Science.gov

Sample records for above-ground dry matter

  1. The effect of freezing and drying on leaching of DOM from above ground vascular plant material from the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.

    2014-12-01

    Our understanding of the seasonal dynamics of fluvial dissolved organic matter (DOM) concentrations and fluxes in Arctic catchments has increased substantially during recent years, especially during the spring, which historically has been an under-sampled time period. While a number of studies have observed peaks in both DOM concentrations and fluxes during the spring snowmelt, our knowledge of the mechanisms that control these observations are still lacking. During the initial snowmelt period, frozen ground and the snow matrix act to constrain melt-water to the soil surface. We hypothesize that restriction of flow during this time facilitates leaching of DOM from senescent above ground vegetation and detritus contributing to the high DOM concentrations observed during the spring melt. This study focuses on the effect of freezing and drying on the leaching of dissolved organic carbon and nitrogen (DOC and DON) from above ground vascular plant material. Specifically, we examined the treatment effects of freezing, drying, and freeze-drying on three genera of common Alaskan Arctic vascular plants; Eriophorum (spp.), Carex (spp.), and Salix (spp.). Frozen and freeze-dried plant material released more DOC over the experimental 96 hour leaching period compared to plant material that was only dried. Qualitatively, these patterns were similar among the different plant types, while quantitatively Salix leached more DOC than either Eriophorum or Carex in all treatments. Similar patterns were also seen for DON between the different treatments and among the different plant types. Compositionally, DOM that was leached from frozen and freeze-dried material had higher C:N ratios than material that was only dried. Comparatively, DOM leached from Salix had much higher C:N ratios than either Eriophorum or Carex. During the first 24 hours of leaching, C:N ratios tended to increase followed by a subsequent leveling or decrease, suggesting that the composition of leached DOM varied

  2. Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree productivity and soil organic matter in high fertility forests

    NASA Astrophysics Data System (ADS)

    Cotrufo, M.; Alberti, G.; Vicca, S.; Inglima, I.; Belelli-Marchesini, L.; Genesio, L.; Miglietta, F.; Marjanovic, H.; Martinez, C.; Matteucci, G.; Peressotti, A.; Petrella, L.; Rodeghiero, M.

    2013-12-01

    The release of organic compounds from roots is a key process influencing soil carbon (C) dynamics and nutrient availability in terrestrial ecosystems and is a process by which plants stimulate microbial activity and soil organic matter (SOM) mineralization thus releasing nitrogen (N) to sustain their gross and net primary production (GPP and NPP). Root inputs also contribute to soil organic matter (SOM) formation. In this study, we quantified the annual net root derived C input to soil (Net-Croot) across six high fertile forests using an in-growth core isotope technique. On the basis of Net-Croot, wood and coarse root biomass changes and eddy covariance data, we quantified net belowground C sequestration. This and GPP were inversely related to soil C:N, but not to climate or age. Because, at these high fertile sites, biomass growth did not change with soil C:N ratio, biomass growth-to-GPP ratio significantly increased with increasing soil C:N. This was true for both our six forest sites and for high fertile sites across a set of other 23 sites selected at global scale. We suggest that, at high fertile sites, the interaction between plant demand for nutrients, soil stoichiometry and microbial activity sustain higher ecosystem C-sink allocation to above ground tree biomass with increasing soil C:N ratio and that this clear and strong relationship can be used for modelling forest C sink partitioning between plant biomass and soil. When C:N is high, microbes have a low C use efficiency, respire more of the fresh C inputs by roots and prime SOM decomposition increasing N availability for tree uptake. Soil C sequestration would therefore decrease, whereas the extra N released during SOM decomposition can promote tree growth and ecosystem C sink allocation in aboveground biomass. Conversely, C is sequestered in soil when the low soil C:N promotes microbial C use efficiency and new SOM formation.

  3. LINE-ABOVE-GROUND ATTENUATOR

    DOEpatents

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  4. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  5. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  6. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  7. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  8. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  9. Remote sensing of total dry-matter accumulation in winter wheat

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Red and photographic-infrared spectral data collected on 21 dates over the growing season with a hand-held radiometer was quantitatively correlated with total dry-matter accumulation in winter wheat. The spectral data were found to be highly related to vigor and condition of the plant canopy. Two periods of drought stress and subsequent recovery from it were readily apparent in the spectral data. Simple ratios of the spectral data compensated for variations in solar intensities and, when integrated over the growing season, explained 79% of the variation in total above-ground accumulation of dry matter.

  10. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, Yuxiang; Lee, Gilzae; Lee, Pilzae; Oikawa, Takehisa

    2007-01-01

    In this study, we have analyzed the productivity of a grassland ecosystem in Kherlenbayan-Ulaan (KBU), Mongolia under non-grazing and grazing conditions using a new simulation model, Sim-CYCLE grazing. The model was obtained by integrating the Sim-CYCLE [Ito, A., Oikawa, T., 2002. A simulation model of carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecological Modeling, 151, pp. 143-176] and a defoliation formulation [Seligman, N.G., Cavagnaro, J.B., Horno, M.E., 1992. Simulation of defoliation effects on primary production of warm-season, semiarid perennial- species grassland. Ecological Modelling, 60, pp. 45-61]. The results from the model have been validated against a set of field data obtained at KBU showing that both above-ground biomass (AB) and above-ground net primary production ( Np,a) decrease with increasing grazing intensity. The simulated maximum AB for a year maintains a nearly constant value of 1.15 Mg DM ha -1 under non-grazing conditions. The AB decreases and then reaches equilibrium under a stocking rate ( Sr) of 0.4 sheep ha -1 and 0.7 sheep ha -1. The AB decreases all the time if Sr is greater than 0.7 sheep ha -1. These results suggest that the maximum sustainable Sr is 0.7 sheep ha -1. A similar trend is also observed for the simulated Np,a. The annual Np,a is about 1.25 Mg DM ha -1 year -1 and this value is also constant under non-grazing conditions. The annual Np,a decreases and then reaches equilibrium under an Sr of 0.4 sheep ha -1 and 0.7 sheep ha -1, but the Np,a decreases all the time when Sr is greater than 0.7 sheep ha -1. It also indicates that the maximum sustainable Sr is 0.7 sheep ha -1. Transpiration ( ET) and evaporation ( EE) rates were determined by the Penman-Monteith method. Simulated results show that ET decreases with increasing Sr, while EE increases with increasing Sr. At equilibrium, the annual mean evapotranspiration ( E) is 189.11 mm year -1

  11. DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND TYPICAL TERRA COTTA WINDOW SILL. CORNER OF CLAY AND 15TH STREETS - John Breuner & Company Building, 1515 Clay Street, Oakland, Alameda County, CA

  12. ETR WASTE GAS STACK. ABOVE GROUND DUCTWORK AND ETR STACK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR WASTE GAS STACK. ABOVE GROUND DUCTWORK AND ETR STACK, CLOSER VIEW. PERSONNEL LADDER AND CIRCULAR WORK PLATFORM MIDWAY UP STACK. CAMERA FACES NORTH. INL NEGATIVE NO. HD42-7-2. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. [Vegetation above-ground biomass and its affecting factors in water/wind erosion crisscross region on Loess Plateau].

    PubMed

    Wang, Jian-guo; Fan, Jun; Wang, Quan-jiu; Wang, Li

    2011-03-01

    Field investigations were conducted in Liudaogou small watershed in late September 2009 to study the differences of vegetation above-ground biomass, soil moisture content, and soil nutrient contents under different land use patterns, aimed to approach the vegetation above-ground biomass level and related affecting factors in typical small watershed in water/wind erosion crisscross region on Loess Plateau. The above-ground dry biomass of the main vegetations in Liudaogou was 177-2207 g x m(-2), and that in corn field, millet field, abandoned farmland, artificial grassland, natural grassland, and shrub land was 2097-2207, 518-775, 248-578, 280-545, 177-396, and 372-680 g x m(-2), respectively. The mean soil moisture content in 0-100 layer was the highest (14.2%) in farmlands and the lowest (10.9%) in shrub land. The coefficient of variation of soil moisture content was the greatest (26. 7% ) in abandoned farmland, indicating the strong spatial heterogeneity of soil moisture in this kind of farmland. The mean soil water storage was in the order of farmland > artificial grassland > natural grassland > shrub land. Soil dry layer was observed in alfalfa and caragana lands. There was a significant positive correlation (r = 0.639, P < 0.05) between above-ground dry biomass and 0-100 cm soil water storage, and also, a very significant positive correlation between above-ground fresh biomass and vegetation height. The above-ground biomass of the higher vegetations could potentially better control the wind and water erosion in the water/wind erosion crisscross region. Vegetation above-ground biomass was highly correlated with soil moisture and nutrient contents, but had no significant correlations with elevation, slope gradient, slope aspect, and soil bulk density.

  14. Regional analysis of ground and above-ground climate

    SciTech Connect

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  15. Regional analysis of ground and above-ground climate

    NASA Astrophysics Data System (ADS)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  16. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    DOE PAGES

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; ...

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less

  17. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    SciTech Connect

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; Kiff, Scott D.; Reyna, David; Throckmorton, Daniel J.

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.

  18. Pantropical trends in mangrove above-ground biomass and annual litterfall.

    PubMed

    Saenger, Peter; Snedaker, Samuel C

    1993-12-01

    A major paradigm in biosphere ecology is that organic production, carbon turnover and, perhaps, species diversity are highest at tropical latitudes, and decrease toward higher latitudes. To examine these trends in the pantropical mangrove forest vegetation type, we collated and analysed data on above-ground biomass and annual litterfall for these communities. Regressions of biomass and litterfall data show significant relationships with height of the vegetation and latitude. It is suggested that height and latitude are causally related to biomass, while the relationship with litterfall reflects the specific growing conditions at the respective study sites. Comparison of mangrove and upland forest litterfall data shows similar trends with latitude but indicates that mangrove litterfall is higher than upland forest litterfall. The regression equations allow the litterfall/biomass ratio to be simulated, and this suggests that the patterns of organic matter partitioning differ according to latitude.

  19. Above-ground biomass and structure of 260 African tropical forests

    PubMed Central

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  20. Above-ground biomass and structure of 260 African tropical forests.

    PubMed

    Lewis, Simon L; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M F; Phillips, Oliver L; Affum-Baffoe, Kofi; Baker, Timothy R; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E N; Fauset, Sophie; Feldpausch, Ted R; Foli, Ernest G; Gillet, Jean-François; Hamilton, Alan C; Harris, David J; Hart, Terese B; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J; Kearsley, Elizabeth; Leal, Miguel E; Lloyd, Jon; Lovett, Jon C; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R; Ojo, Lucas; Peh, Kelvin S-H; Pickavance, Georgia; Poulsen, John R; Reitsma, Jan M; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E; Talbot, Joey; Taplin, James R D; Taylor, David; Thomas, Sean C; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J T; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.

  1. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  2. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  3. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  4. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  5. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  6. [Fractal relationship between above ground biomass and plant length or sheath height of Carex lasiocarpa population].

    PubMed

    He, Chiquan; Zhao, Kuiyi

    2003-04-01

    By using the principles and methods of fractal geometry theory, the relationship between above ground biomass and plant length or sheath height of Carex lasiocarpa population was studied. The results showed that there was a good static fractal relationship between them, and the resulted fractal dimension was an efficient description of the accumulation of above ground biomass in each organ. The dynamic fractal relationship showed that during the whole growing season, the increase of above ground biomass had a self-similarity, being a fractal growth process, and the pattern of its increase was the fractal dimension D. Based on these results, a fractal growth model of Carex lasiocarpa population was established, which regarded the bigger grass as the result of the amplification of seedling growth.

  7. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  8. Characteristics of train noise in above-ground and underground stations with side and island platforms

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  9. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  10. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio.

  11. Exploring multi-scale forest above ground biomass estimation with optical remote sensing imageries

    NASA Astrophysics Data System (ADS)

    Koju, U.; Zhang, J.; Gilani, H.

    2017-02-01

    Forest shares 80% of total exchange of carbon between the atmosphere and the terrestrial ecosystem. Due to this monitoring of forest above ground biomass (as carbon can be calculated as 0.47 part of total biomass) has become very important. Forest above ground biomass as being the major portion of total forest biomass should be given a very careful consideration in its estimation. It is hoped to be useful in addressing the ongoing problems of deforestation and degradation and to gain carbon mitigation benefits through mechanisms like Reducing Emissions from Deforestation and Forest Degradation (REDD+). Many methods of above ground biomass estimation are in used ranging from use of optical remote sensing imageries of very high to very low resolution to SAR data and LIDAR. This paper describes a multi-scale approach for assessing forest above ground biomass, and ultimately carbon stocks, using very high imageries, open source medium resolution and medium resolution satellite datasets with a very limited number of field plots. We found this method is one of the most promising method for forest above ground biomass estimation with higher accuracy and low cost budget. Pilot study was conducted in Chitwan district of Nepal on the estimation of biomass using this technique. The GeoEye-1 (0.5m), Landsat (30m) and Google Earth (GE) images were used remote sensing imageries. Object-based image analysis (OBIA) classification technique was done on Geo-eye imagery for the tree crown delineation at the watershed level. After then, crown projection area (CPA) vs. biomass model was developed and validated at the watershed level. Open source GE imageries were used to calculate the CPA and biomass from virtual plots at district level. Using data mining technique, different parameters from Landsat imageries along with the virtual sample biomass were used for upscaling biomass estimation at district level. We found, this approach can considerably reduce field data requirements for

  12. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  13. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    DOE PAGES

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; ...

    2016-11-14

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less

  14. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    SciTech Connect

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-11-14

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Monte Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.

  15. Phosphorus Concentrations in Above Ground Plant Biomass under Changing Climate Conditions

    NASA Astrophysics Data System (ADS)

    Selvin, C.; Paytan, A.; Roberts, K.

    2013-12-01

    The Jasper Ridge Global Change Experiment explores the effects of climate change on annual grasslands with different combinations of elevated or ambient levels of carbon dioxide, heat, precipitation, and nitrate deposition. The nested split-plot design allows for analysis of each variable, combinations of variables, and secondary effects. In this study, plant nutrient levels in homogenized above ground biomass are analyzed to assess the utility of this parameter as a tool to describe the response of an ecosystem to environmental changes. Total phosphorus concentrations showed considerable variability within treatment (n=8) and therefore no significant differences between treatments (n=16) is found. Carbon and nitrogen concentrations in bulk above ground biomass are being analyzed to determine nitrogen and carbon ratios and further elucidate the environmental response of phosphorus levels in plants to the modified parameters. P concentrations and elemental ratios will also be related to other parameters such as soil humidity, microbial biomass, enzyme activity, and plant diversity to determine the parameters influencing P content in the biomass.

  16. Critical Zone Ecohydrology as a Link Between Below- and Above-Ground Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Kumar, P.

    2013-12-01

    The Critical Zone is the near-surface layer that is created by life processes from microbial scale to ecosystems, which in turn supports nearly all the terrestrial living systems. It extends from the top of the canopy to the bedrock. The biotic-abiotic links between the below- and above-ground processes determine the functional role of the critical zone. To predict and assess the impact of climate and other anthropogenic changes on the Critical Zone processes, a model that considers this zone as a continuum and captures the interactions between roots, soil moisture, nutrient uptake, and photosynthesis is developed. We attempt to address a variety of questions: How does elevated CO2 affect photosynthesis and plant water uptake? What role does hydraulic redistribution play in the below- and above-ground interactions? How do these scale when we consider interaction between multiple vegetation species, for example, between tall and understory vegetation? Results from a number of study sites will be presented and their implications will be discussed.

  17. Above-ground biomass estimation of tuberous bulrush ( Bolboschoenus planiculmis) in mudflats using remotely sensed multispectral image

    NASA Astrophysics Data System (ADS)

    Kim, Ji Yoon; Im, Ran-Young; Do, Yuno; Kim, Gu-Yeon; Joo, Gea-Jae

    2016-03-01

    We present a multivariate regression approach for mapping the spatial distribution of above-ground biomass (AGB) of B. planiculmis using field data and coincident moderate spatial resolution satellite imagery. A total of 232 ground sample plots were used to estimate the biomass distribution in the Nakdong River estuary. Field data were overlain and correlated with digital values from an atmospherically corrected multispectral image (Landsat 8). The AGB distribution was derived using empirical models trained with field-measured AGB data. The final regression model for AGB estimation was composed using the OLI3, OLI4, and OLI7 spectral bands. The Pearson correlation between the observed and predicted biomass was significant (R = 0.84, p < 0.0001). OLI3 made the largest contribution to the final model (relative coefficient value: 53.4%) and revealed a negative relationship with the AGB biomass. The total distribution area of B. planiculmis was 1,922,979 m2. Based on the model estimation, the total AGB had a dry weight (DW) of approximately 298.2 tons. The distribution of high biomass stands (> 200 kg DW/900 m2) constituted approximately 23.91% of the total vegetated area. Our findings suggest the expandability of remotely sensed products to understand the distribution pattern of estuarine plant productivity at the landscape level.

  18. Dry matter and energy partitioning in plants under climatic stress

    SciTech Connect

    Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.; Ledl, D.; Nemeth, K.; Ludlow, M.M.

    1996-12-31

    During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any case stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.

  19. Above ground biomass estimation from lidar and hyperspectral airbone data in West African moist forests.

    NASA Astrophysics Data System (ADS)

    Vaglio Laurin, Gaia; Chen, Qi; Lindsell, Jeremy; Coomes, David; Cazzolla-Gatti, Roberto; Grieco, Elisa; Valentini, Riccardo

    2013-04-01

    The development of sound methods for the estimation of forest parameters such as Above Ground Biomass (AGB) and the need of data for different world regions and ecosystems, are widely recognized issues due to their relevance for both carbon cycle modeling and conservation and policy initiatives, such as the UN REDD+ program (Gibbs et al., 2007). The moist forests of the Upper Guinean Belt are poorly studied ecosystems (Vaglio Laurin et al. 2013) but their role is important due to the drier condition expected along the West African coasts according to future climate change scenarios (Gonzales, 2001). Remote sensing has proven to be an effective tool for AGB retrieval when coupled with field data. Lidar, with its ability to penetrate the canopy provides 3D information and best results. Nevertheless very limited research has been conducted in Africa tropical forests with lidar and none to our knowledge in West Africa. Hyperspectral sensors also offer promising data, being able to evidence very fine radiometric differences in vegetation reflectance. Their usefulness in estimating forest parameters is still under evaluation with contrasting findings (Andersen et al. 2008, Latifi et al. 2012), and additional studies are especially relevant in view of forthcoming satellite hyperspectral missions. In the framework of the EU ERC Africa GHG grant #247349, an airborne campaign collecting lidar and hyperspectral data has been conducted in March 2012 over forests reserves in Sierra Leone and Ghana, characterized by different logging histories and rainfall patterns, and including Gola Rainforest National Park, Ankasa National Park, Bia and Boin Forest Reserves. An Optech Gemini sensor collected the lidar dataset, while an AISA Eagle sensor collected hyperspectral data over 244 VIS-NIR bands. The lidar dataset, with a point density >10 ppm was processed using the TIFFS software (Toolbox for LiDAR Data Filtering and Forest Studies)(Chen 2007). The hyperspectral dataset, geo

  20. Microstructure and textural and viscoelastic properties of model processed cheese with different dry matter and fat in dry matter content.

    PubMed

    Černíková, Michaela; Nebesářová, Jana; Salek, Richardos Nikolaos; Řiháčková, Lada; Buňka, František

    2017-04-05

    The aim of this work was to examine the effect of a different dry matter (DM) contents (35 and 45% wt/wt) and fat in DM contents (40 and 50% wt/wt) on the textural and viscoelastic properties and microstructure of model processed cheeses made from real ingredients regularly used in the dairy industry. A constant DM content and constant fat in DM content were kept throughout the whole study. Apart from the basic chemical parameters, textural and viscoelastic properties of the model samples were measured and scanning electron microscopy was carried out. With increasing DM content, the rigidity of the products increased and the size of the fat globules in the model samples of the processed cheeses decreased. With increasing fat in DM content, the rigidity of the processed cheeses decreased and the size of the fat globules increased.

  1. Assessing General Relationships Between Above-Ground Biomass and Vegetation Structure Parameters for Improved Carbon Estimate from Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, W.; Lee, S.; Strahler, A. H.; Woodcock, C. E.; Schaaf, C.; Yao, T.; Ranson, J.; Sun, G.; Blair, J. B.

    2009-12-01

    Lidar remote sensing uses vegetation height to estimate large-scale above-ground biomass. However, lidar height and biomass relationships are empirical and thus often lead to large uncertainties in above-ground biomass estimates. This study uses vegetation structure measurements from field: an airborne lidar (Laser Vegetation Imaging Sensor, LVIS)) and a full wave form ground-based lidar (Echidna® validation instrument, EVI) collected in the New England region in 2003 and 2007, to investigate using additional vegetation structure parameters besides height for improved above-ground biomass estimation from lidar. Our field data analysis shows that using woody volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve above-ground biomass estimates at large scale. This result is comparable to previous work by Chave et al. (2005), which focused on individual trees. However this study uses a slightly different approach, and our woody volume is estimated differently from Chave et al. (2005). Previous studies found that RH50 is a good predictor of above-ground biomass (Drake et al., 2002; 2003). Our LVIS data analysis shows that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, perform similarly or even better than RH50. We also found that the close relationship of RH100*cover and RH50*cover with woody volume explains why they are good predictors of above-ground biomass. RH50 is highly related to RH100*cover, and this explains why RH50 is a better predictor of biomass than RH100. This study shows that using structure parameters combining height and gap fraction improve above-ground biomass estimate compared to height alone, and fusion of lidar and optical remote sensing (to provide vegetation type) will provide better above-ground biomass estimates than lidar alone. Ground lidar analysis

  2. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  3. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery

    NASA Astrophysics Data System (ADS)

    Wu, Chaofan; Shen, Huanhuan; Shen, Aihua; Deng, Jinsong; Gan, Muye; Zhu, Jinxia; Xu, Hongwei; Wang, Ke

    2016-07-01

    Biomass is one significant biophysical parameter of a forest ecosystem, and accurate biomass estimation on the regional scale provides important information for carbon-cycle investigation and sustainable forest management. In this study, Landsat satellite imagery data combined with field-based measurements were integrated through comparisons of five regression approaches [stepwise linear regression, K-nearest neighbor, support vector regression, random forest (RF), and stochastic gradient boosting] with two different candidate variable strategies to implement the optimal spatial above-ground biomass (AGB) estimation. The results suggested that RF algorithm exhibited the best performance by 10-fold cross-validation with respect to R2 (0.63) and root-mean-square error (26.44 ton/ha). Consequently, the map of estimated AGB was generated with a mean value of 89.34 ton/ha in northwestern Zhejiang Province, China, with a similar pattern to the distribution mode of local forest species. This research indicates that machine-learning approaches associated with Landsat imagery provide an economical way for biomass estimation. Moreover, ensemble methods using all candidate variables, especially for Landsat images, provide an alternative for regional biomass simulation.

  4. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances

    PubMed Central

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  5. The secret life of ground squirrels: accelerometry reveals sex-dependent plasticity in above-ground activity.

    PubMed

    Williams, Cory T; Wilsterman, Kathryn; Zhang, Victor; Moore, Jeanette; Barnes, Brian M; Buck, C Loren

    2016-09-01

    The sexes differ in how and when they allocate energy towards reproduction, but how this influences phenotypic plasticity in daily activity patterns is unclear. Here, we use collar-mounted light loggers and triaxial accelerometers to examine factors that affect time spent above ground and overall dynamic body acceleration (ODBA), an index of activity-specific energy expenditure, across the active season of free-living, semi-fossorial arctic ground squirrels (Urocitellus parryii). We found high day-to-day variability in time spent above ground and ODBA with most of the variance explained by environmental conditions known to affect thermal exchange. In both years, females spent more time below ground compared with males during parturition and early lactation; however, this difference was fourfold larger in the second year, possibly, because females were in better body condition. Daily ODBA positively correlated with time spent above ground in both sexes, but females were more active per unit time above ground. Consequently, daily ODBA did not differ between the sexes when females were early in lactation, even though females were above ground three to six fewer hours each day. Further, on top of having the additional burden of milk production, ODBA data indicate females also had fragmented rest patterns and were more active during late lactation. Our results indicate that sex differences in reproductive requirements can have a substantial influence on activity patterns, but the size of this effect may be dependent on capital resources accrued during gestation.

  6. The secret life of ground squirrels: accelerometry reveals sex-dependent plasticity in above-ground activity

    PubMed Central

    Wilsterman, Kathryn; Zhang, Victor; Moore, Jeanette; Barnes, Brian M.; Buck, C. Loren

    2016-01-01

    The sexes differ in how and when they allocate energy towards reproduction, but how this influences phenotypic plasticity in daily activity patterns is unclear. Here, we use collar-mounted light loggers and triaxial accelerometers to examine factors that affect time spent above ground and overall dynamic body acceleration (ODBA), an index of activity-specific energy expenditure, across the active season of free-living, semi-fossorial arctic ground squirrels (Urocitellus parryii). We found high day-to-day variability in time spent above ground and ODBA with most of the variance explained by environmental conditions known to affect thermal exchange. In both years, females spent more time below ground compared with males during parturition and early lactation; however, this difference was fourfold larger in the second year, possibly, because females were in better body condition. Daily ODBA positively correlated with time spent above ground in both sexes, but females were more active per unit time above ground. Consequently, daily ODBA did not differ between the sexes when females were early in lactation, even though females were above ground three to six fewer hours each day. Further, on top of having the additional burden of milk production, ODBA data indicate females also had fragmented rest patterns and were more active during late lactation. Our results indicate that sex differences in reproductive requirements can have a substantial influence on activity patterns, but the size of this effect may be dependent on capital resources accrued during gestation. PMID:27703706

  7. Root growth dynamics linked to above-ground growth in walnut (Juglans regia)

    PubMed Central

    Contador, Maria Loreto; Comas, Louise H.; Metcalf, Samuel G.; Stewart, William L.; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D.

    2015-01-01

    Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques. Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs

  8. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  9. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  10. Estimating above-ground biomass on mountain meadows and pastures through remote sensing

    NASA Astrophysics Data System (ADS)

    Barrachina, M.; Cristóbal, J.; Tulla, A. F.

    2015-06-01

    Extensive stock-breeding systems developed in mountain areas like the Pyrenees are crucial for local farming economies and depend largely on above-ground biomass (AGB) in the form of grass produced on meadows and pastureland. In this study, a multiple linear regression analysis technique based on in-situ biomass collection and vegetation and wetness indices derived from Landsat-5 TM data is successfully applied in a mountainous Pyrenees area to model AGB. Temporal thoroughness of the data is ensured by using a large series of images. Results of on-site AGB collection show the importance for AGB models to capture the high interannual and intraseasonal variability that results from both meteorological conditions and farming practices. AGB models yield best results at midsummer and end of summer before mowing operations by farmers, with a mean R2, RMSE and PE for 2008 and 2009 midsummer of 0.76, 95 g m-2 and 27%, respectively; and with a mean R2, RMSE and PE for 2008 and 2009 end of summer of 0.74, 128 g m-2 and 36%, respectively. Although vegetation indices are a priori more related with biomass production, wetness indices play an important role in modeling AGB, being statistically selected more frequently (more than 50%) than other traditional vegetation indexes (around 27%) such as NDVI. This suggests that middle infrared bands are crucial descriptors of AGB. The methodology applied in this work compares favorably with other works in the literature, yielding better results than those works in mountain areas, owing to the ability of the proposed methodology to capture natural and anthropogenic variations in AGB which are the key to increasing AGB modeling accuracy.

  11. Estimating Above Ground Biomass using LiDAR in the Northcoast Redwood Forests

    NASA Astrophysics Data System (ADS)

    Rao, M.; Stewart, E.

    2010-12-01

    In recent years, LiDAR (Light Intensity Detection Amplification and Ranging) is increasingly being used in estimating biophysical parameters related to forested environments. The main goal of the project is to estimate long-term biomass accumulation and carbon sequestration potential of the redwoods ecosystem. The project objectives are aimed at providing an assessment of carbon pools within the redwood ecosystem. Specifically, we intend to develop a relational model based on LiDAR-based canopy estimates and extensive ground-based measurements available for the old-growth redwood forest located within the Prairie Creek Redwoods State Park, CA. Our preliminary analysis involved developing a geospatial database, including LiDAR data collected in 2007 for the study site, and analyzing the data using USFS Fusion software. The study area comprised of a 12-acres section of coastal redwood (Sequoia sempervirens) in the Prairie Creek Redwoods State Park, located in Orick, CA. A series of analytical steps were executed using the USFS FUSION software to produce some intermediate data such as bare earth model, canopy height model, canopy coverage model, and canopy maxima treelist. Canopy maxima tree tops were compared to ground layer to determine height of tree tops. A total of over 1000 trees were estimated, and then with thinning (to eliminate errors due to low vegetation > 3 meters tall), a total of 950 trees were delineated. Ground measurements were imported as a point based shapefile and then compared to the treetop heights created from LiDAR data to the actual ground referenced data. The results were promising as most estimated treetops were within 1-3 meters of the ground measurements and generally within 3-5m of the actual tree height. Finally, we are in the process of applying some allometric equations to estimate above ground biomass using some of the LiDAR-derived canopy metrics.

  12. Reconstructing Above Ground Forest Biomass Increment and Uncertainty Using Tree-ring Data

    NASA Astrophysics Data System (ADS)

    Dawson, A.; Paciorek, C. J.; Moore, D. J.; Pedersen, N.; Barker Plotkin, A.; Hessl, A. E.; Dye, A.; Bishop, D. A.; Alexander, M. R.; McLachlan, J. S.

    2015-12-01

    In a changing terrestrial climate, it is becoming increasingly important to be able to quantify Earth systems cycles, including thecarbon cycle. Atmospheric concentrations of carbon dioxide continue toincrease as a result of anthropogenic activity, but less is understood about how forest systems will affect the carbon cycle. In practice, it is difficult to measure carbon flux in a forest system. Flux towers, satellite and remote sensing methods, and dynamic vegetation models have been used to quantify current and future forest net primary productivity. Tree rings provide us with information about forest carbon storage in the past, and have been used to reconstruct above ground biomass increment (aBI). However, uncertainty from measurement error, assumptions about tree architecture including circular stems and diameter-volume relationships, and the fading record - the challenge of quantifying the growth of previously live trees - are often not accounted for. As a first step towards reconstructing aBI and its uncertainty, we develop a tree ring sampling protocol and a Bayesian hierarchical model toestimate aBI while accounting for measurement and architecture uncertainty. Tree-ring and repeated census plot data have been collected from several sites using a protocol that allows us toquantify growth dependence across trees in a local area. We also use multiple cores per tree to investigate the number of cores needed to reduce uncertainty from the assumption of stem circularity. For short-time-scale reconstructions, we avoid the fading record issue by coring dead trees and co-locating tree-ring data with censuses, thus avoiding having to make assumptions about stand density andmortality. We also statistically investigate the importance of including census data and of coring dead trees to quantify how uncertainty and bias are affected as we go back further in time. Preliminary results show that the model is able to estimate yearly variation in aBI well for many decades

  13. Investigating Appropriate Sampling Design for Estimating Above-Ground Biomass in Bruneian Lowland Mixed Dipterocarp Forest

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, D.; Abu Salim, K.; Yun, H. M.; Han, S.; Lee, W. K.; Davies, S. J.; Son, Y.

    2014-12-01

    Mixed tropical forest structure is highly heterogeneous unlike plantation or mixed temperate forest structure, and therefore, different sampling approaches are required. However, the appropriate sampling design for estimating the above-ground biomass (AGB) in Bruneian lowland mixed dipterocarp forest (MDF) has not yet been fully clarified. The aim of this study was to provide supportive information in sampling design for Bruneian forest carbon inventory. The study site was located at Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Six 60 m × 60 m quadrats were established, separated by a distance of approximately 100 m and each was subdivided into quadrats of 10 m × 10 m, at an elevation between 200 and 300 m above sea level. At each plot all free-standing trees with diameter at breast height (dbh) ≥ 1 cm were measured. The AGB for all trees with dbh ≥ 10 cm was estimated by allometric models. In order to analyze changes in the diameter-dependent parameters used for estimating the AGB, different quadrat areas, ranging from 10 m × 10 m to 60 m × 60 m, were used across the study area, starting at the South-West end and moving towards the North-East end. The derived result was as follows: (a) Big trees (dbh ≥ 70 cm) with sparse distribution have remarkable contribution to the total AGB in Bruneian lowland MDF, and therefore, special consideration is required when estimating the AGB of big trees. Stem number of trees with dbh ≥ 70 cm comprised only 2.7% of all trees with dbh ≥ 10 cm, but 38.5% of the total AGB. (b) For estimating the AGB of big trees at the given acceptable limit of precision (p), it is more efficient to use large quadrats than to use small quadrats, because the total sampling area decreases with the former. Our result showed that 239 20 m × 20 m quadrats (9.6 ha in total) were required, while 15 60 m × 60 m quadrats (5.4 ha in total) were required when estimating the AGB of the trees

  14. The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient.

    PubMed

    Blume-Werry, Gesche; Wilson, Scott D; Kreyling, Juergen; Milbau, Ann

    2016-02-01

    There is compelling evidence from experiments and observations that climate warming prolongs the growing season in arctic regions. Until now, the start, peak, and end of the growing season, which are used to model influences of vegetation on biogeochemical cycles, were commonly quantified using above-ground phenological data. Yet, over 80% of the plant biomass in arctic regions can be below ground, and the timing of root growth affects biogeochemical processes by influencing plant water and nutrient uptake, soil carbon input and microbial activity. We measured timing of above- and below-ground production in three plant communities along an arctic elevation gradient over two growing seasons. Below-ground production peaked later in the season and was more temporally uniform than above-ground production. Most importantly, the growing season continued c. 50% longer below than above ground. Our results strongly suggest that traditional above-ground estimates of phenology in arctic regions, including remotely sensed information, are not as complete a representation of whole-plant production intensity or duration, as studies that include root phenology. We therefore argue for explicit consideration of root phenology in studies of carbon and nutrient cycling, in terrestrial biosphere models, and scenarios of how arctic ecosystems will respond to climate warming.

