Science.gov

Sample records for abortus brucella melitensis

  1. Protective role of antibodies induced by Brucella melitensis B115 against B. melitensis and Brucella abortus infections in mice.

    PubMed

    Adone, Rosanna; Francia, Massimiliano; Pistoia, Claudia; Petrucci, Paola; Pesciaroli, Michele; Pasquali, Paolo

    2012-06-01

    It has been demonstrated that antibodies specific for O-PS antigen of Brucella smooth strains are involved in the protective immunity of brucellosis. Since the rough strain Brucella melitensis B115 was able to protect mice against wild Brucella strains brucellosis despite the lack of anti-OPS antibodies, in this study we evaluated the biological significance of antibodies induced by this strain, directed to antigens other than O-PS, passively tranferred to untreated mice prior to infection with Brucella abortus 2308 and B. melitensis 16M virulent strains. The protective ability of specific antisera collected from mice vaccinated with B. melitensis B115, B. abortus RB51 and B. abortus S19 strains was compared. The results indicated that antibodies induced by B115 were able to confer a satisfactory protection, especially against B. abortus 2308, similar to that conferred by the antiserum S19, while the RB51 antiserum was ineffective. These findings suggest that antibodies induced by B115 could act as opsonins as well as antibodies anti-O-PS, thus triggering more efficient internalization and degradation of bacteria within phagocytes. This is the first study assessing the efficacy of antibodies directed to antigens other than O-PS in the course of brucellosis infection. PMID:22521283

  2. MLVA16 Typing of Portuguese Human and Animal Brucella melitensis and Brucella abortus Isolates

    PubMed Central

    Ferreira, Ana Cristina; Chambel, Lélia; Tenreiro, Tania; Cardoso, Regina; Flor, Lídia; Dias, Isabel Travassos; Pacheco, Teresa; Garin-Bastuji, Bruno; Le Flèche, Philippe; Vergnaud, Gilles; Tenreiro, Rogério; de Sá, Maria Inácia Corrêa

    2012-01-01

    To investigate the epidemiological relationship of isolates from different Portuguese geographical regions and to assess the diversity among isolates, the MLVA16Orsay assay (panels 1, 2A and 2B) was performed with a collection of 126 Brucella melitensis (46 human and 80 animal isolates) and 157 B. abortus field isolates, seven vaccine strains and the representative reference strains of each species. The MLVA16Orsay showed a similar high discriminatory power (HGDI 0.972 and 0.902) for both species but panel 1 and 2A markers displayed higher diversity (HGDI 0.693) in B. abortus compared to B. melitensis isolates (HGDI 0.342). The B. melitensis population belong to the “Americas” (17%) and “East Mediterranean” (83%) groups. No isolate belonged to the “West Mediterranean” group. Eighty-five percent of the human isolates (39 in 46) fit in the “East-Mediterranean” group where a single lineage known as MLVA11 genotype 116 is responsible for the vast majority of Brucella infections in humans. B. abortus isolates formed a consistent group with bv1 and bv3 isolates in different clusters. Four MLVA11 genotypes were observed for the first time in isolates from S. Jorge and Terceira islands from Azores. From the collection of isolates analysed in this study we conclude that MLVA16Orsay provided a clear view of Brucella spp. population, confirming epidemiological linkage in outbreak investigations. In particular, it suggests recent and ongoing colonisation of Portugal with one B. melitensis lineage usually associated with East Mediterranean countries. PMID:22905141

  3. A repA-based ELISA for discriminating cattle vaccinated with Brucella suis 2 from those naturally infected with Brucella abortus and Brucella melitensis.

    PubMed

    Wang, Jing-Yu; Wu, Ning; Liu, Wan-Hua; Ren, Juan-Juan; Tang, Pan; Qiu, Yuan-Hao; Wang, Chi-Young; Chang, Ching-Dong; Liu, Hung-Jen

    2014-01-01

    The commonest ways of diagnosing brucellosis in animals include the Rose-Bengal plate agglutination test, the buffered plate agglutination test (BPA), the slide agglutination test, the complement fixation test, and the indirect enzyme linked immunosorbent assay (I-ELISA). However, these methods cannot discriminate the Brucella vaccine strain (Brucella suis strain 2; B. suis S2) from naturally acquired virulent strains. Of the six common Brucella species, Brucella melitensis, Brucella abortus, and B. suis are the commonest species occurring in China. To develop an ELISA assay that can differentiate between cows inoculated with B. suis S2 and naturally infected with B. abortus and B. melitensis, genomic sequences from six Brucella spp. (B. melitensis, B. abortus, B. suis, Brucella canis, Brucella neotomae and Brucella ovis) were compared using Basic Local Alignment Search Tool software. One particular gene, the repA-related gene, was found to be a marker that can differentiate B. suis from B. abortus and B. melitensis. The repA-related gene of B. suis was PCR amplified and subcloned into the pET-32a vector. Expressed repA-related protein was purified and used as an antigen. The repA-based ELISA was optimized and used as specific tests. In the present study, serum from animals inoculated with the B. suis S2 vaccine strain had positive repA-based ELISA results. In contrast, the test-positive reference sera against B. abortus and B. melitensis had negative repA-based ELISA results. The concordance rate between B. abortus antibody-negative (based on the repA-based ELISA) and the Brucella gene-positive (based on the 'Bruce ladder' multiplex PCR) was 100%. Therefore, the findings suggest that the repA-based ELISA is a useful tool for differentiating cows vaccinated with the B. suis S2 and naturally infected with B. abortus and B. melitensis. PMID:24941369

  4. An influenza viral vector Brucella abortus vaccine induces good cross-protection against Brucella melitensis infection in pregnant heifers.

    PubMed

    Tabynov, Kaissar; Ryskeldinova, Sholpan; Sansyzbay, Abylai

    2015-07-17

    Brucella melitensis can be transmitted and cause disease in cattle herds as a result of inadequate management of mixed livestock farms. Ideally, vaccines against Brucella abortus for cattle should also provide cross-protection against B. melitensis. Previously we created a novel influenza viral vector B. abortus (Flu-BA) vaccine expressing the Brucella ribosomal proteins L7/L12 or Omp16. This study demonstrated Flu-BA vaccine with adjuvant Montanide Gel01 provided 100% protection against abortion in vaccinated pregnant heifers and good cross-protection of the heifers and their calves or fetuses (90-100%) after challenge with B. melitensis 16M; the level of protection provided by Flu-BA was comparable to the commercial vaccine B. abortus S19. In terms of the index of infection and colonization of Brucella in tissues, both vaccines demonstrated significant (P=0.02 to P<0.0001) protection against B. melitensis 16M infection compared to the negative control group (PBS+Montanide Gel01). Thus, we conclude the Flu-BA vaccine provides cross-protection against B. melitensis infection in pregnant heifers. PMID:26093199

  5. Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR.

    PubMed Central

    Bricker, B J; Halling, S M

    1994-01-01

    Several PCR assays which identify the genus Brucella but do not discriminate among species have been reported. We describe a PCR assay that comprises five oligonucleotide primers which can identify selected biovars of four species of Brucella. Individual biovars within a species are not differentiated. The assay can identify three biovars (1, 2, and 4) of B. abortus, all three biovars of B. melitensis, biovar 1 of B. suis, and all B. ovis biovars. These biovars include all of the Brucella species typically isolated from cattle in the United States, a goal of the present research. The assay exploits the polymorphism arising from species-specific localization of the genetic element IS711 in the Brucella chromosome. Identity is determined by the size(s) of the product(s) amplified from primers hybridizing at various distances from the element. The performance of the assay with U.S. field isolates was highly effective. When 107 field isolates were screened by the described method, there was 100% agreement with the identifications made by conventional methods. Six closely related bacteria (Agrobacterium radiobacter, Agrobacterium rhizogenes, Ochrobactrum anthropi, Rhizobium leguminosarum, Rhizobium meliloti, and Rhodospirillum rubrum) and two control bacteria (Bordetella bronchiseptica and Escherichia coli) tested negative by the assay. Images PMID:7852552

  6. Comprehensive Identification of Immunodominant Proteins of Brucella abortus and Brucella melitensis Using Antibodies in the Sera from Naturally Infected Hosts.

    PubMed

    Wareth, Gamal; Eravci, Murat; Weise, Christoph; Roesler, Uwe; Melzer, Falk; Sprague, Lisa D; Neubauer, Heinrich; Murugaiyan, Jayaseelan

    2016-01-01

    Brucellosis is a debilitating zoonotic disease that affects humans and animals. The diagnosis of brucellosis is challenging, as accurate species level identification is not possible with any of the currently available serology-based diagnostic methods. The present study aimed at identifying Brucella (B.) species-specific proteins from the closely related species B. abortus and B. melitensis using sera collected from naturally infected host species. Unlike earlier reported investigations with either laboratory-grown species or vaccine strains, in the present study, field strains were utilized for analysis. The label-free quantitative proteomic analysis of the naturally isolated strains of these two closely related species revealed 402 differentially expressed proteins, among which 63 and 103 proteins were found exclusively in the whole cell extracts of B. abortus and B. melitensis field strains, respectively. The sera from four different naturally infected host species, i.e., cattle, buffalo, sheep, and goat were applied to identify the immune-binding protein spots present in the whole protein extracts from the isolated B. abortus and B. melitensis field strains and resolved on two-dimensional gel electrophoresis. Comprehensive analysis revealed that 25 proteins of B. abortus and 20 proteins of B. melitensis were distinctly immunoreactive. Dihydrodipicolinate synthase, glyceraldehyde-3-phosphate dehydrogenase and lactate/malate dehydrogenase from B. abortus, amino acid ABC transporter substrate-binding protein from B. melitensis and fumarylacetoacetate hydrolase from both species were reactive with the sera of all the tested naturally infected host species. The identified proteins could be used for the design of serological assays capable of detecting pan-Brucella, B. abortus- and B. melitensis-specific antibodies. PMID:27144565

  7. Comprehensive Identification of Immunodominant Proteins of Brucella abortus and Brucella melitensis Using Antibodies in the Sera from Naturally Infected Hosts

    PubMed Central

    Wareth, Gamal; Eravci, Murat; Weise, Christoph; Roesler, Uwe; Melzer, Falk; Sprague, Lisa D.; Neubauer, Heinrich; Murugaiyan, Jayaseelan

    2016-01-01

    Brucellosis is a debilitating zoonotic disease that affects humans and animals. The diagnosis of brucellosis is challenging, as accurate species level identification is not possible with any of the currently available serology-based diagnostic methods. The present study aimed at identifying Brucella (B.) species-specific proteins from the closely related species B. abortus and B. melitensis using sera collected from naturally infected host species. Unlike earlier reported investigations with either laboratory-grown species or vaccine strains, in the present study, field strains were utilized for analysis. The label-free quantitative proteomic analysis of the naturally isolated strains of these two closely related species revealed 402 differentially expressed proteins, among which 63 and 103 proteins were found exclusively in the whole cell extracts of B. abortus and B. melitensis field strains, respectively. The sera from four different naturally infected host species, i.e., cattle, buffalo, sheep, and goat were applied to identify the immune-binding protein spots present in the whole protein extracts from the isolated B. abortus and B. melitensis field strains and resolved on two-dimensional gel electrophoresis. Comprehensive analysis revealed that 25 proteins of B. abortus and 20 proteins of B. melitensis were distinctly immunoreactive. Dihydrodipicolinate synthase, glyceraldehyde-3-phosphate dehydrogenase and lactate/malate dehydrogenase from B. abortus, amino acid ABC transporter substrate-binding protein from B. melitensis and fumarylacetoacetate hydrolase from both species were reactive with the sera of all the tested naturally infected host species. The identified proteins could be used for the design of serological assays capable of detecting pan-Brucella, B. abortus- and B. melitensis-specific antibodies. PMID:27144565

  8. MLVA genotyping of Brucella melitensis and Brucella abortus isolates from different animal species and humans and identification of Brucella suis vaccine strain S2 from cattle in China.

    PubMed

    Jiang, Hai; Wang, Heng; Xu, Liqing; Hu, Guiying; Ma, Junying; Xiao, Pei; Fan, Weixing; Di, Dongdong; Tian, Guozhong; Fan, Mengguang; Mi, Jingchuan; Yu, Ruiping; Song, Litao; Zhao, Hongyan; Piao, Dongri; Cui, Buyun

    2013-01-01

    In China, brucellosis is an endemic disease and the main sources of brucellosis in animals and humans are infected sheep, cattle and swine. Brucella melitensis (biovars 1 and 3) is the predominant species, associated with sporadic cases and outbreak in humans. Isolates of B. abortus, primarily biovars 1 and 3, and B. suis biovars 1 and 3 are also associated with sporadic human brucellosis. In this study, the genetic profiles of B. melitensis and B. abortus isolates from humans and animals were analyzed and compared by multi-locus variable-number tandem-repeat analysis (MLVA). Among the B. melitensis isolates, the majority (74/82) belonged to MLVA8 genotype 42, clustering in the 'East Mediterranean' group. Two B. melitensis biovar 1 genotype 47 isolates, belonging to the 'Americas' group, were recovered; both were from the Himalayan blue sheep (Pseudois nayaur, a wild animal). The majority of B. abortus isolates (51/70) were biovar 3, genotype 36. Ten B. suis biovar 1 field isolates, including seven outbreak isolates recovered from a cattle farm in Inner Mongolia, were genetically indistinguishable from the vaccine strain S2, based on MLVA cluster analysis. MLVA analysis provided important information for epidemiological trace-back. To the best of our knowledge, this is the first report to associate Brucella cross-infection with the vaccine strain S2 based on molecular comparison of recovered isolates to the vaccine strain. MLVA typing could be an essential assay to improve brucellosis surveillance and control programs. PMID:24124546

  9. Brucella suis S2, brucella melitensis Rev. 1 and Brucella abortus S19 living vaccines: residual virulence and immunity induced against three Brucella species challenge strains in mice.

    PubMed

    Bosseray, N; Plommet, M

    1990-10-01

    Live attenuated Brucella suis S2 vaccine was compared to living vaccines B. abortus S19 and B. melitensis Rev. 1 in mice. Residual virulence was estimated by ability to multiply and persist in spleen and lymph nodes. Immunogenicity was estimated by spleen counts of control and vaccinated mice challenged either with the reference B. abortus 544 strain or with virulent B. melitensis H38 and B. suis 1330 strains. S2 vaccine had lower residual virulence; expressed as 50% recovery time, persistence was 4.3 weeks, compared to 7.1 and 9.0 weeks for S19 and Rev. 1 vaccines. Immunity induced by the three vaccines was similar 45 days after vaccination. At 150 days, immunity by S19 and Rev.1 was still similar against the three challenge strains. In contrast, immunity induced by S2 had declined against the B. melitensis strain. Thus, a recall vaccination may be required for vaccination of sheep to confer a long-lasting immunity. PMID:2123586

  10. MLVA Genotyping of Brucella melitensis and Brucella abortus Isolates from Different Animal Species and Humans and Identification of Brucella suis Vaccine Strain S2 from Cattle in China

    PubMed Central

    Xu, Liqing; Hu, Guiying; Ma, Junying; Xiao, Pei; Fan, Weixing; Di, Dongdong; Tian, Guozhong; Fan, Mengguang; Mi, Jingchuan; Yu, Ruiping; Song, Litao; Zhao, Hongyan; Piao, Dongri; Cui, Buyun

    2013-01-01

    In China, brucellosis is an endemic disease and the main sources of brucellosis in animals and humans are infected sheep, cattle and swine. Brucella melitensis (biovars 1 and 3) is the predominant species, associated with sporadic cases and outbreak in humans. Isolates of B. abortus, primarily biovars 1 and 3, and B. suis biovars 1 and 3 are also associated with sporadic human brucellosis. In this study, the genetic profiles of B. melitensis and B. abortus isolates from humans and animals were analyzed and compared by multi-locus variable-number tandem-repeat analysis (MLVA). Among the B. melitensis isolates, the majority (74/82) belonged to MLVA8 genotype 42, clustering in the ‘East Mediterranean’ group. Two B. melitensis biovar 1 genotype 47 isolates, belonging to the ‘Americas’ group, were recovered; both were from the Himalayan blue sheep (Pseudois nayaur, a wild animal). The majority of B. abortus isolates (51/70) were biovar 3, genotype 36. Ten B. suis biovar 1 field isolates, including seven outbreak isolates recovered from a cattle farm in Inner Mongolia, were genetically indistinguishable from the vaccine strain S2, based on MLVA cluster analysis. MLVA analysis provided important information for epidemiological trace-back. To the best of our knowledge, this is the first report to associate Brucella cross-infection with the vaccine strain S2 based on molecular comparison of recovered isolates to the vaccine strain. MLVA typing could be an essential assay to improve brucellosis surveillance and control programs. PMID:24124546

  11. Brucella melitensis Biovar 1 and Brucella abortus S19 Vaccine Strain Infections in Milkers Working at Cattle Farms in the Khartoum Area, Sudan

    PubMed Central

    Osman, Amira E. F.; Hassan, Abdullahi N.; Ali, Ali E.; Abdoel, Theresia H.; Smits, Henk L.

    2015-01-01

    Background Human brucellosis is a preventable zoonoses that may become persistent, causing, if left untreated, severe localized disease. Occupational exposure to infected animals or animal products and consumption of fresh contaminated dairy are main risk factors. Methods One hundred farmworkers employed at two cattle farms one in Khartoum North and one in Omdurman were screened for the presence of specific antibodies and seropositive workers were invited to donate a blood sample for blood culture. Molecular typing was used to characterize Brucella isolates. Results Ten percent of farmworkers tested seropositive and while Brucella melitensis biovar 1 was isolated from the blood of three individuals, an isolate identical to the B. abortus S19 vaccine strain was isolated from a fourth person. All four bacteremic individuals were employed as milkers and did not have obvious disease. Conclusions The isolation of the highly infectious pathogen B. melitensis from seropositive workers is consistent with the notion that the pathogen may persist in the blood without causing overt disease. While vaccination with strain S19 is essential for the control of bovine brucellosis the vaccine strain may be transmitted to the human population and protective measures remain important to prevent exposure also in view of the presence of B. melitensis. To create awareness for this potentially severe disease more information on the prevalence of the pathogen in different risk groups and in livestock in the Sudan is needed. PMID:25938483

  12. Characterization of Brucella abortus and Brucella melitensis native haptens as outer membrane O-type polysaccharides independent from the smooth lipopolysaccharide.

    PubMed

    Aragón, V; Díaz, R; Moreno, E; Moriyón, I

    1996-02-01

    Brucella native haptens (NHs) extracted with hot water from smooth (S)-type B. abortus and B. melitensis were purified to high levels of serological activity and compared with the polysaccharide obtained by acid hydrolysis (PS) of the S lipopolysaccharide (S-LPS). By 13C nuclear magnetic resonance analysis, NHs showed the spectrum of a homopolymer of alpha-1,2- or alpha-1,2- plus alpha-1,3-linked 4-formamido-4,6-dideoxy-D-mannose (N-formylperosamine) previously reported for the LPS O chain. However, while PS contained up to 0.6% 3-deoxy-D-manno-2-octulosonate, this LPS-core marker was absent from NH. High performance liquid chromatography and thin-layer chromatography showed heterogeneity in NH purified from whole cells but not in PS. By immunoprecipitation, polysaccharides indistinguishable from NH were demonstrated in extracts obtained with phenol-water, saline at 60 degrees C, and ether-water treatments, and none of these treatments caused S-LPS hydrolysis detectable with antibodies to the O chain and lipid A. Two lines of evidence showed that NH was in the cell surface. First, NH became biotinylated when B. abortus live cells were labelled with biotin-hydrazide, and the examination of cell fractions and electron microscopy sections with streptavidin-peroxidase and streptavidin-coloidal gold, respectively, showed that labelling was extrinsic. Moreover, whereas only traces of NH were found in cytosols, the amount of NH was enriched in cell envelopes and in the outer membrane blebs spontaneously released by brucellae during growth. Interactions between NH and S-LPS were observed in crude cell extracts, and such interactions could be reconstituted by using purified NH and LPS. The results demonstrate that NH is not a hydrolytic product of S-LPS and suggest a model in which LPS-independent O-type polysaccharides (NH) are intertwined with the O chain in the outer membrane of S-type brucellae. PMID:8576040

  13. Characterization of Brucella abortus and Brucella melitensis native haptens as outer membrane O-type polysaccharides independent from the smooth lipopolysaccharide.

    PubMed Central

    Aragón, V; Díaz, R; Moreno, E; Moriyón, I

    1996-01-01

    Brucella native haptens (NHs) extracted with hot water from smooth (S)-type B. abortus and B. melitensis were purified to high levels of serological activity and compared with the polysaccharide obtained by acid hydrolysis (PS) of the S lipopolysaccharide (S-LPS). By 13C nuclear magnetic resonance analysis, NHs showed the spectrum of a homopolymer of alpha-1,2- or alpha-1,2- plus alpha-1,3-linked 4-formamido-4,6-dideoxy-D-mannose (N-formylperosamine) previously reported for the LPS O chain. However, while PS contained up to 0.6% 3-deoxy-D-manno-2-octulosonate, this LPS-core marker was absent from NH. High performance liquid chromatography and thin-layer chromatography showed heterogeneity in NH purified from whole cells but not in PS. By immunoprecipitation, polysaccharides indistinguishable from NH were demonstrated in extracts obtained with phenol-water, saline at 60 degrees C, and ether-water treatments, and none of these treatments caused S-LPS hydrolysis detectable with antibodies to the O chain and lipid A. Two lines of evidence showed that NH was in the cell surface. First, NH became biotinylated when B. abortus live cells were labelled with biotin-hydrazide, and the examination of cell fractions and electron microscopy sections with streptavidin-peroxidase and streptavidin-coloidal gold, respectively, showed that labelling was extrinsic. Moreover, whereas only traces of NH were found in cytosols, the amount of NH was enriched in cell envelopes and in the outer membrane blebs spontaneously released by brucellae during growth. Interactions between NH and S-LPS were observed in crude cell extracts, and such interactions could be reconstituted by using purified NH and LPS. The results demonstrate that NH is not a hydrolytic product of S-LPS and suggest a model in which LPS-independent O-type polysaccharides (NH) are intertwined with the O chain in the outer membrane of S-type brucellae. PMID:8576040

  14. Immunogenicity and protective efficacy of Brucella abortus recombinant protein cocktail (rOmp19+rP39) against B. abortus 544 and B. melitensis 16M infection in murine model.

    PubMed

    Tadepalli, Ganesh; Singh, Amit Kumar; Balakrishna, Konduru; Murali, Harishchandra Sripathy; Batra, Harsh Vardhan

    2016-03-01

    In this study, the immunogenicity and protective efficacy of recombinant proteins Omp19 (rO) and P39 (rP) from Brucella abortus were evaluated individually and compared with the cocktail protein (rO+rP) against B. abortus 544 and Brucella melitensis 16M infection in BALB/c mouse model. Intra-peritoneal (I.P.) immunization with rO+rP cocktail developed substantially higher antibody titers predominant with Th1 mediated isotypes (IgG2a/2b). Western blot analysis using anti-rO+rP antibodies showed specific reactivity with native Omp19 (19kDa) and P39 (39kDa) among whole cell proteins of B. abortus and B. melitensis. Splenocytes extracted from rO+rP immunized mice induced significantly (P<0.001) higher proliferative responses at 30μg/ml with considerable expression of pro-inflammatory cytokines (IFN-γ, IL-2 and IL-12) than rO and rP. Macrophage cell (RAW 264.7) monolayer supplemented with anti-rO+rP polysera exhibited enhanced viability against challenge with B. abortus 544 (72.27%) and B. melitensis 16M (68.57%). On the other hand, individual anti-rO and anti-rP polysera resulted in relatively lesser protection against the pathogens (64.79%, 54.45% and 47.13%, 45.11%, respectively). Immunized group of mice when I.P. challenged with 5×10(4) CFU of B. abortus 544 and B. melitensis 16M were found significantly (P<0.001) protected in the rO+rP group (log units of protection, spleen: 2.38, 2.12; liver: 1.04, 0.81, respectively) than in rO (spleen: 1.43, 1.21; liver: 0.7, 0.47) and rP (spleen: 1.24, 1.17; liver: 0.65, 0.34). Findings from this study depicted that rO+rP cocktail is highly immunogenic with the Th1 predominant serum antibody titers and T-cell mediated immune protection, would be a valuable intervention in the development of a safer and improved Brucella vaccine. PMID:26826463

  15. Protective properties of rifampin-resistant rough mutants of Brucella melitensis.

    PubMed

    Adone, R; Ciuchini, F; Marianelli, C; Tarantino, M; Pistoia, C; Marcon, G; Petrucci, P; Francia, M; Riccardi, G; Pasquali, P

    2005-07-01

    Vaccination against Brucella infections in animals is usually performed by administration of live attenuated smooth B. abortus strain S19 and B. melitensis strain Rev1. They are proven effective vaccines against B. abortus in cattle and against B. melitensis and B. ovis in sheep and goats, respectively. However, both vaccines have the main drawback of inducing O-polysaccharide-specific antibodies that interfere with serologic diagnosis of disease. In addition, they retain residual virulence, being a cause of abortion in pregnant animals and infection in humans. To overcome these problems, one approach is to develop defined rough mutant Brucella strains lacking O antigen of lipopolysaccharide. B. abortus rough strain RB51, a rifampin-resistant mutant of virulent strain B. abortus 2308, is used as a vaccine against B. abortus infection in cattle in some countries. However, RB51 is not effective in sheep, and there is only preliminary evidence that it is effective in goats. In this study, we tested the efficacies of six rifampin-resistant rough strains of B. melitensis in protecting BALB/c mice exposed to B. melitensis infection. The protective properties, as well as both humoral and cellular immune responses, were assessed in comparison with those provided by B. melitensis Rev1 and B. abortus RB51 vaccines. The results indicated that these rough mutants were able to induce a very good level of protection against B. melitensis infection, similar to that provided by Rev1 and superior to that of RB51, without inducing antibodies to O antigen. In addition, all B. melitensis mutants were able to stimulate good production of gamma interferon. The characteristics of these strains encourage further evaluation of them as alternative vaccines to Rev1 in primary host species. PMID:15972510

  16. Brucella melitensis Invades Murine Erythrocytes during Infection

    PubMed Central

    Vitry, Marie-Alice; Hanot Mambres, Delphine; Deghelt, Michaël; Hack, Katrin; Machelart, Arnaud; Lhomme, Frédéric; Vanderwinden, Jean-Marie; Vermeersch, Marjorie; De Trez, Carl; Pérez-Morga, David; Letesson, Jean-Jacques

    2014-01-01

    Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature. PMID:25001604

  17. Brucella melitensis invades murine erythrocytes during infection.

    PubMed

    Vitry, Marie-Alice; Hanot Mambres, Delphine; Deghelt, Michaël; Hack, Katrin; Machelart, Arnaud; Lhomme, Frédéric; Vanderwinden, Jean-Marie; Vermeersch, Marjorie; De Trez, Carl; Pérez-Morga, David; Letesson, Jean-Jacques; Muraille, Eric

    2014-09-01

    Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature. PMID:25001604

  18. 9 CFR 113.65 - Brucella Abortus Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Bacterial Vaccines § 113.65 Brucella Abortus Vaccine. Brucella Abortus Vaccine shall be prepared as a desiccated live culture bacterial vaccine from smooth colonial forms of the Brucella abortus organism... shall be incubated at 35 to 37 ° C for 96 hours. If growth not typical of Brucella abortus organisms...

  19. The immunogenic activity of ribosomal fractions derived from Brucella abortus.

    PubMed Central

    Corbel, M. J.

    1976-01-01

    The immunizing activity of ribosome preparations derived from Brucella abortus strain 19 cells was examined in guinea-pigs and mice. After subcutaneous injections of Br. abortus ribosomes in Freund's incomplete adjuvant, both mice and guinea-pigs developed immunity to challenge by virulent Br. abortus 544 organisms which was at least as effective as the protection conferred by live strain 19 vaccine. Both mice and guinea-pigs also developed agglutinating and complement-fixing antibodies and delayed hypersensitivity to Br. Abortus antigens. Conversely, ribosome preparations elicited delayed hypersensitivity reactions on intracutaneous injection into guinea-pigs chronically infected with Br. abortus or Br. melitensis. On injection into rabbits, Br. abortus ribosomes incorporated in incomplete adjuvant induced high titres of agglutinins, complement fxing antibodies and precipitins for Br. abortus antigens. On immunochemical examination, the ribosome preparations were not grossly contaminated with antigens derived from the cell surface. They were chemically complex, however, and in addition to RNA contained numerous protein components identified by disk electrophoresis. The nature of the components responsible for conferring protection against Br. abortus was not determined. Images Fig. 1 Fig. 2 Fig. 1 Fig. 2 Fig. 1 Fig. 2 Fig. 1 Fig. 2 PMID:812900

  20. Experimental Brucella abortus infection in wolves.

    PubMed

    Tessaro, S V; Forbes, L B

    2004-01-01

    Four juvenile male wolves (Canis lupus) each received an oral dose of 1.6-1.7 x 10(12) colony-forming units of Brucella abortus biovar 1 isolated from a bison (Bison bison) in Wood Buffalo National Park (Canada), and two others served as negative controls. Infected wolves did not show clinical signs of disease but did develop high Brucella antibody titers. Small numbers of B. abortus were excreted sporadically in feces until day 50 postinoculation (PI). Very small numbers of the bacterium were isolated from urine of only one wolf late on the same day that it was infected, and very small numbers of colonies of B. abortus were obtained from buccal swabs of three wolves for up to 48 hr PI. Two infected wolves euthanized 6 mo after the start of the experiment had no lesions, and colonies of B. abortus were isolated from thymus and most major lymph nodes. The other two infected wolves euthanized 12 mo after the start of the experiment had no lesions, and smaller numbers of brucellae were recovered from fewer lymph nodes compared with the wolves killed 6 mo earlier. The sporadic excretion of very small numbers of brucellae by the wolves was insignificant when compared with the infective dose for cattle. Brucella abortus, brucellosis, Canis lupus, pathogenesis, serology, wolf. PMID:15137489

  1. Splenic Abscess due to Brucella Melitensis - A Rare Pediatric Complication

    PubMed Central

    Parande, Aisha M; Mantur, B G; Kore, Mahesh; Palled, Eranna

    2010-01-01

    Splenic abscess due to Brucella species is an extremely rare complication especially in acute illness. Here we report a case of splenic abscess caused by Brucella melitensis biotype 1 in a child with acute infection who was successfully treated with only antibiotics. PMID:21346907

  2. Enzyme-linked immunosorbent assay with major outer membrane proteins of Brucella melitensis to measure immune response to Brucella species.

    PubMed Central

    Hunter, S B; Bibb, W F; Shih, C N; Kaufmann, A F; Mitchell, J R; McKinney, R M

    1986-01-01

    We developed an enzyme-linked immunosorbent assay (ELISA) system to measure human immunoglobulin G (IgG) and IgM response to the major outer membrane proteins of Brucella melitensis. The ELISA was more sensitive in detecting antibody than a standard microagglutination (MA) test with B. abortus antigen. Of 101 sera from persons with suspected brucellosis, 79 (78.2%) gave ELISA IgM titers greater than or equal to the B. abortus MA titer without 2-mercaptoethanol (2ME), which measures both IgM and IgG. Of the 101 sera, 97% gave ELISA IgG titers greater than or equal to the MA with 2ME titer. A total of 58 sera, drawn from 11 human patients from 1 to 29 weeks after onset of brucellosis, gave higher geometric mean titers for the ELISA IgG test than for the MA with 2ME test. These 58 sera also gave ELISA IgM geometric mean titers that were greater than or within one doubling dilution of the geometric mean titers of MA without 2ME. In addition to detecting antibody response to B. abortus, B. melitensis, and B. suis, the ELISA was sensitive to antibody response to human and canine infections with B. canis. The B. canis antibody response is not detected by the MA test with B. abortus antigen. The ELISA, with a standard preparation of major outer membrane proteins of B. melitensis as antigen, appears to be useful in measuring antibody response in humans to infections by all species of Brucella known to infect humans. PMID:3095364

  3. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis

    PubMed Central

    Ranade, Ranae M.; Zhang, Zhongsheng; Dranow, David M.; Myers, Janette B.; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E.; Davies, Douglas R.; Lorimer, Donald; Boyle, Stephen M.; Barrett, Lynn K.; Buckner, Frederick S.; Fan, Erkang; Van Voorhis, Wesley C.

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment. PMID:27500735

  4. Recent advances in Brucella abortus vaccines.

    PubMed

    Dorneles, Elaine M S; Sriranganathan, Nammalwar; Lage, Andrey P

    2015-01-01

    Brucella abortus vaccines play a central role in bovine brucellosis control/eradication programs and have been successfully used worldwide for decades. Strain 19 and RB51 are the approved B. abortus vaccines strains most commonly used to protect cattle against infection and abortion. However, due to some drawbacks shown by these vaccines much effort has been undertaken for the development of new vaccines, safer and more effective, that could also be used in other susceptible species of animals. In this paper, we present a review of the main aspects of the vaccines that have been used in the brucellosis control over the years and the current research advances in the development of new B. abortus vaccines. PMID:26155935

  5. Erythritol triggers expression of virulence traits in Brucella melitensis.

    PubMed

    Petersen, Erik; Rajashekara, Gireesh; Sanakkayala, Neelima; Eskra, Linda; Harms, Jerome; Splitter, Gary

    2013-06-01

    Erythritol is a four-carbon sugar preferentially utilized by Brucella spp. The presence of erythritol in the placentas of goats, cows, and pigs has been used to explain the localization of Brucella to these sites and the subsequent accumulation of large amounts of bacteria, eventually leading to abortion. Here we show that Brucella melitensis will also localize to an artificial site of erythritol within a mouse, providing a potential model system to study the pathogenesis of Brucella abortion. Immunohistological staining of the sites of erythritol within infected mice indicated a higher than expected proportion of extracellular bacteria. Ensuing experiments suggested intracellular B. melitensis was unable to replicate within macrophages in the presence of erythritol and that erythritol was able to reach the site of intracellular bacteria. The intracellular inhibition of growth was found to encourage the bacteria to replicate extracellularly rather than intracellularly, a particularly interesting development in Brucella pathogenesis. To determine the effect of erythritol on expression of B. melitensis genes, bacteria grown either with or without erythritol were analyzed by microarray. Two major virulence pathways were up-regulated in response to exposure to erythritol (the type IV secretion system VirB and flagellar proteins), suggesting a role for erythritol in virulence. PMID:23421980

  6. 9 CFR 113.65 - Brucella Abortus Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 113.65 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... shall be incubated at 35 to 37 °C for 96 hours. If growth not typical of Brucella abortus organisms is... subserial is unsatisfactory. If organisms or growth not characteristic of Brucella abortus are found,...

  7. 9 CFR 113.65 - Brucella Abortus Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 113.65 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... shall be incubated at 35 to 37 °C for 96 hours. If growth not typical of Brucella abortus organisms is... subserial is unsatisfactory. If organisms or growth not characteristic of Brucella abortus are found,...

  8. Erythritol triggers expression of virulence traits in Brucella melitensis

    PubMed Central

    Petersen, Erik; Rajashekara, Gireesh; Sanakkayala, Neelima; Eskra, Linda; Harms, Jerome; Splitter, Gary

    2013-01-01

    Erythritol is a four-carbon sugar preferentially utilized by Brucella spp. The presence of erythritol in the placentas of goats, cows, and pigs has been used to explain the localization of Brucella to these sites and the subsequent accumulation of large amounts of bacteria, eventually leading to abortion. Here we show that B. melitensis will also localize to an artificial site of erythritol within a mouse, providing a potential model system to study the pathogenesis of Brucella abortion. Immunohistological staining of the sites of erythritol within infected mice indicated a higher than expected proportion of extracellular bacteria. Ensuing experiments suggested intracellular B. melitensis was unable to replicate within macrophages in the presence of erythritol and that erythritol was able to reach the site of intracellular bacteria. The intracellular inhibition of growth was found to encourage the bacteria to replicate extracellularly rather than intracellularly, a particularly interesting development in Brucella pathogenesis. To determine the effect of erythritol on expression of B. melitensis genes, bacteria grown either with or without erythritol were analyzed by microarray. Two major virulence pathways were up-regulated in response to exposure to erythritol (the type IV secretion system VirB and flagellar proteins), suggesting a role for erythritol in virulence. PMID:23421980

  9. Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge.

    PubMed

    Yang, Xinghong; Becker, Todd; Walters, Nancy; Pascual, David W

    2006-07-01

    znuA is known to be an important factor for survival and normal growth under low Zn(2+) concentrations for Escherichia coli, Haemophilus spp., Neisseria gonorrhoeae, and Pasteurella multocida. We hypothesized that the znuA gene present in Brucella melitensis 16 M would be similar to znuA in B. abortus and questioned whether it may also be an important factor for growth and virulence of Brucella abortus. Using the B. melitensis 16 M genome sequence, primers were designed to construct a B. abortus deletion mutant. A znuA knockout mutation in B. abortus 2308 (DeltaznuA) was constructed and found to be lethal in low-Zn(2+) medium. When used to infect macrophages, DeltaznuA B. abortus showed minimal growth. Further study with DeltaznuA B. abortus showed that its virulence in BALB/c mice was attenuated, and most of the bacteria were cleared from the spleen within 8 weeks. Protection studies confirmed the DeltaznuA mutant as a potential live vaccine, since protection against wild-type B. abortus 2308 challenge was as effective as that obtained with the RB51 or S19 vaccine strain. PMID:16790759

  10. Killing of Brucella abortus by bovine serum.

    PubMed Central

    Corbeil, L B; Blau, K; Inzana, T J; Nielsen, K H; Jacobson, R H; Corbeil, R R; Winter, A J

    1988-01-01

    Studies of the serum bactericidal system in bovine brucellosis were undertaken to investigate the role of the humoral immune response in protection of cattle against the facultative intracellular parasite Brucella abortus. Fresh sera from normal control cattle, infected cattle, and cattle immunized with B. abortus cell envelopes were collected before treatment and during the course of immunization or infection. Normal fresh bovine serum or fresh agammaglobulinemic serum from colostrum-deprived calves was effective in killing smooth virulent B. abortus 2308, but rough strains RB51 (a rough mutant of strain 2308) and 45/20 were much more sensitive to serum. The difference in susceptibility to serum was shown to be correlated with differences in lipopolysaccharide chemotype, with the more resistant strain 2308 having O polysaccharide and the more susceptible strains 45/20 and RB51 lacking O side chains. By treatment of fresh serum with MgCl2 and EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] killing was shown to occur via the classical pathway of complement activation. When antibody to B. abortus was present, killing of strain RB51 increased but killing of smooth strain 2308 decreased. The earliest antibody response in serum from infected animals did not interfere with killing. When affinity-purified bovine immunoglobulins specific for B. abortus smooth lipopolysaccharide were added to fresh normal bovine serum, immunoglobulin G1 (IgG1) and IgG2 isotypes blocked killing but IgM and IgA isotypes did not. Thus, it appears that serum from previously unexposed animals or animals early during infection can kill smooth B. abortus, an appropriate defense mechanism before the organism becomes intracellular. At later stages of infection, blocking antibodies predominate. Images PMID:3141287

  11. Brucella melitensis in France: Persistence in Wildlife and Probable Spillover from Alpine Ibex to Domestic Animals

    PubMed Central

    Mick, Virginie; Le Carrou, Gilles; Corde, Yannick; Game, Yvette; Jay, Maryne; Garin-Bastuji, Bruno

    2014-01-01

    Bovine brucellosis is a major zoonosis, mainly caused by Brucella abortus, more rarely by Brucella melitensis. France has been bovine brucellosis officially-free since 2005 with no cases reported in domestic/wild ruminants since 2003. In 2012, bovine and autochthonous human cases due to B. melitensis biovar 3 (Bmel3) occurred in the French Alps. Epidemiological investigations implemented in wild and domestic ruminants evidenced a high seroprevalence (>45%) in Alpine ibex (Capra ibex); no cases were disclosed in other domestic or wild ruminants, except for one isolated case in a chamois (Rupicapra rupicapra). These results raised the question of a possible persistence/emergence of Brucella in wildlife. The purpose of this study was to assess genetic relationships among the Bmel3 strains historically isolated in humans, domestic and wild ruminants in Southeastern France, over two decades, by the MLVA-panel2B assay, and to propose a possible explanation for the origin of the recent bovine and human infections. Indeed, this genotyping strategy proved to be efficient for this microepidemiological investigation using an interpretation cut-off established for a fine-scale setting. The isolates, from the 2012 domestic/human outbreak harbored an identical genotype, confirming a recent and direct contamination from cattle to human. Interestingly, they clustered not only with isolates from wildlife in 2012, but also with local historical domestic isolates, in particular with the 1999 last bovine case in the same massif. Altogether, our results suggest that the recent bovine outbreak could have originated from the Alpine ibex population. This is the first report of a B. melitensis spillover from wildlife to domestic ruminants and the sustainability of the infection in Alpine ibex. However, this wild population, reintroduced in the 1970s in an almost closed massif, might be considered as a semi-domestic free-ranging herd. Anthropogenic factors could therefore account with the

  12. Performance of skin tests with allergens from B. melitensis B115 and rough B. abortus mutants for diagnosing swine brucellosis.

    PubMed

    Dieste-Pérez, L; Blasco, J M; De Miguel, M J; Marín, C M; Barberán, M; Conde-Álvarez, R; Moriyón, I; Muñoz, P M

    2014-01-10

    Swine brucellosis by Brucella suis biovar 2 is an emerging disease whose control is based on serological testing and culling. However, current serological tests detect antibodies to the O-polysaccharide (O/PS) moiety of Brucella smooth lipopolysaccharide (S-LPS), and thus lack specificity when infections by Yersinia enterocolitica O:9 and other gram-negative bacteria carrying cross-reacting O/PS occur. The skin test with the protein-rich brucellin extract obtained from rough B. melitensis B115 is assumed to be specific for discriminating these false positive serological reactions (FPSR). However, B115 strain, although unable to synthesize S-LPS, accumulates O/PS internally, which could cause diagnostic problems. Since the brucellin skin test has been seldom used in pigs and FPSR are common in these animals, we assessed its performance using cytosoluble protein extracts obtained from B. abortus rough mutants in manBcore or per genes (critical for O/PS biosynthesis) and B. melitensis B115. The diagnostic sensitivity and specificity were determined in B. suis biovar 2 culture positive and brucellosis free sows, and apparent prevalence in sows of unknown individual bacteriological and serological status belonging to B. suis biovar 2 naturally infected herds. Moreover, the specificity in discriminating brucellosis from FPSR was assessed in brucellosis free boars showing FPSR. The skin test with B. abortus ΔmanBcore and B. melitensis B115 allergens performed similarly, and the former one resulted in 100% specificity when testing animals showing FPSR in indirect ELISA, Rose Bengal and complement fixation serological tests. We conclude that O/PS-free genetically defined mutants represent an appropriate alternative to obtain Brucella protein extracts for diagnosing swine brucellosis. PMID:24331743

  13. Purification and characterization of an immunogenic aminopeptidase of Brucella melitensis.

    PubMed

    Contreras-Rodriguez, Araceli; Ramirez-Zavala, Bernardo; Contreras, Andrea; Schurig, Gerhardt G; Sriranganathan, Nammalwar; Lopez-Merino, Ahide

    2003-09-01

    An immunogenic aminopeptidase was purified from Brucella melitensis strain VTRM1. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps. This procedure resulted in a yield of 29% and a 144-fold increase in specific activity. The aminopeptidase appeared to be a monomeric enzyme with a molecular mass of 96 kDa and an isoelectric point of 4.8. Its activity was optimal at pH 7.0 at 40 degrees C. The enzyme was strongly inhibited by EDTA, 1,10-phenathroline, and divalent cations (Zn(2+) and Hg(2+)), suggesting that this protein was a metalloaminopeptidase. The enzyme showed preference for alanine at the N termini of aminoacyl derivatives. The K(m) values for L-alanine-p-nitroanilide (Ala-pNA) and Lys-pNA were 0.35 and 0.18 mM, respectively. The N-terminal sequence of aminopeptidase was used for a homologous search in the genomes of B. melitensis 16M and Brucella suis 1330. The analysis revealed an exact match of the probe sequence (36 bp) with an open reading frame of 2,652 bp encoding a protein predicted to be alanyl aminopeptidase (aminopeptidase N). Collectively, these data suggest designation of the B. melitensis enzyme as an aminopeptidase N. The aminopeptidase was recognized by sera from patients with acute and chronic brucellosis, suggesting that the enzyme may have important diagnostic implications. PMID:12933870

  14. Recovery of a Medieval Brucella melitensis Genome Using Shotgun Metagenomics

    PubMed Central

    Kay, Gemma L.; Sergeant, Martin J.; Giuffra, Valentina; Bandiera, Pasquale; Milanese, Marco; Bramanti, Barbara

    2014-01-01

    ABSTRACT Shotgun metagenomics provides a powerful assumption-free approach to the recovery of pathogen genomes from contemporary and historical material. We sequenced the metagenome of a calcified nodule from the skeleton of a 14th-century middle-aged male excavated from the medieval Sardinian settlement of Geridu. We obtained 6.5-fold coverage of a Brucella melitensis genome. Sequence reads from this genome showed signatures typical of ancient or aged DNA. Despite the relatively low coverage, we were able to use information from single-nucleotide polymorphisms to place the medieval pathogen genome within a clade of B. melitensis strains that included the well-studied Ether strain and two other recent Italian isolates. We confirmed this placement using information from deletions and IS711 insertions. We conclude that metagenomics stands ready to document past and present infections, shedding light on the emergence, evolution, and spread of microbial pathogens. PMID:25028426

  15. 9 CFR 113.65 - Brucella Abortus Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Brucella Abortus Vaccine. 113.65 Section 113.65 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.65 Brucella...

  16. 9 CFR 113.65 - Brucella Abortus Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Brucella Abortus Vaccine. 113.65 Section 113.65 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.65 Brucella...

  17. Oral Vaccination with Brucella melitensis WR201 Protects Mice against Intranasal Challenge with Virulent Brucella melitensis 16M

    PubMed Central

    Izadjoo, Mina J.; Bhattacharjee, Apurba K.; Paranavitana, Chrysanthi M.; Hadfield, Ted L.; Hoover, David L.

    2004-01-01

    Human brucellosis can be acquired from infected animal tissues by ingestion, inhalation, or contamination of conjunctiva or traumatized skin by infected animal products. In addition, Brucella is recognized as a biowarfare threat agent. Although a vaccine to protect humans from natural or deliberate infection could be useful, vaccines presently used in animals are unsuitable for human use. We tested orally administered live, attenuated, purine auxotrophic B. melitensis WR201 bacteria for their ability to elicit cellular and humoral immune responses and to protect mice against intranasal challenge with B. melitensis 16M bacteria. Immunized mice made serum antibody to lipopolysaccharide and non-O-polysaccharide antigens. Splenocytes from immunized animals released interleukin-2 and gamma interferon when grown in cultures with Brucella antigens. Immunization led to protection from disseminated infection and enhanced clearance of the challenge inoculum from the lungs. Optimal protection required administration of live bacteria, was related to immunizing dose, and was enhanced by booster immunization. These results establish the usefulness of oral vaccination against respiratory challenge with virulent Brucella and suggest that WR201 should be further investigated as a vaccine to prevent human brucellosis. PMID:15213148

  18. Liver histology of acute brucellosis caused by Brucella melitensis.

    PubMed

    Young, Edward J; Hasanjani Roushan, Mohammad Reza; Shafae, Shariar; Genta, Robert M; Taylor, Shari L

    2014-10-01

    As a major organ of the mononuclear phagocytic system, the liver is probably involved in all cases of brucellosis. In this prospective study, liver slides prepared from percutaneous liver biopsy samples of 20 patients with clinical and laboratory evidence of acute brucellosis due to Brucella melitensis were examined for the presence or absence of granulomas by pathologists in Iran and the United States. Nineteen men and one woman ranging in age from 14 to 62 years were studied. All patients had clinical signs and symptoms compatible with acute brucellosis, and all had significantly elevated titers of antibodies to Brucella in their serum. Liver function tests were mildly elevated in 11 (55%) cases, and C-reactive protein was positive in 15 (65%) patients. Thirteen (65%) patients had blood cultures positive for B melitensis. Iranian and American pathologists reported granulomas in 3 (15%) and in 4 (20%) cases, respectively. There was agreement between Iranian and American pathologists in 17 (85%) cases. The most prevalent findings were mild portal or lobular lymphocytic inflammation (16 cases). Two cases revealed noncaseating epithelioid granulomas, and 2 had microgranulomas. The results show that all patients had microscopic evidence of liver involvement. The predominant histologic finding was mild portal or lobular inflammation with lymphocytes. Granulomas were present in only 4 cases. PMID:25147098

  19. The Brucella abortus cyclic beta-1,2-glucan virulence factor is substituted with O-ester-linked succinyl residues.

    PubMed

    Roset, Mara S; Ciocchini, Andrés E; Ugalde, Rodolfo A; Iñón de Iannino, Nora

    2006-07-01

    Brucella periplasmic cyclic beta-1,2-glucan plays an important role during bacterium-host interaction. Nuclear magnetic resonance spectrometry analysis, thin-layer chromatography, and DEAE-Sephadex chromatography were used to characterize Brucella abortus cyclic glucan. In the present study, we report that a fraction of B. abortus cyclic beta-1,2-glucan is substituted with succinyl residues, which confer anionic character on the cyclic beta-1,2-glucan. The oligosaccharide backbone is substituted at C-6 positions with an average of two succinyl residues per glucan molecule. This O-ester-linked succinyl residue is the only substituent of Brucella cyclic glucan. A B. abortus open reading frame (BAB1_1718) homologous to Rhodobacter sphaeroides glucan succinyltransferase (OpgC) was identified as the gene encoding the enzyme responsible for cyclic glucan modification. This gene was named cgm for cyclic glucan modifier and is highly conserved in Brucella melitensis and Brucella suis. Nucleotide sequencing revealed that B. abortus cgm consists of a 1,182-bp open reading frame coding for a predicted membrane protein of 393 amino acid residues (42.7 kDa) 39% identical to Rhodobacter sphaeroides succinyltransferase. cgm null mutants in B. abortus strains 2308 and S19 produced neutral glucans without succinyl residues, confirming the identity of this protein as the cyclic-glucan succinyltransferase enzyme. In this study, we demonstrate that succinyl substituents of cyclic beta-1,2-glucan of B. abortus are necessary for hypo-osmotic adaptation. On the other hand, intracellular multiplication and mouse spleen colonization are not affected in cgm mutants, indicating that cyclic-beta-1,2-glucan succinylation is not required for virulence and suggesting that no low-osmotic stress conditions must be overcome during infection. PMID:16816173

  20. The Brucella abortus Cyclic β-1,2-Glucan Virulence Factor Is Substituted with O-Ester-Linked Succinyl Residues

    PubMed Central

    Roset, Mara S.; Ciocchini, Andrés E.; Ugalde, Rodolfo A.; Iñón de Iannino, Nora

    2006-01-01

    Brucella periplasmic cyclic β-1,2-glucan plays an important role during bacterium-host interaction. Nuclear magnetic resonance spectrometry analysis, thin-layer chromatography, and DEAE-Sephadex chromatography were used to characterize Brucella abortus cyclic glucan. In the present study, we report that a fraction of B. abortus cyclic β-1,2-glucan is substituted with succinyl residues, which confer anionic character on the cyclic β-1,2-glucan. The oligosaccharide backbone is substituted at C-6 positions with an average of two succinyl residues per glucan molecule. This O-ester-linked succinyl residue is the only substituent of Brucella cyclic glucan. A B. abortus open reading frame (BAB1_1718) homologous to Rhodobacter sphaeroides glucan succinyltransferase (OpgC) was identified as the gene encoding the enzyme responsible for cyclic glucan modification. This gene was named cgm for cyclic glucan modifier and is highly conserved in Brucella melitensis and Brucella suis. Nucleotide sequencing revealed that B. abortus cgm consists of a 1,182-bp open reading frame coding for a predicted membrane protein of 393 amino acid residues (42.7 kDa) 39% identical to Rhodobacter sphaeroides succinyltransferase. cgm null mutants in B. abortus strains 2308 and S19 produced neutral glucans without succinyl residues, confirming the identity of this protein as the cyclic-glucan succinyltransferase enzyme. In this study, we demonstrate that succinyl substituents of cyclic β-1,2-glucan of B. abortus are necessary for hypo-osmotic adaptation. On the other hand, intracellular multiplication and mouse spleen colonization are not affected in cgm mutants, indicating that cyclic-β-1,2-glucan succinylation is not required for virulence and suggesting that no low-osmotic stress conditions must be overcome during infection. PMID:16816173

  1. Characterization, occurrence, and molecular cloning of a 39-kilodalton Brucella abortus cytoplasmic protein immunodominant in cattle.

    PubMed Central

    Denoel, P A; Vo, T K; Tibor, A; Weynants, V E; Trunde, J M; Dubray, G; Limet, J N; Letesson, J J

    1997-01-01

    Monoclonal antibodies and polyclonal antisera recognizing a 39-kDa protein (P39) of brucellin, a cytoplasmic extract from Brucella melitensis rough strain B115, were produced. The P39 was purified by anion-exchange chromatography. Eleven of fourteen Brucella-infected cows whose infections had been detected by the delayed-type hypersensitivity (DTH) test with brucellergen also developed a DTH reaction when purified P39 was used as the trigger. The T-cell proliferative responses to P39 of peripheral blood lymphocytes from Brucella-infected cows were also positive. None of the animals infected with other bacterial species that are presumed to induce immunological cross-reactions with Brucella spp. reacted to P39, either in DTH tests or in lymphocyte proliferation assays. A lambda gt11 genomic library of Brucella abortus was screened with a monoclonal antibody specific for P39, and the gene coding for this protein was subsequently isolated. The nucleotide sequence of the P39 gene was determined, and the deduced amino acid sequence is in accordance with the sequence of an internal peptide isolated from P39. PMID:9009303

  2. Generation and characterization of murine monoclonal antibodies to genus-specific 31-kilodalton recombinant cell surface protein of Brucella abortus.

    PubMed

    Kumar, Sanjay; Tuteja, Urmil; Batra, Harsh Vardhan

    2007-08-01

    In the present study hybridomas were produced from fusion with splenocytes of BALB/c mice immunized with the recombinant 31-kDa cell surface protein (r31CSP) specific for Brucella species. A set of eight stabilized hybridoma cell lines was generated against r31CSP. Monoclonal antibodies (MAbs) produced by all these clones exhibited reactivity for r31CSP as well as with the protein of 31-kDa, derived from whole-cell lysate of 31-kDa Brucella abortus 544. Four of eight MAbs were IgG1, two IgG2b, and two IgM in nature. These MAbs did not show any cross-reaction with whole-cell lysate of Yersinia enterocolitica O: 9, Vibrio cholerae, Salmonella typhimurium and Escherichia coli 0157 by Western blotting. Reactivity of these MAbs was further assessed with other organisms of Brucella species namely, B. abortus S99, B. canis, B. melitensis 16M, B. suis, and a clinical isolate of B. melitensis. Collectively, these data suggest that these MAbs may have the potential for use in the detection of Brucella species with high specificity. PMID:17725382

  3. Genome Sequences of Brucella abortus and Brucella suis Strains Isolated from Bovine in Zimbabwe

    PubMed Central

    Ledwaba, Betty; Mafofo, Joseph

    2014-01-01

    This is a report of whole-genome sequences of a Brucella abortus strain and two Brucella suis strains isolated from bovine in Zimbabwe. These strains were selected based on their origin and data obtained when using multiplex PCR assays, then sequenced using next-generation sequencing technologies. PMID:25342680

  4. Seroprevalence of brucellosis in sheep and isolation of Brucella abortus biovar 6 in Kassala State, Eastern Sudan.

    PubMed

    Gumaa, M M; Osman, H M; Omer, M M; El Sanousi, E M; Godfroid, J; Ahmed, A M

    2014-12-01

    Brucellosis is one of the important zoonotic diseases among livestock. This study was carried out to estimate the prevalence of brucellosis and isolate Brucella spp. in sheep in Kassala State in the east of Sudan. Two thousand and five serum samples were randomly collected from nine different localities. All serum samples were examined by the Rose Bengal plate test (RBPT) and the modified RBPT (mRBPT). Forty-three (2.15%, 95% confidence interval [CI]: 1.6,3.0) and 68 (3.4%, 95% CI: 2.6, 4.2) samples were positive with the RBPT and the mRBPT, respectively. According to a known diagnostic sensitivity of 86.6% and a known diagnostic specificity of 97.6% for the mRBPT, the true prevalence was estimated to be 1.2% (95% CI: 0.3, 2.2). Different tissue samples were collected from 41 mRBPT seropositive animals. Brucella abortus biovar 6 was isolated from a pyometra of a seropositive ewe. It is important to note that B. abortus biovar 6 cannot be differentiated from Brucella melitensis biovar 2 by routine bacteriology. Only phage typing performed in reference laboratories will allow accurate identification of the strain. The fact that B. abortus biovar 6 does not require CO2 for growth, combined with the fact that it has been isolated from a small ruminant in this study, could easily have led to misidentification (as B. melitensis biovar 2), to wrong epidemiological inferences and to the implementation of inappropriate control measures. The results presented here suggest that sheep are spillover hosts, as previously described for camels, and that the actual reservoir of B. abortus biovar 6 is cattle in Kassala State, Eastern Sudan. This study highlights the importance of isolating and identifying Brucella spp. in different livestock species in order to accurately decipher brucellosis epidemiology in sub-Saharan Africa. PMID:25812219

  5. Molecular characterization, occurrence, and immunogenicity in infected sheep and cattle of two minor outer membrane proteins of Brucella abortus.

    PubMed Central

    Tibor, A; Saman, E; de Wergifosse, P; Cloeckaert, A; Limet, J N; Letesson, J J

    1996-01-01

    Screening of a Brucella abortus genomic library with two sets of monoclonal antibodies allowed the isolation of the genes corresponding to two minor outer membrane proteins (OMP10 and OMP19) found in this bacterial species. Sequence analysis of the omp10 gene revealed an open reading frame capable of encoding a protein of 126 amino acids. The nucleotide sequence of the insert producing the OMP19 protein contains two overlapping open reading frames, the largest of which (177 codons) was shown to encode the protein of interest. Analysis of the N-terminal sequences of both putative proteins revealed features of a bacterial signal peptide, and homology to the bacterial lipoprotein processing sequence was also observed. Immunoblotting with monoclonal antibodies specific for OMP10 or OMP19 showed that both proteins are present in the 34 Brucella strains tested, representing all six Brucella species and all their biovars. The OMP19 detected in the five Brucella ovis strains examined migrated at an apparent molecular weight that is slightly higher than those of the other Brucella species, confirming the divergence of B. ovis from these species. OMP10 and OMP19 were produced in recombinant Escherichia coli and purified to homogeneity for serological analysis. A large fraction of sera from sheep naturally infected with Brucella melitensis were reactive with these proteins in an enzyme-linked immunosorbent assay, whereas sera from B. abortus-infected cattle were almost completely unreactive in this assay. PMID:8557326

  6. Draft Genome Sequence of the Field Isolate Brucella melitensis Strain Bm IND1 from India

    PubMed Central

    Rao, Sashi Bhushan; Gupta, Vivek K.; Kumar, Mukesh; Hegde, Nagendra R.; Splitter, Gary A.; Reddanna, Pallu

    2014-01-01

    Brucella spp. are facultative intracellular bacterial pathogens causing the zoonotic disease brucellosis. Here, we report the draft genome sequence of the Brucella melitensis strain from India designated Bm IND1, isolated from stomach contents of an aborted goat fetus. PMID:24874680

  7. Comparison of the efficacy of Brucella suis strain 2 and Brucella melitensis Rev. 1 live vaccines against a Brucella melitensis experimental infection in pregnant ewes.

    PubMed

    Verger, J M; Grayon, M; Zundel, E; Lechopier, P; Olivier-Bernardin, V

    1995-02-01

    The comparative efficacy of Brucella suis strain 2 (S2) and Brucella melitensis strain Rev. 1 (Rev. 1) live vaccines in protecting sheep against B. melitensis infection was evaluated by clinical and bacteriological examination of ewes vaccinated conjunctivally with a dose of 1 x 10(9) c.f.u. when 4 months old and then challenged with 5 x 10(7) c.f.u. of the B. melitensis virulent strain 53H38 (H38) at the middle of the first or second pregnancy following vaccination. Animals were considered to be protected when no abortion, no excretion of the challenge strain and no infection at slaughter occurred. The percentages of protection in Rev. 1-vaccinated groups challenged during either first (80%) or second (62%) pregnancy were significantly different (p < 0.001 and p < 0.05, respectively) compared with those of the relevant unvaccinated control groups. In contrast no significant difference in protection was found between the S2-vaccinated and control groups. PMID:7625115

  8. Chronic Brucellosis and Persistence of Brucella melitensis DNA▿

    PubMed Central

    Castaño, Maria Jesús; Solera, Javier

    2009-01-01

    After acute brucellosis infection, symptoms persist in a minority of patients for more than 1 year. Such patients are defined as having chronic brucellosis. Since no objective laboratory methods exist to confirm the presence of chronic disease, these patients suffer delays in both diagnosis and treatment. The aim of the current study was to evaluate the usefulness of quantitative real-time PCR (Q-PCR) in the diagnosis and follow-up of these patients. Thirty-five subjects with a well-documented history of brucellosis that had been diagnosed between 2 and 33 years previously were screened by Q-PCR for the presence of Brucella melitensis DNA and by serological tests and blood culture. Subjects were divided into three groups: 8 (23%) focal-disease subjects, 9 (26%) nonfocal-disease subjects with subjective complaints, such as fatigue, malaise, arthralgia, and/or myalgia, and 18 (51%) asymptomatic subjects. All (100%) focal-disease patients and symptomatic nonfocal-disease patients had at least one positive Q-PCR sample. Only six (33%) of the asymptomatic subjects had Q-PCR-positive samples (P < 0.05). Eleven patients (five focal-disease patients and six nonfocal-disease patients with subjective complaints) received therapy during the study. For those patients who completed treatment, six (60%) still had Q-PCR-positive samples at the posttreatment follow-up. The proportion of individuals with B. melitensis DNA was significantly higher for symptomatic nonfocal-disease patients than for asymptomatic subjects. Therefore, Q-PCR appears to be a useful method for identifying chronic brucellosis patients. PMID:19420176

  9. A combined vaccine against Brucella abortus and infectious bovine rhinotracheitis.

    PubMed

    Kamaraj, Govindasamy; Chinchkar, Shankar R; Rajendra, Lingala; Srinivasan, Villuppanoor Alwar

    2009-06-01

    The present study was undertaken to study the immune response in calves vaccinated with Brucella abortus strain 19, infectious bovine rhinotracheitis (IBR) vaccines in monovalent form and combined vaccine containing both antigen. The seroconversion of monovalent and combined vaccines was tested in seronegative cattle calves. IBR vaccine alone and combination with live Brucella abortus S19 vaccine elicited an anamnestic response on day 60 post booster but started declining from day 90 onwards against IBR. B. abortus S19 alone and in combination with IBR vaccine gave more than 2 log protection in mice two weeks post challenge. Fluorescence polarization assay analysis with sera samples of calves vaccinated with B. abortus S19 monovalent vaccine alone and in combination with IBR vaccine revealed the presence of B. abortus antibodies. The components of the combined vaccine did not show any evidence of interference in the development of immunity. This combined vaccine may provide economical and affordable biological for the control of brucellosis and IBR. PMID:23100765

  10. The bovine immune response to Brucella abortus IV. Studies with a double immunodiffusion test for antibody against A2.

    PubMed Central

    Stemshorn, B; Nielsen, K

    1981-01-01

    A double immunodiffusion test for precipitins against Brucella antigen A2 was developed and applied to a variety of samples. The A2 precipitins were produced by a heifer infected with B. abortus strain 2308, cattle vaccinated with killed B. melitensis strain H38 or live B. abortus strain 19 and by a dog infected with B. canis. Precipitins were also detected in the second International Standard for anti-Brucella abortus serum, in several anti-B. canis sera and at low levels in one anti-B. ovis serum tested. Antisera produced in calves against Yersinia enterocolitica serotype 0:9 had no anti-A2 activity despite titers greater than or equal to 1/1024 and greater than or equal to 1/80 in standard Brucella agglutination and CF tests, respectively. The test for A2 precipitins lacked specificity as weak reactions were obtained with five of 295 sera from brucellosis-free herds. This test was relatively insensitive, detecting precipitins in only 16 of 24 sera from infected cattle and 27 of 54 sera positive by complement fixation and enzyme labelled antiglobulin tests performed with whole cell and smooth lipopolysaccharide antigens, respectively. The A2 precipitins were detected in nine sera from five cattle, in two infected herds, which were negative by agglutination and complement fixation tests. Images Fig. 1. Fig. 2. PMID:6790144

  11. Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR

    NASA Astrophysics Data System (ADS)

    Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich

    2012-06-01

    To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.

  12. An investigation of the etiology of Brucella abortus singleton reactors.

    PubMed Central

    Dukes, T W; Nielsen, K H; Eaglesome, M D; Speckmann, G W; Corner, A H

    1980-01-01

    Single animals in a herd that react serologically to Brucella abortus for no apparent reason are a problem. A number of such reactors from Ontario and Quebec were gathered for extensive clinical, serological, pathological and bacteriological examination in an attempt to investigate the etiology of these single serological reactions. While a variety of pathological changes were found, there was no apparent correlation to the serological, clinical or bacteriological findings. PMID:6778597

  13. In Situ Characterization of Splenic Brucella melitensis Reservoir Cells during the Chronic Phase of Infection in Susceptible Mice

    PubMed Central

    Hanot Mambres, Delphine; Machelart, Arnaud; Vanderwinden, Jean-Marie; De Trez, Carl; Ryffel, Bernhard

    2015-01-01

    Brucella are facultative intracellular Gram-negative coccobacilli that chronically infect humans as well as domestic and wild-type mammals, and cause brucellosis. Alternatively activated macrophages (M2a) induced by IL-4/IL-13 via STAT6 signaling pathways have been frequently described as a favorable niche for long-term persistence of intracellular pathogens. Based on the observation that M2a-like macrophages are induced in the spleen during the chronic phase of B. abortus infection in mice and are strongly infected in vitro, it has been suggested that M2a macrophages could be a potential in vivo niche for Brucella. In order to test this hypothesis, we used a model in which infected cells can be observed directly in situ and where the differentiation of M2a macrophages is favored by the absence of an IL-12-dependent Th1 response. We performed an in situ analysis by fluorescent microscopy of the phenotype of B. melitensis infected spleen cells from intranasally infected IL-12p40-/- BALB/c mice and the impact of STAT6 deficiency on this phenotype. Most of the infected spleen cells contained high levels of lipids and expressed CD11c and CD205 dendritic cell markers and Arginase1, but were negative for the M2a markers Fizz1 or CD301. Furthermore, STAT6 deficiency had no effect on bacterial growth or the reservoir cell phenotype in vivo, leading us to conclude that, in our model, the infected cells were not Th2-induced M2a macrophages. This characterization of B. melitensis reservoir cells could provide a better understanding of Brucella persistence in the host and lead to the design of more efficient therapeutic strategies. PMID:26376185

  14. Gene Discovery through Genomic Sequencing of Brucella abortus

    PubMed Central

    Sánchez, Daniel O.; Zandomeni, Ruben O.; Cravero, Silvio; Verdún, Ramiro E.; Pierrou, Ester; Faccio, Paula; Diaz, Gabriela; Lanzavecchia, Silvia; Agüero, Fernán; Frasch, Alberto C. C.; Andersson, Siv G. E.; Rossetti, Osvaldo L.; Grau, Oscar; Ugalde, Rodolfo A.

    2001-01-01

    Brucella abortus is the etiological agent of brucellosis, a disease that affects bovines and human. We generated DNA random sequences from the genome of B. abortus strain 2308 in order to characterize molecular targets that might be useful for developing immunological or chemotherapeutic strategies against this pathogen. The partial sequencing of 1,899 clones allowed the identification of 1,199 genomic sequence surveys (GSSs) with high homology (BLAST expect value < 10−5) to sequences deposited in the GenBank databases. Among them, 925 represent putative novel genes for the Brucella genus. Out of 925 nonredundant GSSs, 470 were classified in 15 categories based on cellular function. Seven hundred GSSs showed no significant database matches and remain available for further studies in order to identify their function. A high number of GSSs with homology to Agrobacterium tumefaciens and Rhizobium meliloti proteins were observed, thus confirming their close phylogenetic relationship. Among them, several GSSs showed high similarity with genes related to nodule nitrogen fixation, synthesis of nod factors, nodulation protein symbiotic plasmid, and nodule bacteroid differentiation. We have also identified several B. abortus homologs of virulence and pathogenesis genes from other pathogens, including a homolog to both the Shda gene from Salmonella enterica serovar Typhimurium and the AidA-1 gene from Escherichia coli. Other GSSs displayed significant homologies to genes encoding components of the type III and type IV secretion machineries, suggesting that Brucella might also have an active type III secretion machinery. PMID:11159979

  15. Decreased in vivo virulence and altered gene expression by a Brucella melitensis light-sensing histidine kinase mutant

    PubMed Central

    Gourley, Christopher R.; Petersen, Erik; Harms, Jerome; Splitter, Gary

    2015-01-01

    Brucella species utilize diverse virulence factors. Previously, Brucella abortus light-sensing histidine kinase was identified as important for cellular infection. Here, we demonstrate that a Brucella melitensisLOV-HK (BM-LOV-HK) mutant strain has strikingly different gene expression than wild type. General stress response genes including the alternative sigma factor rpoE1 and its anti-anti-sigma factor phyR were downregulated, while flagellar, quorum sensing (QS), and type IV secretion system genes were upregulated in the ΔBM-LOV-HK strain vs. wild type. Contextually, expression results agree with other studies of transcriptional regulators involving ΔrpoE1, ΔphyR, ΔvjbR, and ΔblxR (ΔbabR) Brucella strains. Additionally, deletion of BM-LOV-HK decreases virulence in mice. During C57BL/6 mouse infection, the ΔBM-LOV-HK strain had 2 logs less CFUs in the spleen 3 days postinfection, but similar levels 6 days post infection compared to wild type. Infection of IRF-1−/− mice more specifically define ΔBM-LOV-HK strain attenuation with fewer bacteria in spleens and significantly increased survival of mutant vs. wild-type infected IRF-1−/− mice. Upregulation of flagella, QS, and VirB genes, along with downregulation of rpoE1 and related sigma factor, rpoH2 (BMEI0280) suggest that BM-LOV-HK modulates both QS and general stress response regulatory components to control Brucella gene expression on a global level. PMID:25132657

  16. Brucella abortus Synthesizes Phosphatidylcholine from Choline Provided by the Host

    PubMed Central

    Comerci, Diego J.; Altabe, Silvia; de Mendoza, Diego; Ugalde, Rodolfo A.

    2006-01-01

    The Brucella cell envelope is characterized by the presence of phosphatidylcholine (PC), a common phospholipid in eukaryotes that is rare in prokaryotes. Studies on the composition of Brucella abortus 2308 phospholipids revealed that the synthesis of PC depends on the presence of choline in the culture medium, suggesting that the methylation biosynthetic pathway is not functional. Phospholipid composition of pmtA and pcs mutants indicated that in Brucella, PC synthesis occurs exclusively via the phosphatidylcholine synthase pathway. Transformation of Escherichia coli with an expression vector containing the B. abortus pcs homologue was sufficient for PC synthesis upon induction with IPTG (isopropyl-β-d-thiogalactopyranoside), while no PC formation was detected when bacteria were transformed with a vector containing pmtA. These findings imply that Brucella depends on choline provided by the host cell to form PC. We could not detect any obvious associated phenotype in the PC-deficient strain under vegetative or intracellular growth conditions in macrophages. However, the pcs mutant strain displays a reproducible virulence defect in mice, which suggests that PC is necessary to sustain a chronic infection process. PMID:16484204

  17. Brucella abortus synthesizes phosphatidylcholine from choline provided by the host.

    PubMed

    Comerci, Diego J; Altabe, Silvia; de Mendoza, Diego; Ugalde, Rodolfo A

    2006-03-01

    The Brucella cell envelope is characterized by the presence of phosphatidylcholine (PC), a common phospholipid in eukaryotes that is rare in prokaryotes. Studies on the composition of Brucella abortus 2308 phospholipids revealed that the synthesis of PC depends on the presence of choline in the culture medium, suggesting that the methylation biosynthetic pathway is not functional. Phospholipid composition of pmtA and pcs mutants indicated that in Brucella, PC synthesis occurs exclusively via the phosphatidylcholine synthase pathway. Transformation of Escherichia coli with an expression vector containing the B. abortus pcs homologue was sufficient for PC synthesis upon induction with IPTG (isopropyl-beta-d-thiogalactopyranoside), while no PC formation was detected when bacteria were transformed with a vector containing pmtA. These findings imply that Brucella depends on choline provided by the host cell to form PC. We could not detect any obvious associated phenotype in the PC-deficient strain under vegetative or intracellular growth conditions in macrophages. However, the pcs mutant strain displays a reproducible virulence defect in mice, which suggests that PC is necessary to sustain a chronic infection process. PMID:16484204

  18. An Atypical Riboflavin Pathway Is Essential for Brucella abortus Virulence

    PubMed Central

    Klinke, Sebastián; Ugalde, Juan E.; Zylberman, Vanesa; Ugalde, Rodolfo A.; Comerci, Diego J.; Goldbaum, Fernando Alberto

    2010-01-01

    Brucellosis is a worldwide zoonosis that affects livestock and humans and is caused by closely related Brucella spp., which are adapted to intracellular life within cells of a large variety of mammals. Brucella can be considered a furtive pathogen that infects professional and non-professional phagocytes. In these cells Brucella survives in a replicative niche, which is characterized for having a very low oxygen tension and being deprived from nutrients such as amino acids and vitamins. Among these vitamins, we have focused on riboflavin (vitamin B2). Flavin metabolism has been barely implicated in bacterial virulence. We have recently described that Brucella and other Rhizobiales bear an atypical riboflavin metabolic pathway. In the present work we analyze the role of the flavin metabolism on Brucella virulence. Mutants on the two lumazine synthases (LS) isoenzymes RibH1 and RibH2 and a double RibH mutant were generated. These mutants and different complemented strains were tested for viability and virulence in cells and in mice. In this fashion we have established that at least one LS must be present for B. abortus survival and that RibH2 and not RibH1 is essential for intracellular survival due to its LS activity in vivo. In summary, we show that riboflavin biosynthesis is essential for Brucella survival inside cells or in mice. These results highlight the potential use of flavin biosynthetic pathway enzymes as targets for the chemotherapy of brucellosis. PMID:20195542

  19. Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis.

