resolution improves with decreasing velocity, increasing altitude, increasing sampling rate, decreasing block size, and decreasing block averages. Deviations from the desired ideal flight path will increase the resolution. For the flight experiment considered in this study, an average of two flyovers were required at each test condition to obtain an acceptable flight path. The ability of the pilot to maintain the flight track improved with decreasing altitude, decreasing velocity, and practice. Due to the prevailing wind conditions, yaw angles of as much as 20 deg were required to maintain the desired flight path.

  11. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  12. Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Rock, Kenneth E.; Ruf, Edward G.; Witte, David W.; Andrews, Earl H., Jr.

    2001-01-01

    Airframe-integrated scramjet engine testing has been completed at Mach 7 flight conditions in the NASA Langley 8-Foot High Temperature Tunnel as part of the NASA Hyper-X program. This test provided engine performance and operability data, as well as design and database verification, for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe-integrated scramjet data in flight. The Hyper-X Flight Engine, a duplicate Mach 7 X-43 scramjet engine, was mounted on an airframe structure that duplicated the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle trailing edge. This model was also tested to verify and validate the complete flight-like engine system. This paper describes the subsystems that were subjected to flight-like conditions and presents supporting data. The results from this test help to reduce risk for the Mach 7 flights of the X-43.

  13. Wet countdown demonstration and flight readiness firing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The prelaunch tests for the Space Transportation System 1 flight are briefly described. Testing is divided into two major sections: the wet countdown demonstration test/flight readiness firing, which includes a 20 second test firing of the orbiter's three main engines, and a mission verification test, which is centered on flight and landing operations. The functions of the countdown sequence are listed and end of mission and mission abort exercises are described.

  14. Design and Testing of a Low Noise Flight Guidance Concept

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2004-01-01

    A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.

  15. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  16. Orbital flight test Shuttle External Tank flowfield and aerothermal analysis

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Foster, L. D.

    1984-01-01

    This paper discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ET). These ETs were instrumented to measure various quantities during flight including heat transfer, pressure and structural temperature. The flight data were reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base, but has also identified some problem areas which require methodology modifications.

  17. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    NASA Technical Reports Server (NTRS)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  18. Columbia carries astronomy experiments on third test flight

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Transportation System 3 flight is discussed. The objectives of the test flight are given as well as an account of launch preparations, in liftoff, reentry; and landing. Numerous astronomy and space science experiments carried in the cargo bay are described.

  19. Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Neal, Bradford A.; Moes, Timothy R.; Cox, Timothy H.; Monaghan, Richard C.; Voelker, Leonard S.; Corpening, Griffin P.; Larson, Richard R.; Powers, Bruce G.

    1998-01-01

    The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new space vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV), are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine has been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.

  20. Preliminary Flight Rating Tests of the HAST Propulsion System

    DTIC Science & Technology

    1975-01-01

    project engineer for propulsion was Mr. Fred Hewitt. Contractor personnel providing support included Messrs. William Bryne , James Auiler, Gary...Management Assembly ....... 11 Controlled Thrust Assembly .......... . Z Event Sequencing ................. 24 III TES.2 FACILITY...system will reliably perform the intended flight test missions, ( Z ) verify safe altitude ignition and operation so as to be able to certify flight safety

  1. Orion Flight Test Architecture Benefits of MBSE Approach

    NASA Technical Reports Server (NTRS)

    Reed, Don; Simpson, Kim

    2012-01-01

    Exploration Flight Test 1 (EFT-1) is an unmanned first orbital flight test of the Multi Purpose Crew Vehicle (MPCV) Mission s purpose is to: Test Orion s ascent, on-orbit and entry capabilities Monitor critical activities Provide ground control in support of contingency scenarios Requires development of a large scale end-to-end information system network architecture To effectively communicate the scope of the end-to-end system a model-based system engineering approach was chosen.

  2. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  3. Flight Test Hazard Planning Near the Speed of Light

    NASA Technical Reports Server (NTRS)

    Henwood, Bart; Huete, Rod

    2007-01-01

    A viewgraph presentation describing flight test safety near the speed of light is shown. The topics include: 1) Concept; 2) Portal Content; 3) Activity to Date; 4) FTS Database Updatd FAA Program; 5) FAA Flight Test Risk Management; 6) CFR 14 Part 21.35 Current and proposed changes; 7) An Online Resource for Flight Test Safety Planning; 8) Data Gathering; 9) NTPS Role; 10) Example Maturation; 11) Many Varied Inputs; 12) Matured Stall Hazards; 13) Loss of Control Mitigations; 14) FAA Access; 15) NASA PBMA Website Link; 16) FAR Reference Search; 17) Record Field Search; 18) Keyword Search; and 19) Results of FAR Reference Search.

  4. Flight tests of IFR landing approach systems for helicopters

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Peach, L. L.; Phillips, J. D.; Anderson, D. J.; Dugan, D. C.; Ross, V. L.

    1981-01-01

    Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed.

  5. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  6. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    NASA Technical Reports Server (NTRS)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  7. Subsonic Glideback Rocket Demonstrator Flight Testing

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  8. Model flight tests of a spin-resistant trainer configuration

    NASA Technical Reports Server (NTRS)

    Yip, Long P.; Ross, Holly M.; Robelen, David B.

    1992-01-01

    Powered, radio-controlled flight tests were conducted on a 1/4-scale model of a spin-resistant trainer configuration to determine the stall departure and spin resistance characteristics provided by an outboard wing leading-edge droop modification. The model was instrumented to provide quantitative as well as qualitative information on flight characteristics. Flight test results indicated that the unmodified configuration (wing leading-edge droop off) exhibited an abrupt, uncontrollable roll departure at the stall. With the outboard wing leading-edge droop installed, the modified configuration exhibited flight characteristics that were resistant to stall departure and spin entry. The stall departure and spin resistance characteristics of the modified configuration were demonstrated in flight maneuvers that included idle-power stalls, full-power stalls, sideslip stalls, and accelerated stalls.

  9. Induced abortion.

    PubMed

    2017-04-10

    Abortion is common. Data on abortion rates are inexact but can be used to explore trends. Globally, the estimated rate in the period 2010-2014 was 35 abortions per 1000 women (aged 15-44 years), five points less than the rate of 40 for the period 1990-1994. Abortion laws vary around the world but are generally more restrictive in developing countries. Restrictive laws do not necessarily deter women from seeking abortion but often lead to unsafe practice with significant mortality and morbidity. While a legal framework for abortion is a prerequisite for availability, many laws, which are not evidence based, restrict availability and delay access. Abortion should be available in the interests of public health and any legal framework should be as permissive as possible in order to promote access. In the absence of legal access, harm reduction strategies are needed to reduce abortion-related mortality and morbidity. Abortion can be performed surgically (in the first trimester, by manual or electric vacuum aspiration) or with medication: both are safe and effective. Cervical priming facilitates surgery and reduces the risk of incomplete abortion. Diagnosis of incomplete abortion should be made on clinical grounds, not by ultrasound. Septic abortion is a common cause of maternal death almost always following unsafe abortion and thus largely preventable. While routine follow-up after abortion is unnecessary, all women should be offered a contraceptive method immediately after the abortion. This, together with improved education and other interventions, may succeed in reducing unintended pregnancy.

  10. The Development of the Ares I-X Flight Test

    NASA Technical Reports Server (NTRS)

    Ess, Robert H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Ares I Crew Launch Vehicle (CLV) and the Orion Crew Exploration Vehicle (CEV). Ares I-X was created as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight vehicle is an early operational model of Ares, with specific emphasis on Ares I and ground operation characteristics necessary to meet Ares I-X flight test objectives. Ares I-X will encompass the design and construction of an entire system that includes the Flight Test Vehicle (FTV) and associated operations. The FTV will be a test model based on the Ares I design. Select design features will be incorporated in the FTV design to emulate the operation of the CLV in order to meet the flight test objectives. The operations infrastructure and processes will be customized for Ares I-X, while still providing data to inform the developers of the launch processing system for Ares/Orion. The FTV is comprised of multiple elements and components that will be developed at different locations. The components will be delivered to the launch/assembly site, Kennedy Space Center (KSC), for assembly of the elements and components into an integrated, flight-ready, launch vehicle. The FTV will fly a prescribed trajectory in order to obtain the necessary data to meet the objectives. Ares I-X will not be commanded or controlled from the ground during flight, but the FTV will be equipped with telemetry systems, a data recording capability and a flight termination system (FTS). The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation representative of the CLV. The in-flight test also includes separation of the Upper Stage Simulator (USS) from the First Stage and recovery of the First Stage. The data retrieved from the flight test will be analyzed

  11. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 1

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. This is Volume 1, an Executive Summary. Volume 2 contains Appendices A (Aerothermal Comparisons) and B (Flight Derived h sub 1/h sub u vs. M sub inf. Plots), and Volume 3 contains Appendix C (Comparison of Interference Factors among OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  12. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 3

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. Volume 1 is the Executive Summary. Volume 2 contains Appendix A (Aerothermal Comparisons), and Appendix B (Flight-Derived h sub 1/h sub u vs. M sub inf. Plots). This is Volume 3, containing Appendix C (Comparison of Interference Factors between OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  13. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. Volume 1 is the Executive Summary. This is volume 2, containing Appendix A (Aerothermal Comparisons), and Appendix B (Flight-Derived h sub i/h sub u vs. M sub inf. Plots). Volume 3 contains Appendix C (Comparison of Interference Factors between OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  14. UAS in the NAS Flight Test Series 4 Overview

    NASA Technical Reports Server (NTRS)

    Murphy, Jim

    2016-01-01

    Flight Test Series 4 (FT4) provides the researchers with an opportunity to expand on the data collected during the first flight tests. Following Flight Test Series 3, additional scripted encounters with different aircraft performance and sensors will be conducted. FT4 is presently planned for Spring of 2016 to ensure collection of data to support the validation of the final RTCA Phase 1 DAA (Detect and Avoid) Minimum Operational Performance Standards (MOPS). There are three research objectives associated with this goal: Evaluate the performance of the DAA system against cooperative and non-cooperative aircraft encounters Evaluate UAS (Unmanned Aircraft Systems) pilot performance in response to DAA maneuver guidance and alerting with live intruder encounters Evaluate TCAS/DAA (Traffic Alert and Collision Avoidance System/Detect and Avoid) interoperability. This flight test series will focus on only the Scripted Encounters configuration, supporting the collection of data to validate the interoperability of DAA and collision avoidance algorithms.

  15. SOFIA Observatory Finishes Open-Door Flight Tests

    NASA Video Gallery

    NASA's SOFIA flying observatory recently completed the second series of envelope-expansion flight tests with its telescope door open. The SOFIA is now fully cleared for astronomy missions at altitu...

  16. Countdown to Exploration Flight Test 1: The Arrival

    NASA Video Gallery

    As NASA counts down to the Exploration Flight Test 1 (EFT-1) of Orion in 2014, the spacecraft that will fly that mission has arrived at the launch site in Florida. Take a look inside the Operations...

  17. DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. Ground and Flight Test Structural Excitation Using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Reaves, Mercedes C.; Horta, Lucas G.; Potter, Starr; Richwine, David (Technical Monitor)

    2002-01-01

    A flight flutter experiment at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center, Edwards, California, used an 18-inch half-span composite model called the Aerostructures Test Wing (ATW). The ATW was mounted on a centerline flight test fixture on the NASA F-15B and used distributed piezoelectric strain actuators for in-flight structural excitation. The main focus of this paper is to investigate the performance of the piezoelectric actuators and test their ability to excite the first-bending and first-torsion modes of the ATW on the ground and in-flight. On the ground, wing response resulting from piezoelectric and impact excitation was recorded and compared. The comparison shows less than a 1-percent difference in modal frequency and a 3-percent increase in damping. A comparison of in-flight response resulting from piezoelectric excitation and atmospheric turbulence shows that the piezoelectric excitation consistently created an increased response in the wing throughout the flight envelope tested. The data also showed that to obtain a good correlation between the piezoelectric input and the wing accelerometer response, the input had to be nearly 3.5 times greater than the turbulence excitation on the wing.

  19. [Biomedical results of the Space Shuttle Orbital Flight Test Program].

    PubMed

    Pool, S L; Nicogossian, A

    1984-01-01

    On July 4, 1982 the Space Shuttle Columbia landed at Edwards Air Force Base, California, thus successfully completing the fourth and last in a series of Orbital Flight Tests (OFT) of the Space Transportation System (STS). The primary goal of medical operation support for the OFT was to assure the health and well-being of flight personnel during all phases of the mission. To this end, the crew health status was evaluated preflight, inflight and postflight. Biomedical flight test requirements were completed in the following areas: physiological adaptation to microgravity, cabin acoustical noise, cabin atmospheric evaluation, radiation dosimetry, crew exercise equipment evaluation and a cardiovascular deconditioning countermeasure assessment.

  20. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  1. Biomedical results of the Space Shuttle orbital flight test program

    NASA Technical Reports Server (NTRS)

    Pool, S. L.; Nicogossian, A.

    1983-01-01

    On July 4, 1982, the Space Shuttle Columbia landed at Edwards Air Force Base, CA, thus successfully completing the fourth and last in a series of Orbital Flight Tests (OFT) of the Space Transportation System (STS). The primary goal of medical operations support for the OFT was to assure the health and well-being of flight personnel during all phases of the mission. To this end, crew health status was evaluated preflight, inflight, and postflight. Biomedical flight test requirements were completed in the following areas: physiological adaptation to microgravity, cabin acoustical noise, cabin atmospheric evaluation, radiation dosimetry, crew exercise equipment evaluation, and a cardiovascular deconditioning countermeasure assessment.

  2. Time Series Analysis in Flight Flutter Testing at the Air Force Flight Test Center: Concepts and Results

    NASA Technical Reports Server (NTRS)

    Lenz, R. W.; Mckeever, B.

    1976-01-01

    The Air Force Flight Test Center (AFFTC) flight flutter facility is described. Concepts of using a minicomputer-based time series analyzer and a modal analysis software package for flight flutter testing are examined. The results of several evaluations of the software package are given. The reasons for employing a minimum phase concept in analyzing response only signals are discussed. The use of a Laplace algorithm is shown to be effective for the modal analysis of time histories in flutter testing. Sample results from models and flight tests are provided. The limitations inherent in time series analysis methods are discussed, and the need for effective noise reduction techniques is noted. The use of digital time series analysis techniques in flutter testing is shown to be fast, accurate, and cost effective.

  3. Permanent-Change Thermal Paints for Hypersonic Flight-Test

    DTIC Science & Technology

    2010-09-24

    initial test case for post recovery handling and analysis of the painted surfaces. • Investigate the bonding of the paints to a range of materials and...heating during flight and can quickly reach elevated temperature. All engineering materials degrade in mechanical performance at elevated temperature...and this can be severe for the candidate materials and conditions for the airframes of hypersonic flight-test vehicles. To maintain structural mass

  4. Trajectory Approaches for Launching Hypersonic Flight Tests (Preprint)

    DTIC Science & Technology

    2014-08-01

    mostly based on boost- glide type vehicles and hypersonic airbreathing vehicles technology needs. The trajectories presented in this paper will be...AFRL-RQ-WP-TP-2014-0184 TRAJECTORY APPROACHES FOR LAUNCHING HYPERSONIC FLIGHT TESTS (PREPRINT) Barry M. Hellman Vehicle Technology...SUBTITLE TRAJECTORY APPROACHES FOR LAUNCHING HYPERSONIC FLIGHT TESTS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM

  5. Flight test and evaluation of Omega navigation for general aviation

    NASA Technical Reports Server (NTRS)

    Hwoschinsky, P. V.

    1975-01-01

    A seventy hour flight test program was performed to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely separated geographic areas. Comparison is made of the results of these flights with other navigation systems. Conclusions drawn from the test experience indicate that developmental system improvement is necessary before a competent fail safe or fail soft area navigation system is offered to general aviation.

  6. Flight Test Techniques Used to Evaluate Performance Benefits During Formation Flight

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Cobleigh, Brent R.; Vachon, M. Jake; SaintJohn, Clinton

    2002-01-01

    The Autonomous Formation Flight research project has been implemented at the NASA Dryden Flight Research Center to demonstrate the benefits of formation flight and develop advanced technologies to facilitate exploiting these benefits. Two F/A-18 aircraft have been modified to precisely control and monitor relative position, and to determine performance of the trailing airplane. Flight test maneuvers and analysis techniques have been developed to determine the performance advantages, including drag and fuel flow reductions and improvements in range factor. By flying the trailing airplane through a matrix of lateral, longitudinal, and vertical offset positions, a detailed map of the performance benefits has been obtained at two flight conditions. Significant performance benefits have been obtained during this flight test phase. Drag reductions of more than 20 percent and fuel flow reductions of more than 18 percent have been measured at flight conditions of Mach 0.56 and an altitude of 25,000 ft. The results show favorable agreement with published theory and generic predictions. An F/A-18 long-range cruise mission at Mach 0.8 and an altitude of 40,000 ft has been simulated in the optimum formation position and has demonstrated a 14-percent fuel reduction when compared with a controlled chase airplane of similar configuration.

  7. Flight test evaluation of a method to determine the level flight performance propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.

    1976-01-01

    A procedure is developed for deriving the level flight drag and propulsive efficiency of propeller-driven aircraft. This is a method in which the overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag. The aircraft is flown in unaccelerated, straight and level flight, and thus includes the effects of the propeller drag and slipstream. Propeller efficiency and airplane drag are computed on the basis of data obtained during flight test and do not rely on the analytical calculations of inadequate theory.

  8. [Induced abortion].

    PubMed

    Bouwhuis-Lely, J

    1978-02-28

    A summary of an article which describes how persons form attitudes toward abortion is presented. 3 parameters play roles in the formation of attitudes toward abortion. One such parameter is the decision for which cases abortion is to be allowed. A second parameter is the person's conception of when life commences. A third parameter is formed by unconscious or non-reasoned attitudes which relate to abortion. A model depicts the interaction of these parameters to form opinions about abortion ranging from "abortion is murder" to "liberalize abortion." This leads to the consideration of more general ethical problems. Arguments for and against abortion are listed, as well as improtant statistics concerning abortion from 1975.

  9. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  10. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  11. Plasma Vehicle Charging Analysis for Orion Flight Test 1

    NASA Technical Reports Server (NTRS)

    Lallement, L.; McDonald, T.; Norgard, J.; Scully, B.

    2014-01-01

    In preparation for the upcoming experimental test flight for the Orion crew module, considerable interest was raised over the possibility of exposure to elevated levels of plasma activity and vehicle charging both externally on surfaces and internally on dielectrics during the flight test orbital operations. Initial analysis using NASCAP-2K indicated very high levels of exposure, and this generated additional interest in refining/defining the plasma and spacecraft models used in the analysis. This refinement was pursued, resulting in the use of specific AE8 and AP8 models, rather than SCATHA models, as well as consideration of flight trajectory, time duration, and other parameters possibly affecting the levels of exposure and the magnitude of charge deposition. Analysis using these refined models strongly indicated that, for flight test operations, no special surface coatings were necessary for the thermal protection system, but would definitely be required for future GEO, trans-lunar, and extra-lunar missions...

  12. Plasma Vehicle Charging Analysis for Orion Flight Test 1

    NASA Technical Reports Server (NTRS)

    Scully, B.; Norgard, J.

    2015-01-01

    In preparation for the upcoming experimental test flight for the Orion crew module, considerable interest was raised over the possibility of exposure to elevated levels of plasma activity and vehicle charging both externally on surfaces and internally on dielectrics during the flight test orbital operations. Initial analysis using NASCAP-2K indicated very high levels of exposure, and this generated additional interest in refining/defining the plasma and spacecraft models used in the analysis. This refinement was pursued, resulting in the use of specific AE8 and AP8 models, rather than SCATHA models, as well as consideration of flight trajectory, time duration, and other parameters possibly affecting the levels of exposure and the magnitude of charge deposition. Analysis using these refined models strongly indicated that, for flight test operations, no special surface coatings were necessary for the Thermal Protection System (TPS), but would definitely be required for future GEO, trans-lunar, and extra-lunar missions.

  13. Flight test of the X-29A at high angle of attack: Flight dynamics and controls

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Clarke, Robert; Burken, John J.