  15. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments

    NASA Astrophysics Data System (ADS)

    Sibanda, Mbulisi; Mutanga, Onisimo; Rouget, Mathieu

    2015-12-01

    The major constraint in understanding grass above ground biomass variations using remotely sensed data are the expenses associated with the data, as well as the limited number of techniques that can be applied to different management practices with minimal errors. New generation multispectral sensors such as Sentinel 2 Multispectral Imager (MSI) are promising for effective rangeland management due to their unique spectral bands and higher signal to noise ratio. This study resampled hyperspectral data to spectral resolutions of the newly launched Sentinel 2 MSI and the recently launched Landsat 8 OLI for comparison purposes. Using Sparse partial least squares regression, the resampled data was applied in estimating above ground biomass of grasses treated with different fertilizer combinations of ammonium sulfate, ammonium nitrate, phosphorus and lime as well as unfertilized experimental plots. Sentinel 2 MSI derived models satisfactorily performed (R2 = 0.81, RMSEP = 1.07 kg/m2, RMSEP_rel = 14.97) in estimating grass above ground biomass across different fertilizer treatments relative to Landsat 8 OLI (Landsat 8 OLI: R2 = 0.76, RMSEP = 1.15 kg/m2, RMSEP_rel = 16.04). In comparison, hyperspectral data derived models exhibited better grass above ground biomass estimation across complex fertilizer combinations (R2 = 0.92, RMSEP = 0.69 kg/m2, RMSEP_rel = 9.61). Although Sentinel 2 MSI bands and indices better predicted above ground biomass compared with Landsat 8 OLI bands and indices, there were no significant differences (α = 0.05) in the errors of prediction between the two new generational sensors across all fertilizer treatments. The findings of this study portrays Sentinel 2 MSI and Landsat 8 OLI as promising remotely sensed datasets for regional scale biomass estimation, particularly in resource scarce areas.

  16. Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of photoperiod and growing degree days (GDD) on dry matter and dry partitioning in Jerusalem artichoke was investigated during 2008-09 and 2009-10. Three Jerusalem artichoke genotypes (CN-52867, JA-89 and HEL-65) were planted in 15 day-intervals between with thirteen different dates (Sep...

  17. [Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kintze (Arecaceae) at a palm shrub community on the Marambaia beach ridge, Rio de Janeiro, Brazil].

    PubMed

    de Menezes, L F; de Araujo, D S

    2000-02-01

    Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kuntze (Arecaceae) along five topographic profiles perpendicular to the ocean was examined in a palm scrub community on Marambaia beach ridge, Rio de Janeiro State, Brazil. Aerial biomass was positively correlated with distance from the sea (F = 39.57; R2 = 0.69; P < 0.01) as was detritus cover (F = 525.92; R2 = 0.92; P < 0.01). A. arenaria growth is closely related to the topography of the beach area. Dense populations of this palm enrich the soil by increasing organic matter under the plants through dead leaf material. This promotes the accumulation of nutrients and the creation of micro-climates that favor the establishment of other species.

  18. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    USGS Publications Warehouse

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  19. Production response of lactating cows fed dried versus wet brewers' grain in diets with similar dry matter content.

    PubMed

    Dhiman, T R; Bingham, H R; Radloff, H D

    2003-09-01

    Twenty-four Holstein-Friesian dairy cows (20 intact and 4 fitted with rumen cannula) during early lactation (56 +/- 25.3 d in milk) were assigned to two treatments to determine intake and production responses to feeding dried and wet brewers' grain. There were two cows fitted with a rumen cannula in each treatment. Cows were fed a total mixed ration twice daily containing either dried or wet brewers' grain at 15% of the dietary dry matter (DM). The diet contained 47% forage and 53% concentrate. The experimental design was a replicated 2 x 2 Latin square with two periods of 5 wk each. First 2 wk in each period were considered as adaptation to diets and data from the last 3 wk were used for treatment comparisons. Dried and wet brewers' diets contained 68.0 and 66.5% DM, respectively. Feeding brewers' grain dry or wet to dairy cows had no influence on feed intake (25.6 vs. 25.1 kg/d), fat corrected milk yield (40.1 vs. 40.7 kg/d), milk composition and feed consumption. The pH, ammonia, total volatile fatty acids and molar ratios of volatile fatty acids in the rumen fluid were not different between treatments. Fatty acid composition of milk fat from cows fed diets containing dry or wet brewers' grain was identical, except C18:2 and C18:3 fatty acids were lower in milk fat from cows fed wet brewers' grain compared with dried brewers' grain. The results from the present study suggest that the performance of cows fed either dried or wet brewers' grain at 15% of dietary DM was similar when diets had the same DM. The average price for dried and wet brewers' grain in the United States from July 2001 to June 2002 was dollars 145.3 and dollars 96.9/metric tonne DM, respectively. Using wet instead of dried brewers' grain will save dollars 49/metric tonne minus the difference in storage costs. Wet brewers' grain can be fed to dairy cows in areas that are close to the brewery and provides nutritive value similar to the dried brewers' grain.

  20. Below- and above-ground controls on tree water use in lowland tropical forests

    NASA Astrophysics Data System (ADS)

    Meinzer, F. C.; Woodruff, D.; McCulloh, K.; Domec, J.

    2012-12-01

    Even in moist tropical forests, fluctuations in soil water availability and atmospheric evaporative demand can constrain tree water use. Our research in three lowland tropical forest sites in Panama over the past two decades has identified a series of tree biophysical and functional traits related to daily and seasonal patterns of uptake, transport and loss of water. Studies combining measurements of sap flow and natural abundance of hydrogen isotopes in soil and xylem water during the dry season show considerable variation in depth of soil water uptake among co-occurring species. Trees able to exploit progressively deeper sources of soil water during the dry season, as indicated by increasingly negative xylem water hydrogen isotope ratios, were also able to maintain constant or even increased rates of water use. Injections of a stable isotope tracer (deuterated water) into tree trunks revealed a considerable range of water transit and residence times among co-occurring, similarly-sized trees. Components of tree hydraulic architecture were also strong determinants of patterns of water use. Sapwood hydraulic capacitance, the amount of water released per unit change in tissue water potential, was a strong predictor of several tree water use and water relations traits, including sap velocity, water residence time, daily maximum branch xylem tension, and the time of day at which stomata began to increasingly restrict transpiration. Among early and late successional species, hydraulic traits such as trunk-to-branch tapering of xylem vessels, branch sap flux, branch sapwood specific conductivity and whole-tree leaf area-specific hydraulic conductance scaled uniformly with branch wood density. Consistent with differences in trunk-to-branch tapering of vessels between early and late successional species, the ratio of branch to trunk sap flux was substantially greater in early successional species. Among species, stomatal conductance and transpiration per unit leaf area

  1. Remote sensing of fuel moisture content from canopy water indices and normalized dry matter index

    NASA Astrophysics Data System (ADS)

    Raymond Hunt, E.; Wang, Lingli; Qu, John J.; Hao, Xianjun

    2012-01-01

    Fuel moisture content (FMC), an important variable for predicting the occurrence and spread of wildfire, is the ratio of foliar water content and foliar dry matter content. One approach for the remote sensing of FMC has been to estimate the change in canopy water content over time by using a liquid-water spectral index. Recently, the normalized dry matter index (NDMI) was developed for the remote sensing of dry matter content using high-spectral-resolution data. The ratio of a spectral water index and a dry matter index corresponds to the ratio of foliar water and dry matter contents; therefore, we hypothesized that FMC may be remotely sensed with a spectral water index divided by NDMI. For leaf-scale simulations using the PROSPECT (leaf optical properties spectra) model, all water index/NDMI ratios were significantly related to FMC with a second-order polynomial regression. For canopy-scale simulations using the SAIL (scattering by arbitrarily inclined leaves) model, two water index/NDMI ratios, with numerators of the normalized difference infrared index (NDII) and the normalized difference water index (NDWI), predicted FMC with R2 values of 0.900 and 0.864, respectively. Leaves from three species were dried or stacked to vary FMC; measured NDII/NDMI was best related to FMC. Whereas the planned NASA mission Hyperspectral Infrared Imager (HyspIRI) will have high spectral resolution and very high signal-to-noise properties, the planned 19-day repeat frequency will not be sufficient for monitoring FMC with NDII/NDMI. Because increased fire frequency is expected with climatic change, operational assessment of FMC at large scales may require polar-orbiting environmental sensors with narrow bands to calculate NDMI.

  2. Using an Active Sensor to Estimate Orchard Grass (Dactylis glomerata L.) Dry Matter Yield and Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing in the form of active sensors could be used to estimate forage biomass on spatial and temporal scales. The objective of this study is to use canopy reflectance measurements from an active remote sensor to compare different vegetation indices as a means of estimating final dry matter y...

  3. Estimating dry matter content of fresh leaves from residuals between leaf and water reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At 1722 nm wavelength, there is an absorption feature of leaf dry matter based on a C—H stretch overtone, which is difficult to detect in fresh green leaves due to the absorption spectrum of liquid water. We applied a method originally proposed by B. -C. Gao and A. F. H. Goetz (1994, Remote Sensing ...

  4. The effect of soaking hay on dry matter loss and fructan removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intake of fructans has been shown to induce laminitis in horses. To manage laminitic horses, owners have resorted to hay soaking to reduce the amounts of these carbohydrates in harvested forage. The objective of this research was to determine the loss of dry matter and fructans from baled hay after ...

  5. Dry matter production and nutrient content of longan grown on an acid Ultisol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the adaptability of longan (Dimocarpus longan) to acidic soils high in aluminum (Al). A 2-year field study was conducted to determine the effects of various levels of soil Al on dry matter production, plant growth, and nutrient content in shoots of four cultivars of longan. S...

  6. Relationship between chlorohphyll fluorescence and dry matter content of 'Hass' avocado fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mexico is the main ‘Hass’ avocado exporter in the world with more than 100,000 ton exported every year. Canada is an important importer country accounting for 12-15% of total exports from Mexico. Normally, from December to May exported fruit to Canada have very high dry matter content which is deter...

  7. Evaluation of hyperspectral reflectance for estimating dry matter and sugar concentration in processing potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The measurement of sugar concentration and dry matter in processing potatoes is a time and resource intensive activity, cannot be performed in the field, and does not easily measure within tuber variation. A proposed method to improve the phenotyping of processing potatoes is to employ hyperspectral...

  8. [Dry matter storage and water soluble sugar content in different age classes rhizomes of Phragmites communis population in dry land habitat of Songnen Plain of China].

    PubMed

    Yang, Yun-Fei; Zhang, Bao-Tian; Tian, Shang-Yi

    2008-09-01

    Based on the investigation and measurement of Phragmites communis in a single dominant species community in dry land habitat of Songnen Plain, the seasonal variation of dry matter storage and water soluble sugar content in different age classes rhizomes at three growth stages were analyzed. The results showed that at all growth stages, younger age class rhizomes had lower dry matter storage and water soluble sugar content, and there was an obvious difference between younger and older age classes. The dry matter storage and water soluble sugar content in younger age class rhizomes increased rapidly with growth season, and the difference between younger and older age classes reduced gradually. In the whole growth season, all the rhizomes of six age classes kept up the activities in nutrient consumption, re-storage and even overcompensating storage, and the activities of younger age class rhizomes were much higher. The dry matter storage and water soluble sugar content in older age class rhizomes increased with year. There existed extremely significant differences (P < 0.01) in the dry matter storage within and among different age class rhizomes, and the difference was larger within age classes than among age classes. Significant differences (P < 0.05) in water soluble sugar content were also observed among different age class rhizomes. The dry matter storage and water soluble sugar content in P. communis rhizomes increased in quadratic with increasing age class.

  9. Impact of Ground-Applied Termiticides on the Above-Ground Foraging Behavior of the Formosan Subterranean Termite

    PubMed Central

    Henderson, Gregg; Gautam, Bal K.; Wang, Cai

    2016-01-01

    We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%–4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study. PMID:27571108

  10. Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach

    NASA Astrophysics Data System (ADS)

    Galeana-Pizaña, J. Mauricio; López-Caloca, Alejandra; López-Quiroz, Penélope; Silván-Cárdenas, José Luis; Couturier, Stéphane

    2014-08-01

    Forest conservation is considered an option for mitigating the effect of greenhouse gases on global climate, hence monitoring forest carbon pools at global and local levels is important. The present study explores the capability of remote-sensing variables (vegetation indices and textures derived from SPOT-5; backscattering coefficient and interferometric coherence of ALOS PALSAR images) for modeling the spatial distribution of above-ground biomass in the Environmental Conservation Zone of Mexico City. Correlation and spatial autocorrelation coefficients were used to select significant explanatory variables in fir and pine forests. The correlation for interferometric coherence in HV polarization was negative, with correlations coefficients r = -0.83 for the fir and r = -0.75 for the pine forests. Regression-kriging showed the least root mean square error among the spatial interpolation methods used, with 37.75 tC/ha for fir forests and 29.15 tC/ha for pine forests. The results showed that a hybrid geospatial method, based on interferometric coherence data and a regression-kriging interpolator, has good potential for estimating above-ground biomass carbon.

  11. Below-ground plant–fungus network topology is not congruent with above-ground plant–animal network topology

    PubMed Central

    Toju, Hirokazu; Guimarães, Paulo R.; Olesen, Jens M.; Thompson, John N.

    2015-01-01

    In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant–fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant–partner networks. Specifically, plant–fungus networks lacked a “nested” architecture, which has been considered to promote species coexistence in plant–partner networks. Rather, the below-ground networks had a conspicuous “antinested” topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions. PMID:26601279

  12. Impact of Ground-Applied Termiticides on the Above-Ground Foraging Behavior of the Formosan Subterranean Termite.

    PubMed

    Henderson, Gregg; Gautam, Bal K; Wang, Cai

    2016-08-26

    We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%-4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study.

  13. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization

    PubMed Central

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589

  14. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization.

    PubMed

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11-4.28 and 4.78-7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52-3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48-4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26-9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield.

  15. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize.

    PubMed

    Correia, Carlos M; Coutinho, João F; Bacelar, Eunice A; Gonçalves, Berta M; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  16. Dry Matter Losses and Greenhouse Gas Emissions From Outside Storage of Short Rotation Coppice Willow Chip.

    PubMed

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO2) concentration within the heap. A peak in methane (CH4) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH4 concentration occurred as CO2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other methods of

  17. Integrating disparate lidar data at the national scale to assess the relationships between height above ground, land cover and ecoregions

    USGS Publications Warehouse

    Stoker, Jason M.; Cochrane, Mark A.; Roy, David P.

    2013-01-01

    With the acquisition of lidar data for over 30 percent of the US, it is now possible to assess the three-dimensional distribution of features at the national scale. This paper integrates over 350 billion lidar points from 28 disparate datasets into a national-scale database and evaluates if height above ground is an important variable in the context of other nationalscale layers, such as the US Geological Survey National Land Cover Database and the US Environmental Protection Agency ecoregions maps. While the results were not homoscedastic and the available data did not allow for a complete height census in any of the classes, it does appear that where lidar data were used, there were detectable differences in heights among many of these national classification schemes. This study supports the hypothesis that there were real, detectable differences in heights in certain national-scale classification schemes, despite height not being a variable used in any of the classification routines.

  18. Solute based Lagrangian scheme in modeling the drying process of soft matter solutions.

    PubMed

    Meng, Fanlong; Luo, Ling; Doi, Masao; Ouyang, Zhongcan

    2016-02-01

    We develop a new dynamical model to study the drying process of a droplet of soft matter solutions. The model includes the processes of solute diffusion, gel-layer formation and cavity creation. A new scheme is proposed to handle the diffusion dynamics taking place in such processes. In this scheme, the dynamics is described by the motion of material points taken on solute. It is convenient to apply this scheme to solve problems that involve moving boundaries and phase changes. As an example, we show results of a numerical calculation for a drying spherical droplet, and discuss how initial concentration and evaporation rate affect the structural evolution of the droplet.

  19. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.

    PubMed

    Johnson, Scott N; Mitchell, Carolyn; McNicol, James W; Thompson, Jacqueline; Karley, Alison J

    2013-09-01

    1. Terrestrial food webs are woven from complex interactions, often underpinned by plant-mediated interactions between herbivores and higher trophic groups. Below- and above-ground herbivores can influence one another via induced changes to a shared host plant, potentially shaping the wider community. However, empirical evidence linking laboratory observations to natural field populations has so far been elusive. 2. This study investigated how root-feeding weevils (Otiorhynchus sulcatus) influence different feeding guilds of herbivore (phloem-feeding aphids, Cryptomyzus galeopsidis, and leaf-chewing sawflies, Nematus olfaciens) in both controlled and field conditions. 3. We hypothesized that root herbivore-induced changes in plant nutrients (C, N, P and amino acids) and defensive compounds (phenolics) would underpin the interactions between root and foliar herbivores, and ultimately populations of natural enemies of the foliar herbivores in the field. 4. Weevils increased field populations of aphids by ca. 700%, which was followed by an increase in the abundance of aphid natural enemies. Weevils increased the proportion of foliar essential amino acids, and this change was positively correlated with aphid abundance, which increased by 90% on plants with weevils in controlled experiments. 5. In contrast, sawfly populations were 77% smaller during mid-June and adult emergence delayed by >14 days on plants with weevils. In controlled experiments, weevils impaired sawfly growth by 18%, which correlated with 35% reductions in leaf phosphorus caused by root herbivory, a previously unreported mechanism for above-ground-below-ground herbivore interactions. 6. This represents a clear demonstration of root herbivores affecting foliar herbivore community composition and natural enemy abundance in the field via two distinct plant-mediated nutritional mechanisms. Aphid populations, in particular, were initially driven by bottom-up effects (i.e. plant-mediated effects of root

  20. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    NASA Astrophysics Data System (ADS)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  1. Analysis of water intake, dry matter intake and daily milk yield using different error covariance structures.

    PubMed

    Kramer, E; Stamer, E; Spilke, J; Krieter, J

    2008-11-01

    The aim of the present study was to investigate the daily measured traits milk yield, water intake and dry matter intake with fixed and random regression models added with different error covariance structures. It was analysed whether these models deliver better model fitting in contrast to conventional fixed and random regression models. Furthermore, possible autocorrelation between repeated measures was investigated. The effect of model choice on statistical inference was also tested. Data recording was performed on the Futterkamp dairy research farm of the Chamber of Agriculture of Schleswig-Holstein. A dataset of about 21 000 observations from 178 Holstein cows was used. Average milk yield, water intake and dry matter intake were 34.9, 82.4 and 19.8 kg, respectively. Statistical analysis was performed using different linear mixed models. Lactation number, test day and the parameters to model the function of lactation day were included as fixed effects. Different structures were tested for the residuals; they were compared for their ability to fit the model using the likelihood ratio test, and Akaike's and Bayesian's information criteria. Different autocorrelation patterns were found. Adjacent repeated measures of daily milk yield were highest correlated (p1 = 0.32) in contrast to measures further apart, while for water intake and dry matter intake, the measurements with a lag of two units had the highest correlations with p2 = 0.11 and 0.12. The covariance structure of TOEPLITZ was most suitable to indicate the dependencies of the repeated measures for all traits. Generally, the most complex model, random regression with the additional covariance structure TOEPLITZ(4), provided the lowest information criteria. Furthermore, the model choice influenced the significance values of one fixed effect and therefore the general inference of the data analysis. Thus, the random regression + TOEPLITZ(4) model is recommended for use for the analysis of equally spaced

  2. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity.

  3. [Effects of plant polysaccharide compound agents on the photosynthetic characteristics and dry matter of soybean].

    PubMed

    Bai, Wen-Bo; Song, Ji-Qing; Guo, Jin-Yi; Liu, Xing-Hai; Li, Ji-Hui

    2012-07-01

    A field experiment was conducted to study the effects of foliar spraying three compound agents [plant polysaccharides (P1), plant polysaccharides and 5-aminolevulinic acid (P2), and plant polysaccharides and 5-aminolevulinic acid and dimethylpiperidinium chloride (P3)] at the initial flowering stage of soybean on its leaf chlorophyll content, photosynthesis and transpiration, dry matter accumulation and allocation, and grain yield. Within 35 days after spraying the three compound agents, the leaf chlorophyll content had obvious increase, and its decreasing trend with plant growth had somewhat delay. Compared with the control, spraying P1 and P3 increased the leaf photosynthetic rate and water use efficiency by more than 13.2% and 10.3%, respectively. With the spraying of the three compound agents, the dry matter accumulation in aerial part increased, and the allocation of dry matter from leaf to pod was also enhanced, with the contribution of post-anthesis assimilates to grain yield increased by more than 17.1%. The 100-grain mass and the pods and seeds per plant increased significantly after spraying P1 and P3, but had no significant increase after spraying P2. The grain yield of soybean treated with the three compound agents increased by more than 5.9%, compared with the control. This study showed that the three plant polysaccharide compound agents could increase the leaf chlorophyll content, delay the leaf-senescence, improve the leaf photosynthetic capacity and water status, effectively control the dry matter accumulation and post-anthesis assimilates allocation, and increase the grain yield of soybean.

  4. Selenium and its species distribution in above-ground plant parts of selenium enriched buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Vogrincic, Maja; Cuderman, Petra; Kreft, Ivan; Stibilj, Vekoslava

    2009-11-01

    Common buckwheat (Fagopyrum esculentum Moench) was foliarly sprayed with a water solution containing 10 mg Se(VI) L(-1) at the beginning of flowering. The total Se content in plant parts in the untreated group was low, whereas in the Se-sprayed group it was approximately 50- to 500-fold higher, depending on the plant part (708-4231 ng Se g(-1) DM(-1) (DM: dry matter)). We observed a similar distribution of Se in plant parts in both control and treated groups, with the highest difference in Se content being in ripe seeds. Water-soluble Se compounds were extracted by enzymatic hydrolysis with protease XIV, resulting in above 63% of soluble Se from seeds, approximately 14% from stems, leaves and inflorescences and less than 1% from husks. Se-species were determined in enzymatic extracts using HPLC-UV-HG-AFS (HPLC-hydride generation-atomic fluorescence spectrometry with UV treatment). The main Se species found in seeds was SeMet ( approximately 60% according to total Se content), while in stems, leaves and inflorescences the only form of soluble Se present was Se(VI) (up to 10% of total Se). In husks no Se-species were detected. We observed an instability of Se(IV) in seed extracts as a possible consequence of binding to the matrix components. Therefore, special care concerning sample extraction and the storage time of the extracts should be taken.

  5. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  6. [A simulation model for predicting the dry matter allocation in cut lily plants under effects of substrate water potential].

    PubMed

    Dong, Yong-Yi; Li, Gang; An, Dong-Sheng; Luo, Wei-Hong

    2012-04-01

    Dry matter allocation and translocation is the base of the formation of appearance quality of ornamental plants, and strongly affected by water supply. Taking cut lily cultivar 'Sorbonne' as test material, a culture experiment of different planting dates and water supply levels was conducted in a multi-span greenhouse in Nanjing from March 2009 to January 2010 to quantitatively analyze the seasonal changes of the dry matter allocation and translocation in 'Sorbonne' plants and the effects of substrate water potential on the dry matter allocation indices for different organs (flower, stem, leaf, bulb, and root), aimed to define the critical substrate water potential for the normal growth of the cultivar, and establish a simulation model for predicting the dry matter allocation in cut lily plants under effects of substrate water potential. The model established in this study gave a good prediction on the dry mass of plant organs, with the coefficient of determination and the relative root mean square error between the simulated and measured values of the cultivar' s flower dry mass, stem dry mass, leaf dry mass, bulb dry mass, and root dry mass being 0.96 and 19.2%, 0.95 and 12.4%, 0.86 and 19.4%, 0.95 and 12.2%, and 0.85 and 31.7%, respectively. The critical water potential for the water management of cut lily could be -15 kPa.

  7. Use of neural image analysis methods in the process to determine the dry matter content in the compost

    NASA Astrophysics Data System (ADS)

    Wojcieszak, D.; Przybył, J.; Lewicki, A.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Witaszek, K.

    2015-07-01

    The aim of this research was investigate the possibility of using methods of computer image analysis and artificial neural networks for to assess the amount of dry matter in the tested compost samples. The research lead to the conclusion that the neural image analysis may be a useful tool in determining the quantity of dry matter in the compost. Generated neural model may be the beginning of research into the use of neural image analysis assess the content of dry matter and other constituents of compost. The presented model RBF 19:19-2-1:1 characterized by test error 0.092189 may be more efficient.

  8. Dry matter and nutrient loss from legume litter grown on mine soils

    SciTech Connect

    Dove, D.C.; Wolf, D.D.; Daniels, W.L.

    1984-12-01

    Recently reclaimed mine soils often lack organic matter. Plant species selection for initial cover may influence the rate of organic matter accumulation. Seeding mixtures containing sericea lespedeza have been used extensively in the past for revegetation. By including other legumes in mixtures with sericea lespedeza, the rate of organic matter build up and decomposition may be increased. Red clover, birdsfoot trefoil, and Korean lespedeza are among the most commonly used species in revegetation mixtures. A six month study using litter bags was initiated to monitor weight and mineral loss of three legumes alone and in combination with sericea lespedeza. Mixed stands of sericea lespedeza-red clover, sericea lespedeza - birdsfoot trefoil, and sericea lespedeza - Korean lespedeza were established on a mine soil area in June 1982. Yields were taken after first frost (October 15), hand separated by species and dried. Litter bags were prepared using each species of the mixed stand alone and in 50:50 proportions. Litter reduction of sericea lespedeza was slower than the other three species. Highest rates of dry matter reduction in the first collection were found for birdsfoot trefoil (48%), followed by red clover (41%) and Korean lespedeza (28%). In all litter samples a significant reduction of potassium was evident after the first decomposition period. After subsequent decomposition periods, little potassium loss was observed.

  9. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    PubMed

    Ceulemans, Tobias; Hulsmans, Eva; Berwaers, Sigi; Van Acker, Kasper; Honnay, Olivier

    2017-01-01

    Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  10. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands

    PubMed Central

    Ceulemans, Tobias; Hulsmans, Eva; Berwaers, Sigi; Van Acker, Kasper; Honnay, Olivier

    2017-01-01

    Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species’ recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary. PMID:28333985

  11. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes

    NASA Astrophysics Data System (ADS)

    Mitchard, E. T. A.; Saatchi, S. S.; Woodhouse, I. H.; Nangendo, G.; Ribeiro, N. S.; Williams, M.; Ryan, C. M.; Lewis, S. L.; Feldpausch, T. R.; Meir, P.

    2009-12-01

    Regional-scale above-ground biomass (AGB) estimates of tropical savannas and woodlands are highly uncertain, despite their global importance for ecosystems services and as carbon stores. In response, we collated field inventory data from 253 plots at four study sites in Cameroon, Uganda and Mozambique, and examined the relationships between field-measured AGB and cross-polarized radar backscatter values derived from ALOS PALSAR, an L-band satellite sensor. The relationships were highly significant, similar among sites, and displayed high prediction accuracies up to 150 Mg ha-1 (±˜20%). AGB predictions for any given site obtained using equations derived from data from only the other three sites generated only small increases in error. The results suggest that a widely applicable general relationship exists between AGB and L-band backscatter for lower-biomass tropical woody vegetation. This relationship allows regional-scale AGB estimation, required for example by planned REDD (Reducing Emissions from Deforestation and Degradation) schemes.

  12. Polarimetric scattering model for estimation of above ground biomass of multilayer vegetation using ALOS-PALSAR quad-pol data

    NASA Astrophysics Data System (ADS)

    Sai Bharadwaj, P.; Kumar, Shashi; Kushwaha, S. P. S.; Bijker, Wietske

    Forests are important biomes covering a major part of the vegetation on the Earth, and as such account for seventy percent of the carbon present in living beings. The value of a forest's above ground biomass (AGB) is considered as an important parameter for the estimation of global carbon content. In the present study, the quad-pol ALOS-PALSAR data was used for the estimation of AGB for the Dudhwa National Park, India. For this purpose, polarimetric decomposition components and an Extended Water Cloud Model (EWCM) were used. The PolSAR data orientation angle shifts were compensated for before the polarimetric decomposition. The scattering components obtained from the polarimetric decomposition were used in the Water Cloud Model (WCM). The WCM was extended for higher order interactions like double bounce scattering. The parameters of the EWCM were retrieved using the field measurements and the decomposition components. Finally, the relationship between the estimated AGB and measured AGB was assessed. The coefficient of determination (R2) and root mean square error (RMSE) were 0.4341 and 119 t/ha respectively.

  13. Integration method to estimate above-ground biomass in arid prairie regions using active and passive remote sensing data

    NASA Astrophysics Data System (ADS)

    Xing, Minfeng; He, Binbin; Li, Xiaowen

    2014-01-01

    The use of microwave remote sensing for estimating vegetation biomass is limited in arid grassland regions because of the heterogeneous distribution of vegetation, sparse vegetation cover, and the strong influence from soil. To minimize the problem, a synergistic method of active and passive remote sensing data for retrieval of above-ground biomass (AGB) was developed in this paper. Vegetation coverage, which can be easily estimated from optical data, was combined in the scattering model. The total backscattering was divided into the amount attributed to areas covered with vegetation and that attributed to areas of bare soil. Backscattering coefficients were simulated using the established scattering model. A look-up table was established using the relationship between the vegetation water content and the backscattering coefficient for water content retrieval. Then, AGB was estimated using the relationship between the vegetation water content and the AGB. The method was applied to estimate the AGB of the Wutumeiren prairie. Finally, the accuracy and sources of error in this innovative AGB retrieval method were evaluated. The results showed that the predicted AGB correlated with the measured AGB (R2=0.8414, RMSE=0.1953 kg/m2). Thus, the method has operational potential for the estimation of the AGB of herbaceous vegetation in arid regions.

  14. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    PubMed

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems.

  15. Above-ground and in situ field screening of VOCs using portable acoustic wave sensor (PAWS) systems

    SciTech Connect

    Frye, G.C.; Cernosek, R.W.; Steinfort, T.D.; Gilbert, D.W.; Colburn, C.

    1995-12-31

    PAWS systems have been developed for real-time, on-line and in situ monitoring of volatile organic compounds (VOCs). These systems utilize the high sensitivity of surface acoustic wave (SAW) devices to changes in the mass or other physical properties of a film cast onto the device surface. Using thin polymer films that rapidly (few seconds) and reversibly absorb the chemical species of interest, these sensors can be used to detect and monitor a wide range of VOCs. Current minimum detection levels range from about 1 to 10 ppm for typical VOCs in a real-time mode and, by incorporating an adsorbent preconcentrator, periodic (every few minutes) analysis down to the 10--100 ppb range, even in the presence of high concentrations of corrosive vapors, can be achieved. Sensor responses are reproducible, leading to accurate measurements, and the devices can operate over a wide concentration range. Above ground and down-hole systems have been demonstrated at environmental restoration sites for: (1) on-line monitoring of off-gas streams from soil vapor extractions, (2) real-time analysis of gas samples pulled to the surface from a cone penetrometer probe, and (3) in situ monitoring of contaminants in vadose zone monitoring wells.

  16. Above-ground and in situ field screening of VOCs using Portable Acoustic Wave Sensor (PAWS) systems

    SciTech Connect

    Frye, G.C.; Cernosek, R.W.; Steinfort, T.D.; Gilbert, D.W.; Colburn, C.

    1995-05-01

    PAWS systems have been developed for real-time, on-line and in situ monitoring of volatile organic compounds (VOCs). These systems utilize the high sensitivity of surface acoustic wave (SAW) devices to changes in the mass or other physical properties of a film cast onto the device surface. Using thin polymer films that rapidly (few seconds) and reversibly absorb the chemical species of interest, these sensors can be used to detect and monitor a wide range of VOCs. Current minimum detection levels range from about 1 to 10 ppm for typical VOCs in a real-time mode and, by incorporating an adsorbent preconcentrator, periodic (every few minutes) analysis down to the 10 - 100 ppb range, even in the presence of high concentrations of corrosive vapors, can be achieved. Sensor responses are reproducible, leading to accurate measurements, and the devices can operate over a wide concentration range. Above ground and down-hole systems have been demonstrated at environmental restoration sites for: (1) on-line monitoring of off-gas streams from soil vapor extractions, (2) real-time analysis of gas samples pulled to the surface from a cone penetrometer probe, and (3) in situ monitoring of contaminants in vadose zone monitoring wells.

  17. Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing

    NASA Astrophysics Data System (ADS)

    Liu, Jiakai; Zhu, Lijuan; Wang, Huihui; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Ma, Wu; Zhang, Zhenming; Liu, Jinglan

    2016-01-01

    The dry deposition of particular matters from atmosphere to ecosystems is an undesirable consequence of this pollution while the deposition process is also influenced by different land use types. In current study, concentration of fine particles, coarse particles and meteorological data were collected during the daytime in an artificial forest, wetland and a water surface in the Beijing Olympic Park. Dry deposition velocity, fluxes and vegetation collection were calculated by different models and the results were compared. The results show: (1) the deposition velocity onto the forest canopy was higher than which onto the wetland and the water surface and the velocity varied in different seasons; (2) the fine particles deposited most in the winter while the coarse particles was in the spring; (3) the vegetation collection rates of fine particles were lower than coarse particles, and the forest collected more PMs than the wetland plants.

  18. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  19. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic

    PubMed Central

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D.; Hussein, Hany M.; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009–2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability. PMID:26083254

  20. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    PubMed

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D; Hussein, Hany M; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

  1. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands

    PubMed Central

    Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857

  2. Fungal endophytes in above-ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts

    PubMed Central

    Massimo, Nicholas C.; Nandi Devan, MM; Arendt, Kayla R.; Wilch, Margaret H.; Riddle, Jakob M.; Furr, Susan H.; Steen, Cole; U'Ren, Jana M.; Sandberg, Dustin C.; Arnold, A. Elizabeth

    2015-01-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in above-ground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on non-succulent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region, and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less-arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert plant communities, and can be used to optimize strategies for capturing endophyte biodiversity at regional scales. PMID

  3. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.

    PubMed

    Zwicke, Marine; Alessio, Giorgio A; Thiery, Lionel; Falcimagne, Robert; Baumont, René; Rossignol, Nicolas; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-11-01

    Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more

  4. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    NASA Astrophysics Data System (ADS)

    Anderson, L. O.; Malhi, Y.; Ladle, R. J.; Aragão, L. E. O. C.; Shimabukuro, Y.; Phillips, O. L.; Baker, T.; Costa, A. C. L.; Espejo, J. S.; Higuchi, N.; Laurance, W. F.; López-González, G.; Monteagudo, A.; Núñez-Vargas, P.; Peacock, J.; Quesada, C. A.; Almeida, S.