    PubMed

    Wang, Yufei; Ke, Yuehua; Xu, Jie; Wang, Ligui; Wang, Tongkun; Liang, Hui; Zhang, Wei; Gong, Chunli; Yuan, Jiuyun; Zhuang, Yubin; An, Chang; Lei, Shuangshuang; Du, Xinying; Wang, Zhoujia; Li, Wenna; Yuan, Xitong; Huang, Liuyu; Yang, Xiaoli; Chen, Zeliang

    2015-01-01

    Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival. PMID:25852653

  20. Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis

    PubMed Central

    Wang, Yufei; Ke, Yuehua; Xu, Jie; Wang, Ligui; Wang, Tongkun; Liang, Hui; Zhang, Wei; Gong, Chunli; Yuan, Jiuyun; Zhuang, Yubin; An, Chang; Lei, Shuangshuang; Du, Xinying; Wang, Zhoujia; Li, Wenna; Yuan, Xitong; Huang, Liuyu; Yang, Xiaoli; Chen, Zeliang

    2015-01-01

    Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival. PMID:25852653

  1. Studies on recombinant glucokinase (r-glk) protein of Brucella abortus as a candidate vaccine molecule for brucellosis.

    PubMed

    Vrushabhendrappa; Singh, Amit Kumar; Balakrishna, Konduru; Sripathy, Murali Harishchandra; Batra, Harsh Vardhan

    2014-09-29

    Brucellosis is one of the most prevalent zoonotic diseases of worldwide distribution caused by the infection of genus Brucella. Live attenuated vaccines such as B. abortus S19, B. abortus RB51 and B. melitensis Rev1 are found most effective against brucellosis infection in animals, contriving a number of serious side effects and having chances to revert back into their active pathogenic form. In order to engineer a safe and effective vaccine candidate to be used in both animals and human, a recombinant subunit vaccine molecule comprising the truncated region of glucokinase (r-glk) gene from B. abortus S19 was cloned and expressed in Escherichia coli BL21DE3 host. Female BALB/c mice immunized with purified recombinant protein developed specific antibody titer of 1:64,000. The predominant IgG2a and IgG2b isotypes signified development of Th1 directed immune responses. In vitro cell cytotoxicity assay using anti-r-glk antibodies incubated with HeLa cells showed 81.20% and 78.5% cell viability against lethal challenge of B. abortus 544 and B. melitensis 16M, respectively. The lymphocyte proliferative assay indicated a higher splenic lymphocyte responses at 25μg/ml concentration of protein which implies the elevated development of memory immune responses. In contrast to control, the immunized group of mice intra-peritoneal (I.P.) challenged with B. abortus 544 were significantly protected with no signs of necrosis and vacuolization in their liver and spleen tissue. The elevated B-cell response associated with Th1 adopted immunity, significant in vitro cell viability as well as protection afforded in experimental animals after challenge, supplemented with histopathological analysis are suggestive of r-glk protein as a prospective candidate vaccine molecule against brucellosis. PMID:25131740

  2. Genetic Characterization and Comparative Genome Analysis of Brucella melitensis Isolates from India

    PubMed Central

    Azam, Sarwar; Rao, Sashi Bhushan; Jakka, Padmaja; NarasimhaRao, Veera; Bhargavi, Bindu; Gupta, Vivek Kumar

    2016-01-01

    Brucellosis is the most frequent zoonotic disease worldwide, with over 500,000 new human infections every year. Brucella melitensis, the most virulent species in humans, primarily affects goats and the zoonotic transmission occurs by ingestion of unpasteurized milk products or through direct contact with fetal tissues. Brucellosis is endemic in India but no information is available on population structure and genetic diversity of Brucella spp. in India. We performed multilocus sequence typing of four B. melitensis strains isolated from naturally infected goats from India. For more detailed genetic characterization, we carried out whole genome sequencing and comparative genome analysis of one of the B. melitensis isolates, Bm IND1. Genome analysis identified 141 unique SNPs, 78 VNTRs, 51 Indels, and 2 putative prophage integrations in the Bm IND1 genome. Our data may help to develop improved epidemiological typing tools and efficient preventive strategies to control brucellosis. PMID:27525259

  3. Genetic Characterization and Comparative Genome Analysis of Brucella melitensis Isolates from India.

    PubMed

    Azam, Sarwar; Rao, Sashi Bhushan; Jakka, Padmaja; NarasimhaRao, Veera; Bhargavi, Bindu; Gupta, Vivek Kumar; Radhakrishnan, Girish

    2016-01-01

    Brucellosis is the most frequent zoonotic disease worldwide, with over 500,000 new human infections every year. Brucella melitensis, the most virulent species in humans, primarily affects goats and the zoonotic transmission occurs by ingestion of unpasteurized milk products or through direct contact with fetal tissues. Brucellosis is endemic in India but no information is available on population structure and genetic diversity of Brucella spp. in India. We performed multilocus sequence typing of four B. melitensis strains isolated from naturally infected goats from India. For more detailed genetic characterization, we carried out whole genome sequencing and comparative genome analysis of one of the B. melitensis isolates, Bm IND1. Genome analysis identified 141 unique SNPs, 78 VNTRs, 51 Indels, and 2 putative prophage integrations in the Bm IND1 genome. Our data may help to develop improved epidemiological typing tools and efficient preventive strategies to control brucellosis. PMID:27525259

  4. Virulence Effects and Signaling Partners Modulated by Brucella melitensis Light-sensing Histidine Kinase

    NASA Astrophysics Data System (ADS)

    Gourley, Christopher R.

    The facultative intracellular pathogen Brucella melitensis utilizes diverse virulence factors. A Brucella light sensing histidine kinase can influence in vitro virulence of the bacteria during intracellular infection. First, we demonstrated that the B. melitensis light sensing kinase (BM-LOV-HK) affects virulence in an IRF-1-/- mouse model of infection. Infection with a Δ BM-LOV-HK strain resulted in less bacterial colonization of IRF-1-/- spleens and extended survivorship compared to mice infected with wild type B. melitensis 16M. Second, using PCR arrays, we observed less expression of innate and adaptive immune system activation markers in ΔBM-LOV-HK infected mouse spleens than wild type B. melitensis 16M infected mouse spleens 6 days after infection. Third, we demonstrated by microarray analysis of B. melitensis that deletion of BM-LOV-HK alters bacterial gene expression. Downregulation of genes involved in control of the general stress response system included the alternative sigma factor RpoE1 and its anti-anti sigma factor PhyR. Conversely, genes involved in flagella production, quorum sensing, and the type IV secretion system (VirB operon) were upregulated in the Δ BM-LOV-HK strain compared to the wild type B. melitensis 16M. Analysis of genes differentially regulated in Δ BM-LOV-HK versus the wild type strain indicated an overlap of 110 genes with data from previous quorum sensing regulator studies of Δ vjbR and/ΔblxR(babR) strains. Also, several predicted RpoE1 binding sites located upstream of genes were differentially regulated in the ΔBM-LOV-HK strain. Our results suggest BM-LOV-HK is important for in vivo Brucella virulence, and reveals that BM-LOV-HK directly or indirect regulates members of the Brucella quorum sensing, type IV secretion, and general stress systems.

  5. In vitro assay for the anti-Brucella activity of medicinal plants against tetracycline-resistant Brucella melitensis.

    PubMed

    Motamedi, Hossein; Darabpour, Esmaeil; Gholipour, Mahnaz; Seyyed Nejad, Seyyed Mansour

    2010-07-01

    Brucellosis, a zoonosis caused by four species of brucella, has a high morbidity. Brucella melitensis is the main causative agent of brucellosis in both human and small ruminants. As an alternative to conventional antibiotics, medicinal plants are valuable resources for new agents against antibiotic-resistant strains. The aim of this study was to investigate the usage of native plants for brucellosis treatment. For this purpose, the anti-brucella activities of ethanolic and methanolic extracts of Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, Plantago ovata, Cordia myxa, and Crocus sativus were assessed. The activity against a resistant Br. melitensis strain was determined by disc diffusion method at various concentrations from 50-400 mg/ml. Antibiotic discs were also used as a control. Among the evaluated herbs, six plant (Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, and Crocus sativus) showed anti-brucella activity. Oliveria decumbens was chosen as the most effective plant for further studies. A tested isolate exhibited resistance to tetracycline, nafcillin, oxacillin, methicillin, and colistin. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for Oliveria decumbens against resistant Br. melitensis were the same (5 mg/ml), and for gentamicin they were both 2 mg/ml. Time-kill kinetics for a methanolic extract of Oliveria decumbens was 7 h whereas for an ethanolic extract it was 28 h. Also, Oliveria decumbens extracts showed a synergistic effect in combination with doxycycline and tetracycline. In general, the similar values of MIC and MBC for Oliveria decumbens suggest that these extracts could act as bactericidal agents against Br. melitensis. In addition to Oliveria decumbens, Crocus sativus and Salvia sclarea also had good anti-brucella activity and these should be considered for further study. PMID:20593515

  6. Genotyping of Brucella melitensis strains from dromedary camels (Camelus dromedarius) from the United Arab Emirates with multiple-locus variable-number tandem repeat analysis.

    PubMed

    Gyuranecz, Miklós; Wernery, Ulli; Kreizinger, Zsuzsa; Juhász, Judit; Felde, Orsolya; Nagy, Péter

    2016-04-15

    Camel brucellosis is a widespread zoonotic disease in camel-rearing countries caused by Brucella melitensis and Brucella abortus. The aim of this study was the first genetic analysis of B. melitensis strains isolated from dromedary camels (Camelus dromedarius) using multiple-locus variable-number tandem repeat analysis (MLVA). MLVA 16 and its MLVA 8 and MLVA11 subsets were used to determine the genotypes of 15 B. melitensis isolates from dromedary camels (11 strains) and other host species (4 strains) from the United Arab Emirates and the results were then compared to B. melitensis MLVA genotypes from other parts of the world. Five, including two novel genotypes were identified with MLVA 8. MLVA 16 further discriminated these five genotypes to ten variants. The eleven camel isolates clustered into four main genetic groups within the East-Mediterranean and African clades and this clustering correlated with the geographic origin of the hosts (United Arab Emirates, Kingdom of Saudi Arabia and Sudan) and the date of their isolation. The camel strains were also genetically related to strains isolated from wild and domestic ruminants from their close habitat or from other parts of the world. Although limited number of strains were analysed, based on our data imported animals from foreign countries, local small ruminants and wildlife species are hypothesized to be the main sources of camel brucellosis in the United Arab Emirates. MLVA was successfully applied to determine the epidemiological links between the different camel B. melitensis infections in the United Arab Emirates and it can be a beneficial tool in future disease control programs. PMID:27016751

  7. The immunological properties of Brucella ribosomal preparations.

    PubMed

    Corbel, M J

    1976-01-01

    Ribosomes were isolated from Brucella abortus strains 19 and 45/20 by disruption of the cells followed by differential ultracentrifugation. The ribosome preparations contained 2-3 components reacting in immunodiffusion tests but were free of detectable lipopolysaccharide-protein agglutinogen. They crossreacted with antisera to Br. abortus, Br. melitensis, Br. suis and Br. ovis and elicited intradermal delayed hypersensitivity reactions in animals infected with Br. abortus, Br. melitensis or Br. suis. The ribosomes were antigenic in rabbits, guinea pigs and mice. Those from Br. abortus S19 induced agglutinins reaction with smooth brucella strains whereas those from Br. abortus 45/20 induced agglutinins reacting with rough brucella strains. Cattle vaccinated with S19 or 45/20 vaccines or infected with Br. abortus developed pricipitins to ribosomal components at an early stage in the immune response. PMID:816681

  8. Seroprevalence of Brucella abortus and Leptospira hardjo in cattle

    PubMed Central

    Pandian, S. Jegaveera; Ray, Pradeep Kumar; Chandran, P. C.; Kumar, Manoj

    2015-01-01

    Aim: The aim was to assess the seroprevalence of B. abortus and Leptospira hardjo in the cattle population of Bihar, this work was carried out. Materials and Methods: Randomly selected 450 cattle from nine districts of Bihar were serologically screened for antibodies against L. hardjo and B. abortus. DAS-ELISA for leptospira and AB-ELISA for brucella were carried out. Based on the results prevalence in each district and the state are reported herewith. Results and Discussion: In this study, it was found that the seroprevalence of L. hardjo was 9.11% and that of B. abortus was 12.2% in Bihar. Indigenous cattle were found to be less susceptible to leptospirosis and brucellosis even though they accounted for 83.11% of the study population. Conclusion: Although there was no acute disease, antibodies detected against L. hardjo and B. abortus in the cattle population indicated the presence of chronic and subclinical infection, which could challenge the fertility of the animals. PMID:27047076

  9. Immune response triggered by Brucella abortus following infection or vaccination.

    PubMed

    Dorneles, Elaine M S; Teixeira-Carvalho, Andréa; Araújo, Márcio S S; Sriranganathan, Nammalwar; Lage, Andrey P

    2015-07-17

    Brucella abortus live vaccines have been used successfully to control bovine brucellosis worldwide for decades. However, due to some limitations of these live vaccines, efforts are being made for the development of new safer and more effective vaccines that could also be used in other susceptible species. In this context, understanding the protective immune responses triggered by B. abortus is critical for the development of new vaccines. Such understandings will enhance our knowledge of the host/pathogen interactions and enable to develop methods to evaluate potential vaccines and innovative treatments for animals or humans. At present, almost all the knowledge regarding B. abortus specific immunological responses comes from studies in mice. Active participation of macrophages, dendritic cells, IFN-γ producing CD4(+) T-cells and cytotoxic CD8(+) T-cells are vital to overcome the infection. In this review, we discuss the characteristics of the immune responses triggered by vaccination versus infection by B. abortus, in different hosts. PMID:26048781

  10. Brucella abortus RB51 in milk of vaccinated adult cattle.

    PubMed

    Miranda, Karina Leite; Poester, Fernando Padilla; Dorneles, Elaine Maria Seles; Resende, Thiago Magalhães; Vaz, Adil Knackfuss; Ferraz, Sandra Maria; Lage, Andrey Pereira

    2016-08-01

    The aim of this study was to evaluate the shedding of Brucella abortus in the milk of cows vaccinated with a full dose of RB51 during lactation. Eighteen cows, nine previously vaccinated with S19 as calves and nine non-vaccinated, were immunized subcutaneously with 1.3×10(10)CFU of B. abortus RB51, 30-60days after parturition. Milk samples from all animals were collected daily until day 7, and at weekly interval for the next 9 weeks after vaccination. To evaluate the shedding of B. abortus, milk samples were submitted for culture and PCR. No B. abortus was isolated from any sample tested. Only one sample, collected on first day after vaccination from a cow previously vaccinated, was faintly positive in the PCR. In conclusion, the public health hazard associated with milk consumption from cows vaccinated with RB51 in post-partum is very low, despite vaccination with the full dose and regardless of previous S19 vaccination. PMID:27143220

  11. Isolation & characterization of Brucella melitensis isolated from patients suspected for human brucellosis in India

    PubMed Central

    Barua, Anita; Kumar, Ashu; Thavaselvam, Duraipandian; Mangalgi, Smita; Prakash, Archana; Tiwari, Sapana; Arora, Sonia; Sathyaseelan, Kannusamy

    2016-01-01

    Background & objectives: Brucellosis is endemic in the southern part of India. A combination of biochemical, serological and molecular methods is required for identification and biotyping of Brucella. The present study describes the isolation and biochemical, molecular characterization of Brucella melitensis from patients suspected for human brucellosis. Methods: The blood samples were collected from febrile patients suspected to have brucellosis. A total of 18 isolates were obtained from 102 blood samples subjected to culture. The characterization of these 18 isolates was done by growth on Brucella specific medium, biochemical reactions, CO2 requirement, H2S production, agglutination with A and M mono-specific antiserum, dye sensitivity to basic fuchsin and thionin. Further, molecular characterization of the isolates was done by amplification of B. melitensis species specific IS711 repetitive DNA fragment and 16S (rRNA) sequence analysis. PCR-restriction fragment length polymorphism (RFLP) analysis of omp2 locus and IS711 gene was also done for molecular characterization. Results: All 102 suspected samples were subjected to bacteria isolation and of these, 18 isolates could be recovered on blood culture. The biochemical, PCR and PCR-RFLP and 16s rRNA sequencing revealed that all isolates were of B. melitensis and matched exactly with reference strain B. melitensis 16M. Interpretation & conclusions: The present study showed an overall isolation rate of 17.64 per cent for B. melitensis. There is a need to establish facilities for isolation and characterization of Brucella species for effective clinical management of the disease among patients as well as surveillance and control of infection in domestic animals. Further studies are needed from different geographical areas of the country with different level of endemicity to plan and execute control strategies against human brucellosis. PMID:27488010

  12. Efficacy of Brucella abortus vaccine strain RB51 compared to the reference vaccine Brucella abortus strain 19 in water buffalo.

    PubMed

    Caporale, Vincenzo; Bonfini, Barbara; Di Giannatale, Elisabetta; Di Provvido, Andrea; Forcella, Simona; Giovannini, Armando; Tittarelli, Manuela; Scacchia, Massimo

    2010-01-01

    Approximately 250,000 water buffalo (Bubalus bubalis) live in the Campania region of southern Italy where the breeding of this species is very popular. Of these animals, almost 150,000 are concentrated in the Caserta province where the prevalence of Brucella abortus in this species represents approximately 20% at herd level. The Italian brucellosis eradication programme provides a slaughter and vaccination strategy for this province. B. abortus strain RB51 (RB51) has become the official vaccine for the prevention of brucellosis in cattle in several countries. The aim of this study was to evaluate the efficacy of RB51 in water buffalo compared to the B. abortus S19 vaccine (S19). The study was performed in accordance with a protocol described in mice. Female buffalo aged five months were inoculated. Five received a RB51 dosage on two occasions that was three times greater than that approved for use in cattle and a booster after one month, five received B. abortus S19 vaccine at the standard dosage and three controls received a phosphate buffer solution. Buffalo were then challenged with a virulent B. abortus strain 544 thirty days post vaccination. Antibodies that developed in the five animals vaccinated with RB51 were not detected by the Rose Bengal test or complement fixation test (CFT) and were also tested by CFT prepared with RB51 antigen. After culling, B. abortus was cultured from the spleen, retropharyngeal and supra-mammary lymph nodes. A statistical evaluation was performed to assess the immunogenicity values obtained in buffalo vaccinated with S19, compared to those obtained in buffalo vaccinated with the RB51 vaccine and in the unvaccinated control group. PMID:20391363

  13. ATP-Binding Cassette Systems of Brucella

    PubMed Central

    Jenner, Dominic C.; Dassa, Elie; Whatmore, Adrian M.; Atkins, Helen S.

    2009-01-01

    Brucellosis is a prevalent zoonotic disease and is endemic in the Middle East, South America, and other areas of the world. In this study, complete inventories of putative functional ABC systems of five Brucella species have been compiled and compared. ABC systems of Brucella melitensis 16M, Brucella abortus 9-941, Brucella canis RM6/66, Brucella suis 1330, and Brucella ovis 63/290 were identified and aligned. High numbers of ABC systems, particularly nutrient importers, were found in all Brucella species. However, differences in the total numbers of ABC systems were identified (B. melitensis, 79; B. suis, 72; B. abortus 64; B. canis, 74; B. ovis, 59) as well as specific differences in the functional ABC systems of the Brucella species. Since B. ovis is not known to cause human brucellosis, functional ABC systems absent in the B. ovis genome may represent virulence factors in human brucellosis. PMID:20169092

  14. Morphological analysis of the sheathed flagellum of Brucella melitensis

    PubMed Central

    2010-01-01

    Background It was recently shown that B. melitensis is flagellated. However, the flagellar structure remains poorly described. Findings We analyzed the structure of the polar sheathed flagellum of B. melitensis by TEM analysis and demonstrated that the Ryu staining is a good method to quickly visualize the flagellum by optical microscopy. The TEM analysis demonstrated that an extension of the outer membrane surrounds a filament ending by a club-like structure. The ΔftcR, ΔfliF, ΔflgE and ΔfliC flagellar mutants still produce an empty sheath. Conclusions Our results demonstrate that the flagellum of B. melitensis has the characteristics of the sheathed flagella. Our results also suggest that the flagellar sheath production is not directly linked to the flagellar structure assembly and is not regulated by the FtcR master regulator. PMID:21143933

  15. Isolation of Brucella melitensis from a human case of chronic additive polyarthritis.

    PubMed

    Chahota, R; Dattal, A; Thakur, S D; Sharma, M

    2015-01-01

    Brucellar arthritis remains under diagnosed owing to non-specific clinical manifestations. Here, we report isolation of Brucella melitensis from synovial fluid of 5th metatarsophalangeal joint of a 39-year-old lady having unusually chronic asymmetric, additive, peripheral polyarthritis. This isolation was confirmed by Bruce-Ladder polymerase chain reaction (PCR). The patient had a history of contact with an aborted goat. Rose Bengal Plate Agglutination Test (RBPT) and Standard Tube Agglutination Test (SAT) were positive for Brucella-specific antibodies both for patient and in contact with sheep and goats. The patient was treated with doxycycline and rifampicin for 16 weeks and was recovered fully. PMID:26068351

  16. Sacroiliitis as a sole manifestation of Brucella melitensis infection in a child

    SciTech Connect

    Miron, D.; Garty, I.; Tal, I.; Horovitz, Y.; Kedar, A.

    1987-06-01

    A case of a 12-year-old boy with sacroiliitis documented by positive Tc-99m MDP and Ga-67 scans is described. Isolation of brucella melitensis from the blood and bone marrow established the diagnosis. He responded promptly to docycycline therapy. Throughout the course of his disease this boy had neither fever nor other signs of brucellosis, and x-ray was normal.

  17. Brucella melitensis and Mycobacterium tuberculosis depict overlapping gene expression patterns induced in infected THP-1 macrophages.

    PubMed

    Masoudian, M; Derakhshandeh, A; Ghahramani Seno, M M

    2015-01-01

    Pathogens infecting mammalian cells have developed various strategies to suppress and evade their hosts' defensive mechanisms. In this line, the intracellular bacteria that are able to survive and propagate within their host cells must have developed strategies to avert their host's killing attitude. Studying the interface of host-pathogen confrontation can provide valuable information for defining therapeutic approaches. Brucellosis, caused by the Brucella strains, is a zoonotic bacterial disease that affects thousands of humans and animals around the world inflicting discomfort and huge economic losses. Similar to many other intracellular dwelling bacteria, infections caused by Brucella are difficult to treat, and hence any attempt at identifying new and common therapeutic targets would prove beneficial for the purpose of curing infections caused by the intracellular bacteria. In THP-1 macrophage infected with Brucella melitensis we studied the expression levels of four host's genes, i.e. EMP2, ST8SIA4, HCP5 and FRMD5 known to be involved in pathogenesis of Mycobacterium tuberculosis. Our data showed that at this molecular level, except for FRMD5 that was downregulated, the other three genes were upregulated by B. melitensis. Brucella melitensis and M. tuberculosis go through similar intracellular processes and interestingly two of the investigated genes, i.e. EMP2 and ST4SIA8 were upregulated in THP-1 cell infected with B. melitensis similar to that reported for THP-1 cells infected with M. tuberculosis. At the host-pathogen interaction interface, this study depicts overlapping changes for different bacteria with common survival strategies; a fact that implies designing therapeutic approaches based on common targets may be possible. PMID:27175205

  18. Design and implementation of a database for Brucella melitensis genome annotation.

    PubMed

    De Hertogh, Benoît; Lahlimi, Leïla; Lambert, Christophe; Letesson, Jean-Jacques; Depiereux, Eric

    2008-03-18

    The genome sequences of three Brucella biovars and of some species close to Brucella sp. have become available, leading to new relationship analysis. Moreover, the automatic genome annotation of the pathogenic bacteria Brucella melitensis has been manually corrected by a consortium of experts, leading to 899 modifications of start sites predictions among the 3198 open reading frames (ORFs) examined. This new annotation, coupled with the results of automatic annotation tools of the complete genome sequences of the B. melitensis genome (including BLASTs to 9 genomes close to Brucella), provides numerous data sets related to predicted functions, biochemical properties and phylogenic comparisons. To made these results available, alphaPAGe, a functional auto-updatable database of the corrected sequence genome of B. melitensis, has been built, using the entity-relationship (ER) approach and a multi-purpose database structure. A friendly graphical user interface has been designed, and users can carry out different kinds of information by three levels of queries: (1) the basic search use the classical keywords or sequence identifiers; (2) the original advanced search engine allows to combine (by using logical operators) numerous criteria: (a) keywords (textual comparison) related to the pCDS's function, family domains and cellular localization; (b) physico-chemical characteristics (numerical comparison) such as isoelectric point or molecular weight and structural criteria such as the nucleic length or the number of transmembrane helix (TMH); (c) similarity scores with Escherichia coli and 10 species phylogenetically close to B. melitensis; (3) complex queries can be performed by using a SQL field, which allows all queries respecting the database's structure. The database is publicly available through a Web server at the following url: http://www.fundp.ac.be/urbm/bioinfo/aPAGe. PMID:18160234

  19. Brucella melitensis and Mycobacterium tuberculosis depict overlapping gene expression patterns induced in infected THP-1 macrophages

    PubMed Central

    Masoudian, M; Derakhshandeh, A; Ghahramani Seno, M. M

    2015-01-01

    Pathogens infecting mammalian cells have developed various strategies to suppress and evade their hosts’ defensive mechanisms. In this line, the intracellular bacteria that are able to survive and propagate within their host cells must have developed strategies to avert their host’s killing attitude. Studying the interface of host-pathogen confrontation can provide valuable information for defining therapeutic approaches. Brucellosis, caused by the Brucella strains, is a zoonotic bacterial disease that affects thousands of humans and animals around the world inflicting discomfort and huge economic losses. Similar to many other intracellular dwelling bacteria, infections caused by Brucella are difficult to treat, and hence any attempt at identifying new and common therapeutic targets would prove beneficial for the purpose of curing infections caused by the intracellular bacteria. In THP-1 macrophage infected with Brucella melitensis we studied the expression levels of four host’s genes, i.e. EMP2, ST8SIA4, HCP5 and FRMD5 known to be involved in pathogenesis of Mycobacterium tuberculosis. Our data showed that at this molecular level, except for FRMD5 that was downregulated, the other three genes were upregulated by B. melitensis. Brucella melitensis and M. tuberculosis go through similar intracellular processes and interestingly two of the investigated genes, i.e. EMP2 and ST4SIA8 were upregulated in THP-1 cell infected with B. melitensis similar to that reported for THP-1 cells infected with M. tuberculosis. At the host-pathogen interaction interface, this study depicts overlapping changes for different bacteria with common survival strategies; a fact that implies designing therapeutic approaches based on common targets may be possible. PMID:27175205

  20. Blocking the expression of syntaxin 4 interferes with initial phagocytosis of Brucella melitensis in macrophages

    PubMed Central

    Castañeda-Ramírez, Alfredo; González-Rodríguez, Diana; Hernández-Pineda, J. Aide; Verdugo-Rodríguez, Antonio

    2015-01-01

    Brucella melitensis is the Brucella species most frequently associated with brucellosis in humans. It is also the causative agent of the disease in goats and other ruminants. Although significant aspects of the pathogenesis of infection by this intracellular pathogen have been clarified, several events during invasion of host cells remain to be elucidated. In this study, infections of human macrophages from the THP-1 monocyte cell line were conducted with B. melitensis Bm133 wild-type strain and a strain of Salmonella serovar Enteritidis as a control. A multiplicity of infection of 100 was used in trials focused on defining the relative expression of syntaxin 4 (STX4), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor, in the early events of phagocytosis (at 15, 30, 45, and 60 min). Immunoblot assays were also done to visualize expression of the protein in cells infected with either bacterial strain. The expression of STX4 was not significantly different in cells infected with B. melitensis strain Bm133 compared to that observed in cells infected with S. Enteritidis. When the expression of STX4 mRNA was inhibited with short or small interfering, or silencing, RNA in the THP-1 cells, the survival of B. melitensis was significantly reduced at time 0, when gentamicin treatment of cultures was begun (after 1 h of phagocytosis), and also at 2 h and 12 h after infection. PMID:25673907

  1. Brucella infection in fresh water fish: Evidence for natural infection of Nile catfish, Clarias gariepinus, with Brucella melitensis.

    PubMed

    El-Tras, Wael F; Tayel, Ahmed A; Eltholth, Mahmoud M; Guitian, Javier

    2010-03-24

    Brucellosis is endemic among ruminants in the Nile Delta region of Egypt, where recent reports suggest that the incidence of human infection is increasing. In this region the practice of throwing animal waste into Nile canals is common. As a result, water can be contaminated with potential zoonotic pathogens such as B. melitensis that could infect fish. This study aimed at isolating and characterizing B. melitensis from Nile catfish. Serum samples from 120 catfish captured from Nile canals and 120 farmed catfish were tested for the presence of antibodies against Brucella spp. by using the Rose Bengal Test (RBT) and the Rivanol test (Riv T). Skin swabs from all fish and samples from internal organs (liver, kidney and spleen) from all serologically positive fish were cultured to identify B. melitensis biovar 3 isolates. Polymerase Chain Reaction (PCR) was used to confirm the results. 9.2% and 8.3% of serum samples from Nile catfish were positive by RBT and Riv T, respectively. None of the samples from farmed catfish were seropositive. B. melitensis biovar 3 was isolated from 5.8%, 4.2%, 5.8% and 13.3% of liver, kidney and spleen samples and skin swabs, respectively. To our knowledge this is the first report of isolation of B. melitensis biovar 3 from fresh water fish. Our results suggest that Nile catfish are naturally infected with B. melitensis biovar 3 and this may play a role in the epidemiology of brucellosis. The public should be aware of the consequences of disposing of animal waste into the canals and public health authorities should consider the potential role of catfish as a source of infection. PMID:19880265

  2. Nasal Vaccination Stimulates CD8+ T Cells for Potent Protection Against Mucosal Brucella melitensis Challenge

    PubMed Central

    Clapp, Beata; Yang, Xinghong; Thornburg, Theresa; Walters, Nancy; Pascual, David W.

    2016-01-01

    Brucellosis remains a significant zoonotic threat worldwide. Humans and animals acquire infection via their oropharynx and upper respiratory tract following oral or aerosol exposure. After mucosal infection, brucellosis develops into a systemic disease. Mucosal vaccination could offer a viable alternative to conventional injection practices to deter disease. Using a nasal vaccination approach, the ΔznuA B. melitensis was found to confer potent protection against pulmonary Brucella challenge, and reduce colonization of spleens and lungs by more than 2500-fold, with more than 50% of vaccinated mice showing no detectable brucellae. Furthermore, tenfold more brucellae-specific, IFN-γ-producing CD8+ T cells than CD4+ T cells were induced in the spleen and respiratory lymph nodes. Evaluation of pulmonary and splenic CD8+ T cells from mice vaccinated with ΔznuA B. melitensis revealed that these expressed an activated effector memory (CD44hiCD62LloCCR7lo) T cells producing elevated levels of IFN-γ, TNF-α, perforin, and granzyme B. To assess the relative importance of these increased numbers of CD8+ T cells, CD8−/− mice were challenged with virulent B. melitensis, and they showed markedly increased bacterial loads in organs in contrast to similarly challenged CD4−/− mice. Only ΔznuA B. melitensis- and Rev-1-vaccinated CD4−/− and wild-type mice, not CD8−/− mice, were completely protected against Brucella challenge. Determination of cytokines responsible for conferring protection showed the relative importance of IFN-γ, but not IL-17. Unlike wild-type mice, IL-17 was greatly induced in IFN-γ−/− mice, but IL-17 could not substitute for IFN-γ’s protection, although an increase in brucellae dissemination was observed upon in vivo IL-17 neutralization. These results show that nasal ΔznuA B. melitensis vaccination represents an attractive means to stimulate systemic and mucosal immune protection via CD8+ T cell engagement. PMID:26752510

  3. Nasal vaccination stimulates CD8(+) T cells for potent protection against mucosal Brucella melitensis challenge.

    PubMed

    Clapp, Beata; Yang, Xinghong; Thornburg, Theresa; Walters, Nancy; Pascual, David W

    2016-05-01

    Brucellosis remains a significant zoonotic threat worldwide. Humans and animals acquire infection via their oropharynx and upper respiratory tract following oral or aerosol exposure. After mucosal infection, brucellosis develops into a systemic disease. Mucosal vaccination could offer a viable alternative to conventional injection practices to deter disease. Using a nasal vaccination approach, the ΔznuA B. melitensis was found to confer potent protection against pulmonary Brucella challenge, and reduce colonization of spleens and lungs by more than 2500-fold, with >50% of vaccinated mice showing no detectable brucellae. Furthermore, 10-fold more brucellae-specific, interferon-γ (IFN-γ)-producing CD8(+) T cells than CD4(+) T cells were induced in the spleen and respiratory lymph nodes. Evaluation of pulmonary and splenic CD8(+) T cells from mice vaccinated with ΔznuA B. melitensis revealed that these expressed an activated effector memory (CD44(hi)CD62L(lo)CCR7(lo)) T cells producing elevated levels of IFN-γ, tumor necrosis factor-α, perforin and granzyme B. To assess the relative importance of these increased numbers of CD8(+) T cells, CD8(-/-) mice were challenged with virulent B. melitensis, and they showed markedly increased bacterial loads in organs in contrast to similarly challenged CD4(-/-) mice. Only ΔznuA B. melitensis- and Rev-1-vaccinated CD4(-/-) and wild-type mice, not CD8(-/-) mice, were completely protected against Brucella challenge. Determination of cytokines responsible for conferring protection showed the relative importance of IFN-γ, but not interleukin-17 (IL-17). Unlike wild-type (wt) mice, IL-17 was greatly induced in IFN-γ(-/-) mice, but IL-17 could not substitute for IFN-γ's protection, although an increase in brucellae dissemination was observed upon in vivo IL-17 neutralization. These results show that nasal ΔznuA B. melitensis vaccination represents an attractive means to stimulate systemic and mucosal immune protection via CD

  4. Brucella abortus Exposure during an Orthopedic Surgical Procedure—New Mexico, 2010

    PubMed Central

    Nichols, Megin; Thompson, Deborah; Carothers, Joshua T.; Klauber, Judy; Stoddard, Robyn A.; Guerra, Marta A.; Benoit, Tina J.; Traxler, Rita M.

    2015-01-01

    We describe a periprosthetic Brucella abortus infection in a case-patient undergoing hip replacement revision surgery, and the subsequent investigation of laboratory and surgical staff exposures. Although exposures are rare, it is important to have infection prevention recommendations for surgical procedures among patients with suspected or unidentified Brucella spp. infection. PMID:25026630

  5. An outbreak of Brucella abortus biovar 2 in Canadian cattle.

    PubMed

    Forbes, L B; Steele, T B

    1989-11-01

    An outbreak of brucellosis caused by Brucella abortus biovar 2 was identified in cattle in Alberta in December 1986. This was the only clinical infection discovered since the national cattle herd was declared brucellosisfree in 1985. It was the first report of B. abortus biovar 2 in Canadian cattle. The outbreak, involving three herds containing purebred Hereford cattle, was spread by the private treaty sale of untested cattle, and was identified following investigation of an abortion. The source of infection for the outbreak was not established, but several possibilities were identified including infected herds present in the area during the mid-1970's, latent infection originating in a Saskatchewan herd during the early 1960's, American cattle imported during the early 1970's, and brucellosis-infected bison in Wood Buffalo National Park. The containment and elimination of this nidus of infection appears to have been successful, and the national cattle herd at the time of writing is free of the disease. PMID:17423457

  6. DeltaznuADeltapurE Brucella abortus 2308 mutant as a live vaccine candidate.

    PubMed

    Yang, Xinghong; Thornburg, Theresa; Walters, Nancy; Pascual, David W

    2010-01-22

    To create a new, safe brucellosis live vaccine, a double mutant strain was constructed from Brucella abortus 2308. Using the DeltaznuA B. abortus 2308 mutant, a second mutation was introduced by deleting purE gene. The DeltaznuA DeltapurE B. abortus 2308 strain was less capable of surviving in macrophages. When evaluated in vivo, it was cleared within 8 weeks (wks) from mice, causing significantly less inflammation than spleens obtained from wild-type B. abortus 2308-infected mice. Furthermore, two doses of DeltaznuA DeltapurE B. abortus 2308 conferred 0.79 log protection, similar to S19 as did a single dose of DeltaznuA B. abortus 2308. Thus, this study shows the DeltaznuA DeltapurE B. abortus 2308 strain to be a potential livestock vaccine candidate. PMID:19914192

  7. Novel Vaccine Candidates against Brucella melitensis Identified through Reverse Vaccinology Approach.

    PubMed

    Vishnu, Udayakumar S; Sankarasubramanian, Jagadesan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-11-01

    Global health therapeutics is a rapidly emerging facet of postgenomics medicine. In this connection, Brucella melitensis is an intracellular bacterium that causes the zoonotic infectious disease, brucellosis. Presently, no licensed vaccines are available for human brucellosis. Here, we report the identification of potential vaccine candidates against B. melitensis using a reverse vaccinology approach. Based on a systematic screening of exoproteome and secretome of B. melitensis 16 M, we identified eight proteins as potential vaccine candidates, including LPS-assembly protein LptD, a polysaccharide export protein, a cell surface protein, heme transporter BhuA, flagellin FliC, 7-alpha-hydroxysteroid dehydrogenase, immunoglobulin-binding protein EIBE, and hemagglutinin. Among these, the roles of BhuA and hemagglutinin in the virulence of Brucella are essential to establish infection. Roles of other proteins in the virulence are yet to be studied. Prediction of protein-protein interactions revealed that these proteins can interact with other proteins involved in virulence, secretion system, metabolism, and transport. From these eight potential vaccine candidates, we predicted three surface exposed novel antigenic epitopes that can induce both B-cell and T-cell immune responses. These peptides can be used for the development of either exclusive peptide vaccines or multi-component vaccines against human brucellosis. Reverse vaccinology is an important strategy for discovery of novel global health therapeutics. PMID:26479901

  8. An outbreak of Brucella melitensis infection by airborne transmission among laboratory workers.

    PubMed Central

    Ollé-Goig, J E; Canela-Soler, J

    1987-01-01

    An outbreak of acute brucellosis infection was detected among the employees of a biologicals manufacturing laboratory located in Girona, Spain. The first cases appeared six weeks after a vaccine with attenuated Brucella melitensis, Rev-1 had been produced for one week. A clinical and epidemiologic investigation conducted among the 164 employees found 22 patients with clinical symptoms and positive serology, and six patients detected by serology only (attack rate: 17.1 per cent). Blood cultures were obtained from two patients and Brucella melitensis was isolated. Employees working in areas with open windows above the laboratory air extracting system had an attack rate of 39.5 per cent, substantially higher than those working in other locations. When vaccine was manufactured again, an electric oven reaching 300 degrees C had been installed in the air extracting system just before its exit to the exterior. Appropriate culture medium plates were exposed to the laboratory air before and after passing through the oven. Brucellae were isolated from the plates exposed to the air before passing through the oven but not after doing so. PMID:3812841

  9. Vaccination of elk (Cervus canadensis) with Brucella abortus strain RB51 overexpressing superoxide dismutase and glycosyltransferase genes does not induce adequate protection against experimental brucella abortus challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area (GYA). In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the d...

  10. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    PubMed Central

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  11. Experimental exposure of llamas (Lama glama) to Brucella abortus: humoral antibody response.

    PubMed

    Gilsdorf, M J; Thoen, C O; Temple, R M; Gidlewski, T; Ewalt, D; Martin, B; Henneger, S B

    2001-07-01

    Positive antibody reactions to brucella were observed in the sera of four llamas receiving Brucella abortus Strain 19 subcutaneously at 2-3 weeks post-exposure (PE) using five of eight conventional brucella serologic tests and an ISU-ELISA. Positive brucella antibody reactions were detected in sera of four llamas exposed by intraocular instillation (IOI) of 1.02x10(8) (high dose) B. abortus Strain 2308 at 16-35 days PE using seven of eight serologic tests or an ISU-ELISA. Brucella antibody was also detected in sera of four llamas exposed by IOI of 9x10(5) (low dose) B. abortus using each of four agglutination tests, Complement Fixation test, PCFIA, the rivanol test and the ISU-ELISA at 16-35 days PE. Positive reactions were observed using the Card test, BAPA, SPT, STT, the rivanol test, the PCFIA, and the ISU-ELISA on sera collected on days 42-70 PE, except on one llama, given the low dose; that llama was negative on the PCFIA on day 42. Positive or suspicious reactions were not detected in sera of controls, receiving saline subcutaneously, using the routine tests, with the exception of the CFT. The B. abortus Strain 2308 was isolated from tissues of seven of eight llamas exposed to virulent B. abortus Strain 2308. PMID:11356322

  12. N-Formyl-Perosamine Surface Homopolysaccharides Hinder the Recognition of Brucella abortus by Mouse Neutrophils.

    PubMed

    Mora-Cartín, Ricardo; Chacón-Díaz, Carlos; Gutiérrez-Jiménez, Cristina; Gurdián-Murillo, Stephany; Lomonte, Bruno; Chaves-Olarte, Esteban; Barquero-Calvo, Elías; Moreno, Edgardo

    2016-06-01

    Brucella abortus is an intracellular pathogen of monocytes, macrophages, dendritic cells, and placental trophoblasts. This bacterium causes a chronic disease in bovines and in humans. In these hosts, the bacterium also invades neutrophils; however, it fails to replicate and just resists the killing action of these leukocytes without inducing significant activation or neutrophilia. Moreover, B. abortus causes the premature cell death of human neutrophils. In the murine model, the bacterium is found within macrophages and dendritic cells at early times of infection but seldom in neutrophils. Based on this observation, we explored the interaction of mouse neutrophils with B. abortus In contrast to human, dog, and bovine neutrophils, naive mouse neutrophils fail to recognize smooth B. abortus bacteria at early stages of infection. Murine normal serum components do not opsonize smooth Brucella strains, and neutrophil phagocytosis is achieved only after the appearance of antibodies. Alternatively, mouse normal serum is capable of opsonizing rough Brucella mutants. Despite this, neutrophils still fail to kill Brucella, and the bacterium induces cell death of murine leukocytes. In addition, mouse serum does not opsonize Yersinia enterocolitica O:9, a bacterium displaying the same surface polysaccharide antigen as smooth B. abortus Therefore, the lack of murine serum opsonization and absence of murine neutrophil recognition are specific, and the molecules responsible for the Brucella camouflage are N-formyl-perosamine surface homopolysaccharides. Although the mouse is a valuable model for understanding the immunobiology of brucellosis, direct extrapolation from one animal system to another has to be undertaken with caution. PMID:27001541

  13. Complete Genome Sequence of Brucella abortus A13334, a New Strain Isolated from the Fetal Gastric Fluid of Dairy Cattle

    PubMed Central

    Kim, Hyungtae; Jeong, Wooseog; Jeoung, Hye-Young; Song, Jae-Young; Kim, Jong-So; Beak, Jeong-Hun; Parisutham, Vinuselvi; Lee, Sung Kuk; Kim, Jong Wan; Kim, Ji-Yeon; Jung, Suk Chan; Her, Moon

    2012-01-01

    Brucella abortus is a major pathogen that infects livestock and humans. A new strain of B. abortus (A13334) was isolated from the fetal gastric fluid of a dairy cow, with the aim of using it to compare genetic properties, analyze virulence factor, and survey the epidemiological relationship to other Brucella species. Here, we report the complete and annotated genome sequence of B. abortus A13334. PMID:22965076

  14. Vaccination of Elk (Cervus canadensis) with Brucella abortus Strain RB51 Overexpressing Superoxide Dismutase and Glycosyltransferase Genes Does Not Induce Adequate Protection against Experimental Brucella abortus Challenge.

    PubMed

    Nol, Pauline; Olsen, Steven C; Rhyan, Jack C; Sriranganathan, Nammalwar; McCollum, Matthew P; Hennager, Steven G; Pavuk, Alana A; Sprino, Phillip J; Boyle, Stephen M; Berrier, Randall J; Salman, Mo D

    2016-01-01

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area. In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the development of effective disease management strategies for wild elk herds is of utmost importance, not only for the prevention of reintroduction of brucellosis to cattle, but also for the overall health of the Greater Yellowstone Area elk populations. In two studies, we evaluated the efficacy of B. abortus strain RB51 over-expressing superoxide dismutase and glycosyltransferase for protecting elk from infection and disease caused by B. abortus after experimental infection with a virulent B. abortus strain. Our data indicate that the recombinant vaccine does not protect elk against brucellosis. Further, work is needed for development of an effective brucellosis vaccine for use in elk. PMID:26904509

  15. Vaccination of Elk (Cervus canadensis) with Brucella abortus Strain RB51 Overexpressing Superoxide Dismutase and Glycosyltransferase Genes Does Not Induce Adequate Protection against Experimental Brucella abortus Challenge

    PubMed Central

    Nol, Pauline; Olsen, Steven C.; Rhyan, Jack C.; Sriranganathan, Nammalwar; McCollum, Matthew P.; Hennager, Steven G.; Pavuk, Alana A.; Sprino, Phillip J.; Boyle, Stephen M.; Berrier, Randall J.; Salman, Mo D.

    2016-01-01

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area. In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the development of effective disease management strategies for wild elk herds is of utmost importance, not only for the prevention of reintroduction of brucellosis to cattle, but also for the overall health of the Greater Yellowstone Area elk populations. In two studies, we evaluated the efficacy of B. abortus strain RB51 over-expressing superoxide dismutase and glycosyltransferase for protecting elk from infection and disease caused by B. abortus after experimental infection with a virulent B. abortus strain. Our data indicate that the recombinant vaccine does not protect elk against brucellosis. Further, work is needed for development of an effective brucellosis vaccine for use in elk. PMID:26904509

  16. Innocuity and immune response to Brucella melitensis Rev.1 vaccine in camels (Camelus dromedarius).

    PubMed

    Benkirane, A; Idrissi, A H El; Doumbia, A; de Balogh, K

    2014-01-01

    A field trial was conducted in a camel brucellosis-free herd to evaluate antibody response to the Brucella melitensis Rev.1 vaccine in camels and assess shedding of the vaccine strain in milk. Twenty eight camels were divided into four groups according to their age and vaccination route. Groups A (n=3) and B (n=3) consisted of non-pregnant lactating female camels, vaccinated through subcutaneous and conjunctival routes, respectively. Groups C (n=10) consisted of 8-11 months old calves vaccinated through conjunctival route. The rest of the herd (n=12) composed of female and young camels were not vaccinated and were considered as the control group. Each animal from groups A, B and C was given the recommended dose of 2 × 10(9) colony forming units of Rev.1 vaccine irrespective of age or route of vaccination. Blood samples were collected from all the animals at the time of vaccination and at weekly, bi-weekly and monthly interval until 32 weeks post vaccination and from controls at weeks 8 and 24. The serological tests used were modified Rose Bengal Test, sero-agglutination test, and an indirect Enzyme Linked Immunosorbent Assay. Milk samples were collected from all vaccinated female camels and tested for the presence of Rev.1 vaccine strain. Most vaccinated animals started to show an antibody response at week 2 and remained positive until week 16. By week 20 post-vaccination all animals in the three groups were tested negative for Brucella antibodies. Bacteriological analysis of milk samples did not allow any isolation of Brucella melitensis. All samples were found Brucella negative in PCR analysis. The results of this study indicate that the Rev.1 vaccine induces seroconversion in camels. Rev.1 vaccine strain is not excreted in the milk of camels. These findings are promising as to the safe use of the Rev.1 vaccine in camels. PMID:26623347

  17. Innocuity and immune response to Brucella melitensis Rev.1 vaccine in camels (Camelus dromedarius)

    PubMed Central

    Benkirane, A.; Idrissi, A.H. El; Doumbia, A.; de Balogh, K.

    2014-01-01

    A field trial was conducted in a camel brucellosis-free herd to evaluate antibody response to the Brucella melitensis Rev.1 vaccine in camels and assess shedding of the vaccine strain in milk. Twenty eight camels were divided into four groups according to their age and vaccination route. Groups A (n=3) and B (n=3) consisted of non-pregnant lactating female camels, vaccinated through subcutaneous and conjunctival routes, respectively. Groups C (n=10) consisted of 8-11 months old calves vaccinated through conjunctival route. The rest of the herd (n=12) composed of female and young camels were not vaccinated and were considered as the control group. Each animal from groups A, B and C was given the recommended dose of 2 × 109 colony forming units of Rev.1 vaccine irrespective of age or route of vaccination. Blood samples were collected from all the animals at the time of vaccination and at weekly, bi-weekly and monthly interval until 32 weeks post vaccination and from controls at weeks 8 and 24. The serological tests used were modified Rose Bengal Test, sero-agglutination test, and an indirect Enzyme Linked Immunosorbent Assay. Milk samples were collected from all vaccinated female camels and tested for the presence of Rev.1 vaccine strain. Most vaccinated animals started to show an antibody response at week 2 and remained positive until week 16. By week 20 post-vaccination all animals in the three groups were tested negative for Brucella antibodies. Bacteriological analysis of milk samples did not allow any isolation of Brucella melitensis. All samples were found Brucella negative in PCR analysis. The results of this study indicate that the Rev.1 vaccine induces seroconversion in camels. Rev.1 vaccine strain is not excreted in the milk of camels. These findings are promising as to the safe use of the Rev.1 vaccine in camels. PMID:26623347

  18. A novel recombinant multi-epitope protein against Brucella melitensis infection.

    PubMed

    Yin, Dehui; Li, Li; Song, Dandan; Liu, Yushen; Ju, Wen; Song, Xiuling; Wang, Juan; Pang, Bo; Xu, Kun; Li, Juan

    2016-07-01

    Live, attenuated Brucella vaccines are considered effective but can induce abortions in pregnant animals and are potentially infectious to humans. There is a strong need to improve the immunoprotective effects and safety of vaccines against Brucella. Currently, subunit vaccines have been demonstrated to be safe and efficacious alternatives in both humans and animals. In this study, we employed bioinformatics tools to predict B and T cell epitopes to aid development of a novel recombinant multi-epitope antigen for brucellosis vaccination. To evaluate the protective capacity of the recombinant antigen, the antigen's efficacy was studied in a mouse model of brucellosis. Our results indicated that BALB/c mice immunized with this recombinant multi-epitope antigen showed mixed Th1-Th2 immune responses with high levels of specific IgG and exhibited high degrees of IFN-γ and IL-6 and significantly higher CD3, CD4, and CD8 frequencies compared to the control group. The recombinant antigen and vaccine strain M5-90 also provided protection against Brucella melitensis 16 M infection. Using bioinformatics tools to develop candidate vaccines is a promising strategy for the development of Brucella vaccines. PMID:27133932

  19. Evaluation of the immunogenicity and safety of Brucella melitensis B115 vaccination in pregnant sheep.

    PubMed

    Pérez-Sancho, Marta; Adone, Rosanna; García-Seco, Teresa; Tarantino, Michaela; Diez-Guerrier, Alberto; Drumo, Rosanna; Francia, Massimiliano; Domínguez, Lucas; Pasquali, Paolo; Álvarez, Julio

    2014-04-01

    In spite of its limitations, Rev.1 is currently recognized as the most suitable vaccine against Brucella melitensis (the causative agent of ovine and caprine brucellosis). However, its use is limited to young animals when test-and-slaughter programs are in place because of the occurrence of false positive-reactions due to Rev.1 vaccination. The B. melitensis B115 rough strain has demonstrated its efficacy against B. melitensis virulent strains in the mouse model, but there is a lack of information regarding its potential use in small ruminants for brucellosis control. Here, the safety and immune response elicited by B115 strain inoculation were evaluated in pregnant ewes vaccinated at their midpregnancy. Vaccinated (n=8) and non-vaccinated (n=3) sheep were periodically sampled and analyzed for the 108 days following inoculations using tests designed for the detection of the response elicited by the B115 strain and routine serological tests for brucellosis [Rose Bengal Test (RBT), Complement Fixation Test (CFT) and blocking ELISA (ELISAb)]. Five out of the 8 vaccinated animals aborted, indicating a significant abortifacient effect of B115 inoculation at midpregnancy. In addition, a smooth strain was recovered from one vaccinated animal, suggesting the occurrence of an in vivo reversion phenomenon. Only one animal was positive in both RBT and CFT simultaneously (91 days after vaccination) confirming the lack of induction of cross-reacting antibody responses interfering with routine brucellosis diagnostic tests in most B115-vaccinated animals. PMID:24508034

  20. Genome Sequences of 11 Brucella abortus Isolates from Persistently Infected Italian Regions.

    PubMed

    Garofolo, Giuliano; Foster, Jeffrey T; Drees, Kevin; Zilli, Katiuscia; Platone, Ilenia; Ancora, Massimo; Cammà, Cesare; De Massis, Fabrizio; Calistri, Paolo; Di Giannatale, Elisabetta

    2015-01-01

    Bovine brucellosis, typically caused by Brucella abortus, has been eradicated from much of the developed world. However, the disease remains prevalent in southern Italy, persisting as a public and livestock health concern. We report here the whole-genome sequences of 11 isolates from cattle (Bos taurus) and water buffalo (Bubalus bubalis) that are representative of the current genetic diversity of B. abortus lineages circulating in Italy. PMID:26679575

  1. Inhibition of growth by erythritol catabolism in Brucella abortus.

    PubMed Central

    Sperry, J F; Robertson, D C

    1975-01-01

    The growth of Brucella abortus (US-19) in a complex tryptose-yeast extract medium containing D-glucose is inhibited by 10 mM erythritol. The enzymes of the erythritol pathway, except for D-erythrulose 1-phosphate dehydrogenase (D-glycero-2-tetrulose 1-phosphate:nicotinamide adenine dinucleotide (NAD+) 4-oxidoreductase) were detected in the soluble and membrane fractions of cell extracts. Glucose catabolism by cell extracts was inhibited by erythritol, whereas, phosphorylated intermediates of the hexose monophosphate pathway were converted to pyruvic acid with oxygen consumption. Erythritol kinase (EC 2.7.1.27; adenosine 5'-triphosphate (ATP): erythritol 1-phosphotransferase) was found to be eightfold higher in activity than the hexokinase in cell extracts. In vivo, ATP is apparently consumed with the accumulation of D-erythrulose 1-phosphate (D-glycero-2-tetrulose 1-phosphate) and no substrate level phosphorylation. ATP levels dropped 10-fold in 30 min after addition of erythritol to log phase cells in tryptose-yeast extract medium with D-glucose as the carbon source. These data suggest bacteriostasis in the presence of erythritol results from the ATP drain caused by erythritol kinase. PMID:170249

  2. Draft Genome Sequences of Two Brucella abortus Strains Isolated from Cattle and Pig

    PubMed Central

    Sharma, Narinder Singh; Sunita, Thakhur; Arora, A K; Mudit, Chandra; Kaur, Paviter; Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    We report the draft genome sequences of two Brucella abortus strains LMN1 and LMN2 isolated from cattle and pig. The LMN1 and LMN2 have the genome size of 3,395,952 bp and 3,334,792 bp, respectively. In addition to the conserved genes of Brucella, few novel regions showing similarity to the phages were identified in both strains. PMID:26816552

  3. Occupational infection due to Brucella abortus S19 among workers involved in vaccine production in Argentina.

    PubMed

    Wallach, J C; Ferrero, M C; Victoria Delpino, M; Fossati, C A; Baldi, P C

    2008-08-01

    The pathological consequences of exposure to the vaccine strain Brucella abortus S19 were evaluated in 30 employees from vaccine-manufacturing plants. Active brucellosis was diagnosed in 21 subjects, of whom only five recalled an accidental exposure. Clinical manifestations were mild, and only one patient presented a complication. After antimicrobial therapy, initially symptomatic patients either experienced clinical remission or had mild persistent symptoms. This is the first study reporting infection by B. abortus S19 among workers from vaccine-manufacturing plants, which in many cases was acquired from unnoticed exposures. Measures to improve the safety of B. abortus S19 handling should be implemented. PMID:18727806

  4. [Expression and identification of eukaryotic expression vectors of Brucella melitensis lipoprotein OMP19].

    PubMed

    He, Zuoping; Luo, Peifang; Hu, Feihuan; Weng, Yunceng; Wang, Wenjing; Li, Chengyao

    2016-04-01

    Objective To construct eukaryotic expression vectors carrying Brucella melitensis outer membrane protein 19 (OMP19), express them in transfected Huh7.5.1 and JEG-3 cells, and analyze their role in cell apoptosis. Methods Brucella melitensis lipidated OMP19 (L-OMP19) gene and unlipidated OMP19 (U-OMP19) gene were amplified by PCR and inserted into the vector pZeroBack/blunt. The correct L-OMP19 and U-OMP19 genes verified by XbaI and BamHI double digestion and sequencing were cloned into the lentivirus expression vector pHAGE-CMV-MCS-IZsGreen to construct vectors pHAGE-L-OMP19 and pHAGE-U-OMP19, which were separately transfected into 293FT cells, Huh7.5.1 and JEG-3 cells. L-OMP19 and U-OMP19 in the cells were detected by Western blotting and immunofluorescence technique. Flow cytometry combined with annexin V-PE/7-AAD staining was used to detect the cell apoptosis. Results The lentiviral vectors pHAGE-L-OMP19 and pHAGE-U-OMP19 were constructed correctly and the recombinant lipoproteins L-OMP19 and U-OMP19 expressed in the above cells were well recognized by the specific antibodies against L-OMP19 in Western blotting and immunofluorescence technique. L-OMP19 and U-OMP19 induced JEG-3 cell death, but did not induce the apoptosis of Huh7.5.1 cells. Conclusion The eukaryotic expression vectors of L-OMP19 and U-OMP19 have been constructed successfully. Recombinant lipoproteins L-OMP19 and U-OMP19 expressed in cells have a good antigenicity, which could be used as experimental materials for the research on the relationship between host cells and lipoproteins in Brucella infection. PMID:27053612

  5. Comparative Genomic Analysis of Brucella melitensis Vaccine Strain M5 Provides Insights into Virulence Attenuation

    PubMed Central

    Zhang, Wen; Wang, Heng; Zhao, Hongyan; Piao, Dongri; Tian, Guozhong; Chen, Chen; Cui, Buyun

    2013-01-01

    The Brucella melitensis vaccine strain M5 is widely used to prevent and control brucellosis in animals. In this study, we determined the whole-genome sequence of M5, and conducted a comprehensive comparative analysis against the whole-genome sequence of the virulent strain 16 M and other reference strains. This analysis revealed 11 regions of deletion (RDs) and 2 regions of insertion (RIs) within the M5 genome. Among these regions, the sequences encompassed in 5 RDs and 1 RI showed consistent variation, with a large deletion between the M5 and the 16 M genomes. RD4 and RD5 showed the large diversity among all Brucella genomes, both in RD length and RD copy number. Thus, RD4 and RD5 are potential sites for typing different Brucella strains. Other RD and RI regions exhibited multiple single nucleotide polymorphisms (SNPs). In addition, a genome fragment with a 56 kb rearrangement was determined to be consistent with previous studies. Comparative genomic analysis indicated that genomic island inversion in Brucella was widely present. With the genetic pattern common among all strains analyzed, these 2 RDs, 1 RI, and one inversion region are potential sites for detection of genomic differences. Several SNPs of important virulence-related genes (motB, dhbC, sfuB, dsbAB, aidA, aroC, and lysR) were also detected, and may be used to determine the mechanism of virulence attenuation. Collectively, this study reveals that comparative analysis between wild-type and vaccine strains can provide resources for the study of virulence and microevolution of Brucella. PMID:23967122

  6. Activation of bovine neutrophils by Brucella spp.

    PubMed

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. PMID:27436438

  7. In vivo differences in the virulence, pathogenicity, and induced protective immunity of wboA mutants from genetically different parent Brucella spp.

    PubMed

    Wang, Zhen; Niu, Jianrui; Wang, Shuangshan; Lv, Yanli; Wu, Qingmin

    2013-02-01

    To explore the effects of the genetic background on the characteristics of wboA gene deletion rough mutants generated from different parent Brucella sp. strains, we constructed the rough-mutant strains Brucella melitensis 16 M-MB6, B. abortus 2308-SB6, B. abortus S19-RB6, and B. melitensis NI-NB6 and evaluated their survival, pathogenicity, and induced protective immunity in mice and sheep. In mice, the survival times of the four mutants were very different in the virulence assay, from less than 6 weeks for B. abortus S19-RB6 to 11 weeks for B. abortus 2308-SB6 and B. melitensis NI-NB6. However, B. abortus S19-RB6 and B. melitensis 16 M-MB6, with a shorter survival time in mice, offered better protection against challenges with B. abortus 2308 in protection tests than B. abortus 2308-SB6 and B. melitensis NI-NB6. It seems that the induced protective immunity of each mutant might not be associated with its survival time in vivo. In the cross-protection assay, both B. melitensis 16 M-MB6 and B. abortus S19-RB6 induced greater protection against homologous challenges than heterologous challenges. When pregnant sheep were inoculated with B. abortus S19-RB6 and B. melitensis 16 M-MB6, B. abortus S19-RB6 did not induce abortion, whereas B. melitensis 16 M-MB6 did. These results demonstrated the differences in virulence, pathogenicity, and protective immunity in vivo in the wboA deletion mutants from genetically different parent Brucella spp. and also indicated that future rough vaccine strain development could be promising if suitable parent Brucella strains and/or genes were selected. PMID:23239800

  8. A rapid cycleave PCR method for distinguishing the vaccine strain Brucella abortus A19 in China.

    PubMed

    Nan, Wenlong; Zhang, Yueyong; Tan, Pengfei; Xu, Zouliang; Chen, Yuqi; Mao, Kairong; Chen, Yiping

    2016-05-01

    Brucellosis is a widespread zoonotic disease caused by Brucella spp. Immunization with attenuated vaccines has proved to be an effective method of prevention; however, it may also interfere with diagnosis. Brucella abortus strain A19, which is homologous to B. abortus strain S19, is widely used for the prevention of bovine brucellosis in China. For effective monitoring of the control of brucellosis, it is essential to distinguish A19 from field strains. Single-nucleotide polymorphism-based assays offer a new approach to such discrimination studies. In the current study, we developed a cycleave PCR assay that successfully distinguished attenuated vaccine strains A19 and S19 from 22 strains of B. abortus and 57 strains of 5 other Brucella species. The assay gave a negative reaction with 4 non-Brucella species. The minimum sensitivity of the assay, evaluated using 10-fold dilutions of chromosomal DNA, was 7.6 fg for the A19 strain and 220 fg for the single non-A19/non-S19 Brucella strain tested (B. abortus 104M). The assay was also reproducible (intra- and interassay coefficients of variation: 0.003-0.01 and 0.004-0.025, respectively). The cycleave assay gave an A19/S19-specific reaction in 3 out of 125 field serum samples, with the same 3 samples being positive in an alternative A19/S19-specific molecular assay. The cycleave assay gave a total of 102 Brucella-specific reactions (3 being the A19/S19-specific reactions), whereas an alternative Brucella-specific assay gave 92 positive reactions (all also positive in the cycleave assay). Therefore, this assay represents a simple, rapid, sensitive, and specific tool for use in brucellosis control. PMID:27075847

  9. RNA-seq reveals the critical role of CspA in regulating Brucella melitensis metabolism and virulence.

    PubMed

    Wang, Zhen; Liu, Wenxiao; Wu, Tonglei; Bie, Pengfei; Wu, Qingmin

    2016-04-01

    Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of Brucella to survive and multiply in the hostile environment of host macrophages is essential for its virulence. The cold shock protein CspA plays an important role in the virulence of B. melitensis. To analyze the genes regulated by CspA, the whole transcriptomes of B. melitensis NIΔcspA and its parental wild-type strain, B. melitensis NI, were sequenced and analyzed using the Solexa/Illumina sequencing platform. A total of 446 differentially expressed genes were identified, including 324 up-regulated and 122 down-regulated genes. Numerous genes identified are involved in amino acid, fatty acid, nitrogen, and energy metabolism. Interestingly, all genes involved in the type IV secretion system and LuxR-type regulatory protein VjbR were significantly down-regulated in NIΔcspA. In addition, an effector translocation assay confirmed that the function of T4SS in NIΔcspA is influenced by deletion of the cspA gene. These results revealed the differential phenomena associated with virulence and metabolism in NIΔcspA and NI, providing important information for understanding detailed CspA-regulated interaction networks and Brucella pathogenesis. PMID:26740105

  10. Phospholipase A1 Modulates the Cell Envelope Phospholipid Content of Brucella melitensis, Contributing to Polymyxin Resistance and Pathogenicity

    PubMed Central

    Kerrinnes, Tobias; Young, Briana M.; Leon, Carlos; Roux, Christelle M.; Tran, Lisa; Atluri, Vidya L.; Winter, Maria G.

    2015-01-01

    A subset of bacterial pathogens, including the zoonotic Brucella species, are highly resistant against polymyxin antibiotics. Bacterial polymyxin resistance has been attributed primarily to the modification of lipopolysaccharide; however, it is unknown what additional mechanisms mediate high-level resistance against this class of drugs. This work identified a role for the Brucella melitensis gene bveA (BMEII0681), encoding a predicted esterase, in the resistance of B. melitensis to polymyxin B. Characterization of the enzymatic activity of BveA demonstrated that it is a phospholipase A1 with specificity for phosphatidylethanolamine (PE). Further, lipidomic analysis of B. melitensis revealed an excess of PE lipids in the bacterial membranes isolated from the bveA mutant. These results suggest that by lowering the PE content of the cell envelope, BveA increases the resistance of B. melitensis to polymyxin B. BveA was required for survival and replication of B. melitensis in macrophages and for persistent infection in mice. BveA family esterases are encoded in the genomes of the alphaproteobacterial species that coexist with the polymyxin-producing bacteria in the rhizosphere, suggesting that maintenance of a low PE content in the bacterial cell envelope may be a shared persistence strategy for association with plant and mammalian hosts. PMID:26282427

  11. Experimental Infection of Richardson's Ground Squirrels (Spermophilus richardsonii) with Attenuated and Virulent Strains of Brucella abortus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of non-target species to wildlife vaccines is an important concern when evaluating a candidate vaccine for use in the field. A previous investigation of the safety of Brucella abortus strain RB51 (sRB51) in various non-target species suggested that Richardson’s ground squirrels (Spermophil...

  12. Immune reactivity of sera obtained from brucellosis patients and vaccinated-rabbits to a fusion protein from Brucella melitensis

    PubMed Central

    Amani, Jafar; Ghasemi, Amir; Ranjbar, Reza; Shabani, Mahdi; Zandemami, Mahdi; Golmohammadi, Reza

    2015-01-01

    Objective(s): Brucella spp. are facultative intracellular pathogens which can stay alive and multiply in professional and nonprofessional phagocytes. Immunity against Brucella melitensis involves antigen-specific CD4+ and CD8+ T-cells activation and humoral immune responses. Due to negative aspects of live attenuated vaccines, much attention has been focused on finding Brucella-protective antigens to introduce them as potential subunit vaccine candidates. Materials and Methods: A chimeric gene encoding trigger factor (TF), Omp3148-74 and BP2687-111 fragments (TOB) from B. melitensis was successfully cloned, expressed in Escherichia coli BL21-DE3 and purified by Ni-NTA agarose column. Antibodies to recombinant TOB (rTOB) have been investigated in Brucella-infected human sera and a pool serum prepared from B. melitensis-vaccinated rabbits. Results: Our results showed that the immunized rabbit pool serum strongly reacted with rTOB. In addition, antibodies against rTOB were detectable in 76.5% of sera obtained from infected patients. Conclusion: These findings suggest that rTOB may provide a potential immunogenic candidate which could be considered in future vaccine studies. PMID:26019797

  13. Examination of Taxonomic Uncertainties Surrounding Brucella abortus bv. 7 by Phenotypic and Molecular Approaches

    PubMed Central

    Garin-Bastuji, Bruno; Le Carrou, Gilles; Allix, Sebastien; Perrett, Lorraine L.; Dawson, Claire E.; Groussaud, Pauline; Stubberfield, Emma J.; Koylass, Mark; Whatmore, Adrian M.

    2014-01-01

    Brucella taxonomy is perpetually being reshuffled, at both the species and intraspecies levels. Biovar 7 of Brucella abortus was suspended from the Approved Lists of Bacterial Names Brucella classification in 1988, because of unpublished evidence that the reference strain 63/75 was a mixture of B. abortus biovars 3 and 5. To formally clarify the situation, all isolates previously identified as B. abortus bv. 7 in the AHVLA and ANSES strain collections were characterized by classical microbiological and multiple molecular approaches. Among the 14 investigated strains, including strain 63/75, only four strains, isolated in Kenya, Turkey, and Mongolia, were pure and showed a phenotypic profile in agreement with the former biovar 7, particularly agglutination with both anti-A/anti-M monospecific sera. These results were strengthened by molecular strategies. Indeed, genus- and species-specific methods allowed confirmation that the four pure strains belonged to the B. abortus species. The combination of most approaches excluded their affiliation with the recognized biovars (biovars 1 to 6 and 9), while some suggested that they were close to biovar 3.These assays were complemented by phylogenetic and/or epidemiological methods, such as multilocus sequence analysis (MLSA) and variable-number tandem repeat (VNTR) analysis. The results of this polyphasic investigation allow us to propose the reintroduction of biovar 7 into the Brucella classification, with at least three representative strains. Interestingly, the Kenyan strain, sharing the same biovar 7 phenotype, was genetically divergent from other three isolates. These discrepancies illustrate the complexity of Brucella taxonomy. This study suggests that worldwide collections could include strains misidentified as B. abortus bv. 7, and it highlights the need to verify their real taxonomic position. PMID:24362435

  14. A case of unusual septic knee arthritis with Brucella abortus after arthroscopic meniscus surgery.

    PubMed

    Lee, Keun Hwa; Kang, Hyunseong; Kim, Taejung; Choi, Sungwook

    2016-01-01

    We present a 51-year-old male patient with Brucella abortus septic arthritis in the right knee following arthroscopic meniscus surgery. He had eaten a traditional dish of raw minced cattle conceptus (bovine fetus) that was prepared after the cow was slaughtered. Despite treatment with empirical antibiotics and debridement of the postoperative surgical wound, the infection persisted without improvement. Polymerase chain reaction sequencing identified Brucella abortus from tissue samples obtained from the patient. After confirmation of the diagnosis of brucellar infection, antibiotics were replaced with doxycycline and rifampin, which were used for 4 months. In patients with a non-specific arthralgia who eat raw meat or live close to animals, it is important to consider the possibility of septic arthritis due to infection with Brucella spp. PMID:27130400

  15. The prevalence and distribution of Brucella melitensis in goats in Malaysia from 2000 to 2009.

    PubMed

    Bamaiyi, P H; Hassan, L; Khairani-Bejo, S; ZainalAbidin, M; Ramlan, M; Adzhar, A; Abdullah, N; Hamidah, N H M; Norsuhanna, M M; Hashim, S N

    2015-05-01

    A study was conducted to describe the prevalence and distribution of zoonotic Brucella melitensis in goats in Peninsular Malaysia. Using serosurveillance data of the last decade (2000-2009) involving 119,799 goats and 3555 farms, the seroprevalence of brucellosis among goats was 0.91% (95% CI=0.86-0.96) and among farms was 7.09% (95% CI=6.27-7.98). The odds of brucellosis was significantly (P<0.05) higher in the later part of the decade, in larger herd size and among the states located in the peninsula as compared to eastern Malaysia. The infection was detected throughout Malaysia but at generally low seroprevalences with states like Perlis that border neighbouring countries having higher seroprevalence of brucellosis than other non-border states. PMID:25746928

  16. Structural, functional and immunogenic insights on Cu,Zn Superoxide Dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and he...

  17. Biotyping and Genotyping (MLVA16) of Brucella abortus Isolated from Cattle in Brazil, 1977 to 2008

    PubMed Central

    Minharro, Sílvia; Silva Mol, Juliana P.; Dorneles, Elaine M. S.; Pauletti, Rebeca B.; Neubauer, Heinrich; Melzer, Falk; Poester, Fernando P.; Dasso, Maurício G.; Pinheiro, Elaine S.; Soares Filho, Paulo M.; Santos, Renato L.; Heinemann, Marcos B.; Lage, Andrey P.