    1995-01-01

    The NASA Dryden Flight Research Center has flight tested two X-29A aircraft at low and high angles of attack. The high-angle-of-attack tests evaluate the feasibility of integrated X-29A technologies. More specific objectives focus on evaluating the high-angle-of-attack flying qualities, defining multiaxis controllability limits, and determining the maximum pitch-pointing capability. A pilot-selectable gain system allows examination of tradeoffs in airplane stability and maneuverability. Basic fighter maneuvers provide qualitative evaluation. Bank angle captures permit qualitative data analysis. This paper discusses the design goals and approach for high-angle-of-attack control laws and provides results from the envelope expansion and handling qualities testing at intermediate angles of attack. Comparisons of the flight test results to the predictions are made where appropriate. The pitch rate command structure of the longitudinal control system is shown to be a valid design for high-angle-of-attack control laws. Flight test results show that wing rock amplitude was overpredicted and aileron and rudder effectiveness were underpredicted. Flight tests show the X-29A airplane to be a good aircraft up to 40 deg angle of attack.

  14. Evaluation of electronic jamming effect based on seeker captive flight test and missile flight simulation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Tie, Weitao

    2017-01-01

    In order to test and evaluate the jamming effect of electronic warfare weapons on missiles, a method based on seeker captive flight jamming test and missile flight simulation test is put forward, in which real data for the jamming effect of the electronic warfare weapon on seekers is obtained by seeker captive flight jamming test, and immitted into a missile digital simulation system to perform large numbers of missile flight simulation tests under jamming, then one could evaluate the jamming effect of the electronic warfare weapon on missiles according to the simulation test results. The method is demonstrated and validated by test and evaluation of the jamming effect of a smokescreen jamming device on TV guidance missiles. The results show that, the method proposed here not only overcomes the shortcomings of both pure digital simulation test and field test, but also combines their advantages, thus could be taken as an easy, economical and reliable method for testing and evaluating electronic jamming effect on missiles.

  15. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  16. Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.

    2014-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.

  17. Using Automation to Improve the Flight Software Testing Process

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Morgenstern, Wendy M.; Bartholomew, Maureen O.

    2001-01-01

    One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, knowledge of attitude control, and attitude control hardware, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on other missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.

  18. Flight Test Safety Considerations for Airborne Science Aircraft

    NASA Technical Reports Server (NTRS)

    Reynolds, Randolph S.

    1997-01-01

    Most of the scientific community that require scientific data or scientific measurements from aircraft do not understand the full implications of putting certain equipment on board high performance aircraft. It is the duty of the NASA Flight Operations personnel to ensure that all Principal Investigators who are given space on NASA flight research aircraft, comply with stringent safety requirements. The attitude of the experienced Flight operations personnel given this duty has been and remains one of insuring that the PI's experiment is allowed to be placed on the aircraft (facility) and can be operated in a manner that will obtain the expected data. This is sometimes a challenge. The success that NASA has in this regard is due to the fact that it is its own authority under public law, to certify its aircraft as airworthy. Airworthiness, fitness for flight, is a complex issue which pulls together all aspects of configuration management, engineering, quality, and flight safety. It is often the case at each NASA Center that is conducting airborne research, that unique solutions to some challenging safety issues are required. These solutions permit NASA to do things that would not be permitted by the Department of Transportation. This paper will use examples of various flight research configurations to show the necessity of a disciplined process leading up to flight test and mission implementation. All new configurations required engineering flight test but many, as noted in this paper, require that the modifications be flight tested to insure that they do not negatively impact on any part of the aircraft operational profiles. The success of these processes has been demonstrated over many years and NASA has accommodated experimental packages that cannot be flown on any other aircraft.

  19. Ares I-X Flight Test - The Future Begins Here

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission. Like the Apollo program, the Ares launch vehicles will rely upon extensive ground, flight, and orbital testing before sending the Orion crew exploration vehicle into space with humans on board. The first flight of Ares I, designated Ares I-X, will be a suborbital development flight test. Ares I-X gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future operational flights; and demonstrate the first stage recovery system. NASA also will begin modifying the launch infrastructure and fine-tuning ground and mission operations, as the agency makes the transition from the Space Shuttle to the Ares/Orion system.

  20. Flight testing TECS - The Total Energy Control System

    NASA Technical Reports Server (NTRS)

    Kelly, James R.; Person, Lee H., Jr.; Bruce, Kevin R.

    1986-01-01

    This paper describes some of the unique features of an integrated throttle-elevator control law known as the Total Energy Control System (TECS) which has been flight tested on NASA Langley's Transport Systems Research Vehicle. The TECS concept is designed around total energy principles. It utilizes a full-time autothrottle to control the total energy of the aircraft and the elevator to distribute the energy between speed and flight path objectives. Time histories of selected parameters generated from flight data are used to illustrate the pilot-like control strategy of the system and the priority logic employed when throttle limiting is encountered.

  1. XV-15 flight test results compared with design goals

    NASA Technical Reports Server (NTRS)

    Wernicke, K. G.; Magee, J. P.

    1979-01-01

    Aircraft No. 2 is presently in the midst of flight envelope expansion. Noise and safety design goals have been demonstrated; preliminary results indicate that performance and component life goals may also be met. Hovering power indicates a standard hover ceiling of 7,000 feet. After 18.0 hours of flight, a true airspeed of 207 knots has been reached. The goal is a 300-knot cruise speed. So far, XV-15 flight tests indicate no reason why the tilt rotor concept should not fulfill its promise to provide a major step forward in air vehicle flexibility and in rotary wing performance.

  2. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  3. Results from a GPS Shuttle Training Aircraft flight test

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.

    1991-01-01

    A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.

  4. Abortion - medical

    MedlinePlus

    ... an undesired pregnancy. The medicine helps remove the fetus and placenta from the mother's womb (uterus). There are different types of medical abortions: Therapeutic medical abortion is done because the woman ...

  5. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  6. Survey of aircraft subcritical flight flutter testing methods

    NASA Technical Reports Server (NTRS)

    Rosenbaum, R.

    1974-01-01

    The results of a survey of U. S., British and French subcritical aircraft flight flutter testing methods are presented and evaluation of the applicability of these methods to the testing of the space shuttle are discussed. Ten U. S. aircraft programs covering the large civil transport aircraft and a variety of military aircraft are reviewed. In addition, three major French and British programs are covered by the survey. The significant differences between the U. S., French and British practices in the areas of methods of excitation, data acquisition, transmission and analysis are reviewed. The effect of integrating the digital computer into the flight flutter test program is discussed. Significant saving in analysis and flight test time are shown to result from the use of special digital computer routines and digital filters.

  7. Overview of Recent Flight Flutter Testing Research at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Lind, Richard C.; Voracek, David F.

    1997-01-01

    In response to the concerns of the aeroelastic community, NASA Dryden Flight Research Center, Edwards, California, is conducting research into improving the flight flutter (including aeroservoelasticity) test process with more accurate and automated techniques for stability boundary prediction. The important elements of this effort so far include the following: (1) excitation mechanisms for enhanced vibration data to reduce uncertainty levels in stability estimates; (2) investigation of a variety of frequency, time, and wavelet analysis techniques for signal processing, stability estimation, and nonlinear identification; and (3) robust flutter boundary prediction to substantially reduce the test matrix for flutter clearance. These are critical research topics addressing the concerns of a recent AGARD Specialists' Meeting on Advanced Aeroservoelastic Testing and Data Analysis. This paper addresses these items using flight test data from the F/A-18 Systems Research Aircraft and the F/A-18 High Alpha Research Vehicle.

  8. Digital signal conditioning for flight test, volume 19

    NASA Technical Reports Server (NTRS)

    Bever, G. A.

    1991-01-01

    Flight test instrumentation engineers are provided with an introduction to digital processes on aircraft. Flight test instrumentation systems are rapidly evolving from analog intensive to digital intensive systems, including the use of onboard digital computers. Topics include: measurements that are digital in origin, sampling, encoding, transmitting, and storing of data. Particular emphasis is placed on modern avionic data bus architectures and what to be aware of when extracting data from them. Some example data extractions are given. Tradeoffs between digital logic families, trends in digital development, and design testing techniques are discussed. An introduction to digital filtering is also covered.

  9. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  10. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  11. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  12. Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) Flight Testing of the Lidar Sensor

    NASA Technical Reports Server (NTRS)

    Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.

    2000-01-01

    The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.

  13. A flight test maneuver autopilot for a highly manueverable aircraft

    NASA Technical Reports Server (NTRS)

    Roncoli, R. B.

    1982-01-01

    A flight test maneuver autopilot (FTMAP) is currently being flown to increase the quality and quantity of the data obtained in the flight testing of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle (RPRV). The FTMAP resides in a ground-based digital computer and was designed to perform certain prescribed maneuvers precisely, while maintaining critical flight parameters within close tolerances. The FTMAP operates as a non-flight-critical outer loop controller and augments the vehicle primary flight control system. The inputs to the FTMAP consist of telemetry-downlinked aircraft sensor data. During FTMAP operation, the FTMAP computer replaces normal pilot inputs to the aircraft stick and throttle positions. The FTMAP maneuvers include straight-and-level flight, level accelerations and decelerations, pushover pullups, and windup turns. The pushover pullups can be executed holding throttle or Mach number fixed. The windup turns can be commanded by either normal acceleration or angle of attack. The operational procedures, control mode configuration, and initial simulation results are discussed.

  14. HARV ANSER Flight Test Data Retrieval and Processing Procedures

    NASA Technical Reports Server (NTRS)

    Yeager, Jessie C.

    1997-01-01

    Under the NASA High-Alpha Technology Program the High Alpha Research Vehicle (HARV) was used to conduct flight tests of advanced control effectors, advanced control laws, and high-alpha design guidelines for future super-maneuverable fighters. The High-Alpha Research Vehicle is a pre-production F/A-18 airplane modified with a multi-axis thrust-vectoring system for augmented pitch and yaw control power and Actuated Nose Strakes for Enhanced Rolling (ANSER) to augment body-axis yaw control power. Flight testing at the Dryden Flight Research Center (DFRC) began in July 1995 and continued until May 1996. Flight data will be utilized to evaluate control law performance and aircraft dynamics, determine aircraft control and stability derivatives using parameter identification techniques, and validate design guidelines. To accomplish these purposes, essential flight data parameters were retrieved from the DFRC data system and stored on the Dynamics and Control Branch (DCB) computer complex at Langley. This report describes the multi-step task used to retrieve and process this data and documents the results of these tasks. Documentation includes software listings, flight information, maneuver information, time intervals for which data were retrieved, lists of data parameters and definitions, and example data plots.

  15. UK-4 flight spacecraft magnetic tests

    NASA Technical Reports Server (NTRS)

    Pruett, W. E.

    1972-01-01

    Magnetic tests conducted on the UK-4 spacecraft are discussed. The objectives of the test are: (1) to determine the permanent, induced, and stray magnetic moments of the spacecraft, (2) to assess its magnetic stability, (3) to determine the dipole moment produced by energizing the magnetorquer coil, (4) to measure the despin torque due to eddy current and magnetic hysteresis, and (5) to deperm, compensate, and make other adjustments necessary to achieve satisfactory magnetic characteristics for the spacecraft.

  16. Boeing prepares AOA sensor for flight test on 767

    NASA Astrophysics Data System (ADS)

    Smith, Bruce A.

    1988-11-01

    The Airborne Optical Adjunct sensor, developed to evaluate the ability of aircraft-mounted longwave infrared systems to supplement ground-based radar in defense against ballistic missiles, is being tested at Boeing Aerospace prior to installation in the Boeing 767 aircraft for flight tests to evaluate the sensor's ability to track and detect missiles. The major objectives of the test program are summarized, and final computer changes are reviewed. The sensing operations involved in the tests are described.

  17. Cygnus Pressurized Cargo Module (PCM) Flight Inertial Load Static Tests

    NASA Astrophysics Data System (ADS)

    Murgia, Giovanni; Mancini, Simone; Palmieri, Paolo; Rutigliano, Luigi

    2012-07-01

    Cygnus PCM Flight Inertial Load Static Test campaign has been performed by Thales Alenia Space - Italy (TAS-I) to achieve the Static Qualification of its Primary Structure. A “Proto-flight Approach” has been followed (as per [1] and [2]), thus the first flight unit, the PCM0, has been tested up to qualification level (qualification/acceptance factor equivalent to 1.2 [1]). The PCM0 has been constrained to a dummy Service Module (the second member of Cygnus Spacecraft), representative in terms of interfaces provisions, and flight load conditions have been reproduced with proper forces that have been applied by means of hydraulic jacks at internal PCM secondary structure interfaces. Test load cases have been defined in order to simulate load paths and relevant stress fields associated to the worst flight load conditions by using the FE model analyses. Tests have been monitored by means of gauges and displacement transducers and results have been utilized to correlate the PCM FEM following [3] requirements.

  18. CSI Flight Computer System and experimental test results

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Peri, F., Jr.; Schuler, P.

    1993-01-01

    This paper describes the CSI Computer System (CCS) and the experimental tests performed to validate its functionality. This system is comprised of two major components: the space flight qualified Excitation and Damping Subsystem (EDS) which performs controls calculations; and the Remote Interface Unit (RIU) which is used for data acquisition, transmission, and filtering. The flight-like RIU is the interface between the EDS and the sensors and actuators positioned on the particular structure under control. The EDS and RIU communicate over the MIL-STD-1553B, a space flight qualified bus. To test the CCS under realistic conditions, it was connected to the Phase-0 CSI Evolutionary Model (CEM) at NASA Langley Research Center. The following schematic shows how the CCS is connected to the CEM. Various tests were performed which validated the ability of the system to perform control/structures experiments.

  19. X-29 flight - Acid test for design predictions

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Petersen, K. L.; Ishmael, S. D.; Sefic, W. J.

    1986-01-01

    The X-29 flight test data are being disseminated to interested industrial and military users as fast as it becomes available. The aircraft is extensively instrumented with accelerometers and pressure sensors and optical sensors for measuring wing deflection. The thoroughness of preflight preparations permitted a rapid advance through initial test checkpoints, which have both confirmed many predictions and revealed several discrepancies. The flight envelope had been expanded to Mach 1.1 and an altitude of 40,000 ft by December 1985. Notably, the X-29 has provided in-flight data which could not be faithfully depicted in a simulator, e.g., flare procedures during landing, and has shown that the stability adjustments, although adequate for controlling the aircraft, are not rapid enough to offer a satisfactory margin of harmony. The tests are now being performed in the transonic regime, where supercritical airfoil and forward swept wing drag reduction become significant factors.

  20. Limited flight test experience with a laser transit velocimeter

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1983-01-01

    Limited flight testing of a laser transit velocimeter provided insight into the problems associated with the use of such instruments for flight research. Although the device tested was not designed for flight application, it had certain features such as fiber optics and low laser power which are attractive in the airborne environment. During these tests, operation of the velocimeter was limited by insufficient concentrations of light-scattering particles and background light interference. Normal operation was observed when these conditions were corrected by utilizing cloud particles and flying at night. A comparison between the laser flow velocity measurements and corresponding pressure measurements is presented and shows a coarse correlation. Statistical bias due to turbulence in the flow is suspected to have affected the laser measurements.

  1. Ares I-X Test Flight Reference Trajectory Development

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Gumbert, Clyde R.; Tartabini, Paul V.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I crew launch vehicle. Ares I is a two stage to orbit launch vehicle that provides crew access to low Earth orbit for NASA's future manned exploration missions. The Ares I first stage consists of a Shuttle solid rocket motor (SRM) modified to include an additional propellant segment and a liquid propellant upper stage with an Apollo J2X engine modified to increase its thrust capability. The modified propulsion systems were not available for the first test flight, thus the test had to be conducted with an existing Shuttle 4 segment reusable solid rocket motor (RSRM) and an inert Upper Stage. The test flight's primary objective was to demonstrate controllability of an Ares I vehicle during first stage boost and the ability to perform a successful separation. In order to demonstrate controllability, the Ares I-X ascent control algorithms had to maintain stable flight throughout a flight environment equivalent to Ares I. The goal of the test flight reference trajectory development was to design a boost trajectory using the existing RSRM that results in a flight environment equivalent to Ares I. A trajectory similarity metric was defined as the integrated difference between the Ares I and Ares I-X Mach versus dynamic pressure relationships. Optimization analyses were performed that minimized the metric by adjusting the inert upper stage weight and the ascent steering profile. The sensitivity of the optimal upper stage weight and steering profile to launch month was also investigated. A response surface approach was used to verify the optimization results. The analyses successfully defined monthly ascent trajectories that matched the Ares I reference trajectory dynamic pressure versus Mach number relationship to within 10% through Mach 3.5. The upper stage weight required to achieve the match was found to be feasible and varied less than 5% throughout the year. The paper will discuss the flight

  2. Runway Incursion Prevention System Testing at the Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    2005-01-01

    A Runway Incursion Prevention System (RIPS) integrated with a Synthetic Vision System concept (SVS) was tested at the Reno/Tahoe International Airport (RNO) and Wallops Flight Facility (WAL) in the summer of 2004. RIPS provides enhanced surface situational awareness and alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using a Gulfstream-V (G-V) aircraft as the test platform and a NASA test aircraft and a NASA test van as incurring traffic. The purpose of the study, from the RIPS perspective, was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts, focusing on crossing runway incursion scenarios. This paper gives an overview of the RIPS, WAL flight test activities, and WAL test results.

  3. Helicopter Acoustic Flight Test with Altitude Variation and Maneuvers

    NASA Technical Reports Server (NTRS)

    Watts, Michael E.; Greenwood, Eric; Sim, Ben; Stephenson, James; Smith, Charles D.

    2016-01-01

    A cooperative flight test campaign between NASA and the U.S. Army was performed from September 2014 to February 2015. The purposes of the testing were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. This test was performed at three test sites (0, 4000, and 7000 feet above mean sea level) with two aircraft (AS350 SD1 and EH-60L) tested at each site. This report provides an overview of the test, documents the data acquired and describes the formats of the stored data.

  4. SP-100 flight qualification testing assessment

    NASA Technical Reports Server (NTRS)

    Jeanmougin, Nanette M.; Moore, Roger M.; Wait, David L.; Jacox, Michael G.

    1988-01-01

    The SP-100 is a compact space power system driven by a nuclear reactor that provides 100 kWe to the user at 200 VDC. The thermal energy generated by the nuclear reactor is converted into electrical energy by passive thermoelectric devices. Various options for tailoring the MIL-STD-1540B guidelines to the SP-100 nuclear power system are discussed. This study aids in selecting the appropriate qualification test program based on the cost, schedule, and test effectiveness of the various options.

  5. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  6. French Flight Test Program LEA Status

    DTIC Science & Technology

    2010-09-01

    PROMETHEE program ([9]); • A3CP ([10]); • PTAH-SOCAR (MBDA- Astrium ST); and • Cooperation with research laboratories (Ref11 to Ref13). Today...several PTAH-SOCAR C/SiC composite panels have been successfully tested by MBDA and Astrium ST in representative conditions and long accumulated

  7. ATD-1 Team Completes Flight Tests

    NASA Video Gallery

    Members of a NASA-led research team pose in front of a trio of aircraft, which on Feb. 22 concluded racking up enough air miles to circle the planet four times, all in the name of testing a new coc...

  8. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  9. Vortex flap flight test operations, a safe approach

    NASA Technical Reports Server (NTRS)

    Dicarlo, Daniel J.; Elliott, James R.

    1993-01-01

    A flight test experiment was conducted at the Langley Research Center to evaluate a wing leading-edge vortex flap concept designed for use on an aircraft with highly swept wings. The flap concept was designed as a modification to the wing leading edge of an F-106B airplane. The flight testing required operations at conditions that would exceed the structural load envelope of the basic airplane in order to acquire desired research data for the modified configuration. Accordingly, the operational envelope of the modified aircraft was incrementally expanded and real-time monitoring of airframe strains at critical wing locations was mandated to insure safety of flight. The flight tests were conducted in two phases: Phase I to establish baseline data with the unmodified wing, and Phase II to determine the effects of the vortex flap on performance, handling qualities, and flow field characteristics. This paper focuses on a description of the approach and procedures used to provide the strain-gage monitoring to insure structural integrity. Highlights of the wing modification and the overall operation are also included. Within a -year period, 110 research flights were successfully completed, providing researchers with sufficient data to assess the potential benefits ascribed to the vortex flap concept without encountering severe structural problems or mishaps.