    2009-09-01

    Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of forests over Paleovarzea geomorphologycal formation, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  5. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    NASA Astrophysics Data System (ADS)

    Anderson, L. O.; Malhi, Y.; Ladle, R. J.; Aragão, L. E. O. C.; Shimabukuro, Y.; Phillips, O. L.; Baker, T.; Costa, A. C. L.; Espejo, J. S.; Higuchi, N.; Laurance, W. F.; López-González, G.; Monteagudo, A.; Núñez-Vargas, P.; Peacock, J.; Quesada, C. A.; Almeida, S.; Vásquez, R.

    2009-02-01

    Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of alluvial terrain forest, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  6. Skin formation in drying a film of soft matter solutions: Application of solute based Lagrangian scheme

    NASA Astrophysics Data System (ADS)

    Ling, Luo; Fanlong, Meng; Junying, Zhang; Masao, Doi

    2016-07-01

    When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation (i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided. Project supported by the National Natural Science of China (Grant Nos. 21434001, 51561145002, and 11421110001).

  7. Effect of Phragmites japonicus harvest frequency and timing on dry matter yield and nutritive value.

    PubMed

    Tanaka, Takashi S T; Irbis, Chagan; Kumagai, Hajime; Wang, Pengyun; Li, Kunzhi; Inamura, Tatsuya

    2017-02-01

    Phragmites is a cosmopolitan perennial emergent macrophyte that is distributed worldwide. In recent years, Phragmites has attracted attention for its potential use as roughage. Given the increasing demand for feed and the number of constructed wetlands (CWs) vegetated with Phragmites, Phragmites is expected to play an important role in roughage production. Thus, it is vital to understand the effects of harvest timing and frequency on dry matter yield, nutritive value, and nitrogen (N) removal to establish appropriate vegetation management. In two CWs in Southwest China, four treatments with different harvesting frequencies were evaluated in monospecific areas of P. japonicus. The four treatments included no harvest, single harvest at 6 months, two harvests at 2 and 4 months, and three harvests at 2, 4, and 6 months. A sharp decline in the total digestible nutrients (TDN) concentration and the rate of increase in dry matter (DM) yield was associated with the heading timings, and the seasonal variations in TDN were likely influenced by carbohydrate accumulation in the stems. The three harvest treatment contributed to substantially improve the N and DM yields without decreasing the nutritive value but negatively affected the growth in the following year. Therefore, not only the combinations of harvest timing and frequency but also other management practices, including partial harvesting, may be needed to optimize CW performance and roughage production.

  8. Dry matter and calcium digestibility in captive veiled chameleons (Chamaeleo calyptratus).

    PubMed

    Hoby, S; Clauss, M; Aebischer, A; Wenker, C; Robert, N; Liesegang, A

    2012-10-01

    Although metabolic bone disease (MBD) is a very common disease in reptiles kept as pets, empirical data on the calcium (Ca) metabolism of reptiles are still scarce. We used the opportunity of a large-scale experimental study on growth and clinical manifestations of MBD in captive veiled chameleons (Chamaeleo calyptratus) to measure the apparent dry matter (DM) and Ca digestibility in 19 animals (6-49 g), receiving locust nymphs (Locusta migratoria) of two size classes (0.05 and 0.5 g) with or without supplementation of Ca, vitamin A and cholecalciferol (Group A: Ca 0.04-0.09%DM; Group B: Ca 0.47-0.84%DM). Dry matter digestibility was significantly lower for animals receiving smaller-sized prey. A regression analysis of dietary Ca vs. digestible Ca content revealed a complete 'true' digestibility of Ca for the range of investigated diets, which might indicate that requirements for this mineral were not yet exceeded by the diets used (so that a reduction in Ca absorption would be induced). Options of higher dietary Ca provision, and reactions of chameleons to such diets, should be further investigated.

  9. Digestive physiology of captive giant anteaters (Myrmecophaga tridactyla): determinants of faecal dry matter content.

    PubMed

    Gull, J M; Stahl, M; Osmann, C; Ortmann, S; Kreuzer, M; Hatt, J-M; Clauss, M

    2015-06-01

    Giant anteaters (Myrmecophaga tridactyla) are specialized insectivores and consume mainly ants and termites in the wild. In captivity, giant anteaters are either fed a complete diet, or a combination of a domestic carnivore diet with leaf eater pellets, or a traditional gruel-type diet. Soft faeces are a frequently encountered problem with this type of feeding. In the present study, we analysed diet and faeces composition, calculated digestibility and measured mean retention time on various diets in eight giant anteaters (total of n = 64 experiments). The results suggest that the digestive physiology of giant anteaters is similar to that of domestic dogs and cats in terms of nutrient digestibility and digesta retention. When testing correlations between faecal dry matter content and other variables, no relationship with dietary crude fibre content or mean digesta retention time could be detected. However, acid insoluble ash intake was significantly and positively correlated with faecal dry matter content. The amount of acid insoluble ash excreted with the faeces was higher than that ingested with the diet offered, indicating that the giant anteaters ingested soil from their enclosure of up to 93 g per day. This finding is consistent with observation of faeces of wild giant anteaters that contain soil or sand most likely due to indiscriminate feeding. It also corresponds to reports that indigestible materials such as peat, soil, chitin or cellulose contribute to a firmer faecal consistency in various carnivore species. Therefore, offering giant anteaters the opportunity to voluntarily ingest soil from their enclosure might be beneficial.

  10. Impact of environmental factors on fungal respiration and dry matter losses in wheat straw.

    PubMed

    Willcock; Magan

    2000-01-15

    An automatic electrolytic respirometer enabled replicated determinations of the respiration rates of individual fungi on sterile straw, and the mixed mycoflora of naturally contaminated wheat straw at different steady-state temperatures (10-30 degrees C) and water activities (a(w), 0.75-0.98) over periods of 8-14 days. Generally, the respiratory activity of individual spoilage fungi (Alternaria alternata, Cladosporium cladosporioides, Eurotium amstelodami, Fusarium culmorum and Penicillium aurantiogriseum) on sterile wheat straw increased linearly with increasing a(w) at 25 degrees C. The calculated maximum dry matter loss of wheat straw due to colonisation by individual species was about 10%, regardless of a(w). On naturally contaminated wheat straw fungal activity was also related to temperature and a(w), with maximum respiration at 30 degrees C and 0.98 a(w). At the lowest temperature examined, 10 degrees C, there was a slight lag prior to respiratory activity occurring. The respiratory activity was also significantly reduced (by half) when available water was reduced to 0.95-0.90 a(w). In contrast to the colonisation of sterile straw by individual species, the maximum dry matter loss caused by fungal deterioration of naturally contaminated wheat straw was 3.4% at 0.98 a(w) and 30 degrees C. The dominant fungal genera and species varied with a(w) and temperature. These results are discussed in relation to the storage of cereal straw without spoilage.

  11. Effect of soy on faecal dry matter content and excretion of Brachyspira hyodysenteriae in pigs

    PubMed Central

    Grahofer, Alexander; Overesch, Gudrun; Nathues, Heiko; Zeeh, Friederike

    2016-01-01

    The aim of this study was to investigate the effect of a soy diet on the excretion of Brachyspira hyodysenteriae in five farms with subclinically infected pigs. The effects on general health, faecal consistency and dry matter were analysed. In total, 200 pigs of different ages (group 1 <100 days of age (n=120) and group 2 ≥100 days (n=80)) were randomly assigned to the control (C) and the treatment (T) groups. Group C received the farm's standard diet. In group T half of the daily feed ration was replaced by pure soy on two consecutive days. Faecal scores were used to determine faecal consistency and a microwave method to assess faecal dry matter content (FDMC). In age group 1, soy feeding resulted in a statistically significant decrease of the FDMC of 2.5 per cent compared with group C and in age group 2 in a significant increase of 2.2 per cent compared with group C at day 2. Overall seven (T: 5, C: 2) out of 597 faecal samples tested positive for B hyodysenteriae by PCR. In conclusion, a high soy diet applied over two days influenced the faecal consistency and the FDMC in growers, finishers and sows under field conditions. Further investigations with more sensitive diagnostic methods are needed to prove a potential influence of a high soy diet on the detection rate of B hyodysenteriae in subclinically infected herds. PMID:27239320

  12. Interactive effects of frequent burning and timber harvesting on above ground carbon biomass in temperate eucalypt forests

    NASA Astrophysics Data System (ADS)

    Collins, Luke; Penman, Trent; Ximenes, Fabiano; Bradstock, Ross

    2015-04-01

    The sequestration of carbon has been identified as an important strategy to mitigate the effects of climate change. Fuel reduction burning and timber harvesting are two common co-occurring management practices within forests. Frequent burning and timber harvesting may alter forest carbon pools through the removal and redistribution of biomass and demographic and structural changes to tree communities. Synergistic and antagonistic interactions between frequent burning and harvesting are likely to occur, adding further complexity to the management of forest carbon stocks. Research aimed at understanding the interactive effects of frequent fire and timber harvesting on carbon biomass is lacking. This study utilised data from two long term (25 - 30 years) manipulative burning experiments conducted in southern Australia in temperate eucalypt forests dominated by resprouting canopy species. Specifically we examined the effect of fire frequency and harvesting on (i) total biomass of above ground carbon pools and (ii) demographic and structural characteristics of live trees. We also investigated some of the mechanisms driving these changes. Frequent burning reduced carbon biomass by up to 20% in the live tree carbon pool. Significant interactions occurred between fire and harvesting, whereby the reduction in biomass of trees >20 cm diameter breast height (DBH) was amplified by increased fire frequency. The biomass of trees <20 cm DBH increased with harvesting intensity in frequently burnt areas, but was unaffected by harvesting intensity in areas experiencing low fire frequency. Biomass of standing and fallen coarse woody debris was relatively unaffected by logging and fire frequency. Fire and harvesting significantly altered stand structure over the study period. Comparison of pre-treatment conditions to current conditions revealed that logged sites had a significantly greater increase in the number of small trees (<40 cm DBH) than unlogged sites. Logged sites showed a

  13. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  14. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2016-02-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (5-year interval) airborne lidar data set for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved and/or coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change was estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 yr-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 Mg ha-1 yr-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 yr-1. This rate reduces by almost a third when fire probability is increased to 0.01 (fire return rate of 100 years), as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon

  15. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2015-09-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (five year interval) airborne lidar dataset for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved/coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change were estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 year-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a~tree-ring based analysis (1.19 and 1.13 Mg ha-1 year-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire occurrence) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 year-1. This rate reduces by almost a third when fire probability is increased to 0.01, as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space

  16. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  17. Controls over soil organic matter accumulation and turnover in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Barrett, J. E.; Virginia, R. A.; Wall, D. H.

    2005-12-01

    Terrestrial ecosystems of the Antarctic Dry Valleys are among the most inhospitable soil environments on Earth due to extreme climate and severe substrate limitation on soil food webs. These ecosystems are a challenge to understanding controls over carbon (C) cycling since some of the major events controlling organic matter accumulation likely occurred during the Last Glacial Maximum when paleo-lakes deposited sediments over much of the presently exposed surfaces. It remains unclear to what extent dry valley soil ecosystems are fueled by legacy organic matter derived from these ancient sediments vs. rapid cycling of contemporary organic matter inputs. We report a model to evaluate controls over the soil organic C in the dry valleys. The model is based upon determinations of standing pools of soil C and is driven by rate parameters estimated from 120 d incubations conducted over a range of soil temperature and moisture. Theoretical values for parameters describing internal C transformations are used to generate predictions about the distribution of C among slow and rapidly cycling pools. Potential levels of contemporary C inputs are derived from a previously published primary production model for Antarctic cryptobiotic communities. Simulations (100 y) run under average climate conditions indicated initially high rates of C turnover with mean residence times of 20-50 y followed by equilibration of soil organic C at 25% to 80% of initial standing stocks. The model is very sensitive to temperature resulting from the high Q10 values calculated from the 120 d incubations; hence steady state soil C levels are determined largely by regional differences in climate. Sensitivity analyses indicated that steady state C levels are also very responsive to variation in simulated primary production, microbial efficiency, the distribution of C into labile and recalcitrant pools, and soil moisture. Model simulations run under recently observed climate suggest that C dynamics are

  18. Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: Overcoming the inhibitors by non-tolerant yeast.

    PubMed

    Zhu, Jia-Qing; Qin, Lei; Li, Wen-Chao; Zhang, Jian; Bao, Jie; Huang, Yao-Dong; Li, Bing-Zhi; Yuan, Ying-Jin

    2015-12-01

    Dry dilute acid pretreatment (DDAP) is a promising method for lignocellulose bioconversion, although inhibitors generated during the pretreatment impede the fermentation severely. We developed the simultaneous saccharification and co-fermentation (SScF) of DDAP pretreated biomass at high solid loading using xylose fermenting Saccharomyces cerevisiae, SyBE005. Effect of temperature on SScF showed that ethanol yield at 34°C was 10.2% higher than that at 38°C. Ethanol concentration reached 29.5 g/L at 15% (w/w) dry matter loading, while SScF almost ceased at the beginning at 25% (w/w) dry matter loading of DDAP pretreated corn stover. According to the effect of the diluted hydrolysate on the fermentation of strain SyBE005, a fed-batch mode was developed for the SScF of DDAP pretreated corn stover with 25% dry matter loading without detoxification, and 40.0 g/L ethanol was achieved. In addition, high yeast inoculation improved xylose utilization and the final ethanol concentration reached 47.2 g/L.

  19. 18O Spatial Patterns of Vein Xylem Water, Leaf Water, and Dry Matter in Cotton Leaves

    PubMed Central

    Gan, Kim Suan; Wong, Suan Chin; Yong, Jean Wan Hong; Farquhar, Graham Douglas

    2002-01-01

    Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the 18O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves. PMID:12376664

  20. Dry matter, lipids, and proteins of canola seeds as affected by germination and seedling growth under illuminated and dark environments.

    PubMed

    Zhang, Haiyan; Vasanthan, Thava; Wettasinghe, Mahinda

    2004-12-29

    The effect of germination and growth under illuminated and dark environments on canola seed reserves was investigated. Depletion of proteins and lipids in whole seedlings and their top (leaf/cotyledons) and bottom parts (stem/roots/seed coat) was independent of light, whereas the protein solubility increased at a faster rate under an illuminated environment than in the dark. A rapid increase in free fatty acids but a net decrease of dry matter content in seedlings grown in the dark environment was observed. The dry matter content of seedlings grown in the illuminated environment increased due to photosynthetic biomass accumulation.

  1. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    PubMed

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  2. Diversity and Above-Ground Biomass Patterns of Vascular Flora Induced by Flooding in the Drawdown Area of China's Three Gorges Reservoir

    PubMed Central

    Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  3. Characterization of in situ nitrogen and fiber digestion and bacterial nitrogen contamination of hay crop forages preserved at different dry matter percentages.

    PubMed

    Nocek, J E; Grant, A L

    1987-02-01

    Alfalfa, red clover, orchardgrass and timothy were harvested in the vegetative stage, wilted and stored as hay, or ensiled in small batch silos (20 kg) at 60, 40 or 20% (direct cut) dry matter and were analyzed for compositional differences. A ruminally cannulated lactating cow, consuming 50% of her dry matter intake from hay crop silage, was used to measure in situ dry matter, N, neutral detergent fiber and acid detergent fiber disappearance. Diaminopimelic acid was used as a bacterial marker to correct for bacterial N contamination for in situ residual N. Fibrous components tended to become concentrated as percent dry matter at preservation decreased, presumably associated with leaching of water solubles during storage. For most forages, as dry matter percentage of preservation decreased, water soluble dry matter and N increased, with a concomitant increase of ruminally nondigested dry matter. Specific trends in coefficients of digestion associated with forage type or preservation dry matter percentage were not observed for dry matter, N, neutral detergent fiber or acid detergent fiber. Correction for contamination by bacterial N decreased lag time in digestion and altered rates of N digestion compared with noncorrected rates. Linear and quadratic bacterial N contamination profiles were observed with time of ruminal incubation. Rate of digestion of N was highly correlated with fibrous component concentration, and to a lesser extent to rate of neutral and acid detergent fiber digestion. Dry matter percentage at preservation had a variable effect on ruminal digestion rate of dry matter and N, which varied with forage type and had no effect on neutral detergent and acid detergent fiber digestion rates. Correction for bacterial N contamination should be considered when establishing N digestion rates for forage by the in situ technique.

  4. Dry matter yields and quality of forages derived from grass species and organic production methods (year 111).

    PubMed

    Pholsen, S; Rodchum, P; Higgs, D E B

    2014-07-01

    This third year work was carried on at Khon Kaen University during the 2008-2009 to investigate dry matter yields of grass, grass plus legumes, grown on Korat soil series (Oxic Paleustults). The experiment consisted of twelve-treatment combinations of a 3x4 factorial arranged in a Randomized Complete Block Design (RCBD) with four replications. The results showed that Dry Matter Yields (DMY) of Ruzi and Guinea grass were similar with mean values of 6,585 and 6,130 kg ha(-1) whilst Napier gave the lowest (884 kg ha(-1)). With grass plus legume, grass species and production methods gave highly significant dry matter yields where Guinea and Ruzi gave dry matter yields of 7,165 and 7,181 kg ha(-1), respectively and Napier was the least (2,790 kg ha(-1)). The production methods with the use of cattle manure gave the highest DMY (grass alone) of 10,267 kg ha(-1) followed by Wynn and Verano with values of 6,064 and 3,623 kg ha(-1), respectively. Guinea plus cattle manure gave the highest DMY of 14,599 kg ha(-1) whilst Ruzi gave 12,977 kg ha(-1). Guinea plus Wynn gave DMY of 7,082 kg ha(-1). Ruzi plus Verano gave DMY of 6,501 kg ha(-1). Forage qualities of crude protein were highest with those grown with grass plus legumes. Some prospects in improving production were discussed.

  5. [Effects of ozone stress on photosynthesis and dry matter production of rice II -you 084 under different Planting densities].

    PubMed

    Peng, Bin; Lai, Shang-kun; Li, Pan-lin; Wang, Yun-xia; Zhu, Jian-guo; Yang, Lian-xin; Wang, Yu-long

    2015-01-01

    In order to investigate the effects of ozone stress on photosynthesis, dry matter production, non-structural carbohydrate and yield formation of rice, a free air ozone concentration enrichment (FACE) experiment was conducted. A super hybrid rice cultivar II-you 084 with 3 spacing levels, low plant density (LD, 16 hills per m2), medium (MD, 24 hills per m2) and high plant density (HD, 32 hills per m2), was grown in the field at current and elevated ozone concentrations (current × 1.5). The results were as follows: Elevated ozone significantly reduced leaf SPAD value of UI-you 084 by 6%, 11% and 13%, at 63, 77, and 86 days after transplanting, respectively. The declines in leaf net photosynthetic rate, stomatal conductance and transpiration rate at filling stage increased significantly on ozone stress over time. Ozone stress decreased dry matter production of rice by 46% from heading stage to plant maturity, thus reduced biomass yield by 25%. Elevated ozone decreased the concentration and accumulation of soluble carbohydrate and starch in stem of II-you 084 at jointing, heading and plant maturity, but significantly increased the dry matter transportation rate. No significant interaction was observed between ozone and planting density for photosynthesis, dry matter production and non-structural carbohydrate of rice. The above results indicated that elevated ozone reduced photosynthesis and growth of rice II-you 084 at late growth stage, which had no relationship with planting density.

  6. Towards on-line prediction of dry matter content in whole unpeeled potatoes using near-infrared spectroscopy.

    PubMed

    Helgerud, Trygve; Wold, Jens P; Pedersen, Morten B; Liland, Kristian H; Ballance, Simon; Knutsen, Svein H; Rukke, Elling O; Afseth, Nils K

    2015-10-01

    Prediction of dry matter content in whole potatoes is a desired capability in the processing industry. Accurate prediction of dry matter content may greatly reduce waste quantities and improve utilization of the raw material through sorting, hence also reducing the processing cost. The following study demonstrates the use of a low resolution, high speed NIR interactance instrument combined with partial least square regression for prediction of dry matter content in whole unpeeled potatoes. Three different measuring configurations were investigated: (1) off-line measurements with contact between the potato and the light collection tube; (2) off-line measurements without contact between the potato and the light collection tube; and (3) on-line measurements of the potatoes. The offline contact measurements gave a prediction performance of R(2)=0.89 and RMSECV=1.19. Similar prediction performance were obtained from the off-line non-contact measurements (R(2)=0.89, RMSECV=1.23). Significantly better (p=0.038) prediction performance (R(2)=0.92, RMSECV=1.06) was obtained with the on-line measuring configuration, thus showing the possibilities of using the instrument for on-line measurements. In addition it was shown that the dry matter distribution across the individual tuber could be predicted by the model obtained.

  7. Abrupt changes in forage dry matter of one to three days affect intake and milk yield in lactating dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to determine the effects of one-, two-, and three-day changes in forage dry matter (DM) on lactating cow performance and yield regardless of stage of lactation or parity. Data was compiled from two independent studies to predict overall cow performance. Study A (fall 2009) early la...

  8. Grain sterility in relation to dry mass production and distribution in rice (Oryza sativa L.).

    PubMed

    Puteh, Adam B; Mondal, M Monjurul Alam; Ismail, Mohd Razi; Latif, Mohammad Abdul

    2014-01-01

    The experiment was conducted to investigate potential causes of grain sterility in widely cultivated rice variety in Malaysia, MR219 and its two mutant lines (RM311 and RM109) by examining the source-sink relations. RM311 produced increased dry matter yield both at heading and maturity and also showed higher grain yield with greater proportion of grain sterility than the other two genotypes (RM109 and MR219) resulting in the lowest harvest index (49.68%). In contrast, harvest index was greater in RM109 (53.34%) and MR219 (52.76%) with less grain sterility percentage than MR311 indicating that dry matter partitioning to economic yield was better in RM109 and MR219 than in MR311. Results indicated that dry matter allocation per spikelet from heading to maturity was important for reducing grain sterility in rice. The greater above-ground crop dry matter per spikelet was observed in RM109 and MR219 as compared to high dry matter producing genotype; RM311 implies that poor grain filling may not have resulted from dry matter production or source limitation. These findings suggest that grain sterility or poor grain filling in rice is the result of poor translocation and partitioning of assimilates into grains (sink) rather than of limited biomass production or source limitation.

  9. Grain Sterility in relation to Dry Mass Production and Distribution in Rice (Oryza sativa L.)

    PubMed Central

    Puteh, Adam B.; Mondal, M. Monjurul Alam; Ismail, Mohd. Razi; Latif, Mohammad Abdul

    2014-01-01

    The experiment was conducted to investigate potential causes of grain sterility in widely cultivated rice variety in Malaysia, MR219 and its two mutant lines (RM311 and RM109) by examining the source-sink relations. RM311 produced increased dry matter yield both at heading and maturity and also showed higher grain yield with greater proportion of grain sterility than the other two genotypes (RM109 and MR219) resulting in the lowest harvest index (49.68%). In contrast, harvest index was greater in RM109 (53.34%) and MR219 (52.76%) with less grain sterility percentage than MR311 indicating that dry matter partitioning to economic yield was better in RM109 and MR219 than in MR311. Results indicated that dry matter allocation per spikelet from heading to maturity was important for reducing grain sterility in rice. The greater above-ground crop dry matter per spikelet was observed in RM109 and MR219 as compared to high dry matter producing genotype; RM311 implies that poor grain filling may not have resulted from dry matter production or source limitation. These findings suggest that grain sterility or poor grain filling in rice is the result of poor translocation and partitioning of assimilates into grains (sink) rather than of limited biomass production or source limitation. PMID:24895563

  10. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment.

    PubMed

    Zhang, Mingjia; Wang, Fang; Su, Rongxin; Qi, Wei; He, Zhimin

    2010-07-01

    To obtain high concentration of ethanol from cellulose, corncob was pretreated with acid and alkali to remove non-cellulose components, and then subjected to simultaneous saccharification and fermentation (SSF). An ethanol concentration as high as 69.2 g/L was achieved with 19% dry matter (DM) using batch SSF, resulting in an 81.2% overall ethanol yield. A fed-batch process using a high solid concentration was also investigated. Fresh substrate was pretreated with dilute sulfuric acid-sodium hydroxide, and then added at different amounts during the first 24 h, to yield a final dry matter content of 25% (w/v). SSF conditions with cellulose loading of 22.8 FPU/g glucan, dry yeast (Saccharomyces cerevisiae) loading of 5 g/L and substrate supplementation every 4h yielded the highest ethanol concentration of 84.7 g/L after 96 h. This corresponded to a 79% overall ethanol yield.

  11. Effects of an enzyme complex on in vitro dry matter digestibility of feed ingredients for pigs.

    PubMed

    Kong, Changsu; Park, Chan Sol; Kim, Beob Gyun

    2015-01-01

    Feed ingredients of plant origin are commonly used in swine diets. However, the major components of plant cell walls, non-starch polysaccharides (NSPs), reduce nutrient digestibility. To improve the efficiency of feed utilization, exogenous enzyme products that degrade NSPs have been widely used in commercial animal feeds. Nonetheless, the effects of exogenous enzyme addition to swine diets on nutrient digestibility have not been determined. To this end, in vitro approaches may be used. The objective of this study was to determine the effects of an enzyme complex (EC) containing xylanase, protease, and phytase on the in vitro dry matter (DM) digestibility of nine feed ingredients including cereal grain energy sources (corn, wheat, and barley) and protein sources (soybean meal, rapeseed meal, palm kernel meal, cottonseed meal, copra meal, and distillers dried grains with solubles). Both in vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM were determined for the nine test ingredients, with or without EC addition. The EC addition increased the IVID of DM in copra meal (p = 0.047) and tended to increase the IVID of DM in corn, wheat, barley, palm kernel meal, cottonseed meal, and DDGS (p < 0.10). On the other hand, no significant effect was observed in soybean meal and rapeseed meal. The IVTTD of DM in the test ingredients was not affected by the addition of EC, except for cottonseed meal (52.1 vs. 50.6%, p = 0.053). In conclusion, the effects of EC addition on in vitro DM digestibility may vary, depending on the test ingredient and method used.

  12. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    PubMed

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

  13. The impact of drying on structure of sedimentary organic matter in wetlands: Probing with native and amended polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Zucheng; Liu, Zhanfei; Liu, Min; Xu, Kehui; Mayer, Lawrence M

    2016-10-15

    Wetland sediments undergo dry-wet cycles that may change their structural properties and affect geochemical behavior of associated organic compounds. In this study, we examined the effect of drying on particle size distributions and the rapid (24h) sorption reactions of polycyclic aromatic hydrocarbons (PAHs) with salt marsh sediments in Nueces Delta, South Texas. Drying reduced the fraction of fine particles in organically richer sediments, indicating structural rearrangement of organic matter and mineral aggregates. Among the 16 EPA priority PAHs examined, dried sediment preferentially released 1.0-7.5% of phenanthrene, fluoranthene and pyrene to added seawater (solid: water mass ratio of 1/100) - significantly greater than release from sediments maintained in the wet state. On the other hand, drying also increased the affinity of sedimentary organic matter (SOM) for experimentally amended (deuterated) phenanthrene relative to continually wet sediments. Further, deuterated phenanthrene was even more effectively retained when it was added to wet sediment that was subsequently dried and rewetted. These apparently contradictory results can be reconciled and explained by SOM having a heterogeneous distribution of hydrophobic and hydrophilic zones - e.g., a zonal model. We propose that drying changed the orientation of amphiphilic SOM, exposing hydrophobic zones and promoting the release of some of their native PAHs to water. Freshly amended PAHs were only able to penetrate into the surface hydrophobic zone and/or deeper but rapidly accessible ("kinetic") zone in wet sediments due to the brief adsorption contact time. Subsequent drying presumably then induced structural changes in SOM that isolated these amended PAHs in sites inaccessible to water exchange in the next rewetting. These results provide insights into structural changes of SOM upon drying, and help predict the fate of compounds such as organic contaminants during drought/flood oscillations.

  14. A k-{\\varepsilon} turbulence closure model of an isothermal dry granular dense matter

    NASA Astrophysics Data System (ADS)

    Fang, Chung

    2016-07-01

    The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k-{\\varepsilon} turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.

  15. Diallel analysis of provitamin A carotenoid and dry matter content in cassava (Manihot esculenta Crantz)

    PubMed Central

    Esuma, Williams; Kawuki, Robert S.; Herselman, Liezel; Labuschagne, Maryke Tine

    2016-01-01

    Global efforts are underway to biofortify cassava (Manihot esculenta Crantz) with provitamin A carotenoids to help combat dietary vitamin A deficiency afflicting the health of more than 500 million resource-poor people in Sub-Saharan Africa. To further the biofortification initiative in Uganda, a 6×6 diallel analysis was conducted to estimate combining ability of six provitamin A clones and gene actions controlling total carotenoid content (TCC), dry matter content (DMC) in cassava roots and other relevant traits. Fifteen F1 families generated from the diallel crosses were evaluated in two environments using a randomized complete block design. General combining ability (GCA) effects were significant for TCC and DMC, suggesting the relative importance of additive gene effects in controlling these traits in cassava. On the other hand, non-additive effects were predominant for root and shoot weight. MH02-073HS, with the highest level of TCC, was the best general combiner for TCC while NASE 3, a popular white-fleshed variety grown by farmers in Uganda, was the best general combiner for DMC. Such progenitors with superior GCA effects could form the genetic source for future programs targeting cassava breeding for TCC and DMC. A negative correlation was observed between TCC and DMC, which will require breeding strategies to combine both traits for increased adoption of provitamin A cassava varieties. PMID:27795688

  16. Spectroscopic Analysis of Temporal Changes in Leaf Moisture and Dry Matter Content

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Dennison, P. E.; Brewer, S.; Jolly, W. M.; Kropp, R.

    2013-12-01

    Live fuel moisture (LFM), the ratio of water content to dry matter content (DMC) in live fuel, is critical for determining fire danger and behavior. Remote sensing estimation of LFM often relies on an assumption of changing water content and stable DMC over time. In order to advance understanding of temporal variation in LFM and DMC, we collected field samples and spectroscopic data for two species, lodgepole pine (Pinus contorta) and big sagebrush (Artemisia tridentata), to explore seasonal trends and spectral expression of these trends. New and old needles were measured separately for lodgepole pine. All samples were measured using a visible/NIR/SWIR spectrometer, and coincident samples were processed to provide LFM, DMC, water content and chemical components including structural and non-structural carbohydrates. New needles initially exhibited higher LFM and a smaller proportion of DMC, but differences between new and old needles converged as the new needles hardened. DMC explained more variation in LFM than water content for new pine needles and sagebrush leaves. Old pine needles transported non-structural carbohydrates to new needles to accumulate DMC during the growth season, resulting decreasing LFM in new needles. DMC and water content co-varied with vegetation chemical components and physical structure. Spectral variation in response to changing DMC is difficulty to isolate from the spectral signatures of multiple chemical components. Partial least square regression combined with hyperspectral data may increase modeling performance in LFM estimation.

  17. Diallel analysis of provitamin A carotenoid and dry matter content in cassava (Manihot esculenta Crantz).

    PubMed

    Esuma, Williams; Kawuki, Robert S; Herselman, Liezel; Labuschagne, Maryke Tine

    2016-09-01

    Global efforts are underway to biofortify cassava (Manihot esculenta Crantz) with provitamin A carotenoids to help combat dietary vitamin A deficiency afflicting the health of more than 500 million resource-poor people in Sub-Saharan Africa. To further the biofortification initiative in Uganda, a 6×6 diallel analysis was conducted to estimate combining ability of six provitamin A clones and gene actions controlling total carotenoid content (TCC), dry matter content (DMC) in cassava roots and other relevant traits. Fifteen F1 families generated from the diallel crosses were evaluated in two environments using a randomized complete block design. General combining ability (GCA) effects were significant for TCC and DMC, suggesting the relative importance of additive gene effects in controlling these traits in cassava. On the other hand, non-additive effects were predominant for root and shoot weight. MH02-073HS, with the highest level of TCC, was the best general combiner for TCC while NASE 3, a popular white-fleshed variety grown by farmers in Uganda, was the best general combiner for DMC. Such progenitors with superior GCA effects could form the genetic source for future programs targeting cassava breeding for TCC and DMC. A negative correlation was observed between TCC and DMC, which will require breeding strategies to combine both traits for increased adoption of provitamin A cassava varieties.

  18. Estimation of Above Ground Biomass in the Everglades National Park using X-, C-, and L-band SAR data and Ground-based LiDAR

    NASA Astrophysics Data System (ADS)

    Feliciano, E. A.; Wdowinski, S.; Potts, M.; Kim, S.

    2011-12-01

    Anthropogenic activities are disrupting bio-diverse wetland ecosystems including the South Florida Everglades. To quantify these acute changes is difficult given its limited accessibility. Remote sensing is widely used for successful ecosystem monitoring. We use ground-based LiDAR a.k.a. Terrestrial Laser Scanning (TLS) and space-based Synthetic Aperture Radar (SAR) observations to estimate vegetation structure, above-ground biomass, and track their changes over time in the Everglades National Park. These surveys were conducted in six vegetation communities: short-mangrove, intermediate-mangrove, tall-mangrove, pine, dwarf cypress and hammock. The TLS surveys provided detailed 3-D estimates of the vegetation structure and above ground biomass. The upscaling approach started with the SAR acquisitions at the three different wavelengths, showing the interacted signal with different aspects of the vegetation. We use single- (HH and VV), dual- (HH/VV, HH/HV and VV/HV) and quad-polarization observations of the TerraSAR-X, RadarSAT-2, and ALOS satellites, acquired around same dates as the ground TLS surveys were conducted. The different polarization data reflect radar signal interaction with different sections of the vegetation due to different scattering mechanisms. The processing of the SAR included: Sigma Nought backscattering coefficient calibration, speckle noise suppression filtering and geocoding with the TLS data. A comparative analysis of the three bands of SAR to quantify above ground biomass in the different communities will be presented. We also plan to determine the essential bands needed to most efficiently estimate biomass. We expect to find that the performance of SAR upscaling differs by community types. We are optimistic that the integration of TLS and SAR could be applied to monitor different ecosystems around the world. This will increase the chance that the Reducing Emissions from Deforestation and Forest Degradation (REDD+), in which large

  19. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L. L.; Sayer, E. J.