    2013-01-01

    Brucellosis is a worldwide distributed zoonosis that causes important economic losses to animal production. In Brazil, information on the distribution of biovars and genotypes of Brucella spp. is scarce or unavailable. This study aimed (i) to biotype and genotype 137 Brazilian cattle isolates (from 1977 to 2008) of B. abortus and (ii) to analyze their distribution. B. abortus biovars 1, 2 and 3 (subgroup 3b) were confirmed and biovars 4 and 6 were first described in Brazil. Genotyping by the panel 1 revealed two groups, one clustering around genotype 40 and another around genotype 28. Panels 2A and 2B disclosed a high diversity among Brazilian B. abortus strains. Eighty-nine genotypes were found by MLVA16. MLVA16 panel 1 and 2 showed geographic clustering of some genotypes. Biotyping and MLVA16 genotyping of Brazilian B. abortus isolates were useful to better understand the epidemiology of bovine brucellosis in the region. PMID:24324670

  18. Surface antigens of smooth brucellae.

    PubMed

    Diaz, R; Jones, L M; Leong, D; Wilson, J B

    1968-10-01

    Surface antigens of smooth brucellae were extracted by ether-water, phenol-water, trichloroacetic acid, and saline and examined by immunoelectrophoresis and gel diffusion with antisera from infected and immunized rabbits. Ether-water extracts of Brucella melitensis contained a lipopolysaccharide protein component, which was specific for the surface of smooth brucellae and was correlated with the M agglutinogen of Wilson and Miles, a polysaccharide protein component devoid of lipid which was not restricted to the surface of smooth brucellae and was not correlated with the smooth agglutinogen (component 1), and several protein components which were associated with internal antigens of rough and smooth brucellae. Immunoelectrophoretic analysis of ether-water extracts of B. abortus revealed only two components, a lipopolysaccharide protein component, which was correlated with the A agglutinogen, and component 1. Component 1 from B. melitensis and B. abortus showed identity in gel diffusion tests, whereas component M from B. melitensis and component A from B. abortus showed partial identity with unabsorbed antisera and no cross-reactions with monospecific sera. Attempts to prepare monospecific sera directly by immunization of rabbits with cell walls or ether-water extracts were unsuccessful. Absorption of antisera with heavy fraction of ether-water extracts did not always result in monospecific sera. It was concluded (as has been described before) that the A and M antigens are present on a single antigenic complex, in different proportions depending upon the species and biotype, and that this component is a lipopolysaccharide protein complex of high molecular weight that diffuses poorly through agar gel. Components 1, A, and M were also demonstrated in trichloroacetic acid and phenol-water extracts. With all extracts, B. melitensis antigen showed greater diffusibility in agar than B. abortus antigens. After mild acid hydrolysis, B. abortus ether-water extract was able

  19. The bovine immune response to Brucella abortus. II. Elimination of some sporadic serological reactions by chelation of divalent cations.

    PubMed Central

    Nielsen, K; Samagh, B S; Speckmann, G; Stemshorn, B

    1979-01-01

    The standard agglutination tests for detecting antibody to Brucella abortus were modified by addition of chelating agents (EDTA and EGTA) to the antigens. Approximately 80% of "singleton" agglutination test reactions, negative on the diagnostic complement fixation test, obtained with cattle sera were eliminated while no decrease in titer was apparent when sera from B. abortus infected or vaccinated cattle were tested. PMID:121242

  20. Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence.

    PubMed

    Almirón, M; Martínez, M; Sanjuan, N; Ugalde, R A

    2001-10-01

    Brucella spp. are pathogenic bacteria that cause brucellosis, an animal disease which can also affect humans. Although understanding the pathogenesis is important for the health of animals and humans, little is known about virulence factors associated with it. In order for chronic disease to be established, Brucella spp. have developed the ability to survive inside phagocytes by evading cell defenses. It hides inside vacuoles, where it then replicates, indicating that it has an active metabolism. The purpose of this work was to obtain better insight into the intracellular metabolism of Brucella abortus. During a B. abortus genomic sequencing project, a clone coding a putative gene homologous to hemH was identified and sequenced. The amino acid sequence revealed high homology to members of the ferrochelatase family. A knockout mutant displayed auxotrophy for hemin, defective intracellular survival inside J774 and HeLa cells, and lack of virulence in BALB/c mice. This phenotype was overcome by complementing the mutant strain with a plasmid harboring wild-type hemH. These data demonstrate that B. abortus synthesizes its own heme and also has the ability to use an external source of heme; however, inside cells, there is not enough available heme to support its intracellular metabolism. It is concluded that ferrochelatase is essential for the multiplication and intracellular survival of B. abortus and thus for the establishment of chronic disease as well. PMID:11553564

  1. Ferrochelatase Is Present in Brucella abortus and Is Critical for Its Intracellular Survival and Virulence

    PubMed Central

    Almirón, Marta; Martínez, Marcela; Sanjuan, Norberto; Ugalde, Rodolfo A.

    2001-01-01

    Brucella spp. are pathogenic bacteria that cause brucellosis, an animal disease which can also affect humans. Although understanding the pathogenesis is important for the health of animals and humans, little is known about virulence factors associated with it. In order for chronic disease to be established, Brucella spp. have developed the ability to survive inside phagocytes by evading cell defenses. It hides inside vacuoles, where it then replicates, indicating that it has an active metabolism. The purpose of this work was to obtain better insight into the intracellular metabolism of Brucella abortus. During a B. abortus genomic sequencing project, a clone coding a putative gene homologous to hemH was identified and sequenced. The amino acid sequence revealed high homology to members of the ferrochelatase family. A knockout mutant displayed auxotrophy for hemin, defective intracellular survival inside J774 and HeLa cells, and lack of virulence in BALB/c mice. This phenotype was overcome by complementing the mutant strain with a plasmid harboring wild-type hemH. These data demonstrate that B. abortus synthesizes its own heme and also has the ability to use an external source of heme; however, inside cells, there is not enough available heme to support its intracellular metabolism. It is concluded that ferrochelatase is essential for the multiplication and intracellular survival of B. abortus and thus for the establishment of chronic disease as well. PMID:11553564

  2. Pyruvate kinase is necessary for Brucella abortus full virulence in BALB/c mouse.

    PubMed

    Gao, Jianpeng; Tian, Mingxing; Bao, Yanqing; Li, Peng; Liu, Jiameng; Ding, Chan; Wang, Shaohui; Li, Tao; Yu, Shengqing

    2016-01-01

    Brucellosis, caused by a facultative intracellular pathogen Brucella, is one of the most prevalent zoonosis worldwide. Host infection relies on several uncanonical virulence factors. A recent research hotpot is the links between carbon metabolism and bacterial virulence. In this study, we found that a carbon metabolism-related pyruvate kinase (Pyk) encoded by pyk gene (locus tag BAB_RS24320) was associated with Brucella virulence. Determination of bacterial growth curves and resistance to environmental stress factors showed that Pyk plays an important role in B. abortus growth, especially under the conditions of nutrition deprivation, and resistance to oxidative stress. Additionally, cell infection assay showed that Pyk is necessary for B. abortus survival and evading fusion with lysosomes within RAW264.7 cells. Moreover, animal experiments exhibited that the Pyk deletion significantly reduced B. abortus virulence in a mouse infection model. Our results elucidated the role of the Pyk in B. abortus virulence and provided information for further investigation of Brucella virulence associated carbon metabolism. PMID:27561260

  3. In vitro synergistic activity of antibiotic combinations against Brucella melitensis using E-test methodology

    PubMed Central

    Kilic, Selcuk; Dizbay, Murat; Hizel, Kenan; Arman, Dilek

    2008-01-01

    The treatment of brucellosis is still problematic, because of high rates of treatment failure or relapses. As the microorganism is an intracellular pathogen, treatment requires combined regimens. However, limited existing data on in vitro combinations are avaliable for Brucellae. The aim of this study was to investigate the in vitro efficacy of various traditional and new antibiotic combinations against 16 Brucella melitensis strains. The combination effect of antimicrobial agents was evaluated by E-test synergy method to obtain a fractional inhibitory concentration (FIC) index. Co-Trimoxazole (SXT) and moxifloxocin (MXF) exhibited the lowest MIC, while Rifampin (RIF) had the highest MIC in the study. Combinations with RIF showed the best synergistic activity (100% of RIF-tetracycline (TET), and 87.5% of RIF-SXT). Synergistic activity was also detected at seven (43.7%) of ciprofloxocin (CIP)-SXT, four (25%) of TET-MXF, and two (12.5%) of TET-SXT combinations. The combinations that demonstrated additivity were TET-SXT, CIP-SXT and TET-MXF. Antagonism was observed only with the TET-Streptomycin (STR) combination in three strains (18.8%). Further work including randomized controlled clinical trials is required to fully evaluate the usefulness of these data. PMID:24031207

  4. In vitro evaluation of six chemical agents on smooth Brucella melitensis strain.

    PubMed

    Wang, Zhen; Bie, Peng; Cheng, Jie; Wu, Qing; Lu, Lin

    2015-01-01

    Brucellosis is a zoonosis that disseminated by a variety of ways between animals and humans. The effective disinfection of contaminated environments, soil, feces, and animal bodies plays an irreplaceable role in the prevention and control of brucellosis. To kill Brucella effectively, the bactericidal effects of frequently used disinfectants (including aldehydes, halogens, quaternary ammonium compound, phenolics, and alkalines) and the potential factors that influence disinfection effects were determined in the present study. The results revealed that the minimum bactericidal concentrations (MBCs) of the six disinfectants were all significantly lower than the routinely used concentrations, and all the tested disinfectants were effective against B. melitensis NI. The results of quantitative determination showed that the bactericidal effects of the disinfectants were influenced by their concentration, exposure time, dirty condition and the temperature. Under dirty conditions and a low temperatures, sodium hypochlorite and sodium hydroxide showed better bactericidal effect, while benzalkonium chloride was almost without bactericidal ability. In addition, increasing the disinfectant concentration at low temperatures can improve the bactericidal effect. The present study suggested that Brucella is sensitive to commonly used disinfectants. However, the bactericidal effect is vulnerable to dirty conditions and low temperatures. Thus, it is necessary to test the in vitro sensitivity of disinfectants that are commonly used on farms or the new disinfectant formulations periodically, with the aim of improving the efficacy of animal and human brucellosis prevention programs. PMID:25857255

  5. Genotyping of Human Brucella melitensis Biovar 3 Isolated from Shanxi Province in China by MLVA16 and HOOF

    PubMed Central

    Xiao, Pei; Yang, Hongxia; Di, Dongdong; Piao, Dongri; Zhang, Qiuxiang; Hao, Ruie; Yao, Suxia; Zhao, Rong; Zhang, Fanfei; Tian, Guozhong; Zhao, Hongyan; Fan, Weixing; Cui, Buyun; Jiang, Hai

    2015-01-01

    Background Brucellosis presents a significant economic burden for China because it causes reproductive failure in host species and chronic health problems in humans. These problems can involve multiple organs. Brucellosis is highly endemic in Shanxi Province China. Molecular typing would be very useful to epidemiological surveillance. The purpose of this study was to assess the diversity of Brucella melitensis strains for epidemiological surveillance. Historical monitoring data suggest that Brucella melitensis biovar 3 is the predominant strain associated with the epidemic of brucellosis in Shanxi Province. Methods/Principal Findings Multiple-locus variable-number repeat analysis (MLVA-16) and hypervariable octameric oligonucleotide fingerprinting (HOOF-print) were used to type a human-hosted Brucella melitensis population (81 strains). Sixty-two MLVA genotypes (discriminatory index: 0.99) were detected, and they had a genetic similarity coefficient ranging from 84.9% to 100%. Eighty strains of the population belonged to the eastern Mediterranean group with panel 1 genotypes 42 (79 strains) and 43 (1 strain). A new panel 1 genotype was found in this study. It was named 114 MLVAorsay genotype and it showed similarity to the two isolates from Guangdong in a previous study. Brucella melitensis is distributed throughout Shanxi Province, and like samples from Inner Mongolia, the eastern Mediterranean genotype 42 was the main epidemic strain (97%). The HOOF-printing showed a higher diversity than MLVA-16 with a genetic similarity coefficient ranging from 56.8% to 100%. Conclusions According to the MLVA-16 and HOOF-printing results, both methods could be used for the epidemiological surveillance of brucellosis. A new genotype was found in both Shanxi and Guangdong Provinces. In areas with brucellosis, the MLVA-16 scheme is very important for tracing cases back to their origins during outbreak investigations. It may facilitate the expansion and eradication of the disease

  6. Brucellosis in captive Rocky Mountain bighorn sheep (Ovis canadensis) caused by Brucella abortus biovar 4.

    PubMed

    Kreeger, Terry J; Cook, Walter E; Edwards, William H; Cornish, Todd

    2004-04-01

    Nine (four female, five male) captive adult Rocky Mountain bighorn sheep (Ovis canadensis) contracted brucellosis caused by Brucella abortus biovar 4 as a result of natural exposure to an aborted elk (Cervus elaphus) fetus. Clinical signs of infection were orchitis and epididymitis in males and lymphadenitis and placentitis with abortion in females. Gross pathologic findings included enlargement of the testes or epididymides, or both, and yellow caseous abscesses and pyogranulomas of the same. Brucella abortus biovar 4 was cultured in all bighorn sheep from a variety of tissues, including testes/epididymides, mammary gland, and lymph nodes. All bighorn sheep tested were positive on a variety of standard Brucella serologic tests. This is the first report of brucellosis caused by B. abortus in Rocky Mountain bighorn sheep. It also provides evidence that bighorn sheep develop many of the manifestations ascribed to this disease and that infection can occur from natural exposure to an aborted fetus from another species. Wildlife managers responsible for bighorn sheep populations sympatric with Brucella-infected elk or bison (Bison bison) should be cognizant of the possibility of this disease in bighorn sheep. PMID:15362833

  7. A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection

    PubMed Central

    Spera, Juan Manuel; Ugalde, Juan Esteban; Mucci, Juan; Comerci, Diego J.; Ugalde, Rodolfo Augusto

    2006-01-01

    Microbial pathogens with the ability to establish chronic infections have evolved strategies to actively modulate the host immune response. Brucellosis is a disease caused by a Gram-negative intracellular pathogen that if not treated during the initial phase of the infection becomes chronic as the bacteria persist for the lifespan of the host. How this pathogen and others achieve this action is a largely unanswered question. We report here the identification of a Brucella abortus gene (prpA) directly involved in the immune modulation of the host. PrpA belongs to the proline-racemase family and elicits a B lymphocyte polyclonal activation that depends on the integrity of its proline-racemase catalytic site. Stimulation of splenocytes with PrpA also results in IL-10 secretion. Construction of a B. abortus-prpA mutant allowed us to assess the contribution of PrpA to the infection process. Mice infected with B. abortus induced an early and transient nonresponsive status of splenocytes to both Escherichia coli LPS and ConA. This phenomenon was not observed when mice were infected with a B. abortus-prpA mutant. Moreover, the B. abortus-prpA mutant had a reduced capacity to establish a chronic infection in mice. We propose that an early and transient nonresponsive immune condition of the host mediated by this B cell polyclonal activator is required for establishing a successful chronic infection by Brucella. PMID:17053080

  8. Prime-booster vaccination of cattle with an influenza viral vector Brucella abortus vaccine induces a long-term protective immune response against Brucella abortus infection.

    PubMed

    Tabynov, Kaissar; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Kydyrbayev, Zhailaubay; Kozhamkulov, Yerken; Inkarbekov, Dulat; Sansyzbay, Abylai

    2016-01-20

    This study analyzed the duration of the antigen-specific humoral and T-cell immune responses and protectiveness of a recently-developed influenza viral vector Brucella abortus (Flu-BA) vaccine expressing Brucella proteins Omp16 and L7/L12 and containing the adjuvant Montadine Gel01 in cattle. At 1 month post-booster vaccination (BV), both humoral (up to 3 months post-BV; GMT IgG ELISA titer 214±55 to 857±136, with a prevalence of IgG2a over IgG1 isotype antibodies) and T-cell immune responses were observed in vaccinated heifers (n=35) compared to control animals (n=35, injected with adjuvant/PBS only). A pronounced T-cell immune response was induced and maintained for 12 months post-BV, as indicated by the lymphocyte stimulation index (2.7±0.4 to 10.1±0.9 cpm) and production of IFN-γ (13.7±1.7 to 40.0±3.0 ng/ml) at 3, 6, 9, and 12 months post-BV. Prime-boost vaccination provided significant protection against B. abortus infection at 3, 6, 9 and 12 months (study duration) post-BV (7 heifers per time point; alpha=0.03-0.01 vs. control group). Between 57.1 and 71.4% of vaccinated animals showed no signs of B. abortus infection (or Brucella isolation) at 3, 6, 9 and 12 months post-BV; the severity of infection, as indicated by the index of infection (P=0.0003 to <0.0001) and rates of Brucella colonization (P=0.03 to <0.0001), was significantly lower for vaccinated diseased animals than appropriate control animals. Good protection from B. abortus infection was also observed among pregnant vaccinated heifers (alpha=0.03), as well as their fetuses and calves (alpha=0.01), for 12 months post-BV. Additionally, 71.4% of vaccinated heifers calved successfully whereas all pregnant control animals aborted (alpha=0.01). Prime-boost vaccination of cattle with Flu-BA induces an antigen-specific humoral and pronounced T cell immune response and most importantly provides good protectiveness, even in pregnant heifers, for at least 12 months post-BV. PMID:26709638

  9. A functional and phylogenetic comparison of quorum sensing related genes in Brucella melitensis 16M.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Pérez-Rueda, Ernesto

    2014-08-01

    A quorum-sensing (QS) system is involved in Brucella melitensis survival inside the host cell. Two transcriptional regulators identified in B. melitensis, BlxR and VjbR, regulate the expression of virB, an operon required for bacterial intracellular persistence. In this work, 628 genes affected by VjbR and 124 by BlxR were analyzed to gain insights into their functional and taxonomical distributions among the Bacteria and Archaea cellular domains. In this regard, the Cluster of Orthologous Groups (COG) genes and orthologous genes in 789 nonredundant bacterial and archaeal genomes were obtained and compared against a group of randomly selected genes. From these analyses, we found 71 coaffected genes between VjbR and BlxR. In the COG comparison, VjbR activated genes associated with intracellular trafficking, secretion and vesicular transport and defense mechanisms, while BlxR affected genes related to energy production and conversion (with an equal effect) and translation, ribosomal structure and biogenesis, posttranslational modifications and carbohydrate and amino acid metabolism (with a negative effect). When the taxonomical distribution of orthologous genes was evaluated, the VjbR- and BlxR-related genes presented more orthologous genes in Crenarchaeota (Archaea), Firmicutes, and Tenericutes and fewer genes in Proteobacteria than expected by chance. These findings suggest that QS system exert a fine-tuning modulation of gene expression, by which VjbR activates genes related to infection persistence and defense, while BlxR represses general bacterial metabolism for intracellular adaptations. Finally, these affected genes present a degree of presence among Bacteria and Archaea genomes that is different from that expected by chance. PMID:24994008

  10. Immunogenic response induced by wzm and wzt gene deletion mutants from Brucella abortus S19.

    PubMed

    Wang, Xiu-Ran; Yan, Guang-Mou; Zhang, Rui; Lang, Xu-Long; Yang, Yan-Ling; Li, Xiao-Yan; Chen, Si; Qian, Jing; Wang, Xing-Long

    2014-02-01

    Brucellosis is an infectious disease affecting humans and animals worldwide. Effective methods of control include inducing immunity in animals by vaccination and elimination. Brucella abortus S19 is one of the popular vaccines for control of cattle brucellosis, as it has low virulence. In this paper, allelic exchange plasmids of wzm and wzt genes were constructed and partially knocked out to evaluate the effects on the induction of immunity to Brucella abortus S19 mutants. Cytokine secretion in vitro, INF-γ induction in vivo and antibody dynamics were evaluated. These data suggested that the immunity-eliciting ability of the wzm and wzt gene deletion mutants was similar, although reduced compared with the S19 strain. The results demonstrated that the wzt gene may be more important in the regulation of the induction of immunity than the wzm gene. PMID:24247358

  11. CD8+ T cell exhaustion, suppressed gamma interferon production, and delayed memory response induced by chronic Brucella melitensis infection.

    PubMed

    Durward-Diioia, Marina; Harms, Jerome; Khan, Mike; Hall, Cherisse; Smith, Judith A; Splitter, Gary A

    2015-12-01

    Brucella melitensis is a well-adapted zoonotic pathogen considered a scourge of mankind since recorded history. In some cases, initial infection leads to chronic and reactivating brucellosis, incurring significant morbidity and economic loss. The mechanism by which B. melitensis subverts adaptive immunological memory is poorly understood. Previous work has shown that Brucella-specific CD8(+) T cells express gamma interferon (IFN-γ) and can transition to long-lived memory cells but are not polyfunctional. In this study, chronic infection of mice with B. melitensis led to CD8(+) T cell exhaustion, manifested by programmed cell death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) expression and a lack of IFN-γ production. The B. melitensis-specific CD8(+) T cells that produced IFN-γ expressed less IFN-γ per cell than did CD8(+) cells from uninfected mice. Both memory precursor (CD8(+) LFA1(HI) CD127(HI) KLRG1(LO)) and long-lived memory (CD8(+) CD27(HI) CD127(HI) KLRG1(LO)) cells were identified during chronic infection. Interestingly, after adoptive transfer, mice receiving cells from chronically infected animals were able to contain infection more rapidly than recipients of cells from acutely infected or uninfected donors, although the proportions of exhausted CD8(+) T cells increased after adoptive transfer in both challenged and unchallenged recipients. CD8(+) T cells of challenged recipients initially retained the stunted IFN-γ production found prior to transfer, and cells from acutely infected mice were never seen to transition to either memory subset at all time points tested, up to 30 days post-primary infection, suggesting a delay in the generation of memory. Here we have identified defects in Brucella-responsive CD8(+) T cells that allow chronic persistence of infection. PMID:26416901

  12. CD8+ T Cell Exhaustion, Suppressed Gamma Interferon Production, and Delayed Memory Response Induced by Chronic Brucella melitensis Infection

    PubMed Central

    Durward-Diioia, Marina; Harms, Jerome; Khan, Mike; Hall, Cherisse; Smith, Judith A.

    2015-01-01

    Brucella melitensis is a well-adapted zoonotic pathogen considered a scourge of mankind since recorded history. In some cases, initial infection leads to chronic and reactivating brucellosis, incurring significant morbidity and economic loss. The mechanism by which B. melitensis subverts adaptive immunological memory is poorly understood. Previous work has shown that Brucella-specific CD8+ T cells express gamma interferon (IFN-γ) and can transition to long-lived memory cells but are not polyfunctional. In this study, chronic infection of mice with B. melitensis led to CD8+ T cell exhaustion, manifested by programmed cell death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) expression and a lack of IFN-γ production. The B. melitensis-specific CD8+ T cells that produced IFN-γ expressed less IFN-γ per cell than did CD8+ cells from uninfected mice. Both memory precursor (CD8+ LFA1HI CD127HI KLRG1LO) and long-lived memory (CD8+ CD27HI CD127HI KLRG1LO) cells were identified during chronic infection. Interestingly, after adoptive transfer, mice receiving cells from chronically infected animals were able to contain infection more rapidly than recipients of cells from acutely infected or uninfected donors, although the proportions of exhausted CD8+ T cells increased after adoptive transfer in both challenged and unchallenged recipients. CD8+ T cells of challenged recipients initially retained the stunted IFN-γ production found prior to transfer, and cells from acutely infected mice were never seen to transition to either memory subset at all time points tested, up to 30 days post-primary infection, suggesting a delay in the generation of memory. Here we have identified defects in Brucella-responsive CD8+ T cells that allow chronic persistence of infection. PMID:26416901

  13. Effects of gamma radiation and azathioprine on Brucella abortus infection in BALB/c mice

    SciTech Connect

    Elzer, P.H.; Rowe, G.E.; Enright, F.M.; Winter, A.J. )

    1991-06-01

    Sublethal irradiation of BALB/c mice 4 hours prior to inoculation with 5 {times} 10(4) virulent Brucella abortus, caused significant (P less than 0.01) reductions in bacterial numbers in comparison with numbers in unirradiated controls. Numbers of brucellae in the spleen were significantly lower by 5 days after inoculation and decreased thereafter, so that at 2 and 3 weeks after inoculation, there were up to 1,000-fold fewer organisms in the spleen of irradiated mice. The number of brucellae in the spleen increased in irradiated mice thereafter. The course of events in the liver was similar, but developed more slowly, and peak differences in bacterial numbers were about 1 log less. These phenomena were not attributable to differences in implantation of brucellae in the liver or spleen, nor to an abnormal distribution of organisms in other organs of irradiated mice. Irradiation of mice during the plateau phase of infection also resulted in significant (P less than 0.05) reductions in bacterial counts in the spleen during the succeeding 4 weeks. Macrophage activation in the spleen, measured by a Listeria monocytogenes-killing assay, was significantly (P less than 0.01) increased by irradiation alone at 1 week after inoculation and at that time was significantly (P less than 0.01) greater in B abortus-infected, irradiated mice than in B abortus-infected controls. Histologic, cytologic, and immunologic studies revealed that the decrease in numbers of organisms between 1 and 2 weeks after inoculation in irradiated mice occurred at a time when their immune response to B abortus was suppressed and when numbers of neutrophils and monocytes infiltrating the spleen were significantly (P less than 0.01) diminished.

  14. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide.

    PubMed

    Barquero-Calvo, Elías; Mora-Cartín, Ricardo; Arce-Gorvel, Vilma; de Diego, Juana L; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Buret, Andre G; Gorvel, Jean-Pierre; Moreno, Edgardo

    2015-05-01

    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. PMID:25946018

  15. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide

    PubMed Central

    Barquero-Calvo, Elías; Mora-Cartín, Ricardo; Arce-Gorvel, Vilma; de Diego, Juana L.; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Buret, Andre G.; Gorvel, Jean-Pierre; Moreno, Edgardo

    2015-01-01

    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. PMID:25946018

  16. Proteomic Profile of Brucella abortus-Infected Bovine Chorioallantoic Membrane Explants

    PubMed Central

    Mol, Juliana P. S.; Pires, Simone F.; Chapeaurouge, Alexander D.; Perales, Jonas; Santos, Renato L.; Andrade, Hélida M.; Lage, Andrey P.

    2016-01-01

    Brucella abortus is the etiological agent of bovine brucellosis, a zoonotic disease that causes significant economic losses worldwide. The differential proteomic profile of bovine chorioallantoic membrane (CAM) explants at early stages of infection with B. abortus (0.5, 2, 4, and 8 h) was determined. Analysis of CAM explants at 0.5 and 4 h showed the highest differences between uninfected and infected CAM explants, and therefore were used for the Differential Gel Electrophoresis (DIGE). A total of 103 spots were present in only one experimental group and were selected for identification by mass spectrometry (MALDI/ToF-ToF). Proteins only identified in extracts of CAM explants infected with B. abortus were related to recognition of PAMPs by TLR, production of reactive oxygen species, intracellular trafficking, and inflammation. PMID:27104343

  17. PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages

    PubMed Central

    Xavier, Mariana N.; Winter, Maria G.; Spees, Alanna M.; den Hartigh, Andreas B.; Nguyen, Kim; Roux, Christelle M.; Silva, Teane M. A.; Atluri, Vidya L.; Kerrinnes, Tobias; Keestra, A. Marijke; Monack, Denise M.; Luciw, Paul A.; Eigenheer, Richard A.; Bäumler, Andreas J.; Santos, Renato L.; Tsolis, Renée M.

    2013-01-01

    SUMMARY Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAM), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAM. Glucose uptake was crucial for increased replication of B. abortus in AAM, and chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAM and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAM and targeting this pathway may aid in eradicating chronic infection. PMID:23954155

  18. PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages.

    PubMed

    Xavier, Mariana N; Winter, Maria G; Spees, Alanna M; den Hartigh, Andreas B; Nguyen, Kim; Roux, Christelle M; Silva, Teane M A; Atluri, Vidya L; Kerrinnes, Tobias; Keestra, A Marijke; Monack, Denise M; Luciw, Paul A; Eigenheer, Richard A; Bäumler, Andreas J; Santos, Renato L; Tsolis, Renée M

    2013-08-14

    Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator-activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAMs. Glucose uptake was crucial for increased replication of B. abortus in AAMs, and for chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAMs and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAMs, and targeting this pathway may aid in eradicating chronic infection. PMID:23954155

  19. In vitro and in vivo characterization of smooth small colony variants of Brucella abortus S19.

    PubMed

    Jacob, J; Hort, G M; Overhoff, P; Mielke, M E A

    2006-02-01

    Brucella abortus is known to produce chronic infections in both humans and a variety of animal species. However, the mechanisms underlying the persistence of the bacteria in the presence of an ongoing immune response are still unknown. In this respect we made use of the observation that in vitro grown B. abortus S19 exhibits heterogenicity in colony size when plated onto TS agar, while experimental infection of mice uniformly results in the in vivo selection of the small colony variant. We demonstrate that the spontaneous smooth small colony variant is characterized not only by a slower growth rate in vitro but also by an increased tolerance to hyperosmotic medium and, most importantly, a less effective clearance from spleens and livers of experimentally infected mice. On a molecular level, a gene with homology to a formerly described galactoside transport ATP binding protein (mglA) was differentially expressed in small versus large colonies of B. abortus S19. PMID:16239117

  20. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development.

    PubMed

    Connolly, Joseph P; Comerci, Diego; Alefantis, Timothy G; Walz, Alexander; Quan, Marian; Chafin, Ryan; Grewal, Paul; Mujer, Cesar V; Ugalde, Rodolfo A; DelVecchio, Vito G

    2006-07-01

    Brucella abortus is the etiologic agent of bovine brucellosis and causes a chronic disease in humans known as undulant fever. In livestock the disease is characterized by abortion and sterility. Live, attenuated vaccines such as S19 and RB51 have been used to control the spread of the disease in animals; however, they are considered unsafe for human use and they induce abortion in pregnant cattle. For the development of a safer and equally efficacious vaccine, immunoproteomics was utilized to identify novel candidate proteins from B. abortus cell envelope (CE). A total of 163 proteins were identified using 2-DE with MALDI-TOF MS and LC-MS/MS. Some of the major protein components include outer-membrane protein (OMP) 25, OMP31, Omp2b porin, and 60 kDa chaperonin GroEL. 2-DE Western blot analyses probed with antiserum from bovine and a human patient infected with Brucella identified several new immunogenic proteins such as fumarate reductase flavoprotein subunit, F0F1-type ATP synthase alpha subunit, and cysteine synthase A. The elucidation of the immunome of B. abortus CE identified a number of candidate proteins for developing vaccines against Brucella infection in bovine and humans. PMID:16739129

  1. Molecular Epidemiology of Brucella abortus in Northern Ireland—1991 to 2012

    PubMed Central

    Byrne, Andrew; Mallon, Thomas; Skuce, Robin; Groussaud, Pauline; Dainty, Amanda; Graham, Judith; Jones, Kerri; Pollock, Lorraine; Whatmore, Adrian

    2015-01-01

    Background Brucellosis is the most common bacterial zoonoses worldwide. Bovine brucellosis caused by Brucella abortus has far reaching animal health and economic impacts at both the local and national levels. Alongside traditional veterinary epidemiology, the use of molecular typing has recently been applied to inform on bacterial population structure and identify epidemiologically-linked cases of infection. Multi-locus variable number tandem repeat VNTR analysis (MLVA) was used to investigate the molecular epidemiology of a well-characterised Brucella abortus epidemic in Northern Ireland involving 387 herds between 1991 and 2012. Results MLVA identified 98 unique B. abortus genotypes from disclosing isolates in the 387 herds involved in the epidemic. Clustering algorithms revealed the relatedness of many of these genotypes. Combined with epidemiological information on chronology of infection and geographic location, these genotype data helped to identify 7 clonal complexes which underpinned the outbreak over the defined period. Hyper-variability of some VNTR loci both within herds and individual animals led to detection of multiple genotypes associated with single outbreaks. However with dense sampling, these genotypes could still be associated with specific clonal complexes thereby permitting inference of epidemiological links. MLVA- based epidemiological monitoring data were congruent with an independent classical veterinary epidemiology study carried out in the same territory. Conclusions MLVA is a useful tool in ongoing disease surveillance of B. abortus outbreaks, especially when combined with accurate epidemiological information on disease tracings, geographical clustering of cases and chronology of infection. PMID:26325586

  2. Effects of opsonization and gamma interferon on growth of Brucella melitensis 16M in mouse peritoneal macrophages in vitro.

    PubMed

    Eze, M O; Yuan, L; Crawford, R M; Paranavitana, C M; Hadfield, T L; Bhattacharjee, A K; Warren, R L; Hoover, D L

    2000-01-01

    Entry of opsonized pathogens into phagocytes may benefit or, paradoxically, harm the host. Opsonization may trigger antimicrobial mechanisms such as reactive oxygen or nitric oxide (NO) production but may also provide a safe haven for intracellular replication. Brucellae are natural intramacrophage pathogens of rodents, ruminants, dogs, marine mammals, and humans. We evaluated the role of opsonins in Brucella-macrophage interactions by challenging cultured murine peritoneal macrophages with Brucella melitensis 16M treated with complement- and/or antibody-rich serum. Mouse serum rich in antibody against Brucella lipopolysaccharide (LPS) (aLPS) and human complement-rich serum (HCS) each enhanced the macrophage uptake of brucellae. Combinations of suboptimal levels of aLPS (0. 01%) and HCS (2%) synergistically enhanced uptake. The intracellular fate of ingested bacteria was evaluated with an optimal concentration of gentamicin (2 microg/ml) to control extracellular growth but not kill intracellular bacteria. Bacteria opsonized with aLPS and/or HCS grew equally well inside macrophages in the absence of gamma interferon (IFN-gamma). Macrophage activation with IFN-gamma inhibited replication of both opsonized and nonopsonized brucellae but was less effective in inhibiting replication of nonopsonized bacteria. IFN-gamma treatment of macrophages with opsonized or nonopsonized bacteria enhanced NO production, which was blocked by N(G)-monomethyl L-arginine (MMLA), an NO synthesis inhibitor. MMLA also partially blocked IFN-gamma-mediated bacterial growth inhibition. These studies suggest that primary murine macrophages have limited ability to control infection with B. melitensis, even when activated by IFN-gamma in the presence of highly opsonic concentrations of antibody and complement. Additional cellular immune responses, e.g., those mediated by cytotoxic T cells, may play more important roles in the control of murine brucellosis. PMID:10603396

  3. Characterization and Immunogenicity of Outer Membrane Vesicles from Brucella abortus.

    PubMed

    Kaur, Gagandeep; Singh, Satparkash; Sunil Kumar, B V; Mahajan, Kanika; Verma, Ramneek

    2016-01-01

    Bovine brucellosis is a worldwide spread zoonotic disease. The objectives of this study were characterization of outer membrane vesicles from B. abortus and to evaluate their immunogenicity in mice. For this purpose, OMVs were derived from B. abortus strain 99 using ultracentrifugation method. Isolated OMVs were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transmission electron microscopy which revealed spherical 20-300 nm structures rich in proteins. OMVs also showed immuno-reactivity with mice antisera in Western blot. Further, indirect ELISA showed specific and high-titer immune responses against the antigens present in OMVs suggesting their potential for a safe acellular vaccine candidate. PMID:26684926

  4. An evaluation of ELISA using recombinant Brucella abortus bacterioferritin (Bfr) for bovine brucellosis.

    PubMed

    Hop, Huynh Tan; Arayan, Lauren Togonon; Simborio, Hannah Leah; Reyes, Alisha Wehdnesday Bernardo; Min, WonGi; Lee, Hu Jang; Lee, Jin Ju; Chang, Hong Hee; Kim, Suk

    2016-04-01

    To date, detection of antibodies against the lipopolysaccharide portion is the backbone of most serodiagnostic methods for brucellosis screening. However this pose a risk for false positive reactions related to other pathogens especially that of Yersinia enterocolitica O:9 which has the most prominent cross reactivity with Brucella spp. In this study, cloning and expression of Brucella abortus bacterioferritin (Bfr) was accomplished by PCR amplification into an expression vector system, and purification of a recombinant B. abortus Bfr (rBfr). The immunogenicity of rBfr was confirmed by Western blot with Brucella-positive bovine serum. To determine whether rBfr has a potential benefit for use in the serodiagnosis of bovine brucellosis, rBfr-based ELISA was performed. Interestingly, rBfr was able to detect anti-Brucella antibodies in positive sera in a dependent manner of TAT values but did not show an immunoreaction with negative samples. Particularly, average OD492 values at the lowest, medium and highest TAT titer levels were 1.4, 2.2 and 2.6-fold increase compared with the cutoff value, respectively. The accuracy, specificity and sensitivity of rBfr showed 89.09%, 93.6% and 85.33%, respectively. These findings suggest that rBfr might be a good candidate for serological diagnosis development of bovine brucellosis. PMID:27012915

  5. Characterization of Allergens Prepared from Smooth and Rough Strains of Brucella melitensis

    PubMed Central

    Jones, L. M.; Diaz, R.; Taylor, A. G.

    1973-01-01

    Protein allergens were prepared from Br. melitensis smooth strain Rev. 1 and rough strain B115 using a cold saline method of extraction. Guineapig skin tests showed the two preparations to be of similar potency and specificity. Gel filtration on Sephadex G-75 showed that the skin test reactive fractions of each preparation were composed of a mixture of proteins with molecular weights in the range of 12,000 to 50,000. Polyacrylamide gel electrophoresis and immunoelectrophoresis indicated that the preparations consisted of at least 12 similar, if not identical, protein constituents. At least 20 protein bands were revealed with polyacrylamide gel isoelectric focusing, which appeared to be almost identical in the two preparations. Smooth lipopolysaccharide antigen, tested in normal and infected guineapigs, was of a lower potency than protein allergens and the eyrthematous response occurred earlier, resembling an antibody mediated reaction rather than delayed hypersensitivity. The allergen prepared from the rough strain contained no detectable smooth lipopolysaccharide antigen and therefore did not stimulate a secondary rise in antibody to smooth cells in sensitized animals. As the presence of smooth lipopolysaccharide antigen in an allergen appears to be unnecessary for provoking delayed hypersensitivity responses, and undesirable because it may stimulate the production of antibodies which interfere with diagnosis, it is preferable to prepare allergens from rough strains of brucella. ImagesFigs. 1-2,4-5Fig. 7 PMID:4758380

  6. An Aerosolized Brucella spp. Challenge Model for Laboratory Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To characterize the optimal aerosol dosage of Brucella abortus strain 2308 (S2308) and B. melitensis (S16M) in a laboratory animal model of brucellosis, dosages of 10**3 to 10**10 CFU were nebulized to mice. Although tissue weights were minimally influenced, total colony-forming units (CFU) per tis...

  7. Advancement of knowledge of Brucella over the past 50 years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifty years ago, bacteria in the genus Brucella were known to cause infertility and reproductive losses. The genus was considered to contain only three species, B. abortus, B. melitensis and B. suis. Since the early 1960’s, at least seven new species have been identified as belonging to the Brucell...

  8. Characterization of the immunogenicity and pathogenicity of malate dehydrogenase in Brucella abortus.

    PubMed

    Han, Xiangan; Tong, Yongliang; Tian, Mingxing; Sun, Xiaoqing; Wang, Shaohui; Ding, Chan; Yu, Shengqing

    2014-07-01

    Brucella abortus is a gram-negative, facultative intracellular pathogen that causes brucellosis, a chronic zoonotic disease resulting in abortion in pregnant cattle and undulant fever in humans. Malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, plays important metabolic roles in aerobic energy producing pathways and in malate shuttle. In this study, the MDH-encoding gene for malate dehydrogenase mdh of B. abortus S2308 was cloned, sequenced and expressed. Western blot analysis demonstrated that MDH is an immunogenic membrane-associated protein. In addition, recombinant MDH showed sero-reactivity with 30 individual bovine B. abortus-positive sera by enzyme-linked immunosorbent assay, indicates that MDH may be used as a candidate marker for sero-diagnosis of brucellosis. Furthermore, MDH exhibits fibronectin and plasminogen-binding ability in immunoblotting assay. Inhibition assays on HeLa cells demonstrated that rabbit anti-serum against MDH significantly reduced both bacterial adherence and invasion abilities (p < 0.05), suggesting that MDH play a role in B. abortus colonization. Our results indicated that MDH is not only an immunogenic protein, but is also related to bacterial pathogenesis and may act as a new virulent factor, which will benefit for further understanding the MDH's roles in B. abortus metabolism, pathogenesis and immunity. PMID:24609497

  9. Expression of Babesia bovis rhoptry-associated protein 1 (RAP1) in Brucella abortus S19.

    PubMed

    Sabio y García, Julia V; Farber, Marisa; Carrica, Mariela; Cravero, Silvio; Macedo, Gilson C; Bigi, Fabiana; Oliveira, Sergio C; Rossetti, Osvaldo; Campos, Eleonora

    2008-05-01

    Brucella abortus strain 19 (live vaccine) induces a strong humoral and cellular immune response and therefore, it is an attractive vector for the delivery of heterologous antigens. The objective of the present study was to express the rhoptry-associated protein (RAP1) of Babesia bovis in B. abortus S19, as a model for heterologous expression of immunostimulatory antigens from veterinary pathogens. A plasmid for the expression of recombinant proteins fused to the aminoterminal of the outer membrane lipoprotein OMP19 was created, pursuing the objective of increasing the immunogenicity of the recombinant antigen being expressed by its association to a lipid moiety. Recombinant strains of B. abortus S19 expressing RAP1 as a fusion protein either with the first amino acids of beta-galactosidase (S19pBB-RAP1) or B. abortus OMP19 (S19pBB19-RAP1) were generated. Plasmid stability and the immunogenicity of the heterologous proteins were analyzed. Mice immunized with S19pBB-RAP1 or S19pBB19-RAP1 developed specific humoral immune response to RAP1, IgG2a being the predominant antibody isotype. Furthermore, a specific cellular immune response to recombinant RAP1 was elicited in vitro by lymphocytes from mice immunized with both strains. Therefore, we concluded that B. abortus S19 expressing RAP1 is immunostimulatory and may provide the basis for combined heterologous vaccines for babesiosis and brucellosis. PMID:18462974

  10. Cytokine responses in camels (Camelus bactrianus) vaccinated with Brucella abortus strain 19 vaccine.

    PubMed

    Odbileg, Raadan; Purevtseren, Byambaa; Gantsetseg, Dorj; Boldbaatar, Bazartseren; Buyannemekh, Tumurjav; Galmandakh, Zagd; Erdenebaatar, Janchivdorj; Konnai, Satoru; Onuma, Misao; Ohashi, Kazuhiko

    2008-02-01

    In the present study, we determined the levels of cytokines produced by camel (Camelus bactrianus) peripheral blood mononuclear cells (PBMCs) in response to live attenuated Brucella abortus (B. abortus) S19 vaccine. Seven camels were vaccinated with commercial B. abortus S19 vaccine, and their cytokine responses were determined using a real-time PCR assay. Cytokine responses to B. abortus S19 were examined at 6 hr, 48 hr and 1, 2 and 3 weeks post-vaccination. Serological tests were performed to further confirm these immune responses. The results revealed that IFN-gamma and IL-6 were upregulated during the first week post-vaccination. Low level expressions of IL-1alpha, IL-1beta, TNFalpha and IL-10 and no expression of IL-2 and IL-4 were observed compared with the control camels. The findings showed that B. abortus stimulates cell-mediated immunity by directly activating camel Th1 cells to secrete IFN-gamma. This quantification of cytokine expression in camels is essential for understanding of Camelidae disease development and protective immune responses. This is the first report of in vivo camel cytokine quantification after vaccination. PMID:18319583

  11. The ABC transporter YejABEF is required for resistance to antimicrobial peptides and the virulence of Brucella melitensis

    PubMed Central

    Wang, Zhen; Bie, Pengfei; Cheng, Jie; Lu, Lin; Cui, Buyun; Wu, Qingmin

    2016-01-01

    The ability to resist the killing effects of host antimicrobial peptides (AMPs) plays a vital role in the virulence of pathogens. The Brucella melitensis NI genome has a gene cluster that encodes ABC transport. In this study, we constructed yejA1, yejA2, yejB, yejE, yejF, and whole yej operon deletion mutants, none of which exhibited discernible growth defect in TSB or minimal medium. Unlike their parental strain, the mutants showed a significantly increased sensitivity to acidic stress. The NIΔyejE and NIΔyejABEF mutants were also more sensitive than B. melitensis NI to polymyxin B, and the expression of yej operon genes was induced by polymyxin B. Moreover, cell and mouse infection assays indicated that NIΔyejE and NIΔyejABEF have restricted invasion and replication abilities inside macrophages and are rapidly cleared from the spleens of infected mice. These findings indicate that the ABC transporter YejABEF is required for the virulence of Brucella, suggesting that resistance to host antimicrobials is a key mechanism for Brucella to persistently survive in vivo. This study provided insights that led us to further investigate the potential correlation of AMP resistance with the mechanisms of immune escape and persistent infection by pathogens. PMID:27550726

  12. The ABC transporter YejABEF is required for resistance to antimicrobial peptides and the virulence of Brucella melitensis.

    PubMed

    Wang, Zhen; Bie, Pengfei; Cheng, Jie; Lu, Lin; Cui, Buyun; Wu, Qingmin

    2016-01-01

    The ability to resist the killing effects of host antimicrobial peptides (AMPs) plays a vital role in the virulence of pathogens. The Brucella melitensis NI genome has a gene cluster that encodes ABC transport. In this study, we constructed yejA1, yejA2, yejB, yejE, yejF, and whole yej operon deletion mutants, none of which exhibited discernible growth defect in TSB or minimal medium. Unlike their parental strain, the mutants showed a significantly increased sensitivity to acidic stress. The NIΔyejE and NIΔyejABEF mutants were also more sensitive than B. melitensis NI to polymyxin B, and the expression of yej operon genes was induced by polymyxin B. Moreover, cell and mouse infection assays indicated that NIΔyejE and NIΔyejABEF have restricted invasion and replication abilities inside macrophages and are rapidly cleared from the spleens of infected mice. These findings indicate that the ABC transporter YejABEF is required for the virulence of Brucella, suggesting that resistance to host antimicrobials is a key mechanism for Brucella to persistently survive in vivo. This study provided insights that led us to further investigate the potential correlation of AMP resistance with the mechanisms of immune escape and persistent infection by pathogens. PMID:27550726

  13. Proteomic Analysis of Detergent Resistant Membrane Domains during Early Interaction of Macrophages with Rough and Smooth Brucella melitensis

    PubMed Central

    Lauer, Sabine A.; Iyer, Srinivas; Sanchez, Timothy; Forst, Christian V.; Bowden, Brent; Carlson, Kay; Sriranganathan, Nammalwar; Boyle, Stephen M.

    2014-01-01

    The plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs). In this study we sought to characterize changes to the protein expression profiles in DRMDs and to respective cellular pathways and networks of Mono Mac 6 cells in response to the adherence of rough VTRM1 and smooth 16 M B. melitensis strains. DRMDs were extracted from Mono Mac 6 cells exposed for 2 minutes at 4°C to Brucella (no infection occurs) and from unexposed control cells. Protein expression was determined using the non-gel based quantitative iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry technique. Using the identified iTRAQ proteins we performed enrichment analyses and probed constructed human biochemical networks for interactions and metabolic reactions. We identified 149 proteins, which either became enriched, depleted or whose amounts did not change in DRMDs upon Brucella exposure. Several of these proteins were distinctly enriched or depleted in DRMDs upon exposure to rough and smooth B. melitensis strains which results in the differential engagement of cellular pathways and networks immediately upon Brucella encounter. For some of the proteins such as myosin 9, small G protein signaling modulator 3, lysine-specific demethylase 5D, erlin-2, and voltage-dependent anion-selective channel protein 2, we observed extreme differential depletion or enrichment in DRMDs. The identified proteins and pathways could provide

  14. Proinflammatory Response of Human Trophoblastic Cells to Brucella abortus Infection and upon Interactions with Infected Phagocytes.

    PubMed

    Fernández, Andrea G; Ferrero, Mariana C; Hielpos, M Soledad; Fossati, Carlos A; Baldi, Pablo C

    2016-02-01

    Trophoblasts are targets of infection by Brucella spp. but their role in the pathophysiology of pregnancy complications of brucellosis is unknown. Here we show that Brucella abortus invades and replicates in the human trophoblastic cell line Swan-71 and that the intracellular survival of the bacterium depends on a functional virB operon. The infection elicited significant increments of interleukin 8 (IL8), monocyte chemotactic protein 1 (MCP-1), and IL6 secretion, but levels of IL1beta and tumor necrosis factor-alpha (TNF-alpha) did not vary significantly. Such proinflammatory response was not modified by the absence of the Brucella TIR domain-containing proteins BtpA and BtpB. The stimulation of Swan-71 cells with conditioned medium (CM) from B. abortus-infected human monocytes (THP-1 cells) or macrophages induced a significant increase of IL8, MCP-1 and IL6 as compared to stimulation with CM from non-infected cells. Similar results were obtained when stimulation was performed with CM from infected neutrophils. Neutralization studies showed that IL1beta and/or TNF-alpha mediated the stimulating effects of CM from infected phagocytes. Reciprocally, stimulation of monocytes and neutrophils with CM from Brucella-infected trophoblasts increased IL8 and/or IL6 secretion. These results suggest that human trophoblasts may provide a local inflammatory environment during B. abortus infections either through a direct response to the pathogen or through interactions with monocytes/macrophages or neutrophils, potentially contributing to the pregnancy complications of brucellosis. PMID:26792938

  15. Whole-genome analyses of speciation events in pathogenic Brucellae

    SciTech Connect

    Chain, Patrick S. G.; Comerci, Diego J.; Tolmasky, Marcelo E.; Larimer, Frank W; Malfatti, Stephanie; Vergez, Lisa; Aguero, Fernan; Land, Miriam L; Ugalde, Rodolfo A.; Garcia, Emilio

    2005-12-01

    Despite their high DNA identity and a proposal to group classical Brucella species as biovars of Brucella melitensis, the commonly recognized Brucella species can be distinguished by distinct biochemical and fatty acid characters, as well as by a marked host range (e.g., Brucella suis for swine, B. melitensis for sheep and goats, and Brucella abortus for cattle). Here we present the genome of B. abortus 2308, the virulent prototype biovar 1 strain, and its comparison to the two other human pathogenic Brucella species and to B. abortus field isolate 9-941. The global distribution of pseudogenes, deletions, and insertions supports previous indications that B. abortus and B. melitensis share a common ancestor that diverged from B. suis. With the exception of a dozen genes, the genetic complements of both B. abortus strains are identical, whereas the three species differ in gene content and pseudogenes. The pattern of species-specific gene inactivations affecting transcriptional regulators and outer membrane proteins suggests that these inactivations may play an important role in the establishment of host specificity and may have been a primary driver of speciation in the genus Brucella. Despite being nonmotile, the brucellae contain flagellum gene clusters and display species-specific flagellar gene inactivations, which lead to the putative generation of different versions of flagellum-derived structures and may contribute to differences in host specificity and virulence. Metabolic changes such as the lack of complete metabolic pathways for the synthesis of numerous compounds (e.g., glycogen, biotin, NAD, and choline) are consistent with adaptation of brucellae to an intracellular life-style.

  16. Brucella abortus in captive bison. I. Serology, bacteriology, pathogenesis, and transmission to cattle.

    PubMed

    Davis, D S; Templeton, J W; Ficht, T A; Williams, J D; Kopec, J D; Adams, L G

    1990-07-01

    Two groups of six, non-brucellosis vaccinated, brucellosis seronegative pregnant American bison (Bison bison) were individually challenged with 1 x 10(7) colony forming units (CFU) of Brucella abortus strain 2308. Three days after challenge, each bison group was placed in a common paddock with six non-vaccinated, brucellosis susceptible, pregnant domestic heifers. In a parallel study, two groups of six susceptible, pregnant cattle were simultaneously challenged with the identical dose as the bison and each group was placed with six susceptible cattle in order to compare bison to cattle transmission to that observed in cattle to cattle transmission. Blood samples were collected from bison and cattle weekly for at least 1 mo prior to exposure to B. abortus and for 180 days post-exposure (PE). Sera from the bison and cattle were evaluated by the Card, rivanol precipitation, standard plate agglutination, standard tube agglutination, cold complement fixation tube, warm complement fixation tube, buffered acidified plate antigen, rapid screening, bovine conjugated enzyme linked immunosorbent assay, bison or bovine conjugated enzyme linked immunosorbent assay, and the hemolysis-in-gel techniques for the presence of antibodies to Brucella spp. At the termination of pregnancy by abortion or birth of a live-calf, quarter milk samples, vaginal swabs, and placenta were collected from the dam. Rectal swabs were collected from live calves, and mediastinal lymph nodes, abomasal contents and lung were taken at necropsy from aborted fetuses for culture of Brucella spp. These tissues and swabs were cultured on restrictive media for the isolation and identification of Brucella spp. Pathogenesis of brucellosis in bison was studied in an additional group of six pregnant bison which were challenged with 1 x 10(7) CFU of B. abortus strain 2308. One animal was euthanatized each week PE. Tissues were collected at necropsy and later examined bacteriologically and histologically. Lesions of

  17. Expression and validation of D-erythrulose 1-phosphate dehydrogenase from Brucella abortus: a diagnostic reagent for bovine brucellosis.

    PubMed

    Eoh, Hyungjin; Jeon, Bo-Young; Kim, Zhiyeol; Kim, Seung-Cheol; Cho, Sang-Nae

    2010-07-01

    Brucella abortus is a bacterium of brucellosis causing abortion in cattle. The diagnosis of bovine brucellosis mainly relies on serologic tests using smooth lipopolysaccharide (S-LPS) from B. abortus. However, the usefulness of this method is limited by false-positive reactions due to cross-reaction with other Gram-negative bacteria. In the present study, the eryC gene encoding B. abortus d-erythrulose 1-phosphate dehydrogenase, which is involved in the erythritol metabolism in virulent B. abortus strain but is absent from a B. abortus vaccine strain (S19), was cloned. Recombinant EryC was expressed and purified for the evaluation as a diagnostic reagent for bovine brucellosis. Other B. abortus proteins, Omp16, PP26, and CP39 were also purified and their seroreactivities were compared. Recombinant EryC, Omp16, PP26, and PP39 were all reactive to B. abortus-positive serum. The specificity of recombinant Omp16, PP26, CP39, and EryC, were shown to be approximately 98%, whereas that of B. abortus whole cell lysates was shown to be 95%. The sensitivity of Omp16, PP26, CP39, and EryC were 10%, 51%, 64%, and 43%, respectively, whereas that of B. abortus whole cell lysates was 53%. These results suggested that B. abortus EryC would be a potential reagent for diagnosis for bovine brucellosis as a single protein antigen. PMID:20622221

  18. The role of innate immune signals in immunity to Brucella abortus

    PubMed Central

    Gomes, Marco Túlio R.; Campos, Priscila C.; de Almeida, Leonardo A.; Oliveira, Fernanda S.; Costa, Miriam Maria S.; Marim, Fernanda M.; Pereira, Guilherme S. M.; Oliveira, Sergio C.

    2012-01-01

    Innate immunity serves as the first line of defense against infectious agents such as intracellular bacteria. The innate immune platform includes Toll-like receptors (TLRs), retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, nucleotide-binding and oligomerization domain-like receptors, adaptors, kinases and other signaling molecules that are required to elicit effective responses against different pathogens. Our research group has been using the Gram-negative bacteria Brucella abortus as a model of pathogen. We have demonstrated that B. abortus triggers MAPK and NF-κB signaling pathways in macrophages in a MyD88 and IRAK-4-dependent manner. Furthermore, we claimed that so far TLR9 is the most important single TLR during Brucella infection. The identification of host receptors that recognize pathogen-derived nucleic acids has revealed an essential role for nucleic acid sensing in the triggering of immunity to intracellular pathogens. Besides TLRs, herein we describe recent advances in NOD1, NOD2, and type I IFN receptors in innate immune pathways during B. abortus infection. PMID:23112959

  19. Evaluation of the Western immunoblot as a detection method for Brucella abortus exposure in elk.

    PubMed

    Schumaker, Brant A; Mazet, Jonna A K; Gonzales, Ben J; Elzer, Philip H; Hietala, Sharon K; Ziccardi, Michael H

    2010-01-01

    Brucella abortus has been an important wildlife disease issue for most of the last century, especially because wildlife species are considered to be important disease reservoirs for cattle. Diagnostic uncertainty, caused in part by cross-reactions of antibodies to environmental pathogens such as Yersinia enterocolitica O:9 on standard Brucella serology, has exacerbated the challenges of managing the disease and has highlighted the need for test validation in wildlife species. The western immunoblot was evaluated for use in detecting B. abortus exposure in elk (Cervus elaphus) and for ruling out exposure to cross-reacting bacteria. Samples collected from 2003 to 2006, including 54 female and immature elk from four different elk herds, were tested using standard Brucella serologic methods (card, rapid automated presumptive [RAP], and rivanol tests), as well as the western immunoblot. Samples (n=28) from animals known to be naturally infected with B. abortus biovar 1 served as positive controls. For presumed negative samples, sera (n=26) were collected from two elk herds in which negative serologic tests, and the absence of clinical signs of disease such as abortions, supported Brucella-negative classification. In addition to these study samples, serologic data from 12 tule elk (Cervus elaphus nannodes) were provided from the California Department of Fish and Game in order to illustrate a field application of the western blot. The western immunoblot had the highest sensitivity (1.0; % 0.899-1.0) and specificity (1.0; 0.891-1.0) among all tests used in the study. The Kappa statistic for agreement between the western blot and the card, rivanol, and RAP tests were 0.701, 0.808, and 0.921, respectively, showing good to excellent agreement with the standard diagnostic tests currently in use. Although the western immunoblot is more expensive and time intensive than other tests, in this limited study, it was shown to be reliable for establishing and confirming B. abortus

  20. Application and evaluation of the MLVA typing assay for the Brucella abortus strains isolated in Korea

    PubMed Central

    2009-01-01

    Background A Brucella eradication program has been executed in Korea. To effectively prevent and control brucellosis, a molecular method for genetic identification and epidemiological trace-back must be established. As part of that, the MLVA typing assay was evaluated and applied to B. abortus isolates for analyzing the characteristics of the regional distribution and relationships of foreign isolates. Results A total of 177 isolates originating from 105 cattle farms for the period 1996 to 2008 were selected as representatives for the nine provinces of South Korea. A dendrogram of strain relatedness was constructed in accordance with the number of tandem repeat units for 17 loci so that it was possible to trace back in the restricted areas. Even in a farm contaminated by one source, however, the Brucella isolates showed an increase or decrease in one TRs copy number at some loci with high DI values. Moreover, those 17 loci was confirmed in stability via in-vitro and in-vivo passage, and found to be sufficiently stable markers that can readily identify the inoculated strain even if minor changes were detected. In the parsimony analysis with foreign Brucella isolates, domestic isolates were clustered distinctively, and located near the Central and Southern American isolates. Conclusion The MLVA assay has enough discrimination power in the Brucella species level and can be utilized as a tool for the epidemiological trace-back of the B. abortus isolates. But it is important to consider that Brucella isolates may be capable of undergoing minor changes at some loci in the course of infection or in accordance with the changes of the host. PMID:19863821

  1. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice.

    PubMed

    de Souza Filho, Job Alves; de Paulo Martins, Vicente; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V; de Oliveira, Fernanda Souza; Menezes, Gustavo B; Azevedo, Vasco; Cravero, Silvio Lorenzo; Oliveira, Sergio Costa

    2015-04-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies. PMID:25644010

  2. Mutant Brucella abortus Membrane Fusogenic Protein Induces Protection against Challenge Infection in Mice

    PubMed Central

    de Souza Filho, Job Alves; Martins, Vicente de Paulo; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V.; de Oliveira, Fernanda Souza; Menezes, Gustavo B.; Azevedo, Vasco; Cravero, Silvio Lorenzo

    2015-01-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies. PMID:25644010

  3. Experimental infection of Richardson's ground squirrels (Spermophilus richardsonii) with attenuated and virulent strains of Brucella abortus.

    PubMed

    Nol, Pauline; Olsen, Steven C; Rhyan, Jack C

    2009-01-01

    A previous investigation of the safety of Brucella abortus strain RB51 (sRB51) in various nontarget species suggested that Richardson's ground squirrels (Spermophilus richardsonii) may develop persistent infections when orally inoculated with the vaccine. In the present study, sRB51, B. abortus strain 19 (s19), and virulent B. abortus strain 9941 (s9941) were administered orally to Richardson's ground squirrels to further characterize B. abortus infection in this species. Six groups of nongravid ground squirrels were orally inoculated with 6 x 10(8) colony forming units (cfu) sRB51 (n = 10), 2.5 x 10(4) cfu s19 (n = 10), 2.5 x 10(7) cfu s19 (n = 6), 1.3 x 10(6) cfu s9941 (n = 5), 2.1 x 10(8) cfu s9941 (n = 5), or vaccine diluent (control; n = 4). One of five animals in the lower-dose s19 group and two of three animals in the higher-dose s19 group showed persistence of bacteria in various tissues at 14 wk postinoculation (PI). At 18 wk PI, one of five animals in the sRB51 group and one of five animals in the high-dose s9941 group were culture positive. Although we did detect some persistence of B. abortus strains at 18 wk, we found no evidence of pathology caused by B. abortus strains in nonpregnant Richardson's ground squirrels based on clinical signs, gross lesions, and microscopic lesions. PMID:19204348

  4. Characterisation of Brucella abortus strain 19 cultures isolated from vaccinated cattle.

    PubMed

    Thomas, E L; Bracewell, C D; Corbel, M J

    1981-01-31

    Thirty-four cultures recovered from material of bovine origin in England, Scotland and Wales were identified unequivocally as Brucella abortus strain 19 (S19). All had the properties of carbon dioxide-independent B abortus biotype 1 strains, were inhibited by penicillin G and thionin blue at standard concentrations and behaved in oxidative metabolism and guinea pig virulence tests as typical S19. Their sensitivity to i-erythritol varied somewhat between cultures as did reference subcultures of S19. Of the total number of isolates, 11 were recovered from abortion material or cyetic products, 10 were from calves which died from a hypersensitivity reaction within 24 hours of S19 vaccination and the remainder were from milk or internal organs. From the evidence available, there is little to suggest that calfhood vaccination with S19 has resulted in persistent systemic infection in other than a very small proportion of the animals inoculated. PMID:6789543

  5. Brucella abortus strain 2308 produces brucebactin, a highly efficient catecholic siderophore.

    PubMed

    González Carreró, Manuel I; Sangari, Félix J; Agüero, Jesús; García Lobo, Juan M

    2002-02-01

    Brucella abortus is known to produce 2,3-dihydroxybenzoate (2,3-DHBA) and to use this catechol as a siderophore to grow under iron-limited conditions. In this study a mutant (BAM41) is described that is deficient in siderophore production by insertion of Tn5 in the virulent B. abortus strain 2308. This mutant was unable to grow on iron-deprived medium and its growth could not be restored by addition of 2,3-DHBA. Production of catecholic compounds by both the Brucella mutant and parental strains under iron-deprivation conditions was assayed by TLC. Two catecholic substances were identified in the supernatant of the parental strain 2308. The faster migrating spot showed the same retention factor (R(f)) as that of purified 2,3-DHBA. The mutant BAM41 overproduced 2,3-DHBA, but failed to form the slower migrating catechol. This defect could only be complemented by the addition of the slow-migrating catechol from strain 2308. The genomic region containing Tn5 in BAM41 was cloned and the position of the transposon was determined by nucleotide sequencing. The sequence revealed that the insertion had occurred at a gene with homology to Escherichia coli entF, a locus involved in the late steps of the biosynthesis of the complex catecholic siderophore enterobactin. Intracellular survival and growth rates of the B. abortus wild-type and entF mutant strains in mouse-derived J774 macrophages were similar, indicating that production of this siderophore was not essential in this model of infection. It is concluded that B. abortus synthesizes a previously unknown and highly efficient catecholic siderophore, different from 2,3-DHBA, for which the name brucebactin is proposed. PMID:11832499

  6. Effect of Early Antibiotic Treatment on the Antibody Response to Cytoplasmic Proteins of Brucella melitensis in Mice

    PubMed Central

    Bowden, Raul A.; Racaro, Graciela C.; Baldi, Pablo C.

    1999-01-01

    To test whether antibiotic therapy hampers the antibody response to Brucella antigens, 30 BALB/c mice were infected with Brucella melitensis H38 and randomized for treatment with doxycycline administered intraperitoneally for 42 days starting at 7 or 28 days postinfection (p.i.) (groups DOX7 and DOX28, respectively) or for no treatment (control group). Antibodies to smooth lipopolysaccharide (LPS) reached peak levels (mean optical density [OD] = 2.618) between days 56 and 70 p.i. in the control group, and similar peak levels (mean OD = 2.486) were observed in the DOX28 group, but significantly lower peak levels (mean OD = 0.821) were observed at 28 days p.i. in the DOX7 group. The antibody response against cytoplasmic proteins depleted of LPS (CPs) reached maximal levels (mean OD = 2.402) between days 56 and 70 p.i. in the control group, but no response was detected in the DOX7 group. Anti-CP antibodies were detected in only three animals from the DOX28 group, at levels significantly lower than those in the control group (mean maximal OD = 0.791). The pattern of antibody response to an 18-kDa cytoplasmic protein of Brucella spp. was similar to that against the CP antigen. This study shows that early antibiotic treatment affects the antibody response of mice to cytoplasmic proteins of Brucella and, to a lesser extent, to LPS. PMID:10225853

  7. Evaluation of different enzyme-linked immunosorbent assays for the diagnosis of brucellosis due to Brucella melitensis in sheep.

    PubMed

    García-Bocanegra, Ignacio; Allepuz, Alberto; Pérez, Julio José; Alba, Anna; Giovannini, Armando; Arenas, Antonio; Candeloro, Luca; Pacios, Alberto; Saez, José Luís; González, Miguel Ángel

    2014-03-01

    Six serological assays for the diagnosis of ovine brucellosis, due to Brucella melitensis were evaluated. Reference serum samples from sheep of known B. melitensis infection status (n=118) were assessed using the Rose Bengal test (RBT), complement fixation test (CFT) and four commercial enzyme-linked immunosorbent assays (ELISAs), including two indirect ELISAs (iELISAs), one competitive ELISA (cELISA) and one blocking ELISA (bELISA). The highest differential positive rates (DPR) were obtained with the cELISA and bELISA, while the lowest DPR was estimated using iELISAs. A latent class analysis was performed to estimate the accuracy of the CFT, RBT and bELISA using 1827 sera from sheep undergoing testing as part of a surveillance and control programme. Lower sensitivity and specificity were obtained for the three serological tests when the field samples were used. A higher DPR was achieved by the CFT, compared to bELISA and RBT. The results suggest that ELISAs, and particularly the bELISA, might be suitable for inclusion in the European Union legislation on intra-community trade for diagnosing B. melitensis infection in sheep, as it has a similar test performance compared to the RBT. PMID:24456797

  8. Deletion in the gene BruAb2_0168 of Brucella abortus strains: diagnostic challenges

    PubMed Central

    Dean, A S; Schelling, E; Bonfoh, B; Kulo, A E; Boukaya, G A; Pilo, P; Raoult, D

    2014-01-01

    Three Brucella abortus strains were isolated from joint hygromas from cows in northern Togo. Two deletions in the 5′ side of the gene BruAb2_0168 were identified. As this gene is used for species identification, these deletions have consequences for diagnostic procedures. Multiple locus variable number of tandem repeat (VNTR) analysis was therefore performed for species identification. The strains showed unique VNTR profiles, providing some of the first genotypic data from West Africa. More molecular and epidemiological data are needed from the region, in order to better understand transmission patterns and develop suitable diagnostic assays. PMID:24450581

  9. Protection of Mice against Brucellosis by Vaccination with Brucella melitensis WR201(16MΔpurEK)

    PubMed Central

    Hoover, David L.; Crawford, Robert M.; Van De Verg, Lillian L.; Izadjoo, Mina J.; Bhattacharjee, Apurba K.; Paranavitana, Chrysanthi M.; Warren, Richard L.; Nikolich, Mikeljon P.; Hadfield, Ted L.

    1999-01-01

    Human brucellosis can be acquired from infected animal tissues by ingestion, inhalation, or contamination of the conjunctiva or traumatized skin by infected animal products. A vaccine to protect humans from occupational exposure or from zoonotic infection in areas where the disease is endemic would reduce an important cause of morbidity worldwide. Vaccines currently used in animals are unsuitable for human use. We tested a live, attenuated, purine-auxotrophic mutant strain of Brucella melitensis, WR201, for its ability to elicit cellular and humoral immune responses and to protect mice against intranasal challenge with B. melitensis 16M. Mice inoculated intraperitoneally with WR201 made serum antibody to lipopolysaccharide and non-O-polysaccharide antigens. Splenocytes from immunized animals released interleukin-2 (IL-2), gamma interferon, and IL-10 when cultured with Brucella antigens. Immunization led to protection from disseminated infection but had only a slight effect on clearance of the challenge inoculum from the lungs. These studies suggest that WR201 should be further investigated as a vaccine to prevent human brucellosis. PMID:10531243

  10. Evaluation of Brucella abortus strain RB51 and strain 19 in pronghorn antelope

    USGS Publications Warehouse

    Elzer, P.H.; Smith, J.; Roffe, T.; Kreeger, T.; Edwards, J.; Davis, D.

    2002-01-01

    Free-roaming elk and bison in the Greater Yellowstone Area remain the only wildlife reservoirs for Brucella abortus in the United States, and the large number of animals and a lack of holding facilities make it unreasonable to individually vaccinate each animal. Therefore, oral delivery is being proposed as a possible option to vaccinate these wild ungulates. One of the main problems associated with oral vaccination is the potential exposure of nontarget species to the vaccines. The purpose of this study was to determine the effects of two Brucella vaccines, strain 19 (S19) and the rough strain RB51 (SRB51), in pregnant pronghorn antelope. We conclude that S19 and SRB51 rarely colonize maternal and fetal tissues of pregnant pronghorn and were not associated with fetal death. Oral delivery of either vaccine at this dose appears to be nonhazardous to pregnant pronghorn.

  11. Identification of Brucella abortus virulence proteins that modulate the host immune response.

    PubMed

    Wang, Yufei; Chen, Zeliang; Qiu, Yefeng; Ke, Yuehua; Xu, Jie; Yuan, Xitong; Li, Xianbo; Fu, Simei; Cui, Mingquan; Xie, Yongfei; Du, Xinying; Wang, Zhoujia; Huang, Liuyu

    2012-01-01

    Brucellosis is an important zoonotic disease of almost worldwide distribution. One significant immune phenomenon of this disease is the ability of the pathogen to hide and survive in the host, establishing long lasting chronic infections. Brucella was found to have the ability to actively modulate the host immune response in order to establish chronic infections, but the mechanism by which the pathogen achieves this remains largely unknown. In our screening for protective antigens of Brucella abortus, 3 proteins (BAB1_0597, BAB1_0917, and BAB2_0431) were found to induce significantly higher levels of gamma interferon (IFNγ) in splenocytes of PBS immunized mice than those immunized with S19. This finding strongly implied that these three proteins inhibit the production of IFNγ. Previous studies have shown that LPS, PrpA, and Btp1/TcpB are three important immunomodulatory molecules with the capacity to interfere with host immune response. They have been shown to have the ability to inhibit the secretion of IFNγ, or to increase the production of IL-10. Due to the role of these proteins in virulence and immunomodulation, they likely offer significant potential as live, attenuated Brucella vaccine candidates. Understanding the mechanisms by which these proteins modulate the host immune responses will deepen our knowledge of Brucella virulence and provide important information on the development of new vaccines against Brucellosis. PMID:22743689

  12. 5-Lipoxygenase Negatively Regulates Th1 Response during Brucella abortus Infection in Mice

    PubMed Central

    Fahel, Júlia Silveira; de Souza, Mariana Bueno; Gomes, Marco Túlio Ribeiro; Corsetti, Patricia P.; Carvalho, Natalia B.; Marinho, Fabio A. V.; de Almeida, Leonardo A.; Caliari, Marcelo V.; Machado, Fabiana Simão

    2015-01-01

    Brucella abortus is a Gram-negative bacterium that infects humans and cattle, causing a chronic inflammatory disease known as brucellosis. A Th1-mediated immune response plays a critical role in host control of this pathogen. Recent findings indicate contrasting roles for lipid mediators in host responses against infections. 5-Lipoxygenase (5-LO) is an enzyme required for the production of the lipid mediators leukotrienes and lipoxins. To determine the involvement of 5-LO in host responses to B. abortus infection, we intraperitoneally infected wild-type and 5-LO-deficient mice and evaluated the progression of infection and concomitant expression of immune mediators. Here, we demonstrate that B. abortus induced the upregulation of 5-LO mRNA in wild-type mice. Moreover, this pathogen upregulated the production of the lipid mediators leukotriene B4 and lipoxin A4 in a 5-LO-dependent manner. 5-LO-deficient mice displayed lower bacterial burdens in the spleen and liver and less severe liver pathology, demonstrating an enhanced resistance to infection. Host resistance paralleled an increased expression of the proinflammatory mediators interleukin-12 (IL-12), gamma interferon (IFN-γ), and inducible nitric oxide synthase (iNOS) during the course of infection. Moreover, we demonstrated that 5-LO downregulated the expression of IL-12 in macrophages during B. abortus infection. Our results suggest that 5-LO has a major involvement in B. abortus infection, by functioning as a negative regulator of the protective Th1 immune responses against this pathogen. PMID:25583526

  13. [The application and research advances of Brucella vaccines].

    PubMed

    Ding, Jia-Bo; Mao, Kai-Rong; Cheng, Jun-Sheng; Dai, Zhi-Hong; Jiang, Yu-Wen

    2006-10-01

    Brucellosis is a crucial zoonosis caused by Brucella, which has some traits of wide hosts, great infectivity and difficulty in cure. Brucellosis caused great losses to farming and people's health. Vaccination is the main measure used to control Brucellosis, and some attenuated Brucella strains were often used as vaccines. To find more effective vaccines, Scientists are now constructing recombinant strains, DNA vaccines and subunit vaccines, as well as inducing new attenuated strains from isolations. The present applications of B. abortus strain 19 (S19) , B. melitensis Rev. 1 (Rev. 1), B. suis strain 2 (S2), B. abortus strain 45/20 (45/20) and rough strain B. abortus 51 (RB51) were discussed. And some recent research work on Brucella vaccines, such as Brucella recombinant vaccines, DNA vaccines and so on, were reviewed in this paper. PMID:17172046

  14. Defensin Susceptibility and Colonization in the Mouse Model of AJ100, a Polymyxin B Resistant, Brucella abortus RB51 Isolate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial facultative intracellular pathogens selected for sensitivity to polymyxin B have been shown to be attenuated. However, the effect on pathogenicity of increased resistance to polymyxin B has not been studied. A polymyxin resistant mutant, Brucella abortus AJ100, was characterized by comp...