  10. The X-31A quasi-tailless flight test results

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Stoliker, P. C.

    1996-01-01

    A quasi-tailless flight investigation was launched using the X-31A enhanced fighter maneuverability airplane. In-flight simulations were used to assess the effect of partial to total vertical tail removal. The rudder control surface was used to cancel the stabilizing effects of the vertical tail, and yaw thrust vector commands were used to restabilize and control the airplane. The quasi-tailless mode was flown supersonically with gentle maneuvering and subsonically in precision approaches and ground attack profiles. Pilot ratings and a full set of flight test measurements were recorded. This report describes the results obtained and emphasizes the lessons learned from the X-31A flight test experiment. Sensor-related issues and their importance to a quasi-tailless simulation and to ultimately controlling a directionally unstable vehicle are assessed. The X-31A quasi-tailless flight test experiment showed that tailless and reduced tail fighter aircraft are definitely feasible. When the capability is designed into the airplane from the beginning, the benefits have the potential to outweigh the added complexity required.

  11. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  12. Wind Tunnel Tests Conducted to Develop an Icing Flight Simulator

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.

    2001-01-01

    As part of NASA's Aviation Safety Program goals to reduce aviation accidents due to icing, NASA Glenn Research Center is leading a flight simulator development activity to improve pilot training for the adverse flying characteristics due to icing. Developing flight simulators that incorporate the aerodynamic effects of icing will provide a critical element in pilot training programs by giving pilots a pre-exposure of icing-related hazards, such as ice-contaminated roll upset or tailplane stall. Integrating these effects into training flight simulators will provide an accurate representation of scenarios to develop pilot skills in unusual attitudes and loss-of-control events that may result from airframe icing. In order to achieve a high level of fidelity in the flight simulation, a series of wind tunnel tests have been conducted on a 6.5-percent-scale Twin Otter aircraft model. These wind tunnel tests were conducted at the Wichita State University 7- by 10-ft wind tunnel and Bihrle Applied Research's Large Amplitude Multiple Purpose Facility in Neuburg, Germany. The Twin Otter model was tested without ice (baseline), and with two ice configurations: 1) Ice on the horizontal tail only; 2) Ice on the wing, horizontal tail, and vertical tail. These wind tunnel tests resulted in data bases of aerodynamic forces and moments as functions of angle of attack; sideslip; control surface deflections; forced oscillations in the pitch, roll, and yaw axes; and various rotational speeds. A limited amount of wing and tail surface pressure data were also measured for comparison with data taken at Wichita State and with flight data. The data bases from these tests will be the foundation for a PC-based Icing Flight Simulator to be delivered to Glenn in fiscal year 2001.

  13. Haise Commands First Enterprise Test Flights

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The first crew members for the Space Shuttle Approach and Landing Tests (ALT) are photographed at the Rockwell International Space Division's Orbiter Assembly Facility at Palmdale, California. The Shuttle Enterprise is Commanded by former Apollo 13 Lunar Module pilot, Fred Haise (left) with C. Gordon Fullerton as pilot. The Shuttle Orbiter Enterprise was named after the fictional Starship Enterprise from the popular 1960's television series, Star Trek.

  14. Initial results from flight testing a large, remotely piloted airplane model. [flight tests of remotely controlled scale model of F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Holleman, E. C. (Compiler)

    1974-01-01

    The first four flights of a remotely piloted airplane model showed that a flight envelope can be expanded rapidly and that hazardous flight tests can be conducted safely with good results. The flights also showed that aerodynamic data can be obtained quickly and effectively over a wide range of flight conditions, clear and useful impressions of handling and controllability of configurations can be obtained, and present computer and electronic technology provide the capability to close flight control loops on the ground, thus providing a new method of design and flight test for advanced aircraft.

  15. High Alpha Technology Program (HATP) ground test to flight comparisons

    NASA Technical Reports Server (NTRS)

    Hall, R. M.; Banks, D. W.; Fisher, David F.; Ghaffari, F.; Murri, D. G.; Ross, J. C.; Lanser, Wendy R.

    1994-01-01

    This status paper reviews the experimental ground test program of the High Alpha Technology Program (HATP). The reasons for conducting this ground test program had their origins during the 1970's when several difficulties were experienced during the development programs of both the F-18 and F-16. A careful assessment of ground test to flight correlations appeared to be important for reestablishing a high degree of confidence in our ground test methodology. The current paper will then focus on one aspect of the HATP program that is intended to improve the correlation between ground test and flight, high-alpha gritting. The importance of this work arises from the sensitivity of configurations with smooth-sided forebodies to Reynolds number. After giving examples of the effects of Reynolds number, the paper will highlight efforts at forebody gritting. Finally, the paper will conclude by summarizing the charter of the HATP Experimental Aerodynamics Working Group and future experimental testing plans.

  16. 241-SY-101 DACS High hydrogen abort limit reduction (SCR 473) acceptance test report

    SciTech Connect

    ERMI, A.M.

    1999-09-09

    The capability of the 241-SY-101 Data Acquisition and Control System (DACS) computer system to provide proper control and monitoring of the 241-SY-101 underground storage tank hydrogen monitoring system utilizing the reduced hydrogen abort limit of 0.69% was systematically evaluated by the performance of ATP HNF-4927. This document reports the results of the ATP.

  17. Airloads research study. Volume 1: Flight test loads acquisition

    NASA Technical Reports Server (NTRS)

    Bartlett, M. D.; Feltz, T. F.; Olsen, A. D., Jr.; Smith, D. B.; Wildermuth, P. F.

    1984-01-01

    The acquisition of B-1 aircraft flight loads data for use in subsequent tasks of the Airloads Research Study is described. The basic intent is to utilize data acquired during B-1 aircraft tests, analyze these data beyond the scope of Air Force requirements, and prepare research reports that will add to the technology base for future large flexible aircraft. Flight test data obtained during the airloads survey program included condition-describing parameters, surface pressures, strain gage outputs, and loads derived from pressure and strain gauges. Descriptions of the instrumentation, data processing, and flight load survey program are included. Data from windup-turn and steady yaw maneuvers cover a Mach number range from 0.7 to 2.0 for a wing sweep position of 67.5 deg.

  18. Flight test of a resident backup software system

    NASA Technical Reports Server (NTRS)

    Deets, D. A.; Lock, W. P.; Megna, V. A.

    1986-01-01

    A new fault-tolerant system software concept employing the primary digital computers as host for the backup software portion has been implemented and flight tested in the F-8 digital fly-by-wire airplane. The system was implemented in such a way that essentially no transients occurred in transferring from primary to backup software. This was accomplished without a significant increase in the complexity of the backup software. The primary digital system was frame synchronized, which provided several advantages in implementing the resident backup software system. Since the time of the flight tests, two other flight vehicle programs have made a commitment to incorporate resident backup software similar in nature to the system described in this paper.

  19. Flight test development and evaluation of a Kalman filter state estimator for low-altitude flight

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.; Yee, Zee; Zirkler, Andre

    1993-01-01

    Flight operations dependent on digitized terrain elevation data for navigational reference or trajectory generation are constrained in minimum flight altitude, due to airborne navigation errors and inaccuracies of the reference terrain elevation data. This limitation is not restrictive in traditional medium-altitude implementations of such databases, such as in unmanned aerial vehicles, missiles, or high-performance, high-speed aircraft. In low-altitude, lower speed terrain hugging helicopter missions, however, such constraints on minimum flight altitudes greatly reduce the effectiveness of their missions and diminish the benefits of employing terrain elevation maps. A Kalman filter state estimator has been developed which blends airborne navigation, stored terrain elevation data, and a radar altimeter in estimating above-ground-level (AGL) altitude. This AGL state estimator was integrated in a near-terrain guidance system aboard a research helicopter and flight tested in moderately rugged terrain over a variety of flight and system conditions. The minimum operating altidude of the terrain database referenced guidance system was reduced from 300 ft to 150 ft with the addition of the Kalman filter state estimator.

  20. Preliminary supersonic flight test evaluation of performance seeking control

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1993-01-01

    Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.

  1. Use of Heritage Hardware on MPCV Exploration Flight Test One

    NASA Technical Reports Server (NTRS)

    Rains, George Edward; Cross, Cynthia D.

    2011-01-01

    Due to an aggressive schedule for the first orbital test flight of an unmanned Orion capsule, known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the Shuttle Ground Support Equipment Heat Exchanger (GSE Hx) and the MPLM cabin Positive Pressure Relief Assembly (PPRA). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be significantly more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE Hx had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the certification of the use of heritage hardware for EFT1.

  2. Flight tests of the total automatic flight control system (Tafcos) concept on a DHC-6 Twin Otter aircraft

    NASA Technical Reports Server (NTRS)

    Wehrend, W. R., Jr.; Meyer, G.

    1980-01-01

    Flight control systems capable of handling the complex operational requirements of the STOL and VTOL aircraft designs as well as designs using active control concepts are considered. Emphasis is placed on the total automatic flight control system (TACOS) (TAFCOS). Flight test results which verified the performance of the system concept are presented.

  3. A flight test method for pilot/aircraft analysis

    NASA Technical Reports Server (NTRS)

    Koehler, R.; Buchacker, E.

    1986-01-01

    In high precision flight maneuvres a pilot is a part of a closed loop pilot/aircraft system. The assessment of the flying qualities is highly dependent on the closed loop characteristics related to precision maneuvres like approach, landing, air-to-air tracking, air-to-ground tracking, close formation flying and air-to air refueling of the receiver. The object of a research program at DFVLR is the final flight phase of an air to ground mission. In this flight phase the pilot has to align the aircraft with the target, correct small deviations from the target direction and keep the target in his sights for a specific time period. To investigate the dynamic behavior of the pilot-aircraft system a special ground attack flight test technique with a prolonged tracking maneuvres was developed. By changing the targets during the attack the pilot is forced to react continously on aiming errors in his sights. Thus the closed loop pilot/aircraft system is excited over a wide frequency range of interest, the pilot gets more information about mission oriented aircraft dynamics and suitable flight test data for a pilot/aircraft analysis can be generated.

  4. Tests of artificial flight at high altitudes

    NASA Technical Reports Server (NTRS)

    Gradenwitz, Arthur

    1920-01-01

    If we wish to form an accurate idea of the extraordinary progress achieved in aeronautics, a comparison must be made of the latest altitude records and the figures regarded as highest attainable limit some ten years ago. It is desirable, for two reasons, that we should be able to define the limit of the altitudes that can be reached without artificial aid. First, to know to what extent the human body can endure the inhalation of rarified air. Second, the mental capacity of the aviator must be tested at high altitudes and the limit known below which he is able to make reliable observations without being artificially supplied with oxygen. A pneumatic chamber was used for the most accurate observations.

  5. NASA Dryden: Flight Loads Lab Capabilities and Mass Properties Testing

    NASA Technical Reports Server (NTRS)

    Wolfe, David Michael; Bakalyar, John A.

    2011-01-01

    This presentation covers the basic capabilities of the Dryden Flight Loads Lab. It also covers in detail the mass properties capabilities of the loads lab, focusing on the recent mass properties testing of the X-48B, and the recent tests of the Dynamic Inertia Measurement method (DIMM). Presentation focuses on the test methods and issues discovered during the mass properties testing of the X-48B leading to the requirement of new instrumentation on all conventional mass properties testing. Presentation also focuses on development of DIMM for replacement of conventional mass properties tests.

  6. Ares I-X Flight Test Development Challenges and Success Factors

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Davis, Steve; Olsen, Ronald; Taylor, James

    2010-01-01

    The NASA Constellation Program's Ares I-X rocket launched successfully on October 28, 2009 collecting valuable data and providing risk reduction for the Ares I project. The Ares I-X mission was formulated and implemented in less than four years commencing with the Exploration Systems Architecture Study in 2005. The test configuration was founded upon assets and processes from other rocket programs including Space Shuttle, Atlas, and Peacekeeper. For example, the test vehicle's propulsion element was a Shuttle Solid Rocket Motor. The Ares I-X rocket comprised a motor assembly, mass and outer mold line simulators of the Ares I Upper Stage, Orion Spacecraft and Launch Abort System, a roll control system, avionics, and other miscellaneous components. The vehicle was 327 feet tall and weighed approximately 1,800,000 pounds. During flight the rocket reached a maximum speed of Mach 4.8 and an altitude of 150,000 feet. The vehicle demonstrated staging at 130,000 feet, tested parachutes for recovery of the motor, and utilized approximately 900 sensors for data collection. Developing a new launch system and preparing for a safe flight presented many challenges. Specific challenges included designing a system to withstand the environments, manufacturing large structures, and re-qualifying heritage hardware. These and other challenges, if not mitigated, may have resulted in test cancellation. Ares I-X succeeded because the mission was founded on carefully derived objectives, led by decisive and flexible management, implemented by an exceptionally talented and dedicated workforce, and supported by a thorough independent review team. Other major success factors include the use of proven heritage hardware, a robust System Integration Laboratory, multi-NASA center and contractor team, concurrent operations, efficient vehicle assembly, effective risk management, and decentralized element development with a centralized control board. Ares I-X was a technically complex test that

  7. Development and Testing of the CRYOTSU Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Stouffer, Charles J.; Hagood, Robert M.; Rich, Michael; Tomlinson, B. J.; Davis, Thomas M.; Ku, Jentung; Swanson, Theodore D.

    1998-01-01

    This paper describes the development and ground testing of the CRYOTSU thermal management flight experiment. CRYOTSU incorporates three cryogenic temperature experiments and one ambient temperature experiment into a Hitchhiker (HH) Get Away Special (GAS) Canister that is currently scheduled to fly on STS-95 in October 1998. The cryogenic experiments consist of a nitrogen triple-point cryogenic thermal storage unit (CTSU), a nitrogen cryogenic capillary pumped loop (CCPL), and a hydrogen gas-gap cryogenic thermal switch (CTSW). The ambient experiment is a carbon-fiber core, paraffin-filled thermal storage unit. Test results of integrated flight canister testing are provided herein for the CTSU and CCPL experiments. Pre-integration laboratory test results are provided for the CTSW. Design information and test results for the ambient experiment are not included.

  8. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  9. Parameter estimation techniques and application in aircraft flight testing

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical papers presented at the symposium by selected representatives from industry, universities, and various Air Force, Navy, and NASA installations are given. The topics covered include the newest developments in identification techniques, the most recent flight-test experience, and the projected potential for the near future.

  10. 14 CFR 437.25 - Flight test plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight test plan. 437.25 Section 437.25 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... reusable suborbital rocket. Operational Safety Documentation...

  11. 14 CFR 437.25 - Flight test plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight test plan. 437.25 Section 437.25 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... reusable suborbital rocket. Operational Safety Documentation...

  12. 14 CFR 437.25 - Flight test plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight test plan. 437.25 Section 437.25 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... reusable suborbital rocket. Operational Safety Documentation...

  13. 14 CFR 437.25 - Flight test plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight test plan. 437.25 Section 437.25 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... reusable suborbital rocket. Operational Safety Documentation...

  14. 14 CFR 437.25 - Flight test plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight test plan. 437.25 Section 437.25 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... reusable suborbital rocket. Operational Safety Documentation...

  15. Autonomous Airborne Refueling Demonstration, Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the NASA Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small

  16. Autonomous Airborne Refueling Demonstration: Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small.

  17. Recommended fine positioning test for the Development Test Flight (DTF-1) of the NASA Flight Telerobotic Servicer (FTS)

    NASA Technical Reports Server (NTRS)

    Dagalakis, N.; Wavering, A. J.; Spidaliere, P.

    1991-01-01

    Test procedures are proposed for the NASA DTF (Development Test Flight)-1 positioning tests of the FTS (Flight Telerobotic Servicer). The unique problems associated with the DTF-1 mission are discussed, standard robot performance tests and terminology are reviewed and a very detailed description of flight-like testing and analysis is presented. The major technical problem associated with DTF-1 is that only one position sensor can be used, which will be fixed at one location, with a working volume which is probably smaller than some of the robot errors to be measured. Radiation heating of the arm and the sensor could also cause distortions that would interfere with the test. Two robot performance testing committees have established standard testing procedures relevant to the DTF-1. Due to the technical problems associated with DTF-1, these procedures cannot be applied directly. These standard tests call for the use of several test positions at specific locations. Only one position, that of the position sensor, can be used by DTF-1. Off-line programming accuracy might be impossible to measure and in that case it will have to be replaced by forward kinetics accuracy.

  18. Flight Test Results for the F-16XL With a Digital Flight Control System

    NASA Technical Reports Server (NTRS)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  19. Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System

    NASA Technical Reports Server (NTRS)

    Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo

    2000-01-01

    This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.

  20. HIFiRE-5 Flight Test Preliminary Results (Postprint)

    DTIC Science & Technology

    2013-11-01

    attack. Analysis of additional thermocouples and direct-read heat transfer gauges will provide more detailed maps of the transition front. These data...M. G., Holden, M.S., and Mundy , E., “Pre-Flight Ground Testing of the Full-Scale FRESH FX- 1 at Fully Duplicated Flight Conditions,” AIAA paper 2007...Experiment,” AIAA Journal of Spacecraft and Rockets, vol. 45, no. 6, November-December 2008, pp. 1125-1133. 11 Wadhams, T. P., Mundy , E., MacLean

  1. Hyper-X (X-43A) Flight Test Range Operations

    NASA Technical Reports Server (NTRS)

    Lux-Baumann, Jessica; Burkes, Darryl A.

    2005-01-01

    The Hyper-X program flew X-43A research vehicles to hypersonic speeds over the Pacific Ocean in March and November 2004 from the Western Aeronautical Test Range, NASA Dryden Flight Research Center, Edwards, California. The program required multiple telemetry ground stations to provide continuous coverage of the captive carry, launch, boost, experiment, and descent phases of these missions. An overview is provided of vehicle telemetry and distributed assets that supported telemetry acquisition, best-source selection, radar tracking, video tracking, flight termination systems, and voice communications. Real-time data display and processing are discussed, and postflight analysis and comparison of data acquired are presented.

  2. The Certification of Environmental Chambers for Testing Flight Hardware

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2009-01-01

    The JPL chamber certification process for ensuring that test chambers used to test flight hardware meet a minimum standard is critical to the safety of the hardware and personnel. Past history as demonstrated that this process is important due to the catastrophic incidents that could occur if the chamber is not set up correctly. Environmental testing is one of the last phases in the development of a subsystem, and it typically occurs just before integration of flight hardware into the fully assembled flight system. A seemingly insignificant -miscalculation or missed step can necessitate rebuilding or replacing a subsystem due to over-testing or damage from the test chamber. Conversely, under-testing might fail to detect weaknesses that might cause failure when the hardware is in service. This paper describes the process that identifies the many variables that comprise the testing scenario and screening of as built chambers, the training of qualified operators, and a general "what-to-look-for" in minimum standards.

  3. The Certification of Environmental Chambers for Testing Flight Hardware

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2010-01-01

    The JPL chamber certification process for ensuring that test chambers used to test flight hardware meet a minimum standard is critical to the safety of the hardware and personnel. Past history has demonstrated that this process is important due to the catastrophic incidents that could occur if the chamber is not set up correctly. Environmental testing is one of the last phases in the development of a subsystem, and it typically occurs just before integration of flight hardware into the fully assembled flight system. A seemingly insignificant -miscalculation or missed step can necessitate rebuilding or replacing a subsystem due to over-testing or damage from the test chamber. Conversely, under-testing might fail to detect weaknesses that might cause failure when the hardware is in service. This paper describes the process that identifies the many variables that comprise the testing scenario and screening of as built chambers, the training of qualified operators, and a general "what-to-look-for" in minimum standards.

  4. Guidance simulation and test support for differential GPS flight experiment

    NASA Technical Reports Server (NTRS)

    Geier, G. J.; Loomis, P. V. W.; Cabak, A.