    2013-11-01

    Global change has been shown to alter the amount of above-ground litter inputs to soil greatly, which could cause substantial cascading effects on below-ground biogeochemical cycling. Despite extensive study, there is uncertainty about how changes in above-ground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a meta-analysis on 70 litter-manipulation experiments in order to assess how changes in above-ground litter inputs alter soil physicochemical properties, carbon dynamics and nutrient cycles. Our results demonstrated that litter removal decreased soil respiration by 34%, microbial biomass carbon in the mineral soil by 39% and total carbon in the mineral soil by 10%, whereas litter addition increased them by 31, 26 and 10%, respectively. This suggests that greater litter inputs increase the soil carbon sink despite higher rates of carbon release and transformation. Total nitrogen and extractable inorganic nitrogen in the mineral soil decreased by 17 and 30%, respectively, under litter removal, but were not altered by litter addition. Overall, litter manipulation had a significant impact upon soil temperature and moisture, but not soil pH; litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Compared to other ecosystems, tropical and subtropical forests were more sensitive to variation in litter inputs, as altered litter inputs affected the turnover and accumulation of soil carbon and nutrients more substantially over a shorter time period. Our study demonstrates that although the magnitude of responses differed greatly among ecosystems, the direction of the responses was very similar across different ecosystems. Interactions between plant productivity and below-ground biogeochemical cycling need to be taken into account to predict ecosystem responses to environmental change.

  20. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  1. [Distribution of 137Cs, 90Sr and their chemical analogues in the components of an above-ground part of a pine in a quasi-equilibrium condition].

    PubMed

    Mamikhin, S V; Manakhov, D V; Shcheglov, A I

    2014-01-01

    The additional study of the distribution of radioactive isotopes of caesium and strontium and their chemical analogues in the above-ground components of pine in the remote from the accident period was carried out. The results of the research confirmed the existence of analogy in the distribution of these elements on the components of this type of wood vegetation in the quasi-equilibrium (relatively radionuclides) condition. Also shown is the selective possibility of using the data on the ash content of the components of forest stands of pine and oak as an information analogue.

  2. Effect of hay steaming on forage nutritive values and dry matter intake by horses.

    PubMed

    Earing, J E; Hathaway, M R; Sheaffer, C C; Hetchler, B P; Jacobson, L D; Paulson, J C; Martinson, K L

    2013-12-01

    .445). Dry matter intake of NM was increased by steaming; horses ingested 0.64 kg of unsteamed and 2.02 kg of steamed hay (P < 0.001). Dry matter intake of MM was not affected by steaming (P > 0.05). For NM hay, steaming decreased P and mold concentrations and increased DMI of the hay but had no effect on TSP. In MM hay, steaming reduced P, WSC, ESC, mold concentrations, and TSP but did not affect DMI. Steaming represents a strategy for reducing TSP and mold concentrations and increasing DMI in some hays but can result in leaching of essential nutrients.

  3. Inoculants for ensiling low-dry matter corn crop: a midlactation cow perspective.

    PubMed

    Nikkhah, A; Ghaempour, A; Khorvash, M; Ghorbani, G R

    2011-10-01

    In many regions, optimum dry matter (DM) content of corn crop pre-ensilage cannot be ensured for management, agronomical and climatic reasons. Under such conditions, corn crops are harvested at low DM, and are easily exposed to unfavourable fermentation pathways and plant spoilage and wastage. Thus, it is a major question for dairy agriculturists whether certain microbial inoculants application to low-DM corn crop pre-ensilage affects silage quality and cow performance. The objective was to determine effects of adding microbial inoculants to low-DM corn crop at ensiling on silage quality, rumen fermentation and milk production of eight Holstein cows fed the treated silages. Whole corn plant was harvested at milk stage of maturity with 204 g DM/kg of fresh crop, cut to a theoretical particle length of 2 cm, filled in 60 t bunker silos, and treated layer by layer with either no inoculant (control), inoculant 'E' (100 000 cfu/g of fresh crop) containing mainly Lactobacillus plantarum, inoculant 'B' (100 000 cfu) containing mainly Pediococcus pentosanus, Lactobacillus plantarum and Propionibacter freudenreichii or a mixture of inoculants 'E' and 'B' (200,000 cfu). Inoculants were mixed with water and sprayed on thin layers of corn chops layer by layer followed by rolling to ensure proper oxygen outage and even microbial distribution throughout the plants. Eight multiparous lactating Holstein cows at 100 ± 20.5 days in milk were used in a replicated 4 × 4 Latin square design with four 20-day periods including 14 days of adaptation and 6 days of sampling. Dietary treatments were mixed rations containing corn silages with or without the inoculants. The basal diet contained 32.9% corn silage, 14.3% alfalfa hay and 52.8% concentrate on a DM basis. Inoculants did not affect silage pH or content of DM, CP, lactate, acetate, ash and total volatile fatty acids (VFA). Applying 'B' to corn crop resulted in higher water soluble carbohydrates (47.7 g/kg vs 29.8 g/kg) and lower

  4. Embryo production in heifers with low or high dry matter intake submitted to superovulation.

    PubMed

    Mollo, Marcos R; Monteiro, Pedro L J; Surjus, Ricardo S; Martins, Aline C; Ramos, Alexandre F; Mourão, Gerson B; Carrijo, Luiz H D; Lopes, Gláucio; Rumpf, Rodolfo; Wiltbank, Milo C; Sartori, Roberto

    2017-04-01

    This study investigated the influence of feed intake on superovulatory response and embryo production of Nelore heifers. Pubertal heifers were kept in a feedlot and were submitted to the same diets, but with different levels of feed consumption: High (1.7 M; n = 20) or Low (0.7 M; n = 19) feed intake. Heifers in the 1.7 M treatment consumed 170% (2.6% of body weight [BW] in dry matter) and the 0.7 M heifers ate 70% (1.1% of BW in dry matter) of a maintenance diet. After 7 wk on these diets, heifers were treated with eight decreasing doses of follicle-stimulating hormone (FSH) given every 12 h, totaling 133 mg Folltropin (Folltropin-V; Bioniche Animal Health, Canada) per heifer. Seven d after AI, heifers had their uteri flushed and embryos were recovered and graded according to the International Embryo Technology Society standards. Data were analyzed using the GLIMMIX procedure of SAS and results are presented as least-squares means ± SEM (P < 0.05). At the onset of the FSH treatment (Day 0 of the protocol), 1.7 M heifers had greater body condition score (BCS), BW and serum insulin concentrations than 0.7 M heifers (4.1 ± 0.1 vs. 3.0 ± 0.1; 462.5 ± 10.1 vs. 382.7 ± 10.4 kg; and 14.3 ± 1.7 vs. 3.5 ± 0.8 μIU/mL, respectively). The 0.7 M heifers had more follicles ≥6 mm at the time of the last FSH (Day 7; 47.9 ± 6.4 vs. 23.5 ± 4.3 follicles), related to a better follicle superstimulatory response to FSH. Similarly, 0.7 M heifers had more corpora lutea at the time of embryo collection (33.6 ± 1.4 vs. 15.7 ± 0.9) than the 1.7 M heifers, which resulted in greater number of recovered embryos and ova (9.9 ± 0.7 vs. 6.7 ± 0.6) and viable embryos (5.3 ± 0.5 vs. 3.8 ± 0.4), despite having similar proportions of viable embryos (∼62%). A negative correlation between circulating insulin and follicle superstimulatory response to FSH was observed (r = -0.68). Therefore, we conclude that high feed intake, for a

  5. [Dry matter intake of South American camelids and its effects on the composition of feed rations].

    PubMed

    Stölzl, Anna Maria; Lambertz, Christian; Moors, Eva; Stiehl, Jennifer; Gauly, Matthias

    2014-01-01

    The number of South American camelids (SAC) is increasing in Germany since decades. Due to a lack of scientifically based publications the knowledge about feeding SACs is still poor. Therefore, the aim of this study was to estimate the dry matter intake (DMI) of SACs as a basis for calculations of feed rations. Previous studies proposed a DMI of up to 3% of the body weight (BW) (Vaughan und Gauly, 2011). In the present study, eight llamas (Llama glama) were allocated to two groups of four animals each. The two groups were fed with hay of different qualities over a total period often weeks, which was divided into two runs of five weeks each. During the first run, group 1 was fed with hay 1 (15.1% crude protein; 8.5% crude ash; 3.1% crude fat; 52.6% NDF per kg DM) and group 2 with hay 2 (6.6% crude protein; 6.2% crude ash; 2.1% crude fat; 64.3% NDF per kg DM). After five weeks the groups were changed and group 1 received hay 2 and group 2 received hay 1. BW was measured at the start and end of each run (week zero, five and ten). The hay quality affected the DMI, but the animals did not compensate a lower feed quality with an increased DMI. The total DMI was 1.26% and 0.89% of the BW for hay 1 and hay 2, respectively, which was lower than expected in both groups. In conclusion, calculations of feed rations for SACs should be adjusted to the present findings of a lower DMI capability.

  6. Genetics of grass dry matter intake, energy balance, and digestibility in grazing irish dairy cows.

    PubMed

    Berry, D P; Horan, B; O'Donovan, M; Buckley, F; Kennedy, E; McEvoy, M; Dillon, P

    2007-10-01

    The objective of this study was to estimate genetic parameters for grass dry matter intake (DMI), energy balance (EB), and cow internal digestibility (IDG) in grazing Holstein-Friesian dairy cows. Grass DMI was estimated up to 4 times per lactation on 1,588 lactations from 755 cows on 2 research farms in southern Ireland. Simultaneously measured milk production and BW records were used to calculate EB. Cow IDG, measured as the ratio of feed and fecal concentrations of the natural odd carbon-chain n-alkane pentatriacontane, was available on 583 lactations from 238 cows. Random regression and multitrait animal models were used to estimate residual, additive genetic and permanent environmental (co)variances across lactations. Results were similar for both models. Heritability for DMI, EB, and IDG across lactation varied from 0.10 [8 days in milk (DIM)] to 0.30 (169 DIM), from 0.06 (29 DIM) to 0.29 (305 DIM), and from 0.08 (50 DIM) to 0.45 (305 DIM), respectively, when estimated using the random regression model. Genetic correlations within each trait tended to decrease as the interval between periods compared increased for DMI and EB, whereas the correlations with IDG in early lactation were weakest when measured midlactation. The lowest correlation between any 2 periods was 0.10, -0.36, and -0.04 for DMI, EB, and IDG, respectively, suggesting the effect of different genes at different stages of lactations. Eigenvalues and associated eigenfunctions of the additive genetic covariance matrix revealed considerable genetic variation among animals in the shape of the lactation profiles for DMI, EB, and IDG. Genetic parameters presented are the first estimates from dairy cows fed predominantly grazed grass and imply that genetic improvement in DMI, EB, and IDG in Holstein-Friesian cows fed predominantly grazed grass is possible.

  7. Leaf dry matter content predicts herbivore productivity, but its functional diversity is positively related to resilience in grasslands.

    PubMed

    Pakeman, Robin J

    2014-01-01

    This paper addresses whether the ecosystem service of animal production from grasslands depends upon plant functional identity, plant functional diversity or if the resilience of production is a function of this diversity. Using the results of nine grazing experiments the paper shows that productivity is highly dependent on one leaf trait, leaf dry matter content, as well as rainfall. Animal (secondary) productivity is not dependent on plant functional diversity, but the variability in productivity of grasslands is related to the functional diversity of leaf dry matter content. This and a range of independent studies have shown that functional diversity is reduced at high levels of grassland productivity, so it appears that there is a trade-off between productivity and the resilience of productivity in the face of environmental variation.

  8. The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus.

    PubMed

    Frydendal-Nielsen, Susanne; Hjorth, Maibritt; Baby, Sanmohan; Felby, Claus; Jørgensen, Uffe; Gislum, René

    2016-10-01

    Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling, extrusion or grinding and accumulated methane production and enzymatically-accessible sugars were measured. Accumulated methane production was studied using sigmoid curves that allowed comparison among the treatments of the rate of the methane production and ultimate methane yield. The green biomass gave the highest methane yield and highest levels of enzymatically-accessible cellulose. The driest biomass gave the best effect from extrusion but with the highest energy consumption, whereas roller-milling was most efficient on wet biomass. The addition of water to the last harvest improved the effect of roller-milling and equalled extrusion of the samples in efficiency.

  9. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Zharare, Godfrey Elijah

    2015-09-01

    Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.

  10. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    PubMed

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements.

  11. Effect of incorporation of walnut cake (Juglans regia) in concentrate mixture on degradation of dry matter, organic matter and production of microbial biomass in vitro in goat

    PubMed Central

    Mir, Mohsin Ahmad; Sharma, R. K.; Rastogi, Ankur; Barman, Keshab

    2015-01-01

    Aim: This study was carried out to investigate the effect of incorporation of different level of walnut cake in concentrate mixture on in vitro dry matter degradation in order to determine its level of supplementation in ruminant ration. Materials and Methods: Walnut cake was used @ 0, 10, 15, 20, 25 and 30% level to formulate an iso-nitrogenous concentrate mixtures and designated as T1, T2, T3, T4, T5 and T6 respectively. The different formulae of concentrate mixtures were used for in vitro gas production studies using goat rumen liquor with wheat straw in 40:60 ratio. Proximate composition, fiber fractionation and calcium and phosphrous content of walnut cake were estimated. Result: The per cent IVDMD value of T1 and T2 diets was 68.42 ± 1.20 and 67.25 ± 1.37 respectively which was found highest (P<0.05) T3, T4, T5 and T6. Similar trend was also found for TDOM and MBP. Inclusion of walnut cake at 10% level in the concentrate mixture does not affect in vitro dry matter digestibility (IVDMD), truly degradable organic matter (TDOM, mg/200 mg DM), total gas production, microbial biomass production (MBP) and efficiency of microbial biomass production (EMP). Conclusion: It is concluded that walnut cake incorporation up to 10% level in the iso -nitrogenous concentrate mixture has no any negative effect on in vitro digestibility of dry matter (DM), TDOM, MBP, EMP and total gas production in goat. PMID:27047013

  12. Forest above ground biomass estimation and forest/non-forest classification for Odisha, India, using L-band Synthetic Aperture Radar (SAR) data

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Kiran Chand, T. R.; Fararoda, R.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    Tropical forests contribute to approximately 40 % of the total carbon found in terrestrial biomass. In this context, forest/non-forest classification and estimation of forest above ground biomass over tropical regions are very important and relevant in understanding the contribution of tropical forests in global biogeochemical cycles, especially in terms of carbon pools and fluxes. Information on the spatio-temporal biomass distribution acts as a key input to Reducing Emissions from Deforestation and forest Degradation Plus (REDD+) action plans. This necessitates precise and reliable methods to estimate forest biomass and to reduce uncertainties in existing biomass quantification scenarios. The use of backscatter information from a host of allweather capable Synthetic Aperture Radar (SAR) systems during the recent past has demonstrated the potential of SAR data in forest above ground biomass estimation and forest / nonforest classification. In the present study, Advanced Land Observing Satellite (ALOS) / Phased Array L-band Synthetic Aperture Radar (PALSAR) data along with field inventory data have been used in forest above ground biomass estimation and forest / non-forest classification over Odisha state, India. The ALOSPALSAR 50 m spatial resolution orthorectified and radiometrically corrected HH/HV dual polarization data (digital numbers) for the year 2010 were converted to backscattering coefficient images (Schimada et al., 2009). The tree level measurements collected during field inventory (2009-'10) on Girth at Breast Height (GBH at 1.3 m above ground) and height of all individual trees at plot (plot size 0.1 ha) level were converted to biomass density using species specific allometric equations and wood densities. The field inventory based biomass estimations were empirically integrated with ALOS-PALSAR backscatter coefficients to derive spatial forest above ground biomass estimates for the study area. Further, The Support Vector Machines (SVM) based Radial

  13. Effects of transient changes in silage dry matter concentration on lactating dairy cows.

    PubMed

    McBeth, L R; St-Pierre, N R; Shoemaker, D E; Weiss, W P

    2013-06-01

    Transient changes in the dry matter (DM) concentration of silages often occur, which will cause transient changes in the ration. To determine the effects of a transient change in silage DM, 24 Holstein cows (116 d in milk) were used in an 8 replicated 3×3 Latin square design with 21-d periods. Treatments were (1) control, (2) unbalanced (UNBAL), and (3) balanced (BAL). The control diet was designed to have a consistent day-to-day forage:concentrate ratio of 55:45 on a DM basis. The UNBAL and BAL diets were the same as the control diet for most of the period except during two 3-d bouts when water was added to the silage (simulating a rain event) to cause a 10-percentage unit decrease in silage DM concentration. During the bouts, the UNBAL diet was the same as that of the control on an as-fed basis, but on a DM basis, the forage:concentrate ratio decreased to 49:51, which reduced dietary concentrations of DM (63.9 vs. 66.2%) and forage NDF (21.0 vs. 23.6%), and increased starch (30.4 vs. 28.4%). The BAL treatment corrected for the change in silage DM by an increase in the inclusion of wet silage and had the same composition as the control diet on a DM basis, except for ration DM (66.2 vs. 63.9%). Over the 21-d period, treatment did not affect DM intake (DMI; 24.0 kg/d); however, DMI of cows on the UNBAL and BAL treatments tended to decrease during the wet bouts, especially during the second bout. The day following both bouts, DMI of cows fed BAL and UNBAL diets were greater than that of cows fed the control diet, which contributed to the lack of a treatment effect on DMI over the entire period. Milk production was greater for the UNBAL than control cows (39.8 vs. 39.3 kg/d) over the 21-d period. That difference was largely caused by increased milk yield during the first bout by cows on the UNBAL diet. Over the 21-d period, milk yield did not differ between control and BAL cows. Some small differences in milk fat and protein concentrations (≤ 0.1 percentage units

  14. Determination of critical nitrogen dilution curve based on stem dry matter in rice.

    PubMed

    Ata-Ul-Karim, Syed Tahir; Yao, Xia; Liu, Xiaojun; Cao, Weixing; Zhu, Yan

    2014-01-01

    Plant analysis is a very promising diagnostic tool for assessment of crop nitrogen (N) requirements in perspectives of cost effective and environment friendly agriculture. Diagnosing N nutritional status of rice crop through plant analysis will give insights into optimizing N requirements of future crops. The present study was aimed to develop a new methodology for determining the critical nitrogen (Nc) dilution curve based on stem dry matter (SDM) and to assess its suitability to estimate the level of N nutrition for rice (Oryza sativa L.) in east China. Three field experiments with varied N rates (0-360 kg N ha(-1)) using three Japonica rice hybrids, Lingxiangyou-18, Wuxiangjing-14 and Wuyunjing were conducted in Jiangsu province of east China. SDM and stem N concentration (SNC) were determined during vegetative stage for growth analysis. A Nc dilution curve based on SDM was described by the equation (Nc = 2.17W(-0.27) with W being SDM in t ha(-1)), when SDM ranged from 0.88 to 7.94 t ha(-1). However, for SDM < 0.88 t ha(-1), the constant critical value Nc = 1.76% SDM was applied. The curve was dually validated for N-limiting and non-N-limiting growth conditions. The N nutrition index (NNI) and accumulated N deficit (Nand) of stem ranged from 0.57 to 1.06 and 51.1 to -7.07 kg N ha(-1), respectively, during key growth stages under varied N rates in 2010 and 2011. The values of ΔN derived from either NNI or Nand could be used as references for N dressing management during rice growth. Our results demonstrated that the present curve well differentiated the conditions of limiting and non-limiting N nutrition in rice crop. The SDM based Nc dilution curve can be adopted as an alternate and novel approach for evaluating plant N status to support N fertilization decision during the vegetative growth of Japonica rice in east China.

  15. Net Changes in Above Ground Woody Carbon Stock in Western Juniper Woodlands using Wavelet Techniques and Multi-temporal Aerial Photography

    NASA Astrophysics Data System (ADS)

    Strand, E. K.; Bunting, S. C.; Smith, A. M.

    2006-12-01

    Expansion of woody plant cover in semi-arid ecosystems previously occupied primarily by grasses and forbs has been identified as an important land cover change process affecting the global carbon budget. Although woody encroachment occurs worldwide, quantifying changes in carbon pools and fluxes related to this phenomenon via remote sensing is challenging because large areas are affected at a fine spatial resolution (1- 10 m) and, in many cases, at slow temporal rates. Two-dimensional spatial wavelet analysis (SWA) represents a novel image processing technique that has been successful in automatically and objectively quantifying ecologically relevant features at multiple scales. We apply SWA to current and historic 1-m resolution black and white aerial photography to quantify changes in above ground woody biomass and carbon stock of western juniper (Juniperus occidentalis subsp. occidentalis) expanding into sagebrush (Artemisia spp.) steppe on the Owyhee Plateau in southwestern Idaho. Due to the large land area (330,000 ha) and variable availability of historical photography, we sampled forty-eight 100-ha blocks situated across the area, stratified using topographic, soil, and land stewardship variables. The average juniper plant cover increased one-fold (from 5.3% to 10.4% total cover) at the site during the time period of 1939-1946 to 1998-2004. Juniper plant density has increased by 128% with a higher percentage of the plant population in the smaller size classes compared to the size distribution 60 years ago. After image-based SWA delineation of tree crown sizes, we computed the change in above ground woody plant biomass and carbon stock between the two time periods using allometry. Areas where the shrub steppe is dominated by low sagebrush (Artemisia arbuscula) has experienced little to no expansion of western juniper. However, on deeper, more well drained soils capable of supporting mountain big sagebrush (Artemisia tridentata subsp. vaseyana), the above

  16. Dry matter intake and digestibility of rations replacing concentrates with graded levels of Enterolobium cyclocarpum in Pelibuey lambs.

    PubMed

    Piñeiro-Vázquez, Angel Trinidad; Ayala-Burgos, Armín Javier; Chay-Canul, Alfonso Juventino; Ku-Vera, Juan Carlos

    2013-02-01

    The aim of the study was to evaluate the effect of graded levels of Enterolobium cyclocarpum pods in the ration on feed intake and digestibility by Pelibuey lambs. Five dietary treatments were imposed where ground pods replaced concentrate diet at 0, 20, 30, 40 and 50 % of dry matter (DM), respectively. The concentrate portion was composed of ground sorghum, soybean meal, cane molasses and minerals. Five entire Pelibuey lambs with initial bodyweight 34 ± 2 kg were allocated in the treatments in a 5 × 5 Latin square design. Values of dry matter intake (DMI) and dry matter (DMD) and organic matter (OMD) digestibility were measured and metabolisable energy intake (MEI) estimated. Rumen degradation constants for E. cyclocarpum were also measured. There were no differences (P > 0.05) in average DMI (86.6 g/kg(0.75)) and OMI (81.2 g/kg(0.75)) among treatments. As the level of incorporation of E. cyclocarpum pods increased, voluntary DMI and OMI increased, whereas apparent DMD and OMD decreased linearly. Average digestible DM (65 g/kg(0.75)) and OM (61 g/kg(0.75)) intakes were similar (P > 0.05) among treatments. Similarly, MEI (0.976 MJ ME kg(0.75)/day) was not different (P > 0.05) among treatments. The potential rumen degradation (A + B) of ground pods of E. cyclocarpum was 866.4 g/kg DM. Ground pods of E. cyclocarpum can be employed for lamb feeding up to 50 % of the ration, without affecting DMI, DM apparent digestibility and MEI.

  17. Effect of dietary dry matter concentration on the sorting behavior of lactating dairy cows fed a total mixed ration.

    PubMed

    Miller-Cushon, E K; DeVries, T J

    2009-07-01

    The objective of this study was to determine whether addition of water to a high-moisture total mixed ration reduces feed sorting by dairy cattle. Twelve lactating Holstein cows, individually fed once per day, were tested on 2 diets in a crossover design with 21-d periods. Diets had the same dietary composition and differed only in dry matter content, which was reduced by the addition of water. Treatment diets were 1) dry (57.6% DM) and 2) wet (47.9% DM). Dry matter intake (DMI) and milk production were monitored for each animal for the last 7 d of both treatment periods. For the final 3 d of each period, milk samples were taken for composition analysis and fresh feed and orts were sampled for particle size analysis. The particle size separator had 3 screens (19, 8, and 1.18 mm) and a bottom pan, resulting in 4 fractions (long, medium, short, fine). Sorting was calculated as the actual intake of each particle size fraction expressed as a percentage of the predicted intake of that fraction. Contrary to the hypothesis, cows sorted the wet diet more extensively than the dry diet. Sorting of the dry diet was limited to a tendency to refuse short particles, whereas the wet diet was sorted against long particles and for short and fine particles. Water addition reduced DMI, neutral detergent fiber intake, and starch intake of cows on the wet diet. Increased sorting on the wet diet resulted in a tendency for decreased concentration of dietary neutral detergent fiber consumed and also resulted in increased starch concentration of the diet consumed. Milk production and components were unaffected by treatment. Our results suggest that water addition to high-moisture total mixed rations, containing primarily haylage and silage forage sources, may not be an effective method to reduce sorting. Furthermore, water addition may negatively affect DMI and encourage sorting, resulting in the consumption of a ration with different nutrient composition than intended.

  18. Effects of sawdust bedding dry matter on lying behavior of dairy cows: a dose-dependent response.

    PubMed

    Reich, L J; Weary, D M; Veira, D M; von Keyserlingk, M A G

    2010-04-01

    The objective was to determine the effect of sawdust bedding dry matter on the lying behavior of Holstein cows. Dry matter (DM) was varied systematically over 5 treatment levels to test how cows respond to damp bedding. This experiment was repeated during summer and winter to test if the effects of damp bedding varied with season. The 5 bedding treatments averaged (+/-SD) 89.8+/-3.7, 74.2+/-6.4, 62.2+/-6.3, 43.9+/-4.0, and 34.7+/-3.8% DM. Over the course of the trial, minimum and maximum temperatures in the barn were 2.6+/-2.0 and 6.8+/-2.2 degrees C in the winter and 13.3+/-2.5 and 22.6+/-4.1 degrees C in the summer. In both seasons, 5 groups of 3 nonlactating cows were housed in free stalls bedded with sawdust. Following a 5-d acclimation period on dry bedding, groups were exposed to the 5 bedding treatments in a 5 x 5 Latin square. Each treatment lasted 4 d, followed by 1 d when the cows were provided with dry bedding. Stall usage was assessed by 24-h video scanned at 5-min intervals. Responses were analyzed within group (n=5) as the observational unit. Bedding DM affected lying time, averaging 10.4+/-0.4 h/d on the wettest treatment and increasing to 11.5+/-0.4 h/d on the driest bedding. Lying time varied with season, averaging 12.1+/-0.4 h/d across treatments during the winter and 9.9+/-0.6 h/d during the summer, but season and bedding DM did not interact. These results indicate that access to dry bedding is important for dairy cows.

  19. Forest Type and Above Ground Biomass Estimation Based on Sentinel-2A and WorldView-2 Data Evaluation of Predictor nd Data Suitability

    NASA Astrophysics Data System (ADS)

    Fritz, Andreas; Enßle, Fabian; Zhang, Xiaoli; Koch, Barbara

    2016-08-01

    The present study analyses the two earth observation sensors regarding their capability of modelling forest above ground biomass and forest density. Our research is carried out at two different demonstration sites. The first is located in south-western Germany (region Karlsruhe) and the second is located in southern China in Jiangle County (Province Fujian). A set of spectral and spatial predictors are computed from both, Sentinel-2A and WorldView-2 data. Window sizes in the range of 3*3 pixels to 21*21 pixels are computed in order to cover the full range of the canopy sizes of mature forest stands. Textural predictors of first and second order (grey-level-co-occurrence matrix) are calculated and are further used within a feature selection procedure. Additionally common spectral predictors from WorldView-2 and Sentinel-2A data such as all relevant spectral bands and NDVI are integrated in the analyses. To examine the most important predictors, a predictor selection algorithm is applied to the data, whereas the entire predictor set of more than 1000 predictors is used to find most important ones. Out of the original set only the most important predictors are then further analysed. Predictor selection is done with the Boruta package in R (Kursa and Rudnicki (2010)), whereas regression is computed with random forest. Prior the classification and regression a tuning of parameters is done by a repetitive model selection (100 runs), based on the .632 bootstrapping. Both are implemented in the caret R pack- age (Kuhn et al. (2016)). To account for the variability in the data set 100 independent runs are performed. Within each run 80 percent of the data is used for training and the 20 percent are used for an independent validation. With the subset of original predictors mapping of above ground biomass is performed.

  20. A comparative analysis of extended water cloud model and backscatter modelling for above-ground biomass assessment in Corbett Tiger Reserve

    NASA Astrophysics Data System (ADS)

    Kumar, Yogesh; Singh, Sarnam; Chatterjee, R. S.; Trivedi, Mukul

    2016-04-01

    Forest biomass acts as a backbone in regulating the climate by storing carbon within itself. Thus the assessment of forest biomass is crucial in understanding the dynamics of the environment. Traditionally the destructive methods were adopted for the assessment of biomass which were further advanced to the non-destructive methods. The allometric equations developed by destructive methods were further used in non-destructive methods for the assessment, but they were mostly applied for woody/commercial timber species. However now days Remote Sensing data are primarily used for the biomass geospatial pattern assessment. The Optical Remote Sensing data (Landsat8, LISS III, etc.) are being used very successfully for the estimation of above ground biomass (AGB). However optical data is not suitable for all atmospheric/environmental conditions, because it can't penetrate through clouds and haze. Thus Radar data is one of the alternate possible ways to acquire data in all-weather conditions irrespective of weather and light. The paper examines the potential of ALOS PALSAR L-band dual polarisation data for the estimation of AGB in the Corbett Tiger Reserve (CTR) covering an area of 889 km2. The main focus of this study is to explore the accuracy of Polarimetric Scattering Model (Extended Water Cloud Model (EWCM) with respect to Backscatter model in the assessment of AGB. The parameters of the EWCM were estimated using the decomposition components (Raney Decomposition) and the plot level information. The above ground biomass in the CTR ranges from 9.6 t/ha to 322.6 t/ha.

  1. A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China.

    PubMed

    Zhao, Ben; Ata-Ui-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun

    2016-01-01

    Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0-375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China.

  2. A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China

    PubMed Central

    Zhao, Ben; Ata-UI-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun

    2016-01-01

    Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0–375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China. PMID:27732634

  3. Pre-rigor temperature and the relationship between lamb tenderisation, free water production, bound water and dry matter.

    PubMed

    Devine, Carrick; Wells, Robyn; Lowe, Tim; Waller, John

    2014-01-01

    The M. longissimus from lambs electrically stimulated at 15 min post-mortem were removed after grading, wrapped in polythene film and held at 4 (n=6), 7 (n=6), 15 (n=6, n=8) and 35°C (n=6), until rigor mortis then aged at 15°C for 0, 4, 24 and 72 h post-rigor. Centrifuged free water increased exponentially, and bound water, dry matter and shear force decreased exponentially over time. Decreases in shear force and increases in free water were closely related (r(2)=0.52) and were unaffected by pre-rigor temperatures.

  4. Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in Holstein cows.

    PubMed

    Douglas, G N; Overton, T R; Bateman, H G; Dann, H M; Drackley, J K

    2006-06-01

    Previous research in our laboratory showed that dietary fat supplementation during the dry period was associated with decreased peripartum hepatic lipid accumulation. However, fat supplementation decreased dry matter (DM) intake and thereby confounded results. Consequently, 47 Holstein cows with body condition scores (BCS) < or = 3.5 at dry-off were used to determine whether source or amount of energy fed to dry cows was responsible for the decreased hepatic lipid content. Moderate grain- or fat-supplemented diets [1.50 Mcal of net energy for lactation (NE(L))/kg] were fed from dry-off (60 d before expected parturition) to calving at either ad libitum (160% of NE(L) requirement) or restricted (80% of NE(L) requirement) intakes. Postpartum, cows were fed a single lactation diet for ad libitum intake and performance was measured for 105 d. Prepartum intakes of DM and NE(L) were significantly lower for feed-restricted cows as designed. During the first 21 d postpartum, previously restricted cows had higher intakes of DM and NE(L). Body weights and BCS were lower prepartum for restricted cows but groups converged to similar nadirs postpartum. Restricted-fed cows had lower concentrations of glucose and insulin and increased concentrations of NEFA in plasma during the dry period. Peripartum NEFA rose markedly for all treatments but were higher postpartum for cows previously fed ad libitum. Plasma concentrations of NEFA and BHBA remained lower in cows restricted-during the dry period. Postpartum concentrations of total lipid and triglyceride in liver were lower in cows previously feed-restricted. Across dietary treatments, activity of carnitine palmitoyltransferase (CPT) in hepatic mitochondria was lowest at - 21 d, highest at 1 d, and decreased at 21 and 65 d relative to parturition. The activity of CPT at d 1 tended to be higher for previously feed-restricted cows; thereafter, CPT activity declined more rapidly than in cows fed ad libitum. Nutrient intake during the dry

  5. Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents - how different are co-occurring savanna and forest formations?

    NASA Astrophysics Data System (ADS)

    Veenendaal, E. M.; Torello-Raventos, M.; Feldpausch, T. R.; Domingues, T. F.; Gerard, F.; Schrodt, F.; Saiz, G.; Quesada, C. A.; Djagbletey, G.; Ford, A.; Kemp, J.; Marimon, B. S.; Marimon-Junior, B. H.; Lenza, E.; Ratter, J. A.; Maracahipes, L.; Sasaki, D.; Sonke, B.; Zapfack, L.; Villarroel, D.; Schwarz, M.; Yoko Ishida, F.; Gilpin, M.; Nardoto, G. B.; Affum-Baffoe, K.; Arroyo, L.; Bloomfield, K.; Ceca, G.; Compaore, H.; Davies, K.; Diallo, A.; Fyllas, N. M.; Gignoux, J.; Hien, F.; Johnson, M.; Mougin, E.; Hiernaux, P.; Killeen, T.; Metcalfe, D.; Miranda, H. S.; Steininger, M.; Sykora, K.; Bird, M. I.; Grace, J.; Lewis, S.; Phillips, O. L.; Lloyd, J.

    2015-05-01

    Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna-forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna-forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three continents coexistence

  6. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides

    PubMed Central

    Sánchez-Vilas, Julia; Bermúdez, Raimundo; Retuerto, Rubén

    2012-01-01

    Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the

  7. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil.