  15. Vaccination of elk (Cervus canadensis) with Brucella abortus strain RB51 overexpressing superoxide dismutase and glycosyltransferase genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area (GYA). In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the d...

  16. Efficacy of dart or booster vaccination with strain RB51 in protecting bison against experimental Brucella abortus challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination is an effective tool for reducing the prevalence of brucellosis in natural hosts. In this study, we characterized the efficacy of the Brucella abortus strain RB51 (RB51) vaccine in bison when delivered by single intramuscular vaccination (Hand RB51), single pneumatic dart delivery (Dart ...

  17. A Live Vaccine from Brucella abortus Strain 82 for Control of Cattle Brucellosis in the Russian Federation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the first half of the 20th century, widespread regulatory efforts to control cattle brucellosis (Brucella abortus) in the Union of Soviet Socialist Republics were essentially nonexistent, and control was limited to selective test and slaughter of serologic agglutination reactors. By the 1950...

  18. Draft Genome Sequence of the Intermediate Rough Vaccine Strain Brucella abortus S19Δper Mutant

    PubMed Central

    Chaudhuri, Pallab; Goswami T, Tapas K.; Lalsiamthara, Jonathan; Kaur, Gurpreet; Vishnu, Udayakumar S.; Sankarasubramanian, Jagadesan; Gunasekaran, Paramasamy

    2015-01-01

    Here, we report the genome sequence of the intermediate rough vaccine strain mutant, Brucella abortus S19Δper. The length of the draft genome was 3,271,238 bp, with 57.2% G+C content. A total of 3,204 protein-coding genes and 56 RNA genes were predicted. PMID:26564050

  19. Comparison of abortion and infection after experimental challenge of pregnant bison and cattle with Brucella abortus strain 2308

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparative study was conducted using data from naive bison (n=45) and cattle (n=46) from 8 and 6 studies, respectively, in which a standardized Brucella abortus strain 2308 experimental challenge was administered. The incidence of abortion, fetal infection, uterine or mammary infection, or infec...

  20. Toll-Like Receptor 6 Plays an Important Role in Host Innate Resistance to Brucella abortus Infection in Mice

    PubMed Central

    de Almeida, Leonardo A.; Macedo, Gilson C.; Marinho, Fábio A. V.; Gomes, Marco T. R.; Corsetti, Patrícia P.; Silva, Aristóbolo M.; Cassataro, Juliana; Giambartolomei, Guillermo H.

    2013-01-01

    Brucella abortus is recognized by several Toll-like receptor (TLR)-associated pathways triggering proinflammatory responses that affect both the nature and intensity of the immune response. Previously, we demonstrated that B. abortus-mediated dendritic cell (DC) maturation and control of infection are dependent on the adaptor molecule MyD88. However, the involvement of all TLRs in response to B. abortus infection is not completely understood. Therefore, we decided to evaluate the requirement for TLR6 in host resistance to B. abortus. Here, we demonstrated that TLR6 is an important component for triggering an innate immune response against B. abortus. An in vitro luciferase assay indicated that TLR6 cooperates with TLR2 to sense Brucella and further activates NF-κB signaling. However, in vivo analysis showed that TLR6, not TLR2, is required for the efficient control of B. abortus infection. Additionally, B. abortus-infected dendritic cells require TLR6 to induce tumor necrosis factor alpha (TNF-α) and interleukin-12 (IL-12). Furthermore, our findings demonstrated that the mitogen-activated protein kinase (MAPK) signaling pathway is impaired in TLR2, TLR6, and TLR2/6 knockout (KO) DCs when infected with B. abortus, which may account for the lower proinflammatory cytokine production observed in TLR6 KO mouse dendritic cells. In summary, the results presented here indicate that TLR6 is required to trigger innate immune responses against B. abortus in vivo and is required for the full activation of DCs to induce robust proinflammatory cytokine production. PMID:23460520

  1. Identification of Immune Effectors Essential to the Control of Primary and Secondary Intranasal Infection with Brucella melitensis in Mice.

    PubMed

    Hanot Mambres, Delphine; Machelart, Arnaud; Potemberg, Georges; De Trez, Carl; Ryffel, Bernhard; Letesson, Jean-Jacques; Muraille, Eric

    2016-05-01

    The mucosal immune system represents the first line of defense against Brucella infection in nature. We used genetically deficient mice to identify the lymphocytes and signaling pathways implicated in the control of primary and secondary intranasal infection with B. melitensis Our analysis of primary infection demonstrated that the effectors implicated differ at the early and late stages and are dependent on the organ. TCR-δ, TAP1, and IL-17RA deficiency specifically affects early control of Brucella in the lungs, whereas MHC class II (MHCII) and IFN-γR deficiency impairs late control in the lungs, spleen, and liver. Interestingly, IL-12p35(-/-) mice display enhanced Brucella growth in the spleen but not in the lungs or liver. Secondary intranasal infections are efficiently contained in the lung. In contrast to an i.p. infectious model, in which IL-12p35, MHCII, and B cells are strictly required for the control of secondary infection, we observed that only TCR-β deficiency or simultaneous neutralization of IL-12p35- and IL-17A-dependent pathways impairs the memory protective response against a secondary intranasal infection. Protection is not affected by TCR-δ, MHCII, TAP1, B cell, IL-17RA, or IL-12p35 deficiency, suggesting that CD4(+) and CD8(+) α/β(+) T cells are sufficient to mount a protective immune response and that an IL-17A-mediated response can compensate for the partial deficiency of an IFN-γ-mediated response to control a Brucella challenge. These findings demonstrate that the nature of the protective memory response depends closely on the route of infection and highlights the role of IFN-γ-and IL-17RA-mediated responses in the control of mucosal infection by Brucella. PMID:27036913

  2. Typing Discrepancy Between Phenotypic and Molecular Characterization Revealing an Emerging Biovar 9 Variant of Smooth Phage-Resistant B. abortus Strain 8416 in China

    PubMed Central

    Kang, Yao-Xia; Li, Xu-Ming; Piao, Dong-Ri; Tian, Guo-Zhong; Jiang, Hai; Jia, En-Hou; Lin, Liang; Cui, Bu-Yun; Chang, Yung-Fu; Guo, Xiao-Kui; Zhu, Yong-Zhang

    2015-01-01

    A newly isolated smooth colony morphology phage-resistant strain 8416 isolated from a 45-year-old cattle farm cleaner with clinical features of brucellosis in China was reported. The most unusual phenotype was its resistance to two Brucella phages Tbilisi and Weybridge, but sensitive to Berkeley 2, a pattern similar to that of Brucella melitensis biovar 1. VITEK 2 biochemical identification system found that both strain 8416 and B. melitensis strains shared positive ILATk, but negative in other B. abortus strains. However, routine biochemical and phenotypic characteristics of strain 8416 were most similar to that of B. abortus biovar 9 except CO2 requirement. In addition, multiple PCR molecular typing assays including AMOS-PCR, B. abortus special PCR (B-ab PCR) and a novel sub-biovar typing PCR, indicated that strain 8416 may belong to either biovar 3b or 9 of B. abortus. Surprisingly, further MLVA typing results showed that strain 8416 was most closely related to B. abortus biovar 3 in the Brucella MLVA database, primarily differing in 4 out of 16 screened loci. Therefore, due to the unusual discrepancy between phenotypic (biochemical reactions and particular phage lysis profile) and molecular typing characteristics, strain 8416 could not be exactly classified to any of the existing B. abortus biovars and might be a new variant of B. abortus biovar 9. The present study also indicates that the present phage typing scheme for Brucella sp. is subject to variation and the routine Brucella biovar typing needs further studies. PMID:26696984

  3. Second generation competitive enzyme immunoassay for detection of bovine antibody to Brucella abortus.

    PubMed

    Nielsen, K; Smith, P; Yu, W L; Elmgren, C; Nicoletti, P; Perez, B; Bermudez, R; Renteria, T

    2007-09-20

    A second generation competitive enzyme immunoassay (CELISA) for detection of bovine antibody to Brucella abortus was developed. This assay was different from previously developed CELISAs in that the detection reagent used was a recombinant combination of the receptor portions of protein A and protein G, labelled with horseradish peroxidase. This eliminates the need for polyclonal anti-mouse-enzyme conjugate reagents for detection thus allowing for true standardization. The assay utilized a monoclonal antibody specific for a common epitope of the O-polysaccharide (OPS) of smooth lipopolysaccharide (SLPS) derived from B. abortus S1119.3 but which did not react with protein A/G. This monoclonal antibody was used to compete with antibody in the bovine test serum. Binding of bovine antibody to the smooth lipopolysaccharide antigen was then measured directly with the protein A/G enzyme conjugate. In this case, development of colour in the reaction was indicative of the presence of bovine antibody. The performance characteristics, sensitivity, specificity and exclusion of B. abortus S19 vaccinated animals, of the assay were very similar to those of the classical CELISA. PMID:17467200

  4. Immunoproteomics of Brucella abortus reveals differential antibody profiles between S19-vaccinated and naturally infected cattle.

    PubMed

    Pajuaba, Ana C A M; Silva, Deise A O; Almeida, Karine C; Cunha-Junior, Jair P; Pirovani, Carlos P; Camillo, Luciana R; Mineo, José R

    2012-03-01

    Brucella abortus is a Gram-negative intracellular bacterium that causes infectious abortion in food-producing animals and chronic infection in humans. This study aimed to characterize a B. abortus S19 antigen preparation obtained by Triton X-114 (TX-114) extraction through immunoproteomics to differentiate infected from vaccinated cattle. Three groups of bovine sera were studied: GI, 30 naturally infected cows; GII, 30 S19-vaccinated heifers; and GIII, 30 nonvaccinated seronegative cows. One-dimensional (1D) and two-dimensional electrophoretic profiles of TX-114 hydrophilic phase antigen revealed a broad spectrum of polypeptides (10-79 kDa). 1D immunoblot showed widespread seroreactivity profile in GI compared with restricted profile in GII. Three antigenic components (10, 12, 17 kDa) were recognized exclusively by GI sera, representing potential markers of infection and excluding vaccinal response. The proteomic characterization revealed 56 protein spots, 27 of which were antigenic spots showing differential seroreactivity profile between GI and GII, especially polypeptides <20 kDa that were recognized exclusively by GI. MS/MS analysis identified five B. abortus S19 proteins (Invasion protein B, Sod, Dps, Ndk, and Bfr), which were related with antigenicity in naturally infected cattle. In conclusion, immunoproteomics of this new antigen preparation enabled the characterization of proteins that could be used as tools to develop sensitive and specific immunoassays for serodiagnosis of bovine brucellosis, with emphasis on differentiation between S19 vaccinated and infected cattle. PMID:22539433

  5. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers.

    PubMed

    Tabynov, Kaissar; Yespembetov, Bolat; Sansyzbay, Abylai

    2014-10-14

    The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51. PMID:25218295

  6. Transcriptome Analysis of the Brucella abortus BvrR/BvrS Two-Component Regulatory System

    PubMed Central

    Viadas, Cristina; Rodríguez, María C.; Sangari, Felix J.; Gorvel, Jean-Pierre; García-Lobo, Juan M.; López-Goñi, Ignacio

    2010-01-01

    Background The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. Methodology/Principal Findings A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d), lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others) were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ) were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. Conclusions/Significance All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche. PMID:20422049

  7. Large-scale identification of small noncoding RNA with strand-specific deep sequencing and characterization of a novel virulence-related sRNA in Brucella melitensis

    PubMed Central

    Zhong, Zhijun; Xu, Xiaoyang; Li, Xinran; Liu, Shiwei; Lei, Shuangshuang; Yang, Mingjuan; Yu, Jiuxuan; Yuan, Jiuyun; Ke, Yuehua; Du, Xinying; Wang, Zhoujia; Ren, Zhihua; Peng, Guangneng; Wang, Yufei; Chen, Zeliang

    2016-01-01

    Brucella is the causative agent of brucellosis, a worldwide epidemic zoonosis. Small noncoding RNAs (sRNAs) are important modulators of gene expression and involved in pathogenesis and stress adaptation of Brucella. In this study, using a strand-specific RNA deep-sequencing approach, we identified a global set of sRNAs expressed by B. melitensis 16M. In total, 1321 sRNAs were identified, ranging from 100 to 600 nucleotides. These sRNAs differ in their expression levels and strand and chromosomal distributions. The role of BSR0441, one of these sRNAs, in the virulence of B. melitensis 16M was further characterized. BSR0441 was highly induced during the infection of macrophages and mice. The deletion mutant of BSR0441 showed significantly reduced spleen colonization in the middle and late phases of infection. The expression of the BSR0441 target mRNA genes was also altered in the BSR0441 mutant strain during macrophage and mice infection, which is consistent with its reduced intracellular survival capacity. In summary, Brucella encodes a large number of sRNAs, which may be involved in the stress adaptation and virulence of Brucella. Further investigation of these regulators will extend our understanding of the Brucella pathogenesis mechanism and the interactions between Brucella and its hosts. PMID:27112796

  8. Large-scale identification of small noncoding RNA with strand-specific deep sequencing and characterization of a novel virulence-related sRNA in Brucella melitensis.

    PubMed

    Zhong, Zhijun; Xu, Xiaoyang; Li, Xinran; Liu, Shiwei; Lei, Shuangshuang; Yang, Mingjuan; Yu, Jiuxuan; Yuan, Jiuyun; Ke, Yuehua; Du, Xinying; Wang, Zhoujia; Ren, Zhihua; Peng, Guangneng; Wang, Yufei; Chen, Zeliang

    2016-01-01

    Brucella is the causative agent of brucellosis, a worldwide epidemic zoonosis. Small noncoding RNAs (sRNAs) are important modulators of gene expression and involved in pathogenesis and stress adaptation of Brucella. In this study, using a strand-specific RNA deep-sequencing approach, we identified a global set of sRNAs expressed by B. melitensis 16M. In total, 1321 sRNAs were identified, ranging from 100 to 600 nucleotides. These sRNAs differ in their expression levels and strand and chromosomal distributions. The role of BSR0441, one of these sRNAs, in the virulence of B. melitensis 16M was further characterized. BSR0441 was highly induced during the infection of macrophages and mice. The deletion mutant of BSR0441 showed significantly reduced spleen colonization in the middle and late phases of infection. The expression of the BSR0441 target mRNA genes was also altered in the BSR0441 mutant strain during macrophage and mice infection, which is consistent with its reduced intracellular survival capacity. In summary, Brucella encodes a large number of sRNAs, which may be involved in the stress adaptation and virulence of Brucella. Further investigation of these regulators will extend our understanding of the Brucella pathogenesis mechanism and the interactions between Brucella and its hosts. PMID:27112796

  9. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  10. A combined DNA vaccine provides protective immunity against Mycobacterium bovis and Brucella abortus in cattle.

    PubMed

    Hu, Xi-Dan; Yu, Da-Hai; Chen, Su-Ting; Li, Shu-Xia; Cai, Hong

    2009-04-01

    We evaluated the immunogenicity and protective efficacy of a combined DNA vaccine containing six genes encoding immunodominant antigens from Mycobacterium bovis and Brucella abortus. The number of lymph node and spleen cultures positive for M. bovis and B. abortus from calves immunized with the combined DNA vaccine was significantly reduced (p < 0.01) compared with unvaccinated calves after challenge with virulent M. bovis and B. abortus 544. The combined DNA vaccine group displayed stronger antigen-specific interferon-gamma (IFN-gamma) responses and antigen-specific IFN-gamma ELISPOT activities 2 months after final immunization and after challenge. Antigen-specific CD4(+) and CD8(+) T cell responses in the combined DNA vaccine group were higher than either the Bacillus Calmette-Guerin (BCG)-positive or S19-positive control group. Likewise, more calves in the DNA vaccine group exhibited antigen-specific IgG titers and had higher IgG titers than those in the BCG- or S19-immunized groups 2 months after the final immunization. Moreover, two antigens in the combined DNA vaccine induced significant antigen-specific IFN-gamma responses 6 months after challenge (p < 0.05). Bacterial counts and pathological analyses of the challenged animals indicated that the combined DNA vaccine provided significantly better protection than the BCG vaccine against M. bovis, and the protection level induced by the combined DNA vaccine was comparable to S19 against B. abortus. This is the first report to demonstrate that a single combined DNA vaccine protects cattle against two infectious diseases. PMID:19364278

  11. Characterization and Protective Property of Brucella abortus cydC and looP Mutants

    PubMed Central

    Truong, Quang Lam; Cho, Youngjae; Barate, Abhijit Kashinath; Kim, Suk

    2014-01-01

    Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response. PMID:25253663

  12. Comparison of Biological and Immunological Characterization of Lipopolysaccharides From Brucella abortus RB51 and S19

    PubMed Central

    Kianmehr, Zahra; Kaboudanian Ardestani, Sussan; Soleimanjahi, Hoorieh; Fotouhi, Fatemeh; Alamian, Saeed; Ahmadian, Shahin

    2015-01-01

    Background: Brucella abortus RB51 is a rough stable mutant strain, which has been widely used as a live vaccine for prevention of brucellosis in cattle instead of B. abortus strain S19. B. abortus lipopolysaccharide (LPS) has unique properties in comparison to other bacterial LPS. Objectives: In the current study, two types of LPS, smooth (S-LPS) and rough (R-LPS) were purified from B. abortus S19 and RB51, respectively. The aim of this study was to evaluate biological and immunological properties of purified LPS as an immunogenical determinant. Materials and Methods: Primarily, S19 and RB51 LPS were extracted and purified by two different modifications of the phenol water method. The final purity of LPS was determined by chemical analysis (2-keto-3-deoxyoctonate (KDO), glycan, phosphate and protein content) and different staining methods, following sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). C57BL/6 mice were immunized subcutaneously three times at biweekly intervals with the same amount of purified LPSs. The humoral immunity was evaluated by measuring specific IgG levels and also different cytokine levels, such as IFN-γ, TNF-α, IL-4 and IL-10, were determined for assessing T-cell immune response. Results: Biochemical analysis data and SDS-PAGE profile showed that the chemical nature of S19 LPS is different from RB51 LPS. Both S and R-LPS induce an immune response. T-cell immune response induced by both S and R-LPS had almost the same pattern whereas S19 LPS elicited humoral immunity, which was higher than RB51 LPS. Conclusions: Purified LPS can be considered as a safe adjuvant and can be used as a component in prophylactic and therapeutic vaccines targeting infectious disease, cancer and allergies. PMID:26862376

  13. Genomic fingerprinting and development of a dendrogram for Brucella spp. isolated from seals, porpoises, and dolphins.

    PubMed

    Jensen, A E; Cheville, N F; Thoen, C O; MacMillan, A P; Miller, W G

    1999-03-01

    Genomic DNA from reference strains and biovars of the genus Brucella was analyzed using pulsed-field gel electrophoresis (PFGE). Fingerprints were compared to estimate genetic relatedness among the strains and to obtain information on evolutionary relationships. Electrophoresis of DNA digested with the restriction endonuclease XbaI produced fragment profiles for the reference type strains that distinguished these strains to the level of species. Included in this study were strains isolated from marine mammals. The PFGE profiles from these strains were compared with those obtained from the reference strains and biovars. Isolates from dolphins had similar profiles that were distinct from profiles of Brucella isolates from seals and porpoises. Distance matrix analyses were used to produce a dendrogram. Biovars of B. abortus were clustered together in the dendrogram; similar clusters were shown for biovars of B. melitensis and for biovars of B. suis. Brucella ovis, B. canis, and B. neotomae differed from each other and from B. abortus, B. melitensis, and B. suis. The relationship between B. abortus strain RB51 and other Brucella biovars was compared because this strain has replaced B. abortus strain 19 for use as a live vaccine in cattle and possibly in bison and elk. These results support the current taxonomy of Brucella species and the designation of an additional genomic group(s) of Brucella. The PFGE analysis in conjunction with distance matrix analysis was a useful tool for calculating genetic relatedness among the Brucella species. PMID:10098687

  14. Poly(d,l-Lactide-Coglycolide) Particles Containing Gentamicin: Pharmacokinetics and Pharmacodynamics in Brucella melitensis- Infected Mice▿

    PubMed Central

    Lecaroz, M. C.; Blanco-Prieto, M. J.; Campanero, M. A.; Salman, H.; Gamazo, C.

    2007-01-01

    Drug delivery systems containing gentamicin were studied as a treatment against experimental brucellosis in mice. Micro- and nanoparticles prepared by using poly(d,l-lactide-coglycolide) (PLGA) 502H and microparticles made of PLGA 75:25H were successfully delivered to the liver and the spleen, the target organs for Brucella melitensis. Both polymers have the same molecular weight but have different lactic acid/glycolic acid ratios. Microparticles of PLGA 502H and 75:25H released their contents in a sustained manner, in contrast to PLGA 502H nanoparticles, which were degraded almost completely during the first week postadministration. The values of the pharmacokinetic parameters after administration of a single intravenous dose of 1.5 mg/kg of body weight of loaded gentamicin revealed higher areas under the curve (AUCs) for the liver and the spleen and increased mean retention times (MRTs) compared to those for the free drug, indicating the successful uptake by phagocytic cells in both organs and the controlled release of the antibiotic. Both gentamicin-loaded PLGA 502H and 75:25H microparticles presented similar pharmacokinetic parameter values for the liver, but those made of PLGA 75:25 H were more effective in targeting the antibiotic to the spleen (higher AUCs and MRTs). The administration of three doses of 1.5 mg/kg significantly reduced the load associated with the splenic B. melitensis infection. Thus, the formulation made with the 75:25H polymer was more effective than that made with 502H microspheres (1.45-log and 0.45-log reductions, respectively, at 3 weeks posttreatment). Therefore, both, pharmacokinetic and pharmacodynamic parameters showed the suitability of 75:25H microspheres to reduce the infection of experimentally infected mice with B. melitensis. PMID:17220415

  15. Interleukin-1 Receptor-Associated Kinase 4 Is Essential for Initial Host Control of Brucella abortus Infection ▿

    PubMed Central

    Oliveira, Fernanda S.; Carvalho, Natália B.; Brandão, Ana Paula M. S.; Gomes, Marco Túlio R.; de Almeida, Leonardo A.; Oliveira, Sérgio C.

    2011-01-01

    Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Recent studies have revealed that Toll-like receptor (TLR)-initiated immune response to Brucella spp. depends on myeloid differentiation factor 88 (MyD88) signaling. Therefore, we decided to study the role of the interleukin-1 receptor-associated kinase 4 (IRAK-4) in host innate immune response against B. abortus. After Brucella infection, it was shown that the number of CFU in IRAK-4−/− mice was high compared to that in IRAK-4+/− animals only at 1 week postinfection. At 3 and 6 weeks postinfection, IRAK-4−/− mice were able to control the infection similarly to heterozygous animals. Furthermore, the type 1 cytokine profile was evaluated. IRAK-4−/− mice showed lower production of systemic interleukin-12 (IL-12) and gamma interferon (IFN-γ). Additionally, a reduced percentage of CD4+ and CD8+ T cells expressing IFN-γ was observed compared to IRAK-4+/−. Further, the production of IL-12 and tumor necrosis factor alpha (TNF-α) by macrophages and dendritic cells from IRAK-4−/− mice was abolished at 24 h after stimulation with B. abortus. To investigate the role of IRAK-4 in mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, macrophages were stimulated with B. abortus, and the signaling components were analyzed by protein phosphorylation. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 and p38 as well as p65 NF-κB phosphorylation was profoundly impaired in IRAK-4−/− and MyD88−/− macrophages activated by Brucella. In summary, the results shown in this study demonstrated that IRAK-4 is critical to trigger the initial immune response against B. abortus but not at later phases of infection. PMID:21844234

  16. Circulating Strains of Brucella abortus in Cattle in Santo Domingo De Los Tsáchilas Province – Ecuador

    PubMed Central

    Rodríguez-Hidalgo, Richar Ivan; Contreras-Zamora, Javier; Benitez Ortiz, Washington; Guerrero-Viracocha, Karina; Salcan-Guaman, Holger; Minda, Elizabeth; Ron Garrido, Lenin

    2015-01-01

    The Province of Santo Domingo de los Tsáchilas in Ecuador represents the largest informal cattle market. Because of its strategic position, cattle movement is very high and therefore we selected this region, to determine the strain variation of Brucella sp. Part of the study aimed at the isolation, biotyping, and genotyping of Brucella species from milk and supra-mammary lymph nodes of sero-positive bovines, using selective Farrell medium, biochemical assays, and IS711-PCR, AMOS-PCR, and HOOF-Prints techniques. In total, 656 animals from 12 sero-positive dairy herds and from the provincial slaughterhouse were diagnosed by Rose Bengal and Wright’s Slow Agglutination test with EDTA. Amongst these animals, 50 animals were sero-positive for brucellosis. Twenty-five lymph nodes and 25 milk samples from each group of positive reactors were transferred to culture medium. Isolation was possible from 4 (16%) lymph nodes and 9 (36%) milk samples; out of these, 10 isolates were diagnosed as Brucella sp. All four isolates of lymphatic tissue corresponded to Brucella abortus biotype 1, confirmed as field strains by molecular analysis. Milk isolations, showed biochemically a more dispersed pattern in which B. abortus biotypes 1 and 4 were found; yet four samples gave a pattern similar to B. abortus biotype 2; however, only biotypes 1 and 4 were confirmed by molecular analysis. The concordance between biochemical and molecular diagnostic tests reached 76.9%. PMID:25806363

  17. A potent Brucella abortus 2308 Δery live vaccine allows for the differentiation between natural and vaccinated infection.

    PubMed

    Zhang, Junbo; Yin, Shuanghong; Guo, Fei; Meng, Ren; Chen, Chuangfu; Zhang, Hui; Li, Zhiqiang; Fu, Qiang; Shi, Huijun; Hu, Shengwei; Ni, Wei; Li, Tiansen; Zhang, Ke

    2014-08-01

    Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. However, the current Brucella abortus vaccines (S19 and RB51) are deficient; they can cause abortion in pregnant animals. Moreover, when the vaccine S19 is used, tests cannot differentiate natural from vaccinated infection. Therefore, a safer and more potent vaccine is needed. A Brucella abortus 2308 ery promoter mutant (Δery) was constructed to overcome these drawbacks. The growth of the Δery mutant was significantly attenuated in macrophages and mice and induced high protective immunity in mice. Moreover, Δery induced an anti-Brucella-specific IgG (immunoglobulin G) response and stimulated the expression of interferon-gamma (INF-γ) and interleukin-4 (IL-4). Furthermore, the expression of EryA antigen allowed for the serological differentiation between natural and vaccinated infection in mice. These results indicate that the Δery mutant is a potential attenuated live vaccine candidate against virulent Brucella abortus 2308 (S2308) infection. PMID:24994009

  18. Immunogenicity and protective effect of recombinant Brucella abortus Ndk (rNdk) against a virulent strain B. abortus 544 infection in BALB/c mice.

    PubMed

    Hop, Huynh Tan; Simborio, Hannah Leah; Reyes, Alisha Wehdnesday Bernardo; Arayan, Lauren Togonon; Min, WonGi; Lee, Hu Jang; Kim, Dong Hee; Chang, Hong Hee; Kim, Suk

    2015-02-01

    In this study, we particularly evaluated the protective effect of recombinant protein encoded by Brucella abortus 544 ndk (nucleoside diphosphate kinase) gene against B. abortus infection in the BALB/c mice. Cloning and expression of B. abortus Ndk was accomplished by PCR amplification into a pMAL expression system, and purification of a recombinant Ndk (rNdk). As for the determination of IgG responses, rNdk induced vigorous IgG production, especially higher in IgG2a compared to IgG1 with titers of 5.2 and 4.8, respectively, whereas titers of these in mice immunized with MBP were 2.4 of IgG2a and 2.6 of IgG1. The analysis of cytokine has revealed that rNdk can strongly induce production of IFN-γ as well as proinflammatory cytokines (TNF, MCP1 and IL-6) but not much IL-10, suggesting rNdk elicited predominantly cell-mediated immune responses. Furthermore, the spleen proliferation and bacterial burden in the spleen of rNdk immunized mice were significantly lower than those of MBP-immunized mice against virulent B. abortus challenge (P < 0.01). Conclusionly, rNdk immunization enables to elicit both of the humoral and cellular response, ultimately enhancing protection level in experimental mice, suggesting that rNdk of B. abortus might be a useful candidate for subunit vaccine for brucellosis in animals. PMID:25724777

  19. Genome sequences of three live attenuated vaccine strains of Brucella species and implications for pathogenesis and differential diagnosis.

    PubMed

    Wang, Yufei; Ke, Yuehua; Wang, Zhoujia; Yuan, Xitong; Qiu, Yefeng; Zhen, Qing; Xu, Jie; Li, Tiefeng; Wang, Dali; Huang, Liuyu; Chen, Zeliang

    2012-11-01

    Live attenuated vaccines play essential roles in the prevention of brucellosis. Here, we report the draft genome sequences of three vaccine strains, Brucella melitensis M5-10, B. suis S2-30, and B. abortus 104M. Primary genome sequence analysis identified mutations, deletions, and insertions which have implications for attenuation and signatures for differential diagnosis. PMID:23045513

  20. An ecological perspective on the changing face of Brucella abortus in the western United States

    USGS Publications Warehouse

    Cross, Paul C.; Maichak, Eric J.; Brennan, Angela; Scurlock, Brandon M.; Henningsen, John C.; Luikart, Gordon

    2013-01-01

    After a hiatus during the 1990s, outbreaks of Brucella abortus in cattle are occurring more frequently in some of the western states of the United States, namely, Montana, Wyoming and Idaho. This increase is coincident with increasing brucellosis seroprevalence in elk (Cervus elaphus), which is correlated with elk density. Vaccines are a seductive solution, but their use in wildlife systems remains limited by logistical, financial, and scientific constraints. Cattle vaccination is ongoing in the region. Livestock regulations, however, tend to be based on serological tests that test for previous exposure and available vaccines do not protect against seroconversion. The authors review recent ecological studies of brucellosis, with particular emphasis on the Greater Yellowstone Area, and highlight the management options and implications of this work, including the potential utility of habitat modifications and targeted hunts, as well as scavengers and predators. Finally, the authors discuss future research directions that will help us to understand and manage brucellosis in wildlife.

  1. Crystal structure of cyclic nucleotide-binding-like protein from Brucella abortus.

    PubMed

    He, Zheng; Gao, Yuan; Dong, Jing; Ke, Yuehua; Li, Xuemei; Chen, Zeliang; Zhang, Xuejun C

    2015-12-25

    The cyclic nucleotide-binding (CNB)-like protein (CNB-L) from Brucella abortus shares sequence homology with CNB domain-containing proteins. We determined the crystal structure of CNB-L at 2.0 Å resolution in the absence of its C-terminal helix and nucleotide. The 3D structure of CNB-L is in a two-fold symmetric form. Each protomer shows high structure similarity to that of cGMP-binding domain-containing proteins, and likely mimics their nucleotide-free conformation. A key residue, Glu17, mediates the dimerization and prevents binding of cNMP to the canonical ligand-pocket. The structurally observed dimer of CNB-L is stable in solution, and thus is likely to be biologically relevant. PMID:26549229

  2. An ecological perspective on Brucella abortus in the western United States.

    PubMed

    Cross, P C; Maichak, E J; Brennan, A; Scurlock, B M; Henningsen, J; Luikart, G

    2013-04-01

    After a hiatus during the 1990s, outbreaks of Brucella abortus in cattle are occurring more frequently in some of the western states of the United States, namely, Montana, Wyoming and Idaho. This increase is coincidentwith increasing brucellosis seroprevalence in elk (Cervus elaphus), which is correlated with elk density. Vaccines are a seductive solution, but their use in wildlife systems remains limited by logistical, financial, and scientific constraints. Cattle vaccination is ongoing in the region. Livestock regulations, however, tend to be based on serological tests that test for previous exposure and available vaccines do not protect against seroconversion. The authors review recent ecological studies of brucellosis, with particular emphasis on the Greater Yellowstone Area, and highlight the management options and implications of this work, including the potential utility of habitat modifications and targeted hunts, as well as scavengers and predators. Finally, the authors discuss future research directions that will help us to understand and manage brucellosis in wildlife. PMID:23837367

  3. First report of orchitis in man caused by Brucella abortus biovar 1 in Ecuador.

    PubMed

    Ron-Román, Jorge; Saegerman, Claude; Minda-Aluisa, Elizabeth; Benítez-Ortíz, Washington; Brandt, Jef; Douce, Richard

    2012-09-01

    We present a 44-year-old man from a rural community in northern Ecuador who worked on a cattle farm where he was involved with primary veterinary care, including assistance during births (or calving) and placenta retention and artificial insemination, with minimal precautions. In September of 2009, quite abruptly, he developed asthenia and hypersomnia without any apparent cause or symptoms like fever, chills, or night sweats. On November 14, 2009, he suffered from pain and edema in the right testicle that coincided with pain in the abdomen. Clinical, serological, and bacteriological investigations confirmed the first case of unilateral orchitis in man in Ecuador caused by Brucella abortus biovar 1. Because brucellosis is a neglected disease, special attention should be given to it in the training of medical and veterinary students. PMID:22826490

  4. Use of mass vaccination with a reduced dose of REV 1 vaccine for Brucella melitensis control in a population of small ruminants.

    PubMed

    Scharp, D W; al Khalaf, S A; al Muhanna, M W; Cheema, R A; Godana, W

    1999-06-01

    Mass vaccination with reduced dose 1/50 Rev 1 strain live vaccine (1-2 10(9) colony forming units), administered subcutaneously, over a four and a half year period reduced the prevalence of Brucella melitensis in Kuwait's small ruminant population from 5.8% in 1993 to 2.02% in 1997. Serological test results using the Rose Bengal Plate Test, Rivanol Agglutination Test and Complement Fixation showed no evidence of persistence of positive serology in animals nine or more months after vaccination. Questionnaires and post-vaccination flock inspections found that the effects on gestation (abortions) were minimal--and not proven to be due to the vaccine. The conclusion from these findings is that mass vaccination with reduced dose Rev 1 administered by the subcutaneous route is a practical field strategy for control of Brucella melitensis. PMID:10445249

  5. Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence*

    PubMed Central

    Fontana, Carolina; Conde-Álvarez, Raquel; Ståhle, Jonas; Holst, Otto; Iriarte, Maite; Zhao, Yun; Arce-Gorvel, Vilma; Hanniffy, Seán; Gorvel, Jean-Pierre; Moriyón, Ignacio; Widmalm, Göran

    2016-01-01

    The structures of the lipooligosaccharides from Brucella melitensis mutants affected in the WbkD and ManBcore proteins have been fully characterized using NMR spectroscopy. The results revealed that disruption of wbkD gives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (β-d-Glcp-(1→4)-α-Kdop-(2→4)[β-d-GlcpN-(1→6)-β-d-GlcpN-(1→4)[β-d-GlcpN-(1→6)]-β-d-GlcpN-(1→3)-α-d-Manp-(1→5)]-α-Kdop-(2→6)-β-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P), in addition to components lacking one of the terminal β-d-GlcpN and/or the β-d-Glcp residues (48 and 17%, respectively). These structures were identical to those of the R-LPS from B. melitensis EP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption of manBcore gives rise to a deep-rough pentasaccharide core (β-d-Glcp-(1→4)-α-Kdop-(2→4)-α-Kdop-(2→6)-β-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal β-d-Glcp residue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManBcore proteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion of B. melitensis wadC removes the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential in B. melitensis virulence, the core deficiency in the wadC mutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the β-d-GlcpN-(1→6)-β-d-GlcpN-(1→4)[β-d-GlcpN-(1→6)]-β-d-GlcpN-(1→3)-

  6. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition.

    PubMed

    Conde-Álvarez, Raquel; Arce-Gorvel, Vilma; Iriarte, Maite; Manček-Keber, Mateja; Barquero-Calvo, Elías; Palacios-Chaves, Leyre; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Martirosyan, Anna; von Bargen, Kristine; Grilló, María-Jesús; Jerala, Roman; Brandenburg, Klaus; Llobet, Enrique; Bengoechea, José A; Moreno, Edgardo; Moriyón, Ignacio; Gorvel, Jean-Pierre

    2012-01-01

    Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines. PMID:22589715

  7. Efficacy of single calfhood vaccination of elk with Brucella abortus strain 19

    USGS Publications Warehouse

    Roffe, T.J.; Jones, L.C.; Coffin, K.; Drew, M.L.; Sweeney, Steven J.; Hagius, S.D.; Elzer, P.H.; Davis, D.

    2004-01-01

    Brucellosis has been eradicated from cattle in the states of Wyoming, Montana, and Idaho, USA. However, free-ranging elk (Cervus elaphus) that use feedgrounds in the Greater Yellowstone Area (GYA) and bison (Bison bison) in Yellowstone and Grand Teton national parks still have high seroprevalence to the disease and have caused loss of brucellosis-free status in Wyoming. Management tools to control or eliminate the disease are limited; however, wildlife vaccination is among the methods currently used by wildlife managers in Wyoming. We conducted a controlled challenge study of single calfhood vaccination. Elk calves, caught in January and February of 1999 and 2000 and acclimated to captivity for 3 weeks, were randomly assigned to control or vaccinate groups. The vaccinate groups received Brucetta abortus vaccine strain 19 (S19) by hand-delivered intramuscular injection. Calves were raised to adulthood and bred at either 2.5 or 3.5 years of age for 2000 and 1999 captures, respectively. Eighty-nine (44 controls, 45 vaccinates) pregnant elk entered the challenge portion of the study. We challenged elk at mid-gestation with pathogenic B. abortus strain 2308 by intraconjunctival instillation. Abortion occurred in significantly more (P = 0.002) controls (42; 93%) than vaccinates (32; 71%), and vaccine protected 25% of the vaccinate group. We used Brucella culture of fetus/calf tissues to determine the efficacy of vaccination for preventing infection, and we found that the number of infected fetuses/calves did not differ between controls and vaccinates (P = 0.14). Based on these data, single calfhood vaccination with S19 has low efficacy, will likely have only little to moderate effect on Brucella prevalence in elk, and is unlikely to eradicate the disease in wildlife of the GYA.

  8. Evaluation of Brucella abortus Phosphoglucomutase (pgm) Mutant as a New Live Rough-Phenotype Vaccine

    PubMed Central

    Ugalde, Juan Esteban; Comerci, Diego José; Leguizamón, M. Susana; Ugalde, Rodolfo Augusto

    2003-01-01

    Brucella abortus S19 is the vaccine most frequently used against bovine brucellosis. Although it induces good protection levels, it cannot be administered to pregnant cattle, revaccination is not advised due to interference in the discrimination between infected and vaccinated animals during immune-screening procedures, and the vaccine is virulent for humans. Due to these reasons, there is a continuous search for new bovine vaccine candidates that may confer protection levels comparable to those conferred by S19 but without its disadvantages. A previous study characterized the phenotype associated with the phosphoglucomutase (pgm) gene disruption in Brucella abortus S2308, as well as the possible role for the smooth lipopolysaccharide (LPS) in virulence and intracellular multiplication in HeLa cells (J. E. Ugalde, C. Czibener, M. F. Feldman, and R. A. Ugalde, Infect. Immun. 68:5716-5723, 2000). In this report, we analyze the protection, proliferative response, and cytokine production induced in BALB/c mice by a Δpgm deletion strain. We show that this strain synthesizes O antigen with a size of approximately 45 kDa but is rough. This is due to the fact that the Δpgm strain is unable to assemble the O side chain in the complete LPS. Vaccination with the Δpgm strain induced protection levels comparable to those induced by S19 and generated a proliferative splenocyte response and a cytokine profile typical of a Th1 response. On the other hand, we were unable to detect a specific anti-O-antigen antibody response by using the fluorescence polarization assay. In view of these results, the possibility that the Δpgm mutant could be used as a vaccination strain is discussed. PMID:14573645

  9. The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition

    PubMed Central

    Iriarte, Maite; Manček-Keber, Mateja; Barquero-Calvo, Elías; Palacios-Chaves, Leyre; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Martirosyan, Anna; von Bargen, Kristine; Grilló, María-Jesús; Jerala, Roman; Brandenburg, Klaus; Llobet, Enrique; Bengoechea, José A.; Moreno, Edgardo

    2012-01-01

    Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines. PMID:22589715

  10. [Activity of porcine anti-Brucella abortus immunoglobulins in the acid plate agglutination test (APAT)].

    PubMed

    Stryszak, A; Błaszczyk, B; Królak, M

    1987-01-01

    Serological activity of swine IgM and IgG against Brucella abortus in RBPT was determined in relation to four other reactions used in Poland for diagnosing brucellosis standard agglutination test, complement fixation test, antiglobulin test, 2-mercaptoethanol test). Isolation of IgG was performed by the method of filtration on Sephadex gel G-200 of swine sera raised against Brucella abortus S19 by double immunization with suspension of killed bacteria. The presence of a certain Ig class in the fractions thus obtained was confirmed by immunoelectrophoresis and immunodiffusion tests. RBPT revealed the reaction of antibodies of IgM and IgG class which proves usability of this reaction diagnosis both early (IgM) and chronic (IgG) infection with brucellosis. Both classes of antibodies mentioned above were active also in SAT and CTT. Also the results obtained in AGT and MET were found interesting. In one of the sera, the absence of incomplete antibodies was observed, whereas positive reaction in antiglobulin test was found in its fractions containing IgG. This phenomenon was determined as concealment of incomplete agglutinins through higher level of complete antibodies in normal serum. In swine (the results were different from those obtained for cattle), apart from incomplete antibodies in IgG class, the presence of these agglutinins in IgM class was noted. On the other hand, the results obtained in MET proved that IgM antibodies of swine were not totally reduced when affected by 2-mercaptoethanol. PMID:3137534

  11. Brucella melitensis MucR, an Orthologue of Sinorhizobium meliloti MucR, Is Involved in Resistance to Oxidative, Detergent, and Saline Stresses and Cell Envelope Modifications

    PubMed Central

    Mirabella, A.; Terwagne, M.; Zygmunt, M. S.; Cloeckaert, A.; De Bolle, X.

    2013-01-01

    Brucella spp. and Sinorhizobium meliloti are alphaproteobacteria that share not only an intracellular lifestyle in their respective hosts, but also a crucial requirement for cell envelope components and their timely regulation for a successful infectious cycle. Here, we report the characterization of Brucella melitensis mucR, which encodes a zinc finger transcriptional regulator that has previously been shown to be involved in cellular and mouse infections at early time points. MucR modulates the surface properties of the bacteria and their resistance to environmental stresses (i.e., oxidative stress, cationic peptide, and detergents). We show that B. melitensis mucR is a functional orthologue of S. meliloti mucR, because it was able to restore the production of succinoglycan in an S. meliloti mucR mutant, as detected by calcofluor staining. Similar to S. meliloti MucR, B. melitensis MucR also represses its own transcription and flagellar gene expression via the flagellar master regulator ftcR. More surprisingly, we demonstrate that MucR regulates a lipid A core modification in B. melitensis. These changes could account for the attenuated virulence of a mucR mutant. These data reinforce the idea that there is a common conserved circuitry between plant symbionts and animal pathogens that regulates the relationship they have with their hosts. PMID:23161025

  12. Optimization of production of Brucella abortus S19 culture in bioreactor using soyabean casein digest medium.

    PubMed

    Kamaraj, Govindasamy; Rajendra, Lingala; Shankar, Chinchkar Ramachandra; Srinivasan, Villuppanoor Alwar

    2010-10-01

    A method of cultivating Brucella abortus S19 culture in bioreactor was attempted using three different media. Culture conditions in bioreactor were optimized by varying agitation and aeration parameters. Varying the aeration ranging from 0.5 vvm to 0.8 vvm and agitation rate ranging from 250 rpm to 400 rpm during bacterial growth was found to yield highest viable count within 48 hours of culture period. A count of > 1 x 10(11) CFU per ml within 48 to 60 hours post seeding was obtained consistently in all five consecutive batches (P > 0.05) with 6 x 10(11) CFU per ml being the maximum yield when the organism is grown in soyabean casein digest medium. B. abortus S19 maintained its smooth characteristics throughout its growth in bioreactor. The vaccine prepared with soyabean casein digest medium was found to be potent and safe with a protective index of 3.33 in mice. The vaccine was tested in 10 cattle calves of 3 to 13 months age and all the vaccinated animals were seropositive on 28, 60, 90, 120 and 150 days post-vaccination when analyzed by fluorescence polarization assay (FPA). PMID:21213590

  13. Myeloid decidual dendritic cells and immunoregulation of pregnancy: defective responsiveness to Coxiella burnetii and Brucella abortus

    PubMed Central

    Gorvel, Laurent; Ben Amara, Amira; Ka, Mignane B.; Textoris, Julien; Gorvel, Jean-Pierre; Mege, Jean-Louis

    2014-01-01

    Dendritic cells (DCs) are a component of the placental immune system, but their role in pregnancy is still poorly understood. Decidual DCs (dDCs) were selected from at-term pregnancy on the basis of CD14 and CD11c expression. A phenotypic analysis revealed that dDCs are characterized by the expression of monocyte-derived DC (moDCs) markers and specific markers such as HLA-G and its ligand ILT4. As demonstrated by whole-genome microarray, dDCs expressed a specific gene program markedly distinct from that of moDCs; it included estrogen- and progesterone-regulated genes and genes encoding immunoregulatory cytokines, which is consistent with the context of foeto-maternal tolerance. A functional analysis of dDCs showed that they were unable to mature in response to bacterial ligands such as lipopolysaccharide or peptidoglycan, as assessed by the expression of HLA-DR, CD80, CD83, and CD86. When dDCs were incubated with bacteria known for their placenta tropism, Coxiella burnetii and Brucella abortus, they were also unable to mature and to produce inflammatory cytokines. It is likely that the defective maturation of dDCs and their inability to produce inflammatory cytokines is related to the spontaneous release of IL-10 by these cells. Taken together, these results suggest that dDCs exhibit an immunoregulatory program, which may favor the pathogenicity of C. burnetii or B. abortus. PMID:25566514

  14. Comparison of Cytokine Immune Responses to Brucella abortus and Yersinia enterocolitica Serotype O:9 Infections in BALB/c Mice

    PubMed Central

    Gu, Wenpeng; Wang, Xin; Qiu, Haiyan; Cui, Buyun; Zhao, Shiwen; Zheng, Han; Xiao, Yuchun; Liang, Junrong; Duan, Ran

    2013-01-01

    Brucella abortus and Yersinia enterocolitica serotype O:9 serologically cross-react in the immune response with the host; therefore, our aim was to compare the immune responses to these two pathogens. We selected typical B. abortus and Y. enterocolitica O:9 strains to study the cytokine immune response and the histopathological changes in livers and spleens of BALB/c mice. The data showed the cytokine responses to the two strains of pathogens were different, where the average levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), gamma interferon (IFN-γ), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNF-α) were higher with B. abortus infections than with Y. enterocolitica O:9 infections, especially for IFN-γ, while the IL-10 level was lower and the levels of IL-1β, IL-4, IL-5, and IL-6 were similar. The histopathological effects in the livers and spleens of the BALB/c mice with B. abortus and Y. enterocolitica O:9 infections were similar; however, the pathological changes in the liver were greater with B. abortus infections, while damage in the spleen was greater with Y. enterocolitica O:9 infections. These observations show that different cytokine responses and histopathological changes occur with B. abortus and Y. enterocolitica O:9 infections. PMID:24042115

  15. Effects of partial deletion of the wzm and wzt genes on lipopolysaccharide synthesis and virulence of Brucella abortus S19.

    PubMed

    Wang, Xiuran; Wang, Lin; Lu, Tiancheng; Yang, Yanling; Chen, Si; Zhang, Rui; Lang, Xulong; Yan, Guangmou; Qian, Jing; Wang, Xiaoxu; Meng, Lingyi; Wang, Xinglong

    2014-06-01

    Brucellosis is a worldwide human and animal infectious disease, and the effective methods of its control are immunisation of animals by vaccination and elimination. Brucella abortus S19 is one of the popular vaccines with virulence in the control of cattle Brucellosis. In the present study, allelic exchange plasmids of wzm and wzt genes and partial knockout mutants of wzm and wzt were constructed to evaluate the resulting difference in virulence of B. abortus S19. PCR analysis revealed that the target genes were knocked out. The mutants were rough mutants and they could be differentiated from natural infection by the Rose Bengal plate and standard agglutination tests. The molecular weights of lipopolysaccharides of the Δwzm and Δwzt mutants were clustered between 25 and 40 kDa, and 30 and 35 kDa separately, and were markedly different from those in B. abortus S19. The virulence of B. abortus Δwzm and Δwzt was decreased compared with that of B. abortus S19 in mice. All these results identified that there were several differences between the wzm and wzt genes on lipopolysaccharide synthesis and on the virulence of B. abortus. PMID:24718931

  16. Immunogenic and Invasive Properties of Brucella melitensis 16M Outer Membrane Protein Vaccine Candidates Identified via a Reverse Vaccinology Approach

    PubMed Central

    Gomez, Gabriel; Pei, Jianwu; Mwangi, Waithaka; Adams, L. Garry; Rice-Ficht, Allison; Ficht, Thomas A.

    2013-01-01

    Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign) to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1–Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway. PMID:23533646

  17. Neutrophils Exert a Suppressive Effect on Th1 Responses to Intracellular Pathogen Brucella abortus

    PubMed Central

    Ordoñez-Rueda, Diana; Arce-Gorvel, Vilma; Alfaro-Alarcón, Alejandro; Lepidi, Hubert; Malissen, Bernard; Malissen, Marie; Gorvel, Jean-Pierre; Moreno, Edgardo

    2013-01-01

    Polymorphonuclear neutrophils (PMNs) are the first line of defense against microbial pathogens. In addition to their role in innate immunity, PMNs may also regulate events related to adaptive immunity. To investigate the influence of PMNs in the immune response during chronic bacterial infections, we explored the course of brucellosis in antibody PMN-depleted C57BL/6 mice and in neutropenic mutant Genista mouse model. We demonstrate that at later times of infection, Brucella abortus is killed more efficiently in the absence of PMNs than in their presence. The higher bacterial removal was concomitant to the: i) comparatively reduced spleen swelling; ii) augmented infiltration of epithelioid histiocytes corresponding to macrophages/dendritic cells (DCs); iii) higher recruitment of monocytes and monocyte/DCs phenotype; iv) significant activation of B and T lymphocytes, and v) increased levels of INF-γ and negligible levels of IL4 indicating a balance of Th1 over Th2 response. These results reveal that PMNs have an unexpected influence in dampening the immune response against intracellular Brucella infection and strengthen the notion that PMNs actively participate in regulatory circuits shaping both innate and adaptive immunity. PMID:23458832

  18. Neutrophils exert a suppressive effect on Th1 responses to intracellular pathogen Brucella abortus.

    PubMed

    Barquero-Calvo, Elías; Martirosyan, Anna; Ordoñez-Rueda, Diana; Arce-Gorvel, Vilma; Alfaro-Alarcón, Alejandro; Lepidi, Hubert; Malissen, Bernard; Malissen, Marie; Gorvel, Jean-Pierre; Moreno, Edgardo

    2013-02-01

    Polymorphonuclear neutrophils (PMNs) are the first line of defense against microbial pathogens. In addition to their role in innate immunity, PMNs may also regulate events related to adaptive immunity. To investigate the influence of PMNs in the immune response during chronic bacterial infections, we explored the course of brucellosis in antibody PMN-depleted C57BL/6 mice and in neutropenic mutant Genista mouse model. We demonstrate that at later times of infection, Brucella abortus is killed more efficiently in the absence of PMNs than in their presence. The higher bacterial removal was concomitant to the: i) comparatively reduced spleen swelling; ii) augmented infiltration of epithelioid histiocytes corresponding to macrophages/dendritic cells (DCs); iii) higher recruitment of monocytes and monocyte/DCs phenotype; iv) significant activation of B and T lymphocytes, and v) increased levels of INF-γ and negligible levels of IL4 indicating a balance of Th1 over Th2 response. These results reveal that PMNs have an unexpected influence in dampening the immune response against intracellular Brucella infection and strengthen the notion that PMNs actively participate in regulatory circuits shaping both innate and adaptive immunity. PMID:23458832

  19. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection

    PubMed Central

    2014-01-01

    Background We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. Methods and Results Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was

  20. Infection of C57BL/6 mice by Trypanosoma musculi modulates host immune responses during Brucella abortus cocolonization.

    PubMed

    Lowry, Jake E; Leonhardt, Jack A; Yao, Chaoqun; Belden, E Lee; Andrews, Gerard P

    2014-01-01

    Brucellosis, which results in fetal abortions in domestic and wildlife animal populations, is of major concern in the US and throughout much of the world. The disease, caused by Brucella abortus, poses an economic threat to agriculture-based communities. A moderately efficacious live attenuated vaccine (B. abortus strain RB51) exists. However, even with vaccine use, outbreaks occur. Evidence suggests that elk (Cervus canadensis), a wild host reservoir, are the source of recent outbreaks in domestic cattle herds in Wyoming, USA. Brucella abortus establishes a chronic, persistent infection in elk. The molecular mechanisms allowing the establishment of this persistent infective state are currently unknown. A potential mechanism could be that concurrent pathogen burdens contribute to persistence. In Wyoming, elk are chronically infected with Trypanosoma cervi, which may modulate host responses in a similar manner to that documented for other trypanosomes. To identify any synergistic relationship between the two pathogens, we simulated coinfection in the well-established murine brucellosis model using Trypanosoma musculi and B. abortus S19. Groups of C57BL/6 mice (Mus musculus) were infected with either B. abortus strain 19 (S19) or T. musculi or both. Sera were collected weekly; spleens from euthanized mice were tested to determine bacterial load near the end of normal brucellosis infection. Although changes in bacterial load were observed during the later stages of brucellosis in those mice coinfected with T. musculi, the most significant finding was the suppression of gamma interferon early during the infection along with an increase in interleukin-10 secretion compared with mice infected with either pathogen alone. These results suggest that immune modulatory events occur in the mouse during coinfection and that further experiments are warranted to determine if T. cervi impacts Brucella infection in elk. PMID:24171573

  1. Abortion caused by Brucella abortus biovar 1 in a free-ranging bison (Bison bison) from Yellowstone National Park.

    PubMed

    Rhyan, J C; Quinn, W J; Stackhouse, L S; Henderson, J J; Ewalt, D R; Payeur, J B; Johnson, M; Meagher, M

    1994-07-01

    A near-term aborted bison (Bison bison) fetus was collected near Old Faithful geyser in Yellowstone National Park, Wyoming (USA). On necropsy, the fetus liver had a small capsular tear, and there was a small quantity of blood in the peritoneal cavity. Microscopic lesions included mild, purulent bronchopneumonia and mild, multifocal, interstitial pneumonia. Brucella abortus biovar 1 was isolated from fetal abomasal contents, lung, and heart blood. PMID:7933293

  2. Antibody and delayed-type hypersensitivity responses to Ochrobactrum anthropi cytosolic and outer membrane antigens in infections by smooth and rough Brucella spp.

    PubMed Central

    Velasco, J; Díaz, R; Grilló, M J; Barberán, M; Marín, C; Blasco, J M; Moriyón, I

    1997-01-01

    Immunological cross-reactions between Brucella spp. and Ochrobactrum anthropi were investigated in animals and humans naturally infected by Brucella spp. and in experimentally infected rams (Brucella ovis infected), rabbits (Brucella melitensis infected), and mice (B. melitensis and Brucella abortus infected). In the animals tested, O. anthropi cytosolic proteins evoked a delayed-type hypersensitivity reaction of a frequency and intensity similar to that observed with B. melitensis brucellin. O. anthropi cytosolic proteins also reacted in gel precipitation tests with antibodies in sera from Brucella natural hosts with a frequency similar to that observed with B. melitensis proteins, and absorption experiments and immunoblotting showed antibodies to both Brucella-specific proteins and proteins common to Brucella and O. anthropi. No antibodies to O. anthropi cytosolic proteins were detected in the sera of Brucella-free hosts. Immunoblotting with sera of Brucella-infected sheep and goats showed immunoglobulin G (IgG) to Brucella group 3 outer membrane proteins and to O. anthropi proteins of similar molecular weight. No IgG to the O-specific polysaccharide of O. anthropi lipopolysaccharide was detected in the sera of Brucella-infected hosts. The sera of sheep, goats, and rabbits infected with B. melitensis contained IgG to O. anthropi rough lipopolysaccharide and lipid A, and B. ovis and O. anthropi rough lipopolysaccharides showed equal reactivities with IgG in the sera of B. ovis-infected rams. The findings show that the immunoresponse of Brucella-infected hosts to protein antigens is not necessarily specific for brucellae and suggest that the presence of O. anthropi or some related bacteria explains the previously described reactivities to Brucella rough lipopolysaccharide and outer membrane proteins in healthy animals. PMID:9144364

  3. Immunogenic response to a recombinant pseudorabies virus carrying bp26 gene of Brucella melitensis in mice.

    PubMed

    Yao, Lan; Wu, Chang-Xian; Zheng, Ke; Xu, Xian-Jin; Zhang, Hui; Chen, Chuang-Fu; Liu, Zheng-Fei

    2015-06-01

    Brucellae are facultative intracellular bacterial pathogens of a zoonotic disease called brucellosis. Live attenuated vaccines are utilized for prophylaxis of brucellosis; however, they retain residual virulence to human and/or animals, as well as interfere with diagnosis. In this study, recombinant virus PRV ΔTK/ΔgE/bp26 was screened and purified. One-step growth curve assay showed that the titer of recombinant virus was comparable to the parent strain. Mice experiments showed the recombinant virus elicited high titer of humoral antibodies against Brucella detected by enzyme-linked immunosorbent assay and against PRV by serum neutralization test. The recombinant virus induced high level of Brucella-specific lymphocyte proliferation response and production of interferon gamma. Collectively, these data suggest that the bivalent virus was capable of inducing both humoral and cellular immunity, and had the potential to be a vaccine candidate to prevent Brucella and/or pseudorabies virus infections. PMID:25890577

  4. DNA sequence and expression of the 36-kilodalton outer membrane protein gene of Brucella abortus.

    PubMed Central

    Ficht, T A; Bearden, S W; Sowa, B A; Adams, L G

    1989-01-01

    The cloning of the gene(s) encoding a 36-kilodalton (kDa) cell envelope protein of Brucella abortus has been previously described (T. A. Ficht, S. W. Bearden, B. A. Sowa, and L. G. Adams, Infect, Immun. 56:2036-2046, 1988). In an attempt to define the nature of the previously described duplication at this locus we have sequenced 3,500 base pairs of genomic DNA encompassing this region. The duplication represented two similar open reading frames which shared more than 85% homology at the nucleotide level but differed primarily because of the absence of 108 nucleotides from one of the two gene copies. These two genes were read from opposite strands and potentially encoded proteins which are 96% homologous. The predicted gene products were identical over the first 100 amino acids, including 22-amino-acid-long signal sequences. The amino acid composition of the predicted proteins was similar to that obtained for the Brucella porin isolated by Verstreate et al. (D. R. Verstreate, M. T. Creasy, N. T. Caveney, C. L. Baldwin, M. W. Blab, and A. J. Winter, Infect. Immun. 35:979-989, 1982) and presumably represented two copies of the porin gene, tentatively identified as omp 2a (silent) and omp 2b (expressed). The homology between the two genes extended to and included Shine-Dalgarno sequences 7 base pairs upstream from the ATG start codons. Homology at the 3' ends extended only as far as the termination codon, but both genes had putative rho-independent transcription termination sites. Localization of the promoters proved more difficult, since the canonical procaryotic sequences could not be identified in the region upstream of either gene. Promoter activity was demonstrated by ligation to a promoterless lacZ gene in pMC1871. However, only one active promoter could be identified by using this system. A 36-kDa protein was synthesized in E. coli with the promoter in the native orientation and was identical in size to the protein produced in laboratory-grown B. abortus. When

  5. Oral immunization of mice with recombinant Lactococcus lactis expressing Cu,Zn superoxide dismutase of Brucella abortus triggers protective immunity.

    PubMed

    Sáez, Darwin; Fernández, Pablo; Rivera, Alejandra; Andrews, Edilia; Oñate, Angel

    2012-02-01

    Brucella infections mainly occur through mucosal surfaces. Thus, the development of mucosal administered vaccines could be instrumental for the control of brucellosis. Here, we evaluated the usefulness of recombinant Lactococcus lactis secreting Brucella abortus Cu-Zn superoxide dismutase (SOD) as oral antigen delivery system, when administered alone or in combination with L. lactis expressing IL-12. To this end, mice were vaccinated by oral route with L. lactis NZ9000 transformed with pSEC derivatives encoding for SOD (pSEC:SOD) and IL-12 (pSEC:scIL-12). In animals receiving L. lactis pSEC:SOD alone, anti-SOD-specific IgM antibodies were detected in sera at day 28 post-vaccination, together with an IgG2a dominated IgG response. SOD-specific sIgA was also detected in nasal and bronchoalveolar lavages. In addition, T-cell-proliferative responses upon re-stimulation with either recombinant SOD or crude Brucella protein extracts were observed up to 6 months after the last boost, suggesting the induction of long term memory. Vaccinated animals were also protected against challenge with the virulent B. abortus 2308 strain. Responses were mildly improved when L. lactis pSEC:SOD was co-administered with L. lactis pSEC:scIL-12. These results indicated that vaccines based on lactococci-derived live carriers are promising interventions against B. abortus infections. PMID:22222868

  6. Proteomics-based confirmation of protein expression and correction of annotation errors in the Brucella abortus genome

    PubMed Central

    2010-01-01

    Background Brucellosis is a major bacterial zoonosis affecting domestic livestock and wild mammals, as well as humans around the globe. While conducting proteomics studies to better understand Brucella abortus virulence, we consolidated the proteomic data collected and compared it to publically available genomic data. Results The proteomic data was compiled from several independent comparative studies of Brucella abortus that used either outer membrane blebs, cytosols, or whole bacteria grown in media, as well as intracellular bacteria recovered at different times following macrophage infection. We identified a total of 621 bacterial proteins that were differentially expressed in a condition-specific manner. For 305 of these proteins we provide the first experimental evidence of their expression. Using a custom-built protein sequence database, we uncovered 7 annotation errors. We provide experimental evidence of expression of 5 genes that were originally annotated as non-expressed pseudogenes, as well as start site annotation errors for 2 other genes. Conclusions An essential element for ensuring correct functional studies is the correspondence between reported genome sequences and subsequent proteomics studies. In this study, we have used proteomics evidence to confirm expression of multiple proteins previously considered to be putative, as well as correct annotation errors in the genome of Brucella abortus strain 2308. PMID:20462421

  7. Development of a dual vaccine for prevention of Brucella abortus infection and Escherichia coli O157:H7 intestinal colonization.

    PubMed

    Iannino, Florencia; Herrmann, Claudia K; Roset, Mara S; Briones, Gabriel

    2015-05-01

    Zoonoses that affect human and animal health have an important economic impact. In the study now presented, a bivalent vaccine has been developed that has the potential for preventing the transmission from cattle to humans of two bacterial pathogens: Brucella abortus and Shiga toxin-producing Escherichia coli (STEC). A 66kDa chimeric antigen, composed by EspA, Intimin, Tir, and H7 flagellin (EITH7) from STEC, was constructed and expressed in B. abortus Δpgm vaccine strain (BabΔpgm). Mice orally immunized with BabΔpgm(EITH7) elicited an immune response with the induction of anti-EITH7 antibodies (IgA) that clears an intestinal infection of E. coli O157:H7 three times faster (t=4 days) than mice immunized with BabΔpgm carrier strain (t=12 days). As expected, mice immunized with BabΔpgm(EITH7) strain also elicited a protective immune response against B. abortus infection. A Brucella-based vaccine platform is described capable of eliciting a combined protective immune response against two bacterial pathogens with diverse lifestyles-the intracellular pathogen B. abortus and the intestinal extracellular pathogen STEC. PMID:25820069

  8. The Brucella abortus virulence regulator, LovhK, is a sensor kinase in the general stress response signaling pathway

    PubMed Central

    Kim, Hye-Sook; Willett, Jonathan W.; Jain-Gupta, Neeta; Fiebig, Aretha; Crosson, Sean

    2014-01-01

    Summary In the intracellular pathogen Brucella abortus, the general stress response (GSR) signaling system determines survival under acute stress conditions in vitro, and is required for long-term residence in a mammalian host. To date, the identity of the Brucella sensor kinase(s) that function to perceive stress and directly activate GSR signaling have remained undefined. We demonstrate that the flavin-binding sensor histidine kinase, LovhK (bab2_0652), functions as a primary B. abortus GSR sensor. LovhK efficiently and specifically phosphorylates the central GSR regulator, PhyR, and activates transcription of a set of genes that closely overlaps the known B. abortus GSR regulon. Deletion of lovhK severely compromises cell survival under defined oxidative and acid stress conditions. We further show that lovhK is required for cell survival during the early phase of mammalian cell infection and for establishment of long-term residence in a mouse infection model. Finally, we present evidence that particular regions of primary structure within the two N-terminal PAS domains of LovhK have distinct sensory roles under specific environmental conditions. This study elucidates new molecular components of a conserved signaling pathway that regulates B. abortus stress physiology and infection biology. PMID:25257300

  9. Immunization of mice with recombinant protein CobB or AsnC confers protection against Brucella abortus infection.

    PubMed

    Fu, Simei; Xu, Jie; Li, Xianbo; Xie, Yongfei; Qiu, Yefeng; Du, Xinying; Yu, Shuang; Bai, Yaoxia; Chen, Yanfen; Wang, Tongkun; Wang, Zhoujia; Yu, Yaqing; Peng, Guangneng; Huang, Kehe; Huang, Liuyu; Wang, Yufei; Chen, Zeliang

    2012-01-01

    Due to drawbacks of live attenuated vaccines, much more attention has been focused on screening of Brucella protective antigens as subunit vaccine candidates. Brucella is a facultative intracellular bacterium and cell mediated immunity plays essential roles for protection against Brucella infection. Identification of Brucella antigens that present T-cell epitopes to the host could enable development of such vaccines. In this study, 45 proven or putative pathogenesis-associated factors of Brucella were selected according to currently available data. After expressed and purified, 35 proteins were qualified for analysis of their abilities to stimulate T-cell responses in vitro. Then, an in vitro gamma interferon (IFN-γ) assay was used to identify potential T-cell antigens from B. abortus. In total, 7 individual proteins that stimulated strong IFN-γ responses in splenocytes from mice immunized with B. abortus live vaccine S19 were identified. The protective efficiencies of these 7 recombinant proteins were further evaluated. Mice given BAB1_1316 (CobB) or BAB1_1688 (AsnC) plus adjuvant could provide protection against virulent B. abortus infection, similarly with the known protective antigen Cu-Zn SOD and the license vaccine S19. In addition, CobB and AsnC could induce strong antibodies responses in BALB/c mice. Altogether, the present study showed that CobB or AsnC protein could be useful antigen candidates for the development of subunit vaccines against brucellosis with adequate immunogenicity and protection efficacy. PMID:22383953

  10. Humoral immunity and CD4+ Th1 cells are both necessary for a fully protective immune response upon secondary infection with Brucella melitensis.

    PubMed

    Vitry, Marie-Alice; Hanot Mambres, Delphine; De Trez, Carl; Akira, Shizuo; Ryffel, Bernhard; Letesson, Jean-Jacques; Muraille, Eric

    2014-04-15

    Brucella spp are intracellular bacteria that cause brucellosis, one of the most common zoonoses in the world. Given the serious medical consequences of this disease, a safe and effective human vaccine is urgently needed. Efforts to develop this vaccine have been hampered by our lack of understanding of what constitutes a protective memory response against Brucella. In this study, we characterize the cells and signaling pathways implicated in the generation of a protective immune memory response following priming by the injection of heat-killed or live Brucella melitensis 16M. Using a panel of gene-deficient mice, we demonstrated that during a secondary recall response, both the Brucella-specific humoral response and CD4+ Th1 cells must act together to confer protective immunity in the spleen to B. melitensis infection. Humoral protective immunity is induced by the inoculation of both heat-killed and live bacteria, and its development does not require T cells, MyD88/IL-12p35 signaling pathways, or an activation-induced deaminase-mediated isotype switch. In striking contrast, the presence of memory IFN-γ-producing CD4+ Th1 cells requires the administration of live bacteria and functional MyD88/IL-12p35 pathways. In summary, our work identifies several immune markers closely associated with protective immune memory and could help to define a rational strategy to obtain an effective human vaccine against brucellosis. PMID:24646742

  11. Immunization with individual proteins of the Lrp/AsnC family induces protection against Brucella melitensis 16M challenges in mice

    PubMed Central

    Wang, Xinhui; An, Chang; Yang, Mingjuan; Li, Xinran; Ke, Yuehua; Lei, Shuangshuang; Xu, Xiaoyang; Yu, Jiuxuan; Ren, Hang; Du, Xinying; Wang, Zhoujia; Qiu, Yefeng; Liu, Bo; Chen, Zeliang

    2015-01-01

    Brucellosis is one of the most common zoonoses worldwide. Subunit vaccines are promising for the prevention of human brucellosis. In our previous protective antigen screening studies, we identified a new protective antigen, BMEI0357, which belongs to the Lrp/asnC protein family, a conserved transcriptional regulator in bacteria that is absent in eukaryotes. In the present study, the Brucella genome annotation was screened and a total of six proteins were identified as members of the Lrp/AsnC family. Lrp/AsnC proteins have two domains that are conserved among the family members. However, sequence similarities between these proteins ranged from 9 to 50%, indicating high sequence heterogeneity. To test whether proteins of this family have similar characteristics, all six proteins were cloned and expressed in Escherichia coli. The recombinant proteins were purified and their protective efficacy was evaluated in BALB/c mice challenged with Brucella melitensis 16M. The results show that all six Lrp/AsnC proteins could induce a protective immune response against Brucella melitensis 16M. Antibodies against the Lrp/AsnC proteins were detected in the immunized mice. However, levels of antibodies against these proteins were relatively variable in human brucellosis sera. Taken together, our results show that these six proteins of the Lrp/AsnC family in Brucella could induce protective immune responses in mice. PMID:26579099

  12. Recombinant bovine interleukin 2 enhances immunity and protection induced by Brucella abortus vaccines in cattle.

    PubMed

    Wyckoff, John H; Howland, Jeri L; Scott, Catherine M O'Connell; Smith, Robert A; Confer, Anthony W

    2005-11-30

    Augmentation of immunization of cattle Brucella abortus S19 or a B. abortus soluble protein extract (SPEBA) vaccine through administration of recombinant bovine IL 2 (rBoIL 2) was evaluated. Seventy-five heifers were divided among 6 groups that were treated with the following: Group 1, no treatment; Group 2, rBoIL 2 (1microg/kg) on day 0; Group 3, SPEBA (2 mg) on day 0 and week 9; Group 4, SPEBA + rBoIL 2 on day 0, SPEBA on week 9; Group 5, S19 (10(7) CFU) on day 0 and week 9; Group 6, S19 + rBoIL 2 on day 0, S19 only on week 9. Approximately, 6 months after vaccination, cattle were bred by natural service, and at mid-gestation pregnant cattle were challenged intraconjunctivally with 9.1 x 10(5) CFU of virulent B. abortus S2308. Pre- and post-challenge antibody responses were measured by an enzyme-linked immunosorbent assay, a particle concentration fluorescence assay, and the card test. Lymphoproliferation (LP) responses to gamma-irradiated B. abortus and SPEBA antigens were measured in peripheral blood mononuclear cells. After vaccination, antibody responses to B. abortus elevated rapidly in SPEBA- and S19-vaccinates with and without rBoIL 2, however, these responses were significantly (P < 0.05) higher in vaccinates which also received rBoIL 2. Antibody levels for all vaccinated groups had returned to those of negative control groups by the challenge date with the exception of the SPEBA/rBoIL 2 group. In general, LP responses were higher in vaccinated or rBoIL 2-treated cattle than for unvaccinated controls. Challenge of 48 pregnant heifers resulted in abortions in 4/9 of Group 1, 0/9 of Group 2, 4/8 of Group 3, 2/9 of Group 4, 1/7 of Group 5, and 0/6 of Group 6 cattle. Treatment with rBoIL 2 alone (Group 2) provided significant (P < 0.05) protection from infection, abortions and induction of sero-positive status compared to untreated (Group 1) cattle. Co-administration of rBoIL 2 with S19 resulted in significant (P < 0.05) augmentation in onset, duration and

  13. TLR9 is required for MAPK/NF-κB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus.

    PubMed

    Gomes, Marco Túlio; Campos, Priscila Carneiro; Pereira, Guilherme de Sousa; Bartholomeu, Daniella Castanheira; Splitter, Gary; Oliveira, Sergio Costa

    2016-05-01

    Brucella abortus is a Gram-negative intracellular bacterial pathogen that causes a zoonosis of worldwide occurrence, leading to undulant fever in humans and abortion in domestic animals. B. abortus is recognized by several pattern-recognition receptors triggering pathways during the host innate immune response. Therefore, here, we determined the cooperative role of TLR9 with TLR2 or TLR6 receptors in sensing Brucella Furthermore, we deciphered the host innate immune response against B. abortus or its DNA, emphasizing the role of TLR9-MAPK/NF-κB signaling pathways in the production of proinflammatory cytokines. TLR9 is required for the initial host control of B. abortus, but this TLR was dispensable after 6 wk of infection. The susceptibility of TLR9(-/-)-infected animals to Brucella paralleled with lower levels of IFN-γ produced by mouse splenocytes stimulated with this pathogen compared with wild-type cells. However, no apparent cooperative interplay was observed between TLR2-TLR9 or TLR6-TLR9 receptors to control infection. Moreover, B. abortus or its DNA induced activation of MAPK/NF-κB pathways and production of IL-12 and TNF-α by macrophages partially dependent on TLR9 but completely dependent on MyD88. In addition, B. abortus-derived CpG oligonucleotides required TLR9 to promote IL-12 and TNF-α production by macrophages. By confocal microscopy, we demonstrated that TLR9 redistributed and colocalized with lysosomal-associated membrane protein-1 upon Brucella infection. Thus, B. abortus induced TLR9 traffic, leading to cell signaling activation and IL-12 and TNF-α production. Although TLR9 recognized Brucella CpG motifs, our results suggest a new pathway of B. abortus DNA-activating macrophages independent of TLR9. PMID:26578650

  14. Complement Fixation Test To Assess Humoral Immunity in Cattle and Sheep Vaccinated with Brucella abortus RB51

    PubMed Central

    Adone, Rosanna; Ciuchini, Franco

    1999-01-01

    The live attenuated Brucella abortus strain RB51 is a rifampin-resistant, lipopolysaccharide (LPS) O-chain-deficient mutant of virulent B. abortus 2308. The reduced O-chain content in RB51 prevents this bacterium from inducing antibodies detectable by the conventional serologic tests for bovine brucellosis diagnosis that mainly identify antibodies to LPS. The absence of available serologic tests for RB51 also complicates the diagnosis of possible RB51 infections in humans exposed to this strain. The purpose of this study was to evaluate the suitability of a complement fixation (CF) test performed with the rough strain B. abortus RB51, previously deprived of anticomplementary activity, in detecting anti-B. abortus RB51 antibodies in cattle and sheep experimentally vaccinated with this strain. The results of this study showed that a CF test with RB51 as the antigen is able to specifically detect antibodies following RB51 vaccination in cattle and sheep. In addition, this method could be a useful tool for detecting B. abortus RB51 infection in humans. PMID:10548564

  15. The Brucella melitensis M5-90 phosphoglucomutase (PGM) mutant is attenuated and confers protection against wild-type challenge in BALB/c mice.