    1987-01-01

    Three separate tasks which supported the test preparation, test operations, and post test analysis of the NASA Ames flight test evaluation of the differential Global Positioning System (GPS) are presented. Task 1 consisted of a navigation filter design, coding, and testing to optimally make use of GPS in a differential mode. The filter can be configured to accept inputs from external censors such as an accelerometer and a barometric or radar altimeter. The filter runs in real time onboard a NASA helicopter. It processes raw pseudo and delta range measurements from a single channel sequential GPS receiver. The Kalman filter software interfaces are described in detail, followed by a description of the filter algorithm, including the basic propagation and measurement update equations. The performance during flight tests is reviewed and discussed. Task 2 describes a refinement performed on the lateral and vertical steering algorithms developed on a previous contract. The refinements include modification of the internal logic to allow more diverse inflight initialization procedures, further data smoothing and compensation for system induced time delays. Task 3 describes the TAU Corp participation in the analysis of the real time Kalman navigation filter. The performance was compared to that of the Z-set filter in flight and to the laser tracker position data during post test analysis. This analysis allowed a more optimum selection of the parameters of the filter.

  5. Maneuver Acoustic Flight Test of the Bell 430 Helicopter

    NASA Technical Reports Server (NTRS)

    Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel

    2012-01-01

    A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.

  6. Orion Exploration Flight Test-1 (EFT-1) Absolute Navigation Performance

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2015-01-01

    The Orion vehicle, being design to take men back to the Moon and beyond, successfully completed its first flight test, EFT-1 (Exploration Flight Test-1), on December 5th, 2014. The main objective of the test was to demonstrate the capability of re-enter into the Earth's atmosphere and safely splash-down into the pacific ocean. This un-crewed mission completes two orbits around Earth, the second of which is highly elliptical with an apogee of approximately 5908 km, higher than any vehicle designed for humans has been since the Apollo program. The trajectory was designed in order to test a high-energy re-entry similar to those crews will undergo during lunar missions. The mission overview is shown in Figure 1. The objective of this paper is to document the performance of the absolute navigation system during EFT-1 and to present its design.

  7. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1985-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.

  8. Flight Tests of the Turbulence Prediction and Warning System (TPAWS)

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.; Ahmad, Nashat N.

    2012-01-01

    Flight tests of the National Aeronautics and Space Administration's Turbulence Prediction And Warning System (TPAWS) were conducted in the Fall of 2000 and Spring of 2002. TPAWS is a radar-based airborne turbulence detection system. During twelve flights, NASA's B-757 tallied 53 encounters with convectively induced turbulence. Analysis of data collected during 49 encounters in the Spring of 2002 showed that the TPAWS Airborne Turbulence Detection System (ATDS) successfully detected 80% of the events at least 30 seconds prior to the encounter, achieving FAA recommended performance criteria. Details of the flights, the prevailing weather conditions, and each of the turbulence events are presented in this report. Sensor and environmental characterizations are also provided.

  9. DTFT-1: Analysis of the first USV flight test

    NASA Astrophysics Data System (ADS)

    Russo, G.

    2009-11-01

    The first dropped transonic flight test (DTFT) of the USV Program, performed with Castor, the first of the two spacecrafts developed within the USV Program, was performed on Saturday 24th February 2007, from Tortolì Airport in Sardinia. At 8:30 a.m. the 340 000 m 3 stratospheric balloon lifted off from the East coast of Sardinia, bringing the flying test bed (FTB) up to 20.2 km before release within the isolated sea polygon controlled by Italian air force test range in Salto di Quirra (PISQ). The mission ended at 10:30 a.m. with the splash-down of the space vehicle. The flight itself was very good, with a nose-up manoeuvre under transonic conditions, reaching a maximum Mach as high as 1.08. The mission target was completely achieved as some 2 million measures were taken related to flight data, housekeeping, as well as 500 aerodynamic and structural experimental sensors. Unfortunately, the vehicle has been damaged more than expected during splash-down. Many national and international institutions and industries contributed to the mission carrying out, under the supervision and technical guide of CIRA: Italian Space Agency, Italian Air Force, Italian Navy, Italian Civil Aviation Authority, Italian Company for Air Navigation Services, Port Authorities, European Space Agency, Techno System Dev., Vitrociset, Carlo Gavazzi Space, Space Software Italia, Alcatel Alenia Space Italy, ISL-Altran Group. The paper reports the actual status of post-flight data analysis.

  10. Flight tests of the Digital Integrated Automatic Landing System (DIALS)

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1984-01-01

    The design, development, implementation and flight tests of the Digital Integrated Automatic Landing System (DIALS) are discussed. The system was implemented and flight tested on the Transport Systems Research Vehicle (TSRV), a Boeing 737-100. The design uses modern optimal control methods. The direct digital design obtained uses a 10 Hz rate for the sampling of sensors and the control commands. The basic structure of the control law consists of a steady state Kalman filter followed by a control gain matrix. The sensor information used includes Microwave Landing System (MLS) position, attitude, calibrated airspeed, and body accelerations. The phases of the final approach considered are localized and steep glideslope capture (which may be performed simultaneously or independently), localizer and glideslope track, crab/decrab, and flare to touchdown. The system can capture, track, and flare from conventional, as well as steep, glideslopes ranging from 2.5 deg to 5.5 deg. All of the modes of the control law including the Kalman filters were implemented on the TSRV flight computers which use fixed point arithmetic with 16 bit words. The implementation considerations are described as well as an analysis of the flight test results.

  11. Integrated testing and verification system for research flight software

    NASA Technical Reports Server (NTRS)

    Taylor, R. N.

    1979-01-01

    The MUST (Multipurpose User-oriented Software Technology) program is being developed to cut the cost of producing research flight software through a system of software support tools. An integrated verification and testing capability was designed as part of MUST. Documentation, verification and test options are provided with special attention on real-time, multiprocessing issues. The needs of the entire software production cycle were considered, with effective management and reduced lifecycle costs as foremost goals.

  12. An Online Resource for Flight Test Safety Planning

    NASA Technical Reports Server (NTRS)

    Lewis, Greg

    2007-01-01

    A viewgraph presentation describing an online database for flight test safety techniques is shown. The topics include: 1) Goal; 2) Test Hazard Analyses; 3) Online Database Background; 4) Data Gathering; 5) NTPS Role; 6) Organizations; 7) Hazard Titles; 8) FAR Paragraphs; 9) Maneuver Name; 10) Identified Hazard; 11) Matured Hazard Titles; 12) Loss of Control Causes; 13) Mitigations; 14) Database Now Open to the Public; 15) FAR Reference Search; 16) Record Field Search; 17) Keyword Search; and 18) Results of FAR Reference Search.

  13. Unique Aspects of Flight Testing Unmanned Aircraft Systems

    DTIC Science & Technology

    2010-04-01

    successful using alternative acquisition strategies , which essentially only test the system mission capabilities. These are highly automated vehicles...Human Factors and Medicine Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis and...manned flight testing are directly applicable to UAS applications, the fact that these air vehicles are NOT MANNED demands some unique approaches to UAS

  14. The 1979 Clear Air Turbulence Flight Test Program

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Ehernberger, L. J.; Gary, B. L.; Kurkowski, R. L.; Kuhn, P. M.; Stearns, L. P.

    1981-01-01

    The flight experiments for clear air turbulence (CAT) detection and measurement concepts are described. The test were conducted over the western part of the United States during the winter season of 1979 aboard NASA's Galileo 2 flying laboratory. A carbon dioxide pulsed Doppler lidar and an infrared radiometer were tested for the remote detection and measurement of CAT. Two microwave radiometers were evaluated for their ability to provide encounter warning and altitude avoidance information.

  15. Reverse Engineering Crosswind Limits - A New Flight Test Technique?

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Willliams, Timothy L.; Strovers, Brian K.

    2013-01-01

    During modification of a Gulfstream III test bed aircraft for an experimental flap project, all roll spoiler hardware had to be removed to accommodate the test article. In addition to evaluating the effects on performance and flying qualities resulting from the modification, the test team had to determine crosswind limits for an airplane previously certified with roll spoilers. Predictions for the modified aircraft indicated the maximum amount of steady state sideslip available during the approach and landing phase would be limited by aileron authority rather than by rudder. Operating out of a location that tends to be very windy, an arbitrary and conservative wind limit would have either been overly restrictive or potentially unsafe if chosen poorly. When determining a crosswind limit, how much reserve roll authority was necessary? Would the aircraft, as configured, have suitable handling qualities for long-term use as a flying test bed? To answer these questions, the test team combined two typical flight test techniques into a new maneuver called the sideslip-to-bank maneuver, and was able to gather flying qualities data, evaluate aircraft response and measure trends for various crosswind scenarios. This paper will describe the research conducted, the maneuver, flight conditions, predictions, and results from this in-flight evaluation of crosswind capability.

  16. Flight Test 4 Preliminary Results: NASA Ames SSI

    NASA Technical Reports Server (NTRS)

    Isaacson, Doug; Gong, Chester; Reardon, Scott; Santiago, Confesor

    2016-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements as well as the safety substantiation and end-to-end assessment of DAA system performance. The Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS) Project conducted flight test program, referred to as Flight Test 4, at Armstrong Flight Research Center from April -June 2016. Part of the test flights were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as JADEM (Java Architecture for DAA Extensibility and Modeling). The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Flight test 4 has four objectives: (1) validate DAA requirements in stressing cases that drive MOPS requirements, including: high-speed cooperative intruder, low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode CS-only intruder (i.e. without ADS-B), (2) validate TCASDAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders, (3) validate Well Clear Recovery guidance in the presence of realistic sensor, tracking and navigational errors, and (4) validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors. The results will be

  17. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  18. J-FLiC UAS Flights for Acoustic Testing Research

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2016-01-01

    The jet-powered flying testbed (J-FLiC) unmanned aircraft system (UAS) successfully completed twenty-six flights at Fort AP Hill, VA, from 27 August until September 3 2015, supporting tests of a microphone array system for aircraft noise measurement. The test vehicles, J-FLiC NAVY2 (N508NU), and J-FLiC 4 (N509NU), were flown under manual and autopiloted control in a variety of test conditions: clean at speeds ranging from 80 to 150 knots; and full landing configuration at speeds ranging from 50 to 95 knots. During the test campaign, autopilot capability was incrementally improved to ultimately provide a high degree of accuracy and repeatability of the critical test requirements for airspeed, altitude, runway alignment and position over the microphone array. Manual flights were performed for test conditions at the both ends of the speed envelope where autopiloted flight would have required flight beyond visual range and more extensive developmental work. The research objectives of the campaign were fully achieved. The ARMD Integrated Systems Research Program (ISRP) Environmentally Responsible Aviation (ERA) Project aims to develop the enabling capabilities/technologies that will allow prediction/reduction of aircraft noise. A primary measurement tool for ascertaining and characterizing empirically the effectiveness of various noise reduction technologies is a microphone phased array system. Such array systems need to be vetted and certified for operational use via field deployments and overflights of the array with test aircraft, in this case with sUAS aircraft such as J-FLiC.

  19. Environmental Tests of the Flight GLAST LAT Tracker Towers

    SciTech Connect

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  20. Abort Region Determinator (ARD) module feasibility report. Mission planning, mission analysis and software formulation

    NASA Technical Reports Server (NTRS)

    Draeger, B. G.; Joyner, J. A.

    1976-01-01

    A detailed performance evaluation of the Abort Region Determinator (ARD) module design was provided in support of OFT-1 ascent and OFT-1 intact launch aborts. The evaluation method used compared ARD results against results obtained using the full-up Space Vehicle Dynamic Simulations program under the same conditions. Results were presented for each of the three major ARD math models: (1) the ascent numerical integrator; (2) the mass model, and (3) the second stage predictor as well as the total ARD module. These results demonstrate that the baselined ARD module meets all design objectives for mission control center orbital flight test launch/abort support.

  1. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  2. GPS 3-D cockpit displays: Sensors, algorithms, and flight testing

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew Kevin

    Tunnel-in-the-Sky 3-D flight displays have been investigated for several decades as a means of enhancing aircraft safety and utility. However, high costs have prevented commercial development and seriously hindered research into their operational benefits. The rapid development of Differential Global Positioning Systems (DGPS), inexpensive computing power, and ruggedized displays is now changing this situation. A low-cost prototype system was built and flight tested to investigate implementation and operational issues. The display provided an "out the window" 3-D perspective view of the world, letting the pilot see the horizon, runway, and desired flight path even in instrument flight conditions. The flight path was depicted as a tunnel through which the pilot flew the airplane, while predictor symbology provided guidance to minimize path-following errors. Positioning data was supplied, by various DGPS sources including the Stanford Wide Area Augmentation System (WAAS) testbed. A combination of GPS and low-cost inertial sensors provided vehicle heading, pitch, and roll information. Architectural and sensor fusion tradeoffs made during system implementation are discussed. Computational algorithms used to provide guidance on curved paths over the earth geoid are outlined along with display system design issues. It was found that current technology enables low-cost Tunnel-in-the-Sky display systems with a target cost of $20,000 for large-scale commercialization. Extensive testing on Piper Dakota and Beechcraft Queen Air aircraft demonstrated enhanced accuracy and operational flexibility on a variety of complex flight trajectories. These included curved and segmented approaches, traffic patterns flown on instruments, and skywriting by instrument reference. Overlays to existing instrument approaches at airports in California and Alaska were flown and compared with current instrument procedures. These overlays demonstrated improved utility and situational awareness for

  3. Recommendations for Hypersonic Boundary Layer Transition Flight Testing

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Kimmel, Roger; Reshotko, Eli

    2011-01-01

    Much has been learned about the physics underlying the transition process at supersonic and hypersonic speeds through years of analysis, experiment and computation. Generally, the application of this knowledge has been restricted to simple shapes like plates, cones and spherical bodies. However, flight reentry vehicles are in reality never simple. They typically are highly complex geometries flown at angle of attack so three-dimensional effects are very important, as are roughness effects due to surface features and/or ablation. This paper will review our present understanding of the physics of the transition process and look back at some of the recent flight test programs for their successes and failures. The goal of this paper is to develop rationale for new hypersonic boundary layer transition flight experiments. Motivations will be derived from both an inward look at what we believe constitutes a good flight test program as well as an outward review of the goals and objectives of some recent US based unclassified proposals and programs. As part of our recommendations, this paper will address the need for careful experimental work as per the guidelines enunciated years ago by the U.S. Transition Study Group. Following these guidelines is essential to obtaining reliable, usable data for allowing refinement of transition estimation techniques.

  4. Ground and flight testing for aircraft guidance and control

    SciTech Connect

    Onken, R.; Rediess, H.A.

    1984-12-01

    A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.

  5. A unique flight test facility: Description and results

    NASA Technical Reports Server (NTRS)

    Meyer, R. R., Jr.

    1982-01-01

    The Dryden Flight Research Facility has developed a unique research facility for conducting aerodynamic and fluid mechanics experiments in flight. A low aspect ratio fin, referred to as the flight test fixture (FTF), is mounted on the underside of the fuselage of an F-104G aircraft. The F-104G/FTF facility is described, and the capabilities are discussed. The capabilities include (1) a large Mach number envelope (0.4 to 2.0), including the region through Mach 1.0; (2) the potential ability to test articles larger than those that can be tested in wind tunnels; (3) the large chord Reynolds number envelope (greater than 40 million); and (4) the ability to define small increments in friction drag between two test surfaces. Data are presented from experiments that demonstrate some of the capabilities of the FTF, including the shuttle thermal protection system airload tests, instrument development, and base drag studies. Proposed skin friction experiments and instrument evaluation studies are also discussed.

  6. Orion: Exploration Flight Test-1 Animation (with narration by Jay Estes)

    NASA Video Gallery

    This animation depicts the proposed test flight of the Orion spacecraft in 2014. During the test, which is called Exploration Flight Test-1 (EFT-1), Orion will launch from Cape Canaveral, Fla., per...

  7. Mars Science Laboratory Flight Software Boot Robustness Testing Project Report

    NASA Technical Reports Server (NTRS)

    Roth, Brian

    2011-01-01

    On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.

  8. Septic abortion.

    PubMed

    Stubblefield, P G; Grimes, D A

    1994-08-04

    Abortion-related deaths, which account for 47% of total maternal mortality in the world, result primarily from sepsis and are widespread in developing countries where abortion is illegal or inaccessible. Septic abortion offers opportunities for prevention on the primary, secondary, and tertiary level of medial care. Primary prevention of septic abortion encompasses the provision of effective contraception, provision of safe and legal abortion in cases of contraceptive failure, and appropriate medical management of abortion. Secondary prevention involves the prompt diagnosis of endometriosis and effective treatment to avert more serious infection. The diagnosis of septic abortion should be considered when women of reproductive age present to health facilities with vaginal bleeding, lower abdominal pain, and fever. Tertiary prevention is aimed at avoiding the serious complications of postabortal infection, including hysterectomy and death. Women with high fever, pelvic peritonitis, and tachycardia should undergo uterine evacuation and parental antibiotic therapy. Supportive care for cardiovascular system and other organs may be essential. The medical technology needed to avert serious complications and deaths from septic abortion is available. Lacking is a political commitment on the part of many governments and health care agencies to address this avoidable contributor to maternal morbidity and mortality.

  9. Post-Flight Assessment of Avcoat Thermal Protection System for the Exploration Flight Test-1

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Santos, Jose; Rodriguez, Erika; Mahzari, Milad; Remark, Brian; Muppidi, Suman

    2016-01-01

    On December 5, 2014 NASA conducted the first flight test of its next generation human-class Orion spacecraft. The flight was called the Exploration Flight Test -1 (EFT-1) which lasted for 4 hours and culminated into a re-entry trajectory at 9 km/s. This flight test of the 5-meter Orion Crew Module demonstrated various sub-systems including the Avcoat ablative thermal protection system (TPS) on the heat shield. The Avcoat TPS had been developed from the Apollo-era recipe with a few key modifications. The engineering for thermal sizing was supported by modeling, analysis, and ground tests in arc jet facilities. This paper will describe a postlfight analysis plan and present results from post-recovery inspections, data analysis from embedded sensors, TPS sample extraction and characterization in the laboratory. After the recovery of the vehicle, a full photographic survey and surface scans of the TPS were performed. The recovered vehicle showed physical evidence of flow disturbances, varying degrees of surface roughness, and excessive recession downstream of compression pads. The TPS recession was measured at more than 200 locations of interest on the Avcoat surface. The heat shield was then processed for sample extraction prior to TPS removal using the 7-Axis Milling machine at Marshall Space Flight Center. Around 182 rectangular TPS samples were extracted for subsequent analysis and investigation. The final paper will also present results of sample analysis. The planned investigation includes sidewall imaging, followed by image analysis to characterize TPS response by quantifying different layers in the char and pyrolysis zones. A full postmortem of the instrumentation and sensor ports will also be performed to confirm no adverse effects due to the sensors themselves. A subset of the samples will undergo structural testing and perform detailed characterization of any cracks and integrity of gore seams. Finally, the material will be characterized with layer

  10. Flutter clearance flight tests of an OV-10A airplane modified for wake vortex flight experiments

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.; Rivera, Jose A., Jr.; Stewart, Eric C.

    1995-01-01

    The envelope expansion, flight flutter tests of a modified OV-10A aircraft are described. For the wake vortex research program, the airplane was modified to incorporate three forward-extending instrumentation booms, one extending forward from each wing tip and one from the right side of the fuselage. The booms were instrumented with sensors to measure the velocity and direction of local air flow. The flutter test results show that the modified OV-10A aircraft is free from flutter at speeds up to 330 KEAS at 5000 feet altitude.

  11. This is Why We Test

    NASA Video Gallery

    The tethered test flight of the Project Morpheus lander is aborted at the Johnson Space Center. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as ...

  12. Flight Controllability Limits and Related Human Transfer Functions as Determined from Simulator and Flight Tests

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Day, Richard E.

    1961-01-01

    A simulator study and flight tests were performed to determine the levels of static stability and damping necessary to enable a pilot to control the longitudinal and lateral-directional dynamics of a vehicle for short periods of time. Although a basic set of aerodynamic characteristics was used, the study was conducted so that the results would be applicable to a wide range of flight conditions and configurations. Novel piloting techniques were found which enabled the pilot to control the vehicle at conditions that were otherwise uncontrollable. The influence of several critical factors in altering the controllability limits was also investigated. Several human transfer functions were used which gave fairly good representations of the controllability limits determined experimentally for the short-period longitudinal, directional, and lateral modes. A transfer function with approximately the same gain and phase angle as the pilot at the controlling frequencies along the controllability limits was also derived.

  13. Model Based Analysis and Test Generation for Flight Software

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep

    2009-01-01

    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.