    PubMed

    Li, Lingling; Shao, Tianyun; Yang, Hui; Chen, Manxia; Gao, Xiumei; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2017-02-01

    The changes in content of endogenous hormones in stolons and tubers of Jerusalem artichoke (Helianthus tuberosus L.) regulate tuber growth, but the specific knowledge about the importance of balance among the endogenous hormones is lacking. Two varieties of Jerusalem artichoke (NY-1 and QY-2) were tested for the endogenous zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA) in regulating sugar and dry matter accumulation in tubers. The dry matter content and sugar accumulation in tubers were correlated positively with endogenous ZT and negatively with GA3 content and GA3/ABA and IAA/ABA content ratios. Throughout the tuber formation, ZT content was higher in NY-1 than QY-2 tubers, whereas ABA content was higher in QY-2 than NY-1 tubers. The content ratios GA3/ABA and IAA/ABA were greater in NY-1 than QY-2 before tuber initiation, but QY-2 surpassed NY-1 during the tuber growth stage. The GA3/ABA and IAA/ABA content ratios declined during tuber growth. The results suggested that a dynamic balance of endogenous hormones played an important role in tuber development.

  8. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.

  9. Effects of Saccharomyces cerevisiae fermentation product on ruminal starch digestion are dependent upon dry matter intake for lactating cows.

    PubMed

    Allen, M S; Ying, Y

    2012-11-01

    This experiment was conducted to evaluate ruminal digestion responses to Saccharomyces cerevisiae fermentation product (SCFP) supplementation and to determine if responses are influenced by voluntary feed intake. Fifteen ruminally and duodenally cannulated Holstein cows with a wide range in preliminary dry matter intake (pDMI; 20.1 to 31.0 kg/d) measured during a 14-d preliminary period were used in a crossover design experiment. Treatments were SCFP and control (a mix of dry ground corn and soybean meal), top-dressed at the rate of 56 g/d per head. The base diet contained 28% NDF, 30% starch, and 16.5% CP and included corn silage, alfalfa silage, high-moisture corn, protein supplement, and a mineral and vitamin supplement. Treatment periods were 28 d, with the final 8d used for sample and data collection. Voluntary dry matter intake was determined during the last 4d of the preliminary period. Ruminal digestion kinetics were determined using the pool-and-flux method. Main effects of SCFP treatment and their interaction with pDMI were tested by ANOVA. An interaction was detected between SCFP treatment and pDMI for ruminal digestion rate of starch; SCFP increased the rate of starch digestion compared with the control for cows with pDMI below 26 kg/d and decreased it for cows with higher pDMI. This resulted in an interaction between treatment and pDMI for turnover rate of starch in the rumen and true and apparent ruminal starch digestibility because passage rate of starch from the rumen was not affected by treatment (mean=24.3%/h). Ruminal pH (mean=6.0), dry matter intake, milk yield and component percentages were not affected by treatment or its interaction with pDMI. Supplementation of SCFP reduced the rate of ruminal starch digestion for cows with higher feed intake, which could help stabilize the ruminal environment when large amounts of starch are consumed to support higher milk production.

  10. Effect of K-N-humates on dry matter production and nutrient use efficiency of maize in Sarawak, Malaysia.

    PubMed

    Petrus, Auldry Chaddy; Ahmed, Osumanu Haruna; Muhamad, Ab Majid Nik; Nasir, Hassan Mohammad; Jiwan, Make

    2010-07-06

    Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to

  11. Structural characterization of an intestinal immune system-modulating arabino-3,6-galactan-like polysaccharide from the above-ground part of Astragalus membranaceus (Bunge).

    PubMed

    Lim, Jung Dae; Yu, Chang Yeon; Kim, Seung Hyun; Chung, Ill Min

    2016-01-20

    Arabino-3,6-galactan (AMA-1-b-PS2), an intestinal immunomodulatory compound, was purified from the above-ground portion of Astragalus membranaceus (Bunge). Its structure was characterized using sequential enzymatic digestion with exo-α-L-arabinofuranosidase (AFase) and exo-β-D-(1 → 3)-galactanase (GNase), producing small amounts of intermediate-sized and shorter oligosaccharide (AF-PS2-G2 and AF-PS2-G3) fractions, and a large GNase-resistant fraction (AF-PS2-G1). Simultaneous AFase and GNase digestion of the enzyme-resistant fraction produced two long fragments (AF3-PS2-G1-1-1 and AF3-PS2-G1-1-2). Products of GNase digestion of the upper fractions showed decreased intestinal immunomodulatory activity; the GNase-resistant fraction (AF-PS2-G1) retained significant activity. Sugar component, methylation, and FAB-MS analyses indicated that the oligosaccharides consisted of hexosyl tri- to hexa-decasaccharides and hexosyl di- to hepta-saccharides mainly comprising 6-linked Gal(f) and Gal(p); some were partially mono- or di-arabinosylated. These oligosaccharide fractions were attached to the non-reducing terminus of the β-D-(1 → 3)-galactan backbone as side chains at position 6. AMA-1-b-PS2 likely modulates both the systemic and gastric mucosal immune systems.

  12. Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3.

    PubMed

    Garbeva, P; Postma, J; van Veen, J A; van Elsas, J D

    2006-02-01

    The extent of soil microbial diversity is seen to be critical to the maintenance of soil health and quality. Different agricultural practices are able to affect soil microbial diversity and thus the level of suppressiveness of plant diseases. In a 4-year field experiment, we investigated the microbial diversity of soil under different agricultural regimes. We studied permanent grassland, grassland turned into arable land, long-term arable land and arable land turned into grassland. The diversity of microbial communities was described by using cultivation-based and cultivation-independent methods. Both types of methods revealed differences in the diversities of soil microbial communities between different treatments. The treatments with higher above-ground biodiversity generally maintained higher levels of microbial diversity. Moreover, a positive correlation between suppression of Rhizoctonia solani AG3 and microbial diversity was observed. Permanent (species-rich) grassland and grassland turned into maize stimulated higher microbial diversities and higher levels of suppressiveness of R. solani AG3 compared with the long-term arable land. Effects of agricultural practices on Bacillus and Pseudomonas communities were also observed and clear correlations between the levels of suppressiveness and the diversities of these bacterial groups were found. This study highlighted the importance of agricultural management regime for soil microbial community structure and diversity as well as the level of soil suppressiveness.

  13. Top-down and bottom-up inventory approach for above ground forest biomass and carbon monitoring in REDD framework using multi-resolution satellite data.

    PubMed

    Sharma, Laxmi Kant; Nathawat, Mahendra Singh; Sinha, Suman

    2013-10-01

    This study deals with the future scope of REDD (Reduced Emissions from Deforestation and forest Degradation) and REDD+ regimes for measuring and monitoring the current state and dynamics of carbon stocks over time with integrated geospatial and field-based biomass inventory approach. Multi-temporal and multi-resolution geospatial synergic approach incorporating satellite sensors from moderate to high resolution with stratified random sampling design is used. The inventory process involves a continuous forest inventory to facilitate the quantification of possible CO2 reductions over time using statistical up-scaling procedures on various levels. The combined approach was applied on a regional scale taking Himachal Pradesh (India), as a case study, with a hierarchy of forest strata representing the forest structure found in India. Biophysical modeling implemented revealed power regression model as the best fit (R (2) = 0.82) to model the relationship between Normalized Difference Vegetation Index and biomass which was further implemented to calculate multi-temporal above ground biomass and carbon sequestration. The calculated value of net carbon sequestered by the forests totaled to 11.52 million tons (Mt) over the period of 20 years at the rate of 0.58 Mt per year since 1990 while CO2 equivalent reduced from the environment by the forests under study during 20 years comes to 42.26 Mt in the study area.

  14. Below-ground abiotic and biotic heterogeneity shapes above-ground infection outcomes and spatial divergence in a host-parasite interaction.

    PubMed

    Tack, Ayco J M; Laine, Anna-Liisa; Burdon, Jeremy J; Bissett, Andrew; Thrall, Peter H

    2015-09-01

    We investigated the impact of below-ground and above-ground environmental heterogeneity on the ecology and evolution of a natural plant-pathogen interaction. We combined field measurements and a reciprocal inoculation experiment to investigate the potential for natural variation in abiotic and biotic factors to mediate infection outcomes in the association between the fungal pathogen Melampsora lini and its wild flax host, Linum marginale, where pathogen strains and plant lines originated from two ecologically distinct habitat types that occur in close proximity ('bog' and 'hill'). The two habitat types differed strikingly in soil moisture and soil microbiota. Infection outcomes for different host-pathogen combinations were strongly affected by the habitat of origin of the plant lines and pathogen strains, the soil environment and their interactions. Our results suggested that tradeoffs play a key role in explaining the evolutionary divergence in interaction traits among the two habitat types. Overall, we demonstrate that soil heterogeneity, by mediating infection outcomes and evolutionary divergence, can contribute to the maintenance of variation in resistance and pathogenicity within a natural host-pathogen metapopulation.

  15. Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data

    NASA Astrophysics Data System (ADS)

    Behera, M. D.; Tripathi, P.; Mishra, B.; Kumar, Shashi; Chitale, V. S.; Behera, Soumit K.

    2016-01-01

    Mechanisms to mitigate climate change in tropical countries such as India require information on forest structural components i.e., biomass and carbon for conservation steps to be implemented successfully. The present study focuses on investigating the potential use of a one time, QuadPOL ALOS PALSAR L-band 25 m data to estimate above-ground biomass (AGB) using a water cloud model (WCM) in a wildlife sanctuary in India. A significant correlation was obtained between the SAR-derived backscatter coefficient (σ°) and the field measured AGB, with the maximum coefficient of determination for cross-polarized (HV) σ° for Shorea robusta, and the weakest correlation was observed with co-polarized (HH) σ° for Tectona grandis forests. The biomass of S. robusta and that of T. grandis were estimated on the basis of field-measured data at 444.7 ± 170.4 Mg/ha and 451 ± 179.4 Mg/ha respectively. The mean biomass values estimated using the WCM varied between 562 and 660 Mg/ha for S. robusta; between 590 and 710 Mg/ha for T. grandis using various polarized data. Our results highlighted the efficacy of one time, fully polarized PALSAR data for biomass and carbon estimate in a dense forest.

  16. [Effects of air temperature, solar radiation and soil water on dry matter accumulation and allocation of greenhouse muskmelon seedlings and related simulation models].

    PubMed

    Li, Jian-Ming; Zou, Zhi-Rong

    2007-12-01

    With different sowing dates and irrigation upper limits, the effects of air temperature, solar radiation and soil water on the dry matter accumulation and allocation of greenhouse muskmelon seedlings were studied, with related simulation models established. The results showed that the dry matter accumulation and allocation of the seedlings had correlations with the changes of effective accumulative temperature, accumulative solar radiation, and irrigation upper limits at different seasons in a year, but the correlation coefficients differed with sowing dates and irrigation upper limits. Comprehensive analysis showed that the dry matter accumulation model was an exponential function, while the dry matter allocation model was a conic function, both of which were driven by effective accumulative temperature. The constant term in the functions was driven by accumulative daily temperature difference and accumulative solar radiation, and the correlation was a linear function. Model test showed that the models were able to objectively simulate and predict the changes of plant dry matter accumulation and allocation, and possessed practical value for the growth analysis and production management of muskmelon seedling.

  17. Spatiotemporal Characteristics of Particulate Matter and Dry Deposition Flux in the Cuihu Wetland of Beijing

    PubMed Central

    Cong, Ling; Ma, Wenmei; Ma, Wu; Zhang, Zhenming

    2016-01-01

    In recent years, the rapid development of industrialization and urbanization has caused serious environmental pollution, especially particulate pollution. As the “Earth’s kidneys,” wetland plays a significant role in improving the environmental quality and adjusting the climate. To study how wetlands work in this aspect, from the early autumn of 2014 to 2015, we implemented a study to measure the PM concentration and chemical composition at three heights (1.5, 6, and 10 m) during different periods (dry, normal water, and wet periods) in the Cuihu wetland park in Beijing for analyzing the dry deposition flux and the effect of meteorological factors on the concentration. Results indicated that (1) the diurnal variations of the PM2.5 and PM10 concentrations at the three heights were similar in that the highest concentration occurred at night and the lowest occurred at noon, and the daytime concentration was lower than that at night; (2) the PM2.5 and PM10 concentrations also varied between different periods that wet period > normal water period > wet period, and the concentration at different heights during different periods varied. In general, the lowest concentration occurred at 10 m during the dry and normal water periods, and the highest concentration occurred at 1.5 m during the wet period. (3) SO42−, NO3−, and Cl− are the dominant constituents of PM2.5, accounting for 42.22, 12.6, and 21.56%, respectively; (4) the dry depositions of PM2.5 and PM10 at 10 m were higher than those at 6 m, and the deposition during the dry period was higher than those during the wet and normal water periods. In addition, the deposition during the night-time was higher than that during the daytime. Moreover, meteorological factors affected the deposition, the temperature and wind speed being negatively correlated with the deposition flux and the humidity being positively correlated. (5) The PM10 and PM2.5 concentrations were influenced by meteorological factors. The PM2

  18. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the

  19. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome

    PubMed Central

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID

  20. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.

  1. Optimizing the number of training areas for modeling above-ground biomass with ALS and multispectral remote sensing in subtropical Nepal

    NASA Astrophysics Data System (ADS)

    Rana, Parvez; Gautam, Basanta; Tokola, Timo

    2016-07-01

    Remote sensing-based inventories of above-ground forest biomass (AGB) require a set of training plots representative of the area to be studied, the collection of which is the most expensive part of the analysis. These are time-consuming and costly because the large variety in forest conditions requires more plots to adequately capture this variability. A field campaign in general is challenging and is hampered by the complex topographic conditions, limited accessibility, steep mountainous terrains which increase labor efforts and costs. In addition it is also depend on the ratio between size of study area and number of training plots. In this study, we evaluate the number of training areas (sample size) required to estimate AGB for an area in the southern part of Nepal using airborne laser scanning (ALS), RapidEye and Landsat data. Three experiments were conducted: (i) AGB model performance, based on all the field training plots; (ii) reduction of the sample size, based on the ALS metrics and the AGB distribution; and (iii) prediction of the optimal number of training plots, based on the correlation between the remote sensing and field data. The AGB model was fitted using the sparse Bayesian method. AGB model performance was validated using an independent validation dataset. The effect of the strategies for reducing the sample size was readily apparent for the ALS-based AGB prediction, but the RapidEye and Landsat sensor data failed to capture any such effect. The results indicate that adequate coverage of the variability in tree height and density was an important condition for selecting the training plots. In addition, the ALS-based AGB prediction required the smallest number of training plots and was also quite stable with a small number of field plots.

  2. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

    PubMed

    Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R

    2016-12-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.

  3. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  4. Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements.

    PubMed

    Gao, Wei; Chen, Aodong; Zhang, Bowen; Kong, Ping; Liu, Chenli; Zhao, Jie

    2015-04-01

    This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

  5. Influence of management regime and harvest date on the forage quality of rangelands plants: the importance of dry matter content.

    PubMed

    Bumb, Iris; Garnier, Eric; Bastianelli, Denis; Richarte, Jean; Bonnal, Laurent; Kazakou, Elena

    2016-01-01

    In spite of their recognized ecological value, relatively little is known about the nutritional value of species-rich rangelands for herbivores. We investigated the sources of variation in dry matter digestibility (DMD), neutral detergent fibre content (NDF) and nitrogen concentration (NC) in plants from species-rich Mediterranean rangelands in southern France, and tested whether the dry matter content (DMC) was a good predictor of the forage quality of different plant parts. Sixteen plant species with contrasting growth forms (rosette, tussock, extensive and stemmed-herb) were studied, representative of two management regimes imposed in these rangelands: (i) fertilization and intensive grazing and (ii) non-fertilization and moderate grazing. Among the 16 plant species, four species were found in both treatments, allowing us to assess the intraspecific variability in forage quality and DMC across the treatments. The components of nutritional value (DMD, NDF and NC) as well as the DMC of leaves, stems and reproductive plant parts, were assessed at the beginning of the growing season and at peak standing biomass. All components of nutritional value and DMC were affected by species growth form: rosettes had higher DMD and NC than tussocks; the reverse being found for NDF and DMC. As the season progressed, DMD and NC of the different plant parts decreased while NDF and DMC increased for all species. DMC was negatively related to DMD and NC and positively to NDF, regardless of the source of variation (species, harvest date, management regime or plant part). Path analysis indicated that NDF was the main determinant of DMD. Better assessment of forage quality in species-rich systems requires consideration of their growth form composition. DMC of all plant parts, which is closely related to NDF, emerged as a good predictor and easily measured trait to estimate DMD in these species-rich systems.

  6. Influence of management regime and harvest date on the forage quality of rangelands plants: the importance of dry matter content

    PubMed Central

    Bumb, Iris; Garnier, Eric; Bastianelli, Denis; Richarte, Jean; Bonnal, Laurent; Kazakou, Elena

    2016-01-01

    In spite of their recognized ecological value, relatively little is known about the nutritional value of species-rich rangelands for herbivores. We investigated the sources of variation in dry matter digestibility (DMD), neutral detergent fibre content (NDF) and nitrogen concentration (NC) in plants from species-rich Mediterranean rangelands in southern France, and tested whether the dry matter content (DMC) was a good predictor of the forage quality of different plant parts. Sixteen plant species with contrasting growth forms (rosette, tussock, extensive and stemmed-herb) were studied, representative of two management regimes imposed in these rangelands: (i) fertilization and intensive grazing and (ii) non-fertilization and moderate grazing. Among the 16 plant species, four species were found in both treatments, allowing us to assess the intraspecific variability in forage quality and DMC across the treatments. The components of nutritional value (DMD, NDF and NC) as well as the DMC of leaves, stems and reproductive plant parts, were assessed at the beginning of the growing season and at peak standing biomass. All components of nutritional value and DMC were affected by species growth form: rosettes had higher DMD and NC than tussocks; the reverse being found for NDF and DMC. As the season progressed, DMD and NC of the different plant parts decreased while NDF and DMC increased for all species. DMC was negatively related to DMD and NC and positively to NDF, regardless of the source of variation (species, harvest date, management regime or plant part). Path analysis indicated that NDF was the main determinant of DMD. Better assessment of forage quality in species-rich systems requires consideration of their growth form composition. DMC of all plant parts, which is closely related to NDF, emerged as a good predictor and easily measured trait to estimate DMD in these species-rich systems. PMID:27339049

  7. Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, corn, and wheat dried distillers grains.

    PubMed

    Maxin, G; Ouellet, D R; Lapierre, H

    2013-08-01

    Different protein sources, such as canola meal (CM) or dried distillers grains (DDG), are currently used in dairy rations to replace soybean meal (SBM). However, little data exists comparing their rumen degradation in a single study. Therefore, the objective of this study was to compare the ruminal degradation of dry matter (DM), crude protein (CP), and AA of SBM, CM, high-protein corn DDG (HPDDG), and wheat DDG plus solubles (WDDGS). In situ studies were conducted with 4 rumen-fistulated lactating Holstein cows fed a diet containing 38% grass hay and 62% corn-based concentrate. Each protein source was incubated in the rumen of each cow in nylon bags for 0, 2, 4, 8, 16, 24, and 48 h to determine DM and CP rumen degradation kinetics, whereas additional bags were also incubated for 16 h to evaluate AA ruminal disappearance. Rumen DM and CP degradability was calculated from rumen-undegraded residues corrected or not for small particle loss. Data were fitted to an exponential model to estimate degradation parameters and effective degradability (ED) was calculated with a passage rate of 0.074 h(-1). The WDDGS and SBM had higher uncorrected ED (DM=75.0 and 72.6%; CP=84.8 and 66.0%, respectively) than CM and HPDDG (DM=57.2 and 55.5%; CP=59.3 and 48.2%, respectively), due to higher soluble fraction in WDDGS and a combination of higher potentially degradable fraction and rate of degradation in SBM. Correction for small particle loss from bags, higher for WDDGS than for the other protein sources, decreased estimated ED but did not alter feed ranking. The ruminal disappearance of AA after 16 h of incubation reflected the overall pattern of CP degradation between protein supplements, but the ruminal disappearance of individual AA differed between protein supplements. Overall, these results indicate that, in the current study, (1) SBM and WDDGS were more degradable in the rumen than CM and HPDDG, and (2) that small particle loss correction is relevant but does not alter this

  8. Satellite remote sensing of total dry matter production in the Senegalese Sahel

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Vanpraet, C.; Boerwinkel, E.; Gaston, A.

    1983-01-01

    Nine predominantly cloud-free NOAA-7 advanced very high resolution radiometer images were obtained during a three-month period during the 1981 rainy season in the Sahel of Senegal. The 0.55-0.68- and 0.725-1.10-micron channels were used to form the normalized difference green leaf density vegetation index and the 11.5-12.5-micron channel was used as a cloud mask for each of the nine images. Changes in the normalized difference values among the various dates were closely associated with precipitation events. Six of the images spanning an 8-week period were used to generate a cumulative integrated index. Ground biomas samplings in the 30,000 sq km study area were used to assign total dry biomass classes to the cumulative index.

  9. Dry matter and digesta particle size gradients along the goat digestive tract on grass and browse diets.

    PubMed

    Clauss, M; Fritz, J; Tschuor, A; Braun, U; Hummel, J; Codron, D

    2017-02-01

    Physical properties of the digesta vary along the ruminant digestive tract. They also vary within the forestomach, leading to varying degrees of rumen contents stratification in 'moose-type' (browsing) and 'cattle-type' (intermediate and grazing) ruminants. We investigated the dry matter concentration (DM) and the mean digesta particle size (MPS) within the forestomach and along the digestive tract in 10 goats fed grass hay or dried browse after a standardized 12-h fast, euthanasia and freezing in the natural position. In all animals, irrespective of diet, DM showed a peak in the omasum and an increase from caecum via colon towards the faeces and a decrease in MPS between the reticulum and the omasum. Both patterns are typical for ruminants in general. In the forestomach, there was little systematic difference between more cranial and more caudal locations ('horizontal stratification'), with the possible exception of large particle segregation in the dorsal rumen blindsac on the grass diet. In contrast, the typical (vertical) contents stratification was evident for DM (with drier contents dorsally) and, to a lower degree, for MPS (with larger particles dorsally). Although evident in both groups, this stratification was more pronounced on the grass diet. The results support the interpretation that differences in rumen contents stratification between ruminants are mainly an effect of species-specific physiology, but can be enhanced due to the diet consumed.

  10. Stabilization of Stormwater Biofilters: Impacts of Wetting and Drying Phases and the Addition of Organic Matter to Filter Media.

    PubMed

    Subramaniam, D N; Egodawatta, P; Mather, P; Rajapakse, J P

    2015-09-01

    Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follow a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids are an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters, however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analyzed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (turbidity), organic matter (TOC, DOC, TN, and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8 % organic material and fed with tapwater with different antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for total organic carbon, dissolved organic carbon, total nitrogen, total Kjeldhal nitrogen, and turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 min, while the other phase was observed across subsequent events that are related to the age of filter.

  11. Stabilization of Stormwater Biofilters: Impacts of Wetting and Drying Phases and the Addition of Organic Matter to Filter Media

    NASA Astrophysics Data System (ADS)

    Subramaniam, D. N.; Egodawatta, P.; Mather, P.; Rajapakse, J. P.

    2015-09-01

    Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follow a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids are an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters, however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analyzed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (turbidity), organic matter (TOC, DOC, TN, and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8 % organic material and fed with tapwater with different antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for total organic carbon, dissolved organic carbon, total nitrogen, total Kjeldhal nitrogen, and turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 min, while the other phase was observed across subsequent events that are related to the age of filter.

  12. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    NASA Astrophysics Data System (ADS)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  13. Sensitivity of Backscatter Intensity of ALOS/PALSAR to Above-ground Biomass and Other Biophysical Parameters of Boreal Forests in Alaska and Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Hayashi, M.; Kim, Y.; Ishii, R.; Kobayashi, H.; Shoyama, K.; Adachi, M.; Takahashi, A.; Saigusa, N.; Ito, A.

    2012-12-01

    For the better understanding of the carbon cycle in the global environment, investigations on the spatio-temporal variation of the carbon stock which is stored as vegetation biomass is important. The backscatter intensity of "Phased Array type L-band Synthetic Aperture Radar (PALSAR)" onboard the satellite "Advanced Land Observing Satellite (ALOS)" provides us the information which is applicable to estimate the forest above-ground biomass (AGB). This study examines the sensitivity of the backscatter intensity of ALOS/PALSAR to the forest AGB and other biophysical parameters (tree height, tree diameter at breast height (DBH), and tree stand density) for boreal forests in two geographical regions of Alaska and Kushiro, northern Japan, and compares the sensitivities in two regions. In Alaska, a forest survey was executed in the south-north transect (about 300 km long) along a trans-Alaska pipeline which profiles the ecotone from the boreal forest to tundra in 2007. Forest AGBs and other biophysical parameters at 29 forests along the transect were measured by Bitterlich method. In Kushiro, a forest survey was carried out at 42 forests in 2011 and those parameters were similarly obtained by Bitterlich method. 20 and 2 scenes of ALOS/PALSAR FBD Level 1.5 data that cover the regions in Alaska and Kushiro, respectively, were collected and mosaicked. Backscatter intensities of ALOS/PALSAR in HH (horizontally polarized transmitted and horizontally polarized received) and HV (horizontally polarized transmitted and vertically polarized received) modes were compared with the forest AGB and other biophysical parameters. The intensity generally increased with the increase of those biophysical parameters in both HV and HH modes, but the intensity in HV mode generally had a stronger correlation to those parameters than in HH mode in both Alaska and Kushiro. The HV intensity had strong correlation to the forest AGB and DBH, while weak correlation to the tree stand density in Alaska

  14. A cost effective and operational methodology for wall to wall Above Ground Biomass (AGB) and carbon stocks estimation and mapping: Nepal REDD+

    NASA Astrophysics Data System (ADS)

    Gilani, H., Sr.; Ganguly, S.; Zhang, G.; Koju, U. A.; Murthy, M. S. R.; Nemani, R. R.; Manandhar, U.; Thapa, G. J.

    2015-12-01

    Nepal is a landlocked country with 39% forest cover of the total land area (147,181 km2). Under the Forest Carbon Partnership Facility (FCPF) and implemented by the World Bank (WB), Nepal chosen as one of four countries best suitable for results-based payment system for Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+) scheme. At the national level Landsat based, from 1990 to 2000 the forest area has declined by 2%, i.e. by 1467 km2, whereas from 2000 to 2010 it has declined only by 0.12% i.e. 176 km2. A cost effective monitoring and evaluation system for REDD+ requires a balanced approach of remote sensing and ground measurements. This paper provides, for Nepal a cost effective and operational 30 m Above Ground Biomass (AGB) estimation and mapping methodology using freely available satellite data integrated with field inventory. Leaf Area Index (LAI) generated based on propose methodology by Ganguly et al. (2012) using Landsat-8 the OLI cloud free images. To generate tree canopy height map, a density scatter graph between the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat) estimated maximum height and Landsat LAI nearest to the center coordinates of the GLAS shots show a moderate but significant exponential correlation (31.211*LAI0.4593, R2= 0.33, RMSE=13.25 m). From the field well distributed circular (750m2 and 500m2), 1124 field plots (0.001% representation of forest cover) measured which were used for estimation AGB (ton/ha) using Sharma et al. (1990) proposed equations for all tree species of Nepal. A satisfactory linear relationship (AGB = 8.7018*Hmax-101.24, R2=0.67, RMSE=7.2 ton/ha) achieved between maximum canopy height (Hmax) and AGB (ton/ha). This cost effective and operational methodology is replicable, over 5-10 years with minimum ground samples through integration of satellite images. Developed AGB used to produce optimum fuel wood scenarios using population and road

  15. Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?

    PubMed

    Stahl, Clément; Hérault, Bruno; Rossi, Vivien; Burban, Benoit; Bréchet, Claude; Bonal, Damien

    2013-12-01

    Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.

  16. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages.

    PubMed

    Filya, I

    2003-11-01

    The effect of Lactobacillus buchneri, alone or in combination with Lactobacillus plantarum, on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages was studied under laboratory conditions. The inoculants were applied at 1 x 10(6) cfu/g. Silages with no additives served as control. After treatment, the chopped forages were ensiled in 1.5-L anaerobic jars. Three jars per treatment were sampled on d 2, 4, 8, 15, and 90. After 90 d of storage, the silages were subjected to an aerobic stability test lasting 5 d, in which CO2 production, as well as chemical and microbiological parameters, was measured to determine the extent of aerobic deterioration. At the end of the ensiling period (d 90), the L. buchneri- and L. buchneri + L. plantarum-inoculated silages had significantly higher levels of acetic acid than the control and L. plantarum-inoculated silages. Therefore, yeast activity was impaired in the L. buchneri- and L. buchneri + L. plantarum-inoculated silages. As a result, L. buchneri, alone or in combination with L. plantarum, improved aerobic stability of the low dry matter corn and sorghum silages. The combination of L. buchneri and L. plantarum reduced ammonia N concentrations and fermentation losses in the silages compared with L. buchneri alone. However, L. buchneri, L. plantarum, and a combination of L. buchneri + L. plantarum did not effect in situ rumen dry matter, organic matters, or neutral detergent fiber degradability of the silages. The L. buchneri was very effective in protecting the low dry matter corn and sorghum silages exposed to air under laboratory conditions. The use of L. buchneri, alone or in combination with L. plantarum, as a silage inoculant can improve the aerobic stability of low dry matter corn and sorghum silages by inhibition of yeast activity.

  17. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.

    PubMed

    Collard, Marie; Teychené, Benoit; Lemée, Laurent

    2016-06-09

    Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production.

  18. Estimation of nitrogen concentration and in vitro dry matter digestibility of herbage of warm-season grass pastures from canopy hyperspectral reflectance measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real-time assessment of forage nitrogen (N) concentration and in vitro dry matter digestibility (IVDMD) during the growing season can help livestock managers make decisions for adjusting stocking rate and managing pastures. Traditional laboratory analysis of forage N and IVDMD are time consuming and...

  19. In-situ Ruminal Protein, Fiber, and Dry Matter Degradability of Legume Silages and Hays as Influenced by Protein-binding Polyphenols and Conditioning Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conditioning and conservation methods may alter polyphenol binding in forage legumes and the degradability of crude protein (CP), neutral detergent fiber (NDF) and dry matter (DM) in the rumen. In this study, alfalfa, birdsfoot trefoil with 6 or 15 g/kg condensed tannins (CT), and red clover with ~1...

  20. Estimating Above-Ground Biomass Within the Footprint of an Eddy-Covariance Flux Tower: Continuous LiDAR Based Estimates Compared With Discrete Inventory and Disturbance History Based Stratification Boundaries

    NASA Astrophysics Data System (ADS)

    Ferster, C. J.; Trofymow, J. A.; Coops, N. C.; Chen, B.; Black, T. A.

    2008-12-01

    Eddy-covariance (EC) flux towers provide data about carbon (C) exchange between land and the atmosphere at an ecosystem scale. However, important research questions need to be addressed when placing EC flux towers in complex heterogeneous forest landscapes, such as the coastal forests of Western Canada. Recently available footprint analysis, which describes the contribution function and catchment area where EC flux is being measured, can be used to relate EC flux tower measurements with the biological structure and carbon stock distributions of complex forest landscapes. In this study, above ground biomass is estimated near an EC flux tower using two approaches. In the first approach, a remote sensing based surface representing above ground biomass was estimated using small footprint, discrete return, light detection and ranging (LiDAR) data. Plot level LiDAR metrics were supplemented with metrics calculated using individual tree detection. A multiple regression model was developed to estimate above ground biomass using ground plot and LiDAR data, and then the model was applied across the EC flux footprint area to estimate the spatial distribution of above ground biomass. In the second approach, line boundaries from forest inventory, disturbance history, and site series were used to delineate discrete stratification units and the measured groundplot data assigned to the various strata. Within the heterogeneous tower footprint area, footprint weighting allows us to compare and contrast above ground biomass estimates from these two approaches. Using this methodology we then plan to compare, for the same period, ground-based measurements of ecosystem C stock changes with accumulative EC measured net ecosystem C flux.