    PubMed

    Zhang, Yu; Li, Tiansen; Zhang, Jing; Li, Zhiqiang; Zhang, Yan; Wang, Zhen; Feng, Hanping; Wang, Yuanzhi; Chen, Chuangfu; Zhang, Hui

    2016-04-01

    Brucellae are Gram-negative intracellular bacterial pathogens that infect humans and animals, bringing great economic burdens to developing countries. Live attenuated Brucella vaccines (strain M5-90 or others) are the most efficient means for prevention and control of animal brucellosis. However, these vaccines have several drawbacks, including residual virulence in animals, and difficulties in differentiating natural infection from vaccine immunization, which limit their application. A vaccine that can differentiate infection from immunization will have extensive applications. A Brucella melitensis (B. melitensis) strain M5-90 pgm mutant (M5-90Δpgm) was constructed to overcome these drawbacks. M5-90Δpgm showed significantly reduced survival in embryonic trophoblast cells and in mice, and induced high protective immunity in BALB/c mice. Moreover, M5-90Δpgm elicited an anti-Brucella-specific immunoglobulin G response and induced the secretion of gamma interferon (IFN-γ) and interleukin-2 (IL-2). In addition, M5-90Δpgm induced the secretion of IFN-γ in immunized sheep. Serum samples from sheep inoculated with M5-90Δpgm were negative by the Rose Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). Furthermore, the PGM antigen allowed serological differentiation between infected and vaccinated animals. These results suggest that M5-90Δpgm is an ideal live attenuated vaccine candidate against B. melitensis 16 M and deserves further evaluation for vaccine development. PMID:26925620

  16. Protection levels in vaccinated heifers with experimental vaccines Brucella abortus M1-luc and INTA 2.

    PubMed

    Fiorentino, M A; Campos, E; Cravero, S; Arese, A; Paolicchi, F; Campero, C; Rossetti, O

    2008-12-10

    Brucella abortus M1-luc is a mutant strain derived from S19 vaccine strain in which most of bp26 sequence has been replaced by the luciferase coding gene. Strain I2 is a double mutant derived from M1-luc in which most of omp19 has been deleted without introduction of any genetic markers. In BALB/c mice, M1-luc presented equivalent performance to S19 regarding persistence, splenomegaly and protection against challenge. Interestingly, I2 was more attenuated than S19, with no reduction of protection against challenge. In order to evaluate the potential for vaccine use of these strains in the natural host, four groups of 15 heifers, 6-month old, were either non-vaccinated or vaccinated with S19, M1-luc or I2. To at reached 17-month old, heifers were synchronized with two doses of PGF2alpha and received natural service during 60 days with two bulls. Pregnant heifers were challenged at approximately six gestation months with virulent B. abortus S2308. Blood samples post-challenge of heifers were collected for serologic test as well as specimens of aborted fetuses and premature calves for bacterial isolation and histopathological analyses. Protection levels against abortion were 78.6% for S19, 81.8% for M1-luc and 45.5% for I2, compared to the 25% that did not abort from the non-vaccinated group. These results indicate that in bovines BP26 had no influence in protective capacity of S19, correlating with the results obtained in mice. However, contrarily to what was previously observed in mice, lack of expression of Omp19 rendered in less protection capacity of S19 in the natural host. PMID:18565697

  17. Immune responses of bison and efficacy after booster vaccination with Brucella abortus strain RB51.

    PubMed

    Olsen, S C; McGill, J L; Sacco, R E; Hennager, S G

    2015-04-01

    Thirty-one bison heifers were randomly assigned to receive saline or a single vaccination with 10(10) CFU of Brucella abortus strain RB51. Some vaccinated bison were randomly selected for booster vaccination with RB51 at 11 months after the initial vaccination. Mean antibody responses to RB51 were greater (P < 0.05) in vaccinated bison after initial and booster vaccination than in nonvaccinated bison. The proliferative responses by peripheral blood mononuclear cells (PBMC) from the vaccinated bison were greater (P < 0.05) than those in the nonvaccinated bison at 16 and 24 weeks after the initial vaccination but not after the booster vaccination. The relative gene expression of gamma interferon (IFN-γ) was increased (P < 0.05) in the RB51-vaccinated bison at 8, 16, and 24 weeks after the initial vaccination and at 8 weeks after the booster vaccination. The vaccinated bison had greater (P < 0.05) in vitro production of IFN-γ at all sampling times, greater interleukin-1β (IL-1β) production in various samplings after the initial and booster vaccinations, and greater IL-6 production at one sampling time after the booster vaccination. Between 170 and 180 days of gestation, the bison were intraconjunctivally challenged with approximately 1 × 10(7) CFU of B. abortus strain 2308. The incidences of abortion and infection were greater (P < 0.05) in the nonvaccinated bison after experimental challenge than in the bison receiving either vaccination treatment. Booster-vaccinated, but not single-vaccinated bison, had a reduced (P < 0.05) incidence of infection in fetal tissues and maternal tissues compared to that in the controls. Compared to the nonvaccinated bison, both vaccination treatments lowered the colonization (measured as the CFU/g of tissue) of Brucella organisms in all tissues, except in retropharyngeal and supramammary lymph nodes. Our study suggests that RB51 booster vaccination is an effective vaccination strategy for enhancing herd immunity against

  18. Latex agglutination using the periplasmic proteins antigen of Brucella melitensis is a successful, rapid, and specific serodiagnostic test for ovine brucellosis.

    PubMed

    Ismael, Alaa Bassuny; Swelum, Ayman Abdel-Aziz; Mostafa, Salama A-H; Alhumiany, Abdel-Rahman A

    2016-09-01

    Brucellosis, especially caused by Brucella melitensis, is considered the most-widespread zoonosis in the world, particularly in developing countries. This study was planned to develop an accurate test for diagnosis of ovine brucellosis using a specific hot saline extracted soluble Brucella melitensis periplasmic proteins (SBPPs). The efficacy of the latex agglutination test (LAT) using SBPPs compared to the Rose Bengal test (RBT), buffered plate agglutination test (BPAT), serum agglutination test (SAT), and an indirect enzyme-linked immunosorbent assay (i-ELISA) was evaluated in the field diagnosis of ovine brucellosis. The test performance was evaluated by estimating sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), disease prevalence (DP), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) using test agreement and bacteriological culture in 1777 samples. The false-positive result was significantly (P ⩽0.05) lower in LAT than RBT, BPAT, SAT, and i-ELISA. With reference to test agreement, the Se, Sp, PPV, and PLR were highest (P ⩽0.05) in LAT 99.33%, 99.88%, 98.68%, and 827.25%, respectively. With reference to bacteriological culture, the LAT and i-ELISA tests showed a significant difference in Se with SAT. However, no significant difference in specificity was detected. The DP was 8.44% in the five tests. In conclusion, LAT using SBPPs of B. melitensis could be a suitable serodiagnostic field test for ovine brucellosis, with high sensitivity and specificity. PMID:27207442

  19. Prediction of T cell epitopes of Brucella abortus and evaluation of their protective role in mice.

    PubMed

    Afley, Prachiti; Dohre, Sudhir K; Prasad, G B K S; Kumar, Subodh

    2015-09-01

    Brucellae are Gram-negative intracellular bacteria that cause an important zoonotic disease called brucellosis. The animal vaccines are available but have disadvantage of causing abortions in a proportion of pregnant animals. The animal vaccines are also pathogenic to humans. Recent trend in vaccine design has shifted to epitope-based vaccines that are safe and specific. In this study, efforts were made to identify MHC-I- and MHC-II-restricted T cell epitopes of Brucella abortus and evaluate their vaccine potential in mice. The peptides were designed using online available immunoinformatics tools, and five MHC-I- and one MHC-II-restricted T cell peptides were selected on the basis of their ability to produce interferon gamma (IFN-γ) in in vivo studies. The selected peptides were co-administered with poly DL-lactide-co-glycolide (PLG) microparticles and evaluated for immunogenicity and protection in BALB/c mice. Mice immunized with peptides either entrapped in PLG microparticles (EPLG-Pep) or adsorbed on PLG particles (APLG-Pep) showed significantly higher splenocyte proliferation and IFN-γ generation to all selected peptides than the mice immunized with corresponding irrelevant peptides formulated PLG microparticles or phosphate-buffered saline (PBS). A significant protection compared to PBS control was also observed in EPLG-Pep and APLG-Pep groups. A plasmid DNA vaccine construct (pVaxPep) for peptides encoding DNA sequences was generated and injected to mice by in vivo electroporation. Significant protection was observed (1.66 protection units) when compared with PBS and empty vector control group animals. Overall, the MHC-I and MHC-II peptides identified in this study are immunogenic and protective in mouse model and support the feasibility of peptide-based vaccine for brucellosis. PMID:26150246

  20. Brucella outer membrane lipoprotein shares antigenic determinants with Escherichia coli Braun lipoprotein and is exposed on the cell surface.

    PubMed Central

    Gómez-Miguel, M J; Moriyón, I; López, J

    1987-01-01

    In an enzyme-linked immunosorbent assay (ELISA), purified Brucella abortus and Escherichia coli peptidoglycan-linked lipoproteins gave a strong cross-reaction with sera from rabbits hyperimmunized with the heterologous lipoprotein. When smooth E. coli cells were used as ELISA antigens, the immunological cross-reaction was not observed unless the cells were treated to remove lipopolysaccharide and other outer membrane components. In contrast, intact cells from smooth strains of B. abortus and Brucella melitensis bound anti-lipoprotein immunoglobulin G, and the controls performed by ELISA showed that this reaction was not due to antibodies to the lipopolysaccharide, group 3 outer membrane proteins, or porins. Electron microscopy of cells labeled with antilipoprotein serum and protein A-colloidal gold showed specific labeling of smooth cells from both B. abortus and B. melitensis, even though unspecific labeling by nonimmune serum was observed with rough B. abortus. These results confirm the close similarity between E. coli and Brucella peptidoglycan-linked lipoproteins and show that, in contrast to E. coli, the lipoprotein of B. abortus and B. melitensis is partially exposed on the surface of smooth cells. Images PMID:2432014

  1. Genetic stability of Brucella abortus isolates from an outbreak by multiple-locus variable-number tandem repeat analysis (MLVA16)

    PubMed Central

    2014-01-01

    Background Brucellosis caused by Brucella abortus is one of the most important zoonoses in the world. Multiple-locus variable-number tandem repeat analysis (MLVA16) has been shown be a useful tool to epidemiological traceback studies in B. abortus infection. Thus, the present study aimed (i) to evaluate the genetic diversity of B. abortus isolates from a brucellosis outbreak, and (ii) to investigate the in vivo stability of the MLVA16 markers. Results Three-hundred and seventy-five clinical samples, including 275 vaginal swabs and 100 milk samples, were cultured from a brucellosis outbreak in a cattle herd, which adopted RB51 vaccination and test-and-slaughter policies. Thirty-seven B. abortus isolates were obtained, eight from milk and twenty-nine from post-partum/abortion vaginal swabs, which were submitted to biotyping and genotyping by MLVA16. Twelve B. abortus isolates obtained from vaginal swabs were identified as RB51. Twenty four isolates, seven obtained from milk samples and seventeen from vaginal swabs, were identified as B. abortus biovar 3, while one isolate from vaginal swabs was identified as B. abortus biovar 1. Three distinct genotypes were observed during the brucellosis outbreak: RB observed in all isolates identified as RB51; W observed in all B. abortus biovar 3 isolates; and Z observed in the single B. abortus biovar 1 isolate. Epidemiological and molecular data show that the B. abortus biovar 1 genotype Z strain is not related to the B. abortus biovar 3 genotype W isolates, and represents a new introduction B. abortus during the outbreak. Conclusions The results of the present study on typing of multiple clinical B. abortus isolates from the same outbreak over a sixteen month period indicate the in vivo stability of MLVA16 markers, a low genetic diversity among B. abortus isolates and the usefulness of MLVA16 for epidemiological studies of bovine brucellosis. PMID:25015840

  2. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Kumar, Konidala Kranthi; Kumar, Yellapu Nanda; Bhaskar, Matcha

    2015-01-01

    The zoonotic disease brucellosis, a chronic condition in humans affecting renal and cardiac systems and causing osteoarthritis, is caused by Brucella, a genus of Gram-negative, facultative, intracellular pathogens. The mode of transmission and the virulence of the pathogens are still enigmatic. Transcription regulatory elements, such as rho proteins, play an important role in the termination of transcription and/or the selection of genes in Brucella. Adverse effects of the transcription inhibitors play a key role in the non-successive transcription challenges faced by the pathogens. In the investigation presented here, we computationally predicted the transcription termination factor rho (TtFRho) inhibitors against Brucella melitensis 16M via a structure-based method. In view the unknown nature of its crystal structure, we constructed a robust three-dimensional homology model of TtFRho’s structure by comparative modeling with the crystal structure of the Escherichia coli TtFRho (Protein Data Bank ID: 1PVO) as a template in MODELLER (v 9.10). The modeled structure was optimized by applying a molecular dynamics simulation for 2 ns with the CHARMM (Chemistry at HARvard Macromolecular Mechanics) 27 force field in NAMD (NAnoscale Molecular Dynamics program; v 2.9) and then evaluated by calculating the stereochemical quality of the protein. The flexible docking for the interaction phenomenon of the template consists of ligand-related inhibitor molecules from the ZINC (ZINC Is Not Commercial) database using a structure-based virtual screening strategy against minimized TtFRho. Docking simulations revealed two inhibitors compounds – ZINC24934545 and ZINC72319544 – that showed high binding affinity among 2,829 drug analogs that bind with key active-site residues; these residues are considered for protein-ligand binding and unbinding pathways via steered molecular dynamics simulations. Arg215 in the model plays an important role in the stability of the protein

  3. Whole-genome analyses of the speciation events in the pathogenic Brucellae

    SciTech Connect

    Chain, P; Comerci, D; Tolmasky, M; Larimer, F; Malfatti, S; Vergez, L; Aguero, F; Land, M; Ugalde, R; Garcia, E

    2005-07-14

    Despite their high DNA identity and a proposal to group classical Brucella species as biovars of B. melitensis, the commonly recognized Brucella species can be distinguished by distinct biochemical and fatty acid characters as well as by a marked host range (e.g. B. suis for swine, B. melitensis for sheep and goats, B. abortus for cattle). Here we present the genome of B. abortus 2308, the virulent prototype biovar 1 strain, and its comparison to the two other human pathogenic Brucellae species and to the B. abortus field isolate 9-941. The global distribution of pseudogenes, deletions and insertions support previous indications that B. abortus and B. melitensis share a common ancestor that diverged from B. suis. With the exception of a dozen genes, the genetic complement of both B. abortus strains is identical, whereas the three species differ in gene content and pseudogenes. The pattern of species-specific gene inactivations affecting transcriptional regulators and outer membrane proteins suggest that these inactivations may play an important role in the establishment of host-specificity and may have been a primary driver of speciation in the Brucellae. Despite being non-motile, the Brucellae contain flagellum gene clusters and display species-specific flagellar gene inactivations, which lead to the putative generation of different versions of flagellum-derived structures, and may contribute to differences in host-specificity and virulence. Metabolic changes such as the lack of complete metabolic pathways for the synthesis of numerous compounds (e.g. glycogen, biotin, NAD, and choline) are consistent with adaptation of Brucellae to an intracellular lifestyle.

  4. Effectiveness of Brucella abortus Strain 19 single calfhood vaccination in elk (Cervus elaphus)

    USGS Publications Warehouse

    Roffe, Thomas J.; Jones, Lee C.; Coffin, Kenneth; Sweeney, Steven J.

    2002-01-01

    Brucellosis in Greater Yellowstone Area (GYA) bison and elk has been a source of controversy and focus of the Greater Yellowstone Interagency Brucellosis Committee (GYIBC) for years. Brucellosis has been eradicated from cattle in the 3 states of Wyoming, Montana, and Idaho and all three states currently are classified as “brucellosis free” with regard to livestock. Yet free-ranging elk that attend feedgrounds in the GYA, and bison in Yellowstone and Grand Teton National Parks, still have high seroprevalence to the disease and are viewed as a threat to the state-federal cooperative national brucellosis eradication program. Recently, cattle in eastern Idaho were found infected with brucellosis and transmission was apparently from fed elk. The GYIBC, formed of state and federal agencies involved in wildlife and livestock management in the 3 states, has committed to eventual elimination of the disease from wildlife. Management tools to control or eliminate the disease are limited; however, wildlife vaccination is one of the methods currently employed. Effective wildlife vaccination depends on dose efficacy, deliverability, and safety to non-targeted species. We commenced a single-dose efficacy study of vaccine Brucella abortus strain 19 (S19) in elk in 1999.

  5. Immune Modulation of Recombinant OmpA against Brucella abortus 544 Infection in Mice.

    PubMed

    Simborio, Hannah Leah Tadeja; Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, Wongi; Lee, Hu Jang; Lee, Jin Ju; Chang, Hong Hee; Kim, Suk

    2016-03-28

    Brucellosis affects a wide range of host species, including humans and many livestock animals. Chronic infections of the disease make antibiotic treatment costly, and the current vaccine used in livestock has not been approved for human use. This study investigated the possible use of the Brucella abortus outer membrane protein A (OmpA) as a candidate subunit vaccine in an infected mouse model. The ompA gene was cloned and overexpressed, and the recombinant OmpA (rOmpA) protein fused to maltose binding protein (MBP) was purified in Escherichia coli. Immunogenicity was verified through western blotting, and mice were immunized and challenged to evaluate its protective effect. Mice treated with rOmpA exhibited induced humoral and host cell-mediated responses, with a significant increase in immunoglobulin G (IgG1 and IgG2a) and cytokine levels, especially TNF-α and IL-12, compared with the control groups treated with either MBP or PBS. In conclusion, rOmpA should be highly considered as a future subunit vaccine for brucellosis, and further studies regarding rOmpA and its protective ability are suggested. PMID:26699748

  6. Comparison of Abortion and Infection after Experimental Challenge of Pregnant Bison and Cattle with Brucella abortus Strain 2308▿

    PubMed Central

    Olsen, S. C.; Johnson, C.

    2011-01-01

    A comparative study was conducted using data from naive bison (n = 45) and cattle (n = 46) from 8 and 6 studies, respectively, in which a standardized Brucella abortus strain 2308 experimental challenge was administered during midgestation. The incidence of abortion, fetal infection, uterine or mammary infection, or infection in maternal tissues after experimental challenge was greater (P < 0.05) in bison than in cattle. In animals that did abort, the time between experimental challenge and abortion was shorter (P < 0.05) for bison than for cattle. Brucella colonization of four target tissues and serologic responses on the standard tube agglutination test at the time of abortion did not differ (P > 0.05) between cattle and bison. The results of our study suggest that naive bison and cattle have similarities and differences after experimental exposure to a virulent B. abortus strain. Although our data suggest that bison may be more susceptible to infection with Brucella, some pathogenic characteristics of brucellosis were similar between bison and cattle. PMID:21976222

  7. In Vivo Identification and Characterization of CD4+ Cytotoxic T Cells Induced by Virulent Brucella abortus Infection

    PubMed Central

    Martirosyan, Anna; Von Bargen, Kristine; Arce Gorvel, Vilma; Zhao, Weidong; Hanniffy, Sean; Bonnardel, Johnny; Méresse, Stéphane; Gorvel, Jean-Pierre

    2013-01-01

    CD4+ T cells display a variety of helper functions necessary for an efficient adaptive immune response against bacterial invaders. This work reports the in vivo identification and characterization of murine cytotoxic CD4+ T cells (CD4+ CTL) during Brucella abortus infection. These CD4+ CTLs express granzyme B and exhibit immunophenotypic features consistent with fully differentiated T cells. They express CD25, CD44, CD62L ,CD43 molecules at their surface and produce IFN-γ. Moreover, these cells express neither the co-stimulatory molecule CD27 nor the memory T cell marker CD127. We show here that CD4+ CTLs are capable of cytolytic action against Brucella-infected antigen presenting cells (APC) but not against Mycobacterium-infected APC. Cytotoxic CD4+ T cell population appears at early stages of the infection concomitantly with high levels of IFN-γ and granzyme B expression. CD4+ CTLs represent a so far uncharacterized immune cell sub-type triggered by early immune responses upon Brucella abortus infection. PMID:24367519

  8. In vivo identification and characterization of CD4⁺ cytotoxic T cells induced by virulent Brucella abortus infection.

    PubMed

    Martirosyan, Anna; Von Bargen, Kristine; Arce Gorvel, Vilma; Zhao, Weidong; Hanniffy, Sean; Bonnardel, Johnny; Méresse, Stéphane; Gorvel, Jean-Pierre

    2013-01-01

    CD4(+) T cells display a variety of helper functions necessary for an efficient adaptive immune response against bacterial invaders. This work reports the in vivo identification and characterization of murine cytotoxic CD4(+) T cells (CD4(+) CTL) during Brucella abortus infection. These CD4(+) CTLs express granzyme B and exhibit immunophenotypic features consistent with fully differentiated T cells. They express CD25, CD44, CD62L ,CD43 molecules at their surface and produce IFN-γ. Moreover, these cells express neither the co-stimulatory molecule CD27 nor the memory T cell marker CD127. We show here that CD4(+) CTLs are capable of cytolytic action against Brucella-infected antigen presenting cells (APC) but not against Mycobacterium-infected APC. Cytotoxic CD4(+) T cell population appears at early stages of the infection concomitantly with high levels of IFN-γ and granzyme B expression. CD4(+) CTLs represent a so far uncharacterized immune cell sub-type triggered by early immune responses upon Brucella abortus infection. PMID:24367519

  9. The omp2 gene locus of Brucella abortus encodes two homologous outer membrane proteins with properties characteristic of bacterial porins.

    PubMed Central

    Marquis, H; Ficht, T A

    1993-01-01

    In Brucella abortus, a gene encoding a major cell envelope protein, omp2, is duplicated within a short segment of the large chromosomal DNA. Although both genes contain open reading frames, encoding proteins of high identity, expression from only one, omp2b, has been detected in laboratory-grown B. abortus. In the present study, we wished to determine whether omp2b encodes the previously studied Brucella porin and to characterize the omp2a gene product. Experiments were performed with Escherichia coli transformants expressing either omp2a or omp2b. Our results indicated that both gene products localized to the outer membrane of E. coli. Initial rates of transport of [14C]maltose and growth rates in the presence of maltodextrins of defined size indicated an increased hydrophilic permeability of transformants expressing omp2a. These cells were also shown to grow on maltotetraose, a molecule with a molecular mass of 667 Da. Activity consistent with the formation of pores could not be demonstrated in transformants expressing omp2b. However, Omp2b formed oligomers resistant to heat denaturation up to 70 degrees C in sodium dodecyl sulfate buffer, a property characteristic of bacterial porins. Overall, these results suggest that the omp2a gene product has pore-forming activity and that the omp2b gene encodes the previously characterized Brucella porin. Images PMID:7689540

  10. [Multiplication of Brucella abortus and production of nitric oxide in two macrophage cell lines of different origin].

    PubMed

    Serafino, J; Conde, S; Zabal, O; Samartino, L

    2007-01-01

    Brucella abortus is a bacterium which causes abortions and infertility in cattle and undulant fever in humans. It multiplies intracellularly, evading the mechanisms of cellular death. Nitric oxide (NO) is important in the regulation of the immune response. In the present work, we studied the ability of three B. abortus strains to survive intracellularly in two macrophage cell lines. The bacterial multiplication in both cell lines was determined at two different times in UFC/ ml units. Moreover the inoculated cells were also observed under light-field and fluorescence microscopy stained with Giemsa and acridine orange, respectively. The stain of both cellular lines showed similar results with respect to the UFC/ml determination. The presence of B. abortus was confirmed by electronic microscopy. In both macrophage cell lines inoculated with the rough strain RB51, the multiplication diminished and the level of NO was higher, compared with cells inoculated with smooth strains (S19 and 2308). These results suggest that the absence of O-chain of LPS probably affects the intracellular growth of B. abortus. PMID:18390151

  11. RNA-seq reveals the critical role of OtpR in regulating Brucella melitensis metabolism and virulence under acidic stress

    PubMed Central

    Liu, Wenxiao; Dong, Hao; Li, Jing; Ou, Qixing; Lv, Yujin; Wang, Xiaolei; Xiang, Zuoshuang; He, Yongqun; Wu, Qingmin

    2015-01-01

    The response regulator OtpR is critical for the growth, morphology and virulence of Brucella melitensis. Compared to its wild type strain 16 M, B. melitensis 16 MΔotpR mutant has decreased tolerance to acid stress. To analyze the genes regulated by OtpR under acid stress, we performed RNA-seq whole transcriptome analysis of 16 MΔotpR and 16 M. In total, 501 differentially expressed genes were identified, including 390 down-regulated and 111 up-regulated genes. Among these genes, 209 were associated with bacterial metabolism, including 54 genes involving carbohydrate metabolism, 13 genes associated with nitrogen metabolism, and seven genes associated with iron metabolism. The 16 MΔotpR also decreased capacity to utilize different carbon sources and to tolerate iron limitation in culture experiments. Notably, OtpR regulated many Brucella virulence factors essential for B. melitensis intracellular survival. For instance, the virB operon encoding type IV secretion system was significantly down-regulated, and 36 known transcriptional regulators (e.g., vjbR and blxR) were differentially expressed in 16 MΔotpR. Selected RNA-seq results were experimentally confirmed by RT-PCR and RT-qPCR. Overall, these results deciphered differential phenomena associated with virulence, environmental stresses and cell morphology in 16 MΔotpR and 16 M, which provided important information for understanding the detailed OtpR-regulated interaction networks and Brucella pathogenesis. PMID:26242322

  12. Thermostable cross-protective subunit vaccine against Brucella species.

    PubMed

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  13. Thermostable Cross-Protective Subunit Vaccine against Brucella Species

    PubMed Central

    Barabé, Nicole D.; Grigat, Michelle L.; Lee, William E.; Poirier, Robert T.; Jager, Scott J.; Berger, Bradley J.

    2014-01-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 105 CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  14. Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence.

    PubMed

    Fontana, Carolina; Conde-Álvarez, Raquel; Ståhle, Jonas; Holst, Otto; Iriarte, Maite; Zhao, Yun; Arce-Gorvel, Vilma; Hanniffy, Seán; Gorvel, Jean-Pierre; Moriyón, Ignacio; Widmalm, Göran

    2016-04-01

    The structures of the lipooligosaccharides fromBrucella melitensismutants affected in the WbkD and ManBcoreproteins have been fully characterized using NMR spectroscopy. The results revealed that disruption ofwbkDgives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (β-d-Glcp-(1→4)-α-Kdop-(2→4)[β-d-GlcpN-(1→6)-β-d-GlcpN-(1→4)[β-d-GlcpN-(1→6)]-β-d-GlcpN-(1→3)-α-d-Manp-(1→5)]-α-Kdop-(2→6)-β-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P), in addition to components lacking one of the terminal β-d-GlcpN and/or the β-d-Glcpresidues (48 and 17%, respectively). These structures were identical to those of the R-LPS fromB. melitensisEP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption ofmanBcoregives rise to a deep-rough pentasaccharide core (β-d-Glcp-(1→4)-α-Kdop-(2→4)-α-Kdop-(2→6)-β-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal β-d-Glcpresidue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManBcoreproteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion ofB. melitensis wadCremoves the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential inB. melitensisvirulence, the core deficiency in thewadCmutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the β-d-GlcpN-(1→6)-β-d-GlcpN-(1→4)[β-d-GlcpN-(1→6)]-β-d-GlcpN-(1→3)-α-d-Manp-(1→5) structure

  15. Infection of cattle with Brucella abortus biovar 1 isolated from a bison in Wood Buffalo National Park.

    PubMed

    Forbes, L B; Tessaro, S V

    1996-07-01

    An experiment was conducted to determine if cattle could be infected with a strain of Brucella abortus biovar 1 isolated from a bison in Wood Buffalo National Park. Three pregnant cows inoculated conjunctivally with 5.7 x 10(8) cfu of the bacterium, and their subsequent calves, showed seroconversion on standard serological tests for bovine brucellosis, and large numbers of the bacterium were isolated from numerous tissues at necropsy. A 4th cow that was moved into the pen that previously contained the inoculated cows subsequently showed seroconversion, and the same strain of B. abortus biovar 1 was isolated from numerous tissues. Although this strain from bison in Wood Buffalo National Park has existed in isolation from cattle for over 60 years, it remains infectious and contagious for cattle. PMID:8809394

  16. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide

    PubMed Central

    Dabral, Neha; Jain-Gupta, Neeta; Seleem, Mohamed N.; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2015-01-01

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s) containing mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice. PMID:26157707

  17. Lack of endogenous IL-10 enhances production of proinflammatory cytokines and leads to Brucella abortus clearance in mice.

    PubMed

    Corsetti, Patrícia P; de Almeida, Leonardo A; Carvalho, Natália B; Azevedo, Vasco; Silva, Teane M A; Teixeira, Henrique C; Faria, Ana C; Oliveira, Sergio C

    2013-01-01

    IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection. PMID:24069337

  18. Lack of Endogenous IL-10 Enhances Production of Proinflammatory Cytokines and Leads to Brucella abortus Clearance in Mice

    PubMed Central

    Corsetti, Patrícia P.; de Almeida, Leonardo A.; Carvalho, Natália B.; Azevedo, Vasco; Silva, Teane M. A.; Teixeira, Henrique C.; Faria, Ana C.; Oliveira, Sergio C.

    2013-01-01

    IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection. PMID:24069337

  19. Comparison of living and nonliving vaccines for Brucella abortus in BALB/c mice.

    PubMed Central

    Montaraz, J A; Winter, A J

    1986-01-01

    The BALB/c mouse was selected as a model for infection with Brucella abortus on the basis of protracted nonclinical infection produced by strain 2308, virulent for cattle, and relatively rapid clearance of strain 19, an attenuated strain used to vaccinate cattle. Protection in mice vaccinated with strain 19 was compared with that obtained with nonliving vaccines at early (1 week) and later (4 weeks) intervals after challenge with strain 2308 and assessed by enumeration of B. abortus organisms in the spleen. Mice challenged 4 weeks after vaccination with strain 19 exhibited significant protection at 1 and 4 weeks postinfection (p.i.), with an increased magnitude of protection at the later time. When challenged 6 weeks after vaccination with strain 19, the level of protection diminished between 1 and 4 weeks p.i. and at the later time was not always significantly different from controls. Mice immunized 4 weeks earlier with nonliving vaccines in mineral oil with t trehalose dimycolate (TDM) and muramyl dipeptide (MDP) demonstrated patterns of protection similar to those obtained following the 6 week vaccination-challenge interval with strain 19. Vaccination with cell envelopes derived from strain 2308 produced equivalent protection at 1 week p.i. whether administered in phosphate-buffered saline, incomplete Freund adjuvant, or the TDM and MDP adjuvant. Equivalent protection also followed vaccination with strain 2308 killed whole cells, cell envelopes, or outer membrane proteins in phosphate-buffered saline or in the TDM and MDP adjuvant. The TDM and MDP adjuvant alone induced nonspecific resistance, which peaked at 1 day p.i. and was still present at 1 week p.i., although by this time its magnitude was significantly less than the protection induced by antigen combined with the adjuvant. These data, together with the results of antibody assays and passive and adoptive transfer studies, suggested that protection at 1 week p.i. could be accounted for largely by an effect

  20. Mouse cytokine profile skewed towards Th2 in pregnancy during infection with Brucella abortus S19 strain.

    PubMed

    Wamonje, Francis O; Waihenya, Rebecca K; Ng'ang'a, Zipporah; Ngeranwa, Joseph N

    2011-04-01

    The two classes of cytokines Th1 and Th2 determine the type of immune response elicited. The Th2 immune response is associated with successful pregnancy. Brucellosis is an intracellular bacterium that elicits the Th1 response and is known to cause spontaneous abortion in mammalian species. This study sought to determine if Brucella infection causes spontaneous abortion by causing the circulating cytokine profile be Th1 dominant during pregnancy. Forty-eight Swiss white mice were used in this murine model and the S19 strain of Brucella abortus was used in as the infective agent. Pregnant mice in the test group were injected intraperitoneally with 10(5-8) CFU of Brucella and cytokine profile evaluated over the three trimesters of pregnancy. Pregnant mice in the control group were left to go through normal pregnancy and their cytokine profile evaluated over the three trimesters of pregnancy. Cytokines in serum samples were analyzed by Cytometric Bead Array. The data was analyzed using the Paired T- test and p < 0.05 was considered significant. IFN-γ and TNF-α represented the Th1 cytokines while IL-4 and IL-5 represented the Th2 cytokines. None of the mice in the test group had spontaneous abortion. IFN-γ and TNF-α had no significant differences between cytokine levels for infected and uninfected groups in all 3 trimesters of pregnancy. IL-4 levels had significant differences in all three trimesters of pregnancy (t = 13, P = 0.036, 0.0071 and 0.0277). IL-5 levels had significant differences second trimester (t = 14, P = 0.0075). The cytokine profile was robustly Th2. In conclusion, Brucella abortus cannot cause spontaneous abortion by altering the mouse cytokine profile towards Th1 in pregnancy. Elevated IL-4 levels with corresponding suppression of IFN-γ can be used as a marker for successful pregnancy in Brucellosis. PMID:25566611

  1. Microarray-Based Identification of Differentially Expressed Genes in Intracellular Brucella abortus within RAW264.7 Cells

    PubMed Central

    Tian, Mingxing; Qu, Jing; Han, Xiangan; Zhang, Min; Ding, Chan; Ding, Jiabo; Chen, Guanghua; Yu, Shengqing

    2013-01-01

    Brucella spp. is a species of facultative intracellular Gram-negative bacteria that induces abortion and causes sterility in domesticated mammals and chronic undulant fever in humans. Important determinants of Brucella’s virulence and potential for chronic infection include the ability to circumvent the host cell’s internal surveillance system and the capability to proliferate within dedicated and non-dedicated phagocytes. Hence, identifying genes necessary for intracellular survival may hold the key to understanding Brucella infection. In the present study, microarray analysis reveals that 7.82% (244/3334) of all Brucella abortus genes were up-regulated and 5.4% (180/3334) were down-regulated in RAW264.7 cells, compared to free-living cells in TSB. qRT-PCR verification further confirmed a >5-fold up-regulation for fourteen genes. Functional analysis classified araC, ddp, and eryD as to partake in information storage and processing, alp, flgF and virB9 to be involved in cellular processes, hpcd and aldh to play a role in metabolism, mfs and nikC to be involved in both cellular processes and metabolism, and four hypothetical genes (bruAb1_1814, bruAb1_0475, bruAb1_1926, and bruAb1_0292) had unknown functions. Furthermore, we constructed a B. abortus 2308 mutant Δddp where the ddp gene is deleted in order to evaluate the role of ddp in intracellular survival. Infection assay indicated significantly higher adherence and invasion abilities of the Δddp mutant, however it does not survive well in RAW264.7 cells. Brucella may survive in hostile intracellular environment by modulating gene expression. PMID:23950864

  2. Characterization of Brucella polysaccharide B.

    PubMed Central

    Bundle, D R; Cherwonogrodzky, J W; Perry, M B

    1988-01-01

    Polysaccharide B was extracted from Brucella melitensis 16M and from a rough strain of Brucella abortus 45/20 by autoclaving or trichloroacetic acid extraction of whole cells and by a new method involving mild leaching of cells. The material obtained by either of the established procedures was contaminated by O polysaccharide. The new leaching protocol eliminated this impurity and provided a pure glucan, which was regarded as polysaccharide B. This polysaccharide was found by high-performance liquid chromatography separations, chemical composition, methylation, and two-dimensional homo- and heteronuclear magnetic resonance experiments to be a family of nonreducing cyclic 1,2-linked polymers of beta-D-glucopyranosyl residues. The degree of polymerization varied between 17 and 24. Polysaccharide B was essentially identical to cyclic D-glucans produced by Rhizobia, Agrobacteria, and other bacterial species. Pure polysaccharide B did not precipitate with Brucella anti-A or anti-M serum and did not inhibit the serological reaction of Brucella A or M antigen with either bovine or murine monoclonal Brucella anti-A or anti-M serum. Previously described serological reactions of polysaccharide B preparations with Brucella anti-A and anti-M sera are related in this study to the presence in crude extracts of contaminants with the antigenic properties of Brucella lipopolysaccharide O polysaccharides. PMID:3356461

  3. Biosafety of parenteral Brucella abortus RB51 vaccine in bison calves

    USGS Publications Warehouse

    Roffe, T.J.; Olsen, S.C.; Gidlewski, T.; Jensen, A.E.; Palmer, M.V.; Huber, R.

    1999-01-01

    Vaccination is considered among the primary management tools for reducing brucellosis prevalence in Greater Yellowstone Area (GYA) ungulates. Before their use, however, vaccine safety and efficacy must be demonstrated. Twenty-seven female bison (Bison bison) calves (approx 5 months old) were vaccinated with Brucella abortus Strain RB51 (1.5 x 1010 colony forming units [CFU], subcutaneously) as part of routine management. We assessed the persistence, pathology, shedding, and transmission associated with RB51 by serial necropsy, bacteriology, histopathology, and serology of 20 of these 27 vaccinated calves, and RB51 serology of 10 nonvaccinated, commingling adult females. With the exception of 1 calf, RB51 dot-blot titers at necropsy were <1:80. Strain RB51 was cultured from lymph nodes in 4 of 4 calves at 14 weeks postvaccination (PV), 4 of 4 calves at 18 weeks PV, 1 of 4 calves at 22 weeks PV, 3 of 4 at 26 weeks PV, and 0 of 4 calves at 30 weeks PV. No gross lesions were observed. Mild histologic changes occurred only in a few draining lymph nodes early in sampling. Adverse clinical effects were not observed in vaccinates. Swabs from nasopharynx, conjunctiva, rectum, and vagina were uniformly culture negative for RB51. Strain RB51 dot-blot assays of bison cows were negative at a 1:20 dilution at 26 weeks PV. Our results suggest that RB51 persists longer in bison calves than in domestic cattle and is systemically distributed within lymphatic tissues. However, bison apparently clear the RB51 vaccine strain without shedding, transmission, or significant adverse reactions.

  4. Serological response to administration of Brucella abortus strain RB51 vaccine in beef and dairy heifers, using needle-free and standard needle-based injection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to compare immunologic responses of heifers vaccinated with 10**10 colony-forming units (CFU) of Brucella abortus strain RB51 (SRB51) by standard needle-and-syringe system or a needle-free injection system. Heifers were randomly assigned to control and vaccination gro...

  5. Immune responses and protection against experimental challenge after vaccination of bison with Brucella abortus strains RB51 or RB51 overexpressing superoxide dismutase and Glycosyltransferase genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination is a tool that could be beneficial in managing the high prevalence of brucellosis in free-ranging bison in Yellowstone National Park. In this study, we characterized immunologic responses and protection against experimental challenge after vaccination of bison with Brucella abortus stra...

  6. Phenotypic and genotypic characterization of Brucella strains isolated from autochthonous livestock reveals the dominance of B. abortus biovar 3a in Nigeria.

    PubMed

    Bertu, Wilson J; Ducrotoy, Marie J; Muñoz, Pilar M; Mick, Virginie; Zúñiga-Ripa, Amaia; Bryssinckx, Ward; Kwaga, Jacob K P; Kabir, Junaid; Welburn, Susan C; Moriyón, Ignacio; Ocholi, Reuben A

    2015-10-22

    Brucellosis is a worldwide widespread zoonosis caused by bacteria of the genus Brucella. Control of this disease in a given area requires an understanding of the Brucella species circulating in livestock and humans. However, because of the difficulties intrinsic to Brucella isolation and typing, such data are scarce for resource-poor areas. The paucity of bacteriological data and the consequent imperfect epidemiological picture are particularly critical for Sahelian and Sub-Sahara African countries. Here, we report on the characterization of 34 isolates collected between 1976 and 2012 from cattle, sheep and horses in Nigeria. All isolates were identified as Brucella abortus by Bruce-ladder PCR and assigned to biovar 3 by conventional typing. Further analysis by enhanced AMOS-ERY PCR showed that all of them belonged to the 3a sub-biovar, and MLVA analysis grouped them in a cluster clearly distinct from that formed by European B. abortus biovar 3b strains. Nevertheless, MLVA detected heterogeneity within the Nigerian biovar 3a strains. The close genetic profiles of the isolates from cattle, sheep and horses, suggest that, at least in some parts of Nigeria, biovar 3a circulates among animal species that are not the preferential hosts of B. abortus. Consistent with previous genetic analyses of 7 strains from Ivory Cost, Gambia and Togo, the analysis of these 34 Nigerian strains supports the hypothesis that the B. abortus biovar 3a lineage is dominant in West African countries. PMID:26315770

  7. Prevalence of the Most Common Virulence-Associated Genes among Brucella Melitensis Isolates from Human Blood Cultures in Hamadan Province, West of Iran.

    PubMed

    Naseri, Zahra; Alikhani, Mohammad Yousef; Hashemi, Seyed Hamid; Kamarehei, Farideh; Arabestani, Mohammad Reza

    2016-09-01

    Brucellosis is a widespread zoonotic disease causing considerable economic and public health problems. Despite animal vaccination, brucellosis remains endemic in some areas such as Iran, especially in the western Iranian province of Hamadan. We sought to detect some of the most common virulence-associated genes in Brucella isolated from human blood cultures to determine the prevalence of some virulence genes among Brucella isolates. Fifty-seven isolates were studied from patients with a clinical diagnosis of brucellosis who referred to the Infectious Diseases Ward of Sina Hospital in Hamadan Province, Iran, between April 2013 and July 2014. Blood samples were collected for the diagnosis of brucellosis using the BACTEC blood culture system. All of these isolates were confirmed by the bcsp31 Brucella-specific gene. We detected 11 virulence-associated genes of Brucella, namely cβg, virB, znuA, ure, bvfA, omp25, omp31, wbkA, mviN, manA, and manB, which are important for the pathogenesis of this bacterium in the intracellular environment by multiplex PCR. Totally, 149 patients with a clinical diagnosis of brucellosis were enrolled in this study. Fifty-seven (38.3%) patients had positive blood cultures. On biochemical and molecular testing, all of the isolates were Brucella melitensis. Ten of the virulence genes were detected among all of the 57 isolates, but the bvf gene was detected in 53 (93%) isolates. The high prevalence of virulence-associated genes among the Brucella isolates detected in Hamadan Province, Iran, underscores the pathogenicity of this bacterium in this region. PMID:27582592

  8. Prevalence of the Most Common Virulence-Associated Genes among Brucella Melitensis Isolates from Human Blood Cultures in Hamadan Province, West of Iran

    PubMed Central

    Naseri, Zahra; Alikhani, Mohammad Yousef; Hashemi, Seyed Hamid; Kamarehei, Farideh; Arabestani, Mohammad Reza

    2016-01-01

    Brucellosis is a widespread zoonotic disease causing considerable economic and public health problems. Despite animal vaccination, brucellosis remains endemic in some areas such as Iran, especially in the western Iranian province of Hamadan. We sought to detect some of the most common virulence-associated genes in Brucella isolated from human blood cultures to determine the prevalence of some virulence genes among Brucella isolates. Fifty-seven isolates were studied from patients with a clinical diagnosis of brucellosis who referred to the Infectious Diseases Ward of Sina Hospital in Hamadan Province, Iran, between April 2013 and July 2014. Blood samples were collected for the diagnosis of brucellosis using the BACTEC blood culture system. All of these isolates were confirmed by the bcsp31 Brucella-specific gene. We detected 11 virulence-associated genes of Brucella, namely cβg, virB, znuA, ure, bvfA, omp25, omp31, wbkA, mviN, manA, and manB, which are important for the pathogenesis of this bacterium in the intracellular environment by multiplex PCR. Totally, 149 patients with a clinical diagnosis of brucellosis were enrolled in this study. Fifty-seven (38.3%) patients had positive blood cultures. On biochemical and molecular testing, all of the isolates were Brucella melitensis. Ten of the virulence genes were detected among all of the 57 isolates, but the bvf gene was detected in 53 (93%) isolates. The high prevalence of virulence-associated genes among the Brucella isolates detected in Hamadan Province, Iran, underscores the pathogenicity of this bacterium in this region. PMID:27582592

  9. A Homologue of an Operon Required for DNA Transfer in Agrobacterium Is Required in Brucella abortus for Virulence and Intracellular Multiplication

    PubMed Central

    Sieira, Rodrigo; Comerci, Diego J.; Sánchez, Daniel O.; Ugalde, Rodolfo A.

    2000-01-01

    As part of a Brucella abortus 2308 genome project carried out in our laboratory, we identified, cloned, and sequenced a genomic DNA fragment containing a locus (virB) highly homologous to bacterial type IV secretion systems. The B. abortus virB locus is a collinear arrangement of 13 open reading frames (ORFs). Between virB1 and virB2 and downstream of ORF12, two degenerated, palindromic repeat sequences characteristic of Brucella intergenic regions were found. Gene reporter studies demonstrated that the B. abortus virB locus constitutes an operon transcribed from virB1 which is turned on during the stationary phase of growth. A B. abortus polar virB1 mutant failed to replicate in HeLa cells, indicating that the virB operon plays a critical role in intracellular multiplication. Mutants with polar and nonpolar mutations introduced in virB10 showed different behaviors in mice and in the HeLa cell infection assay, suggesting that virB10 per se is necessary for the correct function of this type IV secretion apparatus. Mouse infection assays demonstrated that the virB operon constitutes a major determinant of B. abortus virulence. It is suggested that putative effector molecules secreted by this type IV secretion system determine routing of B. abortus to an endoplasmic reticulum-related replication compartment. PMID:10940027

  10. Determination of stability of Brucella abortus RB51 by use of genomic fingerprint, oxidative metabolism, and colonial morphology and differentiation of strain RB51 from B. abortus isolates from bison and elk.

    PubMed Central

    Jensen, A E; Ewalt, D R; Cheville, N F; Thoen, C O; Payeur, J B

    1996-01-01

    Brucella abortus RB51 and isolates from cattle, bison, and elk were characterized by pulsed-field gel electrophoresis and standard techniques for biotyping Brucella species, which included biochemical, morphological, and antigenic techniques, phage susceptibility, and antibiotic resistance. The objectives were to ascertain the stability of RB51 and to differentiate RB51 from other brucellae. Genomic restriction endonuclease patterns produced by pulsed-field gel electrophoresis demonstrated a unique fingerprint for RB51 relative to other brucellae. Comparisons of the oxidative metabolic profiles of RB51 after time in vivo (14 weeks) and in vitro (75 passages) showed no change in characteristic patterns of oxygen uptake on selected amino acid and carbohydrate substrates. Strain RB51 was biotyped as a typical rough B. abortus biovar 1 (not strain 19) after animal passage or a high number of passages in vitro and remained resistant to rifampin or penicillin and susceptible to tetracycline. No reactions with A or M antiserum or with a monoclonal antibody to the O antigen of Brucella lipopolysaccharides were detected; however, RB51 agglutinated with R antiserum. The results indicate that the genomic fingerprint and rough colonial morphology of RB51 are stable characteristics and can be used to differentiate this vaccine strain from Brucella isolates from cattle, bison, and elk. PMID:8904427

  11. Key Role of Toll-Like Receptor 2 in the Inflammatory Response and Major Histocompatibility Complex Class II Downregulation in Brucella abortus-Infected Alveolar Macrophages

    PubMed Central

    Ferrero, Mariana C.; Hielpos, M. Soledad; Carvalho, Natalia B.; Barrionuevo, Paula; Corsetti, Patricia P.; Giambartolomei, Guillermo H.; Oliveira, Sergio C.

    2014-01-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival. PMID:24478078

  12. Detection of antibodies against Brucella abortus, Leptospira spp., and Apicomplexa protozoa in water buffaloes in the Northeast of Argentina.

    PubMed

    Konrad, José L; Campero, Lucía M; Caspe, Gastón S; Brihuega, Bibiana; Draghi, Graciela; Moore, Dadin P; Crudeli, Gustavo A; Venturini, María C; Campero, Carlos M

    2013-11-01

    Water buffalo industry has become a profitable activity worldwide, including the Northeast of Argentina (NEA). However, research on diseases affecting this species is scarce. The aim of the present study was to detect antibodies against Brucella abortus, Leptospira spp., Neospora caninum, Toxoplasma gondii, and Sarcocystis spp. in 500 water buffalo cows from five ranches (100 animals each) in the NEA. Serum samples were tested for B. abortus by fluorescence polarization assay, Leptospira spp. by microagglutination test, and N. caninum, T. gondii, and Sarcocystis spp. by indirect fluorescent antibody tests. Overall, the proportion of seropositive animals was 6.4, 22.2, 42.2, 25.4, and 50.8 % for brucellosis, leptospirosis, neosporosis, toxoplasmosis, and sarcocystosis, respectively. The proportion of seropositive animals for all diseases was statistically different among herds (p < 0.05). Statistical differences were also detected among age groups for brucellosis and neosporosis (p < 0.05). The detection of specific antibodies to B. abortus, Leptospira spp., and several Apicomplexa protozoans in water buffaloes in the NEA is reported in this study. PMID:23765549

  13. Molecular Epidemiology of Brucella abortus Isolates from Cattle, Elk, and Bison in the United States, 1998 to 2011

    PubMed Central

    Stuber, Tod; Quance, Christine; Edwards, William H.; Tiller, Rebekah V.; Linfield, Tom; Rhyan, Jack; Berte, Angela; Harris, Beth

    2012-01-01

    A variable-number tandem repeat (VNTR) protocol targeting 10 loci in the Brucella abortus genome was used to assess genetic diversity among 366 field isolates recovered from cattle, bison, and elk in the Greater Yellowstone Area (GYA) and Texas during 1998 to 2011. Minimum spanning tree (MST) and unweighted-pair group method with arithmetic mean (UPGMA) analyses of VNTR data identified 237 different VNTR types, among which 14 prominent clusters of isolates could be identified. Cattle isolates from Texas segregated into three clusters: one comprised of field isolates from 1998 to 2005, one comprised of vaccination-associated infections, and one associated with an outbreak in Starr County in January 2011. An isolate obtained from a feral sow trapped on property adjacent to the Starr County herd in May 2011 clustered with the cattle isolates, suggesting a role for feral swine as B. abortus reservoirs in Starr County. Isolates from a 2005 cattle outbreak in Wyoming displayed VNTR-10 profiles matching those of strains recovered from Wyoming and Idaho elk. Additionally, isolates associated with cattle outbreaks in Idaho in 2002, Montana in 2008 and 2011, and Wyoming in 2010 primarily clustered with isolates recovered from GYA elk. This study indicates that elk play a predominant role in the transmission of B. abortus to cattle located in the GYA. PMID:22427502

  14. Reduced Susceptibility to Rifampicin and Resistance to Multiple Antimicrobial Agents among Brucella abortus Isolates from Cattle in Brazil

    PubMed Central

    Barbosa Pauletti, Rebeca; Reinato Stynen, Ana Paula; Pinto da Silva Mol, Juliana; Seles Dorneles, Elaine Maria; Alves, Telma Maria; de Sousa Moura Souto, Monalisa; Minharro, Silvia; Heinemann, Marcos Bryan; Lage, Andrey Pereira

    2015-01-01

    This study aimed to determine the susceptibility profile of Brazilian Brucella abortus isolates from cattle to eight antimicrobial agents that are recommended for the treatment of human brucellosis and to correlate the susceptibility patterns with origin, biotype and MLVA16-genotype of the strains. Screening of 147 B. abortus strains showed 100% sensitivity to doxycycline and ofloxacin, one (0.68%) strain resistant to ciprofloxacin, two strains (1.36%) resistant to streptomycin, two strains (1.36%) resistant to trimethoprim-sulfamethoxazole and five strains (3.40%) resistant to gentamicin. For rifampicin, three strains (2.04%) were resistant and 54 strains (36.73%) showed reduced sensitivity. Two strains were considered multidrug resistant. In conclusion, the majority of B. abortus strains isolated from cattle in Brazil were sensitive to the antimicrobials commonly used for the treatment of human brucellosis; however, a considerable proportion of strains showed reduced susceptibility to rifampicin and two strains were considered multidrug resistant. Moreover, there was no correlation among the drug susceptibility pattern, origin, biotype and MLVA16-genotypes of these strains. PMID:26181775

  15. Nucleotide-Binding Oligomerization Domain-1 and -2 Play No Role in Controlling Brucella abortus Infection in Mice

    PubMed Central

    Oliveira, Fernanda S.; Carvalho, Natalia B.; Zamboni, Dario S.; Oliveira, Sergio C.

    2012-01-01

    Nucleotide-binding oligomerization domain proteins (NODs) are modular cytoplasmic proteins implicated in the recognition of peptidoglycan-derived molecules. Further, several in vivo studies have demonstrated a role for Nod1 and Nod2 in host defense against bacterial pathogens. Here, we demonstrated that macrophages from NOD1-, NOD2-, and Rip2-deficient mice produced lower levels of TNF-α following infection with live Brucella abortus compared to wild-type mice. Similar reduction on cytokine synthesis was not observed for IL-12 and IL-6. However, NOD1, NOD2, and Rip2 knockout mice were no more susceptible to infection with virulent B. abortus than wild-type mice. Additionally, spleen cells from NOD1-, NOD2-, and Rip2-deficient mice showed unaltered production of IFN-γ compared to C57BL/6 mice. Taken together, this study demonstrates that NOD1, NOD2 and Rip2 are dispensable for the control of B. abortus during in vivo infection. PMID:22203860

  16. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice.

    PubMed

    Imbuluzqueta, Edurne; Gamazo, Carlos; Lana, Hugo; Campanero, Miguel Ángel; Salas, David; Gil, Ana Gloria; Elizondo, Elisa; Ventosa, Nora; Veciana, Jaume; Blanco-Prieto, María J

    2013-07-01

    The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis. PMID:23650167

  17. Genome Sequence of Brucella abortus Vaccine Strain S19 Compared to Virulent Strains Yields Candidate Virulence Genes

    PubMed Central

    Crasta, Oswald R.; Folkerts, Otto; Fei, Zhangjun; Mane, Shrinivasrao P.; Evans, Clive; Martino-Catt, Susan; Bricker, Betsy; Yu, GongXin; Du, Lei; Sobral, Bruno W.

    2008-01-01

    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9–941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism. PMID:18478107

  18. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes.

    PubMed

    Crasta, Oswald R; Folkerts, Otto; Fei, Zhangjun; Mane, Shrinivasrao P; Evans, Clive; Martino-Catt, Susan; Bricker, Betsy; Yu, GongXin; Du, Lei; Sobral, Bruno W

    2008-01-01

    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism. PMID:18478107

  19. Lon Mutant of Brucella abortus Induces Tumor Necrosis Factor-Alpha in Murine J774.A1 Macrophage

    PubMed Central

    Park, Sungdo; Choi, Young-Sill; Park, Sang-Hee; Kim, Young-Rok; Chu, Hyuk; Hwang, Kyu-Jam; Park, Mi-Yeoun

    2013-01-01

    Objectives The objective of this study was to isolate a Brucella lon mutant and to analyze the cytokine response of B. lon mutant during macrophage infection. Methods A wild-type Brucella abortus strain was mutagenized by Tn5 transposition. From the mouse macrophage J774.A1 cells, total RNA was isolated at 0 hours, 6 hours, 12 hours, and 24 hours after infection with Brucella. Using mouse cytokine microarrays, we measured transcriptional levels of the cytokine response, and validated our results with a reverse transcriptase-polymerase chain reaction (RT-PCR) assay to confirm the induction of cytokine messenger RNA (mRNA). Results In host J774.A1 macrophages, mRNA levels of T helper 1 (Th1)-type cytokines, including tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-2 (IL-2), and IL-3, were significantly higher in the lon mutant compared to wild-type Brucella and the negative control. TNF-α levels in cell culture media were induced as high as 2 μg/mL after infection with the lon mutant, a greater than sixfold change. Conclusion In order to understand the role of the lon protein in virulence, we identified and characterized a novel B. lon mutant. We compared the immune response it generates to the wild-type Brucella response in a mouse macrophage cell line. We demonstrated that the B. lon mutants induce TNF-α expression from the host J774.A1 macrophage. PMID:24524018

  20. Comparison of Genomes of Brucella melitensis M28 and the B. melitensis M5-90 Derivative Vaccine Strain Highlights the Translation Elongation Factor Tu Gene tuf2 as an Attenuation-Related Gene

    PubMed Central

    Wang, Fangkun; Qiao, Zujian; Hu, Sen; Liu, Wenxing; Zheng, Huajun; Liu, Sidang; Zhao, Xiaomin

    2013-01-01

    Brucella melitensis causes brucellosis, a disease affecting sheep, cattle, and sometimes humans. Attenuated B. melitensis strain M5-90, derived from virulent strain M28, is widely used as a live vaccine in ruminants in China. Genetic differences between the strains may cast light on the mechanism of attenuation. We recently reported the complete genomic sequences of M28 and M5-90. Genome organization is highly conserved between these isolates, and also with virulent strains 16 M and ATCC 23457. Analysis revealed 23 open reading frames (ORFs) with consistent differences between M5-90 and the virulent strains. Notably, the tuf2 gene encoding translation elongation factor EF-Tu from M5-90 contained 50 single nucleotide polymorphisms (SNPs) and 9 gaps (indels) compared to tuf2 of M28 or of the other virulent strains. There were no changes in tuf1. To evaluate the potential role of EF-Tu in pathogenesis, tuf1 and tuf2 mutants of M28 and an M5-90 strain harboring wild-type tuf2 were constructed, and their virulence/attenuation was evaluated in vivo. We report that the tuf2 gene plays an important role in the attenuation of M5-90 virulence. PMID:23716607

  1. In silico analysis of Brucella abortus Omp2b and in vitro expression of SOmp2b

    PubMed Central

    2016-01-01

    Purpose At present, there is no vaccine available for the prevention of human brucellosis. Brucella outer membrane protein 2b (Omp2b) is a 36 kD porin existed in common Brucella pathogens and it is considered as priority antigen for designing a new subunit vaccine. Materials and Methods In the current study, we aimed to predict and analyze the secondary and tertiary structures of the Brucella abortus Omp2b protein, and to predict T-cell and B-cell epitopes with the help of bioinformatics tools. Subsequently, cloning and expression of the short form of Omp2b (SOmp2b) was performed using pET28a expression vector and Escherichia coli BL21 host, respectively. The recombinant SOmp2b (rSOmp2b) was purified with Ni-NTA column. Results The recombinant protein was successfully expressed in E. coli host and purified under denaturation conditions. The yield of the purified rSOmp2b was estimated by Bradford method and found to be 220 µg/mL of the culture. Conclusion Our results indicate that Omp2b protein has a potential to induce both B-cell– and T-cell–mediated immune responses and it can be evaluated as a new subunit vaccine candidate against brucellosis. PMID:26866027

  2. Comparative analysis of Brucella serotype A and M and Yersinia enterocolitica O:9 polysaccharides for serological diagnosis of brucellosis in cattle, sheep, and goats.

    PubMed Central

    Díaz-Aparicio, E; Aragón, V; Marín, C; Alonso, B; Font, M; Moreno, E; Pérez-Ortiz, S; Blasco, J M; Díaz, R; Moriyón, I

    1993-01-01

    Hapten polysaccharides of Brucella smooth M and A serotypes were prepared from Brucella sp. and Yersinia enterocolitica O:9 by previously described hydrolytic (O chain) or nonhydrolytic (native hapten [NH]) procedures. The purified polysaccharides differed only in the presence (O chain) or absence (NH) of lipopolysaccharide core sugars. The polysaccharides were compared by reverse radial immunodiffusion for the diagnosis of brucellosis in cattle (Brucella abortus biotype 1 [A serotype] and Brucella melitensis biotype 3 [AM serotype]), sheep (B. melitensis biotypes 1 [M serotype] and 3), and goats (B. melitensis biotype 1). The reverse radial immunodiffusion test with the NH from B. melitensis 16 M (serotype M) showed the highest sensitivity (89.6 to 97.3%), regardless of the host species and the serotype of the infecting Brucella sp. Y. enterocolitica O:9 NH (A serotype) was useful for diagnosing disease in cattle infected with B. abortus biotype 1, but not in cattle infected with B. melitensis biotype 3, sheep, or goats. The different results obtained with the serotype M and A polysaccharides and the sera from animals infected with M, A, and AM serotypes of Brucella spp. showed that in naturally infected animals, a large proportion of the antibodies are directed to or react with a previously defined common epitope(s) (J. T. Douglas and D. A. Palmer, J. Clin. Microbiol. 26:1353-1356, 1988) different from the A or M epitopes. By using the radial immunodiffusion test with B. melitensis 16M NH, it was possible to differentiate infected from vaccinated cattle, sheep, and goats with a sensitivity and specificity similar to that of the complement fixation test. PMID:8308104

  3. Omics of Brucella: Species-Specific sRNA-Mediated Gene Ontology Regulatory Networks Identified by Computational Biology.

    PubMed

    Vishnu, Udayakumar S; Sankarasubramanian, Jagadesan; Gunasekaran, Paramasamy; Sridhar, Jayavel; Rajendhran, Jeyaprakash

    2016-06-01

    Brucella is an intracellular bacterium that causes the zoonotic infectious disease, brucellosis. Brucella species are currently intensively studied with a view to developing novel global health diagnostics and therapeutics. In this context, small RNAs (sRNAs) are one of the emerging topical areas; they play significant roles in regulating gene expression and cellular processes in bacteria. In the present study, we forecast sRNAs in three Brucella species that infect humans, namely Brucella melitensis, Brucella abortus, and Brucella suis, using a computational biology analysis. We combined two bioinformatic algorithms, SIPHT and sRNAscanner. In B. melitensis 16M, 21 sRNA candidates were identified, of which 14 were novel. Similarly, 14 sRNAs were identified in B. abortus, of which four were novel. In B. suis, 16 sRNAs were identified, and five of them were novel. TargetRNA2 software predicted the putative target genes that could be regulated by the identified sRNAs. The identified mRNA targets are involved in carbohydrate, amino acid, lipid, nucleotide, and coenzyme metabolism and transport, energy production and conversion, replication, recombination, repair, and transcription. Additionally, the Gene Ontology (GO) network analysis revealed the species-specific, sRNA-based regulatory networks in B. melitensis, B. abortus, and B. suis. Taken together, although sRNAs are veritable modulators of gene expression in prokaryotes, there are few reports on the significance of sRNAs in Brucella. This report begins to address this literature gap by offering a series of initial observations based on computational biology to pave the way for future experimental analysis of sRNAs and their targets to explain the complex pathogenesis of Brucella. PMID:27223678

  4. Serological relationship between cattle exposed to Brucella abortus, Yersinia enterocolitica O:9 and Escherichia coli O157:H7.

    PubMed

    Nielsen, K; Smith, P; Widdison, J; Gall, D; Kelly, L; Kelly, W; Nicoletti, P

    2004-05-20

    Sera from cattle naturally infected with Brucella abortus (n = 160), vaccinated with B. abortus S19 (n = 88) or immunized with Yersinia enterocolitica O:9 (n = 25) or Escherichia coli O157:H7 (n = 80) were collected. The sera were compared for antibody content to the same bacteria by indirect enzyme immunoassay (IELISA), fluorescence polarization assay (FPA) and competitive enzyme immunoassay (CELISA). Cattle sera (n = 523) collected randomly from across Canada were tested in the same tests. Sera from the B. abortus infected group reacted positively in the brucellosis IELISA (IELISA(Br)), CELISA and FPA (FPA(Br)) and the Y. enterocolitica IELISA (IELISA(Ye)) while the Y. enterocolitica FPA (FPA(Ye)) detected antibody in 93.8% and the E. coli IELISA (IELISA(Ec)) 86.9% and the E. coli FPA (FPA(Ec)) 48.1%. About 70% of the sera from B. abortus S19 vaccinated animals reacted in the three IELISAs, 45% in the CELISA, and 37.7% in the FPA(Ec), 21.6% in the FPA(Br) and 5.7% in the FPA(Ye). Sera from E. coli O:157 exposed cattle reacted mainly in the IELISA(Ec) and FPA(Ec) although surprisingly 87.5% reacted in the IELISA(Ye) and only 3.8% in the IELISA(Br). No reactions were observed with these sera in the FPA(Br) and FPA(Ye) but one serum gave a low positive reaction in the CELISA. All sera from Y. enterocolitica O:9 exposed cattle reacted in the IELISA(Br) and IELISA(Ye) and 80% in the IELISA(Ec). In the CELISA, 44% gave a positive reaction and 64% were positive in the FPA(Br), 28% in the FPA(Ye) and 12% in the FPA(Ec). Of the 523 Canadian sera, about 50% reacted in the E. coli tests with only minor reactions in the Y. enterocolitica O:9 and B. abortus assays. From the data, the cross reaction between E. coli O157:H7, Y. enterocilitica O:9 and B. abortus is dependent on the test used. Thus, extensive cross reaction was observed with the IELISA with much less reactivity in the FPA and the CELISA. PMID:15135510

  5. Brucella isolated in humans and animals in Latin America from 1968 to 2006

    PubMed Central

    LUCERO, N. E.; AYALA, S. M.; ESCOBAR, G. I.; JACOB, N. R.

    2008-01-01

    SUMMARY We report a retrospective analysis of 1933 Brucella strains isolated from humans and animals in Latin American countries between 1968 and 1991 and in Argentina between 1994 and 2006. During the first period 50% of strains were from humans, mainly from Argentina, Mexico and Peru but, while B. suis was the main cause of infection in Argentina, B. melitensis was responsible for most infections in the other countries. In Argentina in the later years, B. melitensis and B. suis were observed more frequently than in the first period while isolation of B. abortus decreased. Of 145 B. melitensis human isolates, eight gave susceptibility patterns to dyes and penicillin and two were B. melitensis biovar 3, which has never been reported in animals. Forty-six percent of B. suis isolated were resistant to dyes which is an atypical feature in this species. PMID:17559694

  6. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells.

    PubMed

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José; Delpino, María Victoria

    2016-02-01

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway. PMID:26667834

  7. Experimental infection of nontarget species of rodents and birds with Brucella abortus strain RB51 vaccine

    USGS Publications Warehouse

    Januszewski, M.C.; Olsen, S.C.; McLean, R.G.; Clark, L.; Rhyan, Jack C.

    2001-01-01

    The Brucella abortus vaccine strain RB51 (SRB51) is being considered for use in the management of bnucellosis in wild bison (Bison bison) and elk (Cervus elaphus) populations in the Greater Yellowstone Area (USA). Evaluation of the vaccines safety in non-target species was considered necessary prior to field use. Between June 1998 and December 1999, ground squirrels (Spermophilus richardsonii, n = 21), deer mice (Peromyscus maniculatus, n = 14), prairie voles (Microtus ochrogaster, n = 21), and ravens (Corvus corax, n = 13) were orally inoculated with SRB51 or physiologic saline. Oral and rectal swabs and blood samples were collected for bacteriologic evaluation. Rodents were necropsied at 8 to 10 wk and 12 to 21 wk post inoculation (PI), and ravens at 7 and 11 wk PI. Spleen, liver and reproductive tissues were collected for bacteriologic and histopathologic evaluation. No differences in clinical signs, appetite, weight loss or gain, or activity were observed between saline- and SRB51-inoculated animals in all four species. Oral and rectal swabs from all species were negative throughout the study. In tissues obtained from SRB51-inoculated animals, the organism was isolated from six of seven (86%) ground squirrels, one of six (17%) deer mice, none of seven voles, and one of five (20%) ravens necropsied at 8, 8, 10, and 7 wk PI, respectively. Tissues from four of seven (57%) SRB51-inoculated ground squirrels were culture positive for the organism 12 wk PI; SRB51 was not recovered from deer mice, voles. or ravens necropsied 12, 21, or 11 wk, respectively, PI. SRB51 was not recovered from saline-inoculated ground squirrels, deer mice, or voles at any time but was recovered from one saline-inoculated raven at necropsy, 7 wk PI, likely attributable to contact with SRB51-inoculated ravens in an adjacent aviary room. Spleen was time primary tissue site of colonization in ground squirrels, followed by the liver and reproductive organs. The results indicate oral exposure to

  8. Immune responses and resistance to brucellosis in mice vaccinated orally with Brucella abortus RB51.

    PubMed Central

    Stevens, M G; Olsen, S C; Palmer, M V; Pugh, G W

    1996-01-01

    Immune responses and resistance to infection with Brucella abortus 2308 (S2308) were measured in mice following oral or intraperitoneal (i.p.) vaccination with strain RB51 (SRB51). Bacteria persisted in the parotid lymph node for 4 weeks following oral vaccination of mice with 5 x 10(8) or 5 x 10(6) CFU of SRB51. Bacteria did not appear in the spleen during 12 weeks after oral vaccination, whereas they did appear in the spleen for 8 weeks following i.p. vaccination of mice with SRB51 (5 x 10(8) or 5 x 10(6) CFU). Increased resistance to S2308 infection occurred at 12 to 20 weeks in mice vaccinated i.p. with SRB51 (5 x 10(8) or 5 x 10(6) CFU) but occurred at 12 weeks only in mice vaccinated orally with SRB51 (5 x 10(8) CFU). Oral SRB51 vaccination induced lower levels of antibodies to the surface antigens of intact SRB51 bacteria than did i.p. vaccination. However, neither route of vaccination induced anamnestic antibody responses to the surface antigens of intact S2308 bacteria after challenge infection of the vaccinated mice with S2308. Mice vaccinated orally with SRB51 and challenged with S2308 at 12 to 20 weeks had lower and less persistent spleen cell proliferation and production of gamma interferon in response to S2308 and certain immunodominant S2308 proteins (32 to < or = 18 kDa) than did mice vaccinated i.p. with SRB51. However, mice vaccinated orally or i.p. with SRB51 and challenged with S2308 had similar spleen cell tumor necrosis factor alpha production. These results indicate that oral vaccination of mice with SRB51 was effective in inducing protective immunity to S2308 infection, although the immunity was lower and less persistent than that induced by i.p. vaccination. The lower protective immunity induced by oral vaccination may have resulted from lower and less persistent cell-mediated immunity and gamma interferon production in response to S2308 and S2308 proteins. PMID:8890203

  9. Host Susceptibility to Brucella abortus Infection Is More Pronounced in IFN-γ knockout than IL-12/β2-Microglobulin Double-Deficient Mice

    PubMed Central

    Brandão, Ana Paula M. S.; Oliveira, Fernanda S.; Carvalho, Natalia B.; Vieira, Leda Q.; Azevedo, Vasco; Macedo, Gilson C.; Oliveira, Sergio C.

    2012-01-01

    Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. IFN-γ, IL-12, and CD8+ T lymphocytes are important components of host immune responses against B. abortus. Herein, IFN-γ and IL-12/β2-microglobulin (β2-m) knockout mice were used to determine whether CD8+ T cells and IL-12-dependent IFN-γ deficiency would be more critical to control B. abortus infection compared to the lack of endogenous IFN-γ. At 1 week after infection, IFN-γ KO and IL-12/β2-m KO mice showed increased numbers of bacterial load in spleens; however, at 3 weeks postinfection (p.i.), only IFN-γ KO succumbed to Brucella. All IFN-γ KO had died at 16 days p.i. whereas death within the IL-12/β2-m KO group was delayed and occurred at 32 days until 47 days postinfection. Susceptibility of IL-12/β2-m KO animals to Brucella was associated to undetectable levels of IFN-γ in mouse splenocytes and inability of these cells to lyse Brucella-infected macrophages. However, the lack of endogenous IFN-γ was found to be more important to control brucellosis than CD8+ T cells and IL-12-dependent IFN-γ deficiencies. PMID:22194770

  10. The Brucella abortus phosphoglycerate kinase mutant is highly attenuated and induces protection superior to that of vaccine strain 19 in immunocompromised and immunocompetent mice.