  14. Program on the TOPAZ-2 system preparation for flight tests

    SciTech Connect

    Nikitin, V.P.; Ogloblin, B.G.; Lutov, Y.I.; Luppov, A.N.; Shalaev, A.I. ); Ponomarev-Stepnoi, N.N.; Usov, V.A. )

    1993-01-15

    The TOPAZ-2 nuclear power system (NPS) preparation for flight tests has been carried out according to the Integrated Experimental Development Program'' (IEDP). This program involves independent ground tests of the system assemblies and reactor assembly units as well as comprehensive tests of components of prototype systems with simulation of transportation conditions, pre-launch procedures, orbit injection and space environment. Besides that, IEDP included investigation and experimental development work directed toward a series of individual system characteristics: neutron-physical, radiation resistance of materials and TFE's, hermeticity, etc.

  15. Dive Angle Sensitivity Analysis for Flight Test Safety and Efficiency

    DTIC Science & Technology

    2010-03-01

    These points develop into high- speed dives and require an accurate predictive model to prevent possible testing accidents. As a flight test is...Looking back at this concept and approach, Equation 2.1 and 2.4 are combined to obtain Equation 2.5.  dh V V dVT D dt W g dt...number of attempts at each test point as well as prevent possible accidents and crashes from data that is misrepresented. The analysis took a Dive

  16. Flight Test Performance of a High Precision Navigation Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  17. Flight test results of ladar brownout look-through capability

    NASA Astrophysics Data System (ADS)

    Stelmash, Stephen; Münsterer, Thomas; Kramper, Patrick; Samuelis, Christian; Bühler, Daniel; Wegner, Matthias; Sheth, Sagar

    2015-06-01

    The paper discusses recent results of flight tests performed with the Airbus Defence and Space ladar system at Yuma Proving Grounds. The ladar under test was the SferiSense® system which is in operational use as an in-flight obstacle warning and avoidance system on the NH90 transport helicopter. Just minor modifications were done on the sensor firmware to optimize its performance in brownout. Also a new filtering algorithm fitted to segment dust artefacts out of the collected 3D data in real-time was employed. The results proved that this ladar sensor is capable to detect obstacles through brownout dust clouds with a depth extending up to 300 meters from the landing helicopter.

  18. Credit USAF. Original housed in the Muroc Flight Test Base, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit USAF. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View captioned as "7 Sept 1945, BH-5 Base Ordinance Motor Repair Shop" with gas station and gasoline pump. View looks roughly northwest - Edwards Air Force Base, North Base, Motor Repair Shop T-16, Third & C Streets, Boron, Kern County, CA

  19. NPS Solar Cell Array Tester Cubesat Flight Testing and Integration

    DTIC Science & Technology

    2014-09-01

    AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE NPS SOLAR CELL ARRAY TESTER CUBESAT FLIGHT TESTING AND INTEGRATION 5. FUNDING NUMBERS 6...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The Naval Postgraduate School Solar Cell Array Tester (NPS-SCAT) is the first CubeSat for the...Naval Postgraduate School (NPS). The NPS-SCAT mission was designed to measure solar cell performance degradation in low earth orbit . NPS-SCAT serves as

  20. Ground and Flight Testing for Aircraft Guidance and Control,

    DTIC Science & Technology

    1984-12-01

    stand for testing in large wind tunnels has been assembled in a joint program with German aircraft industries under . - - -- contract by the German...Royal Aircraft Establishment, Bedrord, UK 1 SCOPE OF THE PROGRAMME RAE Flight Systems (Bedford) Department, in collaboration with British Industry and...under the sponsorship of the Department or Trade and Industry , conducts research into the application of avionic systems to civil aircraft. The trials

  1. Modeling, Analysis and Simulation Approaches Used in Development of the National Aeronautics and Space Administration Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.

  2. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  3. Issues Related to Large Flight Hardware Acoustic Qualification Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Perry, Douglas C.; Kern, Dennis L.

    2011-01-01

    The characteristics of acoustical testing volumes generated by reverberant chambers or a circle of loudspeakers with and without large flight hardware within the testing volume are significantly different. The parameters attributing to these differences are normally not accounted for through analysis or acoustic tests prior to the qualification testing without the test hardware present. In most cases the control microphones are kept at least 2-ft away from hardware surfaces, chamber walls, and speaker surfaces to minimize the impact of the hardware in controlling the sound field. However, the acoustic absorption and radiation of sound by hardware surfaces may significantly alter the sound pressure field controlled within the chamber/speaker volume to a given specification. These parameters often result in an acoustic field that may provide under/over testing scenarios for flight hardware. In this paper the acoustic absorption by hardware surfaces will be discussed in some detail. A simple model is provided to account for some of the observations made from Mars Science Laboratory spacecraft that recently underwent acoustic qualification tests in a reverberant chamber.

  4. Capturing flight system test engineering expertise: Lessons learned

    NASA Technical Reports Server (NTRS)

    Woerner, Irene Wong

    1991-01-01

    Within a few years, JPL will be challenged by the most active mission set in history. Concurrently, flight systems are increasingly more complex. Presently, the knowledge to conduct integration and test of spacecraft and large instruments is held by a few key people, each with many years of experience. JPL is in danger of losing a significant amount of this critical expertise, through retirement, during a period when demand for this expertise is rapidly increasing. The most critical issue at hand is to collect and retain this expertise and develop tools that would ensure the ability to successfully perform the integration and test of future spacecraft and large instruments. The proposed solution was to capture and codity a subset of existing knowledge, and to utilize this captured expertise in knowledge-based systems. First year results and activities planned for the second year of this on-going effort are described. Topics discussed include lessons learned in knowledge acquisition and elicitation techniques, life-cycle paradigms, and rapid prototyping of a knowledge-based advisor (Spacecraft Test Assistant) and a hypermedia browser (Test Engineering Browser). The prototype Spacecraft Test Assistant supports a subset of integration and test activities for flight systems. Browser is a hypermedia tool that allows users easy perusal of spacecraft test topics. A knowledge acquisition tool called ConceptFinder which was developed to search through large volumes of data for related concepts is also described and is modified to semi-automate the process of creating hypertext links.

  5. Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed.

  6. Preliminary Results from the QuietSpike Flight Test

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Howe, Don; Waithe, Kenrick

    2007-01-01

    This viewgraph presentation reviews the QuietSpike flight test results. It shows the previous tests from Nearfield probes. The presentation then reviews the approach to test the QuietSpike, and shows graphics of the positions of the test vehicles. It also shows the components of the Sonic Boom Probing Noseboom. A graph of the Pressure Over- Under-shoot (Shaped Sonic Boom Demonstration (SSBD)Data) is presented. It reviews the Shock Probing Orientations, explaining that the probing plane is always behind the tail of the QuietSpike jet. Graphs of the Shock Position Geometry (SSBD Data) and the QuietSpike signature as of the test on 12/13/06, Near-Field Probing Directly Under the QuietSpike jet, and Near-Field Probing to Side, Near-Field Probing Above and to Side. Several slides review the Computational Fluid Dynamic models, and results compared to the probe tests.

  7. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  8. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  9. Inflight exercise affects stand test responses after space flight

    NASA Technical Reports Server (NTRS)

    Lee, S. M.; Moore, A. D. Jr; Fritsch-Yelle, J. M.; Greenisen, M. C.; Schneider, S. M.

    1999-01-01

    PURPOSE: The purpose of this study was to determine whether exercise performed by Space Shuttle crew members during short-duration space flights (9-16 d) affects the heart rate (HR) and blood pressure (BP) responses to standing within 2-4 h of landing. METHODS: Thirty crew members performed self-selected inflight exercise and maintained exercise logs to monitor their exercise intensity and duration. Two subjects participated in this investigation during two different flights. A 10-min stand test, preceded by at least 6 min of quiet supine rest, was completed 10-15 d before launch (PRE) and within 4 h of landing (POST). Based upon their inflight exercise records, subjects were grouped as either high (HIex: > or = 3 times/week, HR > or = 70% HRmax, > or = 20 min/session, N = 11), medium (MEDex: > or = 3 times/week, HR < 70% HRmax, > or = 20 min/session, N = 10), or low (LOex: < or = 3 times/week, HR and duration variable, N = 11) exercisers. HR and BP responses to standing were compared between groups (ANOVA, P < or = 0.05). RESULTS: There were no PRE differences between the groups in supine or standing HR and BP. Although POST supine HR was similar to PRE, all groups had an increased standing HR compared with PRE. The increase in HR upon standing was significantly greater after flight in the LOex group (36 +/- 5 bpm) compared with HIex or MEDex groups (25 +/- 1 bpm; 22 +/- 2 bpm). Similarly, the decrease in pulse pressure (PP) from supine to standing was unchanged after space flight in the MEDex and HIex groups but was significantly greater in the LOex group (PRE: -9 +/- 3; POST: -19 +/- 4 mm Hg). CONCLUSIONS: Thus, moderate to high levels of inflight exercise attenuated HR and PP responses to standing after space flight.

  10. SR-71 LASRE during in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This shot, from above and behind the SR-71 in flight, runs 11 seconds and shows the Aerospike engine and its fuel system being charged with gaseous helium and liquid nitrogen during one of two tests. The tests are to check for leaks and check the flow characteristics of cryogenic fuels to be used in the engine. The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at the NASA Dryden Flight Research Center, Edwards, California, in November 1998. The goal of this experiment was to provide in-flight data to help Lockheed Martin, Bethesda, Maryland, validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how the engine plume of a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds reaching approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a

  11. Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad Michael E.

    2010-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  12. Centurion Quarter-scale Prototype Pre-flight Taxi Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As crewmen jog and cycle alongside, a battery-powered, quarter-scale prototype of the remotely-piloted Centurion flying wing rolls across the El Mirage Dry Lake during pre-flight taxi tests. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar

  13. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  14. SHARP-B2: Flight Test Objectives, Project Implementation and Initial Results

    NASA Technical Reports Server (NTRS)

    Salute, Joan; Bull, Jeff; Rasky, Dan; Keese, David; Arnold, Jim (Technical Monitor)

    2001-01-01

    On September 28, 2000 the SHARP-B2 flight experiment was launched from Vandenberg Air Force Base, California. SHARP-B2 is the 2nd Ballistic flight test in the SHARP (Slender Hypervelocity Aerothermodynamic Research Probes) program which develops and tests new thermal protection materials and sharp body concepts. The flight tested Ultra-High Temperature Ceramics (UHTCs), which may radically change the design and performance of future aerospace vehicles. The new designs may overturn an age-old tenet of aerodynamics: that blunt-body aerospace vehicles, but not those with sharp leading edges, can survive the searing temperatures created as the vehicles tear through the atmosphere. Sharp leading edges offer numerous advantages over the blunt-body design currently in use. They could allow a space shuttle or crew return vehicle to maneuver in space more like an airplane and potentially allow astronauts to return to Earth from anywhere on orbit. They may allow improved astronaut safety by decreasing the risk of aborting into the ocean. They may reduce the electromagnetic interference that causes the communications blackouts that plague reentering blunt-body space vehicles. Reducing the amount of drag could lead to a reduction in propulsion requirements. Planetary probes could make use of sharp-body technology for aerobraking and to maximize their maneuvering capability. SHARP-B2 was a joint effort among NASA Ames, Sandia National Laboratories, the U.S. Air Force and the U.S. Army. It was funded by the Pathfinder Program at NASA's Marshall Space Flight Center. The SHARP-B2 payload was carried aboard a U.S. Air Force Minuteman III missile carrying a modified Mk 12A reentry vehicle (RV), which blasted off from Vandenberg Air Force Base near Lompoc, CA, at 3:01 a.m. PDT on Sept. 28. The RV was equipped with four 5. 1 inch-long strakes, or sharp leading edges. Each strake contained three UHTCs: ZrB2/SiC/C; ZrB2/SiC; and HfB2/SiC. Once it reached an altitude of about 400

  15. 14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... astro-compass or periscopic sextant. (e) Flight test. For the flight test, in the order of the numbered..., times, and ETA's. (35) Demonstrate the proper use of an astro-compass or periscopic sextant for...

  16. 14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... astro-compass or periscopic sextant. (e) Flight test. For the flight test, in the order of the numbered..., times, and ETA's. (35) Demonstrate the proper use of an astro-compass or periscopic sextant for...

  17. Early flight test experience with Cockpit Displayed Traffic Information (CDTI)

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.; Moen, G. C.; Person, L. H., Jr.; Keyser, G. L., Jr.; Yenni, K. R.; Garren, J. F., Jr.

    1980-01-01

    Coded symbology, based on the results of early human factors studies, was displayed on the electronic horizontal situation indicator and flight tested on an advanced research aircraft in order to subject the coded traffic symbology to a realistic flight environment and to assess its value by means of a direct comparison with simple, uncoded traffic symbology. The tests consisted of 28 curved, decelerating approaches, flown by research-pilot flight crews. The traffic scenarios involved both conflict-free and blunder situations. Subjective pilot commentary was obtained through the use of a questionnaire and extensive pilot debriefing sessions. The results of these debriefing sessions group conveniently under either of two categories: display factors or task performance. A major item under the display factor category was the problem of display clutter. The primary contributors to clutter were the use of large map-scale factors, the use of traffic data blocks, and the presentation of more than a few aircraft. In terms of task performance, the cockpit displayed traffic information was found to provide excellent overall situation awareness.

  18. Flight test of passive wing/store flutter suppression

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Kehoe, M. W.

    1986-01-01

    Flight tests were performed on an F-16 airplane carrying on each wing an AIM-9J wingtip missile, a GBU-8 bomb near midspan, and an external fuel tank. Baseline flights with the GBU-8 mounted on a standard pylon established that this configuration is characterized by an antisymmetric limited amplitude flutter oscillation within the operational envelope. The airplane was then flown with GBU-8 mounted on the decoupler pylon. The decoupler pylon is a NASA concept of passive wing-store flutter suppression achieved by providing a low store-pylon pitch frequency. The decoupler pylon successfully suppressed wing-store flutter throughout the flight envelope. A 37 percent increase in flutter velocity over the standard pylon was demonstrated. Maneuvers with load factors to 4g were performed. Although the static store displacements during maneuvers were not sufficiently large to be of concern, a store pitch alignment system was tested and performed successfully. One GBU-8 was ejected demonstrating that weapon separation from the decoupler pylon is normal.

  19. Religion and attitudes toward abortion and abortion policy in Brazil.

    PubMed

    Ogland, Curtis P; Verona, Ana Paula

    2011-01-01

    This study examines the association between religion and attitudes toward the practice of abortion and abortion policy in Brazil. Drawing upon data from the 2002 Brazilian Social Research Survey (BSRS), we test a number of hypotheses with regard to the role of religion on opposition to the practice of abortion and its legalization. Findings indicate that frequently attending Pentecostals demonstrate the strongest opposition to the practice of abortion and both frequently attending Pentecostals and Catholics demonstrate the strongest opposition to its legalization. Additional religious factors, such as a commitment to biblical literalism, were also found to be significantly associated with opposition to both abortion issues. Ultimately, the findings have implications for the future of public policy on abortion and other contentious social issues in Brazil.

  20. Flight test configuration for verifying inertial sensor redundancy management techniques

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.; Morrell, F. R.; Bailey, M. L.

    1984-01-01

    The Redundant Strapdown Inertial Measurement Unit presently tested in flight configuration consists of a semioctahedral array of four dynamically tuned, two-degree-of-freedom (TDOF) gyros and four TDOF accelerometers which can provide dual, fail-operational performance for integrated avionics systems. Attention is given to the multilevel algorithm used for the detection and isolation of three ranges of sensor failure in an integrated avionics context. A technique for the generation of accelerometer and gyro error thresholds which is sensitive to dynamic sensor errors and separation effects is presented, together with simulation results. Emphasis is placed on the ensuring of highly reliable data for flight control/navigation functions, while minimizing false or missed alarms.

  1. Flight Tests of Exhaust Gas Jet Propulsion, Special Report

    NASA Technical Reports Server (NTRS)

    Pnkel, Benjamin; Turner, L. Richard

    1940-01-01

    Flight test s were conducted on the XP-41 airplane, equipped with a Pratt & Whitney R1830-19, 14-cylinder, air-cooled engine, to determine the increase in flight speed obtainable by the use of individual exhaust stacks directed rearwardly to obtain exhaust-gas thrust. Speed increases up to 18 miles per hour at 20,000 feet altitude were obtained using stacks having an exit area of 3.42 square inches for each cylinder. A slight increase in engine power and decrease in cylinder temperature at a given manifold pressure were obtained with the individual stacks as compared with a collector-ring installation. Exhaust-flame visibility was quite low, particularly in the rich range of fuel-air ratios.

  2. GPS interferometric attitude and heading determination: Initial flight test results

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank; Braasch, Michael

    1991-01-01

    Attitude and heading determination using GPS interferometry is a well-understood concept. However, efforts have been concentrated mainly in the development of robust algorithms and applications for low dynamic, rigid platforms (e.g., shipboard). This paper presents results of what is believed by the authors to be the first realtime flight test of a GPS attitude and heading determination system. The system is installed in Ohio University's Douglas DC-3 research aircraft. Signals from four antennas are processed by an Ashtech 3DF 24-channel GPS receiver. Data from the receiver are sent to a microcomputer for storage and further computations. Attitude and heading data are sent to a second computer for display on a software generated artificial horizon. Demonstration of this technique proves its candidacy for augmentation of aircraft state estimation for flight control and navigation as well as for numerous other applications.

  3. GPS interferometric attitude and heading determination - Initial flight test results

    NASA Technical Reports Server (NTRS)

    Van Graas, Frank; Braasch, Michael

    1992-01-01

    Attitude and heading determination using GPS interferometry is a well-understood concept. However, efforts have been concentrated mainly in the development of robust algorithms and applications for low-dynamic, rigid platforms (e.g., shipboard). This paper presents results of what is believed to be the first real-time flight test of a GPS attitude and heading determination system. Signals from four antennas are processed by a 24-channel GPS receiver. Data from the receiver are sent to a microcomputer for storage and further computations. Attitude and heading data are sent to a second computer for display on a software-generated artificial horizon. Demonstration of this technique proves its candidacy for augmentation of aircraft state estimation for flight control and navigation, as well as for numerous other applications.

  4. Autonomous earth feature classification - Shuttle and aircraft flight test results

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.; Wilson, R. G.; Bullock, G. F.

    1983-01-01

    The Feature Identification and Location Experiment (FILE) flown on the Shuttle STS-2 mission November 12-14, 1981, tested a technique for autonomous real-time classification of selected earth features, i.e., water; bare land; vegetation; and clouds, snow, and ice. A second instrument, designed for aircraft flights, flew over regions of the west and east coasts of the United States and across the country. In each instrument, two bore-sighted CCD cameras image earth scenes in two spectral bands. Each camera includes a 100-element by 100-element detector array, and classification circuits. A simple algorithm and logic circuit provides classification decisions within a few microseconds. The experiment records the number of picture elements (pixels) representing each feature and the reflected solar radiation for each band. After flight, pixel-by-pixel classification images are constructed and compared with 70-mm color photographs taken simultaneously with the CCD-camera data.

  5. SR-71 LASRE during in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This shot, from above and behind the SR-71 in flight, runs 11 seconds and shows the Aerospike engine and its fuel system being charged with gaseous helium and liquid nitrogen during one of two tests. The tests are to check for leaks and check the flow characteristics of cryogenic fuels to be used in the engine. The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at the NASA Dryden Flight Research Center, Edwards, California, in November 1998. The goal of this experiment was to provide in-flight data to help Lockheed Martin, Bethesda, Maryland, validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how the engine plume of a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds reaching approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a

  6. Terrain Portrayal for Head-Down Displays Flight Test

    NASA Technical Reports Server (NTRS)

    Hughes, Monica F.; Glaab, Louis J.