  1. Chemical composition and in situ dry matter and fiber disappearance of sorghum x Sudangrass hybrids.

    PubMed

    Beck, P A; Hutchison, S; Gunter, S A; Losi, T C; Stewart, C B; Capps, P K; Phillips, J M

    2007-02-01

    Three sorghum x Sudangrass hybrids were planted in twelve 0.2-ha plots to test the effect of date of harvest and hybrid on plant maturity, DM yield, chemical composition, and in situ DM and fiber disappearance. Sweet Sunny Sue (a non-brown midrib (BMR) hybrid; nonBMR), NutriPlus BMR (a BMR hybrid; NP-BMR), and Dry Stalk BMR (a BMR hybrid; DS-BMR) were planted on 26 June 2003 at 22.4 kg of seed/ha. Beginning 34 d after planting, plant height and phenological growth stage were assessed weekly in 10 random, 0.5-m(2) quadrats per plot. Plants were clipped to 2.5 cm in height and analyzed for CP, NDF, and ADF using near-infrared spectroscopy. Composite samples harvested from each plot on d 34, 48, and 63 were incubated in the rumen of 3 steers to determine the in situ disappearance of DM and NDF in a 3 x 3 Latin square. Forage yield was greater (P < or =0.02) for nonBMR than NP-BMR on d 41 and 55 and tended (P = 0.08) to be greater on d 48. The DS-BMR hybrid produced more (P = 0.04) forage DM than the NP-BMR on d 48. When DM yield was regressed on growth stage at harvest, BMR hybrids were predicted to produce 265 kg/ha more DM (P < 0.01) than nonBMR, at the late-boot stage. At all harvest dates, NDF concentrations were less (P < or =0.02) for BMR than nonBMR. The DS-BMR had greater (P < or =0.02) NDF concentrations than NP-BMR on d 41, 48, 55, and 63. Detergent fiber concentrations were predicted to be greater (P < 0.01) in nonBMR than BMR when regressed on growth stage at harvest, but the magnitude of the differences in fiber concentration diminished with growth stage. The A fractions of DM and NDF were greater (P < 0.01) and the C fraction was less (P < 0.01) for BMR hybrids than nonBMR. The B fraction of DM was not affected (P = 0.15) by hybrid type. The B fraction of NDF was not different (P = 0.28) on d 34 but was greater (P < 0.01) on d 48 and 63 for BMR than nonBMR. Effective degradability of NDF and DM was greater (P < 0.02) for BMR than nonBMR on all harvest

  2. Stability and genotype by environment interaction of provitamin A carotenoid and dry matter content in cassava in Uganda

    PubMed Central

    Esuma, Williams; Kawuki, Robert Sezi; Herselman, Liezel; Labuschagne, Maryke Tine

    2016-01-01

    Efforts are underway to develop staple crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency (VAD), which has afflicted the health of resource-poor people in the developing world. As a staple crop for more than 500 million people in sub-Saharan Africa, cassava enriched with provitamin A carotenoids could have a widespread nutritional impact. To this effect, 13 provitamin A clones were evaluated in a randomized complete block design in six environments to assess genotype by environment interaction (GEI) effects for total carotenoid (TCC) and dry matter content (DMC) in roots. Additive main effect and multiplicative interaction analysis showed significant variation among genotypes for TCC, DMC, fresh root weight and harvest index. Environmental effects were non-significant for TCC, but GEI effects were significantly large for all traits measured. There were significant temporal increments for all traits measured within 12 months after planting. TCC correlated negatively with DMC, illustrating an important challenge to overcome when developing provitamin A cassava varieties without compromising DMC, which is a major farmer-preference trait. Nonetheless, best performing genotypes were identified for TCC, DMC and FRW, and these could constitute genetic resources for advancement or developing breeding populations through hybridization. PMID:27436954

  3. Models to quantify excretion of dry matter, nitrogen, phosphorus and carbon in growing pigs fed regional diets.

    PubMed

    Jørgensen, Henry; Prapaspongsa, Trakarn; Vu, Van Thi Khanh; Poulsen, Hanne Damgaard

    2013-11-09

    Modern pig production contributes to many environmental problems that relate to manure, especially in areas with highly intensive production systems and in regions like Asia where the regulative control is not effective. Therefore, the objective of this study was to use three different pig diets varying in dietary protein, fibre and fat as representative for Danish (DK), Thai (TH) and Vietnamese (VN) pig production to develop and evaluate different approaches to predict/calculate excretion from growing pigs in comparison with the experimentally determined values.Nine female growing pigs were used in a digestibility and balance experiment. Excretion of dry matter (DM), nitrogen (N), phosphorus (P) and carbon (C) of the experimental diets were determined.Due to the highest dietary fibre content, VN had the lowest digestibility of N, P and C (73, 49, and 73%, respectively) compared with the DK and TH pig diets. From the known diet composition using standard table values on chemical and nutrient digestibly, high accuracy (bias) and low variation was found and the results could be used for prediction on chemical composition and excretion in faeces and urine in growing pigs. Calculation based on standard values regarding nutrient retention in the pig body as used in the Danish manure normative system (DMNS) showed likewise to be quite useful for quantifying the total excretion of N and P.Overall, the results demonstrate that simple models that require cheap and normally available information on dietary nutrients can give useful information on nutrient excretion in growing pigs.

  4. Determination of dry matter content in potato tubers by low-field nuclear magnetic resonance (LF-NMR).

    PubMed

    Hansen, Christian Lyndgaard; Thybo, Anette Kistrup; Bertram, Hanne Christine; Viereck, Nanna; van den Berg, Frans; Engelsen, Søren Balling

    2010-10-13

    The objective of this study was to develop a calibration model between time-domain low-field nuclear magnetic resonance (LF-NMR) measurements and dry matter (DM) content in single potatoes. An extensive sampling procedure was used to collect 210 potatoes from eight cultivars with a wide range in DM content, ranging from 16 to 28%. The exponential NMR relaxation curves were resolved into four mono-exponential components using a number of solution diagnostics. Partial least-squares (PLS) regression between NMR parameters (relaxation time constants T(2,1-4) and magnitudes M(0,1-4)) and DM content resulted in a model with low error (RMSECV, 0.71; RMSEP, 0.60) and high correlation (r(CV), 0.97; r(test), 0.98) between predicted and actual DM content. Correlation between DM content and each of the proton populations revealed that M(0,1) (T(2,1), 3.6 ms; SD, 0.3 ms; r, 0.95) and M(0,4) (T(2,4), 508 ms; SD, 53 ms; r, -0.90) were the major contributors to the PLS regression model.

  5. Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading

    NASA Astrophysics Data System (ADS)

    Georgieva, Tania I.; Hou, Xiaoru; Hilstrøm, Troels; Ahring, Birgitte K.

    Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15-20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.

  6. Effect of regrowth interval and a microbial inoculant on the fermentation profile and dry matter recovery of guinea grass silages.

    PubMed

    Santos, E M; Pereira, O G; Garcia, R; Ferreira, C L L F; Oliveira, J S; Silva, T C

    2014-07-01

    The objectives of this study were to characterize and quantify the microbial populations in guinea grass (Panicum maximum Jacq. cultivar Mombasa) harvested at different regrowth intervals (35, 45, 55, and 65 d). The chemical composition and fermentation profile of silages (after 60 d) with or without the addition of a microbial inoculant were also analyzed. Before ensiling, samples of the plants were used for the isolation and identification of lactic acid bacteria (LAB) in the epiphytic microbiota. A 4 × 2 factorial arrangement of treatments (4 regrowth intervals × with/without inoculant) was used in a completely randomized design with 3 replications. Based on the morphological and biochemical characteristics and the carbohydrate fermentation profile, Lactobacillus plantarum was found to be the predominant specie of LAB in guinea grass forage. Linear increases were detected in the dry matter (DM) content and concentrations of neutral detergent fiber, acid detergent fiber, acid detergent insoluble nitrogen, and DM recovery as well as linear reductions in the concentrations of crude protein and NH3-N with regrowth interval. Additionally, linear reductions for gas and effluent losses in silages were detected with increasing regrowth interval. These results demonstrate that guinea grass plants harvested after 55 d of regrowth contain a LAB population sufficiently large to ensure good fermentation and increase the DM recovery. The use of microbial inoculant further enhanced the fermentation of guinea grass at all stages of regrowth by improving the DM recovery.

  7. Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae.

    PubMed

    Jørgensen, Henning

    2009-05-01

    Wheat straw hydrolysate produced by enzymatic hydrolysis of hydrothermal pretreated wheat straw at a very high solids concentration of 30% dry matter (w/w) was used for testing the effect of nutrients on their ability to improve fermentation performance of Saccharomyces cerevisiae. The nutrients tested were MgSO4 and nitrogen sources; (NH4)2SO4, urea, yeast extract, peptone and corn steep liquor. The fermentation was tested in a separate hydrolysis and fermentation process using a low amount of inoculum (0.33 g kg(-1)) and a non-adapted baker's yeast strain. A factorial screening design revealed that yeast extract, peptone, corn steep liquor and MgSO4 were the most significant factors in obtaining a high fermentation rate, high ethanol yield and low glycerol formation. The highest volumetric ethanol productivity was 1.16 g kg(-1) h(-1) and with an ethanol yield close to maximum theoretical. The use of urea or (NH4)2SO4 separately, together or in combination with MgSO4 or vitamins did not improve fermentation rate and resulted in increased glycerol formation compared to the use of yeast extract. Yeast extract was the single best component in improving fermentation performance and a concentration of 3.5 g kg(-1) resulted in high ethanol yield and a volumetric productivity of 0.6 g kg(-1) h(-1).

  8. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake.

    PubMed

    Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen

    2010-05-01

    Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.

  9. Modulus of elasticity and dry-matter content of bovine claw horn affected by the changes of chronic laminitis.

    PubMed

    Hinterhofer, Christine; Apprich, Veronika; Ferguson, James C; Stanek, Christian

    2007-11-01

    The mechanical properties of horn samples from 22 hind claws with chronic laminitis were determined in adult Austrian Fleckvieh cows. The resistance to deformation was quantified as the modulus of elasticity (E). Tension tests revealed mean E values of 520MPa for the dorsal wall, 243MPa for the abaxial wall, 339MPa for the axial wall and 97MPa for the sole. E tended to be lower in laminitic horn than in sound horn in all segments tested, with the difference being largest in the abaxial wall. The mean dry-matter content (DMC) of the laminitic claws was 75.8% in the dorsal wall, 75.86% in the abaxial wall, 71.15% in the axial wall and 69.28% in the sole. These values are generally comparable to those for sound claws except in the axial wall. Further, E and DMC were only correlated in the axial wall. Chronic laminitis leads to a low resistance of claw horn to mechanical insults in the dorsal wall, abaxial wall and sole, and to the loss of a correlation between the E and DMC in these segments. The reason for these alterations is therefore not increased ingress of moisture, but must be due to changes in the microstructure, biochemical components and/or horn formation by the diseased dermis.

  10. Models to quantify excretion of dry matter, nitrogen, phosphorus and carbon in growing pigs fed regional diets

    PubMed Central

    2013-01-01

    Modern pig production contributes to many environmental problems that relate to manure, especially in areas with highly intensive production systems and in regions like Asia where the regulative control is not effective. Therefore, the objective of this study was to use three different pig diets varying in dietary protein, fibre and fat as representative for Danish (DK), Thai (TH) and Vietnamese (VN) pig production to develop and evaluate different approaches to predict/calculate excretion from growing pigs in comparison with the experimentally determined values. Nine female growing pigs were used in a digestibility and balance experiment. Excretion of dry matter (DM), nitrogen (N), phosphorus (P) and carbon (C) of the experimental diets were determined. Due to the highest dietary fibre content, VN had the lowest digestibility of N, P and C (73, 49, and 73%, respectively) compared with the DK and TH pig diets. From the known diet composition using standard table values on chemical and nutrient digestibly, high accuracy (bias) and low variation was found and the results could be used for prediction on chemical composition and excretion in faeces and urine in growing pigs. Calculation based on standard values regarding nutrient retention in the pig body as used in the Danish manure normative system (DMNS) showed likewise to be quite useful for quantifying the total excretion of N and P. Overall, the results demonstrate that simple models that require cheap and normally available information on dietary nutrients can give useful information on nutrient excretion in growing pigs. PMID:24206677

  11. Nitrogen and dry-matter partitioning in soybean plants during onset of and recovery from nitrogen stress

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    The study tested the hypothesis that resupplying nitrogen after a period of nitrogen stress leads to restoration of the balance between root and shoot growth and normal functional activity. Nonnodulated soybean plants were grown hydroponically for 14 days with 1.0 mM NO3- in a complete nutrient solution. One set of plants was continued on the complete nutrient solution for 25 days; a second set was given 0.0 mM NO3- for 25 days; and the third set was given 0.0 mM NO3- for 10 days followed by transfer to the complete solution with 1.0 mM NO3- for 15 days. In continuously nitrogen-stressed plants, emergence and expansion of main-stem and branch leaves were severely inhibited as low nitrogen content limited further growth. This was followed by a shift in partitioning of dry matter from the leaves to the roots, resulting in an initial stimulation of root growth and a decreased shoot:root ratio. Reduced nitrogen also was redistributed from the leaves into the stem and roots. When nitrogen stress was relieved, leaf initiation and expansion were renewed. With the restoration of the balance between root and shoot function, the shoot:root ratio and distribution of reduced nitrogen within the plant organs returned to levels similar to those of nonstressed plants.

  12. Selection Signatures in Four Lignin Genes from Switchgrass Populations Divergently Selected for In Vitro Dry Matter Digestibility

    PubMed Central

    Kaeppler, Shawn M.; Vogel, Kenneth P.; Casler, Michael D.

    2016-01-01

    Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four loci in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. This study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality. PMID:27893787

  13. [A mathematical model of water stress and light condition effects on cotton dry matter and yield formation].

    PubMed

    Liu, Xianzhao; Kang, Shaozhong; Xia, Weisheng

    2002-09-01

    A mathematical model was developed to analyze the effects of water stress and light condition on crop dry matter accumulation and yield formation based on canopy carbon net assimilation rate. The function leaf water potential (psi l) indicating the water status of canopy was incorporated into this model, according to the assumption that the canopy resistance (Rc) was increased under the conditions of water stress and low light density. Psi l was estimated by a simplified regression equation, in which, the independent variables were relative soil moisture (Aw), ambient temperature (Ta), and vapor pressure deficit (VPD). The aerodynamic resistance (Ra) in the model was defined as a function of wind speed (u), and the yield was calculated by a linear increase in harvest index (hi) with time. The modeled data agreed well with the data observed from pot experiment. Sensitivity analysis and simulation results suggested that the model could be useful in identifying environment factors, especially soil water content and light density effects on crop growth and yield formation.

  14. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China

    PubMed Central

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat

  15. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    PubMed

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter

  16. Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy.

    PubMed

    Belanche, A; Weisbjerg, M R; Allison, G G; Newbold, C J; Moorby, J M

    2014-01-01

    This study explored the potential of partial least squares (PLS) and Fourier-transform infrared spectroscopy (FTIR) to predict rumen dry matter (DM) and neutral detergent fiber (NDF) degradation parameters of a wide range of feeds for ruminants, as an alternative to the in situ method. In total, 663 samples comprising 80 different feed types were analyzed. In situ DM and NDF degradabilities were determined as follows: effective degradability (ED), rumen soluble fraction (A), degradable but not soluble fraction (B), rate of degradation of the B fraction (C), and indigestible NDF (iNDF). Infrared spectra of dry samples were collected by attenuated total reflectance from 600 to 4000cm(-1). Feeds were randomly classified into 2 subsets of samples with representation of all feed types; one subset was used to develop regression models using partial least squares, and the second subset was used to conduct an external validation of the models. This study indicated that universal models containing all feed types and specific models containing concentrate feeds could provide only a relatively poor estimation of in situ DM degradation parameters because of compositional heterogeneity. More research, such as a particle size distribution analysis, is required to determine whether this lack of accuracy was due to limitations of the FTIR approach, or simply due to methodological error associated with the in situ method. This latter hypothesis may explain the low accuracy observed in the prediction of degradation rates if there was physical leakage of fine particles from the mesh bags used during in situ studies. In contrast, much better predictions were obtained when models were developed for forage feeds alone. Models for forages led to accurate predictions of DMA, DMB, NDFED, and NDF concentration (R(2)=0.91, 0.89, 0.85, and 0.79, standard error = 4.34, 5.97, 4.59, and 4.41% of DM, respectively), and could be used for screening of DMED, NDFC, and iNDF. These models relied on

  17. Two Measurement Methods of Leaf Dry Matter Content Produce Similar Results in a Broad Range of Species

    PubMed Central

    Vaieretti, María Victoria; Díaz, Sandra; Vile, Denis; Garnier, Eric

    2007-01-01

    Background and Aims Leaf dry matter content (LDMC) is widely used as an indicator of plant resource use in plant functional trait databases. Two main methods have been proposed to measure LDMC, which basically differ in the rehydration procedure to which leaves are subjected after harvesting. These are the ‘complete rehydration’ protocol of Garnier et al. (2001, Functional Ecology 15: 688–695) and the ‘partial rehydration’ protocol of Vendramini et al. (2002, New Phytologist 154: 147–157). Methods To test differences in LDMC due to the use of different methods, LDMC was measured on 51 native and cultivated species representing a wide range of plant families and growth forms from central-western Argentina, following the complete rehydration and partial rehydration protocols. Key Results and Conclusions The LDMC values obtained by both methods were strongly and positively correlated, clearly showing that LDMC is highly conserved between the two procedures. These trends were not altered by the exclusion of plants with non-laminar leaves. Although the complete rehydration method is the safest to measure LDMC, the partial rehydration procedure produces similar results and is faster. It therefore appears as an acceptable option for those situations in which the complete rehydration method cannot be applied. Two notes of caution are given for cases in which different datasets are compared or combined: (1) the discrepancy between the two rehydration protocols is greatest in the case of high-LDMC (succulent or tender) leaves; (2) the results suggest that, when comparing many studies across unrelated datasets, differences in the measurement protocol may be less important than differences among seasons, years and the quality of local habitats. PMID:17353207

  18. Short communication: The effects of dry matter and length of storage on the composition and nutritive value of alfalfa silage.

    PubMed

    Santos, M C; Kung, L

    2016-07-01

    During the ensiling of feeds, various processes result in chemical changes that can affect their ultimate nutritive value at feed out. The primary objective of this study was to evaluate the effect of prolonged ensiling times on potential changes in in vitro digestibility of neutral detergent fiber (NDF-D) of alfalfa ensiled at about 33% [low dry matter (DM), LDM] or 45% (high DM, HDM) whole-plant DM. Alfalfa from the same field (direct chopped or wilted) was chopped with a conventional forage harvester set for a theoretical length of cut of 0.95 cm and ensiled in mini silos for 45, 180, 270, and 360 d. Fresh forages and silages were analyzed for nutrient content, fermentation end-products, and 30-h NDF-D. The pH of the fresh forages ranged from 6.1 to 6.2 and decreased to approximately 4.7 and 4.3 in HDM and LDM silages, respectively. Production of acids and alcohols were less in HDM compared with LDM as expected. Concentrations of soluble protein and NH3-N also increased with time of storage as expected but soluble protein was greater, whereas NH3-N was lower in HDM compared with LDM silage. The effect of length of storage and DM on hemicellulose and NDF concentrations were very small, whereas DM content at harvest tended to slightly increase the concentration of acid detergent fiber in HDM compared with LDM up to 270 d of storage. The NDF-D was greater in fresh forage compared with corresponding silages. However, time of storage between 45 and 360 d had no effect on the NDF-D of alfalfa silage, regardless of DM concentration at ensiling.

  19. Effect of increasing levels of white mulberry leaves (Morus alba) on ruminal dry matter degradability in lambs.

    PubMed

    Salinas-Chavira, Jaime; Castillo-Martínez, Omar; Ramirez-Bribiesca, J Efren; Mellado, Miguel

    2011-06-01

    A study was conducted to estimate dry matter (DM) degradability in the rumen of lambs offered a basal soybean meal and sorghum grain diet with three levels of white mulberry (WM) leaves (Morus alba). Diets consisted of 90% concentrate and 10% sorghum straw, which was incrementally replaced by WM leaves at 0% (control diet, T1), 2.5% (T2), and 5% (T3) of the total ration. Crude protein (CP) in WM was 21.8% (DM basis). Diets had equal CP (14% DM basis) and metabolizable energy (10.8 MJ/kg DM) content. Three non-castrated Pelibuey male lambs fitted with permanent rumen cannula were utilized in a 3 × 3 Latin square design. Each experimental period consisted of 10 days of adaptation followed by sampling. DM degradability was determined using the nylon bag technique. Bags contained the experimental diets offered in each period and were incubated in rumen in pairs for 4, 8, 12, 24, and 48 h. The potential degradation was higher (P < 0.05) for T2, followed by T3 and T1. WM level did not influence the degradation rate or the effective degradation at the three passage rates modeled. It was concluded that WM forage may have useful application in feedlot diets for growing lambs, as this forage increases potential degradation of high-grain diets. The incorporation of WM in diets for feedlot lambs in tropics may reduce the use of expensive conventional protein supplements.

  20. Understanding dry matter and nitrogen accumulation with time-course for high-yielding wheat production in China.

    PubMed

    Meng, Qingfeng; Yue, Shanchao; Chen, Xinping; Cui, Zhenling; Ye, Youliang; Ma, Wenqi; Tong, Yanan; Zhang, Fusuo

    2013-01-01

    Understanding the time-course of dry matter (DM) and nitrogen (N) accumulation in terms of yield-trait relationships is essential to simultaneously increase grain yield and synchronize N demand and N supply. We collected 413 data points from 11 field experiments to address patterns of DM and N accumulation with time in relation to grain yield and management of winter wheat in China. Detailed growth analysis was conducted at the Zadok growth stages (GS) 25 (regreening), GS30 (stem elongation), GS60 (anthesis), and GS100 (maturity) in all experiments, including DM and N accumulation. Grain yield averaged 7.3 Mg ha(-1), ranging from 2.1 to 11.2 Mg ha(-1). The percent N accumulation was consistent prior to DM accumulation, while both DM and N accumulation increased continuously with growing time. Both the highest and fastest DM and N accumulations were observed from stem elongation to the anthesis stage. Significant correlations between grain yield and DM and N accumulation were found at each of the four growth stages, although no positive relationship was observed between grain yield and harvest index or N harvest index. The yield increase from 7-9 Mg ha(-1) to >9 Mg ha(-1) was mainly attributed to increased DM and N accumulation from stem elongation to anthesis. Although applying more N fertilizer increased N accumulation during this stage, DM accumulation was not improved, indicating that N fertilizer management and related agronomic management should be intensified synchronously across the wheat growing season to simultaneously achieve high yields and match N demand and N supply.

  1. Effective rumen degradation of dry matter, crude protein and neutral detergent fibre in forage determined by near infrared reflectance spectroscopy.

    PubMed

    Ohlsson, C; Houmøller, L P; Weisbjerg, M R; Lund, P; Hvelplund, T

    2007-12-01

    The objective of the present study was to examine if near infrared reflectance spectroscopy (NIRS) could be used to predict degradation parameters and effective degradation from scans of original forage samples. Degradability of dry matter (DM), crude protein (CP) and neutral detergent fibre (NDF) of 61 samples of perennial ryegrass (Lolium perenne L.) and orchardgrass (Dactylis glomerata L.) was tested by using the in situ technique. The grass samples were harvested at three different stages, early vegetative growth, early reproductive growth and late reproductive growth. Degradability was described in terms of immediately rumen soluble fraction (a fraction, for DM and CP only as NDF does not contain a soluble fraction), the degradable but not soluble faction (b fraction) and the rate of degradation of the b fraction (c value). Overall effective degradability of DM, CP and NDF was also calculated. Near infrared reflectance spectroscopy was examined for its ability to predict degradation parameters and to make a direct prediction of effective degradation from scans of the original samples of perennial ryegrass and orchardgrass. Prediction of effective degradation of the different feed fractions showed different accuracy. The coefficients of determination (R(2)) from regressions of predicted vs. measured effective degradation, using a cross-validation method, were 0.92 for DM, 0.78 for CP and 0.61 for NDF. The attempt to predict the degradation parameters (a, b and c) by NIRS was less successful as the coefficients of determination for the degradation parameters were low. Concentrations of CP and NDF in the original samples were predicted by using NIRS and the validated R(2) value was 0.98 for CP and 0.92 for NDF. It is concluded that using NIRS predictions from scans of original samples is a promising method to obtain values for the effective degradation of DM, CP and NDF in ruminant feeds, but that larger calibration sets are necessary for obtaining improved

  2. [Effects of sulfur plus resin-coated controlled release urea fertilizer on winter wheat dry matter accumulation and allocation and grain yield].

    PubMed

    Man, Jian-Guo; Zhou, Jie; Wang, Dong; Yu, Zhen-Wen; Zhang, Min; Hu, Zhi-Ying; Hou, Xiu-Tao

    2011-05-01

    A field experiment was conducted to study the effects of sulfur plus resin-coated urea fertilizer on the winter wheat dry matter accumulation and allocation and grain yield. Four treatments were installed, i.e., sulfur plus resin-coated urea (SRCU), resin-coated urea (RCU), sulfur-amended conventional urea (SU), and conventional urea (U). The coated urea fertilizers were applied as basal, and the conventional urea fertilizers were 50% applied as basal and 50% applied as topdressing. There were no significant differences in the plant dry matter accumulation and grain yield between treatments RCU and U. Under the conditions the available S content in 0-20 cm soil layer was 43.2 mg x kg(-1) and the S application rate was 91.4 kg x hm(-2), treatments SRCU and SU had no significant differences in the dry matter accumulation and allocation after anthesis and the grain yield, but the amount of the assimilates after anthesis allocated in grain, the grain-filling rate at mid grain-filling stage, the 1000-grain weight, and the grain yield in the two treatments were significantly higher than those in treatment RCU. When the available S content in 0-20 cm soil layer was 105.1 mg x kg(-1) and the S application rate was 120 kg x hm(-2), the grain yield in treatment SRCU was significantly higher than that in treatment SU, but had no significant difference with that in treatments RCU and U. These results suggested that from the viewpoints of dry matter accumulation and allocation and grain yield, the nitrogen released from SRCU had the same regulation effect as the conventional urea 50% applied as basal and 50% applied as topdressing, while the regulation effect of the sulfur released from SRCU was controlled by the available S content in 0-20 cm soil layer. When the soil available S content was 43.2 mg x kg(-1), the released sulfur could promote the dry matter accumulation after anthesis and the grain-filling, and increase the grain yield significantly; when the soil available S

  3. Comparing the above-ground component biomass estimates of western junipers using airborne and full-waveform terrestrial laser scanning data

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Glenn, N. F.; Spaete, L.; Hardegree, S. P.

    2012-12-01

    With the rapid expansion into shrub steppe and grassland ecosystems over the last century, western juniper (Juniperus occidentalis var. occidentalis Hook) is becoming a major component of the regional carbon pool in the Intermountain West. Understanding how biomass is allocated across individual tree components is necessary to understand the uncertainties in biomass estimates and more accurately quantify biomass and carbon dynamics in these ecosystems. Estimates of component biomass are also important for canopy fuel load assessment and predicting rangeland fire behavior. Airborne LiDAR can capture vegetation structure over larger scales, but the high crown penetration and sampling density of terrestrial laser scanner (TLS) instruments can better capture tree components. In this study, we assessed the ability of airborne LiDAR to estimate biomass of tree components of western juniper with validation data from field measured tees and a full-waveform TLS. Sixteen juniper trees (height range 1.5-10 m) were randomly selected using a double sampling strategy from different height classes in the Reynolds Creek Experimental Watershed in the Owyhee Mountains, southwestern Idaho, USA. Each tree was scanned with a full-waveform TLS, and the dry biomass of each component (foliage, branches and main stem) were measured by destructive harvesting of the trees. We compare the allometric relationships of biomass estimates of the tree components obtained from field-measured trees and TLS-based estimates with the estimates from discrete-return airborne-LiDAR based estimates.

  4. [Characteristics of dry matter and potassium accumulation and distribution in potato plant in semi-arid rainfed areas].

    PubMed

    Lu, Jian-Wu; Qiu, Hui-Zhen; Zhang, Wen-Ming; Wang, Di; Zhang, Jun-Lian; Zhang, Chun-Hong; Hou, Shu-Yin

    2013-02-01

    In 2010, a field experiment with potato (Solanum tuberosum) cultivar 'Xindaping' was conducted at the Dingxi Extension Center of Gansu Province, Northwest China, aimed to understand the accumulation and distribution patterns of dry matter (DM) and potassium (K) in the organs of potato plant in semi-arid rainfed areas. During the whole growth period of the cultivar, the DM accumulation in root, stem, and leaf all showed a unimodal curve, with the DM accumulation rate being leaf > stem > root, whereas the DM accumulation in whole plant and tuber was an S-curve. The maximum DM accumulation rate of the whole plant was higher than that of the tuber, and appeared 17 days earlier. The distribution of DM in different organs showed two turning points, i.e., during the tuber formation (TF) period and the tuber growth (TG) period. During TF period, the DM accumulation was the greatest in leaf, followed by in tuber. The TF period was also the DM balance period, which occurred 90 days after emergence. Before the DM balance period, the DM accumulation in tuber was lesser than that in root, stem, and leaf, and there was a positive correlation between the DM accumulation in tuber and in root, stem, and leaf. However, after the DM balance period, the DM accumulation in tuber was greater than that in root, stem, and leaf, and the correlation was negative. At seedling stage and in TF period, TG period, starch accumulation period, and maturity period, the DM accumulation in whole plant was 5%, 30%, 60%, 4% , and 1%, while that in tuber was 0,18% , 62 , 18% , and 2%, respectively. In the whole growth period, more than 50% of the DM was formed in TG period. The K concentration was the highest in stem and the lowest in tuber, though the K was mostly concentrated in root before the DM balance period. The K accumulation before the DM balance period was mostly in root, stem, and leaf, with the sequence of stem > leaf > root, but after the DM balance period, the K was mainly allocated in

  5. Carbohydrate supplements and their effects on pasture dry matter intake, feeding behavior, and blood factors associated with intake regulation.

    PubMed

    Sheahan, A J; Kay, J K; Roche, J R

    2013-01-01

    Supplementary feeds are offered to grazing dairy cows to increase dry matter (DM) and metabolizable energy (ME) intakes; however, offering feed supplements reduces pasture DM intake, a phenomenon known as substitution. The objective of the study was to investigate changes in blood factors associated with intake regulation in monogastric species in pasture-fed dairy cows supplemented with either a starch- or nonforage fiber-based concentrate. Fifteen multiparous Friesian × Jersey cross cows were assigned to 1 of 3 treatments at calving. Measurements were undertaken in wk 8 of lactation. Treatments were pasture only, pasture plus a starch-based concentrate (3.5 kg of DM/cow per day; STA), and pasture plus a nonforage fiber-based concentrate (4.4 kg of DM/cow per day). Pelleted concentrates were fed at an isoenergetic rate in 2 equal portions at a.m. and p.m. milkings. Measurements were undertaken to investigate differences in pasture DM intake, feeding behavior, and profiles of blood factors for 4h after a.m. and p.m. milkings, the periods of intensive feeding in grazing cows. Supplementing cows with STA concentrate reduced pasture DM intake to a greater extent than the fiber concentrate, although time spent eating did not differ between treatments. The blood factor response to feeding differed between the a.m. and p.m. feeding events. Blood factors associated with a preprandial or fasted state were elevated prefeeding in the a.m. and declined following feeding, whereas satiety factors increased. In comparison, the blood factor response to feeding in the p.m. differed, with responses to feeding delayed for most factors. Plasma ghrelin concentration increased during the p.m. feeding event, despite the consumption of feed and the positive energy state remaining from the previous a.m. feeding, indicating that environmental factors (e.g., sunset) supersede physiological cues in regulating feeding behavior. The greater reduction in pasture DM intake for the STA treatment

  6. Predicting dry matter intake by growing and finishing beef cattle: evaluation of current methods and equation development.

    PubMed

    Anele, U Y; Domby, E M; Galyean, M L

    2014-06-01

    The NRC (1996) equation for predicting DMI by growing-finishing beef cattle, which is based on dietary NEm concentration and average BW(0.75), has been reported to over- and underpredict DMI depending on dietary and animal conditions. Our objectives were to 1) develop broadly applicable equations for predicting DMI from BW and dietary NEm concentration and 2) evaluate the predictive value of using NE requirements and dietary NE concentrations to determine the DMI required (DMIR) by feedlot cattle. Two new DMI prediction equations were developed from a literature data set, which represented treatment means from published experiments from 1980 to 2011 that covered a wide range of dietary NEm concentrations. Dry matter intake predicted from the 2 new equations, which were based on NEm concentration and either the ending BW for a feeding period or the DMI per unit of average BW (End BW and DMI/BW, respectively), accounted for 61 and 58% of the variation in observed DMI, respectively, vs. 48% for the 1996 NRC equation. When validated with 4 independent data sets that included 7,751 pen and individual observations of DMI by animals of varying BW and feeding periods of varying length, DMI predicted by the 1996 NRC equation, the End BW and DMI/BW equations, and the DMIR method accounted for 13.1 to 82.9% of the variation in observed DMI, with higher r(2) values for 2 feedlot pen data sets and lower values for pen and individual data sets that included animals on lower-energy, growing diets as well as those in feedlot settings. The DMIR method yielded the greatest r(2) values and least prediction errors across the 4 data sets; however, mean biases (P < 0.01) were evident for all the equations across the data sets, ranging from as high as 1.01 kg for the DMIR method to -1.03 kg for the 1996 NRC equation. Negative linear bias was evident in virtually all cases, suggesting that prediction errors changed as DMI increased. Despite the expanded literature database for equation

  7. Dry matter intake is decreased more by abomasal infusion of unsaturated free fatty acids than by unsaturated triglycerides.

    PubMed

    Litherland, N B; Thire, S; Beaulieu, A D; Reynolds, C K; Benson, J A; Drackley, J K

    2005-02-01

    Previous experiments from our group have demonstrated that abomasal infusion of unsaturated free fatty acids (FFA) markedly decreases dry matter intake (DMI) in dairy cows. In contrast, experiments from other groups have noted smaller decreases in DMI when unsaturated triglycerides (TG) were infused postruminally. Our hypothesis was that unsaturated FFA would be more potent inhibitors of DMI than an equivalent amount of unsaturated TG. Four Holstein cows in late lactation were used in a single reversal design. Cows were fed a total mixed ration containing (DM basis) 23% alfalfa silage, 23% corn silage, 40.3% ground shelled corn, and 10.5% soybean meal. Two cows received soy FFA (UFA; 0, 200, 400, 600 g/d) and 2 received soy oil (TG) in the same amounts; cows then were switched to the other lipid source. Cows were abomasally infused with each amount for 5-d periods. The daily amount of lipid was pulse-dosed in 4 equal portions at 0600, 1000, 1700, and 2200 h; no emulsifiers were used and there was no sign of digestive disturbance. Both lipid sources linearly decreased DMI, with a significant interaction between lipid source and amount. Slope-ratio analysis indicated that UFA were about 2 times more potent in decreasing DMI than were TG. Decreased DMI led to decreased milk production. Milk fat content was increased linearly by lipid infusion. Milk fat yield decreased markedly for UFA infusion but was relatively unaffected by infusion of TG. Contents of short- and medium-chain fatty acids in milk fat decreased as the amount of either infusate increased. Contents of C(18:2) and C(18:3) in milk fat were increased linearly by abomasal infusion of either fat source; cis-9 C(18:1) was unaffected. Transfer of infused C(18:2) to milk fat was 35.6, 42.5, and 27.8% for 200, 400, and 600 g/d of UFA, and 34.3, 39.6, and 34.0% for respective amounts of TG. Glucagon-like peptide-1 (7-36) amide (GLP-1) concentration in plasma significantly increased as DMI decreased with increasing

  8. Growth performance, dry matter and nitrogen digestibilities, serum profile, and carcass and meat quality of pigs with distinct genotypes.