    PubMed

    Trant, Cyntia G M C; Lacerda, Thais L S; Carvalho, Natalia B; Azevedo, Vasco; Rosinha, Gracia M S; Salcedo, Suzana P; Gorvel, Jean-Pierre; Oliveira, Sergio C

    2010-05-01

    Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that can function as virulence factors to better understand the host-pathogen interplay. Herein, we identified the gene encoding the phosphoglycerate kinase (PGK) of B. abortus strain 2308. To test the role of PGK in Brucella pathogenesis, a pgk deletion mutant was constructed. Replacement of the wild-type pgk by recombination was demonstrated by Southern and Western blot analyses. The B. abortus Delta pgk mutant strain exhibited extreme attenuation in bone marrow-derived macrophages and in vivo in BALB/c, C57BL/6, 129/Sv, and interferon regulatory factor-1 knockout (IRF-1 KO) mice. Additionally, at 24 h postinfection the Delta pgk mutant was not found within the same endoplasmic reticulum-derived compartment as the wild-type bacteria, but, instead, over 60% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP1. Furthermore, the B. abortus Delta pgk deletion mutant was used as a live vaccine. Challenge experiments revealed that the Delta pgk mutant strain induced protective immunity in 129/Sv or IRF-1 KO mice that was superior to the protection conferred by commercial strain 19 or RB51. Finally, the results shown here demonstrated that Brucella PGK is critical for full bacterial virulence and that a Delta pgk mutant may serve as a potential vaccine candidate in future studies. PMID:20194591

  11. The Brucella abortus Phosphoglycerate Kinase Mutant Is Highly Attenuated and Induces Protection Superior to That of Vaccine Strain 19 in Immunocompromised and Immunocompetent Mice ▿

    PubMed Central

    Trant, Cyntia G. M. C.; Lacerda, Thais L. S.; Carvalho, Natalia B.; Azevedo, Vasco; Rosinha, Gracia M. S.; Salcedo, Suzana P.; Gorvel, Jean-Pierre; Oliveira, Sergio C.

    2010-01-01

    Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that can function as virulence factors to better understand the host-pathogen interplay. Herein, we identified the gene encoding the phosphoglycerate kinase (PGK) of B. abortus strain 2308. To test the role of PGK in Brucella pathogenesis, a pgk deletion mutant was constructed. Replacement of the wild-type pgk by recombination was demonstrated by Southern and Western blot analyses. The B. abortus Δpgk mutant strain exhibited extreme attenuation in bone marrow-derived macrophages and in vivo in BALB/c, C57BL/6, 129/Sv, and interferon regulatory factor-1 knockout (IRF-1 KO) mice. Additionally, at 24 h postinfection the Δpgk mutant was not found within the same endoplasmic reticulum-derived compartment as the wild-type bacteria, but, instead, over 60% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP1. Furthermore, the B. abortus Δpgk deletion mutant was used as a live vaccine. Challenge experiments revealed that the Δpgk mutant strain induced protective immunity in 129/Sv or IRF-1 KO mice that was superior to the protection conferred by commercial strain 19 or RB51. Finally, the results shown here demonstrated that Brucella PGK is critical for full bacterial virulence and that a Δpgk mutant may serve as a potential vaccine candidate in future studies. PMID:20194591

  12. Parallel gene loss and acquisition among strains of different Brucella species and biovars.

    PubMed

    Zhong, Zhijun; Wang, Yufei; Xu, Jie; Chen, Yanfen; Ke, Yuehua; Zhou, Xiaoyan; Yuan, Xitong; Zhou, Dongsheng; Yang, Yi; Yang, Ruifu; Peng, Guangneng; Jiang, Hai; Yuan, Jing; Song, Hongbin; Cui, Buyun; Huang, Liuyu; Chen, Zeliang

    2012-08-01

    The genus Brucella is divided into six species; of these, B. melitensis and B. abortus are pathogenic to humans, and B. ovis and B. neotomae are nonpathogenic to humans. The definition of gene loss and acquisition is essential for understanding Brucella's ecology, evolutionary history, and host relationships. A DNA microarray containing unique genes of B. melitensis Type strain 16MT and B. abortus 9-941 was constructed and used to determine the gene contents of the representative strains of Brucella. Phylogenetic relationships were inferred from sequences of housekeeping genes. Gene loss and acquisition of different Brucella species were inferred. A total of 214 genes were found to be differentially distributed, and 173 of them were clustered into 15 genomic islands (GIs). Evidence of horizontal gene transfer was observed for 10 GIs. Phylogenetic analysis indicated that the 19 strains formed five clades, and some of the GIs had been lost or acquired independently among the different lineages. The derivation of Brucella lineages is concomitant with the parallel loss or acquisition of GIs, indicating a complex interaction between various Brucella species and hosts. PMID:22923103

  13. [Evaluation of 2 hemoculture media for the isolation of Brucella spp.

    PubMed

    Fiorentino, M A; Cipolla, A L; Malena, C R; Paolicchi, F A

    2003-01-01

    The diagnostic efficiency of two hemoculture media for the detection of different species of Brucella strains was evaluated. Strains of Brucella melitensis, Brucella suis, Brucella abortus, Brucella ovis, and Brucella abortus S19 were used. Each strain was diluted in phosphate buffer saline (PBS) to obtain a concentration of 10(5) colony forming units/ml (CFU/ml). Blood from goats, pigs, cattle, and sheep was mixed with the bacterial suspension to obtain a final concentration minor or equal to 10(3) CFU/ml. These blood samples were inoculated into the following media: (i) Hemobrucella (HB), (ii) Tryptose citrated broth 2% (CTB), and (iii) Controls without blood for B. melitensis and B.suis. Subculture in dishes and CFU/ml counts were made at the 1st, 3rd, 8th, 10th, 20th, and 30th post-inoculation (PI) day. Best results were obtained in the HB medium for all strains, except for B. suis, which due to the presence of a contaminant did not reach its maximum development in this medium. All strains were recovered from both media at 24 h PI, except B. ovis that was isolated from HB at 72 h PI and was not recovered from CTB. All strains remained viable for a shorter period in CTB. Under the proposed experimental conditions the HB medium was more sensitive than CTB. Future experiments should evaluate the utility of this commercial medium in clinical cases of animal brucellosis. PMID:14587372

  14. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein

    PubMed Central

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon

    2016-01-01

    The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis. PMID:27051349

  15. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein.

    PubMed

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Kim, Suk

    2016-03-01

    The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis. PMID:27051349

  16. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice.

    PubMed

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Park, Bo-Kyoung; Hahn, Tae-Wook

    2016-06-01

    Brucella abortus RB51 is an attenuated vaccine strain that has been most frequently used for bovine brucellosis. Although it is known to provide good protection in cattle, it still has some drawbacks including resistance to rifampicin, residual virulence and pathogenicity in humans. Thus, there has been a continuous interest on new safe and effective bovine vaccine candidates. In the present study, we have constructed unmarked mutants by deleting singly cydD and cydC genes, which encode ATP-binding cassette transporter proteins, from the chromosome of the virulent Brucella abortus isolate from Korean cow (referred to as IVK15). Both IVK15ΔcydD and ΔcydC mutants showed increased sensitivity to metal ions, hydrogen peroxide and acidic pH, which are mimic to intracellular environment during host infection. Additionally, the mutants exhibited a significant growth defect in RAW264.7 cells and greatly attenuated in mice. Vaccination of mice with either IVK15ΔcydC or IVK15ΔcydD mutant could elicit an anti-Brucella specific immunoglobulin G (IgG) and IgG subclass responses as well as enhance the secretion of interferon-gamma, and provided better protection against challenge with B. abortus strain 2308 than with the commercial B. abortus strain RB51 vaccine. Collectively, these results suggest that both IVK15ΔcydC and IVK15ΔcydD mutants could be an attenuated vaccine candidate against B. abortus. PMID:27057678

  17. Brucella abortus Cyclic β-1,2-Glucan Mutants Have Reduced Virulence in Mice and Are Defective in Intracellular Replication in HeLa Cells

    PubMed Central

    Briones, Gabriel; Iñón de Iannino, Nora; Roset, Mara; Vigliocco, Ana; Paulo, Patricia Silva; Ugalde, Rodolfo A.

    2001-01-01

    Null cyclic β-1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abortus S19 cgs mutant was completely cleared from the spleens of mice after 4 weeks, while the 2308 mutant showed a 1.5-log reduction of the number of brucellae isolated from the spleens after 12 weeks. These results suggest that cyclic β-1,2-glucan plays an important role in the residual virulence of the attenuated B. abortus S19 strain. Although the cgs mutant was cleared from the spleens earlier than the wild-type parental strain (B. abortus S19) and produced less inflammatory response, its ability to confer protection against the virulent strain B. abortus 2308 was fully retained. Equivalent levels of induction of spleen gamma interferon mRNA and anti-lipopolysaccharide (LPS) of immunoglobulin G2a (IgG2a) subtype antibodies were observed in mice injected with B. abortus S19 or the cgs mutant. However, the titer of anti-LPS antibodies of the IgG1 subtype induced by the cgs mutant was lower than that observed with the parental S19 strain, thus suggesting that the cgs mutant induces a relatively exclusive Th1 response. PMID:11401996

  18. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha

    2015-01-01

    Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405

  19. Brucella melitensis 16MΔTcfSR as a potential live vaccine allows for the differentiation between natural and vaccinated infection

    PubMed Central

    LI, ZHIQIANG; ZHANG, JUNBO; ZHANG, KE; FU, QIANG; WANG, ZHEN; LI, TIANSEN; ZHANG, HUI; GUO, FEI; CHEN, CHUANGFU

    2015-01-01

    Brucellosis is a zoonotic disease that poses a serious threat to public health and safety. Although the live attenuated vaccines targeting brucellosis, such as M5-90, are effective, there are a number of drawbacks to their use. For example, the vaccines are unable to differentiate between the natural and vaccinated forms of the infection, and these vaccines have also been shown to cause abortion in pregnant animals. Therefore, a safer and more potent vaccine is required. In the present study, a B. melitensis 16M TcfSR promoter mutant (16MΔTcfSR) was constructed in an attempt to overcome these drawbacks. A TcfSR mutant was derived from B. melitensis 16M and tested for virulence and protection efficiency. Levels of immuoglobulin G (IgG), and cytokine production were determined. In addition, TcfS was assessed as a diagnostic marker for brucellosis. The survival capacity of the 16MΔTcfSR mutant was shown to be attenuated in the RAW 264.7 murine macrophage cell line and BALB/c mice, and the vaccination was shown to induce a high level of protective immunity in BALB/c mice. In addition, the 16MΔTcfSR vaccination elicited an anti-Brucella-specific IgG response and induced the secretion of interferon-γ. Thus, the TcfS antigen allowed for the serological differentiation between the natural and vaccinated infection in animals. In conclusion, the results demonstrated that the 16MΔTcfSR mutant was attenuated in murine macrophage cells and BALB/c mice; therefore, 16MΔTcfSR is a potential candidate for a live attenuated vaccine against B. melitensis infection. PMID:26622461

  20. Pseudorabies Virus and Brucella abortus from an Expanding Wild Pig ( Sus scrofa ) Population in Southern Oklahoma, USA.

    PubMed

    Gaskamp, Joshua A; Gee, Kenneth L; Campbell, Tyler A; Silvy, Nova J; Webb, Stephen L

    2016-04-28

    Wild pigs ( Sus scrofa ) are causing increasing ecologic and economic damage at a global scale. Because wild pigs can carry ≥65 diseases that affect livestock, their widespread expansion threatens native wildlife and livestock. We screened wild pigs from south-central Oklahoma, US for antibodies against Brucella abortus , pseudorabies virus (PRV), and porcine reproductive and respiratory syndrome virus (PRRS). These pathogens were chosen because they are part of eradication programs in the US and could have large economic impacts on domestic livestock if transmitted from wild animals. We tested 282 serum samples during spring 2010 (n=149) and 2011 (n=133) and found an overall exposure rate to PRV of 24.1% (n=68); PRV was detected at two of three study sites. Two wild pigs had detectable antibody to B. abortus , and one had detectable antibody to PRRS. On average, 27% of wild pigs within a sounder were positive for PRV antibody, with 44% of the sounders (16/36) having at least one positive individual. These data highlight that wild pigs could carry pathogens that affect domestic livestock. Because the US is free of these pathogens in commercial livestock operations, continued surveillance and vaccination of domestic livestock are needed. Commercial livestock producers at the wildlife-livestock interface may benefit from spatial prioritization of risk zones to facilitate strategic control efforts. PMID:27124329

  1. Variables Associated with Infections of Cattle by Brucella abortus., Leptospira spp. and Neospora spp. in Amazon Region in Brazil.

    PubMed

    Chiebao, D P; Valadas, S Y O B; Minervino, A H H; Castro, V; Romaldini, A H C N; Calhau, A S; De Souza, R A B; Gennari, S M; Keid, L B; Soares, R M

    2015-10-01

    The frequency of Neospora spp., Leptospira spp. and Brucella abortus infections in adult cattle was determined in herds of the State of Pará, Brazil, which is an important region for cattle production located in the Amazon region. A total of 3466 adult female cattle from 176 herds were tested, leading to a frequency of seropositive animals of 14.7%, 3.7% and 65.5% and a herd positivity of 87.4%, 41.3% and 98.8% for infections caused by Neospora spp., B. abortus and Leptospira spp., respectively. The five most frequently diagnosed serologic responses to Leptospira spp. were those against serovars hardjo, wolfii, grippotyphosa, hebdomadis and shermani. The following associations were found: practice of artificial insemination, large farm size, large herd size, large number of dogs and high number of total abortions per year with the presence of antibodies against serovar hardjo; positive results to serovar grippotyphosa with the presence of dogs; inappropriate disposal of aborted foetuses with positivity to serovar hebdomadis. Serovar grippotyphosa was also associated with number of episodes of abortions. Neospora spp. positive herds were associated with episodes of abortion and B. abortus infection with the disposal of dead animals and aborted foetuses on pastures and with the use of artificial insemination. In conclusion, the high frequency of brucellosis, leptospirosis and neosporosis in the region may be a consequence of social, natural and raising conditions as: (i) climate conditions that favour the survival and spread of pathogens in the environment; (ii) farms located in regions bordering forest areas; (iii) farms in areas of difficult access to the veterinary service; (iv) extensive beef herds raised at pastures with different age and productive groups inter-mingled; and (v) minimal concerns regarding hygiene practices and disease prevention measures. PMID:26302373

  2. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV-16 L1VLP vaccine in mice.

    PubMed

    Kianmehr, Zahra; Soleimanjahi, Hoorieh; Ardestani, Susan Kaboudanian; Fotouhi, Fatemeh; Abdoli, Asghar

    2015-04-01

    Brucella abortus lipopolysaccharide (LPS) has less toxicity and no pyrogenic properties in comparison with other bacterial LPS. It is a toll-like receptor 4 agonist and has been shown to have the potential use as a vaccine adjuvant. In this study, the immunostimulatory properties of LPS from smooth and rough strains of B. abortus (S19 and RB51) as adjuvants were investigated for the human papillomavirus type 16 (HPV16) L1 virus-like particles (L1VLPs) vaccines. C57BL/6 mice were immunized subcutaneously three times either with HPV-16 L1VLPs alone, or in combination with smooth LPS (S-LPS), rough LPS (R-LPS), aluminum hydroxide or a mixture of them as adjuvant. The humoral immunity was evaluated by measuring the specific and total IgG levels, and also the T-cell immune response of mice was evaluated by measuring different cytokines such as IFN-γ, TNF-α, IL-4, IL-10 and IL-17. Results showed that serum anti-HPV16 L1VLP IgG antibody titers was significantly higher in mice immunized with a combination of VLPs and R-LPS or S-LPS compared with other immunized groups. Co-administration of HPV-16 L1VLPs with R-LPS elicited the highest levels of splenocytes cytokines (IFN-γ, IL-4, IL-17 and TNF-α) and also effectively induced improvement of a Th1-type cytokine response characterized with a high ratio of IFN-γ/IL-10. The data indicate that B. abortus LPS particularly RB51-LPS enhances the immune responses to HPV-16 L1VLPs and suggests its potential as an adjuvant for the development of a potent prophylactic HPV vaccine and other candidate vaccines. PMID:25187406

  3. Brucella abortus induces collagen deposition and MMP-9 down-modulation in hepatic stellate cells via TGF-β1 production.

    PubMed

    Arriola Benitez, Paula C; Scian, Romina; Comerci, Diego J; Serantes, Diego Rey; Vanzulli, Silvia; Fossati, Carlos A; Giambartolomei, Guillermo H; Delpino, M Victoria

    2013-12-01

    In patients with active brucellosis, the liver is frequently affected by histopathologic lesions, such as granulomas, inflammatory infiltrations, and parenchymal necrosis. Herein, we examine some potential mechanisms of liver damage in brucellosis. We demonstrate that Brucella abortus infection inhibits matrix metalloproteinase-9 (MMP-9) secretion and induces collagen deposition and tissue inhibitor of matrix metalloproteinase-1 secretion induced by hepatic stellate cells (LX-2). These phenomena depend on transforming growth factor-β1 induction. In contrast, supernatants from B. abortus-infected hepatocytes and monocytes induce MMP-9 secretion and inhibit collagen deposition in hepatic stellate cells. Yet, if LX-2 cells are infected with B. abortus, the capacity of supernatants from B. abortus-infected hepatocytes and monocytes to induce MMP-9 secretion and inhibit collagen deposition is abrogated. These results indicate that depending on the balance between interacting cells and cytokines of the surrounding milieu, the response of LX-2 cells could be turned into an inflammatory or fibrogenic phenotype. Livers from mice infected with B. abortus displayed a fibrogenic phenotype with patches of collagen deposition and transforming growth factor-β1 induction. This study provides potential mechanisms of liver immune response induced by B. abortus-infected hepatic stellate cells. In addition, these results demonstrate that the cross talk of these cells with hepatocytes and macrophages implements a series of interactions that may contribute to explaining some of mechanisms of liver damage observed in human brucellosis. PMID:24113459

  4. Brucella abortus S19 and RB51 vaccine immunogenicity test: Evaluation of three mice (BALB/c, Swiss and CD-1) and two challenge strains (544 and 2308).

    PubMed

    Miranda, Karina Leite; Dorneles, Elaine Maria Seles; Pauletti, Rebeca Barbosa; Poester, Fernando Padilla; Lage, Andrey Pereira

    2015-01-15

    The aim of the present study was to evaluate the use of different mouse strains (BALB/c, Swiss and CD-1) and different challenge strains (Brucella abortus 544 and 2308) in the study of B. abortus vaccine (S19 and RB51) immunogenicity test in the murine model. No significant difference in B. abortus vaccine potency assay was found with the use of B. abortus 544 or B. abortus 2308 as challenge strain. Results of variance analysis showed an interaction between treatment and mouse strain; therefore these parameters could not be compared separately. When CD-1 groups were compared, those vaccinated showed significantly lower counts than non-vaccinated ones (P<0.05), independently of the vaccine received (S19 or RB51). Similar results were observed on BALB/c groups. However, in Swiss mouse groups, S19 was more protective than RB51 (P<0.05), which showed protection when compared to the non-vaccinated group (P<0.05). In summary, data from the present study showed that CD-1, BALB/c and Swiss mice strains, as well as both challenge strains, B. abortus strains 544 and 2308, can be used in immunogenicity tests of S19 and RB51 vaccines. PMID:25498211

  5. Inactivation of formyltransferase (wbkC) gene generates a Brucella abortus rough strain that is attenuated in macrophages and in mice.

    PubMed

    Lacerda, Thaís Lourdes Santos; Cardoso, Patrícia Gomes; Augusto de Almeida, Leonardo; Camargo, Ilana Lopes Baratella da Cunha; Afonso, Daniela Almeida Freitas; Trant, Cyntia Cardoso; Macedo, Gilson Costa; Campos, Eleonora; Cravero, Silvio L; Salcedo, Suzana P; Gorvel, Jean-Pierre; Oliveira, Sérgio Costa

    2010-08-01

    Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortusDeltawbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. DeltawbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence. PMID:20580469

  6. Comparative Whole-Genome Hybridization Reveals Genomic Islands in Brucella Species†

    PubMed Central

    Rajashekara, Gireesh; Glasner, Jeremy D.; Glover, David A.; Splitter, Gary A.

    2004-01-01

    Brucella species are responsible for brucellosis, a worldwide zoonotic disease causing abortion in domestic animals and Malta fever in humans. Based on host preference, the genus is divided into six species. Brucella abortus, B. melitensis, and B. suis are pathogenic to humans, whereas B. ovis and B. neotomae are nonpathogenic to humans and B. canis human infections are rare. Limited genome diversity exists among Brucella species. Comparison of Brucella species whole genomes is, therefore, likely to identify factors responsible for differences in host preference and virulence restriction. To facilitate such studies, we used the complete genome sequence of B. melitensis 16M, the species highly pathogenic to humans, to construct a genomic microarray. Hybridization of labeled genomic DNA from Brucella species to this microarray revealed a total of 217 open reading frames (ORFs) altered in five Brucella species analyzed. These ORFs are often found in clusters (islands) in the 16M genome. Examination of the genomic context of these islands suggests that many are horizontally acquired. Deletions of genetic content identified in Brucella species are conserved in multiple strains of the same species, and genomic islands missing in a given species are often restricted to that particular species. These findings suggest that, whereas the loss or gain of genetic material may be related to the host range and virulence restriction of certain Brucella species for humans, independent mechanisms involving gene inactivation or altered expression of virulence determinants may also contribute to these differences. PMID:15262941

  7. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection

    PubMed Central

    Fernández, Andrea G.; Bonetto, Josefina; Giambartolomei, Guillermo H.; Fossati, Carlos A.; Baldi, Pablo C.

    2015-01-01

    Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site. PMID:26448160

  8. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival.

    PubMed

    Döhmer, Peter H; Valguarnera, Ezequiel; Czibener, Cecilia; Ugalde, Juan E

    2014-03-01

    Brucella abortus, the aetiological agent of bovine brucellosis, is an intracellular pathogen whose virulence is completely dependent on a type IV secretion system. This secretion system translocates effector proteins into the host cell to modulate the intracellular fate of the bacterium in order to establish a secure niche were it actively replicates. Although much has been done in understanding how this secretion system participates in the virulence process, few effector proteins have been identified to date. We describe here the identification of a type IV secretion substrate (SepA) that is only present in Brucella spp. and has no detectable homology to known proteins. This protein is secreted in a virB-dependent manner in a two-step process involving a periplasmic intermediate and secretion is necessary for its function. The deletion mutant showed a defect in the early stages of intracellular replication in professional and non-professional phagocytes although it invades the cells more efficiently than the wild-type parental strain. Our results indicate that, even though the mutant was more invasive, it had a defect in excluding the lysosomal marker Lamp-1 and was inactivated more efficiently during the early phases of the intracellular life cycle. PMID:24119283

  9. Protective immune-response of aluminium hydroxide gel adjuvanted phage lysate of Brucella abortus S19 in mice against direct virulent challenge with B. abortus 544.

    PubMed

    Jain, Lata; Rawat, Mayank; Prajapati, Awadhesh; Tiwari, Ashok Kumar; Kumar, Bablu; Chaturvedi, V K; Saxena, H M; Ramakrishnan, Sarvanan; Kumar, Jatin; Kerketta, Priscilla

    2015-09-01

    The prophylactic efficacies of plain and alum adsorbed lysate were evaluated by direct virulent challenge in mice model. A recently isolated brucellaphage 'ϕLd' was used for generation of lysates. Twenty four h incubated Brucella abortus S19 broth cultures standardized to contain approximately 10(8) CFU/ml were found suitable for generation of lysates. Three lysate batches produced through separate cycles did not show any significant variation with respect to protein and polysaccharide contents, endotoxin level and phage counts, indicating that compositionally stable lysate preparations can be generated through an optimized production process. Three polypeptides of ∼16, 19 and 23 kDa could be identified as immuno-dominant antigens of the lysate which induced both humoral and cell-mediated immune responses in a dose dependent manner. Results of efficacy evaluation trial confirmed dose-dependent protective potencies of lysate preparation. The lysate with an antigenic dose of 0.52 μg protein and 60 μg CHO adsorbed on aluminium gel (0.1 percent aluminium concentration) exhibited the highest protective potency which was greater than that induced by standard S19 vaccine. Phage lysate methodology provides a very viable option through which an improved immunizing preparation with all desirable traits can be developed against brucellosis, and integrated with immunization programmes in a more efficient manner. PMID:26156404

  10. Structural, Functional, and Immunogenic Insights on Cu,Zn Superoxide Dismutase Pathogenic Virulence Factors from Neisseria meningitidis and Brucella abortus

    PubMed Central

    Pratt, Ashley J.; DiDonato, Michael; Shin, David S.; Cabelli, Diane E.; Bruns, Cami K.; Belzer, Carol A.; Gorringe, Andrew R.; Langford, Paul R.; Tabatabai, Louisa B.; Kroll, J. Simon; Tainer, John A.

    2015-01-01

    ABSTRACT Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen and general pathogenicity factors and are therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomic details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and of SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly, and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes, and suggest general targets for antibacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors of or vaccines against these harmful pathogens. IMPORTANCE By protecting microbes against

  11. Structural, functional and immunogenic insights on Cu,Zn superoxide dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus

    DOE PAGESBeta

    Pratt, Ashley J.; DiDonato, Michael; Shin, David S.; Cabelli, Diane E.; Bruns, Cami K.; Belzer, Carol A.; Gorringe, Andrew R.; Langford, Paul R.; Tabatabai, Louisa B.; Kroll, J. Simon; et al

    2015-10-12

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen, general pathogenicity factors and therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomicmore » details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes and suggest general targets for anti-bacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors or vaccines against these harmful pathogens. IMPORTANCE By protecting microbes against reactive oxygen

  12. Early Transcriptional Responses of Bovine Chorioallantoic Membrane Explants to Wild Type, ΔvirB2 or ΔbtpB Brucella abortus Infection

    PubMed Central

    Mol, Juliana P. S.; Costa, Erica A.; Carvalho, Alex F.; Sun, Yao-Hui; Tsolis, Reneé M.; Paixão, Tatiane A.; Santos, Renato L.

    2014-01-01

    The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; P<0.05) were functionally classified, and transcripts related to defense and inflammation were assessed by quantitative real time RT-PCR. Infection with wild type B. abortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion. PMID:25259715

  13. Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections.

    PubMed

    Zhu, Liangquan; Feng, Yu; Zhang, Ge; Jiang, Hui; Zhang, Zhen; Wang, Nan; Ding, Jiabo; Suo, Xun

    2016-01-12

    Brucellosis is a wide spread zoonotic disease that causes abortion and infertility in mammals and leads to debilitating, febrile illness in humans. Brucella abortus, Brucella melitensis and Brucella suis are the major pathogenic species to humans. Vaccination with live attenuated B. suis strain 2 (S2) vaccine is an essential and critical component in the control of brucellosis in China. The S2 vaccine is very effective in preventing brucellosis in goats, sheep, cattle and swine. However, there are still debates outside of China whether the S2 vaccine is able to provide protection against heterologous virulent Brucella species. We investigated the residual virulence, immunogenicity and protective efficacy of the S2 vaccine in BALB/c mice by determining bacteria persistence in spleen, serum antibody response, cellular immune response and protection against a heterologous virulent challenge. The S2 vaccine was of low virulence as there were no bacteria recovered in spleen four weeks post vaccination. The vaccinated mice developed Brucella-specific IgG in 2-3 weeks, and a burst production of IFN-γ at one week as well as a two-fold increase in TNF-α production. The S2 vaccine protected mice from a virulent challenge by B. melitensis M28, B. abortus 2308 and B. suis S1330, and the S2 vaccinated mice did not develop any clinical signs or tissue damage. Our study demonstrated that the S2 vaccine is of low virulence, stimulates good humoral and cellular immunity and protects animals against infection by heterologous, virulent Brucella species. PMID:26626213

  14. Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria.

    PubMed Central

    Moreno, E; Stackebrandt, E; Dorsch, M; Wolters, J; Busch, M; Mayer, H

    1990-01-01

    On the basis of ribosomal 16S sequence comparison, Brucella abortus has been found to be a member of the alpha-2 subdivision of the class Proteobacteria (formerly named purple photosynthetic bacteria and their nonphototrophic relatives). Within the alpha-2 subgroup, brucellae are specifically related to rickettsiae, agrobacteria, and rhizobiae, organisms that also have the faculty or the obligation of living in close association to eucaryotic cells. The composition of Brucella lipid A suggests a close phylogenetical relationship with members of the alpha-2 group. The chemical analysis of the lipid A fraction revealed that Brucella species contain both glucosamine and diaminoglucose, thus suggesting the presence of a so-called mixed lipid A type. The serological analysis with polyclonal and monoclonal antibodies is in agreement with the existence of mixed lipid A type in B. abortus. The amide-linked fatty acid present as acyl-oxyacyl residues were 3-O-C(16:0)12:0, 3-O-C(16:0)13:0, 3-O-C(16:0)14:0, and 3-O-C(18:0)14:0. The only amide-linked unsubstituted fatty acid detected was 3-OH-C16:0. The ester-linked fatty acids are 3-OH-C16:0, 3-OH-C18:0, C16:0, C17:0, and C18:0. Significant amounts of the large-chain 27-OH-C28:0 were detected together with traces of 25-OH-C26:0 and 29-OH-C30:0. Comparison of the Brucella lipid composition with that of the other Proteobacteria also suggests a close phylogenetical relationship with members of the alpha-2 subdivision. The genealogical grouping of Brucella species with pericellular and intracellular plant and animal pathogens as well as with intracellular plant symbionts suggests a possible evolution of Brucella species from plant-arthropod-associated bacteria. PMID:2113907

  15. Minimal requirements for growth of Brucella suis and other Brucella species.

    PubMed

    Plommet, M

    1991-10-01

    Minimal nutritional requirements and temperature limits of growth were studied in Brucella suis and, comparatively, in a few other Brucella species. In a saline basic medium including thiosulphate, ammonium sulphate and glucose with addition of 2 or 4 vitamins (nicotinic acid, thiamin and panthotenic acid, biotin), 24 out of 25 B. suis, 4/6 B. melitensis and 1/6 B. abortus strains were able to grow. Some strains, however, needed to be initially induced to grow by other ingredients, CO2, other vitamins, or amino acids, or by a prolonged incubation. In the saline basic medium without ammonium, glutamic acid and/or alanine and arginine, with or without glucose, supported the growth of all the B. suis and B. melitensis strains, except 2 which required a sulphur amino acid. Five out of 6 B. abortus strains did not grow in either medium without addition of one or several aromatic amino acids or, for one strain, aspartic acid, or valine. One strain could also be induced to grow in ammonium medium by other amino acids. In a rich medium with yeast extract, all Brucella species grew at 18 degrees C and 42.5 degrees (except one) while most B. suis (14/17) grew also at 15 degrees C and 44 degrees C, in contrast to other brucellae of which a few strains only grew at these temperatures. In saline ammonium glucose medium, yeast extract at 0.1 g/l provided all the required vitamins and amino acids for all brucellae and at 1 g/l, it even provided enough nitrogen to support growth without ammonium. Such basic saline medium with yeast extract may be advantageously used in routine Brucella culture, instead of the classic undefined peptone mediums. B. suis biovar 1 strains did not differ significantly in their minimal nutritional requirements, precluding the use of these requirements to differentiate the strains, in particular the Chinese vaccine strain S2 from the reference strain 1330 or from other strains from different parts of the world. Finally, B. suis which is endowed with a

  16. DETECTION OF Leptospira spp. AND Brucella abortus ANTIBODIES IN FREE-LIVING JAGUARS (Panthera onca) IN TWO PROTECTED AREAS OF NORTHERN PANTANAL, BRAZIL

    PubMed Central

    ONUMA, Selma Samiko Miyazaki; KANTEK, Daniel Luis Zanella; CRAWSHAW, Peter Gransden; MORATO, Ronaldo Gonçalves; MAY-JÚNIOR, Joares Adenilson; de MORAIS, Zenaide Maria; FERREIRA, José Soares; de AGUIAR, Daniel Moura

    2015-01-01

     This study aimed to assess the exposure of free-living jaguars (Panthera onca) to Leptospira spp. and Brucella abortus in two conservation units in the Pantanal of Mato Grosso, Brazil. The presence of antibodies in blood samples of eleven jaguars was investigated using autochthonous antigens isolated in Brazil added to reference antigen collection applied to diagnosis of leptospirosis by Microscopic Agglutination Test (MAT). The Rose Bengal test was applied for B. abortus antibodies. Two (18.2%) jaguars were seroreactive for the Leptospira spp. antigen and the serovar considered as most infective in both animals was a Brazilian isolate of serovar Canicola (L01). All jaguars were seronegative for B. abortus. These data indicate that the inclusion of autochthonous antigens in serological studies can significantly increase the number of reactive animals, as well as modify the epidemiological profile of Leptospira spp. infection. PMID:25923900

  17. Tumor necrosis factor alpha and interleukin-12 contribute to resistance to the intracellular bacterium Brucella abortus by different mechanisms.

    PubMed Central

    Zhan, Y; Liu, Z; Cheers, C

    1996-01-01

    Both interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-alpha) are produced early in intracellular bacterial infection. Depletion of either IL-12 or TNF-alpha by a single injection of specific antibody 4 h before the injection of Brucella abortus 19 led to the exacerbation of infection 2 weeks later. Whereas the effect of IL-12 depletion on resistance was persistent and exacerbation was still significant 6 weeks later, the bacterial numbers in mice depleted of TNF-alpha were similar to the bacterial numbers in control infected mice by 6 weeks postinfection. Massive splenomegaly, which is often seen in 2-week Brucella-infected mice, was not observed in IL-12- or TNF-alpha-depleted mice. Both IL-12- and TNF-alpha-depleted mice showed reduced cell accumulation in the spleen compared with the massive cell accumulation in control infected mice. Granuloma formation in livers was much reduced in IL-12-depleted mice but not in TNF-alpha-depleted mice. Gamma interferon (IFN-gamma) production by cells from TNF-alpha-depleted mice was not significantly different from that of cells from control infected mice. In contrast, the production of IFN-gamma by both CD4+ and CD8+ T cells from IL-12-depleted mice was greatly reduced, compared with that from control infected mice. This effect was still observed when the antibody injection was delayed for up to 7 days postinfection, but injections of anti-IL-12 antibody into mice with established Brucella infection had no significant effect on IFN-gamma production by T cells. Taken together, these results suggested that IL-12 contributed to resistance mainly via an IFN-gamma-dependent pathway and had a profound effect on the induction of acquired cellular resistance. In contrast, TNF-alpha was involved in resistance possibly via direct action on effector cells and may not be essential for the induction of acquired cellular resistance. PMID:8698508

  18. Evaluation and Selection of Multilocus Variable-Number Tandem-Repeat Analysis Primers for Genotyping Brucella abortus Biovar 1 Isolated from Human Patients

    PubMed Central

    Lee, Subok; Hwang, Kyu-Jam; Park, Mi-Yeoun; Hwang, Seon-Do; Chai, Hee-Youl; Chu, Hyuk; Park, Sang-Hee

    2013-01-01

    Objectives Brucellosis is the most common bacterial zoonosis in the world. Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) is a molecular method for genotyping bacterial species. Brucella abortus biovar I was isolated from most of the brucellosis-suspected patients in Korea. This study was conducted to investigate the ability of various MLVA primers that are used for molecular typing B. abortus isolates and for analyzing their epidemiological data. Methods A total of 80 human isolates of B. abortus biovar I isolated from human patients and the reference strain were used for MLVA. Genetic diversity was determined by calculating the Simpson's diversity index (DI) of each VNTR locus. The Brucella strains were subcultured 30 times to determine the stability of each locus. The DNA of the strains cultivated in each passage was extracted and subjected to MLVA for further investigation. Results The 15 VNTR loci were selected based on high DI values. The DIs of the 15 VNTR loci showed considerable discrimination power ranging from 59% for Bruce 43 to 87% for Bruce 22. Bruce 09, Bruce 11, Bruce 16, Bruce 42, and Bruce 43 were confirmed to remain stable in vitro among the 15 VNTR loci selected. Conclusion The results of this study suggest that the five loci subsets may be a useful epidemiological tool for investigating B. abortus biovar 1 outbreak. PMID:24298442

  19. Immunization with Recombinant Brucella Species Outer Membrane Protein Omp16 or Omp19 in Adjuvant Induces Specific CD4+ and CD8+ T Cells as Well as Systemic and Oral Protection against Brucella abortus Infection▿

    PubMed Central

    Pasquevich, Karina A.; Estein, Silvia M.; Samartino, Clara García; Zwerdling, Astrid; Coria, Lorena M.; Barrionuevo, Paula; Fossati, Carlos A.; Giambartolomei, Guillermo H.; Cassataro, Juliana

    2009-01-01

    Available vaccines against Brucella spp. are live attenuated Brucella strains. In order to engineer a better vaccine to be used in animals and humans, our laboratory aims to develop an innocuous subunit vaccine. Particularly, we are interested in the outer membrane proteins (OMPs) of B. abortus: Omp16 and Omp19. In this study, we assessed the use of these proteins as vaccines against Brucella in BALB/c mice. Immunization with lipidated Omp16 (L-Omp16) or L-Omp19 in incomplete Freund's adjuvant (IFA) conferred significant protection against B. abortus infection. Vaccination with unlipidated Omp16 (U-Omp16) or U-Omp19 in IFA induced a higher degree of protection than the respective lipidated versions. Moreover, the level of protection induced after U-Omp16 or U-Omp19 immunization in IFA was similar to that elicited by live B. abortus S19 immunization. Flow cytometric analysis showed that immunization with U-Omp16 or U-Omp19 induced antigen-specific CD4+ as well as CD8+ T cells producing gamma interferon. In vivo depletion of CD4+ or CD8+ T cells in mice immunized with U-Omp16 or U-Omp19 plus IFA resulted in a loss of the elicited protection, indicating that both cell types are mediating immune protection. U-Omp16 or U-Omp19 vaccination induced a T helper 1 response, systemic protection in aluminum hydroxide formulation, and oral protection with cholera toxin adjuvant against B. abortus infection. Both immunization routes exhibited a similar degree of protection to attenuated Brucella vaccines (S19 and RB51, respectively). Overall these results indicate that U-Omp16 or U-Omp19 would be a useful candidate for a subunit vaccine against human and animal brucellosis. PMID:18981242

  20. Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection.

    PubMed

    Pasquevich, Karina A; Estein, Silvia M; García Samartino, Clara; Samartino, Clara García; Zwerdling, Astrid; Coria, Lorena M; Barrionuevo, Paula; Fossati, Carlos A; Giambartolomei, Guillermo H; Cassataro, Juliana

    2009-01-01

    Available vaccines against Brucella spp. are live attenuated Brucella strains. In order to engineer a better vaccine to be used in animals and humans, our laboratory aims to develop an innocuous subunit vaccine. Particularly, we are interested in the outer membrane proteins (OMPs) of B. abortus: Omp16 and Omp19. In this study, we assessed the use of these proteins as vaccines against Brucella in BALB/c mice. Immunization with lipidated Omp16 (L-Omp16) or L-Omp19 in incomplete Freund's adjuvant (IFA) conferred significant protection against B. abortus infection. Vaccination with unlipidated Omp16 (U-Omp16) or U-Omp19 in IFA induced a higher degree of protection than the respective lipidated versions. Moreover, the level of protection induced after U-Omp16 or U-Omp19 immunization in IFA was similar to that elicited by live B. abortus S19 immunization. Flow cytometric analysis showed that immunization with U-Omp16 or U-Omp19 induced antigen-specific CD4(+) as well as CD8(+) T cells producing gamma interferon. In vivo depletion of CD4(+) or CD8(+) T cells in mice immunized with U-Omp16 or U-Omp19 plus IFA resulted in a loss of the elicited protection, indicating that both cell types are mediating immune protection. U-Omp16 or U-Omp19 vaccination induced a T helper 1 response, systemic protection in aluminum hydroxide formulation, and oral protection with cholera toxin adjuvant against B. abortus infection. Both immunization routes exhibited a similar degree of protection to attenuated Brucella vaccines (S19 and RB51, respectively). Overall these results indicate that U-Omp16 or U-Omp19 would be a useful candidate for a subunit vaccine against human and animal brucellosis. PMID:18981242

  1. The genome sequence of Brucella pinnipedialis B2/94 sheds light on the evolutionary history of the genus Brucella

    PubMed Central

    2011-01-01

    Background Since the discovery of the Malta fever agent, Brucella melitensis, in the 19th century, six terrestrial mammal-associated Brucella species were recognized over the next century. More recently the number of novel Brucella species has increased and among them, isolation of species B. pinnipedialis and B. ceti from marine mammals raised many questions about their origin as well as on the evolutionary history of the whole genus. Results We report here on the first complete genome sequence of a Brucella strain isolated from marine mammals, Brucella pinnipedialis strain B2/94. A whole gene-based phylogenetic analysis shows that five main groups of host-associated Brucella species rapidly diverged from a likely free-living ancestor close to the recently isolated B. microti. However, this tree lacks the resolution required to resolve the order of divergence of those groups. Comparative analyses focusing on a) genome segments unshared between B. microti and B. pinnipedialis, b) gene deletion/fusion events and c) positions and numbers of Brucella specific IS711 elements in the available Brucella genomes provided enough information to propose a branching order for those five groups. Conclusions In this study, it appears that the closest relatives of marine mammal Brucella sp. are B. ovis and Brucella sp. NVSL 07-0026 isolated from a baboon, followed by B. melitensis and B. abortus strains, and finally the group consisting of B. suis strains, including B. canis and the group consisting of the single B. neotomae species. We were not able, however, to resolve the order of divergence of the two latter groups. PMID:21745361

  2. Evaluation of the Effects of Erythritol on Gene Expression in Brucella abortus

    PubMed Central

    Rodríguez, María Cruz; Viadas, Cristina; Seoane, Asunción; Sangari, Félix Javier; López-Goñi, Ignacio; García-Lobo, Juan María

    2012-01-01

    Bacteria of the genus Brucella have the unusual capability to catabolize erythritol and this property has been associated with their virulence mainly because of the presence of erythritol in bovine foetal tissues and because the attenuated S19 vaccine strain is the only Brucella strain unable to oxydize erythritol. In this work we have analyzed the transcriptional changes produced in Brucella by erythritol by means of two high throughput approaches: RNA hybridization against a microarray containing most of Brucella ORF's constructed from the Brucella ORFeome and next generation sequencing of Brucella mRNA in an Illumina GAIIx platform. The results obtained showed the overexpression of a group of genes, many of them in a single cluster around the ery operon, able to co-ordinately mediate the transport and degradation of erythritol into three carbon atoms intermediates that will be then converted into fructose-6P (F6P) by gluconeogenesis. Other induced genes participating in the nonoxidative branch of the pentose phosphate shunt and the TCA may collaborate with the ery genes to conform an efficient degradation of sugars by this route. On the other hand, several routes of amino acid and nucleotide biosynthesis are up-regulated whilst amino acid transport and catabolism genes are down-regulated. These results corroborate previous descriptions indicating that in the presence of erythritol, this sugar was used preferentially over other compounds and provides a neat explanation of the the reported stimulation of growth induced by erythritol. PMID:23272076

  3. Evaluation of the effects of erythritol on gene expression in Brucella abortus.

    PubMed

    Rodríguez, María Cruz; Viadas, Cristina; Seoane, Asunción; Sangari, Félix Javier; López-Goñi, Ignacio; García-Lobo, Juan María

    2012-01-01

    Bacteria of the genus Brucella have the unusual capability to catabolize erythritol and this property has been associated with their virulence mainly because of the presence of erythritol in bovine foetal tissues and because the attenuated S19 vaccine strain is the only Brucella strain unable to oxydize erythritol. In this work we have analyzed the transcriptional changes produced in Brucella by erythritol by means of two high throughput approaches: RNA hybridization against a microarray containing most of Brucella ORF's constructed from the Brucella ORFeome and next generation sequencing of Brucella mRNA in an Illumina GAIIx platform. The results obtained showed the overexpression of a group of genes, many of them in a single cluster around the ery operon, able to co-ordinately mediate the transport and degradation of erythritol into three carbon atoms intermediates that will be then converted into fructose-6P (F6P) by gluconeogenesis. Other induced genes participating in the nonoxidative branch of the pentose phosphate shunt and the TCA may collaborate with the ery genes to conform an efficient degradation of sugars by this route. On the other hand, several routes of amino acid and nucleotide biosynthesis are up-regulated whilst amino acid transport and catabolism genes are down-regulated. These results corroborate previous descriptions indicating that in the presence of erythritol, this sugar was used preferentially over other compounds and provides a neat explanation of the the reported stimulation of growth induced by erythritol. PMID:23272076

  4. Assessment of Genetic Diversity of Zoonotic Brucella spp. Recovered from Livestock in Egypt Using Multiple Locus VNTR Analysis

    PubMed Central

    Menshawy, Ahmed M. S.; Perez-Sancho, Marta; Garcia-Seco, Teresa; Hosein, Hosein I.; García, Nerea; Martinez, Irene; Sayour, Ashraf E.; Goyache, Joaquín; Azzam, Ragab A. A.; Dominguez, Lucas

    2014-01-01

    Brucellosis is endemic in most parts of Egypt, where it is caused mainly by Brucella melitensis biovar 3, and affects cattle and small ruminants in spite of ongoing efforts devoted to its control. Knowledge of the predominant Brucella species/strains circulating in a region is a prerequisite of a brucellosis control strategy. For this reason a study aiming at the evaluation of the phenotypic and genetic heterogeneity of a panel of 17 Brucella spp. isolates recovered from domestic ruminants (cattle, buffalo, sheep, and goat) from four governorates during a period of five years (2002–2007) was carried out using microbiological tests and molecular biology techniques (PCR, MLVA-15, and sequencing). Thirteen strains were identified as B. melitensis biovar 3 while all phenotypic and genetic techniques classified the remaining isolates as B. abortus (n = 2) and B. suis biovar 1 (n = 2). MLVA-15 yielded a high discriminatory power (h = 0.801), indicating a high genetic diversity among the B. melitensis strains circulating among domestic ruminants in Egypt. This is the first report of the isolation of B. suis from cattle in Egypt which, coupled with the finding of B. abortus, suggests a potential role of livestock as reservoirs of several zoonotic Brucella species in the region. PMID:24511531

  5. Whole genome sequences of four Brucella strains.

    PubMed

    Ding, Jiabo; Pan, Yuanlong; Jiang, Hai; Cheng, Junsheng; Liu, Taotao; Qin, Nan; Yang, Yi; Cui, Buyun; Chen, Chen; Liu, Cuihua; Mao, Kairong; Zhu, Baoli

    2011-07-01

    Brucella melitensis and Brucella suis are intracellular pathogens of livestock and humans. Here we report four genome sequences, those of the virulent strain B. melitensis M28-12 and vaccine strains B. melitensis M5 and M111 and B. suis S2, which show different virulences and pathogenicities, which will help to design a more effective brucellosis vaccine. PMID:21602346

  6. Immune responses of bison and efficacy after booster vaccination with Brucella abortus strain RB51

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-one bison heifers were randomly assigned to saline (control; n=7) or single vaccination (n=24) with 1010 CFU of B. abortus strain RB51 (RB51). Some vaccinated bison were randomly selected for booster vaccination with 10**10 CFU of RB51 at 11 months after initial vaccination (n=16). When comp...

  7. Immunoradiometric assay for examination and quantitation of Brucella abortus-specific antibodies reactive with the antigen(s) used in the indirect hemolysis test.

    PubMed Central

    Tedder, T F; Hoffmann, E M

    1981-01-01

    An immunoradiometric assay was designed to quantitate antibodies which bind to Brucella abortus antigens adsorbed to bovine erythrocytes. This allowed examination of antibodies specific for B. abortus antigens detectable in the indirect hemolysis test for bovine brucellosis. Assay parameters were optimized for measuring antigen-specific immunoglobulin G1 (IgG1), IgG2, and IgM antibodies. The immunoradiometric assay allowed examination of binding interactions which occur during the indirect hemolysis test. Affinity-purified antibovine IgG1, IgG2, and IgM were used to detect specific bovine antibodies of these classes (and subclasses). The binding of the anti-immunoglobulins was linear as a function of immunoglobulin concentration. However, the binding of bovine antibodies of the different classes and subclasses to B. abortus antigen was nonlinear. Since B. abortus-specific antibodies of all classes and subclasses were present in the "standard serum" during the immunoradiometric assays, it is possible that the non-linearity was due to competition between antibodies for antigenic sites. IgG2 and IgM antibodies specific for B. abortus antigen(s) appeared to be capable of binding independently to antigen(s). However, the binding efficiencies of IgG1 antibodies changed as the ratio of antigenic sites to antibodies was increased. PMID:6793625

  8. Molecular strain typing of Brucella abortus isolates from Italy by two VNTR allele sizing technologies.

    PubMed

    De Santis, Riccardo; Ancora, Massimo; De Massis, Fabrizio; Ciammaruconi, Andrea; Zilli, Katiuscia; Di Giannatale, Elisabetta; Pittiglio, Valentina; Fillo, Silvia; Lista, Florigio

    2013-10-01

    Brucellosis, one of the most important re-emerging zoonoses in many countries, is caused by bacteria belonging to the genus Brucella. Furthermore these bacteria represent potential biological warfare agents and the identification of species and biovars of field strains may be crucial for tracing back source of infection, allowing to discriminate naturally occurring outbreaks instead of bioterrorist events. In the last years, multiple-locus variable-number tandem repeat analysis (MLVA) has been proposed as complement of the classical biotyping methods and it has been applied for genotyping large collections of Brucella spp. At present, the MLVA band profiles may be resolved by automated or manual procedures. The Lab on a chip technology represents a valid alternative to standard genotyping techniques (as agarose gel electrophoresis) and it has been previously used for Brucella genotyping. Recently, a new high-throughput genotyping analysis system based on capillary gel electrophoresis, the QIAxcel, has been described. The aim of the study was to evaluate the ability of two DNA sizing equipments, the QIAxcel System and the Lab chip GX, to correctly call alleles at the sixteen loci including one frequently used MLVA assay for Brucella genotyping. The results confirmed that these technologies represent a meaningful advancement in high-throughput Brucella genotyping. Considering the accuracy required to confidently resolve loci discrimination, QIAxcel shows a better ability to measure VNTR allele sizes compared to LabChip GX. PMID:23585050

  9. Increases of efficacy as vaccine against Brucella abortus infection in mice by simultaneous inoculation with avirulent smooth bvrS/bvrR and rough wbkA mutants.

    PubMed

    Grilló, María Jesús; Manterola, Lorea; de Miguel, María Jesús; Muñoz, Pilar María; Blasco, José María; Moriyón, Ignacio; López-Goñi, Ignacio

    2006-04-01

    The Brucella abortus S19 and RB51 strains are the most widely used live vaccines against bovine brucellosis. However, both can induce abortion and milk excretion, S19 vaccination interferes in serological tests, and RB51 is less effective. We have shown previously that a rough wbkAB. abortus mutant is attenuated and a better vaccine than RB51 in BALB/c mice, and that mutants in the two-component regulatory system bvrS/bvrR are markedly attenuated while keeping a smooth lipopolysaccharide (S-LPS). In this work, we tested whether simultaneous inoculation with live bvrS increases wbkA vaccine efficacy in mice. Even at high doses, the bvrS mutant was cleared much faster from spleens than the wbkA mutant. The splenic persistence of the wbkA mutant increased when inoculated along with the bvrS mutant, but also with inactivated bvrS cells or with purified B. abortus S-LPS, strongly suggesting that S-LPS in the bvrS mutant played a determinant role in the wbkA persistence. When inoculated alone, both mutants protected against virulent B. abortus but less than when inoculated simultaneously, and the protection afforded by the combination was better than that obtained with B. abortus S19. Increased protection was also obtained after simultaneous inoculation of the wbkA mutant and inactivated bvrS cells or purified S-LPS, showing again the role played by the S-LPS in the bvrS cells. In mice, the bvrS-wbkA combination induced an antibody response reduced with respect to B. abortus S19 vaccination. Thus, the simultaneous use of live bvrS and wbkA B. abortus mutants seems a promising approach to overcome the problems of the S19 andRB51 vaccines. PMID:16439039

  10. Crystallographic and kinetic study of riboflavin synthase from Brucella abortus, a chemotherapeutic target with an enhanced intrinsic flexibility

    SciTech Connect

    Serer, María I.; Bonomi, Hernán R.; Guimarães, Beatriz G.; Rossi, Rolando C.; Goldbaum, Fernando A.; Klinke, Sebastián

    2014-05-01

    This work reports crystal structures of trimeric riboflavin synthase from the pathogen B. abortus both as the apo protein and in complex with several ligands of interest. It is shown that ligand binding drives the assembly of the unique active site of the trimer, and these findings are complemented by a detailed kinetic study on this enzyme, in which marked inhibition by substrate and product was observed. Riboflavin synthase (RS) catalyzes the last step of riboflavin biosynthesis in microorganisms and plants, which corresponds to the dismutation of two molecules of 6,7-dimethyl-8-ribityllumazine to yield one molecule of riboflavin and one molecule of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Owing to the absence of this enzyme in animals and the fact that most pathogenic bacteria show a strict dependence on riboflavin biosynthesis, RS has been proposed as a potential target for antimicrobial drug development. Eubacterial, fungal and plant RSs assemble as homotrimers lacking C{sub 3} symmetry. Each monomer can bind two substrate molecules, yet there is only one active site for the whole enzyme, which is located at the interface between two neighbouring chains. This work reports the crystallographic structure of RS from the pathogenic bacterium Brucella abortus (the aetiological agent of the disease brucellosis) in its apo form, in complex with riboflavin and in complex with two different product analogues, being the first time that the structure of an intact RS trimer with bound ligands has been solved. These crystal models support the hypothesis of enhanced flexibility in the particle and also highlight the role of the ligands in assembling the unique active site. Kinetic and binding studies were also performed to complement these findings. The structural and biochemical information generated may be useful for the rational design of novel RS inhibitors with antimicrobial activity.

  11. Evaluation of Brucella abortus S19 vaccines commercialized in Brazil: immunogenicity, residual virulence and MLVA15 genotyping.

    PubMed

    Miranda, Karina Leite; Poester, Fernando Padilla; Minharro, Silvia; Dorneles, Elaine Maria Seles; Stynen, Ana Paula Reinato; Lage, Andrey Pereira

    2013-06-24

    Live attenuated Brucella abortus S19 is the most effective vaccine against brucellosis in cattle. The assessment of the immunological parameters is essential to guarantee the biological quality of live anti-bacteria vaccines. The evaluation of genetic stability of live bacterial vaccines is also important in quality control. The aims of the present study were to compare (i) the immunogenicity and residual virulence, and (ii) the genotypic profile (MLVA15) of the eight S19 vaccines commercialized in Brazil to the USDA S19 reference strain. Two batches of each of the eight S19 commercial vaccines used in Brazil (A-H) were tested. They were submitted to the potency and residual virulence in vivo tests recommended by OIE and typed by the multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) described for Brucella spp. Our results demonstrated that all S19 vaccines commercialized in Brazil would be approved by Brazilian and OIE recommendations for potency and residual virulence. Furthermore, the S19 vaccine is genetically very homogeneous, as all but two batches (from the same manufacturer) tested showed identical MLVA15 profile. The two batches with different profiles presented six repeat units in locus Bruce07, instead of the five found in all other strains, including the USDA S19 reference strain. Although presenting a slightly different profile, this vaccine was also protective, as demonstrated by the immunogenicity and residual virulence assays performed. Therefore, the commercial Brazilian S19 vaccines were in accordance to Brazilian and international standards for immunogenicity and residual virulence tests. Moreover, our results also show that MLVA could be a useful inclusion to the list of in vitro tests required by the official control authorities to be applied to the commercial S19 vaccines, as an efficient assay to guarantee the quality and stability of the vaccine strains. PMID:23664986

  12. RESULTS OF VACCINE TRIALS USING BRUCELLA ABORTUS RB51 IN DOMESTIC SWINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the near complete eradication of swine brucellosis from domestic pigs in the US, there is a reemergence of interest in new strategies, including candidate vaccines, to control swine brucellosis particularly in light of the wide distribution of Brucella-infected feral swine across the US. One s...

  13. Kinetic study of cytokines production by human peripheral blood mononuclear cells in response to Brucella DNA.

    PubMed

    Lashkarbolouki, Taghi; Ardestani, Sussan K; Kariminia, Amina; Ziaee, Abed-Ali; Torkabadi, Ebrahim; Ebrahimi, Mohammad

    2008-01-01

    In spite of reports on cytokines induction by the Brucella DNA in murine model, there is no comparison between pathogenic and appropriate vaccine strains in human. We investigated the cytokines profile of human peripheral blood mononuclear cells (PBMCs) induced by DNA extracted from pathogenic isolates of Brucella melitensis and B. abortus as well as Rev1 and S19; the appropriate vaccine strains. It was observed that despite differential induction of Interleukin(IL)-12 and IL-10 production, identical IL-12/IL-10 concentration ratio was obtained by all Brucella strains DNAs that was 2 after 24 h and 4 after 5 days of incubation. In addition, IL-2 and Interferon(IFN)-gamma production were profoundly increased compared to the medium at day 3 and 5 respectively but IFN-alpha was not induced. Therefore, Brucella strains DNAs are Th1 inducing component with similar pattern in human PBMCs. PMID:17008080

  14. Expression of MPB83 from Mycobacterium bovis in Brucella abortus S19 induces specific cellular immune response against the recombinant antigen in BALB/c mice.

    PubMed

    Sabio y García, Julia V; Bigi, Fabiana; Rossetti, Osvaldo; Campos, Eleonora

    2010-12-01

    Immunodominant MPB83 antigen from Mycobacterium bovis was expressed as a chimeric protein fused to either β-galactosidase, outer membrane lipoprotein OMP19 or periplasmic protein BP26 in gram-negative Brucella abortus S19, in all cases driven by each gene's own promoter. All fusion proteins were successfully expressed and localized in the expected subcellular fraction. Moreover, OMP19-MPB83 was processed as a lipoprotein when expressed in B. abortus. Splenocytes from BALB/c mice immunized with the recombinant S19 strains carrying the genes coding for the heterologous antigens in replicative plasmids, showed equally specific INF-γ production in response to MPB83 stimulation. Association to the lipid moiety of OMP19 presented no advantage in terms of immunogenicity for MPB83. In contrast, fusion to BP26, which was encoded by an integrative plasmid, resulted in a weaker immune response. None of the constructions affected the survival rate or the infection pattern of Brucella. We concluded that B. abortus S19 is an appropriate candidate for the expression of M. bovis antigens both associated to the membrane or cytosolic fraction and may provide the basis for a future combined vaccine for bovine brucellosis and tuberculosis. PMID:20888425

  15. Immune responses of elk to initial and booster vaccinations with Brucella abortus strain RB51 or 19.

    PubMed

    Olsen, S C; Fach, S J; Palmer, M V; Sacco, R E; Stoffregen, W C; Waters, W R

    2006-10-01

    Previous studies have suggested that currently available brucellosis vaccines induce poor or no protection in elk (Cervus elaphus nelsoni). In this study, we characterized the immunologic responses of elk after initial or booster vaccination with Brucella abortus strains RB51 (SRB51) and 19 (S19). Elk were vaccinated with saline or 10(10) CFU of SRB51 or S19 (n=seven animals/treatment) and booster vaccinated with a similar dosage of the autologous vaccine at 65 weeks. Compared to nonvaccinates, elk vaccinated with SRB51 or S19 had greater (P<0.05) antibody responses to SRB51 or S19 after initial vaccination and after booster vaccination. Compared to nonvaccinated elk, greater (P<0.05) proliferative responses to autologous antigen after initial vaccination occurred at only a few sample times in SRB51 (6, 14, and 22 weeks) and S19 (22 weeks) treatment groups. In general, proliferative responses of vaccinates to nonautologous antigens did not differ (P>0.05) from the responses of nonvaccinated elk. Gamma interferon production in response to autologous or nonautologous Brucella antigens did not differ (P>0.05) between controls and vaccinates after booster vaccination. Flow cytometric techniques suggested that proliferation occurred more frequently in immunoglobulin M-positive cells, with differences between vaccination and control treatments in CD4+ and CD8+ subset proliferation detected only at 22 weeks after initial vaccination. After booster vaccination, one technique ([3H]thymidine incorporation) suggested that proliferative responses to SRB51 antigen, but not S19 antigen, were greater (P<0.05) in vaccinates compared to the responses of nonvaccinates. However, in general, flow cytometric and other techniques failed to detect significant anamnestic responses to autologous or nonautologous Brucella antigens in S19 or SRB51 vaccinates after booster vaccination. Although some cellular immune responses were detected after initial or booster vaccination of elk with SRB51

  16. Crucial Role of Gamma Interferon-Producing CD4+ Th1 Cells but Dispensable Function of CD8+ T Cell, B Cell, Th2, and Th17 Responses in the Control of Brucella melitensis Infection in Mice

    PubMed Central

    Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves

    2012-01-01

    Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4+ T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8+ T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis. PMID:23006848

  17. Deletion of the GI-2 integrase and the wbkA flanking transposase improves the stability of Brucella melitensis Rev 1 vaccine

    PubMed Central

    2013-01-01

    Brucella melitensis Rev 1 is the best vaccine available for the prophylaxis of small ruminant brucellosis and, indirectly, for reducing human brucellosis. However, Rev 1 shows anomalously high rates of spontaneous dissociation from smooth (S) to rough (R) bacteria, the latter being inefficacious as vaccines. This S-R instability results from the loss of the O-polysaccharide. To overcome this problem, we investigated whether some recently described mechanisms promoting mutations in O-polysaccharide genes were involved in Rev 1 S-R dissociation. We found that a proportion of Rev 1 R mutants result from genome rearrangements affecting the wbo O-polysaccharide loci of genomic island GI-2 and the wbkA O-polysaccharide glycosyltransferase gene of the wbk region. Accordingly, we mutated the GI-2 int gene and the wbk IS transposase involved in those arrangements, and found that these Rev 1 mutants maintained the S phenotype and showed lower dissociation levels. Combining these two mutations resulted in a strain (Rev 2) displaying a 95% decrease in dissociation with respect to parental Rev 1 under conditions promoting dissociation. Rev 2 did not differ from Rev 1 in the characteristics used in Rev 1 typing (growth rate, colonial size, reactivity with O-polysaccharide antibodies, phage, dye and antibiotic susceptibility). Moreover, Rev 2 and Rev 1 showed similar attenuation and afforded similar protection in the mouse model of brucellosis vaccines. We conclude that mutations targeting genes and DNA sequences involved in spontaneous O-polysaccharide loss enhance the stability of a critical vaccine phenotype and complement the empirical stabilization precautions taken during S Brucella vaccine production. PMID:24176078

  18. Latent class regression models for simultaneously estimating test accuracy, true prevalence and risk factors for Brucella abortus.

    PubMed

    Campe, A; Abernethy, D; Menzies, F; Greiner, M

    2016-07-01

    In 2003/2004 a field trial was conducted in Northern Ireland to assess the diagnostic accuracy of six serological tests for bovine brucellosis caused by Brucella abortus. Whereas between-test comparisons have been used to calculate test performances so far, the present study used a latent class approach to estimate diagnostic test accuracy parameters in the absence of a gold standard for these six tests simultaneously and to estimate the true prevalence, while accounting for clustering in the study population and risk factors for true prevalence. Results obtained in this study with regard to prevalence, sensitivity and specificity were largely in accordance with previous findings. Screening tests (SAT and EDTA) appeared to be the most sensitive; however, at low prevalences the EDTA and CFT showed the highest positive predictive values of all investigated tests. The specificities and negative predictive values of all diagnostic tests were found to be very high. Differences of prevalence between three groups of the study population with different risk of exposure could be attributed to the mode of sampling indicating that a more risk-based sampling will result in a higher prevalence than a cross-sectional sampling mode. Age, dairy status and history of abortion were shown to influence the prediction of the latent true infection status. PMID:27245291

  19. Crystallographic and kinetic study of riboflavin synthase from Brucella abortus, a chemotherapeutic target with an enhanced intrinsic flexibility

    PubMed Central

    Serer, María I.; Bonomi, Hernán R.; Guimarães, Beatriz G.; Rossi, Rolando C.; Goldbaum, Fernando A.; Klinke, Sebastián

    2014-01-01

    Riboflavin synthase (RS) catalyzes the last step of riboflavin biosynthesis in microorganisms and plants, which corresponds to the dismutation of two molecules of 6,7-dimethyl-8-ribityllumazine to yield one molecule of riboflavin and one molecule of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Owing to the absence of this enzyme in animals and the fact that most pathogenic bacteria show a strict dependence on riboflavin biosynthesis, RS has been proposed as a potential target for antimicrobial drug development. Eubacterial, fungal and plant RSs assemble as homotrimers lacking C 3 symmetry. Each monomer can bind two substrate molecules, yet there is only one active site for the whole enzyme, which is located at the interface between two neighbouring chains. This work reports the crystallographic structure of RS from the pathogenic bacterium Brucella abortus (the aetiological agent of the disease brucellosis) in its apo form, in complex with riboflavin and in complex with two different product analogues, being the first time that the structure of an intact RS trimer with bound ligands has been solved. These crystal models support the hypothesis of enhanced flexibility in the particle and also highlight the role of the ligands in assembling the unique active site. Kinetic and binding studies were also performed to complement these findings. The structural and biochemical information generated may be useful for the rational design of novel RS inhibitors with antimicrobial activity. PMID:24816110

  20. The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus.

    PubMed

    Gil-Ramírez, Yolanda; Conde-Álvarez, Raquel; Palacios-Chaves, Leyre; Zúñiga-Ripa, Amaia; Grilló, María-Jesús; Arce-Gorvel, Vilma; Hanniffy, Sean; Moriyón, Ignacio; Iriarte, Maite

    2014-08-01

    Brucellosis is a worldwide extended zoonosis caused by Brucella spp. These gram-negative bacteria are not readily detected by innate immunity, a virulence-related property largely linked to their surface lipopolysaccharide (LPS). The role of the LPS lipid A and O-polysaccharide in virulence is well known. Moreover, mutation of the glycosyltransferase gene wadC of Brucella abortus, although not affecting O-polysaccharide assembly onto the lipid-A core section causes a core oligosaccharide defect that increases recognition by innate immunity. Here, we report on a second gene (wadB) encoding a LPS core glycosyltransferase not involved in the assembly of the O-polysaccharide-linked core section. As compared to wild-type B. abortus, a wadB mutant was sensitive to bactericidal peptides and non-immune serum, and was attenuated in mice and dendritic cells. These observations show that as WadC, WadB is also involved in the assembly of a branch of Brucella LPS core and support the concept that this LPS section is a virulence-related structure. PMID:24927935

  1. Glial Cell-Elicited Activation of Brain Microvasculature in Response to Brucella abortus Infection Requires ASC Inflammasome-Dependent IL-1β Production.

    PubMed

    Miraglia, M Cruz; Costa Franco, Miriam M; Rodriguez, Ana M; Bellozi, Paula M Q; Ferrari, Carina C; Farias, Maria I; Dennis, Vida A; Barrionuevo, Paula; de Oliveira, Antonio C P; Pitossi, Fernando; Kim, Kwang Sik; Delpino, M Victoria; Oliveira, Sergio Costa; Giambartolomei, Guillermo H

    2016-05-01

    Blood-brain barrier activation and/or dysfunction are a common feature of human neurobrucellosis, but the underlying pathogenic mechanisms are largely unknown. In this article, we describe an immune mechanism for inflammatory activation of human brain microvascular endothelial cells (HBMEC) in response to infection with Brucella abortus Infection of HBMEC with B. abortus induced the secretion of IL-6, IL-8, and MCP-1, and the upregulation of CD54 (ICAM-1), consistent with a state of activation. Culture supernatants (CS) from glial cells (astrocytes and microglia) infected with B. abortus also induced activation of HBMEC, but to a greater extent. Although B. abortus-infected glial cells secreted IL-1β and TNF-α, activation of HBMEC was dependent on IL-1β because CS from B. abortus-infected astrocytes and microglia deficient in caspase-1 and apoptosis-associated speck-like protein containing a CARD failed to induce HBMEC activation. Consistently, treatment of CS with neutralizing anti-IL-1β inhibited HBMEC activation. Both absent in melanoma 2 and Nod-like receptor containing a pyrin domain 3 are partially required for caspase-1 activation and IL-1β secretion, suggesting that multiple apoptosis-associated speck-like protein containing CARD-dependent inflammasomes contribute to IL-1β-induced activation of the brain microvasculature. Inflammasome-mediated IL-1β secretion in glial cells depends on TLR2 and MyD88 adapter-like/TIRAP. Finally, neutrophil and monocyte migration across HBMEC monolayers was increased by CS from Brucella-infected glial cells in an IL-1β-dependent fashion, and the infiltration of neutrophils into the brain parenchyma upon intracranial injection of B. abortus was diminished in the absence of Nod-like receptor containing a pyrin domain 3 and absent in melanoma 2. Our results indicate that innate immunity of the CNS set in motion by B. abortus contributes to the activation of the blood-brain barrier in neurobrucellosis and IL-1β mediates

  2. Comparison of Buffered, Acidified Plate Antigen to Standard Serologic Tests for the Detection of Serum Antibodies to Brucella abortus in Elk (Cervus canadensis).

    PubMed

    Clarke, P Ryan; Edwards, William H; Hennager, Steven G; Block, Jean F; Yates, Angela M; Ebel, Eric; Knopp, Douglas J; Fuentes-Sanchez, Antonio; Jennings-Gaines, Jessica; Kientz, Rebecca L; Simunich, Marilyn

    2015-07-01

    Brucellosis (caused by the bacterium Brucella abortus) is a zoonotic disease endemic in wild elk (Cervus canadensis) of the Greater Yellowstone Ecosystem, US. Because livestock and humans working with elk or livestock are at risk, validated tests to detect the B. abortus antibody in elk are needed. Using the κ-statistic, we evaluated the buffered, acidified plate antigen (BAPA) assay for agreement with the results of the four serologic tests (card test [card], complement fixation test [CF], rivanol precipitation plate agglutination test [RIV], standard plate agglutination test [SPT]) that are approved by the US Department of Agriculture for the detection of the B. abortus antibody in elk. From 2006 to 2010, serum samples collected from elk within B. abortus-endemic areas (n = 604) and nonendemic areas (n = 707) and from elk culture-positive for B. abortus (n = 36) were split and blind tested by four elk serum diagnostic laboratories. κ-Values showed a high degree of agreement for the card (0.876), RIV (0.84), and CF (0.774) test pairings and moderate agreement for the SPT (0.578). Sensitivities for the BAPA, card, RIV, CF, and SPT were 0.859, 0.839, 0.899, 1.00, and 0.813, whereas specificities were 0.986, 0.993, 0.986, 0.98, and 0.968, respectively. The positive predictive values and the negative predictive values were calculated for 2.6%, 8.8%, and 16.2% prevalence levels. These findings suggest the BAPA test is a suitable screening test for the B. abortus antibodies in elk. PMID:25984771

  3. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    PubMed

    Lowry, Jake E; Isaak, Dale D; Leonhardt, Jack A; Vernati, Giulia; Pate, Jessie C; Andrews, Gerard P

    2011-01-01

    Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA). All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence and induction of

  4. Comparative analysis of the early transcriptome of Brucella abortus - infected monocyte-derived macrophages from cattle naturally resistant or susceptible to brucellosis

    PubMed Central

    Rossetti, C.A.; Galindo, C.L.; Everts, R.E.; Lewin, H.A.; Garner, H.R.; Adams, L.G.

    2010-01-01

    Brucellosis is a worldwide zoonotic infectious disease that has a significant economic impact on animal production and human public health. We characterized the gene expression profile of B. abortus-infected monocyte-derived macrophages (MDMs) from naïve cattle naturally resistant (R) or susceptible (S) to brucellosis using a cDNA microarray technology. Our data indicate that 1) B. abortus induced a slightly increased genome activation in R MDMs and a down-regulated transcriptome in S MDMs, during the onset of infection, 2) R MDMs had the ability to mount a type 1 immune response against B. abortus infection which was impaired in S cells, and 3) the host cell activity was not altered after 12h post-B. abortus infection in R MDMs while the cell cycle was largely arrested in infected S MDMs at 12h p.i. These results contribute to understand of how host responses may be manipulated to prevent infection by brucellae. PMID:20932540

  5. Molecular cloning and characterization of cgt, the Brucella abortus cyclic beta-1,2-glucan transporter gene, and its role in virulence.

    PubMed

    Roset, Mara S; Ciocchini, Andrés E; Ugalde, Rodolfo A; Iñón de Iannino, Nora

    2004-04-01

    The animal pathogen Brucella abortus contains a gene cgt, which complemented Sinorhizobium meliloti nodule development (ndvA) and Agrobacterium tumefaciens chromosomal virulence (chvA) mutants. Complemented strains recovered the presence of anionic cyclic beta-1,2-glucan, motility, tumor induction in A. tumefaciens, and nodule occupancy in S. meliloti, all traits strictly associated with the presence of cyclic beta-1,2-glucan in the periplasm. Nucleotide sequencing revealed that B. abortus cgt contains a 1,797-bp open reading frame coding for a predicted membrane protein of 599 amino acids (65.9 kDa) that is 58.5 and 59.9% identical to S. meliloti NdvA and A. tumefaciens ChvA, respectively. Additionally, B. abortus cgt, like S. meliloti ndvA and A. tumefaciens chvA possesses ATP-binding motifs and the ABC signature domain features of a typical ABC transporter. Characterization of Cgt was carried out by the construction of null mutants in B. abortus 2308 and S19 backgrounds. Both mutants do not transport cyclic beta-1,2-glucan to the periplasm, as shown by the absence of anionic cyclic glucan, and they display reduced virulence in mice and defective intracellular multiplication in HeLa cells. These results suggest that cyclic beta-1,2-glucan must be transported into the periplasmatic space to exert its action as a virulence factor. PMID:15039351

  6. Different resistance patterns of reference and field strains of Brucella abortus

    PubMed Central

    Miranda, Karina L.; Dorneles, Elaine M. S.; Poester, Fernando P.; Martins, Paulo S.; Pauletti, Rebeca B.; Lage, Andrey P.