    2003-01-01

    The Synthetic Vision Systems General Aviation (SVS-GA) element of NASA's Aviation Safety Program is developing technology to eliminate low visibility induced General Aviation (GA) accidents through the application of synthetic vision techniques. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain (CFIT), as well as Low-Visibility Loss of Control (LVLOC) accidents. In addition to substantial safety benefits, SVS displays have many potential operational benefits that can lead to flight in instrument meteorological conditions (IMC) resembling those conducted in visual meteorological conditions (VMC). Potential benefits could include lower landing minimums, more approach options, reduced training time, etc. SVS conducted research will develop display concepts providing the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. The relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and pilot performance has been largely undefined. Comprised of coordinated simulation and flight test efforts, the terrain portrayal for head-down displays (TP-HDD) test series examined the effects of two primary elements of terrain portrayal: variations of digital elevation model (DEM) resolution and terrain texturing. Variations in DEM resolution ranged from sparsely spaced (30 arc-sec/2,953ft) to very closely spaced data (1 arc-sec/98 ft). Variations in texture involved three primary methods: constant color, elevation-based generic, and photo-realistic, along with a secondary depth cue enhancer in the form of a fishnet grid overlay. The TP-HDD test series was designed to provide comprehensive data to enable design trades to optimize all SVS applications, as

  7. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    NASA Technical Reports Server (NTRS)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  8. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use any person, nor may any person serve, as a flight attendant... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Initial and recurrent flight...

  9. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use any person, nor may any person serve, as a flight attendant... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Initial and recurrent flight...

  10. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use any person, nor may any person serve, as a flight attendant... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Initial and recurrent flight...

  11. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use any person, nor may any person serve, as a flight attendant... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Initial and recurrent flight...

  12. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use any person, nor may any person serve, as a flight attendant... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Initial and recurrent flight...

  13. Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.

    1986-01-01

    This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  14. Development of a flight test maneuver autopilot for a highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Jones, F. P.; Roncoli, R. B.

    1983-01-01

    This paper details the development of a flight test maneuver autopilot for a highly maneuverable aircraft. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of the NASA Ames Research Center. The flight test maneuver autopilot (FTMAP) is designed to increase the quantity and quality of the data obtained in flight test. The vehicle with which it is being used is the highly maneuverable aircraft technology (HiMAT) vehicle. This paper describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  15. Use of Heated Helium to Simulate Surface Pressure Fluctuations on the Launch Abort Vehicle During Abort Motor Firing

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.

    2011-01-01

    The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3< or =M< or =1.2) and vehicle attitudes (+/-15deg) were simulated inside the NASA Ames Unitary Plan, 11-Foot Transonic Wind Tunnel. For each abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs

  16. Flight Test Overview for UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Hayes, Peggy S.; Kim, Sam K.; Bridges, Wayne; Marston, Michael

    2016-01-01

    The National Aeronautics and Space Administration is conducting a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The most recent testing supported two separate test configurations. The first investigated the timing of Detect and Avoid (DAA) alerting thresholds using a radar-equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries. The second configuration included a surrogate unmanned vehicle (flown from a ground control station, with a safety pilot on board) flying a mission in a virtual air traffic control airspace sector using research pilot displays and DAA advisories to maintain separation from live and virtual aircraft. The test was conducted over a seven-week span in the summer of 2015. The data from over 100 encounter sorties will be used to inform the RTCA Phase 1 Detect and Avoid and Command and Control Minimum Operating Performance Standards (MOPS) intended to be completed by the summer of 2016. Follow-on flight-testing is planned for the spring of 2016 to capture remaining encounters and support validation of the MOPS.

  17. LISA and its in-flight test precursor SMART-2

    NASA Astrophysics Data System (ADS)

    Vitale, S.; Bender, P.; Brillet, A.; Buchman, S.; Cavalleri, A.; Cerdonio, M.; Cruise, M.; Cutler, C.; Danzmann, K.; Dolesi, R.; Folkner, W.; Gianolio, A.; Jafry, Y.; Hasinger, G.; Heinzel, G.; Hogan, C.; Hueller, M.; Hough, J.; Phinney, S.; Prince, T.; Richstone, D.; Robertson, D.; Rodrigues, M.; Rüdiger, A.; Sandford, M.; Schilling, R.; Shoemaker, D.; Schutz, B.; Stebbins, R.; Stubbs, C.; Sumner, T.; Thorne, K.; Tinto, M.; Touboul, P.; Ward, H.; Weber, W.; Winkler, W.

    2002-07-01

    LISA will be the first space-home gravitational wave observatory. It aims to detect gravitational waves in the 0.1 mHz÷1 Hz range from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive black-holes and stochastic background. LISA is an ESA approved Cornerstone Mission foreseen as a joint ESA-NASA endeavour to be launched in 2010-11. The principle of operation of LISA is based on laser ranging of test-masses under pure geodesic motion. Achieving pure geodesic motion at the level requested for LISA, 3×10 -15 ms -2/√Hz at 0.1 mHz, is considered a challenging technological objective. To reduce the risk, both ESA and NASA are pursuing an in-flight test of the relevant technology. The goal of the test is to demonstrate geodetic motion within one order of magnitude from the LISA performance. ESA has given this test as the primary goal of its technology dedicated mission SMART-2 with a launch in 2006. This paper describes the basics of LISA, its key technologies, and its in-flight precursor test on SMART-2.

  18. Test Record of Flight Tests Using Alcohol-to-Jet/JP-8 Blended Fuel

    DTIC Science & Technology

    2015-09-01

    A Bobula Aviation Engineering Directorate Aviation and Missile Research, Development, and Engineering Center September 2015...the Test Record provided by the U.S. Army Redstone Test Center (RTC) to document the test, (ref 1). On 11 April 2013, the U.S. Army Aviation ...testing with JP-8/ATJ at the Redstone Aviation Propulsion Test and Research Facility (ref 11), AED authorized RTC to proceed with flight test with

  19. ZEST Flight Test Experiments, Kauai Test Facility, Hawaii

    DTIC Science & Technology

    1991-07-01

    from the Kauai Test Facility, Kauai, Hawaii. Background: Pursuant to Council on Environmental Quality Regulations (40 CFR 1500-1508) for implementing the...Response, Compensation and Liability Act i CONUS Continental United States cm centimeter I CFR Code of Federal Regulations CH 4 Methane f CO Carbon...Environmental Quality regulations that implement NEPA (40 CFR 1500-1508), and the U.S. Department of 3 Defense (DoD) Directive 6050.1 require that decision

  20. Instrument Pilot: Airplane. Flight Test Guide, Part 61 Revised 1973, AC 61-56.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide is designed to assist the applicant and his instructor in preparing for the flight test for Instrument Pilot Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the Instrument Rating.…

  1. Dental equipment test during zero-gravity flight

    NASA Technical Reports Server (NTRS)

    Young, John; Gosbee, John; Billica, Roger

    1991-01-01

    The overall objectives of this program were to establish performance criteria and develop prototype equipment for use in the Health Maintenance Facility (HMF) in meeting the needs of dental emergencies during space missions. The primary efforts during this flight test were to test patient-operator relationships, patent (manikin) restraint and positioning, task lighting systems, use and operation of dental rotary instruments, suction and particle containment system, dental hand instrument delivery and control procedures, and the use of dental treatment materials. The initial efforts during the flight focused on verification of the efficiency of the particle containment system. An absorptive barrier was also tested in lieu of the suction collector. To test the instrument delivery system, teeth in the manikin were prepared with the dental drill to receive restorations, some with temporary filling materials and another with definitive filling material (composite resin). The best particle containment came from the combination use of the laminar-air/suction collector in concert with immediate area suction from a surgical high-volume suction tip. Lighting in the treatment area was provided by a flexible fiberoptic probe. This system is quite effective for small areas, but for general tasks ambient illumination is required. The instrument containment system (elastic cord network) was extremely effective and easy to use. The most serious problem with instrument delivey and actual treatment was lack of time during the microgravity sequences. The restorative materials handled and finished well.

  2. Development of a mobile research flight test support capability

    NASA Technical Reports Server (NTRS)

    Rhea, Donald C.; Moore, Archie L.

    1988-01-01

    This paper presents the approach taken by the NASA Western Aeronautical Test Range (WATR) of the Ames Research Center (ARC) to develop and utilize mobile systems to satisfy unique real-time research flight test requirements of research projects such as the advanced fighter technology integration (AFTI) F-16, YAV-8B Harrier, F-18 high-alpha research vehicle (HARV), XV-15, and the UH-60 Black Hawk. The approach taken is cost-effective, staff efficient, technologically current, and provides a safe and effective research flight test environment to support a highly complex set of real-time requirements including the areas of tracking and data acquisition, communications (audio and video) and real-time processing and display, postmission processing, and command uplink. The development of this capability has been in response to the need for rapid deployment at varied site locations with full real-time comutation and display capability. This paper will discuss the requirements, implementation and growth plan for mobile systems development within the NASA Western Aeronautical Test Range.

  3. Development of a mobile research flight test support capability

    NASA Technical Reports Server (NTRS)

    Rhea, Donald C.; Moore, Archie L.

    1988-01-01

    This paper presents the approach taken by the NASA Western Aeronautical Test Range (WATR) of the Ames Research Center to develop and utilize mobile systems to satisfy unique real-time research flight test requirements of research projects such as the advanced fighter technology integration (AFTI)F-16, YAV-8B Harrier, F-18 high-alpha research vehicle (HARV), XV-15, and the UH-60 Black Hawk. The approach taken is cost-effective, staff efficient, technologically current, and provides a safe and effective research flight test environment to support a highly complex set of real-time requirements including the areas of tracking and data acquisition, communications (audio and video) and real-time processing and display, postmission processing, and command uplink. The development of this capability has been in response to the need for rapid deployment at varied site locations with full real-time computations and display capability. This paper will discuss the requirements, implementation and growth plan for mobile systems development within the NASA Western Aeronautical Test Range.

  4. Marshall Space Flight Center High Speed Turbopump Bearing Test Rig

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Moore, Chip; Thom, Robert

    2000-01-01

    The Marshall Space Flight Center has a unique test rig that is used to test and develop rolling element bearings used in high-speed cryogenic turbopumps. The tester is unique in that it uses liquid hydrogen as the coolant for the bearings. This test rig can simulate speeds and loads experienced in the Space Shuttle Main Engine turbopumps. With internal modifications, the tester can be used for evaluating fluid film, hydrostatic, and foil bearing designs. At the present time, the test rig is configured to run two ball bearings or a ball and roller bearing, both with a hydrostatic bearing. The rig is being used to evaluate the lifetimes of hybrid bearings with silicon nitride rolling elements and steel races.

  5. A Chief Engineer's View of the NASA X-43A Scramjet Flight Test

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.; Corpening, Griffin P.; Sherrill, Robert

    2005-01-01

    This paper presents an overview of the preparation and execution of the first two flights of the NASA X-43A scramjet flight test project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The challenges faced by the project team as they prepared the first ever scramjet-powered airplane for flight are presented. Modifications made to the second flight vehicle as a result of the first flight failure and the return to flight activities are discussed. Flight results and lessons learned are also presented.

  6. Lessons learned from an historical look at flight testing

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.

    1992-01-01

    A brief historical review of accidents was made to examine lessons learned in flight testing with major emphasis on human factors limitations. The results of this survey show undeniably that new aircraft and new pilots are not immune to old problems. Of three related human factors limitations, pilot skill frequently showed up as the primary factor responsible for accidents due to inadequate training (or proficiency) to handle an unexpected situation. A primary contributing factor was unsatisfactory aircraft handling qualities which increased pilot work load and therefore were less forgiving to 'pilot error,' particularly when flown in a stressful situation at the extremes of the flight envelope. Historically, pilot induced oscillation (PIO) has persisted as a major control problem particularly in first-flight operation. Deliberate errors involving a conscious decision to 'take a chance' by flying an aircraft with known deficiencies occurred more frequently in early times. Finally, inadvertent errors involving forgetfulness, indecision, and confusion are occurring more frequently with the current trend toward automated computerized controlled cockpits.

  7. NASA/FAA Tailplane Icing Program: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex

    2000-01-01

    This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.

  8. Airborne Turbulence Detection and Warning ACLAIM Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Bagley, Hal R.; Soreide, Dave C.; Bowdle, David A.; Bogue, Rodney K.; Ehernberger, L. Jack

    1999-01-01

    The Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) is a NASA/Dryden-lead program to develop and demonstrate a 2 micrometers pulsed Doppler lidar for airborne look-ahead turbulence detection and warning. Advanced warning of approaching turbulence can significantly reduce injuries to passengers and crew aboard commercial airliners. The ACLAIM instrument is a key asset to the ongoing Turbulence component of NASA's Aviation Safety Program, aimed at reducing the accident rate aboard commercial airliners by a factor of five over the next ten years and by a factor of ten over the next twenty years. As well, the advanced turbulence warning capability can prevent "unstarts" in the inlet of supersonic aircraft engines by alerting the flight control computer which then adjusts the engine to operate in a less fuel efficient, and more turbulence tolerant, mode. Initial flight tests of the ACLAIM were completed in March and April of 1998. This paper and presentation gives results from these initial flights, with validated demonstration of Doppler lidar wind turbulence detection several kilometers ahead of the aircraft.

  9. Crew Exploration Vehicle Launch Abort Controller Performance Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Raney, David L.

    2007-01-01

    This paper covers the simulation and evaluation of a controller design for the Crew Module (CM) Launch Abort System (LAS), to measure its ability to meet the abort performance requirements. The controller used in this study is a hybrid design, including features developed by the Government and the Contractor. Testing is done using two separate 6-degree-of-freedom (DOF) computer simulation implementations of the LAS/CM throughout the ascent trajectory: 1) executing a series of abort simulations along a nominal trajectory for the nominal LAS/CM system; and 2) using a series of Monte Carlo runs with perturbed initial flight conditions and perturbed system parameters. The performance of the controller is evaluated against a set of criteria, which is based upon the current functional requirements of the LAS. Preliminary analysis indicates that the performance of the present controller meets (with the exception of a few cases) the evaluation criteria mentioned above.

  10. Air/ground wind shear information integration: Flight test results

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  11. Satellite Broadcast of Graphical Weather Data Flight Tested

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.

    2000-01-01

    NASA Glenn Research Center at Lewis Field's aviation Weather Information Communications (WINCOMM) and NASA Langley Research Center's Aviation Weather Information (AWIN) programs collaborated in a flight test and evaluation of a worldwide weather data-link capability using satellites. This successful flight testing moves NASA closer to its goal of developing advanced communications and information technologies to enable high-quality and timely dissemination of aviation weather information to all relevant users on the aviation information network. Recognized as a major contributing factor in aviation accidents and incidents, weather contributes directly or indirectly to nearly 80 percent of fatal general aviation (small private aircraft) accidents. In 1997, the Aeronautics Safety Investment Strategy Team s weather team produced a prioritized list of investment areas under weather accident prevention. Weather data dissemination is the most critical and highest ranked priority on the list. NASA's Aviation Safety Program founded the Aviation Weather Information initiative to focus efforts on significantly reducing the number of weather-related aviation fatalities. Access to accurate and timely weather data could contribute to a major reduction of weather-related incidents and accidents. However, a cost-effective solution has eluded most general aviation pilots because of the high cost of onboard weather radar equipment. Rockwell Collins, through a contract with NASA and in cooperation with WorldSpace Corporation, successfully completed ground and flight testing of a receiver and antenna in Johannesburg, South Africa. This NASA/Rockwell Collins project is an evaluation of worldwide weather data-link capability using transmissions from the Satellite Digital Audio Radio Services (S DARS) AfriStar satellite. Owned and operated by WorldSpace, AfriStar is a geostationary satellite that broadcasts commercial digital audio services to stationary and mobile platforms. S DARS

  12. Determination of subcritical frequency and damping from B-1 flight flutter test data

    NASA Technical Reports Server (NTRS)

    Dobbs, S. K.; Hodson, C. H.

    1979-01-01

    The application of the time-lag products correlation/frequency analysis procedure to determine subcritical frequency and damping from structural response measurements made during flight flutter test of the B-1 prototype airplane is described. The analysis procedure, the test airplane, and flight test procedures are discussed. Summary frequency and damping results are presented for six transonic flight conditions. Illustrative results obtained by applying various options and variations of the analysis method are included for one flight condition.

  13. B-52E CCV Flight Test Data Applicable to Parameter Estimation

    DTIC Science & Technology

    1975-12-01

    44.2.48.2 ...... .................. ... 58 8 Flight Test and Analytical Response Comparisons for Flight Condition 45.2.5...Rad/Sec2 9 TABLE 1. RECORDED FLIGHT TEST MEASUREMENTS (Concluded) NO. ITEM LOCATION UNITS 46 Delta Inboard Aileron - Deg 47 Delta Rudder - 48 Delta...240 0 r0 0 + to 0; co wx. M 03 E- N4 +0 241 TABLE 24. RECORDED FLIGHT TEST MEASUREMENTS NO. ITEM LOCATION UNITS - 1 Vertical Bending Moment BS760 In

  14. Operational and research aspects of a radio-controlled model flight test program

    NASA Technical Reports Server (NTRS)

    Budd, Gerald D.; Gilman, Ronald L.; Eichstedt, David

    1993-01-01

    The operational and research aspects of a subscale, radio-controlled model flight test program are presented. By using low-cost free-flying models, an approach was developed for obtaining research-quality vehicle performance and aerodynamic information. The advantages and limitations learned by applying this approach to a specific flight test program are described. The research quality of the data acquired shows that model flight testing is practical for obtaining consistent and repeatable flight data.

  15. DVE flight test results of a sensor enhanced 3D conformal pilot support system

    NASA Astrophysics Data System (ADS)

    Münsterer, Thomas; Völschow, Philipp; Singer, Bernhard; Strobel, Michael; Kramper, Patrick

    2015-06-01

    The paper presents results and findings of flight tests of the Airbus Defence and Space DVE system SFERION performed at Yuma Proving Grounds. During the flight tests ladar information was fused with a priori DB knowledge in real-time and 3D conformal symbology was generated for display on an HMD. The test flights included low level flights as well as numerous brownout landings.

  16. Results of the parabolic flight tests of the rapunzel deployer

    NASA Astrophysics Data System (ADS)

    Sabath, D.; Krischke, M.; Kast, W.; Kowalczyk, M.; Kruijff, M.; van der Heide, E.

    The tether assisted re-entry of small payloads is a highly interesting tool for space transportation especially for the return of small payloads from Space Station ISSA. The small tether mission Rapunzel was initiated in 1991 by the Institute of Astronautics, TU München and the Kayser-Threde Company, to design a low cost and feasible tether experiment for the verification of the tether assisted re-entry. Together with the Samara State Aerospace University, Russia, a mission concept on a Russian Resurs or Photon capsule was developed. Based on this mission a deployer has been designed, mainly based on technology of the textile industry, which insures high reliability at low cost. Recently a similar configuration is being discussed for the ESA-TSE mission. The main work during the recent time was the development and test of the breadboard model of the deployer system. After successfully completing initial ground tests with the deployer, further tests during the ESA Parabolic Flight campaign in November 1995 were conducted. After a short introduction of the overall mission scenario, the planned configuration in orbit, this paper will present the results of the microgravity test campaign onboard the KC-135 aircraft and compare them with the ground test. The deployer showed a good performance during all tests, including ejection of the end-mass, deployment, and braking. Problems that occurred during the tests will be discussed, and solutions for the detected flaws and the results of the redesign now in progress will be presented. These verifications have shown the feasibility of the concept and will lay the base for the planned development of the flight model of the deployer.

  17. Stability and control flight test results of the space transportation system's orbiter

    NASA Technical Reports Server (NTRS)

    Culp, M. A.; Cooke, D. R.

    1982-01-01

    Flight testing of the Space Shuttle Orbiter is in progress and current results of the post-flight aerodynamic analyses are discussed. The purpose of these analyses is to reduce the pre-flight aerodynamic uncertainties, thereby leading to operational certification of the Orbiter flight envelope relative to the integrated airframe and flight control system. Primary data reduction is accomplished with a well documented maximum likelihood system identification techniques.

  18. Overview of the X-33 Extended Flight Test Range

    NASA Technical Reports Server (NTRS)

    Mackall, D.; Sakahara, R.; Kremer, S.