    PubMed

    Fabian, J; Chiba, L I; Kuhlers, D L; Frobish, L T; Nadarajah, K; McElhenney, W H

    2003-05-01

    We investigated the effect of distinct genotypes on growth performance, DM and N digestibilities, serum metabolite and hormonal profiles, and carcass and meat quality of pigs. Eight control-line and eight select-line pigs with an equal number of gilts and castrated males per genotype were chosen from the group of pigs subjected to selection for lean growth efficiency. Pigs were housed individually and allowed ad libitum access to common grower, finisher 1, and finisher 2 diets when they reached approximately 20, 50, and 80 kg, respectively, and water throughout the study. Although genotype had no effect on growth performance during the finisher 2 phase and overall, select-line pigs grew faster and more efficiently (P < 0.05) during the grower and finisher 1 phases than did control-line pigs. Dry matter and N digestibilities during the grower phase were lower (P < 0.05) in select-line pigs compared with control-line pigs. Select-line pigs had less ultrasound backfat (P < 0.05) at the end of the grower and finisher 2 phases. Serum urea N (P < 0.05) and leptin concentrations were lower in select-line pigs than in control-line pigs, but the effect of genotype on serum glucose, triglyceride, or insulin concentration was rather inconsistent. Select-line pigs had heavier heart (P < 0.05), liver (P = 0.08), and kidneys (P < 0.01), implying a higher metabolic activity. Less 10th-rib carcass backfat (P < 0.01) and a trend for larger carcass longissimus muscle area (P = 0.10) were reflected in the greater (P < 0.01) rate and efficiency of lean accretion in select-line pigs. Select-line pigs had lower subjective meat color (P < 0.01), marbling (P < 0.05), and firmness (P < 0.01) scores. Final serum leptin concentration was correlated positively with carcass backfat thickness (r = 0.73; P < 0.01) and negatively with overall feed intake (r = -0.77; P < 0.01). These results indicate that pigs with distinct genotypes exhibited differences in the growth rate, metabolite and

  9. Quantifying particulate matter deposition in Niwot Ridge, Colorado: Collection of dry deposition using marble inserts and particle imaging using the FlowCAM

    NASA Astrophysics Data System (ADS)

    Goss, Natasha R.; Mladenov, Natalie; Seibold, Christine M.; Chowanski, Kurt; Seitz, Leslie; Wellemeyer, T. Barret; Williams, Mark W.

    2013-12-01

    Atmospheric wet and dry deposition are important sources of carbon for remote alpine lakes and soils. The carbon inputs from dry deposition in alpine National Atmospheric Deposition Program (NADP) collectors, including aeolian dust and biological material, are not well constrained due to difficulties in retaining particulate matter in the collectors. Here, we developed and tested a marble insert for dry deposition collection at the Niwot Ridge Long Term Ecological Research Station (NWT LTER) Soddie site (3345 m) between 24 May and 8 November 2011. We conducted laboratory tests of the insert's effect on particulate matter (PM) mass and non-purgeable organic carbon (DOC) and found that the insert did not significantly change either measurement. Thus, the insert may enable dry deposition collection of PM and DOC at NADP sites. We then developed a method for enumerating the collected wet and dry deposition with the Flow Cytometer and Microscope (FlowCAM), a dynamic-image particle analysis tool. The FlowCAM has the potential to establish morphology, which affects particle settling and retention, through particle diameter and aspect ratio. Particle images were used to track the abundance of pollen grains over time. Qualitative image examination revealed that most particles were biological in nature, such as intact algal cells and pollen. Dry deposition loading to the Soddie site as determined by FlowCAM measurements was highly variable, ranging from 100 to >230 g ha-1 d-1 in June-August 2011 and peaking in late June. No significant difference in diameter or aspect ratio was found between wet and dry deposition, suggesting fundamental similarities between those deposition types. Although FlowCAM statistics and identification of particle types proved insightful, our total-particle enumeration method had a high variance and underestimated the total number of particles when compared to imaging of relatively large volumes (60-125 mL) from a single sample. We recommend use of

  10. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; Kauffman, Jobriath; Prisley, Stephen

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  11. Effect of boron as an antidote on dry matter intake, nutrient utilization and fluorine balance in buffalo (Bubalus bubalis) exposed to high fluoride ration.

    PubMed

    Bharti, Vijay K; Gupta, Meenakshi; Lall, D

    2008-12-01

    It is well known that excessive accumulation of fluorides can exert toxic effects on various tissues and organs so as to severely damage the health and production of animals. The aim of this study was to determine beneficial effect of boron on nutrient utilization in buffalo calves exposed to high fluoride (F) ration. For this purpose, we used three groups of four male Murrah buffalo calves (body weight 98-100 kg, aged 6-8 month) each. Control animal was given only basal diet and concentrate mixture. However, treatment I animals were fed basal diet, concentrate mixture, and F [as NaF, 60 ppm of dry matter (DM)]. The treatment II animals were fed basal diet, concentrate mixture, F (as NaF, 60 ppm of DM), and B (as sodium tetraborate, 140 ppm of DM). After 90 days of experimental feeding, a metabolism trial of 7 days duration was conducted to study the treatment effect on nutrient utilization of proximate nutrients, absorption, excretion, and retention of N, Ca, P, Fe, Zn, Cu, and F. Dietary F significantly (p < 0.05) depressed the dry matter intake and increased the apparent digestibility, absorption, and retention of F. However, boron supplementation significantly (p < 0.05) decreased the apparent digestibility, absorption, and retention of F and improved the dry matter intake, fecal excretion, and percent of absorbed F excreted via urine. Apparent digestibility of proximate nutrients (viz. DM, crude protein, crude fiber, ether extract, and nitrogen free extract) was unaffected on either F or F+B treatment. However, absorption and excretion of N, Ca, P, Fe, Zn, and Cu were affected significantly (p < 0.05) on F or F+B treatment. These findings suggest that fluoride-containing diet for short duration has effect on nutrient utilization, and boron at 140-ppm dose level, in general, antagonized the absorption and retention of F and also improved the feed intake in buffalo calves.

  12. Nutritional studies on East African herbivores. 1. Digestibilities of dry matter , crude fibre and crude protein in antelope, cattle and sheep.

    PubMed

    Arman, P; Hopcraft, D

    1975-03-01

    1. A series of digestibility trials was done using four animals of each of the following species: Friesian cattle (Bos taurus), Boran zebu cattle (Bos indicus), Corriedale sheep, fat-tailed sheep, eland (Taurotragus oryx Pallas), Coke's hartebeest (Alcelaphus buselaphus cokei Günther), Thomson's gazelle (Gazella thomsonii Günther) and bush duiker (Sylvicapra grimmia L.). 2. Two batches of pelleted food were prepared from ground maize cobs, cassava, whs (A-E) were prepared containing 65 (A)-135 (E) g crude protein (nitrogen times 6-25)/kg dry matter. The crude-fibre contents of all the diets were similar (120-138 g/kg dry matter). 3. The animals were given the high-protein diet (E), then given diets with decreasing protein contents finishing with the low-protein (A). The antelope and half the sheep were given diets from the first batch of pelleted food, the other four sheep and all the cattle were given diets from the second batch of food. 4. In sheep, there were significant differences in digestibility between the two batches of food. 5. There were no significant differences in the over-all mean digestibilities of all diets when given to cattle (both species) and sheep. However, with diet E, dry-matter digestibility was higher in sheep than in cattle (P smaller than 0-05): the reverse was true with diet A (P smaller than 0-001). Crude-fibre and crude-protein digestibilities followed a similar pattern. The differences between Corriedale and fat-tailed sheep were not significant. The only significant difference between the two species of cattle was the higher digestibility of crude protein in Borans given diet E (P smaller than 0-05). 6. The over-all mean digestibility of the dry matter was higher (P smaller than 0-001) in hartebeest and duiker than in sheep; in Thomson's gazelle (P smaller than 0-01) and eland (P smaller than 0-001) it was lower than in sheep. The values for crude-fibre digestibilities varied in a similar way. 7. The mean apparent digestibility of

  13. Short communication: Varying dietary dry matter concentration through water addition: effect on nutrient intake and sorting of dairy cows in late lactation.

    PubMed

    Fish, J A; DeVries, T J

    2012-02-01

    The objective of this study was to determine if feed sorting can be reduced and if nutrient consumption can be limited in late-lactation cows through water addition to a nutrient-dense total mixed ration (TMR) with a dry matter (DM) content greater than 60%. Twelve lactating Holstein cows (214.8±28.5 d in milk) were exposed to 2 diets in a crossover design with 28-d periods. Diets had the same ingredient composition and differed only in DM percentage, which was reduced by the addition of water. Treatment diets were (1) dry TMR (61.7% DM) and (2) wet TMR (51.9% DM). Dry matter intake and milk production (4% fat-corrected milk; FCM) were recorded for the last 14 d of each treatment period. For the final 4 d of each period, fresh feed and orts were sampled for particle size analysis and subsequent calculation of sorting activity (expressed as a percentage of predicted intake). Adding water to the diet tended to decrease the amount of DM in the fine particle fraction, increase starch concentration in the longer ration particles, and reduce starch concentration in the shortest ration particles. All cows sorted against long ration particles; the extent of this sorting did not differ between the dry and wet treatments (72.9 vs. 77.6%). There tended to be more sorting for fine ration particles on the dry diet compared with the wet (106.3 vs. 104.0%). Water addition had no effect on production, with similar DMI (27.9 vs. 26.5 kg/d), 4% FCM (28.7 vs. 27.6 kg/d), and efficiency of production (0.98 vs. 1.00 kg of 4% FCM/kg of DMI) between the dry and wet treatments. Adding water to a TMR with greater than 60% DM containing primarily haylage and corn silage forage sources may change ration particle DM distribution and particle starch content, possibly contributing to less sorting for the smallest ration particles. This research does not provide evidence that water addition to such a TMR can effectively limit DMI in late-lactation cows and, thus, improve efficiency of milk

  14. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  15. Differences between the Bud End and Stem End of Potatoes in Dry Matter Content, Starch Granule Size, and Carbohydrate Metabolic Gene Expression at the Growing and Sprouting Stages.

    PubMed

    Liu, Bailin; Zhang, Guodong; Murphy, Agnes; De Koeyer, David; Tai, Helen; Bizimungu, Benoit; Si, Huaijun; Li, Xiu-Qing

    2016-02-10

    Potatoes usually have the tuber bud end dominance in growth during tuber bulking and in tuber sprouting, likely using carbohydrates from the tuber stem end. We hypothesized that the tuber bud end and tuber stem end coordination in carbohydrate metabolism gene expression is different between the bulking dominance and sprouting dominance of the tuber bud end. After comparing the growing tubers at harvest from a green vine and the stage that sprouts just started to emerge after storage of tubers at room temperature, we found the following: (1) Dry matter content was higher in the tuber stem end than the tuber bud end at both stages. (2) The starch granule size was larger in the tuber bud end than in the tuber stem end. (3) The tuber bud end had higher gene expression for starch synthesis but a lower gene expression of sucrose transporters than the tuber stem end during tuber growing. (4) The tuber stem end at the sprouting stage showed more active gene expression in both starch degradation and resynthesis, suggesting more active export of carbohydrates, than the tuber bud end. The results indicate that the starch accumulation mechanism in the tuber bud end was different between field growing and post-harvest sprouting tubers and that tubers already increased dry matter and average starch granule sizes in the tuber bud end prior to the rapid growth of sprouts.

  16. On-farm evaluation of the effect of coffee pulp supplementation on milk yield and dry matter intake of dairy cows grazing tropical grasses in central Mexico.

    PubMed

    Pedraza-Beltrán, Paulina; Estrada-Flores, Julieta G; Martínez-Campos, Angel R; Estrada-López, Isael; Rayas-Amor, Adolfo A; Yong-Angel, Gilberto; Figueroa-Medina, Marisol; Nova, Francisca Avilés; Castelán-Ortega, Octavio A

    2012-02-01

    Tropical grasses are the primary nutrient resource for cattle production in the tropics, and they provide low-cost nutrients to cattle. However, its production is constrained by seasonal changes and quality; hence, appropriate usage of relatively inexpensive agricultural by-products is important to profitable livestock production. The objective of the study was to evaluate the effect of supplementing coffee pulp to dairy cows grazing tropical grasses on milk yield and forage intake. Four multiparous crossed Holstein-Brown Swiss-Zebu cows of similar weight and milk yield were used. The effect of 10%, 15% and 20% inclusion of coffee pulp in dairy concentrates on milk yield and forage intake was analysed using a 4 × 4 Latin square design. Results showed that there were no significant effects (P > 0.05) in grass dry matter intake, milk yield, milk composition body weight and body condition score due to the inclusion of coffee pulp in the dairy concentrates. It is concluded that coffee pulp can be included at levels of 20% in the concentrate without compromising significantly (P > 0.05) milk yield, milk composition and grass dry matter intake. It also was concluded that cost of concentrate is reduced in 20% by the inclusion of coffee pulp.

  17. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    PubMed Central

    Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  18. Improving nutrient fixation and dry matter content of an ammonium-rich anaerobic digestion effluent by struvite formation and clay adsorption.

    PubMed

    Estevez, Maria M; Linjordet, Roar; Horn, Svein J; Morken, John

    2014-01-01

    The anaerobic digestion (AD) of organic wastes that contain nitrogen leads to its mineralization, yielding a digestate rich in ammonium (NH(4)(+)), an important fertilizing nutrient. The applicability of AD digestate as fertilizer can be improved by fixating the nutrients and increasing its dry matter content. Methods for the fixation and recovery of the digestate's NH(4)(+) and possible also PO(4)(3-) include struvite precipitation and adsorption in clay materials such as bentonite. These techniques were tested in batch experiments employing the liquid fraction of a digestate originating from the AD of a substrate mix containing lignocellulose, cattle manure and fish industrial waste. The concentration of NH(4)(+)-N in this digestate was 2,300 mg L⁻¹. Struvite precipitation conditions at a molar ratio of 1.2:1:1 (Mg²⁺:NH(4)(+):PO(4)(3-)) and pH 9.5 were best in terms of simultaneous removal of NH(4)(+)-N (88%), PO(4)(3-) (60%) and soluble chemical oxygen demand (44%). Bentonite adsorption gave comparably high removal levels for NH(4)(+)-N (82%) and PO(4)(3-) (52%). Analysis of the precipitates' morphology and elemental composition confirmed their struvite and bentonite nature. Dry matter content was increased from 5.8% in the AD digestate to 27% and 22% in the struvite and bentonite sludges, respectively.

  19. [Coupling effects of partitioning alternative drip irrigation with plastic mulch and nitrogen fertilization on cotton dry matter accumulation and nitrogen use].

    PubMed

    Li, Pei-Ling; Zhang, Fu-Cang

    2013-02-01

    A field experiment with complete combination design was conducted to study the effects of partitioning alternative drip irrigation with plastic mulch and nitrogen fertilization on the dry matter accumulation and nitrogen use efficiency of cotton plant. Three levels of irrigation (260, 200, and 140 mm) and of nitrogen fertilizer (270, 180, and 90 kg.hm-2) were installed. The cotton dry mass was the highest in treatments medium nitrogen/high water and high nitrogen/high water. As compared with that in high nitrogen/high water treatment, the nitrogen use efficiency for dry matter accumulation in medium nitrogen/high water treatment was increased by 34.0% -44.6%, with an average of 34.7% , while the water use efficiency was decreased by 6.4% -10.7%, averagely 10.2%. As for the nitrogen accumulation in cotton plant, the nitrogen use efficiency was the highest in medium nitrogen/high water treatment, and the water use efficiency was the highest in high nitrogen/medium water treatment. Compared with high nitrogen/high water treatment, medium nitrogen/high water treatment increased the nitrogen use efficiency for cotton nitrogen accumulation by 29.0% -41.7%, but decreased the water use efficiency for cotton nitrogen accumulation by 5.5%-14.0%. Among the treatments of coupling water and nitrogen of higher cotton yield, treatment medium nitrogen/high water had the higher cotton nitrogen recovery rate, nitrogen agronomic efficiency, and apparent use efficiency than the treatments high nitrogen/medium water and high nitrogen/high water, but no significant differences were observed in the nitrogen absorption ratio and nitrogen physiological efficiency. Treatment medium nitrogen/high water was most beneficial to the coupling effects of water and nitrogen under partitioning alternate drip irrigation with plastic mulch and nitrogen fertilization.

  20. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass.

    PubMed

    Albores-Moreno, S; Alayón-Gamboa, J A; Ayala-Burgos, A J; Solorio-Sánchez, F J; Aguilar-Pérez, C F; Olivera-Castillo, L; Ku-Vera, J C

    2017-04-01

    An experiment was carried out to determine the effect of supplementing ground pods of Enterolobium cyclocarpum in a basal ration of Pennisetum purpureum grass on feed intake, rumen volatile fatty acids (VFAs), and protozoa and methane (CH4) production by hair sheep. Four male sheep (Pelibuey × Katahdin) with a mean live weight of 27.0 kg (SD ± 0.5) were supplemented with 0.00, 0.15, 0.30, and 0.45 kg of dry matter (DM) of E. cyclocarpum pods daily; equivalent to 0.00, 4.35, 8.70, and 13.05 g of crude saponins, respectively. Dry matter intake (DMI), organic matter intake (OMI), and molar proportions of propionic acid increased linearly (P < 0.05) as pods of E. cyclocarpum in the ration were increased. Higher intakes of DM and OM were found when lambs were fed 0.45 kg DM per day of E. cyclocarpum, and the highest proportion of propionic acid (0.21 and 0.22, respectively) was obtained with 0.15 and 0.30 kg of DM per lamb of E. cyclocarpum, while apparent digestibility of neutral detergent fiber (NDF) and molar proportion of acetic acid were reduced (P < 0.05). Rumen CH4 production decreased (P < 0.05) when 0.30 and 0.45 kg of DM/lamb/day of E. cyclocarpum were fed (21.8 and 25.3 L CH4/lamb/day, respectively). These results suggest that to improve the feeding of sheep fed tropical grass, it is advisable to supplement the basal ration with up to 0.30 kg DM of E. cyclocarpum pods.

  1. Increasing dietary sugar concentration may improve dry matter intake, ruminal fermentation, and productivity of dairy cows in the postpartum phase of the transition period.

    PubMed

    Penner, G B; Oba, M

    2009-07-01

    The current study was undertaken to investigate the effect of feeding diets varying in sugar concentration to postpartum transition cows on productivity, ruminal fermentation, and nutrient digestibility. We hypothesized that the high-sugar diet would increase dry matter intake and lactation performance. The secondary objective was to characterize changes in ruminal fermentation and nutrient digestibility over the first 4 wk of lactation. Fifty-two Holstein cows, including 28 primiparous and 24 multiparous cows, 10 of which were previously fitted with a ruminal cannula, were assigned to the experimental diets containing either high sugar (HS = 8.4%) or low sugar (LS = 4.7%) immediately after calving, based on their expected calving date. Data and samples were collected on d 5.2 +/- 0.3, 12.2 +/- 0.3, 19.2 +/- 0.3, and 26.1 +/- 0.3 relative to parturition for wk 1, 2, 3, and 4 respectively. Cows fed HS had increased dry matter intake compared with those fed LS (18.3. vs. 17.2 kg/d). Further, cows fed HS sorted for particles retained on the pan of the Penn State Particle Size Separator to a greater extent than cows fed LS. Feeding HS tended to increase nadir (5.62 vs. 5.42), mean (6.21 vs. 6.06), and maximum pH (6.83 vs. 6.65). The duration (h/d) and area (pH x min/d) that ruminal pH was below pH 5.8 were not affected by treatment. Ruminal volatile fatty acid concentration and molar proportions of individual volatile fatty acids were not affected by treatment. The digestibility of dry matter, organic matter, neutral detergent fiber, and starch were not affected by treatment, averaging 63.3, 65.2, 43.2, and 93.5%, respectively. Feeding HS decreased plasma glucose concentration compared with feeding LS (51.3 vs. 54.0 mg/dL), but concentration of plasma insulin was not affected by treatment, averaging 4.17 microIU/mL. Cows fed HS had higher concentrations of plasma beta-hydroxybutrate (17.5 vs. 10.5 mg/dL) and nonesterified fatty acids (344 vs. 280 microEq/L). Milk yield

  2. [Apparent digestion coefficients for dry matter, protein and essential amino acids in terrestrial ingredients for Pacific shrimp Litopenaeus vannamei (Decapoda: Penaeidae)].

    PubMed

    Terrazas, Martín; Civera, Roberto; Ibarra, Lilia; Goytortúa, Ernesto

    2010-12-01

    Protein quality mainly depends on the essential amino acid (EAA) profile, but also on its bioavailability, because EAA digestibility is generally lower than the analyzed amounts. This information is needed in the aquaculture industry for aquafeed formulation. For this purpose, the apparent digestibility coefficients of dry matter, protein, and essential amino acids of eight feedstuffs of terrestrial origin were determined for the juvenile whiteleg shrimp Litopenaeus vannamei (15-19 g), using 1% chromic oxide as an inert marker. A reference diet was formulated and produced in the laboratory. Eight experimental diets were prepared each with 30% of one of the experimental ingredients added to the reference diet: casein, porcine byproduct meal poultry byproduct meal, corn meal, wheat gluten meal, soybean paste, sorghum meal, and wheat meal. The experiment consisted of a single-factor, completely randomized design with three replicates per treatment. Samples of ingredients, diets and feces were analyzed for nitrogen and amino acids. For amino acid assay, we used reverse-phase high performance liquid chromatography. To avoid partial loss of methionine and cystine, samples of ingredients, diets, and feces were oxidized with performic acid to methionine sulfone and cysteic acid prior to acid hydrolysis. The apparent dry matter and protein digestive utilization coefficients varied from 68% to 109% and from 70% to 103%, respectively. Apparent digestibility of protein for casein, soy paste, wheat meal and wheat gluten were very high (over 90%), corn gluten and poultry byproducts meal showed high protein digestibility (over 80%), but porcine byproducts meal and sorghum meal had low digestibility (76% and 70%, respectively). There was a reasonable, but not total, correspondence between apparent protein digestibility and average essential amino acid digestibility coefficients, except for arginine in corn gluten, phenylalanine and leucine in sorghum meal, phenylalanine in soy

  3. Dry matter intake and feed efficiency profiles of 3 genotypes of Holstein-Friesian within pasture-based systems of milk production.

    PubMed

    Coleman, J; Berry, D P; Pierce, K M; Brennan, A; Horan, B

    2010-09-01

    The primary objective of the study was to quantify the effect of genetic improvement using the Irish total merit index (Economic Breeding Index) on dry matter intake and feed efficiency across lactation and to quantify the variation in performance among alternative definitions of feed efficiency. Three genotypes of Holstein-Friesian dairy cattle were established from within the Moorepark dairy research herd: 1) low Economic Breeding Index North American Holstein-Friesian representative of the Irish national average dairy cow, 2) high genetic merit North American Holstein-Friesian, and 3) high genetic merit New Zealand Holstein-Friesian. Animals from within each genotype were randomly allocated to 1 of 2 possible intensive pasture-based feed systems: 1) the Moorepark pasture system (2.64 cows/ha and 500 kg of concentrate supplement per cow per lactation) and 2) a high output per hectare pasture system (2.85 cows/ha and 1,200 kg of concentrate supplement per cow per lactation). A total of 128 and 140 spring-calving dairy cows were used during the years 2007 and 2008, respectively. Each group had an individual farmlet of 17 paddocks, and all groups were managed similarly throughout the study. The effects of genotype, feed system, and the interaction between genotype and feed system on dry matter intake, milk production, body weight, body condition score, and different definitions of feed efficiency were studied using mixed models with factorial arrangements of genotypes and feed systems accounting for the repeated cow records across years. No significant genotype-by-feed-system interactions were observed for any of the variables measured. Results showed that aggressive selection using the Irish Economic Breeding Index had no effect on dry matter intake across lactation when managed on intensive pasture-based systems of milk production, although the ranking of genotypes for feed efficiency differed depending on the definition of feed efficiency used. Performance of

  4. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  5. Regional analysis from data from heterogeneous pixels - Remote sensing of total dry matter production in the Senegalese Sahel

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Vanpraet, C.; Gaston, A.; Boerwinkel, E.

    1984-01-01

    Nine predominantly cloud-free NOAA-7 advanced very high resolution radiometer images were obtained during a three-month period during the 1981 rainy season in the Sahel of Senegal. The 0.55-0.68 and 0.725-1.10-micron channels were used to form the normalized difference green leaf density vegetation index and the 11.5-12.5-micron channel was used as a cloud mask for each of the nine images. Changes in the normalized difference values among the various dates were closely associated with precipitation events. Six of the images spanning an eight-week period were used to generate a cumulative integrated index. Ground biomass samplings in the 30,000 sq km study area were used to assign total dry biomass classes to the cumulative index.

  6. Microbial Community Responses to Increased Water and Organic Matter in the Arid Soils of the McMurdo Dry Valleys, Antarctica

    PubMed Central

    Buelow, Heather N.; Winter, Ara S.; Van Horn, David J.; Barrett, John E.; Gooseff, Michael N.; Schwartz, Egbert; Takacs-Vesbach, Cristina D.

    2016-01-01

    The soils of the McMurdo Dry Valleys, Antarctica are an extreme polar desert, inhabited exclusively by microscopic taxa. This region is on the threshold of anticipated climate change, with glacial melt, permafrost thaw, and the melting of massive buried ice increasing liquid water availability and mobilizing soil nutrients. Experimental water and organic matter (OM) amendments were applied to investigate how these climate change effects may impact the soil communities. To identify active taxa and their functions, total community RNA transcripts were sequenced and annotated, and amended soils were compared with unamended control soils using differential abundance and expression analyses. Overall, taxonomic diversity declined with amendments of water and OM. The domain Bacteria increased with both amendments while Eukaryota declined from 38% of all taxa in control soils to 8 and 11% in water and OM amended soils, respectively. Among bacterial phyla, Actinobacteria (59%) dominated water-amended soils and Firmicutes (45%) dominated OM amended soils. Three bacterial phyla (Actinobacteria, Proteobacteria, and Firmicutes) were primarily responsible for the observed positive functional responses, while eukaryotic taxa experienced the majority (27 of 34) of significant transcript losses. These results indicated that as climate changes in this region, a replacement of endemic taxa adapted to dry, oligotrophic conditions by generalist, copiotrophic taxa is likely. PMID:27486436

  7. Microbial Community Responses to Increased Water and Organic Matter in the Arid Soils of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Buelow, Heather N; Winter, Ara S; Van Horn, David J; Barrett, John E; Gooseff, Michael N; Schwartz, Egbert; Takacs-Vesbach, Cristina D

    2016-01-01

    The soils of the McMurdo Dry Valleys, Antarctica are an extreme polar desert, inhabited exclusively by microscopic taxa. This region is on the threshold of anticipated climate change, with glacial melt, permafrost thaw, and the melting of massive buried ice increasing liquid water availability and mobilizing soil nutrients. Experimental water and organic matter (OM) amendments were applied to investigate how these climate change effects may impact the soil communities. To identify active taxa and their functions, total community RNA transcripts were sequenced and annotated, and amended soils were compared with unamended control soils using differential abundance and expression analyses. Overall, taxonomic diversity declined with amendments of water and OM. The domain Bacteria increased with both amendments while Eukaryota declined from 38% of all taxa in control soils to 8 and 11% in water and OM amended soils, respectively. Among bacterial phyla, Actinobacteria (59%) dominated water-amended soils and Firmicutes (45%) dominated OM amended soils. Three bacterial phyla (Actinobacteria, Proteobacteria, and Firmicutes) were primarily responsible for the observed positive functional responses, while eukaryotic taxa experienced the majority (27 of 34) of significant transcript losses. These results indicated that as climate changes in this region, a replacement of endemic taxa adapted to dry, oligotrophic conditions by generalist, copiotrophic taxa is likely.

  8. Role of minerals in the thermal alteration of organic matter. I - Generation of gases and condensates under dry condition

    NASA Technical Reports Server (NTRS)

    Tannenbaum, E.; Kaplan, I. R.

    1985-01-01

    Pyrolysis experiments conducted at 200 and 300 C on kerogen and bitumen from the Monterey formation and on the Green River Formation kerogen with montmorillonite, illite, and calcite added are described. The pyrolysis products are identified and gas and condensate analyses are performed. A catalytic effect is detected in the pyrolysis of kerogen with montmorillonite; however, illite and calcite display no catalytic activity. The increased production of C1-C6 hydrocarbons and the dominance of branched hydrocarbons in the C4-C6 range reveals a catalytic influence. It is observed that the catalysis of montmorillonite is greater during bitumen pyrolysis than for kerogen, and catalysis with minerals affects the production of CO2. It is concluded that a mineral matrix is important in determining the type and amount of gases and condensates forming from organic matter under thermal stress.

  9. Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period.

    PubMed

    Wims, C M; Deighton, M H; Lewis, E; O'Loughlin, B; Delaby, L; Boland, T M; O'Donovan, M

    2010-10-01

    Increasing milk production from pasture while increasing grass dry matter intake (GDMI) and lowering methane (CH(4)) emissions are key objectives of low-cost dairy production systems. It was hypothesized that offering swards of low herbage mass with increased digestibility leads to increased milk output. A grazing experiment was undertaken to investigate the effects of varying levels of HM on CH(4) emissions, GDMI and milk production of grazing dairy cows during the mid-season grazing period (June to July). Prior to the experiment, 46 Holstein-Friesian dairy cows (46 d in milk) were randomly assigned to 1 of 2 treatments (n=23) in a randomized block design. The 2 treatments consisted of 2 target pregrazing HM: 1,000 kg of dry matter (DM)/ha (low herbage mass, LHM) or 2,200 kg of DM/ha (high herbage mass, HHM). The experimental period lasted 2 mo from June 1 until July 31. Within the experimental period, there were 2 measurement periods, measurement 1 (M1) and measurement 2 (M2), where CH(4) emissions, GDMI, and milk production were measured. Mean herbage mass throughout the measurement periods was 1,075 kg of DM/ha and 1,993 kg of DM/ha for the LHM and HHM treatments, respectively. Grass quality in terms of organic matter digestibility was significantly higher for the LHM treatment in M2 (+12 g/kg of DM). In M1, the effect of herbage mass on grass quality was approaching significance in favor of the LHM treatment. Herbage mass did not significantly affect milk production during the measurement periods. Cows grazing the LHM swards had increased GDMI in M1 (+1.5 kg of DM) compared with cows grazing the HHM swards; no difference in GDMI was observed in M2. Grazing HHM swards increased CH(4) production per cow per day (+42 g), per kilogram of milk yield (+3.5 g/kg of milk), per kilogram of milk solids (+47 g/kg of milk solids), and per kilogram of GDMI (+3.1 g/kg of GDMI) in M2. Cows grazing the HHM swards lost a greater proportion of their gross energy intake as CH(4

  10. Evaluation of the factors affecting silage intake of dairy cows: a revision of the relative silage dry-matter intake index.

    PubMed

    Huhtanen, P; Rinne, M; Nousiainen, J

    2007-06-01

    An evaluation of the factors affecting silage dry-matter intake (SDMI) of dairy cows was conducted based on dietary treatment means. The data were divided into six subsets based on the silage treatments used in the experiments: concentration of digestible organic matter in dry matter (D-value) influenced by the maturity of grass ensiled (n = 81), fermentation quality influenced by silage additives (n = 240), dry matter (DM) concentration influenced by wilting of grass prior to ensiling (W; n = 85), comparison of silages made from primary growth or regrowth of grass (n = 46), and replacement of grass silage with legume (L; n = 53) or fermented whole-crop cereal (WC; n = 37) silages. The data were subjected to the mixed model regression analysis. Both silage D-value and fermentation quality significantly affected SDMI. The average effects of D-value and total acid (TA) concentration were 17.0 g and - 12.8 per 1 g/kg DM, respectively. At a given D-value, silage neutral-detergent fibre (NDF) concentration tended to decrease SDMI. Silage TA concentration was the best fermentation parameter predicting SDMI. Adding other parameters into the multivariate models did not improve the fit and the slopes of the other parameters remained insignificant. Total NDF intake was curvilinearly related to silage D-value the maximum intake being reached at a D-value of 640 g/kg DM. Results imply that physical fill is not limiting SDMI of highly digestible grass silages and that both physical and metabolic factors constrain total DM intake in an interactive manner. Silage DM concentration had an independent curvilinear effect on SDMI. Replacing primary growth silage with regrowth, L or WC silages affected SDMI significantly, the response to regrowth silage being linearly decreasing and to L and WC quadratically increasing. The outcome of factors affecting SDMI was used to update the relative SDMI index as follows: SDMI index = 100+10 × [(D-value - 680) × 0.0170

  11. Dry Mouth

    MedlinePlus

    ... of this page please turn Javascript on. Dry Mouth What Is Dry Mouth? Dry mouth is the feeling that there is ... when a person has dry mouth. How Dry Mouth Feels Dry mouth can be uncomfortable. Some people ...

  12. The effect of concentrate feeding amount and feeding strategy on milk production, dry matter intake, and energy partitioning of autumn-calving Holstein-Friesian cows.

    PubMed

    Lawrence, D C; O'Donovan, M; Boland, T M; Lewis, E; Kennedy, E

    2015-01-01

    The objective of this study was to compare the milk production, dry matter intake, and energy partitioning of autumn-calving Holstein-Friesian cows offered a high or low amount of concentrate using 1 of 2 feeding strategies. One hundred and eight autumn-calving Holstein-Friesian cows were blocked based on milk production data from wk 3 and 4 of lactation, and were divided into low-, medium-, and high-milk yield subgroups. Cows were randomly assigned to 1 of 4 treatments (n=27) in a 2×2 factorial design. Treatment factors were concentrate feeding amount, high concentrate=7.0 (Hi) or low concentrate=4.0kg of DM/cow per day (Lo), and concentrate feeding strategy, flat rate (FR) or group-fed to yield (GFY). In the GFY treatments, cows were allocated concentrate based on their milk yield in the third and fourth weeks of lactation. The lowest-yielding cows (n=9) received 5.3 and 2.3kg of DM of concentrate on the Hi and Lo treatments respectively, the highest-yielding cows (n=9) received 8.7 and 5.7kg of DM of concentrate on the Hi and Lo treatments respectively, and the average yield cows received the same amount of concentrate as the corresponding FR group (i.e., 7.0 and 4.0kg of DM of concentrate on the Hi and Lo treatments, respectively). The proportion of forage in the diet was 63% of total dry matter intake (TDMI) for the Hi treatment and 75% of TDMI for the Lo treatment. No significant interaction was noted between concentrate feeding amount and concentrate feeding strategy for dry matter intake or milk yield. Cows on the Hi treatment had a higher TDMI (18.7±0.36kg/cow per day) compared with cows on the Lo treatment (15.8±0.36kg/cow per day). The milk yield of cows offered the Hi treatment was 1.3kg/cow per day higher than the milk yield of cows on the Lo treatment (23.8±0.31kg/cow per day). Milk solids yield was 0.10kg/cow per day higher on the Hi treatment than on the Lo treatment (1.83±0.03kg of DM/cow per day). Cows on the Hi treatment had an estimated net

  13. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance.