    2015-01-01

    The aim of this study was to evaluate the growth of the B. abortus reference strains and field isolates on media containing different inhibitor agents. Reference strains were seeded on tryptose agar containing: i-erythritol (1.0 mg/mL), fuchsin (20 μg/mL and 80 μg/mL), thionin (2.5 μg/mL and 10 μg/mL), rifampicin (200 μg/mL) and safranin O (200 μg/mL). Field isolates were tested only on media containing i-erythritol, rifampicin and thionin. Furthermore, each suspension was also inoculated on tryptose agar incubated in air, to test its ability to grow without CO 2 . Sensitivity to fuchsin was similar among reference strains evaluated. Growth of S19, 544 and 2308 but not RB51 were inhibited on media containing rifampicin. Medium with safranin O showed no inhibition for RB51, 544 and 2308, but it partially inhibited the S19 growth as well as medium containing i-erythritol. Treatment/control growth ratio for 2308 on tryptose agar containing thionin (2.5 μg/mL) was approximatelly 1.0, whereas S19 and RB51 showed 0.85 and 0.89 ratios, respectively. Growth of 544, S19 and RB51 but not 2308 was completely inhibited on medium with thionin (10 μg/mL). All field strains grew on medium containing i-erythritol, but were completelly inhibited by rifampicin. With exception of A1 ( B. abortus biovar 3) all field isolates grew on medium with thionin, although some strains showed a treatment/control growth ratio of 0.75–0.80 (10 μg/mL). These results showed that tryptose agar with thionin, i-erythritol or rifampicin could be useful for differentiating vaccine, challenge and field strains of B. abortus. PMID:26221116

  7. Different resistance patterns of reference and field strains of Brucella abortus.

    PubMed

    Miranda, Karina L; Dorneles, Elaine M S; Poester, Fernando P; Martins Filho, Paulo S; Pauletti, Rebeca B; Lage, Andrey P

    2015-03-01

    The aim of this study was to evaluate the growth of the B. abortus reference strains and field isolates on media containing different inhibitor agents. Reference strains were seeded on tryptose agar containing: i-erythritol (1.0 mg/mL), fuchsin (20 μg/mL and 80 μg/mL), thionin (2.5 μg/mL and 10 μg/mL), rifampicin (200 μg/mL) and safranin O (200 μg/mL). Field isolates were tested only on media containing i-erythritol, rifampicin and thionin. Furthermore, each suspension was also inoculated on tryptose agar incubated in air, to test its ability to grow without CO 2 . Sensitivity to fuchsin was similar among reference strains evaluated. Growth of S19, 544 and 2308 but not RB51 were inhibited on media containing rifampicin. Medium with safranin O showed no inhibition for RB51, 544 and 2308, but it partially inhibited the S19 growth as well as medium containing i-erythritol. Treatment/control growth ratio for 2308 on tryptose agar containing thionin (2.5 μg/mL) was approximatelly 1.0, whereas S19 and RB51 showed 0.85 and 0.89 ratios, respectively. Growth of 544, S19 and RB51 but not 2308 was completely inhibited on medium with thionin (10 μg/mL). All field strains grew on medium containing i-erythritol, but were completelly inhibited by rifampicin. With exception of A1 ( B. abortus biovar 3) all field isolates grew on medium with thionin, although some strains showed a treatment/control growth ratio of 0.75-0.80 (10 μg/mL). These results showed that tryptose agar with thionin, i-erythritol or rifampicin could be useful for differentiating vaccine, challenge and field strains of B. abortus. PMID:26221116

  8. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation

    PubMed Central

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M. PMID:26039674

  9. Real-time PCR Detection of Brucella Abortus: A Comparative Study of SYBR Green I, 5'-exonuclease, and Hybridization Probe Assays

    SciTech Connect

    Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa

    2003-08-01

    Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.

  10. Delta-pgm, a new live-attenuated vaccine against Brucella suis.

    PubMed

    Czibener, Cecilia; Del Giudice, Mariela Giselda; Spera, Juan Manuel; Fulgenzi, Fabiana Rosa; Ugalde, Juan Esteban

    2016-03-18

    Brucellosis is one of the most widespread zoonosis in the world affecting many domestic and wild animals including bovines, goats, pigs and dogs. Each species of the Brucella genus has a particular tropism toward different mammals being the most relevant for human health Brucella abortus, Brucella melitensis and Brucella suis that infect bovines, goats/camelids and swine respectively. Although for B. abortus and B. melitensis there are vaccines available, there is no efficient vaccine to protect swine from B. suis infection so far. We describe here the construction of a novel vaccine strain that confers excellent protection against B. suis in a mouse model of infection. This strain is a clean deletion of the phosphoglucomutase (pgm) gene that codes for a protein that catalyzes the conversion of glucose-6-P to glucose-1-P, which is used as a precursor for the biosynthesis of many polysaccharides. The Delta-pgm strain lacks a complete lipopolysaccharide, is unable to synthesize cyclic beta glucans and is sensitive to several detergents and Polymyxin B. We show that this strain replicates in cultured cells, is completely avirulent in the mouse model of infection but protects against a challenge of the virulent strain inducing the production of pro-inflammatory cytokines. This novel strain could be an excellent candidate for the control of swine brucellosis, a disease of emerging concern in many parts of the world. PMID:26899373

  11. Evaluation of the Recombinant 10-Kilodalton Immunodominant Region of the BP26 Protein of Brucella abortus for Specific Diagnosis of Bovine Brucellosis ▿

    PubMed Central

    Tiwari, Arvind Kumar; Kumar, Subodh; Pal, Vijai; Bhardwaj, Bhupendra; Rai, Ganga Prasad

    2011-01-01

    Brucellosis is a disease with worldwide distribution affecting animals and human beings. Brucella abortus is the causative agent of bovine brucellosis. The cross-reactions of currently available diagnostic procedures for B. abortus infection result in false-positive reactions, which make the procedures unreliable. These tests are also unable to differentiate Brucella-infected and -vaccinated animals. The present work is focused on the use of a nonlipopolysaccharide (LPS) diagnostic antigen, a recombinant 10-kDa (r10-kDa) protein of B. abortus, for specific diagnosis of brucellosis. The purified recombinant protein was used as a diagnostic antigen in plate enzyme-linked immunosorbent assay (p-ELISA) format to screen 408 bovine serum samples (70 presumptively negative, 308 random, and 30 vaccinated), and the results were compared with those of the Rose Bengal plate agglutination test (RBPT) and the standard tube agglutination test (STAT). Statistical analysis in presumptive negative samples revealed 100 and 98.41% specificity of p-ELISA with RBPT and STAT, and an agreement of 91.43% with the tests using Cohen's kappa statistics. In random samples, the agreement of p-ELISA was 77.92% and 80.52% with RBPT and STAT, respectively. p-ELISA investigation of vaccinated samples reported no false-positive results, whereas RBPT and STAT reported 30% and 96.6% false-positive results, respectively. The data suggest that p-ELISA with r10-kDa protein may be a useful method for diagnosis of bovine brucellosis. Furthermore, p-ELISA may also be used as a tool for differentiating Brucella-vaccinated and naturally infected animals. PMID:21852548

  12. The Attenuated Brucella abortus Strain 19 Invades, Persists in, and Activates Human Dendritic Cells, and Induces the Secretion of IL-12p70 but Not IL-23

    PubMed Central

    Weinhold, Mario; Eisenblätter, Martin; Jasny, Edith; Fehlings, Michael; Finke, Antje; Gayum, Hermine; Rüschendorf, Ursula; Renner Viveros, Pablo; Moos, Verena; Allers, Kristina; Schneider, Thomas; Schaible, Ulrich E.; Schumann, Ralf R.; Mielke, Martin E.; Ignatius, Ralf

    2013-01-01

    Background Bacterial vectors have been proposed as novel vaccine strategies to induce strong cellular immunity. Attenuated strains of Brucella abortus comprise promising vector candidates since they have the potential to induce strong CD4+ and CD8+ T-cell mediated immune responses in the absence of excessive inflammation as observed with other Gram-negative bacteria. However, some Brucella strains interfere with the maturation of dendritic cells (DCs), which is essential for antigen-specific T-cell priming. In the present study, we investigated the interaction of human monocyte-derived DCs with the smooth attenuated B. abortus strain (S) 19, which has previously been employed successfully to vaccinate cattle. Methodology/Principal findings We first looked into the potential of S19 to hamper the cytokine-induced maturation of DCs; however, infected cells expressed CD25, CD40, CD80, and CD86 to a comparable extent as uninfected, cytokine-matured DCs. Furthermore, S19 activated DCs in the absence of exogeneous stimuli, enhanced the expression of HLA-ABC and HLA-DR, and was able to persist intracellularly without causing cytotoxicity. Thus, DCs provide a cellular niche for persisting brucellae in vivo as a permanent source of antigen. S19-infected DCs produced IL-12/23p40, IL-12p70, and IL-10, but not IL-23. While heat-killed bacteria also activated DCs, soluble mediators were not involved in S19-induced activation of human DCs. HEK 293 transfectants revealed cellular activation by S19 primarily through engagement of Toll-like receptor (TLR)2. Conclusions/Significance Thus, as an immunological prerequisite for vaccine efficacy, B. abortus S19 potently infects and potently activates (most likely via TLR2) human DCs to produce Th1-promoting cytokines. PMID:23805193

  13. Oral Immunization of Mice with Gamma-Irradiated Brucella neotomae Induces Protection against Intraperitoneal and Intranasal Challenge with Virulent B. abortus 2308

    PubMed Central

    Dabral, Neha; Martha-Moreno-Lafont; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2014-01-01

    Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4+ and CD8+ T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 109, 1010 and 1011 CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 1011 CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella. PMID:25225910

  14. Brucella abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor Alpha Secretion

    PubMed Central

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Gentilini, María Virginia; Velásquez, Lis Noelia; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán

    2015-01-01

    Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-β, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage. PMID:26459511

  15. Excretion of Brucella abortus vaccine B19 strain during a reproductive cycle in dairy cows

    PubMed Central

    Pacheco, W. A.; Genovez, M. E.; Pozzi, C. R.; Silva, L. M. P.; Azevedo, S. S.; Did, C. C.; Piatti, R. M.; Pinheiro, E. S.; Castro, V.; Miyashiro, S.; Gambarini, M. L.

    2012-01-01

    This paper aimed to determine the excretion period of B19 vaccine strain during a complete reproductive cycle (from estrus synchronization, artificial insemination, pregnancy and until 30 days after parturition) of dairy cows from 3 to 9 years old that were previously vaccinated from 3 to 8 months. Three groups were monitored with monthly milk and urine collection during 12 months: G1 with seven cows from 3 to 4 years old; G2 with three cows from 5 to 6 years old; and G3 with four cows from 7 to 9 years old. Urine and milk samples were submitted to bacteriological culture and urine and PCR reactions for detection of Brucella spp. and PCR-multiplex for B19 strain identification. Ring test (RT) was also performed in the milk samples, and serum samples were tested by buffered acidified plate antigen test (BAPA). All animals were serologically negative at BAPA and Brucella spp. was not isolated from both urine and milk samples. RT revealed 13/210 (6.2%) positive milk samples. PCR reactions detected DNA of Brucella spp. in 86/420 (20.5%) samples. In urine it was found a significantly higher frequency (35.2%; 74/210) than in milk (5.7%; 12/210), more frequently from the estrus to 150 days of pregnancy and after parturition (6.7%; 10/150), and from 150 days of pregnancy to parturition (3.4%; 2/60), and they were all identified as B19 strain. In three groups, intermittent excretion of B19 strain was detected mainly in urine samples, which confirmed its multiplication and persistence in cows for until 9 years. PMID:24031869

  16. Immune Response of Calves Vaccinated with Brucella abortus S19 or RB51 and Revaccinated with RB51

    PubMed Central

    Dorneles, Elaine M. S.; Lima, Graciela K.; Teixeira-Carvalho, Andréa; Araújo, Márcio S. S.; Martins-Filho, Olindo A.; Sriranganathan, Nammalwar; Al Qublan, Hamzeh; Heinemann, Marcos B.; Lage, Andrey P.

    2015-01-01

    Brucella abortus S19 and RB51 strains have been successfully used to control bovine brucellosis worldwide; however, currently, most of our understanding of the protective immune response induced by vaccination comes from studies in mice. The aim of this study was to characterize and compare the immune responses induced in cattle prime-immunized with B. abortus S19 or RB51 and revaccinated with RB51. Female calves, aged 4 to 8 months, were vaccinated with either vaccine S19 (0.6–1.2 x 1011 CFU) or RB51 (1.3 x 1010 CFU) on day 0, and revaccinated with RB51 (1.3 x 1010 CFU) on day 365 of the experiment. Characterization of the immune response was performed using serum and peripheral blood mononuclear cells. Blood samples were collected on days 0, 28, 210, 365, 393 and 575 post-immunization. Results showed that S19 and RB51 vaccination induced an immune response characterized by proliferation of CD4+ and CD8+ T-cells; IFN-ɣ and IL-17A production by CD4+ T-cells; cytotoxic CD8+ T-cells; IL-6 secretion; CD4+ and CD8+ memory cells; antibodies of IgG1 class; and expression of the phenotypes of activation in T-cells. However, the immune response stimulated by S19 compared to RB51 showed higher persistency of IFN-ɣ and CD4+ memory cells, induction of CD21+ memory cells and higher secretion of IL-6. After RB51 revaccination, the immune response was chiefly characterized by increase in IFN-ɣ expression, proliferation of antigen-specific CD4+ and CD8+ T-cells, cytotoxic CD8+ T-cells and decrease of IL-6 production in both groups. Nevertheless, a different polarization of the immune response, CD4+- or CD8+-dominant, was observed after the booster with RB51 for S19 and RB51 prime-vaccinated animals, respectively. Our results indicate that after prime vaccination both vaccine strains induce a strong and complex Th1 immune response, although after RB51 revaccination the differences between immune profiles induced by prime-vaccination become accentuated. PMID:26352261

  17. Immune Response of Calves Vaccinated with Brucella abortus S19 or RB51 and Revaccinated with RB51.

    PubMed

    Dorneles, Elaine M S; Lima, Graciela K; Teixeira-Carvalho, Andréa; Araújo, Márcio S S; Martins-Filho, Olindo A; Sriranganathan, Nammalwar; Al Qublan, Hamzeh; Heinemann, Marcos B; Lage, Andrey P

    2015-01-01

    Brucella abortus S19 and RB51 strains have been successfully used to control bovine brucellosis worldwide; however, currently, most of our understanding of the protective immune response induced by vaccination comes from studies in mice. The aim of this study was to characterize and compare the immune responses induced in cattle prime-immunized with B. abortus S19 or RB51 and revaccinated with RB51. Female calves, aged 4 to 8 months, were vaccinated with either vaccine S19 (0.6-1.2 x 1011 CFU) or RB51 (1.3 x 1010 CFU) on day 0, and revaccinated with RB51 (1.3 x 1010 CFU) on day 365 of the experiment. Characterization of the immune response was performed using serum and peripheral blood mononuclear cells. Blood samples were collected on days 0, 28, 210, 365, 393 and 575 post-immunization. Results showed that S19 and RB51 vaccination induced an immune response characterized by proliferation of CD4+ and CD8+ T-cells; IFN-ɣ and IL-17A production by CD4+ T-cells; cytotoxic CD8+ T-cells; IL-6 secretion; CD4+ and CD8+ memory cells; antibodies of IgG1 class; and expression of the phenotypes of activation in T-cells. However, the immune response stimulated by S19 compared to RB51 showed higher persistency of IFN-ɣ and CD4+ memory cells, induction of CD21+ memory cells and higher secretion of IL-6. After RB51 revaccination, the immune response was chiefly characterized by increase in IFN-ɣ expression, proliferation of antigen-specific CD4+ and CD8+ T-cells, cytotoxic CD8+ T-cells and decrease of IL-6 production in both groups. Nevertheless, a different polarization of the immune response, CD4+- or CD8+-dominant, was observed after the booster with RB51 for S19 and RB51 prime-vaccinated animals, respectively. Our results indicate that after prime vaccination both vaccine strains induce a strong and complex Th1 immune response, although after RB51 revaccination the differences between immune profiles induced by prime-vaccination become accentuated. PMID:26352261

  18. Oral vaccination with microencapsuled strain 19 vaccine confers enhanced protection against Brucella abortus strain 2308 challenge in red deer (Cervus elaphus elaphus).

    PubMed

    Arenas-Gamboa, Angela M; Ficht, Thomas A; Davis, Donald S; Elzer, Philip H; Kahl-McDonagh, Melissa; Wong-Gonzalez, Alfredo; Rice-Ficht, Allison C

    2009-10-01

    Bison (Bison bison) and elk (Cervus elaphus nelsoni) in the Greater Yellowstone Area (GYA), USA, are infected with Brucella abortus, the causative agent of bovine brucellosis, and they serve as a wildlife reservoir for the disease. Bovine brucellosis recently has been transmitted from infected elk to cattle in Montana, Wyoming, and Idaho and has resulted in their loss of brucellosis-free status. An efficacious Brucella vaccine with a delivery system suitable for wildlife would be a valuable tool in a disease prevention and control program. We evaluated Strain 19 (S19) in a sustained release vehicle consisting of alginate microspheres containing live vaccine. In a challenge study using red deer (Cervus elaphus elaphus) as a model for elk, alginate, a naturally occurring polymer combined with a protein of Fasciola hepatica vitelline protein B was used to microencapsulate S19. Red deer were orally or subcutaneously immunized with 1.5 x 10(10) colony-forming units (CFUs) using microencapsulated S19. Humoral and cellular profiles were analyzed bimonthly throughout the study. The vaccinated red deer and nonvaccinated controls were challenged 1 yr postimmunization conjunctivally with 1 x 10(9) CFUs of B. abortus strain 2308. Red deer vaccinated with oral microencapsulated S19 had a statistically significant lower bacterial tissue load compared with controls. These data indicate for the first time that protection against Brucella-challenge can be achieved by combining a commonly used vaccine with a novel oral delivery system such as alginate-vitelline protein B microencapsulation. This system is a potential improvement for efficacious Brucella-vaccine delivery to wildlife in the GYA. PMID:19901378

  19. A novel Omp25-binding peptide screened by phage display can inhibit Brucella abortus 2308 infection in vitro and in vivo.

    PubMed

    Zhang, Junbo; Guo, Fei; Huang, Xiaoqiang; Chen, Chuangfu; Liu, Ruitian; Zhang, Hui; Wang, Yuanzhi; Yin, Shuanghong; Li, Zhiqiang

    2014-06-01

    Brucellosis is a globally distributed zoonotic disease affecting animals and humans, and current antibiotic and vaccine strategies are not optimal. The surface-exposed protein Omp25 is involved in Brucella virulence and plays an important role in Brucella pathogenesis during infection, suggesting that Omp25 could be a useful target for selecting potential therapeutic molecules to inhibit Brucella pathogenesis. In this study, we identified, we believe for the first time, peptides that bind specifically to the Omp25 protein of pathogens, using a phage panning technique, After four rounds of panning, 42 plaques of eluted phages were subjected to pyrosequencing. Four phage clones that bound better than the other clones were selected following confirmation by ELISA and affinity constant determination. The peptides selected could significantly inhibit Brucella abortus 2308 (S2308) internalization and intracellular growth in RAW264.7 macrophages, and significantly induce secretion of TNF-α and IL-12 in peptide- and S2308-treated cells. Any observed peptide (OP11, OP27, OP35 or OP40) could significantly inhibit S2308 infection in BALB/c mice. Moreover, the peptide OP11 was the best candidate peptide for inhibiting S2308 infection in vitro and in vivo. These results suggest that peptide OP11 has potential for exploitation as a peptide drug in resisting S2308 infection. PMID:24722798

  20. A diagnostic protocol to identify water buffaloes (Bubalus bubalis) vaccinated with Brucella abortus strain RB51 vaccine.

    PubMed

    Tittarelli, Manuela; Atzeni, Marcello; Calistri, Paolo; Di Giannatale, Elisabetta; Ferri, Nicola; Marchi, Enrico; Martucciello, Alessandra; De Massis, Fabrizio

    2015-01-01

    The use of live vaccine strain RB51 for vaccination of domestic water buffaloes (Bubalus bubalis) at risk of infection with Brucella abortus is permitted notwithstanding the plans for the eradication and only under strict veterinary control. The antibodies induced by RB51 vaccination are not detectable using conventional diagnostic techniques; therefore, it is necessary to have a specific diagnostic tool able to discriminate vaccinated from unvaccinated animals. The combination of a complement fixation test (CFT) with specific RB51 antigen (RB51-CFT) and a brucellin skin test has been demonstrated to be a reliable diagnostic system to identify single cattle (Bos taurus) vaccinated with RB51. So far, no data are available in the international scientific literature regarding the use of this test association in water buffalo. For this reason the suitability of this test combination has been evaluated in a water buffalo herd. One hundred twenty-seven animals farmed in a herd of Salerno province (Campania, Southern Italy), in the context of a presumptive unauthorized use of RB51 vaccine were chosen for this study. All tested animals resulted negative to Rose Bengal test (RBT) and complement fixation test (CFT) used for the detection of specific antibodies against Brucella field strains. Seventy-one animals (56%) developed RB51 antigen-specific CFT (RB51-CFT) antibodies against RB51 vaccine in a first sampling, while 104 animals (82%) gave positive result to a second serum sampling conducted 11 days after the intradermal inoculation of the RB51 brucellin. One hundred and seven animals (84%) showed a positive reaction to the RB51-CFT in at least 1 sampling, while 111 animals (87%) resulted positive to the RB51 brucellin skin test. Thus, analysing the results of the 3 testing in parallel, 119 animals (94%) were positive to at least 1 of the performed tests. The results suggest that the use in parallel of the RB51 brucellin skin test with RB51-CFT may represent a reliable

  1. Recombinant L7/L12 ribosomal protein and gamma-irradiated Brucella abortus induce a T-helper 1 subset response from murine CD4+ T cells.

    PubMed Central

    Oliveira, S C; Zhu, Y; Splitter, G A

    1994-01-01

    Immunity to Brucella abortus crucially depends on antigen (Ag)-specific T-cell mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. Ribosomal preparations have been used as vaccines against several pathogens, including B. abortus, conferring a high degree of protection. In the present study, we have examined the pattern of T-helper (Th) cell response from infected BALB/c mice after in vitro stimulation with recombinant (r) L7/L12 ribosomal protein or gamma-irradiated B. abortus. In addition to Ag-specific proliferation, CD4+ T cells were tested for interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma) mRNA expression and secretion. Detection of cytokine transcripts and secreted cytokines was performed using reverse transcriptase (RT)-polymerase chain reaction (PCR) and specific ELISA assays. Primed CD4+ T cells proliferated to the recombinant protein or whole B. abortus. The functional cytokine profile of the proliferating cells was typical of a Th1 cell phenotype, as we detected transcripts for IL-2 and IFN-gamma but not IL-4. Among the cytokines analysed, only IFN-gamma produced in the Th cell culture supernatants was detected by ELISA when bacteria or recombinant protein were used. Thus, rL7/L12 ribosomal protein and gamma-irradiated B. abortus preferentially stimulated IFN-gamma-producing Th1 cells after in vitro stimulation. The results of this study provide for the first time an explanation of why ribosomal vaccines may protect against intracellular infections, and an experimental basis for identifying polypeptides from a pathogen which stimulates the desired cytokine profile and Th cell response crucial for the design of genetically engineered candidate vaccines. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7875746

  2. Exploring the Molecular Basis for Binding of Inhibitors by Threonyl-tRNA Synthetase from Brucella abortus: A Virtual Screening Study

    PubMed Central

    Li, Ming; Wen, Fang; Zhao, Shengguo; Wang, Pengpeng; Li, Songli; Zhang, Yangdong; Zheng, Nan; Wang, Jiaqi

    2016-01-01

    Targeting threonyl-tRNA synthetase (ThrRS) of Brucella abortus is a promising approach to developing small-molecule drugs against bovine brucellosis. Using the BLASTp algorithm, we identified ThrRS from Escherichia coli (EThrRS, PDB ID 1QF6), which is 51% identical to ThrRS from Brucella abortus (BaThrRS) at the amino acid sequence level. EThrRS was used as the template to construct a BaThrRS homology model which was optimized using molecular dynamics simulations. To determine the residues important for substrate ATP binding, we identified the ATP-binding regions of BaThrRS, docked ATP to the protein, and identified the residues whose side chains surrounded bound ATP. We then used the binding site of ATP to virtually screen for BaThrRS inhibitors and got seven leads. We further characterized the BaThrRS-binding site of the compound with the highest predicted inhibitory activity. Our results should facilitate future experimental effects to find novel drugs for use against bovine brucellosis. PMID:27447614

  3. A combined DNA vaccine encoding BCSP31, SOD, and L7/L12 confers high protection against Brucella abortus 2308 by inducing specific CTL responses.

    PubMed

    Yu, Da-Hai; Hu, Xi-Dan; Cai, Hong

    2007-06-01

    We constructed a combined DNA vaccine comprising genes encoding the antigens BCSP31, superoxide dismutase (SOD), and L7/L12 and evaluated its immunogenicity and protective efficacy. Immunization of mice with the combined DNA vaccine offered high protection against Brucella abortus (B. abortus) infection. The vaccine induced a vigorous specific immunoglobulin G (IgG) response, with higher IgG2a than IgG1 titers. Cytokine profiling performed at the same time showed a biased Th1-type immune response with significantly increased interferon-gamma and tumor necrosis factor-alpha stimulation. CD8(+), but not CD4(+), T cells accumulated at significantly higher levels after administration of the vaccine. Granzyme B-producing CD8(+) T cells were significantly higher in number in samples prepared from combined DNA-vaccinated mice compared with S19-vaccinated mice, demonstrating that the cytotoxicity lysis pathway is involved in the response to Brucella infection. The success of our combined DNA vaccine in a mouse model suggests its potential efficacy against brucellosis infection in large animals. PMID:17570767

  4. Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics

    PubMed Central

    He, Yongqun

    2011-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning. PMID:22919594

  5. Seroprevalence of Neospora caninum in dairy cattle ranches with high abortion rate: special emphasis to serologic co-existence with Toxoplasma gondii, Brucella abortus and Listeria monocytogenes.

    PubMed

    Yildiz, Kader; Kul, Oguz; Babur, Cahit; Kilic, Selcuk; Gazyagci, Aycan N; Celebi, Bekir; Gurcan, I Safa

    2009-10-14

    The aim of this study was to determine seroprevalence of Neospora caninum in dairy cattle ranches with higher abortion rates and co-existence of Neospora caninum, Toxoplasma gondii, Brucella abortus, and Listeria monocytogenes antibodies. The blood samples were collected from dairy cows with history of abortion (n=234) as well as from pregnant cows that were (n=323) kept in the same ranches. N. caninum seroprevalence was 10.77% (60/557). The co-existence rate of N. caninum seropositivity with T. gondii, B. abortus and L. monocytogenes was 24.77% (138/557), 13.82% (77/557) and 42.85% (162/378), respectively. Only one animal had significant antibody titers for all analyzed infectious agents. The seroprevalence of N. caninum and T. gondii were significantly higher in pregnant cows than aborted cows (p<0.05 and p<0.001, respectively). As a result, the comprehensive data generated through this study can significantly contribute to understanding of serologic association of N. caninum with T. gondii, B. abortus and L. monocytogenes in pregnant and aborted dairy cows. PMID:19592171

  6. Comparison of sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles and antigenic relatedness among outer membrane proteins of 49 Brucella abortus strains.

    PubMed Central

    Verstreate, D R; Winter, A J

    1984-01-01

    Outer membrane proteins were solubilized from 49 strains of Brucella abortus by sequential extraction of physically disrupted cells with N-lauroylsarcosinate and a dipolar ionic detergent (Verstreate et al., Infect. Immun. 35:979-989, 1982). The strains tested included standard agglutination test strain 1119, virulent strain 2308, and eight reference strains representing each of the biotypes; the remainder were isolates from cattle in North America with natural infections and included biotypes 1, 2, and 4. Three principal protein groups with apparent molecular weights of 88,000 to 94,000 (group 1), 35,000 to 40,000 (group 2, now established as porins [Douglas et al., Infect. Immun. 44:16-21, 1984]), and 25,000 to 30,000 (group 3) were observed in every strain. Some variability in banding patterns occurred among strains, but intrastrain variation was sufficient to preclude the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of outer membrane proteins for differentiating among strains of B. abortus. One antigen ([b]) was shared among the porin proteins, and three others ([c], ([d], and ([ e]) were shared among the group 3 proteins of all of the strains tested, indicating that these relationships are probably species wide. These results suggest that it may be possible to use outer membrane proteins from a representative strain of B. abortus in a vaccine for species-wide immunization. Images PMID:6434426

  7. virB-Mediated Survival of Brucella abortus in Mice and Macrophages Is Independent of a Functional Inducible Nitric Oxide Synthase or NADPH Oxidase in Macrophages

    PubMed Central

    Sun, Yao-Hui; den Hartigh, Andreas B.; de Lima Santos, Renato; Adams, L. Garry; Tsolis, Renée M.

    2002-01-01

    The Brucella abortus virB locus is required for establishing chronic infection in the mouse. Using in vitro and in vivo models, we investigated whether virB is involved in evasion of the bactericidal activity of NADPH oxidase and the inducible nitric oxide synthase (iNOS) in macrophages. Elimination of NADPH oxidase or iNOS activity in macrophages in vitro increased recovery of wild-type B. abortus but not recovery of a virB mutant. In mice lacking either NADPH oxidase or iNOS, however, B. abortus infected and persisted to the same extent as it did in congenic C57BL/6 mice up until 60 days postinfection, suggesting that these host defense mechanisms are not critical for limiting bacterial growth in the mouse. A virB mutant did not exhibit increased survival in either of the knockout mouse strains, indicating that this locus does not contribute to evasion of nitrosative or oxidative killing mechanisms in vivo. PMID:12183526

  8. Vaccination with recombinant flagellar proteins FlgJ and FliN induce protection against Brucella abortus 544 infection in BALB/c mice.

    PubMed

    Li, Xianbo; Xu, Jie; Xie, Yongfei; Qiu, Yefeng; Fu, Simei; Yuan, Xitong; Ke, Yuehua; Yu, Shuang; Du, Xinying; Cui, Mingquan; Chen, Yanfen; Wang, Tongkun; Wang, Zhoujia; Yu, Yaqing; Huang, Kehe; Huang, Liuyu; Peng, Guangneng; Chen, Zeliang; Wang, Yufei

    2012-12-28

    Brucella has been considered as a non-motile, facultative intracellular pathogenic bacterium. However, the genome sequences of different Brucella species reveal the presence of the flagellar genes needed for the construction of a functional flagellum. Due to its roles in the interaction between pathogen and host, we hypothesized that some of the flagellar proteins might induce protective immune responses and these proteins will be good subunit vaccine candidates. This study was conducted to screening of protective antigens among these flagellar proteins. Firstly, according to the putative functional roles, a total of 30 flagellar genes of Brucella abortus were selected for in vitro expression. 15 of these flagellar genes were successfully expressed as his-tagged recombinant proteins in Escherichia coli ER2566. Then, these proteins were purified and used to analyze their T cell immunity induction activity by an in vitro gamma interferon (IFN-γ) assay. Five of the flagellar proteins could stimulate significantly higher levels of IFN-γ secretion in splenocytes from S19 immunized mice, indicating their T cell induction activity. Finally, immunogenicity and protection activity of these 5 flagellar proteins were evaluated in BALB/c mice. Results showed that immunization with FlgJ (BAB1_0260) or FliN (BAB2_0122) plus adjuvant could provide protection against B. abortus 544 infection. Furthermore, mice immunized with FlgJ and FliN developed a vigorous immunoglobulin G response, and in vitro stimulation of their splenocytes with immunizing proteins induced the secretion of IFN-γ. Altogether, these data suggest that flagellar proteins FlgJ and FliN are protective antigens that could produce humoral and cell-mediated responses in mice and candidates for use in future studies of vaccination against brucellosis. PMID:22854331

  9. Genetic characterization of the wboA gene from the predominant biovars of Brucella isolates in Iran

    PubMed Central

    Etemady, Afshar; Mohammdi, Mohsen; Esmaelizad, Majid; Alamian, Saeed; Vahedi, Fatemeh; Aghaeipour, Khosro; Behrozikhah, Ali Mohammad; Faghihloo, Ebrahim; Afshar, Davoud; Firuzyar, Sajad; Rahimi, Arian

    2015-01-01

    Introduction Brucella spp. are gram-negative, facultative intracellular bacteria pathogens responsible for brucellosis, a zoonotic disease that can cause abortion, fetal death, and genital infections in animals and undulant fever in humans. Lipopolysaccharide (LPS) is known as a major virulence factor of Brucella spp. The wboA gene is capable of encoding a glycosyltransferase that appears to play a major role in LPS biosynthesis. Hence, the characterization of this gene can help in the clarification of the pathogenicity of Brucella spp. Methods This study was carried out at Razi Vaccine and Serum Research Institute in 2011. Briefly, the wboA gene in B. abortus biovar 3 and B. melitensis biovar 1, the predominant biovars in Iran, were amplified by using two pairs of specific primers. Polymerase chain reaction (PCR) products were cloned into a thymine–adenine (TA) cloning vector and transformed into an E. coli DH5α before being sequenced. Multiple alignments of identified sequences were performed, with all wboA sequences deposited in the GenBank sequence database. Results This study showed that a mismatch has occurred in B. melitensis biovar 1; this biovar is predominant in Iran. In contrast, the wboA gene from B. abortus biovar 3 was similar to that of other B. abortus variations. Conclusion The comparison and alignment of the wboA gene of native Brucella strains in Iran to all wboA sequences deposited in GenBank revealed that the wboA gene has changed in the long term; hence, because of its unique nucleotide pattern, the gene can be used for specific diagnosis of B. abortus and B. canis. PMID:26516446

  10. Serological activity of white-tail deer against several species of Brucella.

    PubMed

    Salinas-Meléndez, J A; Martínez-Muñoz, A; Avalos-Ramírez, R; Cerutti-Pereyra, N; Riojas-Valdés, V M

    1998-01-01

    In Mexico, brucellosis is a widely distributed disease of domesticated ruminants, but its frequency in wild ruminants has not been documented. Since northeast Mexico is the main distribution area of white-tailed deer and has been reported as an area positive for brucellosis in domesticated species, the present study was conducted in order to determine serological activity against several species of the genus Brucella in white-tailed deer. A total of 208 sera of white-tailed deer were collected during the springs of 1994 and 1995 in the north part of the states of Nuevo León and Coahuila. Each serum was analyzed for the detection of antibodies against two smooth (B. abortus and B. melitensis) and one rough (B. ovis) species of the genus Brucella. The serological tests used for the determination of the presence of antibodies against Brucella were card and plate agglutination for B. abortus, plate agglutination and rivanol precipitation for B. melitensis, and agar gel immunodiffusion for B. ovis. Each assay had positive and negative controls. None of the analyzed samples was found to be positive, and only two sera showed partial plate agglutination against B. melitensis at a dilution of 1:25; however, at higher dilutions and to the rivanol precipitation test the same samples were negative. Therefore, the percentage of positive sera was estimated at 0% (0/208). This result makes evident the absence of positive white-tailed deer against Brucella in the sampled area, despite that this disease is considered present in domesticated species. Therefore, white-tailed deer does not have, at the present time, an important role for the dispersion of the disease. The same result has been reported in other countries. PMID:10932740

  11. Investigating the use of protein saver cards for storage and subsequent detection of bovine anti-Brucella abortus smooth lipopolysaccharide antibodies and gamma interferon.

    PubMed

    Duncombe, Lucy; Commander, Nicola J; Erdenlig, Sevil; McGiven, John A; Stack, Judy

    2013-11-01

    Brucella abortus, a smooth strain of the genus Brucella, is the causative agent of bovine brucellosis. To support the ongoing development of diagnostic tests for bovine brucellosis, the use of Protein Saver cards (Whatman) for bovine blood serum and plasma sample collection has been evaluated. These cards offer significant logistical and safety alternatives to transporting and storing liquid samples and may aid in diagnostic programs and validation studies. To evaluate the utility of these cards, 204 bovine blood serum samples from Brucella-infected and noninfected animals were stored on and eluted from the Protein Saver cards. Anti-Brucella smooth lipopolysaccharide (sLPS) antibody titers for the serum eluates were compared to those of the unprocessed original serum samples by indirect enzyme-linked immunosorbent assay (ELISA). The results showed a highly significant correlation between titers from the serum eluates and the unprocessed sera. Therefore, under these circumstances, serum eluates and unprocessed serum samples may be used interchangeably. Blood plasma from 113 mitogen-stimulated whole-blood samples was added to and eluted from the Protein Saver cards. The gamma interferon (IFN-γ) titers in the plasma eluates were compared to those of the unprocessed plasma samples obtained by IFN-γ ELISA. The results showed a significant correlation between the plasma eluates and the unprocessed plasma samples. To derive a signal in the plasma eluate, it was necessary to develop a novel and highly sensitive ELISA for the detection of IFN-γ. The serum samples stored on cards at room temperature over a 10-day period showed little variation in antibody titers. However, the plasma eluates showed a progressive loss of IFN-γ recovery over 10 days when stored at room temperature. PMID:23986318

  12. Investigating the Use of Protein Saver Cards for Storage and Subsequent Detection of Bovine Anti-Brucella abortus Smooth Lipopolysaccharide Antibodies and Gamma Interferon

    PubMed Central

    Commander, Nicola J.; Erdenlig, Sevil; McGiven, John A.; Stack, Judy

    2013-01-01

    Brucella abortus, a smooth strain of the genus Brucella, is the causative agent of bovine brucellosis. To support the ongoing development of diagnostic tests for bovine brucellosis, the use of Protein Saver cards (Whatman) for bovine blood serum and plasma sample collection has been evaluated. These cards offer significant logistical and safety alternatives to transporting and storing liquid samples and may aid in diagnostic programs and validation studies. To evaluate the utility of these cards, 204 bovine blood serum samples from Brucella-infected and noninfected animals were stored on and eluted from the Protein Saver cards. Anti-Brucella smooth lipopolysaccharide (sLPS) antibody titers for the serum eluates were compared to those of the unprocessed original serum samples by indirect enzyme-linked immunosorbent assay (ELISA). The results showed a highly significant correlation between titers from the serum eluates and the unprocessed sera. Therefore, under these circumstances, serum eluates and unprocessed serum samples may be used interchangeably. Blood plasma from 113 mitogen-stimulated whole-blood samples was added to and eluted from the Protein Saver cards. The gamma interferon (IFN-γ) titers in the plasma eluates were compared to those of the unprocessed plasma samples obtained by IFN-γ ELISA. The results showed a significant correlation between the plasma eluates and the unprocessed plasma samples. To derive a signal in the plasma eluate, it was necessary to develop a novel and highly sensitive ELISA for the detection of IFN-γ. The serum samples stored on cards at room temperature over a 10-day period showed little variation in antibody titers. However, the plasma eluates showed a progressive loss of IFN-γ recovery over 10 days when stored at room temperature. PMID:23986318

  13. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay.

    PubMed Central

    Cloeckaert, A; de Wergifosse, P; Dubray, G; Limet, J N

    1990-01-01

    A panel of monoclonal antibodies (MAbs) to seven Brucella outer membrane proteins were characterized. These antibodies were obtained by immunizing mice with sodium dodecyl sulfate-insoluble (SDS-I) fractions, cell walls, or whole bacterial cells of Brucella abortus or B. melitensis. Enzyme-linked immunosorbent assays were used to screen the hybridoma supernatants and to determine their binding at the surface of rough and smooth B. abortus and B. melitensis cells. The outer membrane proteins (OMPs) recognized by these antibodies were the proteins with molecular masses of 25 to 27 kDa and 36 to 38 kDa (porin) (major proteins) and the proteins with molecular masses of 10, 16.5, 19, 31 to 34, and 89 kDa (minor proteins). Surface exposure of these OMPs was visualized by electron microscopy by using the MAbs and immunogold labeling. Binding of the MAbs on whole rough bacterial cells indicates that the 10-, 16.5-, 19-, 25- to 27-, 31- to 34-, 36- to 38-, and 89-kDa OMPs are exposed at the cell surface. However, enzyme-linked immunosorbent assay results indicate a much better binding of the anti-OMP MAbs on rough strains than on the corresponding smooth strains except for the anti-19-kDa MAb. Immunoelectron microscopy showed that on smooth B. abortus cells only the 89- and 31- to 34-kDa OMPs were not accessible to the MAbs tested. Binding of the anti-31- to 34-kDa MAb at the cell surface was observed for the rough B. abortus cells and for the rough and smooth B. melitensis cells. These results indicate the importance of steric hindrance due to the presence of the long lipopolysaccharide O side chains in the accessibility of OMPs on smooth Brucella strains and should be considered when undertaking vaccine development. Images PMID:1701417

  14. DNAs from Brucella strains activate efficiently murine immune system with production of cytokines, reactive oxygen and nitrogen species.

    PubMed

    Tavakoli, Zahra; Ardestani, Sussan K; Lashkarbolouki, Taghi; Kariminia, Amina; Zahraei Salehi, Taghi; Tavassoli, Nasser

    2009-09-01

    Brucellosis is an infectious disease with high impact on innate immune responses which is induced partly by its DNA. In the present study the potential differences of wild type and patients isolates versus attenuated vaccine strains in terms of cytokines, ROS and NO induction on murine splenocytes and peritoneal macrophages were investigated. This panel varied in base composition and included DNA from B. abortus, B. melitensis, B.abortus strain S19 and melitensis strain Rev1, as attenuated live vaccine. Also we included Escherichia coli DNA, calf thymus DNA (a mammalian DNA), as controls. These DNA were evaluated for their ability to stimulate IL-12, TNF-alpha, IL-10, IFN-gamma and ROS production from spleenocytes as well as NO production from peritoneal macrophages. Spleen cells were cultured in 24 well at a concentration of 106 cells/ ml with subsequent addition of 10 microg/ml of Brucella or Ecoli DNAs. These cultures were incubated at 37 degrees C with 5% CO2 for 5 days. Supernatants were harvested and cytokines, ROS and NOx were evaluated. It was observed that TNF-alpha was induced in days 1,3,5 by all Brucella strains DNAs and E. coli DNA, IL-10 only was induced in day 1, IFN- gamma was induced only in day 5 and IL-12 not induced. ROS and NOx were produced by all strains; however, we observed higher production of NOx which were stimulated by DNA of B. melitensis. PMID:20124603

  15. Serological diagnosis of bovine brucellosis using B. melitensis strain B115.

    PubMed

    Corrente, Marialaura; Desario, Costantina; Parisi, Antonio; Grandolfo, Erika; Scaltrito, Domenico; Vesco, Gesualdo; Colao, Valeriana; Buonavoglia, Domenico

    2015-12-01

    Bovine brucellosis is diagnosed by official tests, such as Rose Bengal plate test (RBPT) and Complement Fixation test (CFT). Both tests detect antibodies directed against the lipolysaccharide (LPS) of Brucella cell wall. Despite their good sensitivity, those tests do not discriminate between true positive and false positive serological reactions (FPSR), the latter being generated by animals infected with other Gram negative microorganisms that share components of Brucella LPS. In this study, an antigenic extract from whole Brucella melitensis B115 strain was used to set up an ELISA assay for the serological diagnosis of bovine brucellosis. A total of 148 serum samples from five different groups of animals were tested: Group A: 28 samples from two calves experimentally infected with Yersinia enterocolitica O:9; Group B: 30 samples from bovines infected with Brucella abortus; Group C: 50 samples from brucellosis-free herds; Group D: 20 samples RBPT positive and CFT negative; Group E: 20 samples both RBPT and CFT positive. Group D and Group E serum samples were from brucellosis-free herds. Positive reactions were detected only by RBPT and CFT in calves immunized with Y. enterocolitica O:9. Sera from Group B animals tested positive also in the ELISA assay, whereas sera from the remaining groups were all negative. The results obtained encourage the use of the ELISA assay to implement the serological diagnosis of brucellosis. PMID:26476137

  16. Analysis of Ten Brucella Genomes Reveals Evidence for Horizontal Gene Transfer Despite a Preferred Intracellular Lifestyle▿ §

    PubMed Central

    Wattam, Alice R.; Williams, Kelly P.; Snyder, Eric E.; Almeida, Nalvo F.; Shukla, Maulik; Dickerman, A. W.; Crasta, O. R.; Kenyon, R.; Lu, J.; Shallom, J. M.; Yoo, H.; Ficht, T. A.; Tsolis, R. M.; Munk, C.; Tapia, R.; Han, C. S.; Detter, J. C.; Bruce, D.; Brettin, T. S.; Sobral, Bruno W.; Boyle, Stephen M.; Setubal, João C.

    2009-01-01

    The facultative intracellular bacterial pathogen Brucella infects a wide range of warm-blooded land and marine vertebrates and causes brucellosis. Currently, there are nine recognized Brucella species based on host preferences and phenotypic differences. The availability of 10 different genomes consisting of two chromosomes and representing six of the species allowed for a detailed comparison among themselves and relatives in the order Rhizobiales. Phylogenomic analysis of ortholog families shows limited divergence but distinct radiations, producing four clades as follows: Brucella abortus-Brucella melitensis, Brucella suis-Brucella canis, Brucella ovis, and Brucella ceti. In addition, Brucella phylogeny does not appear to reflect the phylogeny of Brucella species' preferred hosts. About 4.6% of protein-coding genes seem to be pseudogenes, which is a relatively large fraction. Only B. suis 1330 appears to have an intact β-ketoadipate pathway, responsible for utilization of plant-derived compounds. In contrast, this pathway in the other species is highly pseudogenized and consistent with the “domino theory” of gene death. There are distinct shared anomalous regions (SARs) found in both chromosomes as the result of horizontal gene transfer unique to Brucella and not shared with its closest relative Ochrobactrum, a soil bacterium, suggesting their acquisition occurred in spite of a predominantly intracellular lifestyle. In particular, SAR 2-5 appears to have been acquired by Brucella after it became intracellular. The SARs contain many genes, including those involved in O-polysaccharide synthesis and type IV secretion, which if mutated or absent significantly affect the ability of Brucella to survive intracellularly in the infected host. PMID:19346311

  17. Comparison between Immunization Routes of Live Attenuated Salmonella Typhimurium Strains Expressing BCSP31, Omp3b, and SOD of Brucella abortus in Murine Model

    PubMed Central

    Kim, Won K.; Moon, Ja Y.; Kim, Suk; Hur, Jin

    2016-01-01

    Live, attenuated Salmonella Typhimurium vaccine candidate expressing BCSP31, Omp3b, and SOD proteins of Brucella abortus was constructed. Thirty BALB/c mice were divided equally into three groups, Group A, were intraperitoneally (IP) inoculated with 100 μl of approximately 1.2 × 106 colony-forming units (CFUs)/ml of the Salmonella containing vector only in 100 μl as a control. And groups B and C mice were orally and IP immunized with approximately 1.2 × 109 CFU/ml of the mixture of three delivery strains in 10 μl and IP immunized with approximately 1.2 × 106 CFU/ml of the mixture in 100 μl, respectively. The serum IgG, TNF-α and IFN-γ concentrations in groups B (except Omp3b) and C were significantly higher than those in group A. Following challenge with B. abortus strain 544; challenge strain was detected <103 CFU from the spleen of all mice of group C. These results suggest that IP immunization with the mixture of the vaccine candidate can induce immune responses, and can effectively protect mice against brucellosis. PMID:27148232

  18. Comparison between Immunization Routes of Live Attenuated Salmonella Typhimurium Strains Expressing BCSP31, Omp3b, and SOD of Brucella abortus in Murine Model.

    PubMed

    Kim, Won K; Moon, Ja Y; Kim, Suk; Hur, Jin

    2016-01-01

    Live, attenuated Salmonella Typhimurium vaccine candidate expressing BCSP31, Omp3b, and SOD proteins of Brucella abortus was constructed. Thirty BALB/c mice were divided equally into three groups, Group A, were intraperitoneally (IP) inoculated with 100 μl of approximately 1.2 × 10(6) colony-forming units (CFUs)/ml of the Salmonella containing vector only in 100 μl as a control. And groups B and C mice were orally and IP immunized with approximately 1.2 × 10(9) CFU/ml of the mixture of three delivery strains in 10 μl and IP immunized with approximately 1.2 × 10(6) CFU/ml of the mixture in 100 μl, respectively. The serum IgG, TNF-α and IFN-γ concentrations in groups B (except Omp3b) and C were significantly higher than those in group A. Following challenge with B. abortus strain 544; challenge strain was detected <10(3) CFU from the spleen of all mice of group C. These results suggest that IP immunization with the mixture of the vaccine candidate can induce immune responses, and can effectively protect mice against brucellosis. PMID:27148232

  19. Evaluation of four DNA extraction protocols for Brucella abortus detection by PCR in tissues from experimentally infected cows with the 2308 strain.

    PubMed

    Vejarano, M P; Matrone, M; Keid, L B; Rocha, V C M; Ikuta, C Y; Rodriguez, C A R; Salgado, V R; Ferreira, F; Dias, R A; Telles, E O; Ferreira Neto, J S

    2013-04-01

    This study compared 4 protocols for DNA extraction from homogenates of 6 different organs of cows infected with the Brucella abortus 2308 strain. The extraction protocols compared were as follows: GT (guanidine isothiocyanate lysis), Boom (GT lysis with the carrying suspension diatomaceous earth), PK (proteinase K lysis), and Santos (lysis by boiling and freezing with liquid nitrogen). Positive and negative gold standard reference groups were generated by classical bacteriological methods. All samples were processed with the 4 DNA extraction protocols and amplified with the B4 and B5 primers. The number of positive samples in the placental cotyledons was higher than that in the other organs. The cumulated results showed that the Santos protocol was more sensitive than the Boom (p=0.003) and GT (p=0.0506) methods and was similar to the PK method (p=0.2969). All of the DNA extraction protocols resulted in false-negative results for PCR. In conclusion, despite the disadvantages of classical bacteriological methods, the best approach for direct diagnosis of B. abortus in organs of infected cows includes the isolation associated with PCR of DNA extracted from the cotyledon by the Santos or PK methods. PMID:23421881

  20. Intermediate rough Brucella abortus S19Δper mutant is DIVA enable, safe to pregnant guinea pigs and confers protection to mice.

    PubMed

    Lalsiamthara, Jonathan; Gogia, Neha; Goswami, Tapas K; Singh, R K; Chaudhuri, Pallab

    2015-05-21

    Brucella abortus S19 is a smooth strain used as live vaccine against bovine brucellosis. Smooth lipopolysaccharide (LPS) is responsible for its residual virulence and serological interference. Rough mutants defective of LPS are more attenuated but confers lower level of protection. We describe a modified B. abortus S19 strain, named as S19Δper, which exhibits intermediate rough phenotype with residual O-polysaccharide (OPS). Deletion of perosamine synthetase gene resulted in substantial attenuation of S19Δper mutant without affecting immunogenic properties. It mounted strong immune response in Swiss albino mice and conferred protection similar to S19 vaccine. Immunized mice produced higher levels of IFN-γ, IgG2a and thus has immune response inclined towards Th1 cell mediated immunity. Sera from immunized animals did not show agglutination reaction with RBPT antigen and thus could serve as DIVA (Differentiating Infected from Vaccinated Animals) vaccine. S19Δper mutant displayed more susceptibility to serum complement mediated killing and sensitivity to polymyxin B. Pregnant guinea pigs injected with S19Δper mutant completed full term of pregnancy and did not cause abortion, still birth or birth of weak offspring. S19Δper mutant with intermediate rough phenotype displayed remarkable resemblance to S19 vaccine strain with improved properties of safety, immunogenicity and DIVA capability for control of bovine brucellosis. PMID:25869887

  1. Vaccination of adult animals with a reduced dose of Brucella abortus S19 vaccine to control brucellosis on dairy farms in endemic areas of India.

    PubMed

    Chand, Puran; Chhabra, Rajesh; Nagra, Juhi

    2015-01-01

    Bovine brucellosis is an economically important disease which seriously affects dairy farming by causing colossal losses. It can be controlled by practicing vaccination of animals with Brucella abortus S19 vaccine (S19 vaccine). In the present study, adult bovines were vaccinated on seven dairy farms with a reduced dose of S19 vaccine to control brucellosis. Serological screening of adult animals (N = 1,082) by Rose Bengal test (RBT) and ELISA prior to vaccination revealed the presence and absence of brucellosis on five and two farms, respectively. The positive animals (N = 171) were segregated and those which tested negative (N = 911) were vaccinated by conjunctival route with a booster after 4 months. The conjunctival vaccination induced weak antibody response in animals, which vanished within a period of 9 to 12 weeks. Abortion in 12 animals at various stages of pregnancy and post-vaccination was recorded, but none was attributed to S19 vaccine. However, virulent B. abortus was incriminated in six heifers, and the cause of abortion could not be established in six animals. The six aborted heifers perhaps acquired infection through in utero transmission or from the environment which remained undetected until abortion. These findings suggested that vaccination of adult animals with a reduced dose of S19 vaccine by conjunctival route did not produce adverse effects like abortion in pregnant animals and persistent vaccinal antibody titers, which are the major disadvantages of subcutaneous vaccination of adult animals. PMID:25274621

  2. Genetic stability of Brucella abortus S19 and RB51 vaccine strains by multiple locus variable number tandem repeat analysis (MLVA16).

    PubMed

    Dorneles, Elaine Maria Seles; de Faria, Ana Paula Paiva; Pauletti, Rebeca Barbosa; Santana, Jordana Almeida; Caldeira, George Afonso Vítor; Heinemann, Marcos Bryan; Titze-de-Almeida, Ricardo; Lage, Andrey Pereira

    2013-10-01

    The aims of the present study were (i) to assess the in vitro genetic stability of S19 and RB51 Brucella abortus vaccines strains and (ii) to evaluate the ability of multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) as a tool to be used in the quality control of live vaccines against brucellosis. Sixty-three batches of commercial S19 (n=53) and RB51 (n=10) vaccines, produced between 2006 and 2009, were used in this study. S19 and RB51 vaccines were obtained from, respectively, seven and two different manufacturers. Ten in vitro serial passages were performed on reference strains and on selected batches of commercial vaccines. All batches, reference strains and strains of serial passages were typed by the MLVA16. The results demonstrated that B. abortus S19 and RB51 vaccine strains are genetically stable and very homogeneous in their respective groups. Anyway, batches of S19 from one manufacturer and batches of RB51 from another presented genotypes distincts from the reference vaccine strains. In both cases, differences were found on locus Bruce07, which had addition of one repeat unit in the case of S19 batches and the deletion of one repeat unit in the case of RB51 batches. In summary, MLVA16 proved to be a molecular tool capable of discriminating small genomic variations and should be included in in vitro official tests. PMID:23933375

  3. Identification of Brucella by MALDI-TOF Mass Spectrometry. Fast and Reliable Identification from Agar Plates and Blood Cultures

    PubMed Central

    Ferreira, Laura; Vega Castaño, Silvia; Sánchez-Juanes, Fernando; González-Cabrero, Sandra; Menegotto, Fabiola; Orduña-Domingo, Antonio

    2010-01-01

    Background MALDI-TOF mass spectrometry (MS) is a reliable method for bacteria identification. Some databases used for this purpose lack reference profiles for Brucella species, which is still an important pathogen in wide areas around the world. We report the creation of profiles for MALDI-TOF Biotyper 2.0 database (Bruker Daltonics, Germany) and their usefulness for identifying brucellae from culture plates and blood cultures. Methodology/Principal Findings We created MALDI Biotyper 2.0 profiles for type strains belonging to B. melitensis biotypes 1, 2 and 3; B. abortus biotypes 1, 2, 5 and 9; B. suis, B. canis, B ceti and B. pinnipedialis. Then, 131 clinical isolates grown on plate cultures were used in triplicate to check identification. Identification at genus level was always correct, although in most cases the three replicates reported different identification at species level. Simulated blood cultures were performed with type strains belonging to the main human pathogenic species (B. melitensis, B. abortus, B. suis and B. canis), and studied by MALDI-TOF MS in triplicate. Identification at genus level was always correct. Conclusions/Significance MALDI-TOF MS is reliable for Brucella identification to the genus level from culture plates and directly from blood culture bottles. PMID:21151913

  4. Immunization of BALB/c mice with Brucella abortus 2308ΔwbkA confers protection against wild-type infection

    PubMed Central

    Li, Zhi-qiang; Gui, Dan; Sun, Zhi-hua; Zhang, Jun-bo; Zhang, Wen-zhi; Guo, Fei

    2015-01-01

    Brucellosis is a zoonotic disease that causes animal and human diseases. Vaccination is a major measure for prevention of brucellosis, but it is currently not possible to distinguish vaccinated animals from those that have been naturally infected. Therefore, in this study, we constructed the Brucella (B.) abortus 2380 wbkA mutant (2308ΔwbkA) and evaluated its virulence. The survival of 2308ΔwbkA was attenuated in murine macrophage (RAW 264.7) and BALB/c mice, and it induced high protective immunity in mice. The wbkA mutant elicited an anti-Brucella-specific immunoglobulin G response and induced the secretion of gamma interferon. Antibodies to 2308ΔwbkA could be detected in sera from mice, implying the potential for use of this protein as a diagnostic antigen. The WbkA antigen would allow serological differentiation between infected and vaccinated animals. These results suggest that 2308ΔwbkA is a potential attenuated vaccine against 16M. This vaccine will be further evaluated in sheep. PMID:26040616

  5. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN

    PubMed Central

    2010-01-01

    Background Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and analysis system that curates, stores, and analyzes published data of commercialized vaccines, and vaccines in clinical trials or in research. VIOLIN contains information for 454 vaccines or vaccine candidates for 73 pathogens. VIOLIN also contains many bioinformatics tools for vaccine data analysis, data integration, and vaccine target prediction. To demonstrate the applicability of VIOLIN for vaccine research, VIOLIN was used for bioinformatics analysis of existing Brucella vaccines and prediction of new Brucella vaccine targets. Results VIOLIN contains many literature mining programs (e.g., Vaxmesh) that provide in-depth analysis of Brucella vaccine literature. As a result of manual literature curation, VIOLIN contains information for 38 Brucella vaccines or vaccine candidates, 14 protective Brucella antigens, and 68 host response studies to Brucella vaccines from 97 peer-reviewed articles. These Brucella vaccines are classified in the Vaccine Ontology (VO) system and used for different ontological applications. The web-based VIOLIN vaccine target prediction program Vaxign was used to predict new Brucella vaccine targets. Vaxign identified 14 outer membrane proteins that are conserved in six virulent strains from B. abortus, B. melitensis, and B. suis that are pathogenic in humans. Of the 14 membrane proteins, two proteins (Omp2b and Omp31-1) are not present in B. ovis, a Brucella species that is not pathogenic in humans. Brucella vaccine data stored in VIOLIN were compared and analyzed using the VIOLIN query system. Conclusions Bioinformatics curation and ontological

  6. Structural, functional and immunogenic insights on Cu,Zn superoxide dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus

    SciTech Connect

    Pratt, Ashley J.; DiDonato, Michael; Shin, David S.; Cabelli, Diane E.; Bruns, Cami K.; Belzer, Carol A.; Gorringe, Andrew R.; Langford, Paul R.; Tabatabai, Louisa B.; Kroll, J. Simon; Tainer, John A.; Getzoff, Elizabeth D.

    2015-10-12

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen, general pathogenicity factors and therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomic details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes and suggest general targets for anti-bacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors or vaccines against these harmful pathogens.

    IMPORTANCE By

  7. Interaction Network and Localization of Brucella abortus Membrane Proteins Involved in the Synthesis, Transport, and Succinylation of Cyclic β-1,2-Glucans

    PubMed Central

    Guidolin, Leticia S.; Morrone Seijo, Susana M.; Guaimas, Francisco F.

    2015-01-01

    ABSTRACT Cyclic β-1,2-glucans (CβG) are periplasmic homopolysaccharides that play an important role in the virulence and interaction of Brucella with the host. Once synthesized in the cytoplasm by the CβG synthase (Cgs), CβG are transported to the periplasm by the CβG transporter (Cgt) and succinylated by the CβG modifier enzyme (Cgm). Here, we used a bacterial two-hybrid system and coimmunoprecipitation techniques to study the interaction network between these three integral inner membrane proteins. Our results indicate that Cgs, Cgt, and Cgm can form both homotypic and heterotypic interactions. Analyses carried out with Cgs mutants revealed that the N-terminal region of the protein (Cgs region 1 to 418) is required to sustain the interactions with Cgt and Cgm as well as with itself. We demonstrated by single-cell fluorescence analysis that in Brucella, Cgs and Cgt are focally distributed in the membrane, particularly at the cell poles, whereas Cgm is mostly distributed throughout the membrane with a slight accumulation at the poles colocalizing with the other partners. In summary, our results demonstrate that Cgs, Cgt, and Cgm form a membrane-associated biosynthetic complex. We propose that the formation of a membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating their synthesis with the transport and modification. IMPORTANCE In this study, we analyzed the interaction and localization of the proteins involved in the synthesis, transport, and modification of Brucella abortus cyclic β-1,2-glucans (CβG), which play an important role in the virulence and interaction of Brucella with the host. We demonstrate that these proteins interact, forming a complex located mainly at the cell poles; this is the first experimental evidence of the existence of a multienzymatic complex involved in the metabolism of osmoregulated periplasmic glucans in bacteria and argues for another example of pole differentiation in Brucella

  8. Molecular and immunological characterisation of recombinant Brucella abortus glyceraldehyde-3-phosphate-dehydrogenase, a T- and B-cell reactive protein that induces partial protection when co-administered with an interleukin-12-expressing plasmid in a DNA vaccine formulation.

    PubMed

    Rosinha, Gracia M S; Myioshi, Anderson; Azevedo, Vasco; Splitter, Gary A; Oliveira, Sergio C

    2002-08-01

    To identify antigens of Brucella spp. that are potentially involved in stimulating a protective T-cell-mediated immune response, previous studies identified 10 clones from a Brucella abortus 2308 genomic library with primed lymphocytes as probes. One selected positive clone (182) contained an insert of 1.2 kb which was identified, sequenced and characterised. The deduced amino acid sequence of the open reading frame (ORF) revealed 82% and 81% identity to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymes from Agrobacterium tumefaciens and Xanthobacter flavus, respectively. Southern blot analysis demonstrated that the gap gene is present in only one copy in the Brucella genome. B. abortus GAPDH was then expressed in Escherichia coli as a fusion protein with the maltose-binding protein (MBP). To demonstrate the functional activity of Brucella GAPDH, E. coli gap mutants were transformed with a Brucella pMAL-gap construct. Genetic complementation was achieved and as a result E. coli mutants were able to grow on glucose or other carbon source medium. The humoral and cellular immune responses to the recombinant (r) GAPDH were characterised. In Western blots, sera from naturally infected cattle and sheep showed antibody reactivity against rGAPDH. In response to in-vitro stimulation by rGAPDH, splenocytes from mice vaccinated with rGAPDH or B. abortus S19 were able to produce gamma-interferon and tumour necrosis factor-a but not interleukin (IL)-4. Furthermore, gap associated with murine IL-12 gene in a DNA vaccine formulation partially protected mice against experimental infection. PMID:12171297

  9. Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system

    PubMed Central

    Cardoso, Patrícia Gomes; Macedo, Gilson Costa; Azevedo, Vasco; Oliveira, Sergio Costa

    2006-01-01

    Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. Several species are recognized within the genus Brucella and this classification is mainly based on the difference in pathogenicity and in host preference. Brucella strains may occur as either smooth or rough, expressing smooth LPS (S-LPS) or rough LPS (R-LPS) as major surface antigen. This bacterium possesses an unconventional non-endotoxic lipopolysaccharide that confers resistance to anti-microbial attacks and modulates the host immune response. The strains that are pathogenic for humans (B. abortus, B. suis, B. melitensis) carry a smooth LPS involved in the virulence of these bacteria. The LPS O-chain protects the bacteria from cellular cationic peptides, oxygen metabolites and complement-mediated lysis and it is a key molecule for Brucella survival and replication in the host. Here, we review i) Brucella LPS structure; ii) Brucella genome, iii) genes involved in LPS biosynthesis; iv) the interaction between LPS and innate immunity. PMID:16556309

  10. Novel influenza virus vectors expressing Brucella L7/L12 or Omp16 proteins in cattle induced a strong T-cell immune response, as well as high protectiveness against B. abortus infection.

    PubMed

    Tabynov, Kaissar; Kydyrbayev, Zhailaubay; Ryskeldinova, Sholpan; Yespembetov, Bolat; Zinina, Nadezhda; Assanzhanova, Nurika; Kozhamkulov, Yerken; Inkarbekov, Dulat; Gotskina, Tatyana; Sansyzbay, Abylai

    2014-04-11

    This paper presents the results of a study of the immunogenicity and protectiveness of new candidate vector vaccine against Brucella abortus - a bivalent vaccine formulation consisting of a mixture of recombinant influenza A subtype H5N1 or H1N1 (viral constructs vaccine formulation) viruses expressing Brucella ribosomal protein L7/L12 and Omp16, in cattle. To increase the effectiveness of the candidate vaccine, adjuvants such as Montanide Gel01 or chitosan were included in its composition. Immunization of cattle (heifers aged 1-1.5 years, 5 animals per group) with the viral constructs vaccine formulation only, or its combination with adjuvants Montanide Gel01 or chitosan, was conducted via the conjunctival method using cross prime (influenza virus subtype H5N1) and booster (influenza virus subtype H1N1) vaccination schedules at an interval of 28 days. Vaccine candidates were evaluated in comparison with the positive (B. abortus S19) and negative (PBS) controls. The viral constructs vaccine formulations, particularly in combination with Montanide Gel01 adjuvant promoted formation of IgG antibodies (with a predominance of antibodies of isotype IgG2a) against Brucella L7/L12 and Omp16 proteins in ELISA. Moreover, these vaccines in cattle induced a strong antigen-specific T-cell immune response, as indicated by a high number of CD4(+) and CD8(+) cells, as well as the concentration of IFN-γ, and most importantly provided a high level of protectiveness comparable to the commercial B. abortus S19 vaccine and superior to the B. abortus S19 vaccine in combination with Montanide Gel01 adjuvant. Based on these findings, we recommended the bivalent vaccine formulation containing the adjuvant Montanide Gel01 for practical use in cattle. PMID:24598723

  11. Protective Immunity Elicited by a Divalent DNA Vaccine Encoding Both the L7/L12 and Omp16 Genes of Brucella abortus in BALB/c Mice

    PubMed Central

    Luo, Deyan; Ni, Bing; Li, Peng; Shi, Wei; Zhang, Songle; Han, Yue; Mao, Liwei; He, Yangdong; Wu, Yuzhang; Wang, Xiliang

    2006-01-01

    This study was designed to evaluate the immunogenicity and the protective efficacy of a divalent fusion DNA vaccine encoding both the Brucella abortus L7/L12 protein (ribosomal protein) and Omp16 protein (outer membrane lipoprotein), designated pcDNA3.1-L7/L12-Omp16. Intramuscular injection of this divalent DNA vaccine into BALB/c mice elicited markedly both humoral and cellular immune responses. The specific antibodies exhibited a dominance of immunoglobulin G2a (IgG2a) over IgG1. In addition, the dual-gene DNA vaccine elicited a strong T-cell proliferative response and induced a large amount of gamma interferon-producing T cells upon restimulation in vitro with recombinant fusion protein L7/L12-Omp16, suggesting the induction of a typical T-helper-1-dominated immune response in vivo. This divalent DNA vaccine could also induce a significant level of protection against challenge with the virulent strain B. abortus 544 in BALB/c mice. Furthermore, the protection level induced by the divalent DNA vaccine was significantly higher than that induced by the univalent DNA vaccines pcDNA3.1-L7/L12 or pcDNA3.1-Omp16. Taken together, the results of this study verify for the first time that the Omp16 gene can be a candidate target for a DNA vaccine against brucellosis. Additionally, a divalent genetic vaccine based on the L7/L12 and Omp16 genes can elicit a stronger cellular immune response and better immunoprotection than the relevant univalent vaccines can. PMID:16622210

  12. Immune Responses and Protection against Experimental Challenge after Vaccination of Bison with Brucella abortus Strain RB51 or RB51 Overexpressing Superoxide Dismutase and Glycosyltransferase Genes▿

    PubMed Central

    Olsen, S. C.; Boyle, S. M.; Schurig, G. G.; Sriranganathan, N. N.

    2009-01-01

    Vaccination is a tool that could be beneficial in managing the high prevalence of brucellosis in free-ranging bison in Yellowstone National Park. In this study, we characterized immunologic responses and protection against experimental challenge after vaccination of bison with Brucella abortus strain RB51 (RB51) or a recombinant RB51 strain overexpressing superoxide dismutase (sodC) and glycosyltransferase (wboA) genes (RB51+sodC,wboA). Bison were vaccinated with saline only or with 4.6 × 1010 CFU of RB51 or 7.4 × 1010 CFU of RB51+sodC,wboA (n = eight animals/treatment). Bison vaccinated with RB51 or RB51+sodC,wboA had greater (P < 0.05) antibody responses, proliferative responses, and production of gamma interferon to RB51 after vaccination than did nonvaccinates. However, bison vaccinated with RB51+sodC,wboA cleared the vaccine strain from draining lymph nodes faster than bison vaccinated with the parental RB51 strain. Immunologic responses of bison vaccinated with RB51+sodC,wboA were similar to responses of bison vaccinated with RB51. Pregnant bison were intraconjunctivally challenged in midgestation with 107 CFU of B. abortus strain 2308. Bison vaccinated with RB51, but not RB51+sodC,wboA vaccinates, had greater protection from abortion, fetal/uterine, mammary, or maternal infection than nonvaccinates. Our data suggest that the RB51+sodC,wboA strain is less efficacious as a calfhood vaccine for bison than the parental RB51 strain. Our data also suggest that the RB51 vaccine is a currently available management tool that could be utilized to help reduce brucellosis in free-ranging bison. PMID:19176693

  13. LOV Histidine Kinase Modulates the General Stress Response System and Affects the virB Operon Expression in Brucella abortus

    PubMed Central

    Sycz, Gabriela; Carrica, Mariela Carmen; Tseng, Tong-Seung; Bogomolni, Roberto A.; Briggs, Winslow R.; Goldbaum, Fernando A.; Paris, Gastón

    2015-01-01

    Brucella is the causative agent of the zoonotic disease brucellosis, and its success as an intracellular pathogen relies on its ability to adapt to the harsh environmental conditions that it encounters inside the host. The Brucella genome encodes a sensor histidine kinase containing a LOV domain upstream from the kinase, LOVHK, which plays an important role in light-regulated Brucella virulence. In this report we study the intracellular signaling pathway initiated by the light sensor LOVHK using an integrated biochemical and genetic approach. From results of bacterial two-hybrid assays and phosphotransfer experiments we demonstrate that LOVHK functionally interacts with two response regulators: PhyR and LovR, constituting a functional two-component signal-transduction system. LOVHK contributes to the activation of the General Stress Response (GSR) system in Brucella via PhyR, while LovR is proposed to be a phosphate-sink for LOVHK, decreasing its phosphorylation state. We also show that in the absence of LOVHK the expression of the virB operon is down-regulated. In conclusion, our results suggest that LOVHK positively regulates the GSR system in vivo, and has an effect on the expression of the virB operon. The proposed regulatory network suggests a similar role for LOVHK in other microorganisms. PMID:25993430

  14. Differential diagnosis of Brucella abortus by real-time PCR based on a single-nucleotide polymorphisms

    PubMed Central

    KIM, Ji-Yeon; KANG, Sung-Il; LEE, Jin Ju; LEE, Kichan; SUNG, So-Ra; ERDENEBAATAAR, Janchivdorj; VANAABAATAR, Batbaatar; JUNG, Suk Chan; PARK, Yong Ho; YOO, Han-Sang; HER, Moon

    2015-01-01

    To diagnose brucellosis effectively, many genus- and species-specific detection methods based on PCR have been developed. With conventional PCR assays, real-time PCR techniques have been developed as rapid diagnostic tools. Among them, real-time PCR using hybridization probe (hybprobe) has been recommended for bacteria with high DNA homology among species, with which it is possible to make an accurate diagnosis by means of an amplification curve and melting peak analysis. A hybprobe for B. abortus was designed from a specific single-nucleotide polymorphism (SNP) on the fbaA gene. This probe only showed specific amplification of B. abortus from approximately the 14th cycle, given a melting peak at 69°C. The sensitivity of real-time PCR was revealed to be 20 fg/µl by 10-fold DNA dilution, and the detection limit was 4 CFU in clinical samples. This real-time PCR showed greater sensitivity than that of conventional PCR and previous real-time PCR based on Taqman probe. Therefore, this new real-time PCR assay could be helpful for differentiating B. abortus infection with rapidity and accuracy. PMID:26666176

  15. Differential diagnosis of Brucella abortus by real-time PCR based on a single-nucleotide polymorphisms.

    PubMed

    Kim, Ji-Yeon; Kang, Sung-Il; Lee, Jin Ju; Lee, Kichan; Sung, So-Ra; Erdenebaataar, Janchivdorj; Vanaabaatar, Batbaatar; Jung, Suk Chan; Park, Yong Ho; Yoo, Han-Sang; Her, Moon

    2016-05-01

    To diagnose brucellosis effectively, many genus- and species-specific detection methods based on PCR have been developed. With conventional PCR assays, real-time PCR techniques have been developed as rapid diagnostic tools. Among them, real-time PCR using hybridization probe (hybprobe) has been recommended for bacteria with high DNA homology among species, with which it is possible to make an accurate diagnosis by means of an amplification curve and melting peak analysis. A hybprobe for B. abortus was designed from a specific single-nucleotide polymorphism (SNP) on the fbaA gene. This probe only showed specific amplification of B. abortus from approximately the 14th cycle, given a melting peak at 69°C. The sensitivity of real-time PCR was revealed to be 20 fg/µl by 10-fold DNA dilution, and the detection limit was 4 CFU in clinical samples. This real-time PCR showed greater sensitivity than that of conventional PCR and previous real-time PCR based on Taqman probe. Therefore, this new real-time PCR assay could be helpful for differentiating B. abortus infection with rapidity and accuracy. PMID:26666176

  16. Evaluation of the combined use of the recombinant Brucella abortus Omp10, Omp19 and Omp28 proteins for the clinical diagnosis of bovine brucellosis.