    1998-01-01

    On July 1, 1996, the National Aeronautics and Space Administration signed a Cooperative Agreement No. NCC8-115 with Lockheed Martin Skunk Works to develop and flight test the X-33, a scaled version of a reusable launch vehicle. The development of an Extended Test Range, with range instrumentation providing continuous vehicle communications from Edwards Air Force Base Ca. to landing at Malmstrom Air Force Base Montana, was required to flight test the mach 15 vehicle over 950 nautical miles. The cooperative agreement approach makes Lockheed Martin Skunk Works responsible for the X-33 program. When additional Government help was required, Lockheed "subcontracted" to NASA Field Centers for certain work. It was through this mechanism that Dryden Flight Research Center became responsible for the Extended Test Range. The Extended Test Range Requirements come from two main sources: 1) Range Safety and 2) Lockheed Martin Skunk Works. The range safety requirements were the most challenging to define and meet. The X-33 represents a vehicle that launches like a rocket, reenters the atmosphere and lands autonomously like an aircraft. Historically, rockets have been launched over the oceans to allow failed rockets to be destroyed using explosive devices. Such approaches had to be reconsidered for the X-33 flying over land. Numerous range requirements come from Lockheed Martin Skunk Works for interface definitions with the vehicle communication subsystems and the primary ground operations center, defined the Operations Control Center. Another area of considerable interest was the reentry plasma shield that causes "blackout" of the radio frequency signals, such as the range safety commands. Significant work was spent to analyze and model the blackout problem using a cooperative team of experts from across the country. The paper describes the Extended Test Range a, an unique Government/industry team of personnel and range assets was established to resolve design issues and

  19. Flight Test Results on the Stability and Control of the F-15B Quiet Spike Aircraft

    NASA Technical Reports Server (NTRS)

    Moua, Cheng; McWherter, Shaun H.; Cox, Timothy H.; Gera, Joseph

    2007-01-01

    The Quiet Spike (QS) flight research program was an aerodynamic and structural proof-of-concept of a telescoping sonic-boom suppressing nose boom on an F-15 B aircraft. The program goal was to collect flight data for model validation up to 1.8 Mach. The primary test philosophy was maintaining safety of flight. In the area of stability and controls the primary concerns were to assess the potential destabilizing effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire QS flight envelop. This paper reports on the stability and control methods used for flight envelope clearance and flight test results of the F-15B Quiet Spike. Also discussed are the flight test approach, the criteria to proceed to the next flight condition, brief pilot commentary on typical piloting tasks, approach and landing, and refueling task, and air data sensitivity to the flight control system.

  20. Tests and calibration of NIF neutron time of flight detectors.

    PubMed

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  1. Noise measurement flight test of five light helicopters

    NASA Astrophysics Data System (ADS)

    Rickley, Edward J.; Jones, Kenneth E.; Keller, Amanda S.; Fleming, Gregg G.

    1993-07-01

    The U.S. Department of Transportation, Federal Aviation Administration, (U.S.DOT/FAA), along with the U.S.DOT, Research and Special Programs Administration, Volpe National Transportation Systems Center (RSPA/Volpe Center) conducted a helicopter noise measurement flight test in Champaign, Illinois, during the period 22-26 July 1991. The primary objective of the study was to obtain the field data necessary to examine the feasibility of a simplified helicopter-noise-certification procedure (screening test). Acoustic data were measured by and stored on a hand-held sound-level meter (on-line processing) and recorded on digital tape for later off-line processing. A comparison of the measured on-line acoustic data with the acoustic data processed off-line provided the foundation necessary to evaluate the feasibility of the proposed screening test. In addition to acoustic measurements, meteorological data and helicopter tracking and performance data were also obtained.

  2. Practical flight test method for determining reciprocating engine cooling requirements

    NASA Technical Reports Server (NTRS)

    Ward, D. T.; Miley, S. J.

    1984-01-01

    It is pointed out that efficient and effective cooling of air-cooled reciprocating aircraft engines is a continuing problem for the general aviation industry. Miley et al. (1981) have reported results of a study regarding the controlling variables for cooling and installation aerodynamics. The present investigation is concerned with experimental methods which were developed to determine cooling requirements of an instrumented prototype or production aircraft, taking into account a flight test procedure which has been refined and further verified with additional testing. It is shown that this test procedure represents a straightforward means of determining cooling requirements with minimal instrumentation. Attention is given to some background information, the development history of the NACA cooling correlation method, and the proposed modification of the NACA cooling correlation.

  3. Development of a simple, self-contained flight test data acquisition system

    NASA Technical Reports Server (NTRS)

    Clarke, R.; Shane, D.; Roskam, J.; Rummer, D. I.

    1982-01-01

    The flight test system described combines state-of-the-art microprocessor technology and high accuracy instrumentation with parameter identification technology which minimize data and flight time requirements. The system was designed to avoid permanent modifications of the test airplane and allow quick installation. It is capable of longitudinal and lateral-directional stability and control derivative estimation. Details of this system, calibration and flight test procedures, and the results of the Cessna 172 flight test program are presented. The system proved easy to install, simple to operate, and capable of accurate estimation of stability and control parameters in the Cessna 172 flight tests.

  4. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  5. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  6. Verification Challenges of Dynamic Testing of Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Winnitoy, Susan

    2010-01-01

    The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary

  7. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  8. Flight tests of a supersonic natural laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  9. Orion Flight Test-1 Thermal Protection System Instrumentation

    NASA Technical Reports Server (NTRS)

    Kowal, T. John

    2011-01-01

    The Orion Crew Exploration Vehicle (CEV) was originally under development to provide crew transport to the International Space Station after the retirement of the Space Shuttle, and to provide a means for the eventual return of astronauts to the Moon. With the current changes in the future direction of the United States human exploration programs, the focus of the Orion project has shifted to the project s first orbital flight test, designated Orion Flight Test 1 (OFT-1). The OFT-1 is currently planned for launch in July 2013 and will demonstrate the Orion vehicle s capability for performing missions in low Earth orbit (LEO), as well as extensibility beyond LEO for select, critical areas. Among the key flight test objectives are those related to validation of the re-entry aerodynamic and aerothermal environments, and the performance of the thermal protection system (TPS) when exposed to these environments. A specific flight test trajectory has been selected to provide a high energy entry beyond that which would be experienced during a typical low Earth orbit return, given the constraints imposed by the possible launch vehicles. This trajectory resulted from a trade study that considered the relative benefit of conflicting objectives from multiple subsystems, and sought to provide the maximum integrated benefit to the re-entry state-of-the-art. In particular, the trajectory was designed to provide: a significant, measureable radiative heat flux to the windward surface; data on boundary transition from laminar to turbulent flow; and data on catalytic heating overshoot on non-ablating TPS. In order to obtain the necessary flight test data during OFT-1, the vehicle will need to have an adequate quantity of instrumentation. A collection of instrumentation is being developed for integration in the OFT-1 TPS. In part, this instrumentation builds upon the work performed for the Mars Science Laboratory Entry, Descent and Landing Instrument (MEDLI) suite to instrument the

  10. Static tests of excess ground attenuation at Wallops Flight Center

    NASA Technical Reports Server (NTRS)

    Sutherland, L. C.; Brown, R.

    1981-01-01

    An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.

  11. Synthetic vision system flight test results and lessons learned

    NASA Technical Reports Server (NTRS)

    Radke, Jeffrey

    1993-01-01

    Honeywell Systems and Research Center developed and demonstrated an active 35 GHz Radar Imaging system as part of the FAA/USAF/Industry sponsored Synthetic Vision System Technology Demonstration (SVSTD) Program. The objectives of this presentation are to provide a general overview of flight test results, a system level perspective that encompasses the efforts of the SVSTD and Augmented VIsual Display (AVID) programs, and more importantly, provide the AVID workshop participants with Honeywell's perspective on the lessons that were learned from the SVS flight tests. One objective of the SVSTD program was to explore several known system issues concerning radar imaging technology. The program ultimately resolved some of these issues, left others open, and in fact created several new concerns. In some instances, the interested community has drawn improper conclusions from the program by globally attributing implementation specific issues to radar imaging technology in general. The motivation for this presentation is therefore to provide AVID researchers with a better understanding of the issues that truly remain open, and to identify the perceived issues that are either resolved or were specific to Honeywell's implementation.

  12. Flight test of monocular day/night HMD systems

    NASA Astrophysics Data System (ADS)

    Hudson, Craig; Longman, Peter J.; Makepeace, Nat R.

    2002-08-01

    The Crew Systems Group at QinetiQ Farnborough, formerly part of the Defence Evaluation and Research Agency (DERA), have recently conducted development and flight evaluations of two monocular display systems that provided dynamic symbology for the pilot. The systems were the Pilkington Optronics (now Thales) Guardian monocular Helmet Mounted Display (HMD) used for daytime operations and the QinetiQ Display Night Vision Goggles (DNVGs) used at night. Test flights of the two systems were performed in a modified Jaguar T2B combat aircraft, that was based at the QinetiQ Boscombe Down research facility. Good performance was obtained from each system with both producing clear, legible symbology. During day and night Air to Ground (A-G) sorties both the Guardian and the DNVGs were used for simulated attacks and reconnaissance tasks on a variety of operationally realistic targets. In addition the Guardian HMD was used with an ASRAAM in the day Air to Air (A-A) environment to provide high off-boresight capability. The results from the test program have validated a range of significant capability enhancements offered by either a HMD or a DNVG, and have provided a significant increase in the technical and operational understanding of fast-jet helmet display systems.

  13. Mission Control Center (MCC) system specification for the shuttle Orbital Flight Test (OFT) timeframe

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Mission Control Center Shuttle (MCC) Shuttle Orbital Flight Test (OFT) Data System (OFTDS) provides facilities for flight control and data systems personnel to monitor and control the Shuttle flights from launch (tower clear) to rollout (wheels stopped on runway). It also supports the preparation for flight (flight planning, flight controller and crew training, and integrated vehicle and network testing activities). The MCC Shuttle OFTDS is described in detail. Three major support systems of the OFTDS and the data types and sources of data entering or exiting the MCC were illustrated. These systems are the communication interface system, the data computation complex, and the display and control system.

  14. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  15. Function Test of an Automatic Locking and Unlocking System for Passive Damper by using Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Sakurai, M.; Yoshihara, S.; Ohnishi, M.; Watanabe, K.; Sekiya, T.

    2002-01-01

    existence of residual acceleration has been reported.The acceleration is called "g-jitter".In a lot of experiments carried out in space, the adverse influence of the g-jitter on their results has been found out.To understand the effect of g-jitter on fluid phenomena, we are making preparation to orbital experiment as a post-JUSTSAP. In the experiment, the information to understand the influence of the g-jitter on diffusion phenomena will be obtained by comparing diffusion process in two containers. One container is isolated from the g-jitter using a passive damper and the other is not. To avoid the strong accelerations during launch giving damage to the passive damper, an automatic locking and unlocking system for the passive damper must be applied to the experimental apparatus. To increase flight opportunity of the experiment, the apparatus is designed as a small, light, self-controlled and self-powered system.In order to test the function of the apparatus, we have carried out parabolic flight experiments as preparations for the orbital experiment. mol/l), ethanol (0.7%) and NaCl (0.02 mol/l) is set on the upper base plate, which has the passive damper and the locking-unlocking system.The other container is directly set on the lower base plate.The passive damper comprises of flexible membranes and thin-metal plate and connecting rods. The damping is performed under micro-gravity condition by utilizing the non-linear elasticity of flexible membranes. The CPU unit on the upper base plate has 8 channels of A/D converter to measure 3-dimensional vibrations and 8 relays to control all experimental procedures, that is, locking, unlocking, heating, recording and so on. The power unit provides electricity to the CPU unit, the locking-unlocking system and heaters. A digital camera records diffusion of color in both cells simultaneously. color between pH8.3 and pH10. airplane vibrations were directly translated to the experimental container.During a parabolic flight, a

  16. Aeronautical satellite data link concept, design, and flight test results

    NASA Astrophysics Data System (ADS)

    Anderson, Samuel S.; Hogle, Lawrence H.; Breitwisch, Ronald; Edwards, C. P.; Hamilton, Robert J.; Lipke, David W.

    The MITRE Corporation has conducted a three-year study of aeronautical satellite communications that culminated in a set of flight tests over the North Atlantic during August of 1985. The flight tests required the cooperation of four organizations in addition to MITRE: The Communications Satellite Corporation (COMSAT), Rockwell International, Ball Aerospace and Avantek. A test aircraft, equipped with a specially designed satellite data link terminal and antenna configuration, was flown from Cedar Rapids, Iowa across the North Atlantic to Iceland, and north of Iceland to 75° latitude. The purpose of the flight tests was to measure the performance of a full duplex aeronautical satellite data link (ASDL) using the International Maritime Satellite Organization's (INMARSAT's) spacecraft and earth station at Southbury, Connecticut, and to demonstrate potential applications. The data link operates at 200 bits-per-second (bps), uses forward error correction (FEC) coding, and employs a terminal monitor that provides interfaces to on-board avionics, data recording equipment, and an industry-standard personal computer (PC). The PC serves as a user terminal as well as a real-time monitor of bit-error-rate (BER) performance. In addition to channel propagation and BER experiments, demonstrations of potential applications of an oceanic ASDL system were conducted. A standard commercial airline data link management unit (MU) was used to communicate data over the ASDL using standard protocols. The interface to the MU allowed access to data from two distinct navigation systems: an inertial navigation system (INS) and a Global Positioning System (GPS) receiver. Aircraft position data was transmitted from the aircraft to the earth station on an automatic basis to simulate automatic dependent surveillance (ADS) of oceanic air space. This paper is divided into three sections: 1) A discussion of background issues, such as the motivation for the reported research and development, and

  17. Abortion ethics.

    PubMed

    Fromer, M J

    1982-04-01

    Nurses have opinions about abortion, but because they are health professionals and their opinions are sought as such, they are obligated to understand why they hold certain views. Nurses need to be clear about why they believe as they do, and they must arrive at a point of view in a rational and logical manner. To assist nurses in this task, the ethical issues surrounding abortion are enumerated and clarified. To do this, some of the philosophic and historic approaches to abortion and how a position can be logically argued are examined. At the outset some emotion-laden terms are defined. Abortion is defined as the expulsion of a fetus from the uterus before 28 weeks' gestation, the arbitrarily established time of viability. This discussion is concerned only with induced abortion. Since the beginning of recorded history women have chosen to have abortions. Early Jews and Christians forbade abortion on practical and religious grounds. A human life was viewed as valuable, and there was also the practical consideration of the addition of another person to the population, i.e., more brute strength to do the necessary physical work, defend against enemies, and ensure the continuation of the people. These kinds of pragmatic reasons favoring or opposing abortion have little to do with the Western concept of abortion in genaeral and what is going on in the U.S. today in particular. Discussion of the ethics of abortion must rest on 1 or more of several foundations: whether or not the fetus is a human being; the rights of the pregnant woman as opposed to those of the fetus, and circumstances of horror and hardship that might surround a pregnancy. Viability is relative. Because viability is not a specific descriptive entity, value judgments become part of the determination, both of viability and the actions that might be taken based on that determination. The fetus does not become a full human being at viability. That occurs only at conception or birth, depending on one's view

  18. Exploration Flight Test 1 Afterbody Aerothermal Environment Reconstruction

    NASA Technical Reports Server (NTRS)

    Hyatt, Andrew J.; Oliver, Brandon; Amar, Adam; Lessard, Victor

    2016-01-01

    The Exploration Flight Test 1 vehicle included roughly 100 near surface thermocouples on the after body of the vehicle. The temperature traces at each of these instruments have been used to perform inverse environment reconstruction to determine the aerothermal environment experienced during re-entry of the vehicle. This paper provides an overview of the reconstructed environments and identifies critical aspects of the environment. These critical aspects include transition and reaction control system jet influence. A blind test of the process and reconstruction tool was also performed to build confidence in the reconstructed environments. Finally, an uncertainty quantification analysis was also performed to identify the impact of each of the uncertainties on the reconstructed environments.

  19. Flight Tests of the KO-1 Aircraft at Night

    NASA Astrophysics Data System (ADS)

    Kwon, Jong-Kwang; Kim, Whan-Woo

    The KO-1 aircraft which has the functionality of tactical observation, was successfully developed in August of 2004 in South Korea. It is important for the KO-1 aircraft to achieve successful missions at nighttime as well as during daytime. The aircraft, equipped with interior and exterior lighting systems and lighting control panel modified from those of the KT-1 basic trainer, provides improved safety, operational effectiveness, and situational awareness during operation at night when used with night-vision goggles (NVGs). KO-1 is the first domestic aircraft that utilizes the night-vision imaging system (NVIS) technology in Korea. KO-1 NVIS was developed with the goal of defining the components of NVIS and establishing test and evaluation procedures for both the subsystems and main system. In this paper, we present the establishment of a KO-1 NVIS lighting system, NVIS component development, and representative ground and flight test results.

  20. Flight test validation of a design procedure for digital autopilots

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.

    1983-01-01

    Commercially available general aviation autopilots are currently in transition from an analogue circuit system to a computer implemented digital flight control system. Well known advantages of the digital autopilot include enhanced modes, self-test capacity, fault detection, and greater computational capacity. A digital autopilot's computational capacity can be used to full advantage by increasing the sophistication of the digital autopilot's chief function, stability and control. NASA's Langley Research Center has been pursuing the development of direct digital design tools for aircraft stabilization systems for several years. This effort has most recently been directed towards the development and realization of multi-mode digital autopilots for GA aircraft, conducted under a SPIFR-related program called the General Aviation Terminal Operations Research (GATOR) Program. This presentation focuses on the implementation and testing of a candidate multi-mode autopilot designed using these newly developed tools.

  1. Flight test of an improved solid waste collection system

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Brasseaux, H.; Whitmore, H.

    1991-01-01

    A system for human waste collection is described and evaluated on the basis of a prototype employed for the shuttle flight STS-35. The manually operated version of the unit is designed to collect, compact, and store human waste and cleaning material in replaceable volumes. The system is presented with illustrations and descriptions of the disposable pads that are used to clean the cylinder and occlusive air valves as well as seal the unit. Temporary retention and waste entrainment are provided by the variable airflow in the manual unit tested. The prototype testing indicates that sufficient airflow is achieved at 45 CFM and that the stowage volume (18.7 cu in.) is adequate for storing human waste with minimal logistical support. Higher compaction pressure and the use of a directed airstream are proposed for improving the packing efficiency of the unit.

  2. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote earth field sensing magnetometer and servo control building; and a remote power control and instrumentation building. The inner coils are 42-foot in diameter and a 10-foot by 10-foot opening through the outer coils accommodates spacecraft access to the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  3. Design and Testing of Flight Control Laws on the RASCAL Research Helicopter

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Hindson, William S.; Moralez. Ernesto, III; Tucker, George E.; Dryfoos, James B.

    2001-01-01

    Two unique sets of flight control laws were designed, tested and flown on the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A Black Hawk helicopter. The first set of control laws used a simple rate feedback scheme, intended to facilitate the first flight and subsequent flight qualification of the RASCAL research flight control system. The second set of control laws comprised a more sophisticated model-following architecture. Both sets of flight control laws were developed and tested extensively using desktop-to-flight modeling, analysis, and simulation tools. Flight test data matched the model predicted responses well, providing both evidence and confidence that future flight control development for RASCAL will be efficient and accurate.

  4. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  5. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damaged aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  6. USV test flight by stratospheric balloon: Preliminary mission analysis

    NASA Astrophysics Data System (ADS)

    Cardillo, A.; Musso, I.; Ibba, R.; Cosentino, O.

    The Unmanned Space Vehicle test flights will use a 7 m 1300 kg aircraft. The first three launches will take place at the Italian Space Agency ASI base in Trapani Milo, Sicily, through a stratospheric balloon that will drop the aircraft at a predefined height. After free fall acceleration to transonic velocities, the parachute deployment will allow a safe splash down in the central Mediterranean Sea. The goal of this article is to show the preliminary analysis results for the first USV flight. We carried out a statistical study for the year 2000 2003, evaluating the typical summer and winter launch windows of the Trapani Milo base. First, in the center Mediterranean, we define safe recovery areas. They cannot be reached during the balloon ascending phase so, after a sufficiently long floating part able to catch the open sea, the balloon will go down to the release height (24 km). The simulation foresees a 400,000 m3 balloon and 3 valves for the altitude transfer. A safe splash down must occur far enough from the nearest coast: the minimum distance is considered around 25 km. The vehicle should be released at a distance, from the nearest coast, greater than this minimum amount plus the USV model maximum horizontal translation, during its own trajectory from balloon separation to splash down. In this way we define safe release areas for some possible translations. Winter stratospheric winds are less stable. The winter average flight duration is 7 h and it is probably too long for the diurnal recovery requirement and its scheduled procedures. Comparing past stratospheric balloons flights and trajectories computed using measured meteorological data (analysis), with their predictions made using forecast models and soundings, we obtain the standard deviation of the trajectory forecast uncertainty at the balloon aircraft separation. Two cases are taken into account: predictions made 24 and 6 h before the launch. Assuming a Gaussian latitudinal uncertainty distribution for

  7. Overheating Anomalies during Flight Test Due to the Base Bleeding

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry; Hafiychuck, Halyna; Osipov, Slava; Ponizhovskaya, Ekaterina; Smelyanskiy, Vadim; Dagostino, Mark; Canabal, Francisco; Mobley, Brandon L.