    PubMed

    Simborio, Hannah Leah Tadeja; Lee, Jin Ju; Bernardo Reyes, Alisha Wehdnesday; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, Wongi; Lee, Hu Jang; Yoo, Han Sang; Kim, Suk

    2015-01-01

    Currently, there are several serodiagnostic tools available for brucellosis, however, it is difficult to differentiate an active infection from vaccination. Hence, there is a great need to develop alternative means that can distinguish between these two conditions without utilizing lipopolysaccharide (LPS). This study was an attempt to determine the efficacy of combined recombinant Brucella (B.) abortus outer membrane proteins (rOmps) and individual rOmps in the serodiagnosis of brucellosis by enzyme linked immunosorbent assay (ELISA), utilizing both that standard tube agglutination test (TAT)-positive and -negative serum samples from Korean native cattle. The results are very interesting and promising because the combined rOmp antigens used in the study were highly reactive with the TAT-positive serum samples. The combined rOmps sensitivity, specificity and accuracy were 215/232 (92.67%), 294/298 (98.66%) and 509/530 (96.04%), respectively. While these results are preliminary, the tests performed have very high potential in the serodiagnosis of brucellosis and likewise, the combined rOmps can be used for future vaccine production. PMID:25988974

  17. Immune Responses and Protection against Experimental Brucella suis Biovar 1 Challenge in Nonvaccinated or B. abortus Strain RB51-Vaccinated Cattle▿

    PubMed Central

    Olsen, S. C.; Hennager, S. G.

    2010-01-01

    Twenty Hereford heifers approximately 9 months of age were vaccinated with saline (control) or 2 × 1010 CFU of the Brucella abortus strain RB51 (RB51) vaccine. Immunologic responses after inoculation demonstrated significantly greater (P < 0.05) antibody and proliferative responses to RB51 antigens in cattle vaccinated with RB51 than in the controls. Pregnant cattle received a conjunctival challenge at approximately 6 months of gestation with 107 CFU of B. suis bv. 1 strains isolated from naturally infected cattle. The fluorescence polarization assay and the buffered acid plate agglutination test had the highest sensitivities in detecting B. suis-infected cattle between 2 and 12 weeks after experimental infection. Serologic responses and lymphocyte proliferative responses to B. suis antigens did not differ between control and RB51 vaccinees after experimental infection. No abortions occurred in cattle in either treatment group after challenge, although there appeared to be an increased incidence of retained placenta after parturition in both the control and the RB51 vaccination treatment groups. Our data suggest that the mammary gland is a preferred site for B. suis localization in cattle. Vaccination with RB51 did not reduce B. suis infection rates in maternal or fetal tissues. In conclusion, although B. suis is unlikely to cause abortions and fetal losses in cattle, our data suggest that RB51 vaccination will not protect cattle against B. suis infection after exposure. PMID:20943881

  18. Evaluation of Brucella abortus S19 vaccine strains by bacteriological tests, molecular analysis of ery loci and virulence in BALB/c mice.

    PubMed

    Mukherjee, Falguni; Jain, Jainendra; Grilló, Maria Jesús; Blasco, José María; Nair, Mrinalini

    2005-09-01

    Two Brucella abortus S19 commercial vaccine strains used for vaccination against brucellosis in India and three S19 strains available as international reference were examined by microbiological assays and molecular analysis of the ery loci involved in erythritol metabolism, and tested for residual virulence in BALB/c mice. According to the sensitivity to penicillin and i-erythritol, the five strains tested had the phenotypic characteristics of strain S19. However, on culture medium containing i-erythritol, all strains developed spontaneous i-erythritol resistant colonies at mutation rates ranging from 1.42x10(-2) to 1.33x10(-6). The S19 characteristic 702 bp deletion in the erythrulose 1-phosphate dehydrogenase gene of the ery locus was present only in the three reference strains but not in the two commercial vaccines. Both commercial strains and one of the reference strains showed reduced virulence in BALB/c mice. The presence or absence in S19 strains of the 702 bp deletion in the ery locus had no correlation with either the rates of spontaneous mutation to erythritol resistance or the residual virulence in mice. PMID:16081301

  19. Serological profile of buffalo (Bubalus bubalis) female calves vaccinated with standard Brucella abortus strain 19 vaccine using rose bengal, 2-mercaptoethanol and complement fixation tests.

    PubMed

    Nardi, G Júnior; Ribeiro, M G; Jorge, A M; Megid, J; Silva, L M P

    2012-03-01

    The serological profiles of 21 female buffaloes vaccinated between 3 and 8 months of age using Brucella abortus strain 19 (S19) were evaluated by rose bengal (RBT), 2-mercaptoethanol (2ME) and complement fixation (CFT) tests. The serum strains were collected in day zero, 15, 30, 45, 60th days and subsequently to each 30 months, until 720th day after vaccination. No animal showed reaction in day zero. In 15th day above 95% of animals revealed reaction in all tests. All the animals presented absence of reactions in CFT, RBT and 2ME tests at 270, 300 and 360 days after vaccination, respectively. Our finding highlighted early response in CFT compared than other conventional agglutination tests. None of animals presented oscillation of titers or reactions in any test after 360 day of study, which enables the use of these tests after this period without interference of antibodies from S19 vaccine origin between 3 and 8 months in buffalo heifers. PMID:22284623

  20. Mass vaccination as a complementary tool in the control of a severe outbreak of bovine brucellosis due to Brucella abortus in Extremadura, Spain.

    PubMed

    Sanz, Cristina; Sáez, José Luis; Alvarez, Julio; Cortés, María; Pereira, Gema; Reyes, Aurelia; Rubio, Félix; Martín, Javier; García, Nerea; Domínguez, Lucas; Hermoso-de-Mendoza, María; Hermoso-de-Mendoza, Javier

    2010-11-01

    We report the evolution of an outbreak of bovine brucellosis (Brucella abortus) in the region of Extremadura (Spain) involving more than 1000 herds and nearly 40,000 animals. S19 vaccination of young cattle combined with a test and slaughter strategy did not result in a rapid decrease in herd prevalence and animal incidence; these parameters showed a constant decreasing trend only when a combination of restriction of cattle movements, increased test frequency, S19 vaccination and mass RB51 vaccination (with yearly revaccinations) were applied to all susceptible populations. These measures were applied for 5 years; abortions following RB51 vaccination of pregnant cows were limited to the first inoculation and the involvement of the vaccine strain could only be demonstrated in 78 out of 897 abortions. Our results demonstrate the usefulness - and lack of significant side effects - of RB51 mass vaccination as a complementary tool to control bovine brucellosis outbreaks in areas where the disease cannot be contained using more conservative approaches. PMID:20833439

  1. Structural and functional insights into the stationary-phase survival protein SurE, an important virulence factor of Brucella abortus.

    PubMed

    Tarique, K F; Abdul Rehman, S A; Devi, S; Tomar, Priya; Gourinath, S

    2016-05-01

    The stationary-phase survival protein SurE from Brucella abortus (BaSurE) is a metal-dependent phosphatase that is essential for the survival of this bacterium in the stationary phase of its life cycle. Here, BaSurE has been biochemically characterized and its crystal structure has been determined to a resolution of 1.9 Å. BaSurE was found to be a robust enzyme, showing activity over wide ranges of temperature and pH and with various phosphoester substrates. The active biomolecule is a tetramer and each monomer was found to consist of two domains: an N-terminal domain, which forms an approximate α + β fold, and a C-terminal domain that belongs to the α/β class. The active site lies at the junction of these two domains and was identified by the presence of conserved negatively charged residues and a bound Mg(2+) ion. Comparisons of BaSurE with its homologues have revealed both common features and differences in this class of enzymes. The number and arrangement of some of the equivalent secondary structures, which are seen to differ between BaSurE and its homologues, are responsible for a difference in the size of the active-site area and the overall oligomeric state of this enzyme in other organisms. As it is absent in mammals, it has the potential to be a drug target. PMID:27139831

  2. Serological survey of Brucella canis in dogs in urban Harare and selected rural communities in Zimbabwe.

    PubMed

    Chinyoka, Simbarashe; Dhliwayo, Solomon; Marabini, Lisa; Dutlow, Keith; Matope, Gift; Pfukenyi, Davies M

    2014-01-01

    A cross-sectional study was conducted in order to detect antibodies for Brucella canis (B. canis) in dogs from urban Harare and five selected rural communities in Zimbabwe. Sera from randomly selected dogs were tested for antibodies to B. canis using an enzyme-linked immunosorbent assay. Overall, 17.6% of sera samples tested (57/324, 95% CI: 13.5-21.7) were positive for B. canis antibodies. For rural dogs, seroprevalence varied from 11.7% - 37.9%. Rural dogs recorded a higher seroprevalence (20.7%, 95% CI: 15.0-26.4) compared with Harare urban dogs (12.7%, 95% CI: 6.9-18.5) but the difference was not significant (p = 0.07). Female dogs from both sectors had a higher seroprevalence compared with males, but the differences were not significant (p > 0.05). Five and two of the positive rural dogs had titres of 1:800 and 1:1600, respectively, whilst none of the positive urban dogs had a titre above 1:400. This study showed that brucellosis was present and could be considered a risk to dogs from the studied areas. Further studies are recommended in order to give insight into the epidemiology of brucellosis in dogs and its possible zoonotic consequences in Zimbabwe. Screening for other Brucella spp. (Brucella abortus, Brucella melitensis and Brucella suis) other than B. canis is also recommended. PMID:24830899

  3. Genome Degradation in Brucella ovis Corresponds with Narrowing of Its Host Range and Tissue Tropism

    PubMed Central

    Tsolis, Renee M.; Seshadri, Rekha; Santos, Renato L.; Sangari, Felix J.; Lobo, Juan M. García; de Jong, Maarten F.; Ren, Qinghu; Myers, Garry; Brinkac, Lauren M.; Nelson, William C.; DeBoy, Robert T.; Angiuoli, Samuel; Khouri, Hoda; Dimitrov, George; Robinson, Jeffrey R.; Mulligan, Stephanie; Walker, Richard L.; Elzer, Philip E.; Hassan, Karl A.; Paulsen, Ian T.

    2009-01-01

    Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis. PMID:19436743

  4. The serological relationship between Brucella spp., Yersinia enterocolitica serotype IX and Salmonella serotypes of Kauffmann-White group N.

    PubMed Central

    Corbell, M. J.

    1975-01-01

    The serological relationship between Brucella spp., Yersinia enterocolitica IX, and the group N salmonella serotypes S. godesberg, S. landau, S. morehead, S. neusdorf, S. soerenga and S. urbana was examined using agglutination, antiglobulin, complement fixation, immunodiffusion and fluorescent antibody methods. Antisera to the group N salmonella serotypes all reacted to significant titres in agglutination and complement fixation, but not antiglobulin or immunodiffusion tests with smooth brucella antigens. These antisera also reacted in agglutination, but not antiglobulin, tests with Y. enterocolitica IX. They did not react significantly in any tests with rough brucella antigens. Conversely, antisera to smooth Brucella spp. agglutinated group N salmonellas to low titre and Y. enterocolitica IX to titres similar to those given against the homologous strain. Antiserum to Y. enterocolitica IX on the other hand reacted with smooth brucella antigens to high titre in agglutination, complement fixation and antiglobulin tests, and with the group N salmonella antigens to substantial titres in agglutination tests. In direct fluorescent antibody tests, smooth Brucella strains and Y. enterocolitica IX reacted strongly with FITC-labelled antibody to Br. abortus whereas the group N salmonella strains reacted weakly. In tests with monospecific antisera to the A and M determinants of Br. abortus and Br. melitensis respectively, Y. enterocolitica IX reacted only with the antiserum to the A determinant whereas group N salmonellas reacted to low titre with both A and M antisera. The results of cross-absorption tests confirmed this relationship and suggested that the O30 antigens of group N salmonella serotypes contained antigenic determinants similar to, but not identical with, the antigenic structure shared by smooth Brucella spp. and Y. enterocolitica IX. PMID:807618

  5. Brucellosis seroprevalence in Bali cattle with reproductive failure in South Sulawesi and Brucella abortus biovar 1 genotypes in the Eastern Indonesian archipelago

    PubMed Central

    2013-01-01

    Background Brucellosis is a major cause of infertility and reproductive failure in livestock. While cattle in the Eastern Indonesian archipelago suffers from reproductive problems information on bovine brucellosis in the region is fragmentary. The control of brucellosis requires a major and prolonged effort and confirmation of the infection by isolation with detailed knowledge of the spread of the infection is essential when planning a control program. Results Serological investigation of Brucella infection in beef cattle tended under extensive farming conditions revealed a high seroprevalence (19.3%; 95% CI, 17–22) in the compliment fixation tests. The results of a rapid and simple field test correlated well with the Rose Bengal test (kappa, 0.917) and indicated an acceptable sensitivity (87.5%) and specificity (98.1%) compared with the complement fixation test. Reproductive failure was reported for 39.0% of the cows with a loss of calves due to abortion or early death amounting to 19.3%. Past reproductive failure did not, however, correlate with seropositivity in the complement fixation test (RP = 1.21; P = 0.847). B. abortus biovar 1 was freshly isolated from the hygromas of two cows and together with thirty banked isolates collected since 1990 from different parts of Sulawesi and Timor eight related genotypes could be distinguished with one genotype being identical to that of an isolate (BfR91) from Switzerland. The Indonesian genotypes formed together with BfR91 and one African and one North American isolate a distinct branch on the B. abortus biovar 1 dendogram. Conclusions Bovine brucellosis appears to be widespread in the Eastern Indonesian archipelago and calls for urgent intervention. The fresh isolation of the pathogen together with the observed high seroprevalence demonstrates the presence and frequent exposure of cattle in the area to the pathogen. The application of a rapid and simple field test for brucellosis could be very useful for the

  6. Comparing Rapid and Specific Detection of Brucella in Clinical Samples by PCR-ELISA and Multiplex-PCR Method

    PubMed Central

    Mohammad Hasani, Sharareh; Mirnejad, Reza; Amani, Jafar; Vafadar, Mohamad javad

    2016-01-01

    Background: Rapid diagnosis and differentiation of Brucella is of high importance due to the side effects of antibiotics for the treatment of brucellosis. This study aimed to identify and compare PCR-ELISA as a more accurate diagnositc test with other common molecular and serological tests. Methods: In this experimental and sectional study, during March 2014 to Sep 2015, 52 blood samples of suspected patients with clinical symptoms of brucellosis were evaluated in medical centers all over Iran with serum titers higher than 1:80. Using two pairs of specific primers of Brucella abortus, B. melitensis and DIG-dUTP, Fragment IS711 (The common gene fragment in B. melitensis and B. abortus) was amplified. DIG-ELISA was performed using specific probes of these 2 species of Brucella and patterns were subsequently analyzed, then positive responses were compared by detecting gel electrophoresis. Results: PCR-ELISA method detected all 28 samples from 52 positive samples. Its sensitivity was 6.0 pg concentration of genomic DNA of Brucella. In gel electrophoresis method, 22 samples of all positive samples were detected. PCR-ELISA was more efficient than PCR and bacterial culture method at P-value <0.05. Conclusion: PCR-ELISA molecular method is more sensitive than other molecular methods, lack of mutagenic color and also a semi-quantitative ability. This method is more effective and more accurate compared to PCR, serology and culture of bacteria. PCR-ELISA does not have false responses. The limitation of this method is detection of bacteria in the genus compared to Multiplex PCR and Gel Electrophoresis. PMID:27499776

  7. Evaluation of Th1/Th2-Related Immune Response against Recombinant Proteins of Brucella abortus Infection in Mice.

    PubMed

    Im, Young Bin; Park, Woo Bin; Jung, Myunghwan; Kim, Suk; Yoo, Han Sang

    2016-06-28

    Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis. PMID:27012238

  8. Expression of cytokine and apoptosis-related genes in bovine peripheral blood mononuclear cells stimulated with Brucella abortus recombinant proteins.

    PubMed

    Im, Young Bin; Jung, Myunghwan; Shin, Min-Kyoung; Kim, Suk; Yoo, Han Sang

    2016-01-01

    Brucellosis is a clinically and economically important disease. Therefore, eradication programs of the disease have been implemented in several countries. One hurdle in these programs is the detection of infected animals at the early stage. Although the protein antigens as diagnostic antigens have recently received attention, the exact mechanisms at the beginning of immune responses are not yet known. Therefore, genes encoding five B. abortus cellular proteins were cloned and the expressed recombinant proteins were purified. The expression of several cytokine genes (IL-1β, IL-4, IL-6, IL-12p40, IFN-γ, TNF-α, and iNOS) was analyzed in bovine peripheral blood mononuclear cells (bPBMC) after stimulation with the recombinant proteins. Three apoptosis-related genes, Bax, Bcl-2, and TLR4, were also included in the analysis to find out the adverse effects of the proteins to the cells. Each protein induced different patterns of cytokine expression depending on the stimulation time and antigen dose. Expression of IL-6, IL-12p40, and IFN-γ was induced with all of the proteins while IL-1β, IL-4, TNF-α, and iNOS gene expression was not. Expression of apoptosis-related genes was not altered except TLR4. These results suggest that the cellular antigens of B. abortus induce both humoral and cellular immunity via the production of IL-6, IL-12p40, and IFN-γ in bPBMC without exerting any adverse effects on the cells. PMID:26864657

  9. The changing Brucella ecology: novel reservoirs, new threats.

    PubMed

    Pappas, Georgios

    2010-11-01

    Brucellosis is a zoonosis that preceded humans but continues to cause significant medical, veterinary and socioeconomic problems, mainly because its overall burden remains underestimated and neglected. Its ecology, or what we know of it, has evolved rapidly in recent years. Two novel species, Brucella ceti and B. pinnipedialis, with the potential for causing human disease have been isolated from marine mammals. Another novel species, B. microti, has been isolated from wildlife animals, whilst B. inopinata has been isolated from a human case. An active spillover of Brucella between domestic animals and wildlife is also being recognised, with elk transmitting B. abortus to cattle, and freshwater fish becoming infected with B. melitensis from waste meat. In recent years the global epidemiology of the disease has not altered drastically, apart from increased awareness of brucellosis in sub-Saharan Africa and a rapid expansion of disease endemicity in the Balkan Peninsula. Isolated stories and events underline that Brucella knows no borders. The modern world has offered the pathogen the ability to travel and manifest itself anywhere and has also offered scientists the ability to track these manifestations better than ever before. This may allow the disease to be neglected no longer, or at least to be recognised as neglected. PMID:20696557

  10. EPIDEMIOLOGY AND MOLECULAR TYPING OF BRUCELLA STRAINS CIRCULATING IN GEORGIA.

    PubMed

    Sidamonidze, K; Ramishvili, M; Kalandadze, I; Tsereteli, D; Nikolich, M P

    2015-10-01

    In 2009-2013, 851 cases of brucellosis were registered in Georgia. Most cases of brucellosis were found in eastern Georgia (91.3% of cases). Mainly men were infected with brucellosis (81.0%).The age group with the most frequent cases of brucellosis is 30-59 years (48.5%). Brucellosis is rarely found among children(0-4 years - 2.0%, 5-14 years - 8.0%). Brucellosis cases were linked to professional activity; mainly by farmers (33.0% of those infected) and shepherds (27.0%). Biotyping Brucella by microbiological methods alone has limitations, so molecular typing was implemented in this study to confirm species. Isolates from human blood and ruminant milk or blood were identified by a bacteriological algorithm and confirmed by real-time PCR (Brucella T1, Idaho Technology). Species identity was confirmed using the AMOS conventional PCR assay, which differentiates four human pathogenic species but cannot recognize certain biovars within them. This gap was addressed by using more universal species-specific Single Nucleotide Polymorphism (SNP) assays. Real-time PCR was used to confirm 86 Brucella strains (48 human, 38 animal isolates) obtained 2009-2011. AMOS PCR supported the biochemical test results for 53 B. melitensis and four B. abortus strains, but not for 29 suspected B. abortus human and animal isolates. SNP typing of all 86 isolates supported the AMOS PCR results but also confirmed the species of the 29 strains not amplified by AMOS PCR. In 2009-2013 years the prevalence of brucellosis was still high. Nowadays cases of brucellosis are higher in the western part of Georgia than in the 1991-2005 period by a factor of 2.62. Brucellosis continues to be mainly an infection in males, because men are mostly engaged in sheep and cattle care. Combined AMOS PCR and SNP typing in this study provided the first genetic confirmation that both B. abortus and B. melitensis are actively circulating in humans and animals in Georgia. PMID:26483376

  11. Use of S-[2,3-Bispalmitoyiloxy-(2R)-Propyl]-R-Cysteinyl-Amido-Monomethoxy Polyethylene Glycol as an Adjuvant Improved Protective Immunity Associated with a DNA Vaccine Encoding Cu,Zn Superoxide Dismutase of Brucella abortus in Mice

    PubMed Central

    Retamal-Díaz, Angello; Riquelme-Neira, Roberto; Sáez, Darwin; Rivera, Alejandra; Fernández, Pablo; Cabrera, Alex; Guzmán, Carlos A.

    2014-01-01

    This study was conducted to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella abortus Cu,Zn superoxide dismutase (SOD) using the Toll-like receptor 2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPPcysMPEG) as an adjuvant. Intranasal coadministration of BPPcysMPEG with a plasmid carrying the SOD-encoding gene (pcDNA-SOD) into BALB/c mice elicited antigen-specific humoral and cellular immune responses. Humoral responses were characterized by the stimulation of IgG2a and IgG1 and by the presence of SOD-specific secretory IgA in nasal and bronchoalveolar lavage fluids. Furthermore, T-cell proliferative responses and increased production of gamma interferon were also observed upon splenocyte restimulation with recombinant SOD. Cytotoxic responses were also stimulated, as demonstrated by the lysis of RB51-SOD-infected J774.A1 macrophages by cells recovered from immunized mice. The pcDNA-SOD/BPPcysMPEG formulation induced improved protection against challenge with the virulent strain B. abortus 2308 in BALB/c mice over that provided by pcDNA-SOD, suggesting the potential of this vaccination strategy against Brucella infection. PMID:25165025

  12. Brucella abortus depends on pyruvate phosphate dikinase and malic enzyme but not on Fbp and GlpX fructose-1,6-bisphosphatases for full virulence in laboratory models.

    PubMed

    Zúñiga-Ripa, Amaia; Barbier, Thibault; Conde-Álvarez, Raquel; Martínez-Gómez, Estrella; Palacios-Chaves, Leyre; Gil-Ramírez, Yolanda; Grilló, María Jesús; Letesson, Jean-Jacques; Iriarte, Maite; Moriyón, Ignacio

    2014-08-15

    The brucellae are the etiological agents of brucellosis, a worldwide-distributed zoonosis. These bacteria are facultative intracellular parasites and thus are able to adjust their metabolism to the extra- and intracellular environments encountered during an infectious cycle. However, this aspect of Brucella biology is imperfectly understood, and the nutrients available in the intracellular niche are unknown. Here, we investigated the central pathways of C metabolism used by Brucella abortus by deleting the putative fructose-1,6-bisphosphatase (fbp and glpX), phosphoenolpyruvate carboxykinase (pckA), pyruvate phosphate dikinase (ppdK), and malic enzyme (mae) genes. In gluconeogenic but not in rich media, growth of ΔppdK and Δmae mutants was severely impaired and growth of the double Δfbp-ΔglpX mutant was reduced. In macrophages, only the ΔppdK and Δmae mutants showed reduced multiplication, and studies with the ΔppdK mutant confirmed that it reached the replicative niche. Similarly, only the ΔppdK and Δmae mutants were attenuated in mice, the former being cleared by week 10 and the latter persisting longer than 12 weeks. We also investigated the glyoxylate cycle. Although aceA (isocitrate lyase) promoter activity was enhanced in rich medium, aceA disruption had no effect in vitro or on multiplication in macrophages or mouse spleens. The results suggest that B. abortus grows intracellularly using a limited supply of 6-C (and 5-C) sugars that is compensated by glutamate and possibly other amino acids entering the Krebs cycle without a critical role of the glyoxylate shunt. PMID:24936050

  13. Metabolic Control of Virulence Genes in Brucella abortus: HutC Coordinates virB Expression and the Histidine Utilization Pathway by Direct Binding to Both Promoters ▿ †

    PubMed Central

    Sieira, Rodrigo; Arocena, Gastón M.; Bukata, Lucas; Comerci, Diego J.; Ugalde, Rodolfo A.

    2010-01-01

    Type IV secretion systems (T4SS) are multicomponent machineries involved in the translocation of effector molecules across the bacterial cell envelope. The virB operon of Brucella abortus codes for a T4SS that is essential for virulence and intracellular multiplication of the bacterium in the host. Previous studies showed that the virB operon of B. abortus is tightly regulated within the host cells. In order to identify factors implicated in the control of virB expression, we searched for proteins of Brucella that directly bind to the virB promoter (PvirB). Using different procedures, we isolated a 27-kDa protein that binds specifically to PvirB. This protein was identified as HutC, the transcriptional repressor of the histidine utilization (hut) genes. Analyses of virB and hut promoter activity revealed that HutC exerts two different roles: it acts as a coactivator of transcription of the virB operon, whereas it represses the hut genes. Such activities were observed both intracellularly and in bacteria incubated under conditions that resemble the intracellular environment. Electrophoresis mobility shift assays (EMSA) and DNase I footprinting experiments revealed the structure, affinity, and localization of the HutC-binding sites and supported the regulatory role of HutC in both hut and virB promoters. Taken together, these results indicate that Brucella coopted the function of HutC to coordinate the Hut pathway with transcriptional regulation of the virB genes, probably as a way to sense its own metabolic state and develop adaptive responses to overcome intracellular host defenses. PMID:19854911

  14. Brucella abortus Depends on Pyruvate Phosphate Dikinase and Malic Enzyme but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases for Full Virulence in Laboratory Models

    PubMed Central

    Zúñiga-Ripa, Amaia; Barbier, Thibault; Conde-Álvarez, Raquel; Martínez-Gómez, Estrella; Palacios-Chaves, Leyre; Gil-Ramírez, Yolanda; Grilló, María Jesús; Letesson, Jean-Jacques; Iriarte, Maite

    2014-01-01

    The brucellae are the etiological agents of brucellosis, a worldwide-distributed zoonosis. These bacteria are facultative intracellular parasites and thus are able to adjust their metabolism to the extra- and intracellular environments encountered during an infectious cycle. However, this aspect of Brucella biology is imperfectly understood, and the nutrients available in the intracellular niche are unknown. Here, we investigated the central pathways of C metabolism used by Brucella abortus by deleting the putative fructose-1,6-bisphosphatase (fbp and glpX), phosphoenolpyruvate carboxykinase (pckA), pyruvate phosphate dikinase (ppdK), and malic enzyme (mae) genes. In gluconeogenic but not in rich media, growth of ΔppdK and Δmae mutants was severely impaired and growth of the double Δfbp-ΔglpX mutant was reduced. In macrophages, only the ΔppdK and Δmae mutants showed reduced multiplication, and studies with the ΔppdK mutant confirmed that it reached the replicative niche. Similarly, only the ΔppdK and Δmae mutants were attenuated in mice, the former being cleared by week 10 and the latter persisting longer than 12 weeks. We also investigated the glyoxylate cycle. Although aceA (isocitrate lyase) promoter activity was enhanced in rich medium, aceA disruption had no effect in vitro or on multiplication in macrophages or mouse spleens. The results suggest that B. abortus grows intracellularly using a limited supply of 6-C (and 5-C) sugars that is compensated by glutamate and possibly other amino acids entering the Krebs cycle without a critical role of the glyoxylate shunt. PMID:24936050

  15. Development of a Selective Culture Medium for Primary Isolation of the Main Brucella Species▿

    PubMed Central

    De Miguel, M. J.; Marín, C. M.; Muñoz, P. M.; Dieste, L.; Grilló, M. J.; Blasco, J. M.

    2011-01-01

    Bacteriological diagnosis of brucellosis is performed by culturing animal samples directly on both Farrell medium (FM) and modified Thayer-Martin medium (mTM). However, despite inhibiting most contaminating microorganisms, FM also inhibits the growth of Brucella ovis and some B. melitensis and B. abortus strains. In contrast, mTM is adequate for growth of all Brucella species but only partially inhibitory for contaminants. Moreover, the performance of both culture media for isolating B. suis has never been established properly. We first determined the performance of both media for B. suis isolation, proving that FM significantly inhibits B. suis growth. We also determined the susceptibility of B. suis to the antibiotics contained in both selective media, proving that nalidixic acid and bacitracin are highly inhibitory, thus explaining the reduced performance of FM for B. suis isolation. Based on these results, a new selective medium (CITA) containing vancomycin, colistin, nystatin, nitrofurantoin, and amphotericin B was tested for isolation of the main Brucella species, including B. suis. CITA's performance was evaluated using reference contaminant strains but also field samples taken from brucella-infected animals or animals suspected of infection. CITA inhibited most contaminant microorganisms but allowed the growth of all Brucella species, to levels similar to those for both the control medium without antibiotics and mTM. Moreover, CITA medium was more sensitive than both mTM and FM for isolating all Brucella species from field samples. Altogether, these results demonstrate the adequate performance of CITA medium for the primary isolation of the main Brucella species, including B. suis. PMID:21270216

  16. Cloning and expression of the immunoreactive Brucella melitensis 28 kDa outer-membrane protein (Omp28) encoding gene and evaluation of the potential of Omp28 for clinical diagnosis of brucellosis.

    PubMed

    Thavaselvam, Duraipandian; Kumar, Ashu; Tiwari, Sapana; Mishra, Manvi; Prakash, Archana

    2010-04-01

    Brucellosis is a disease caused by Gram-negative, facultative, intracellular bacteria belonging to the genus Brucella. It is an emerging zoonosis, and an economically important infection of humans and livestock with a worldwide distribution. Human infection is known to occur through consumption of infected raw milk, milk products and undercooked or raw meat. Serodiagnosis of brucellosis is carried out by detection of antibodies generated against LPS or whole-cell bacterial extracts by ELISA or agglutination tests using colorimetry. The present study was designed to develop a highly sensitive and specific indirect ELISA in both a microtitre plate and dot-blot format employing the recombinant outer-membrane protein 28 (rOmp28). Cloning and expression of Brucella melitensis Omp28 protein, which is a group 3 antigen, was accomplished by PCR amplification and cloning of the gene in a pET-28a expression system, followed by Ni-NTA affinity chromatography purification of the His-tagged recombinant protein. An indirect ELISA in both a microtitre plate and dot-blot format was optimized with sera collected from three groups: culture-confirmed cases, clinically suspected cases and healthy individuals. The rOmp28 protein reacted only with the culture-confirmed positive samples and no reaction was observed with culture-negative samples, confirming the immunoreactivity of the recombinant protein. The test in both formats had a correlation of approximately 90 % with the Rose Bengal plate agglutination test (RBPT) and a standard tube agglutination test, assays that are routinely performed for the serodiagnosis of brucellosis. The sensitivity and specificity of the assay in the plate format were 97.50 and 85.59 %, and in the dot-blot format were 82.05 and 92.43%, respectively, in comparison with RBPT. The specificity of this assay was further confirmed by testing samples that were positive for malaria and typhoid, which gave negative results. This ELISA system in microtitre plates

  17. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro

    PubMed Central

    Li, Jia-Yun; Liu, Yuan; Gao, Xiao-Xue; Gao, Xiang; Cai, Hong

    2014-01-01

    Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4+ T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2−/− and TLR4−/− mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2−/− and TLR4−/− mice. In addition, CD4+ T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4+ T cells from TLR2−/− and TLR4−/− mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2−/− and TLR4−/− mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2−/− and TLR4−/− mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response. PMID:24769793

  18. Characterization of Genomic Island 3 and Genetic Variability of Chilean Field Strains of Brucella abortus▿

    PubMed Central

    Céspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oñate, Angel A.

    2011-01-01

    One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580

  19. A serological diagnostic survey for Brucella canis infection in Turkish patients with Brucellosis-like symptoms.

    PubMed

    Sayan, Murat; Erdenlig, Sevil; Stack, Judy; Kilic, Selcuk; Guducuoglu, Huseyin; Aksoy, Yavuz; Baklan, Ayhan; Etiler, Nilay

    2011-01-01

    The incidence of Brucella canis infection in humans is unknown in Turkey. In this study, we investigated the prevalence of B. canis infection in human sera obtained from six regions in Turkey and comparatively evaluated the results obtained by agglutination-based techniques using standardized antigens made from B. canis. The patients (n = 1,746) presented with clinical symptoms that were similar to those of brucellosis. All patients who tested negative in the Rose Bengal test for the smooth Brucella strains (abortus, melitensis, and suis) were screened for evidence of B. canis infection using the rapid slide agglutination test (RSAT), the microagglutination test (MAT), and the 2-mercaptoethanol RSAT test (2ME-RSAT). Of the samples tested, 157 (8.9%), 68 (3.8%), and 66 (3.7%) were positive for B. canis, as determined by RSAT, MAT, and 2ME-RSAT, respectively. The diagnostic sensitivity, specificity, positive predictive value, and negative predictive value of RSAT were 100%, 94.6%, 42%, and 100%, respectively, and of MAT were 100%, 99.9%, 97%, and 100%, respectively. We recommend the routine use of MAT and 2ME-RSAT to check the sera of all patients with symptoms of brucellosis who are negative for brucellosis using a smooth Brucella antigen. PMID:22116333

  20. Identification of Brucella ovis exclusive genes in field isolates from Argentina.

    PubMed

    Alvarez, Lucía Paula; García-Effrón, Guillermo; Robles, Carlos Alejandro

    2016-03-01

    Brucellosis caused by Brucella ovis is one of the most important infectious diseases of sheep. The aim of this study was to determine the presence of genes both inside and outside the specific B. ovis pathogenicity island 1 (BOPI-1) in a large collection of field isolates of B. ovis and other Brucella spp. from Argentina. The BOV_A0500 gene from B. ovis BOPI-1 was identified in all 104 B. ovis isolates studied. The BOPI-1 complete sequence was found to be conserved in 10 B. ovis strains from the collection, for which whole genome sequencing was performed. The BOV_0198 gene, which is outside BOPI-1 and considered exclusive to B. ovis, showed 90-100% identity with genomic regions of B. ovis, B. melitensis, B. abortus, B. canis, B. suis, B. microti, B. ceti and B. pinnipedialis. The results demonstrate that BOPI-1 is the only exclusive genetic region of B. ovis and marine Brucella spp. and that it is highly conserved in B. ovis field isolates from Argentina. PMID:26831160

  1. Brucella Endocarditis in Prosthetic Valves

    PubMed Central

    Mehanic, Snjezana; Mulabdic, Velida; Baljic, Rusmir; Hadzovic-Cengic, Meliha; Pinjo, Fikret; Hadziosmanovic, Vesna; Topalovic, Jasna

    2012-01-01

    SUMMARY CONFLICT OF INTEREST: none declared. Introduction Brucella endocarditis (BE) is a rare but severe and potentially lethal manifestation of brucellosis. Pre-existing valves lesions and prosthetic valves (PV) are favorable for BE. Case report We represent the case of a 46-year-old man who was treated at the Clinic for Infectious Diseases, Clinical Center of Sarajevo University, as blood culture positive (Brucella melitensis) mitral and aortic PV endocarditis. He was treated with combined anti-brucella and cardiac therapy. Surgical intervention was postponed due to cardiac instability. Four months later he passed away. Surgery was not performed. PMID:24493988

  2. Serological crossreactivity between Brucella abortus and Yersinia enterocolitica 0:9 II the use of Yersinia outer proteins for the specific detection of Yersinia enterocolitica infections in ruminants.

    PubMed

    Kittelberger, R; Hilbink, F; Hansen, M F; Ross, G P; Joyce, M A; Fenwick, S; Heesemann, J; Wolf-Watz, H; Nielsen, K

    1995-12-01

    Yersinia outer protein (YOP) preparations from Y. enterocolitica and Y. pseudotuberculosis were used as antigens in immunoblots for the detection of Yersinia infections in experimentally and naturally infected ruminants. Sera from 9 groups of animals were used: (1) 51 sera from cattle which were false-positive in the standard brucellosis serological tests, (2) 52 sera from brucellosis-negative cattle, (3) 51 sera from a deer herd in which 16 animals were positive in the brucellosis tests and Yersina species were isolated from 5 animals, (4) 50 sera from a deer herd in which sera from all animals were negative in the brucellosis tests, (5) 107 sera from brucellosis-negative cattle which were received from throughout New Zealand, (6) 30 sera from cattle naturally infected with B. abortus and from which B. abortus was isolated, (7) 55 sera from cattle naturally infected with B. abortus, (8) 26 sera from cattle experimentally infected with B. abortus, with mostly high titres in the conventional brucellosis tests, and (9) sera taken weekly from 3 cattle experimentally infected with Y. enterocolitica 0:9. In all 3 Y. enterocolitica 0:9 experimentally infected animals the antibody reactivity against major YOPs in the Y. enterocolitica and in the Y. pseudotuberculosis YOP preparation correlated well with the strength in the classical brucellosis tests and with the staining of smooth lipopolysaccharides (SLPS) in blots, thus confirming the usefulness of YOPs for the detection of Yersinia infections. Sera from naturally infected cattle and deer herds, regardless of whether they were false positive or negative in the brucellosis tests, showed high frequencies of staining in YOP blots (53-58% in cattle and 80-100% in deer), indicating a high prevalence of field infections with Yersinia species in New Zealand. In two of the three sera groups from B. abortus infected animals, antibodies against YOPs were detected with high frequency, showing that dual infections may be common

  3. Brucella abortus conjugated with a peptide derived from the V3 loop of human immunodeficiency virus (HIV) type 1 induces HIV-specific cytotoxic T-cell responses in normal and in CD4+ cell-depleted BALB/c mice.

    PubMed Central

    Lapham, C; Golding, B; Inman, J; Blackburn, R; Manischewitz, J; Highet, P; Golding, H

    1996-01-01

    We have previously shown that immunization of mice with human immunodeficiency virus (HIV)-derived proteins or peptides conjugated to inactivated Brucella abortus induces the secretion of virus-neutralizing antibodies, predominantly of the immunoglobulin G2a (IgG2a) isotype. In addition, B. abortus activates human CD4+ and CD8+ cells to secrete gamma interferon. Since these are both characteristics of a Th1-type immune response, which is associated with the development of cell-mediated immunity, it was important to determine if B. abortus conjugates would also act as a carrier to induce a cytotoxic T-lymphocyte (CTL) response. To test this hypothesis, we conjugated an 18-amino-acid peptide from the V3 loop of the MN strain of HIV-1 gp120 that contains both B- and cytotoxic T-cell epitopes to B. abortus (B. abortus-MN 18-mer). A 10-amino-acid fragment of this peptide has been shown to be the minimal CTL determinant presented by murine H-2Dd. It was found that two in vivo immunizations with 10(8) organisms of B. abortus-MN 18-mer followed by in vitro stimulation with peptide induced a virus-specific CTL response. Conjugation to B. abortus was required for in vivo priming, since there was no induction of memory CTLs when B. abortus was only mixed with peptide. Targets pulsed with peptide as well as those infected with a vaccinia virus encoding HIV gp160 were killed, demonstrating recognition of naturally processed envelope. Also, major histocompatibility complex-incompatible L cells which were infected with vaccinia viruses that encoded H-2Dd, but not H-2Kd, and pulsed with peptide were lysed. This demonstrated the appropriate major histocompatibility complex class I restriction. Treatment of the mice with anti-L3T4 prior to immunization caused a severe depletion of CD4+ lymphocytes, yet it did not decrease the CTL priming. Thus, inactivated B. abortus can induce non-CD4+ cells to produce the cytokines required for CTL induction. We conclude that B. abortus stimulates

  4. Evaluation of Indirect Enzyme-Linked Immunosorbent Assays and IgG Avidity Assays Using a Protein A-Peroxidase Conjugate for Serological Distinction between Brucella abortus S19-Vaccinated and -Infected Cows ▿

    PubMed Central

    Pajuaba, Ana C. A. M.; Silva, Deise A. O.; Mineo, José R.

    2010-01-01

    This study aimed to evaluate the use of protein A-peroxidase (horseradish peroxidase [HRPO]) in indirect enzyme-linked immunosorbent assays (iELISAs) and IgG avidity assays for serological distinction between Brucella abortus S19-vaccinated and -infected cows. Four groups were analyzed: GI, 41 nonvaccinated seropositive cows; GII, 79 S19-vaccinated heifers analyzed at 3 months postvaccination; GIII, 105 S19-vaccinated cows analyzed after 24 months of age; and GIV, 278 nonvaccinated seronegative cows. IgG levels and avidity to B. abortus smooth lipopolysaccharide (S-LPS) were determined using anti-bovine IgG-HRPO or protein A-HRPO conjugates. Similar levels of IgG anti-S-LPS were found with GI using both conjugates. Lower IgG levels were detected with GII, GIII, and GIV using protein A-HRPO. Both conjugates showed high performance in discriminating GI from GIII, with high sensitivity (Se; 97.6%) and specificity (Sp; 97.1%). Protein A-HRPO was better in distinguishing GI from GIV (Se, 97.6%; Sp, 94.6%) and GI from GII (Se, 80.5%; Sp, 94.9%). Protein A-HRPO excluded a higher number of positive samples with GII and GIV. IgG avidity showed that protein A-HRPO, but not anti-IgG-HRPO, was able to distinguish nonvaccinated from vaccinated cattle, showing a higher avidity index (AI) with GI than with GII, with 78% of serum samples in GII showing an AI of <50%. Therefore, the iELISA using B. abortus S-LPS antigen and protein A-HRPO conjugate for preferential detection of the IgG2 subclass was shown to be suitable for serological distinction between S19-vaccinated and -infected cows. Also, antibodies generated after vaccination showed lower avidity, suggesting a role for the IgG2 subclass as an antibody of higher-affinity maturation after infection, constituting an additional tool for differentiating vaccinated from infected cattle. PMID:20147498

  5. Evaluation of indirect enzyme-linked immunosorbent assays and IgG avidity assays using a protein A-peroxidase conjugate for serological distinction between Brucella abortus S19-vaccinated and -infected cows.

    PubMed

    Pajuaba, Ana C A M; Silva, Deise A O; Mineo, José R

    2010-04-01

    This study aimed to evaluate the use of protein A-peroxidase (horseradish peroxidase [HRPO]) in indirect enzyme-linked immunosorbent assays (iELISAs) and IgG avidity assays for serological distinction between Brucella abortus S19-vaccinated and -infected cows. Four groups were analyzed: GI, 41 nonvaccinated seropositive cows; GII, 79 S19-vaccinated heifers analyzed at 3 months postvaccination; GIII, 105 S19-vaccinated cows analyzed after 24 months of age; and GIV, 278 nonvaccinated seronegative cows. IgG levels and avidity to B. abortus smooth lipopolysaccharide (S-LPS) were determined using anti-bovine IgG-HRPO or protein A-HRPO conjugates. Similar levels of IgG anti-S-LPS were found with GI using both conjugates. Lower IgG levels were detected with GII, GIII, and GIV using protein A-HRPO. Both conjugates showed high performance in discriminating GI from GIII, with high sensitivity (Se; 97.6%) and specificity (Sp; 97.1%). Protein A-HRPO was better in distinguishing GI from GIV (Se, 97.6%; Sp, 94.6%) and GI from GII (Se, 80.5%; Sp, 94.9%). Protein A-HRPO excluded a higher number of positive samples with GII and GIV. IgG avidity showed that protein A-HRPO, but not anti-IgG-HRPO, was able to distinguish nonvaccinated from vaccinated cattle, showing a higher avidity index (AI) with GI than with GII, with 78% of serum samples in GII showing an AI of <50%. Therefore, the iELISA using B. abortus S-LPS antigen and protein A-HRPO conjugate for preferential detection of the IgG2 subclass was shown to be suitable for serological distinction between S19-vaccinated and -infected cows. Also, antibodies generated after vaccination showed lower avidity, suggesting a role for the IgG2 subclass as an antibody of higher-affinity maturation after infection, constituting an additional tool for differentiating vaccinated from infected cattle. PMID:20147498

  6. Evaluation of DNA extraction protocols for Brucella abortus pcr detection in aborted fetuses or calves born from cows experimentally infected with strain 2308

    PubMed Central

    Matrone, M.; Keid, L.B.; Rocha, V.C.M.; Vejarano, M.P.; Ikuta, C.Y.; Rodriguez, C.A.R.; Ferreira, F.; Dias, R.A.; Ferreira Neto, J.S

    2009-01-01

    The objective of the present study was to improve the detection of B. abortus by PCR in organs of aborted fetuses from infected cows, an important mechanism to find infected herds on the eradication phase of the program. So, different DNA extraction protocols were compared, focusing the PCR detection of B. abortus in clinical samples collected from aborted fetuses or calves born from cows challenged with the 2308 B. abortus strain. Therefore, two gold standard groups were built based on classical bacteriology, formed from: 32 lungs (17 positives), 26 spleens (11 positives), 23 livers (8 positives) and 22 bronchial lymph nodes (7 positives). All samples were submitted to three DNA extraction protocols, followed by the same amplification process with the primers B4 and B5. From the accumulated results for organ, the proportion of positives for the lungs was higher than the livers (p=0.04) or bronchial lymph nodes (p=0.004) and equal to the spleens (p=0.18). From the accumulated results for DNA extraction protocol, the proportion of positives for the Boom protocol was bigger than the PK (p< 0.0001) and GT (p=0.0004). There was no difference between the PK and GT protocols (p=0.5). Some positive samples from the classical bacteriology were negative to the PCR and vice-versa. Therefore, the best strategy for B. abortus detection in the organs of aborted fetuses or calves born from infected cows is the use, in parallel, of isolation by classical bacteriology and the PCR, with the DNA extraction performed by the Boom protocol. PMID:24031391

  7. Identification and Determination of Antibiotic Susceptibilities of Brucella Strains Isolated from Patients in Van, Turkey by Conventional and Molecular Methods

    PubMed Central

    Parlak, Mehmet; Güdücüoğlu, Hüseyin; Bayram, Yasemin; Çıkman, Aytekin; Aypak, Cenk; Kılıç, Selçuk; Berktaş, Mustafa

    2013-01-01

    Purpose: Brucellosis is a worldwide zoonotic disease and still constitutes a major public health problem. In this study, we aimed to identify biovars of Brucella strains isolated from clinical specimens taken from brucellosis patients from the Eastern Anatolia region as well determine the susceptibility of these isolates to tigecycline and azithromycin, drugs that may serve as alternatives to the conventional drugs used in the therapy. Materials and methods: Seventy-five Brucella spp. isolates were included in the study. All strains were identified by both conventional and molecular methods. Brucella Multiplex PCR kit (FC-Biotech, Code: 0301, Turkey) and B. melitensis biovar typing PCR kit (FC-Biotech, Code: 0302, Turkey) were used for molecular typing. Antimicrobial susceptibilities of all strains were determined by E-tests. Results: By conventional biotyping, 73 strains were identified as B. melitensis biovar 3 and two strains as B. abortus biovar 3. Molecular typing results were compatible with conventional methods. The MIC50 and MIC90 values of doxycycline were 0.047 and 0.094; tigecycline 0.094 and 0.125; trimethoprim/sulfamethoxazole 0.064 and 0.19; ciprofloxacin 0.19 for both; streptomycin 0.75 and 1; rifampin 1 and 2 and azithromycin 4 and 8. According to the MIC values, doxycycline was found to be the most effective antibiotic, followed by tigecycline, trimethoprim-sulfamethoxazole and ciprofloxacin. Conclusion: Currently recommended antibiotics for the treatment of brucellosis such as doxycycline, rifampin, streptomycin, trimethoprim-sulfamethoxazole and ciprofloxacin were found to be still effective. While our results showed that tigecycline can be used an alternative agent in the treatment of brucellosis, azithromycin has not been confirmed as an appropriate agent for the treatment. PMID:23983603

  8. Identification of the Quorum-Sensing Target DNA Sequence and N-Acyl Homoserine Lactone Responsiveness of the Brucella abortus virB promoter▿

    PubMed Central

    Arocena, Gastón M.; Sieira, Rodrigo; Comerci, Diego J.; Ugalde, Rodolfo A.

    2010-01-01

    VjbR is a LuxR-type quorum-sensing (QS) regulator that plays an essential role in the virulence of the intracellular facultative pathogen Brucella, the causative agent of brucellosis. It was previously described that VjbR regulates a diverse group of genes, including the virB operon. The latter codes for a type IV secretion system (T4SS) that is central for the pathogenesis of Brucella. Although the regulatory role of VjbR on the virB promoter (PvirB) was extensively studied by different groups, the VjbR-binding site had not been identified so far. Here, we identified the target DNA sequence of VjbR in PvirB by DNase I footprinting analyses. Surprisingly, we observed that VjbR specifically recognizes a sequence that is identical to a half-binding site of the QS-related regulator MrtR of Mesorhizobium tianshanense. As shown by DNase I footprinting and electrophoretic mobility shift assays, generation of a palindromic MrtR-like-binding site in PvirB increased both the affinity and the stability of the VjbR-DNA complex, which confirmed that the QS regulator of Brucella is highly related to that of M. tianshanense. The addition of N-dodecanoyl homoserine lactone dissociated VjbR from the promoter, which confirmed previous reports that indicated a negative effect of this signal on the VjbR-mediated activation of PvirB. Our results provide new molecular evidence for the structure of the virB promoter and reveal unusual features of the QS target DNA sequence of the main regulator of virulence in Brucella. PMID:20400542

  9. Serological Diagnosis of Brucella Infections in Odontocetes▿

    PubMed Central

    Hernández-Mora, Gabriela; Manire, Charles A.; González-Barrientos, Rocío; Barquero-Calvo, Elías; Guzmán-Verri, Caterina; Staggs, Lydia; Thompson, Rachel; Chaves-Olarte, Esteban; Moreno, Edgardo

    2009-01-01

    Brucella ceti causes disease in Odontoceti. The absence of control serum collections and the diversity of cetaceans have hampered the standardization of serological tests for the diagnosis of cetacean brucellosis. Without a “gold” standard for sensitivity and specificity determination, an alternative approach was followed. We designed an indirect enzyme-linked immunosorbent assay (iELISA) that recognizes immunoglobulins G (IgGs) from 17 odontocete species as a single group. For the standardization, we used Brucella melitensis and Brucella abortus lipopolysaccharides, serum samples from seven resident odontocetes with no history of infectious disease displaying negative rose bengal test (RBT) reactions, and serum samples from seven dolphins infected with B. ceti. We compared the performance of the iELISA with those of the protein G ELISA (gELISA), the competitive ELISA (cELISA), and the immunofluorescence (IF) and dot blot (DB) tests, using 179 odontocete serum samples and RBT as the reference. The diagnostic potential based on sensitivity and specificity of the iELISA was superior to that of gELISA and cELISA. The correlation and agreement between the iELISA and the gELISA were relatively good (Ri/g2 = 0.65 and κi/g = 0.66, respectively), while the correlation and agreement of these two ELISAs with cELISA were low (Ri/c2 = 0.46, Rg/c2 = 0.37 and κi/c = 0.62, κg/c = 0.42). In spite of using the same anti-odontocete IgG antibody, the iELISA was more specific than were the IF and DB tests. An association between high antibody titers and the presence of neurological symptoms in dolphins was observed. The prediction is that iELISA based on broadly cross-reacting anti-dolphin IgG antibody would be a reliable test for the diagnosis of brucellosis in odontocetes, including families not covered in this study. PMID:19386800

  10. Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes.

    PubMed Central

    Rijpens, N P; Jannes, G; Van Asbroeck, M; Rossau, R; Herman, L M

    1996-01-01

    The 16S-23S rRNA spacer regions of Brucella abortus, B. melitensis, and B. suis were cloned and subcloned after PCR amplification. Sequence analysis of the inserts revealed a spacer of about 800 bp with very high ( > 99%) homology among the three species examined. Two genus-specific primer pairs, BRU-P5-BRU-P8 and BRU-P6-BRU-P7, that could be used in a nested PCR format and three genus-specific DNA probes, BRU-ICG2, BRU-ICG3, and BRU-ICG4, were deduced from this spacer. The specificity and sensitivity of both primer sets and probes were examined by testing them against a collection of 18 Brucella strains and 56 strains from other relevant taxa by using PCR and the Line Probe Assay (LiPA), respectively. A method for direct detection of Brucella spp. in 1 ml of raw milk was developed on the basis of enzymatic treatment of the milk components and subsequent PCR and LiPA hybridization. After a single PCR, sensitivities of 2.8 x 10(5) and 2.8 x 10(4) CFU/ml were obtained for detection by agarose gel electrophoresis and LiPA, respectively. Nested PCR yielded a sensitivity of 2.8 x 10(2) CFU/ml for both methods. PMID:8633866

  11. Characterization of ribonuclease III from Brucella.

    PubMed

    Wu, Chang-Xian; Xu, Xian-Jin; Zheng, Ke; Liu, Fang; Yang, Xu-Dong; Chen, Chuang-Fu; Chen, Huan-Chun; Liu, Zheng-Fei

    2016-04-01

    Bacterial ribonuclease III (RNase III) is a highly conserved endonuclease, which plays pivotal roles in RNA maturation and decay pathways by cleaving double-stranded structure of RNAs. Here we cloned rncS gene from the genomic DNA of Brucella melitensis, and analyzed the cleavage properties of RNase III from Brucella. We identified Brucella-encoding small RNA (sRNA) by high-throughput sequencing and northern blot, and found that sRNA of Brucella and Homo miRNA precursor (pre-miRNA) can be bound and cleaved by B.melitensis ribonuclease III (Bm-RNase III). Cleavage activity of Bm-RNase III is bivalent metal cations- and alkaline buffer-dependent. We constructed several point mutations in Bm-RNase III, whose cleavage activity indicated that the 133th Glutamic acid residue was required for catalytic activity. Western blot revealed that Bm-RNase III was differently expressed in Brucella virulence strain 027 and vaccine strain M5-90. Collectively, our data suggest that Brucella RNase III can efficiently bind and cleave stem-loop structure of small RNA, and might participate in regulation of virulence in Brucella. PMID:26778206

  12. In silico design, cloning and high level expression of L7/L12-TOmp31 fusion protein of Brucella antigens

    PubMed Central

    Golshani, Maryam; Rafati, Sima; Jahanian-Najafabadi, Ali; Nejati-Moheimani, Mehdi; Siadat, Seyed Davar; Shahcheraghi, Fereshteh; Bouzari, Saeid

    2015-01-01

    Globally, Brucella melitensis and B. abortus are the most common cause of human brucellosis. The outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens which are considered as potential vaccine candidates. We aimed to design the fusion protein from Brucella L7/L12 and truncated Omp31proteins, in silico, clone the fusion in pET28a vector, and express it in Escherichia coli host. Two possible fusion forms, L7/L12-TOmp31 and TOmp31-L7/L12 were subjected to in silico modeling and analysis. Analysis and validation of the fusion proteins with three dimensional (3D) models showed that both models are in the range of native proteins. However, L7/L12-Tomp31 structure was more valid than the TOmp31-L7/L12 model and subjected to in vitro production. The major histocompatibility complex (MHC II) epitope mapping using IEDB database indicated that the model contained good MHC II binders. The L7/L12-TOmp31 coding sequence was cloned in pET28a vector. The integrity of the construct was confirmed by polymerase chain reaction, restriction enzyme mapping, and sequencing. The fusion was successfully expressed in E. coli BL21 (DE3) by induction with isopropyl β-D-thiogalactopyranoside. The rL7/L12-TOmp31 was purified with Ni-NTA column. The yield of the purified rL7/L12-TOmp31 was estimated by Bradford method and found to be 40 mg/L of the culture. Western blotting with anti-His antibody revealed a specific reactivity with purified rL7/L12-TOmp31 produced in E. coli and showed the functional expression in the prokaryotic system. In this study, a new protein vaccine candidate against brucellosis was constructed with the help of bioinformatics tools and the construct was expressed in the bacterial host. Studies evaluating the immunogenicity and cross-protection of this fusion protein against B. melitensis and B. abortus are underway. PMID:26752992

  13. Diagnostic characterization of a feral swine herd enzootically infected with Brucella.

    PubMed

    Stoffregen, William C; Olsen, Steven C; Jack Wheeler, C; Bricker, Betsy J; Palmer, Mitchell V; Jensen, Allen E; Halling, Shirley M; Alt, David P

    2007-05-01

    Eighty feral swine were trapped from a herd that had been documented to be seropositive for Brucella and which had been used for Brucella abortus RB51 vaccine trials on a 7,100-hectare tract of land in South Carolina. The animals were euthanized and complete necropsies were performed. Samples were taken for histopathology, Brucella culture, and Brucella serology. Brucella was cultured from 62 (77.5%) animals. Brucella suis was isolated from 55 animals (68.8%), and all isolates were biovar 1. Brucella abortus was isolated from 28 animals (35.0%), and isolates included field strain biovar 1 (21 animals; 26.3%), vaccine strain Brucella abortus S19 (8 animals, 10.0%), and vaccine strain Brucella abortus RB51 (6 animals, 7.5%). Males were significantly more likely to be culture positive than females (92.9% vs. 60.6%). Thirty-nine animals (48.8%) were seropositive. Males also had a significantly higher seropositivity rate than females (61.9% vs. 34.2%). The relative sensitivity rates were significantly higher for the standard tube test (44.6%) and fluorescence polarization assay (42.6%) than the card agglutination test (13.1%). Lesions consistent with Brucella infection were commonly found in the animals surveyed and included inflammatory lesions of the lymph nodes, liver, kidney, and male reproductive organs, which ranged from lymphoplasmacytic to pyogranulomatous with necrosis. This is the first report of an apparent enzootic Brucella abortus infection in a feral swine herd suggesting that feral swine may serve as a reservoir of infection for Brucella abortus as well as Brucella suis for domestic livestock. PMID:17459850

  14. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis.

    PubMed

    Pasquevich, Karina A; García Samartino, Clara; Coria, Lorena M; Estein, Silvia M; Zwerdling, Astrid; Ibañez, Andrés E; Barrionuevo, Paula; Oliveira, Fernanda Souza de; Carvalho, Natalia Barbosa; Borkowski, Julia; Oliveira, Sergio Costa; Warzecha, Heribert; Giambartolomei, Guillermo H; Cassataro, Juliana

    2010-05-01

    Knowing the inherent stimulatory properties of the lipid moiety of bacterial lipoproteins, we first hypothesized that Brucella abortus outer membrane protein (Omp)16 lipoprotein would be able to elicit a protective immune response without the need of external adjuvants. In this study, we demonstrate that Omp16 administered by the i.p. route confers significant protection against B. abortus infection and that the protective response evoked is independent of the protein lipidation. To date, Omp16 is the first Brucella protein that without the requirement of external adjuvants is able to induce similar protection levels to the control live vaccine S19. Moreover, the protein portion of Omp16 (unlipidated Omp16 [U-Omp16]) elicits a protective response when administered by the oral route. Either systemic or oral immunization with U-Omp16 elicits a Th1-specific response. These abilities of U-Omp16 indicate that it is endowed with self-adjuvanting properties. The adjuvanticity of U-Omp16 could be explained, at least in part, by its capacity to activate dendritic cells in vivo. U-Omp16 is also able to stimulate dendritic cells and macrophages in vitro. The latter property and its ability to induce a protective Th1 immune response against B. abortus infection have been found to be TLR4 dependent. The facts that U-Omp16 is an oral protective Ag and possesses a mucosal self-adjuvanting property led us to develop a plant-made vaccine expressing U-Omp16. Our results indicate that plant-expressed recombinant U-Omp16 is able to confer protective immunity, when given orally, indicating that a plant-based oral vaccine expressing U-Omp16 could be a valuable approach to controlling this disease. PMID:20351187

  15. Extended Safety and Efficacy Studies of the Attenuated Brucella Vaccine Candidates 16MΔvjbR and S19ΔvjbR in the Immunocompromised IRF-1−/− Mouse Model

    PubMed Central

    Rice-Ficht, A. C.; Fan, Y.; Kahl-McDonagh, M. M.; Ficht, T. A.

    2012-01-01

    The global distribution of brucellosis and high incidence in certain areas of the world warrant the development of a safer and efficacious vaccine. For the past 10 years, we have focused our attention on the development of a safer, but still highly protective, live attenuated vaccine for human and animal use. We have demonstrated the safety and protective efficacy of the vaccine candidates 16MΔvjbR and S19ΔvjbR against homologous and heterologous challenge in multiple immunocompetent animal models, including mice and deer. In the present study, we conducted a series of experiments to determine the safety of the vaccine candidates in interferon regulatory factor-1-knockout (IRF-1−/−) mice. IRF-1−/− mice infected with either wild-type Brucella melitensis 16M or the vaccine strain Brucella abortus S19 succumb to the disease within the first 3 weeks of infection, which is characterized by a marked granulomatous and neutrophilic inflammatory response that principally targets the spleen and liver. In contrast, IRF-1−/− mice inoculated with either the 16MΔvjbR or S19ΔvjbR vaccine do not show any clinical or major pathological changes associated with vaccination. Additionally, when 16MΔvjbR- or S19ΔvjbR-vaccinated mice are challenged with wild-type Brucella melitensis 16M, the degree of colonization in multiple organs, along with associated pathological changes, is significantly reduced. These findings not only demonstrate the safety and protective efficacy of the vjbR mutant in an immunocompromised mouse model but also suggest the participation of lesser-known mechanisms in protective immunity against brucellosis. PMID:22169089

  16. Extended safety and efficacy studies of the attenuated Brucella vaccine candidates 16 M(Delta)vjbR and S19(Delta)vjbR in the immunocompromised IRF-1-/- mouse model.

    PubMed

    Arenas-Gamboa, A M; Rice-Ficht, A C; Fan, Y; Kahl-McDonagh, M M; Ficht, T A

    2012-02-01

    The global distribution of brucellosis and high incidence in certain areas of the world warrant the development of a safer and efficacious vaccine. For the past 10 years, we have focused our attention on the development of a safer, but still highly protective, live attenuated vaccine for human and animal use. We have demonstrated the safety and protective efficacy of the vaccine candidates 16 MΔvjbR and S19ΔvjbR against homologous and heterologous challenge in multiple immunocompetent animal models, including mice and deer. In the present study, we conducted a series of experiments to determine the safety of the vaccine candidates in interferon regulatory factor-1-knockout (IRF-1(-/-)) mice. IRF-1(-/-) mice infected with either wild-type Brucella melitensis 16 M or the vaccine strain Brucella abortus S19 succumb to the disease within the first 3 weeks of infection, which is characterized by a marked granulomatous and neutrophilic inflammatory response that principally targets the spleen and liver. In contrast, IRF-1(-/-) mice inoculated with either the 16 MΔvjbR or S19ΔvjbR vaccine do not show any clinical or major pathological changes associated with vaccination. Additionally, when 16 MΔvjbR- or S19ΔvjbR-vaccinated mice are challenged with wild-type Brucella melitensis 16M, the degree of colonization in multiple organs, along with associated pathological changes, is significantly reduced. These findings not only demonstrate the safety and protective efficacy of the vjbR mutant in an immunocompromised mouse model but also suggest the participation of lesser-known mechanisms in protective immunity against brucellosis. PMID:22169089

  17. Identification of Brucella spp. isolated from human brucellosis in Malaysia using high-resolution melt (HRM) analysis.

    PubMed

    Mohamed Zahidi, Jama'ayah; Bee Yong, Tay; Hashim, Rohaidah; Mohd Noor, Azura; Hamzah, Siti Hawa; Ahmad, Norazah

    2015-04-01

    Molecular approaches have been investigated to overcome difficulties in identification and differentiation of Brucella spp. using conventional phenotypic methods. In this study, high-resolution melt (HRM) analysis was used for rapid identification and differentiation of members of Brucella genus. A total of 41 Brucella spp. isolates from human brucellosis were subjected to HRM analysis using 4 sets of primers, which identified 40 isolates as Brucella melitensis and 1 as Brucella canis. The technique utilized low DNA concentration and was highly reproducible. The assay is shown to be a useful diagnostic tool, which can rapidly differentiate Brucella up to species level. PMID:25641125

  18. Effect of exogenous erythritol on growth and survival of Brucella.

    PubMed

    Jain, Neeta; Boyle, Stephen M; Sriranganathan, Nammalwar

    2012-12-01

    Erythritol has been considered as an important factor for the pathogenesis of Brucella abortus 2308 and its ability to cause abortion in ruminants. There is a lack of laboratory models to study the Brucella-erythritol relationship, as commonly used murine models do not have erythritol. We tested the effect of exogenous erythritol on the growth of Brucella in iron minimal medium (IMM), in infected macrophage culture and in infected mice to determine if these models can be used to study the relationship between Brucella and erythritol. An effect of erythritol on Brucella growth was only seen in IMM. There appear to be no effect of erythritol on Brucella growth in macrophage cell cultures or in mice. This shows that administration of erythritol to the mice or macrophages cannot mimic the environment in ruminants during pregnancy and thus cannot be used as models to understand the effect of erythritol on Brucella pathogenesis. PMID:22784921

  19. Protective immunity to Brucella ovis in BALB/c mice following recovery from primary infection or immunization with subcellular vaccines.

    PubMed Central

    Jiménez de Bagüés, M P; Elzer, P H; Blasco, J M; Marín, C M; Gamazo, C; Winter, A J

    1994-01-01

    Experiments were performed with BALB/c mice to elucidate the roles of humoral and cell-mediated immune responses in the acquisition of protective immunity to Brucella ovis and to compare infection immunity with immunity developed through vaccination with a hot saline extract (HS) of B. ovis. Mice convalescing from a primary infection with B. ovis displayed a high level of resistance to reinfection, as evidenced by splenic bacterial counts decreased over 10,000-fold from control groups at 2 weeks after challenge. Passive transfer assays revealed that protection was mediated by both T lymphocytes and antibodies but that antibodies had a substantially greater role on the basis of log units of protection that were transferred. Antibodies specific for HS proteins in sera from convalescent mice were predominantly of the immunoglobulin G 2a and 3 isotypes. Vaccination with HS conferred good protection against B. ovis, but protection was greatly enhanced by the incorporation of QS-21 or other adjuvants. Protection provided by the HS vaccine resulted largely from immune responses to its protein moieties. A critical evaluation of the protective efficacy of the rough lipopolysaccharide component of HS was precluded by its poor immunogenicity in BALB/c mice. HS-QS-21 afforded protection against challenge infection with B. ovis as good as that which developed after a primary infection and as good as or better than that provided by attenuated Brucella melitensis vaccine strain Rev 1. Passive transfer experiments confirmed that the magnitudes of both humoral and cell-mediated forms of protective immunity were equivalent in mice vaccinated with HS-QS-21 and those recovering from a primary infection. Protective immunity to B. ovis in mice therefore resembled that to Brucella abortus, except that the relative roles of humoral and cell-mediated immunity, rather than being equivalent, were shifted toward a greater role for antibodies. PMID:8300219

  20. Genetic Polymorphism Characteristics of Brucella canis Isolated in China

    PubMed Central

    Wang, Heng; Zhao, Hongyan; Piao, Dongri; Tian, Lili; Tian, Guozhong; Kang, Jingli; Mao, Xiang; Zhang, Xiaojun; Du, Pengfei; Zhu, Lin; Zhao, Zhuo; Mao, Lingling; Yao, Wenqing; Guan, Pingyuan; Fan, Weixing; Jiang, Hai

    2014-01-01

    In China, brucellosis is an endemic disease typically caused by Brucella melitensis infection (biovars 1 and 3). Brucella canis infection in dogs has not traditionally recognized as a major problem. In recent years however, brucellosis resulting from Brucella canis infection has also been reported, suggesting that infections from this species may be increasing. Data concerning the epidemiology of brucellosis resulting from Brucella canis infection is limited. Therefore, the purpose of this study was to assess the diversity among Chinese Brucella canis strains for epidemiological purposes. First, we employed a 16-marker VNTR assay (Brucella MLVA-16) to assess the diversity and epidemiological relationship of 29 Brucella canis isolates from diverse locations throughout China with 38 isolates from other countries. MLVA-16 analysis separated the 67 Brucella canis isolates into 57 genotypes that grouped into five clusters with genetic similarity coefficients ranging from 67.73 to 100%. Moreover, this analysis revealed a new genotype (2-3-9-11-3-1-5-1:118), which was present in two isolates recovered from Guangxi in 1986 and 1987. Second, multiplex PCR and sequencing analysis were used to determine whether the 29 Chinese Brucella canis isolates had the characteristic BMEI1435 gene deletion. Only two isolates had this deletion. Third, amplification of the omp25 gene revealed that 26 isolates from China had a T545C mutation. Collectively, this study reveals that considerable diversity exists among Brucella canis isolates in China and provides resources for studying the genetic variation and microevolution of Brucella. PMID:24465442

  1. Doxycycline-rifampin versus doxycycline-streptomycin in treatment of human brucellosis due to Brucella melitensis. The GECMEI Group. Grupo de Estudio de Castilla-la Mancha de Enfermedades Infecciosas.

    PubMed Central

    Solera, J; Rodríguez-Zapata, M; Geijo, P; Largo, J; Paulino, J; Sáez, L; Martínez-Alfaro, E; Sánchez, L; Sepulveda, M A; Ruiz-Ribó, M D

    1995-01-01

    Brucellosis is a common zoonosis in many parts of the world; the best regimen for the treatment of brucellosis has not been clearly determined. We have carried out a multicenter, open, controlled trial in five general hospitals in Spain to compare the efficacy and safety of doxycycline and rifampin (DR) versus doxycycline and streptomycin (DS) for the treatment of human brucellosis. The study included 194 ambulatory or hospitalized patients with acute brucellosis, without endocarditis or neurobrucellosis. The diagnostic criterion was isolation of Brucella species from blood or other tissues (n = 120) or a standard tube agglutination titer of 1/160 or more for anti-Brucella antibodies with compatible clinical findings (n = 74). Patients were randomly assigned to receive either 100 mg of doxycycline twice daily plus rifampin, 900 mg/day, in a single morning dose for 45 days (DR group) or the same dose of doxycycline for 45 days plus streptomycin, 1 g/day, intramuscularly for 14 days (DS group). A lack of therapeutic efficacy developed in 8 of the 100 patients in the DR group (8%) and in 2 of the 94 patients in the DS group (2%)(P = 0.10). Relapses occurred in 16 of the 100 patients in the DR group (16%) but in only 5 of the 94 patients in the DS group (5.3%) (P = 0.02). When relapse was considered in combination with initial lack of efficacy, 26 patients in the DR group (24%) and 7 patients in the DS group (7.45%) failed to respond to therapy (P = 0.0016). In general, therapy was well tolerated and only four patients (4%) in the DR group and two (2%) in the DS group had episodes of adverse effects necessitating discontinuation of treatment (P> 0.2). We conclude that a doxycycline-and-rifampin regimen is less effective than the doxycycline-and-streptomycin regimen in patients with acute brucellosis. PMID:8540716

  2. Diagnostic Characterization of a Feral Swine Herd Enzootically Infected with Brucella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighty feral swine were trapped from a herd which had been documented to be seropositive for Brucella and which had been used for Brucella abortus RB51 vaccine trials on a 7,100 hectare tract of land in South Carolina. The animals were euthanized and complete necropsies were performed. Samples we...

  3. PATHOGENICITY AND IMMUNOGENICITY OF STREPTOMYCIN-DEPENDENT MUTANTS OF BRUCELLA

    PubMed Central

    Simon, Ellen M.; Berman, David T.

    1962-01-01

    Simon, Ellen M. (University of Wisconsin, Madison) and David T. Berman. Pathogenicity and immunogenicity of streptomycin-dependent mutants of Brucella. J. Bacteriol. 83:1347–1355. 1962.—Streptomycin-dependent (Sd) mutants of Brucella suis and B. abortus were avirulent for guinea pigs whether selected in the presence of streptomycin only or streptomycin and normal or immune serum. Administration of large quantities of streptomycin to guinea pigs increased the numbers of organisms which could be recovered, but did not cause the development of progressive infections. Vaccination with Sd mutants of B. abortus diminished the pathological response of guinea pigs infected with a large challenge dose of virulent B. abortus, but equal numbers of organisms were recovered from vaccinated animals and unvaccinated controls. Vaccination with Sd mutants of B. suis protected some guinea pigs from small challenge doses. Immunization by multiple injections or by one injection plus streptomycin was superior to a single inoculation of organisms. PMID:13913089

  4. Improved serodiagnosis of bovine brucellosis by novel synthetic oligosaccharide antigens representing the capping m epitope elements of Brucella O-polysaccharide.

    PubMed

    McGiven, John; Howells, Laurence; Duncombe, Lucy; Stack, Judy; Ganesh, N Vijaya; Guiard, Julie; Bundle, David R

    2015-04-01

    Members of the genus Brucella have cell wall characteristics of Gram-negative bacteria, which in the most significant species includes O-polysaccharide (OPS). Serology is the most cost-effective means of detecting brucellosis, as infection with smooth strains of Brucella leads to the induction of high antibody titers against the OPS, an unbranched homopolymer of 4,6-dideoxy-4-formamido-D-mannopyranosyl residues (D-Rha4NFo) that are variably α(1→2)- and α(1→3)-linked. Six d-Rha4NFo homo-oligosaccharides were synthesized, each containing a single α(1→3) link but with a varied number of α(1→2) links. After conjugation to bovine serum albumin (BSA), glycoconjugates 1 to 6 were used to develop individual indirect enzyme-linked immunosorbent assays (iELISAs). The diagnostic capabilities of these antigens were applied to panels of cattle serum samples, including those falsely positive in conventional assays, and the results were compared with those of the complement fixation test (CFT), serum agglutination test (SAT), fluorescent polarization assay (FPA), smooth lipopolysaccharide (sLPS) iELISA, and competitive enzyme-linked immunosorbent assay (cELISA) methods. Results from field serum samples demonstrated that all of the synthetic antigens had excellent diagnostic capabilities. Assays developed with the α(1→3)-linked disaccharide conjugate 1 were the best at resolving false-positive serological results. This was supported by the results from serum samples derived from experimentally infected cattle. Data from synthetic trisaccharide antigens 2 and 3 and tetrasaccharide antigen 4 identified an OPS epitope equally common to all Brucella abortus and Brucella melitensis strains but