    2012-01-01

    In this paper we present the results of the analytical and numerical studies of the plume interaction with the base flow in the presence of base out-gassing. The physics-based analysis and CFD modeling of the base heating for single solid rocket motor performed in this research addressed the following questions: what are the key factors making base flow so different from that in the Shuttle [1]; why CFD analysis of this problem reveals small plume recirculation; what major factors influence base temperature; and why overheating was initiated at a given time in the flight. To answer these questions topological analysis of the base flow was performed and Korst theory was used to estimate relative contributions of radiation, plume recirculation, and chemically reactive out-gassing to the base heating. It was shown that base bleeding and small base volume are the key factors contributing to the overheating, while plume recirculation is effectively suppressed by asymmetric configuration of the flow formed earlier in the flight. These findings are further verified using CFD simulations that include multi-species gas environment both in the plume and in the base. Solid particles in the exhaust plume (Al2O3) and char particles in the base bleeding were also included into the simulations and their relative contributions into the base temperature rise were estimated. The results of simulations are in good agreement with the temperature and pressure in the base measured during the test.

  8. A Flight/Ground/Test Event Logging Facility

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel

    1999-01-01

    The onboard control software for spacecraft such as Mars Pathfinder and Cassini is composed of many subsystems including executive control, navigation, attitude control, imaging, data management, and telecommunications. The software in all of these subsystems needs to be instrumented for several purposes: to report required telemetry data, to report warning and error events, to verify internal behavior during system testing, and to provide ground operators with detailed data when investigating in-flight anomalies. Events can range in importance from purely informational events to major errors. It is desirable to provide a uniform mechanism for reporting such events and controlling their subsequent processing. Since radiation-hardened flight processors are several years behind the speed and memory of their commercial cousins, and since most subsystems require real-time control, and since downlink rates to earth can be very low from deep space, there are limits to how much of the data can be saved and transmitted. Some kinds of events are more important than others and should therefore be preferentially retained when memory is low. Some faults can cause an event to recur at a high rate, but this must not be allowed to consume the memory pool. Some event occurrences may be of low importance when reported but suddenly become more important when a subsequent error event gets reported. Some events may be so low-level that they need not be saved and reported unless specifically requested by ground operators.

  9. Turbopump Seal Testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gibson, Howard G.

    2010-01-01

    The new ARES space flight program has presented many challenges to aerospace engineers and designers. One of the areas for consideration are the seals in the turbopumps that supply cryogenic propellants to the combustion chamber in the upper stage. Heritage face seals that worked in the past might not be sufficient in the newer turbopumps with increased speeds, pressures across the seals, and loads. New seal materials, engineering designs, and analysis techniques have been developed since the early use of these heritage seals, however, rub conditions and surface degradation at the sliding contact cannot be reliably predicted. Testing is required to determine the safe operating limits and verify seal wear life over the operating range. Rocketdyne in Canoga Park California entered into a task agreement with MSFC to design, fabricate, build, test, disassemble, and inspect hardware after tests of carbon materials and wear resistant coatings. The purpose of testing would be to determine the safe operating limits, empirically iterate the design, and select the best combination of materials for face seals and mating rings. This paper summarizes the many hours and efforts of individuals and teams to get the program operating successfully and presents the test results that were obtained.

  10. Cumulative Measurement Errors for Dynamic Testing of Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Winnitoy, Susan

    2012-01-01

    Located at the NASA Johnson Space Center in Houston, TX, the Six-Degree-of-Freedom Dynamic Test System (SDTS) is a real-time, six degree-of-freedom, short range motion base simulator originally designed to simulate the relative dynamics of two bodies in space mating together (i.e., docking or berthing). The SDTS has the capability to test full scale docking and berthing systems utilizing a two body dynamic docking simulation for docking operations and a Space Station Remote Manipulator System (SSRMS) simulation for berthing operations. The SDTS can also be used for nonmating applications such as sensors and instruments evaluations requiring proximity or short range motion operations. The motion base is a hydraulic powered Stewart platform, capable of supporting a 3,500 lb payload with a positional accuracy of 0.03 inches. The SDTS is currently being used for the NASA Docking System testing and has been also used by other government agencies. The SDTS is also under consideration for use by commercial companies. Examples of tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility integrates a dynamic simulation of on-orbit spacecraft mating or de-mating using flight-like mechanical interface hardware. A force moment sensor is used for input during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents unique challenges, one particular area of interest involves the use of external measurement systems to ensure accurate feedback of dynamic contact. The measurement systems for the test facility have two separate functions. The first is to take static measurements of facility and test hardware to determine both the static and moving frames used in the simulation and control system. The test hardware must be measured after each configuration change to determine both sets of reference frames. The second function is to take dynamic

  11. Gain Scheduling for the Orion Launch Abort Vehicle Controller

    NASA Technical Reports Server (NTRS)

    McNamara, Sara J.; Restrepo, Carolina I.; Madsen, Jennifer M.; Medina, Edgar A.; Proud, Ryan W.; Whitley, Ryan J.

    2011-01-01

    One of NASAs challenges for the Orion vehicle is the control system design for the Launch Abort Vehicle (LAV), which is required to abort safely at any time during the atmospheric ascent portion of ight. The focus of this paper is the gain design and scheduling process for a controller that covers the wide range of vehicle configurations and flight conditions experienced during the full envelope of potential abort trajectories from the pad to exo-atmospheric flight. Several factors are taken into account in the automation process for tuning the gains including the abort effectors, the environmental changes and the autopilot modes. Gain scheduling is accomplished using a linear quadratic regulator (LQR) approach for the decoupled, simplified linear model throughout the operational envelope in time, altitude and Mach number. The derived gains are then implemented into the full linear model for controller requirement validation. Finally, the gains are tested and evaluated in a non-linear simulation using the vehicles ight software to ensure performance requirements are met. An overview of the LAV controller design and a description of the linear plant models are presented. Examples of the most significant challenges with the automation of the gain tuning process are then discussed. In conclusion, the paper will consider the lessons learned through out the process, especially in regards to automation, and examine the usefulness of the gain scheduling tool and process developed as applicable to non-Orion vehicles.

  12. [Abortion and crime].

    PubMed

    Citoni, Guido

    2011-01-01

    In this article we address the issue, with a tentative empirical application to the Italian data, of the relationship, very debated mainly in north America, between abortion legalization and reduction of crime rates of youth. The rationale of this relationship is that there is a causal factor at work: the more unwanted pregnancies aborted, the less unwanted children breeding their criminal attitude in an hostile/deprived family environment. Many methodological and empirical criticisms have been raised against the proof of the existence of such a relationship: our attempt to test if this link is valid for Italy cannot endorse its existence. The data we used made necessary some assumptions and the reliability of official estimates of crime rates was debatable (probably downward biased). We conclude that, at least for Italy, the suggested relationship is unproven: other reasons for the need of legal abortion have been and should be put forward.

  13. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  14. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Perseus B remotely piloted aircraft taxis on the runway at Edwards Air Force Base, California, before a series of development flights at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus

  15. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Perseus B remotely piloted aircraft on the runway at Edwards Air Force Base, California at the conclusion of a development flight at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus

  16. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    NASA Technical Reports Server (NTRS)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  17. The role of simulation in the development and flight test of the HiMAT vehicle

    NASA Technical Reports Server (NTRS)

    Evans, M. B.; Schilling, L. J.

    1984-01-01

    Real time simulations have been essential in the flight test program of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle at NASA Ames Research Center's Dryden Flight Research Facility. The HiMAT project makes extensive use of simulations in design, development, and qualification for flight, pilot training, and flight planning. Four distinct simulations, each with varying amounts of hardware in the loop, were developed for the HiMAT project. The use of simulations in detecting anomalous behavior of the flight software and hardware at the various stages of development, verification, and validation has been the key to flight qualification of the HiMAT vehicle.

  18. Research instrumentation requirements for flight/wind-tunnel tests of the YF-12 propulsion system and related flight experience

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Montoya, E. J.

    1974-01-01

    Description of the requirements for a comprehensive flight and wind-tunnel propulsion research program to examine the predictability of inlet performance, evaluate the effects of high-frequency pressure phenomena on inlets, and investigate improved control concepts in order to cope with airframe interactions. This program is unique in that it requires precise similarity of the geometry of the flight vehicle and tunnel modes; the test conditions, including local flow at the inlet; and instrumentation. Although few wind-tunnel instrumentation problems exist, many problems emerge during flight tests because of the thermal environment. Mach 3 flight temperatures create unique problems with transducers, connectors, and wires. All must be capable of withstanding continuous 1000 F temperatures, as well as the mechanical stresses imposed by vibration and thermal cycling.

  19. Design and flight testing of a digital landing approach autopilot

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Bryant, W. H.; Downing, D. R.

    1983-01-01

    An important feature in General Aviation (GA) autopilots is the ability to intercept and hold the glideslope and localizer during a landing approach. Most General Aviation landing approach autopilots available today use analog systems. This paper presents the designs of digital landing approach autopilots for a General Aviation (NAVION) aircraft using modern linear quadratic control theory. Each constant gain, direct digitally designed autopilot operates synchronously at a slow rate (10 samples per second) and has modest memory requirements, i.e., a full state Kalman filter is not used. The autopilot is designed to track desired position trajectories constructed in an ILS or MLS terminal area using command generators. Alternative command errors for intercepting and holding the localizer beam centerline are investigated. Linear simulations and flight test results are presented demonstrating the successful application of the linear quadratic regulator approach.

  20. Hypersonic airframe structures: Technology needs and flight test requirements

    NASA Technical Reports Server (NTRS)

    Stone, J. E.; Koch, L. C.

    1979-01-01

    Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities.

  1. New Design Concept and Flight Test of Superpressure Balloon

    NASA Astrophysics Data System (ADS)

    Izutsu, Naoki; Yajima, Nobuyuki; Ohta, Shigeo; Honda, Hideyuki; Kurokawa, Haruhisa; Matsushima, Kiyoho

    A new ballon design method named ‘three-dimensional gore design’ was developed. It is based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. This type of balloon can be manufactured with gores having a size larger than that of the conventional gore. The sides of each gore are fixed to the adjacent short load tapes with controlled shortening rates. The gore length is chosen so as not to create any meridional tension. Hence, the superpressure limit of these balloons is simply given as film strength divided by bulge radius. As the limit does not depend on the balloon size, a large balloon with a high superpressure limit can be easily constructed without strong films. A test flight as well as indoor inflation and burst experiment showed that this new design method can realize a larger and lighter superpressure balloon capable of suspending a heavy payload in the stratosphere.

  2. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  3. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2010-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  4. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  5. The DAST-1 remotely piloted research vehicle development and initial flight testing

    NASA Technical Reports Server (NTRS)

    Kotsabasis, A.

    1981-01-01

    The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented.

  6. Descent and Landing Triggers for the Orion Multi-Purpose Crew Vehicle Exploration Flight Test-1

    NASA Technical Reports Server (NTRS)

    Bihari, Brian D.; Semrau, Jeffrey D.; Duke, Charity J.

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) will perform a flight test known as Exploration Flight Test-1 (EFT-1) currently scheduled for 2014. One of the primary functions of this test is to exercise all of the important Guidance, Navigation, Control (GN&C), and Propulsion systems, along with the flight software for future flights. The Descent and Landing segment of the flight is governed by the requirements levied on the GN&C system by the Landing and Recovery System (LRS). The LRS is a complex system of parachutes and flight control modes that ensure that the Orion MPCV safely lands at its designated target in the Pacific Ocean. The Descent and Landing segment begins with the jettisoning of the Forward Bay Cover and concludes with sensing touchdown. This paper discusses the requirements, design, testing, analysis and performance of the current EFT-1 Descent and Landing Triggers flight software.

  7. SLS Flight Software Testing: Using a Modified Agile Software Testing Approach

    NASA Technical Reports Server (NTRS)

    Bolton, Albanie T.

    2016-01-01

    NASA's Space Launch System (SLS) is an advanced launch vehicle for a new era of exploration beyond earth's orbit (BEO). The world's most powerful rocket, SLS, will launch crews of up to four astronauts in the agency's Orion spacecraft on missions to explore multiple deep-space destinations. Boeing is developing the SLS core stage, including the avionics that will control vehicle during flight. The core stage will be built at NASA's Michoud Assembly Facility (MAF) in New Orleans, LA using state-of-the-art manufacturing equipment. At the same time, the rocket's avionics computer software is being developed here at Marshall Space Flight Center in Huntsville, AL. At Marshall, the Flight and Ground Software division provides comprehensive engineering expertise for development of flight and ground software. Within that division, the Software Systems Engineering Branch's test and verification (T&V) team uses an agile test approach in testing and verification of software. The agile software test method opens the door for regular short sprint release cycles. The idea or basic premise behind the concept of agile software development and testing is that it is iterative and developed incrementally. Agile testing has an iterative development methodology where requirements and solutions evolve through collaboration between cross-functional teams. With testing and development done incrementally, this allows for increased features and enhanced value for releases. This value can be seen throughout the T&V team processes that are documented in various work instructions within the branch. The T&V team produces procedural test results at a higher rate, resolves issues found in software with designers at an earlier stage versus at a later release, and team members gain increased knowledge of the system architecture by interfacing with designers. SLS Flight Software teams want to continue uncovering better ways of developing software in an efficient and project beneficial manner

  8. The unmet need for safe abortion in Turkey: a role for medical abortion and training of medical students.

    PubMed

    Mihciokur, Sare; Akin, Ayse; Dogan, Bahar Guciz; Ozvaris, Sevkat Bahar

    2015-02-01

    Abortion has been legal and safe in Turkey since 1983, but the unmet need for safe abortion services remains high. Many medical practitioners believe that the introduction of medical abortion would address this. However, since 2012 there has been political opposition to the provision of abortion services. The government has been threatening to restrict the law, and following an administrative change in booking of appointments, some hospital clinics that provided family planning and abortion services had to stop providing abortions. Thus, the availability of safe abortion depends not only on permissive legislation but also political support and the ability of health professionals to provide it. We conducted a study among university medical school students in three provinces on their knowledge of abortion and abortion methods, to try to understand their future practice intentions. Pre-tested, structured, self-administered questionnaires were answered by 209 final-year medical students. The students' level of knowledge of abortion and abortion methods was very low. More than three-quarters had heard of surgical abortion, but only 56% mentioned medical abortion. Although nearly 90% supported making abortion services available in Turkey, their willingness to provide surgical abortion (16%) or medical abortion (15%) was low, due to lack of knowledge. Abortion care, including medical abortion, needs to be included in the medical school curriculum in order to safeguard this women's health service.

  9. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  10. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  11. Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Hoe, Garrison; Owens, Donald B.; Denham, Casey

    2012-01-01

    As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime

  12. UHB demonstrator interior noise control flight tests and analysis

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Druez, P. M.; Kimbrough, A. J.; Brock, M. P.; Burge, P. L.; Mathur, G. P.; Cannon, M. R.; Tran, B. N.

    1989-01-01

    The measurement and analysis of MD-UHB (McDonnell Douglas Ultra High Bypass) Demonstrator noise and vibration flight test data are described as they relate to passenger cabin noise. The analyses were done to investigate the interior noise characteristics of advanced turboprop aircraft with aft-mounted engines, and to study the effectiveness of selected noise control treatments in reducing passenger cabin noise. The UHB Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB engine. For these tests, the UHB engine was a General Electric Unducted Fan, with either 8x8 or 10x8 counter-rotating propeller configurations. Interior noise level characteristics were studied for several altitudes and speeds, with emphasis on high altitude (35,000 ft), high speed (0.75 Mach) cruise conditions. The effectiveness of several noise control treatments was evaluated based on cabin noise measurements. The important airborne and structureborne transmission paths were identified for both tonal and broadband sources using the results of a sound intensity survey, exterior and interior noise and vibration data, and partial coherence analysis techniques. Estimates of the turbulent boundary layer pressure wavenumber-frequency spectrum were made, based on measured fuselage noise levels.

  13. Airframe Noise Results from the QTD II Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.

    2007-01-01

    With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise

  14. Hunter standoff killer team (HSKT) ground and flight test results

    NASA Astrophysics Data System (ADS)

    Moreland, Balinda; Ennis, Mark; Yeates, Robert; Condon, Timothy

    2007-04-01

    Warfighter's Associate (WA) which was integrated onto the Apache Longbow, and the Mobile Commanders Associate (MCA) which was integrated onto the Army Airborne Command and Control System (A2C2S) UH-60 Blackhawk. In this paper we will discuss what WA and MCA provided to the warfighter, and the results of the HSKT ground and flight testing.

  15. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  16. Wind Tunnel Analysis And Flight Test of A Wing Fence On A T-38

    DTIC Science & Technology

    2009-03-26

    WIND TUNNEL ANALYSIS AND FLIGHT TEST OF A WING FENCE ON A T-38 THESIS Michael D...GAE/ENY/09-M20 WIND TUNNEL ANALYSIS AND FLIGHT TEST OF A WING FENCE ON A T-38 THESIS Presented to the Faculty Department of...study and flight tests were performed to examine the effects of a wing fence on the T-38A. Wind tunnel results were based upon force and moment

  17. Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.

    2016-01-01

    The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.

  18. Testing Lunar Return Thermal Protection Systems using Sub-Scale Flight Test Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, George; De Jong, Christian; Ivanov, Mark; Ong, Chester; Seybold, Calina; Hash, David

    2007-01-01

    A key objective of NASA's Vision for Space Exploration is to revisit the lunar surface. Such an ambitious goal requires the development of a new human-rated spacecraft, the Orion Crew Exploration Vehicle (CEV), to ferry crews to low earth orbit and to the moon. The successful conclusion of both types of missions will require a thermal protection system (TPS) capable of protecting the vehicle and crew from the extreme heat of atmospheric reentry. As a part of the TPS development, various materials are being tested in arcjet tunnels; however, the combined lunar return aerothermal environment of high heat flux, shear stress, and surface pressure cannot be duplicated using only existing ground test facilities. To ensure full TPS qualification, a flight test program using sub-scale Orion capsules has been proposed to test TPS materials and heat shield construction techniques under the most stressing combination of lunar return aerothermal environments. Originally called Testing Of Reentry Capsule Heat Shield, or TORCH, but later renamed LEX, for Lunar Reentry Experiment, the proposed flight test program is presented along with the driving requirements and descriptions of the vehicle and the TPS instrumentation suite slated to conduct in-flight measurements.

  19. Background: Preflight Screening, In-flight Capabilities, and Postflight Testing

    NASA Technical Reports Server (NTRS)

    Gibson, Charles Robert; Duncan, James

    2009-01-01

    Recommendations for minimal in-flight capabilities: Retinal Imaging - provide in-flight capability for the visual monitoring of ocular health (specifically, imaging of the retina and optic nerve head) with the capability of downlinking video/still images. Tonometry - provide more accurate and reliable in-flight capability for measuring intraocular pressure. Ultrasound - explore capabilities of current on-board system for monitoring ocular health. We currently have limited in-flight capabilities on board the International Space Station for performing an internal ocular health assessment. Visual Acuity, Direct Ophthalmoscope, Ultrasound, Tonometry(Tonopen):

  20. Utilization of a UAV platform for instrument development and flight-testing

    NASA Astrophysics Data System (ADS)

    Axisa, D.; Dawson, W.

    2015-12-01

    Flight-testing of new instruments using conventional aircraft is expensive. The process of integrating a flight ready instrument on an aircraft is lengthy and could pause further development of sensor technology. In this work we discuss the utilization of a UAV platform to develop and test a 5-hole gust probe, temperature sensor and relative humidity sensor. This group of sensors is part of an instrument development project originally planned for conventional aircraft. Challenges with flight-testing resulted in the deployment of this sensor suite on a UAV platform. Results from the first UAV flight tests will be presented.