    PubMed

    Polania, Jose A; Poschenrieder, Charlotte; Beebe, Stephen; Rao, Idupulapati M

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW), canopy biomass, and dry partitioning indices (pod partitioning index, harvest index, and pod harvest index) in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID) was used for estimation of water use efficiency (WUE). The main objectives were: (i) to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii) to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought) over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593, and BFS 67) were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass, and grain yield under drought stress, the lines tested were classified into two

  14. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    PubMed Central

    Polania, Jose A.; Poschenrieder, Charlotte; Beebe, Stephen; Rao, Idupulapati M.

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW), canopy biomass, and dry partitioning indices (pod partitioning index, harvest index, and pod harvest index) in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID) was used for estimation of water use efficiency (WUE). The main objectives were: (i) to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii) to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought) over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593, and BFS 67) were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass, and grain yield under drought stress, the lines tested were classified into two

  15. Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows.

    PubMed

    Muñoz, C; Letelier, P A; Ungerfeld, E M; Morales, J M; Hube, S; Pérez-Prieto, L A

    2016-10-01

    Few studies have examined the effects of fresh forage quality on enteric methane (CH4) emissions of dairy cows under grazing conditions. The aim of the current study was to evaluate the effects of 2 contrasting forage qualities induced by different pregrazing herbage masses in late spring on enteric CH4 emissions and milk production of grazing dairy cows. The experiment was conducted as a crossover design with 24 lactating Holstein Friesian dairy cows randomly assigned to 1 of 2 treatments in 2 experimental periods. Each period had a duration of 3wk (2wk for diet adaptation and 1wk for measurements), and the interval between them was 2wk. Treatments consisted of 2 target pregrazing herbage masses [2,200 and 5,000kg of dry matter (DM)/ha above 3cm], generated by different regrowth periods, corresponding to low (LHM) and high (HHM) herbage mass treatments, respectively. Daily herbage allowance (Lolium perenne) for both treatments was 20kg of DM per cow measured above 3cm. Enteric CH4 emissions were individually determined during the last week of each period using the sulfur hexafluoride tracer technique. Daily herbage intakes by individual cows during the CH4 measurement weeks were estimated using the n-alkanes technique. During the CH4 measurement weeks, milk yield and body mass were determined twice daily, whereas milk composition was determined once in the week. The LHM pasture had a higher crude protein concentration, lower neutral detergent fiber and acid detergent fiber concentrations, and higher in vitro digestibility, with a lower proportion of ryegrass pseudostems, than the HHM pasture. Cows offered the LHM pasture had greater herbage (+13%) and total DM (+12%) intakes, increased milk (+13%) and energy-corrected milk (+11%) yields, and tendencies toward higher milk protein (+4.5%) and higher milk urea nitrogen (+15%) concentrations than their counterparts offered the HHM pasture. No differences were found between treatments in total daily CH4 production

  16. Effects of a Brown-midrib corn hybrid on nutrient digestibility in wethers and on dry matter intake, performance, rumen and blood variables in dairy cows.

    PubMed

    Gorniak, T; Meyer, U; Hackelsperger, F; Dänicke, S

    2014-04-01

    The aim of the present trials was to determine the effect of an experimental Brown-midrib (Bm) corn hybrid in relation to a commercial corn hybrid (Con) on digestibility in wethers and on dry matter intake (DMI), milk yield and milk composition in dairy cows. Digestibility of crude fibre (CF), neutral detergent fibre (NDFom) and acid detergent fibre (ADFom) were higher for Bm (CF Con: 57.8%; Bm: 67.2%; NDFom Con: 56.8%; Bm: 64.8%; ADFom Con: 52.0%; Bm: 63.9%), but concentration of net energy for lactation did not differ (Con: 6.4 MJ/kg DM; Bm: 6.3 MJ/kg DM). A total of 64 lactating German Holstein cows were assigned to one of the two dietary treatments Con or Bm according to milk yield, lactation number, days in milk and live weight. In Trial 1, cows were fed a total mixed ration consisting of 50% corn silage (Con or Bm) and 50% concentrate on dry matter (DM) basis. In Trial 2, the same animals were fed the respective silage for ad libitum intake and 5.3 kg of concentrate DM per animal per day. In Trial 1, DMI and milk-fat content were decreased significantly for the Bm-treatment (DMI Con: 22.5 kg/day; Bm: 21.5 kg/day; milk fat Con: 3.8%; Bm: 3.3%). In Trial 2, milk yield and fat-corrected milk (FCM) were increased significantly, whereas milk-fat% was decreased significantly (milk yield Con: 25.8 kg/day; Bm: 29.4 kg/day; FCM Con: 27.2 kg/day; Bm: 29.6 kg/day; fat Con: 4.4%; Bm: 4.0%). Diets did not influence ruminal pH or temperature. Diets, furthermore, did not influence rumination in either trial. Additional research on digestibility and rumen fermentation should, however, be carried out using dairy cows at respective intake levels as trials with wethers cannot be transferred to high-yielding ad libitum fed cows.

  17. Effects of feeding grass or red clover silage cut at two maturity stages in dairy cows. 2. Dry matter intake and cell wall digestion kinetics.

    PubMed

    Kuoppala, K; Ahvenjärvi, S; Rinne, M; Vanhatalo, A

    2009-11-01

    This study examined the effects of red clover or grass silages cut at 2 stages of growth on feed intake, cell wall digestion, and ruminal passage kinetics in lactating dairy cows. Five dairy cows equipped with rumen cannulas were used in a study designed as a 5 x 5 Latin square with 21-d periods. Diets consisted of early-cut and late-cut grass and red clover silages and a mixture of late-cut grass and early-cut red clover silages offered ad libitum. All diets were supplemented with 9 kg/d of concentrate. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Apparent total-tract digestibility was determined by total fecal collection. The silage dry matter intake was highest when the mixed forage diet was fed and lowest with the early-cut red clover diet. Delaying the harvest tended to decrease DMI of grass and increase that of red clover. The intake of neutral detergent fiber (NDF) and potentially digestible NDF (pdNDF) was lower but the intake of indigestible NDF (iNDF) was higher for red clover diets than for grass diets. The rumen pool size of iNDF and the ratio of iNDF to pdNDF in the rumen contents were larger, and pool sizes of NDF and pdNDF were smaller for red clover than for grass silage diets. Outflow of iNDF and the ratio of iNDF to pdNDF in digesta entering the omasal canal were larger, and the outflow of pdNDF was smaller for red clover than for grass silage diets. The digestion rate (k(d)) of pdNDF was faster for red clover diets than for grass silage diets. Delaying the harvest decreased k(d) for grass but increased it for red clover silage diets. Observed differences in fiber characteristics of red clover and grass silages were reflected in ruminal digestion and passage kinetics of these forages. The low intake of early-cut red clover silage could not be explained by silage digestibility, fermentation quality, or rumen fill, but was most likely related to nutritionally suboptimal composition because inclusion of

  18. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    NASA Astrophysics Data System (ADS)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked

  19. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures.

    PubMed

    Wims, C M; Delaby, L; Boland, T M; O'Donovan, M

    2014-01-01

    A grazing study was undertaken to examine the effect of maintaining three levels of pre-grazing herbage mass (HM) on dairy cow performance, grass dry matter (DM) production and output from perennial ryegrass (Lolium perenne L.) pastures. Cows were randomly assigned to one of three pre-grazing HM treatments: 1150 - Low HM (L), 1400 - Medium HM (M) or 2000 kg DM/ha - High HM (H). Herbage accumulation under grazing was lowest (P<0.01) on the L treatment and cows grazing the L pastures required more grass silage supplementation during the grazing season (+73 kg DM/cow) to overcome pasture deficits due to lower pasture growth rates (P<0.05). Treatment did not affect daily milk production or pasture intake, although cows grazing the L pastures had to graze a greater daily area (P<0.01) and increase grazing time (P<0.05) to compensate for a lower pre-grazing HM (P<0.01). The results indicate that, while pre-grazing HM did not influence daily milk yield per cow, adapting the practise of grazing low HM (1150 kg DM/ha) pasture reduces pasture DM production and at a system level may increase the requirement for imported feed.

  20. THE NUTRIENT COMPOSITION OF THE DIET OF BOTTLENOSE DOLPHINS (TURSIOPS TRUNCATUS) IS BETTER ASSESSED RELATIVE TO METABOLIZABLE ENERGY THAN DRY MATTER.

    PubMed

    Ardente, Amanda J; Hill, Richard C

    2015-06-01

    Nutrient concentrations in a diet can be expressed either "as fed," relative to dry matter (DM), or relative to metabolizable energy (ME). Most published literature evaluates the diet of dolphins by comparing nutrient content relative to DM. Nevertheless, ME requirements, not DM, determine how much food dolphins need to maintain their body condition. The purpose of this paper is to illustrate why it is important to calculate the ME content of fish fed to dolphins and compare nutrient concentrations in dolphin diets relative to ME, not DM. Two studies that compared the nutrient composition of fish species on a DM basis were reevaluated. The ME content of each fish species was calculated and found to vary widely among species, from 0.94 to 1.58 Mcal/kg as fed. Water, mineral, and fat concentrations relative to ME also varied markedly among fish species. To demonstrate the magnitude of nutrient content differences between fish, the percent change in nutrient concentration for each species was calculated relative to herring. The percent changes for DM and ME analyses were then compared. Percent change in nutrient concentration was either over- or underestimated on a DM basis when compared with the percent change on an ME basis. Notable discrepancies were evident among important nutrients, such as crude protein, water, and sodium. Caretakers of managed dolphins must account for differences in energy density when deciding how much to feed and assessing the nutrient composition of the diet.

  1. Grazing behaviour and dry matter intake of llamas (Lama glama) and German black- head mutton sheep (Ovis orientalis forma aries) under Central European conditions.

    PubMed

    Stölzl, Anna Maria; Lambertz, Christian; Gauly, Matthias

    2015-01-01

    The aim of the present study was to assess the behaviour of llamas (Lama glama) and German blackhead mutton sheep (Ovis orientalis forma aries) when kept under Central European grazing conditions. In total, six adult female sheep and six adult female llamas were observed by direct observation during one week, in which each group was observed for a total time of 24 h. The animals were kept on the same pasture, but the species were raised in separate plots. Forage height before and after the experimental period were determined using a rising plate meter to calculate the average daily dry matter intake (DMI). Llamas had a daily DMI of 0.85%/BW and sheep of 1.04%/BW, respectively. The following behaviours were recorded by direct observation: grazing standing up, grazing lying down, ruminating standing up, ruminating lying down, lying down, lying down lateral and standing. Both species grazed for more than 50% of the time. Ruminating was predominantly performed while standing and lying by sheep (about 50% of the night and 12% of the day) and while lying by llamas (54% of the night and 10% of the day). In conclusion, sheep and llamas differed in grazing behaviour and daily biorhythm. These differences indicate that sheep and llamas may not synchronize their behaviour when co-grazed, though particularly in co-grazing studies the observation period should be extended.

  2. Effects of maize (Zea mays L.) silage feeding on dry matter intake and milk production of dairy buffalo and cattle in Tarai, Nepal.

    PubMed

    Hayashi, Yoshiaki; Thapa, Bhim B; Sharma, Mohan P; Sapkota, Maheshwor; Kumagai, Hajime

    2009-08-01

    To identify the effects of whole crop maize silage (MS) as a substitute for rice straw (RS) on feed intake and milk production of mid-late lactating buffalo and cattle in Tarai, Nepal, eight Murrah and eight Jersey-Hariana were fed the basal diet, RS (ad libitum) with concentrate (0.68% of bodyweight [BW] on a dry matter [DM] basis). A 4 x 4 Latin square design experiment was conducted in each animal species with graded levels of MS substitution for RS (0%, T1; 33%, T2; 67%, T3 and 100%, T4). The MS had higher digestibility and total digestible nutrient (TDN) than RS. The DM intake per BW of the both species was highest in T3. The substitution of MS for RS increased the crude protein intake and the TDN intake in the both species. Although the buffalo showed the highest milking performance in T4, the cattle showed no significant differences in their milking performance among the treatments. The substitution of MS for RS improved the feed intake and milk production in the buffalo. On the other hand, the milk yield was not raised in the cattle, though the feed intake was increased by the substitution.

  3. Leaf and Shoot Water Content and Leaf Dry Matter Content of Mediterranean Woody Species with Different Post-fire Regenerative Strategies

    PubMed Central

    Saura-Mas, S.; Lloret, F.

    2007-01-01

    Background and Aims Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to deteremine whether there is co-variation between species regenerative types and functional attributes related to water use. Methods An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). Key Results RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Conclusions Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities. PMID:17237213

  4. Effect of reduced energy density of close-up diets on dry matter intake, lactation performance and energy balance in multiparous Holstein cows

    PubMed Central

    2014-01-01

    Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of close-up diets on dry matter intake (DMI), lactation performance and energy balance (EB) in multiparous Holstein cows which were housed in a free-stall barn and fed for ad libitum intake. Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet [HD, n = 13; 6.8 MJ of net energy for lactation (NEL)/kg; 14.0% crude protein (CP) ], or a middle energy density diet (MD, n = 13; 6.2 MJ NEL/kg; 14.0% CP), or a low energy density diet (LD, n = 13; 5.4 MJ NEL/kg; 14.0% CP) from d 21 before expected day of calving. After parturition, all cows were fed the same lactation diet to d 70 in milk (DIM). The DMI and NEL intake prepartum were decreased by the reduced energy density diets (P < 0.05). The LD group consumed 1.3 kg/d (DM) more diet compared with HD group in the last 24 h before calving. The milk yield and the postpartum DMI were increased by the reduced energy density diet prepartum (P < 0.05). The changes in BCS and BW prepartum and postpartum were not affected by prepartum diets. HD group had higher milk fat content and lower lactose content compared with LD group during the first 3 wk of lactation (P < 0.05). The energy consumption for HD, MD and LD groups were 149.8%, 126.2% and 101.1% of their calculated energy requirements prepartum (P < 0.05), and 72.7%, 73.1% and 75.2% during the first 4 wk postpartum, respectively. In conclusion, the low energy density prepartum diet was effective in controlling NEL intake prepartum, and was beneficial in increasing DMI and milk yield, and alleviating negative EB postpartum. PMID:24976969

  5. Effect of reduced energy density of close-up diets on dry matter intake, lactation performance and energy balance in multiparous Holstein cows.

    PubMed

    Huang, Wenming; Tian, Yujia; Wang, Yajing; Simayi, Aminamu; Yasheng, Amingguli; Wu, Zhaohai; Li, Shengli; Cao, Zhijun

    2014-01-01

    Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of close-up diets on dry matter intake (DMI), lactation performance and energy balance (EB) in multiparous Holstein cows which were housed in a free-stall barn and fed for ad libitum intake. Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet [HD, n = 13; 6.8 MJ of net energy for lactation (NEL)/kg; 14.0% crude protein (CP) ], or a middle energy density diet (MD, n = 13; 6.2 MJ NEL/kg; 14.0% CP), or a low energy density diet (LD, n = 13; 5.4 MJ NEL/kg; 14.0% CP) from d 21 before expected day of calving. After parturition, all cows were fed the same lactation diet to d 70 in milk (DIM). The DMI and NEL intake prepartum were decreased by the reduced energy density diets (P < 0.05). The LD group consumed 1.3 kg/d (DM) more diet compared with HD group in the last 24 h before calving. The milk yield and the postpartum DMI were increased by the reduced energy density diet prepartum (P < 0.05). The changes in BCS and BW prepartum and postpartum were not affected by prepartum diets. HD group had higher milk fat content and lower lactose content compared with LD group during the first 3 wk of lactation (P < 0.05). The energy consumption for HD, MD and LD groups were 149.8%, 126.2% and 101.1% of their calculated energy requirements prepartum (P < 0.05), and 72.7%, 73.1% and 75.2% during the first 4 wk postpartum, respectively. In conclusion, the low energy density prepartum diet was effective in controlling NEL intake prepartum, and was beneficial in increasing DMI and milk yield, and alleviating negative EB postpartum.

  6. Effects of dietary glycerin inclusion at 0, 5, 10, and 15 percent of dry matter on energy metabolism and nutrient balance in finishing beef steers.

    PubMed

    Hales, K E; Foote, A P; Brown-Brandl, T M; Freetly, H C

    2015-01-01

    Expansion of the biodiesel industry has increased the glycerin (GLY) supply. Glycerin is an energy-dense feed that can be used in ruminant species; however, the energy value of GLY is not known. Therefore, the effects of GLY inclusion at 0, 5, 10, and 15% on energy balance in finishing cattle diets were evaluated in 8 steers (BW = 503 kg) using a replicated Latin square design. Data were analyzed with the fixed effects of dietary treatment and period, and the random effects of square and steer within square were included in the model. Contrast statements were used to separate linear and quadratic effects of GLY inclusion. Glycerin replaced dry-rolled corn (DRC) at 0, 5, 10, and 15% of dietary DM. Dry matter intake decreased linearly (P = 0.02) as GLY increased in the diet. As a proportion of GE intake, fecal energy loss tended to decrease linearly (P < 0.07), and DE also tended to increase linearly (P = 0.07) as dietary level of GLY increased. Urinary energy loss was not different (P > 0.31) as a proportion of GE as GLY increased in the diet. Methane energy loss as a proportion of GE intake tended to respond quadratically (P = 0.10), decreasing from 0 to 10% GLY inclusion and increasing thereafter. As a proportion of GE intake, ME tended to respond quadratically (P = 0.10), increasing from 0 to 10% GLY and then decreasing. As a proportion of GE intake, heat production increased linearly (P = 0.02) as GLY increased in the diet. Additionally, as a proportion of GE intake, retained energy (RE) tended to respond quadratically (P = 0.07), increasing from 0 to 10% GLY inclusion and decreasing thereafter. As a proportion of N intake, urinary and fecal N excretion increased linearly (P < 0.04) as GLY increased in the diet. Furthermore, grams of N retained and N retained as a percent of N intake both decreased linearly (P < 0.02) as GLY increased in the diet. Total DM digestibility tended (P < 0.10) to respond quadratically, increasing at a decreasing rate from 0 to 5% GLY

  7. Effects of increasing milking frequency during the last 28 days of gestation on milk production, dry matter intake, and energy balance in dairy cows.

    PubMed

    Rastani, R R; Del Rio, N Silva; Gressley, T F; Dahl, G E; Grummer, R R

    2007-04-01

    Forty-eight Holstein cows were used in a randomized block design to evaluate different dry period lengths and prepartum milking frequencies (MF) on subsequent milk production, milk composition, solids-corrected milk production, dry matter intake (DMI), and energy balance. Lactating cows, milked 2 times/d, began a 7-d covariate period 35 d prior to the expected calving date. Cows were milked 0 times/d (0x), 1 time/d (1x), and 4 times/d (4x) for the last 28 d of gestation. If milk production decreased to less than 0.5 kg/milking or 1 kg/d, milking via machine ceased; however, teat stimulation continued 1 or 4 times/d according to the treatment assignment. All cows were milked 2 times/d postpartum (wk 1 to 10). Prepartum DMI tended to be greater for 1x and 4x compared with 0x. Prepartum, cows milked 1x produced 17% less milk than cows milked 4x (5.9 and 7.1 kg/d, respectively). There were no differences in prepartum and postpartum body condition scores, body weights, and DMI. Postpartum milk production by cows following their third or greater gestation was greater for 0x and 4x compared with 1x. Postpartum milk production by cows following their second gestation was significantly decreased with increased MF (0x vs. 1x and 4x). Regardless of parity, postpartum solids-corrected milk was greater for 0x compared with 1x and 4x. Postpartum fat yield was greater for 0x vs. 4x, with 1x being intermediate. Postpartum protein yield was greater for 0x vs. 4x, whereas 0x tended to have greater protein yield than 1x. Postpartum energy balance was greater for 1x and 4x relative to 0x. Continuous milking (1x and 4x) resulted in a loss of milk production in the subsequent lactation for cows following their second gestation; however, for cows following their third or greater gestation, increasing the MF from 1x to 4x in the last 28 d of gestation alleviated the loss in milk production.

  8. Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow.

    PubMed

    Rustomo, B; AlZahal, O; Odongo, N E; Duffield, T F; McBride, B W

    2006-12-01

    The objective of this study was to evaluate the effects of level of concentrate acidogenic value (AV) and forage particle size on ruminal pH and feed intake in lactating dairy cows. Two isoenergetic (net energy for lactation = 1.5 +/- 0.01 Mcal/kg) and isonitrogenous (crude protein = 17.4 +/- 0.1% dry matter) concentrates with either a low AV or high AV were formulated and fed in a total mixed ration with either coarsely or finely chopped corn silage and alfalfa haylage ad libitum. Four rumen-fistulated cows (114 +/- 14 d in milk) were randomly assigned to 1 of the 4 treatments in a 4 x 4 Latin square with a 2 x 2 factorial treatment arrangement. Each period consisted of 3-wk (14-d treatment adaptation and 7-d data collection). Increasing the concentrate AV decreased the mean pH (from 6.07 to 5.97) and minimum pH (from 5.49 to 5.34). Cows fed high-AV diets spent a longer time below pH 5.6 (135.1 vs. 236.7 min/d; low-AV diet vs. high-AV diet, respectively) and pH 5.8 (290.0 vs. 480.6 min/d; low-AV diet vs. high-AV diet, respectively) than cows fed low-AV diets. Increasing forage particle size had no effect on the mean and minimum ruminal pH. There was an interaction between concentrate AV and forage particle size on maximum ruminal pH. Increasing forage particle size increased the maximum pH for cows fed the high-AV concentrate (6.69 vs. 6.72; low-AV diet vs. high-AV diet, respectively) and had no effect on the maximum pH for cows fed the low-AV concentrate (6.98 vs. 6.76; low-AV diet vs. high-AV diet, respectively). Increasing the concentrate AV did not affect dry matter intake but reduced neutral detergent fiber intake from 9.7 to 8.8 kg/d. Milk fat content was negatively correlated with time and area below pH 5.6 (time below, r = -0.51; area below, r = -0.56) and pH 5.8 (time below, r = -0.42; area below, r = -0.54). These results suggest that coarse forage particle size can attenuate drops in ruminal pH. However, the ameliorating effects of forage particle size

  9. Impact of diet composition and temperature-humidity index on water and dry matter intake of high-yielding dairy cows.

    PubMed

    Ammer, S; Lambertz, C; von Soosten, D; Zimmer, K; Meyer, U; Dänicke, S; Gauly, M

    2017-03-15

    The temperature-humidity index (THI) is widely used to characterize heat stress in dairy cattle. Diet composition is known to induce variation in metabolic-associated heat production. However, the relationships between THI and diet are poorly characterized with regard to performance and intake behaviour. Therefore, the objectives were to evaluate the impact of THI on water intake (WI), dry matter intake (DMI) and the frequency of drinking and feeding bouts in lactating dairy cows offered four dietary treatments: each contained 20% grass silage and additionally (i) 20% maize silage, 60% concentrate (M-HC); (ii) 60% maize silage, 20% concentrate (M-LC); (iii) 20% pressed beet pulp silage, 60% concentrate (BPS-HC); or (iv) 60% pressed beet pulp silage, 20% concentrate (BPS-LC) (DM basis). Individual WI and DMI were recorded from April to July 2013. Furthermore, dietary effects on milk production and reticular pH were estimated. Milk yield was lowest for M-LC, while energy-corrected milk was similar for all diets. Milk fat percentage was higher and milk protein amount lower for cows offered both LC diets. Reticular pH below 6.3, 6.0 and 5.8 lasted longest for BPS-LC. WI was higher for HC diets. However, the frequency of drinking bouts was not influenced by the ration. Lower DMI occurred for BPS-LC compared to M-LC. Frequency of feeding bouts was significantly higher for LC diets. THI was significantly related to WI, DMI as well as drinking and feeding bouts. Per increasing THI, WI increased slightly more for LC diets and DMI decreased more for HC diets. Frequency of drinking bouts increased slightly higher for BPS rations per rising THI, while the decrease in feeding bouts was highest for M-HC. In conclusion, TMR composition and moderate heat stress impacted WI and DMI of dairy cows, while both dietary energy density and ruminal filling might intensify the THI impact.

  10. Maturity of coastal bermudagrass and alfalfa affects ruminal in situ and total tract dry matter and phosphorus disappearance in cannulated steers.

    PubMed

    Riojas-McCollister, A V; Lambert, B D; Muir, J P

    2011-04-01

    Variability of phosphorus (P) availability among forage species and plant maturity is largely ignored when formulating ruminant diets. To determine if variability in P availability changes with forage species and/or maturity, ruminal in situ and total (ruminal+post-ruminal) dry matter (DM) and phosphorus disappearance (PD) from alfalfa (ALF; Medicago sativa) and coastal bermudagrass (CB; Cynodon dactylon) harvested at four stages of maturity was measured in cattle. Forages were hand clipped at 14, 21, 28 and 35 days after first cutting. Ruminal in situ DM disappearance (DMD) and PD were measured after 24 h ruminal incubation in Dacron bags. Total tract DMD and PD were measured using the mobile nylon bag technique. Disappearance of DM and P were greater (p≤0.05) in the rumen than post-rumen for both species regardless of maturity; however, 80 g PD/kg DM in 35-day ALF (9% of total PD) and 224 g PD/kg of 35-day CB (38% of total PD) occurred post ruminally. Alfalfa DM disappeared to a greater (p ≤ 0.05) extent than CB and showed 5% greater total tract PD at 14 days and 13% more at 35 days compared to the grass. Alfalfa total tract PD decreased (p ≤ 0.05) 5.4% from 14- to 35-day maturity while the decrease was far greater for CB, 12.4%. Results from this study indicate that ruminant nutritionists should take into account forage species and maturity when calculating PD in diets; these details can be used to aid in formulating more precise rations that reduce fecal-phosphorus excretion into the environment.

  11. Effect of dietary net energy concentration on dry matter intake and energy partition in cows in mid-lactation under heat stress.

    PubMed

    Yan, Fangquan; Xue, Bai; Song, Liangrong; Xiao, Jun; Ding, Siyan; Hu, Xiaofei; Bu, Dengpan; Yan, Tianhai

    2016-11-01

    This study aimed to determine the net energy requirement of Holstein cows in mid-lactation under heat stress. Twenty-five multiparous Holstein cows were randomly allocated to five groups corresponding to five isonitrogenous total mixed rations, with net energy for lactation (NEL ) content of 6.15 (NE-6.15), 6.36 (NE-6.36), 6.64 (NE-6.64), 6.95 (NE-6.95), 7.36 (NE-7.36) MJ/kg of dry matter (DM), respectively. Throughout the experimental period the average temperature humidity index at 07.00, 14.00 and 22.00 hours was 72.1, 88.7, and 77.6, respectively. DM intake decreased significantly with the elevated dietary NEL concentration. Fat corrected milk increased quadratically, and milk fat content and milk energy (MJ/kg) reached the greatest in the NE-6.95 group with increasing dietary NEL content. Strong correlations were found between dietary NEL content and: (i) DM intake; (ii) NEL intake; (iii) milk energy (El ); (iv) El /metabolizable energy intake (MEI); (v) El /NEL intake, as well as between NEL intake and fat corrected milk yield (FCM). The suitable net energy required for dairy cows producing 1 kg FCM ranged from 5.01 to 5.03 MJ, was concluded from the above-stated regressions. Correlation between heat production (HP) and MEI could be expressed as: Log (HP) = -0.4304 + 0.2963*MEI (n = 15, R(2)  = 0.99, Root Mean Square Error (RMSE) = 0.18). Fasting HP was 0.3712 MJ/kg(0.75) when extrapolating MEI to zero.

  12. Effect of Lactobacillus inoculants and forage dry matter on the fermentation and aerobic stability of ensiled mixed-crop tall fescue and meadow fescue.

    PubMed

    Guo, X S; Undersander, D J; Combs, D K

    2013-03-01

    This study evaluated the effects of Lactobacillus plantarum with or without Lactobacillus buchneri on the fermentation and aerobic stability of mixed tall fescue (Festuca arundinacea Schreb) and meadow fescue (Festuca pratensis Huds.) silage ensiled at different dry matter (DM) contents. The first cut was harvested at boot stage and second-cut grasses were harvested when 30- to 35-cm tall. Four DM content treatments of the first cut were 17.9, 24.9, 34.6, and 48.7%; and of the second cut were 29.1, 36.3, 44.1, and 49.2%. Chopped grasses at each DM content were treated with (1) deionized water (control), (2) Lb. plantarum MTD-1 (LP), or (3) a combination of Lb. plantarum MTD-1 and Lb. buchneri 40788 (LP+LB). The application amount of each inoculant to the fresh forage was 1 × 10(6) cfu/g. Grasses were ensiled in vacuum-sealed polyethylene bags containing 150 g of DM for 60 d, with 4 replicates for each treatment. Silages inoculated with LP+LB had greater pH compared with untreated or LP-treated silages. Lactate was greater in LP silage than control or LP+LB silages. As silage DM increased, lactate in untreated and LP-treated silages decreased, but increased in LP+LB-treated silage. Acetate concentration decreased with increased DM in all silages. The LP+LB-treated silage had the longest and control silage the shortest aerobic stability for both harvests. The greatest values in aerobic stability were observed in silages with highest DM content. In this study, aerobic stability of grass mixes ensiled between 18 and 44% DM content increased as the percentage of DM increased. The LP and LP+LB inoculants improved aerobic stability of silages harvested between 18 and 44% DM content.

  13. Effects of feeding propylene glycol on dry matter intake, lactation performance, energy balance and blood metabolites in early lactation dairy cows.

    PubMed

    Liu, Q; Wang, C; Yang, W Z; Zhang, W W; Yang, X M; He, D C; Dong, K H; Huang, Y X

    2009-10-01

    The objectives of this study were to evaluate effects of feeding propylene glycol (PG) on feed intake, milk yield and milk composition, blood metabolites and energy balance in Holstein dairy cows from 1 to 63 days in milk. Thirty-two multiparous cows, blocked by lactation number, previous 305-day milk production and expected calving date, were arranged into four groups in a randomized block design. Treatments were: control, low PG, medium PG and high PG with 0, 150, 300 and 450 ml PG per cow per day, respectively. The supplement of food grade PG (0.998 g/g PG) was hand-mixed into the top one-third of the daily ration. Cows were fed ad libitum a total mixed ration consisting of forage and concentrate (50 : 50, dry matter basis). Feed intake, milk yield and milk components were not affected (P > 0.05) by PG supplementation. Overall, body weight (BW) loss tended (P < 0.08) to be linearly reduced, and energy status was linearly improved with increasing PG supplementation. Concentrations of glucose in plasma were higher for cows fed PG relative to control (55.6 v. 58.9 mg/dl) and linearly increased (P < 0.01) with increasing PG supplementation. Plasma concentrations of non-esterified fatty acids and beta-hydroxybutyrate were linearly increased, but urine acetoacetate concentration was quadratically changed with the highest for control diet and the lowest for 450 ml/day of PG. These results indicated that supplementation of PG in the early lactating cow diets had minimal effects on feed intake and milk production, but may potentially reduce contents of milk fat and milk protein. Supplementation of early lactating dairy cow diets with PG is beneficial in terms of improving energy status and reducing BW loss.

  14. Interrelationships in lactating Holsteins of rectal and skin temperatures, milk yield and composition, dry matter intake, body weight, and feed efficiency in summer in Alabama.

    PubMed

    Umphrey, J E; Moss, B R; Wilcox, C J; Van Horn, H H

    2001-12-01

    Thirty-two lactating, multiparous Holstein cows were utilized in a 91-d experiment in Auburn, Alabama, during summer to determine whether rectal and skin temperatures and respiration rates are repeatable and interrelated and whether whole cottonseed or calcium salts of long-chain fatty acids (Megalac, Church & Dwight Co., Inc., Princeton, NJ) affected milk production or its constituents. Treatments were (I) control, (II) I plus 10.4% whole cottonseed, (III) I plus 2.6% Megalac, and (IV) I plus 5.2% whole cottonseed plus 1.3% Megalac. Data included 358 to 2644 measurements analyzed as a split-plot design of experiment. Only milk protein percentage and protein-to-fat ratio were significantly affected by dietary treatment. Milk protein percentage was depressed by dietary fat additions, especially by the combination of whole cottonseed and Megalac. Within lactation repeatabilities for milk, fat, protein, and SCM yields ranged from 0.44 to 0.66; two percentages and protein to fat ratio, 0.21 to 0.32; feed efficiency, 0.18; dry matter intake (DMI) and body weight, 0.98 and 0.84; rectal and skin temperatures and respiration rate, 0.001 to 0.055. Partial and simple correlations were similar in sign and magnitude. Noteworthy were partial correlations between milk yield and DMI, 0.367; milk yield and rectal temperature, -0.135; milkyield and respiration rate, 0.102. Skin temperature was unrelated to other variables. Respiration rate was correlated with DMI, 0.270. Results should help researchers designing future experiments involving these responses to predict the number of measures needed to detect differences.

  15. Evaluation of the National Research Council (1996) dry matter intake prediction equations and relationships between intake and performance by feedlot cattle.

    PubMed

    McMeniman, J P; Defoor, P J; Galyean, M L

    2009-03-01

    Intake prediction equations of NRC based on initial BW and dietary NE(m) concentration were evaluated with a commercial feedlot database consisting of 3,363 pen means collected from 3 feedlots over a 4-yr period. The DMI predicted by NRC equations had significant (P < 0.01) mean and linear biases across the range of observed DMI in the database. In general, DMI was overpredicted by the NRC equations. Adjustment of the NE(m)-based prediction by use of a 12% increase in NE(m) concentration and a 4% decrease in predicted DMI associated with the feeding of monensin decreased bias. Dry matter intake predicted by the NE(m)-based monensin-adjusted, NE(m)- based, and initial BW equations explained 67, 66, and 64% of the variation in observed DMI, respectively. Relationships between ADG and G:F with DMI as a percentage of BW and NE(g) intake also were examined in the same data set. Across the wide range of average shrunk BW in the database (334.4 to 548.0 kg), ADG was positively related to DMI as a percentage of BW (P < 0.01); however, this relationship was not strong (r(2) = 0.17). Likewise, G:F showed little relationship with DMI as a percentage of BW (P < 0.01; r(2) = 0.05). By accounting for differences in maintenance energy requirements of pens with varying average BW, NE(g) intake was strongly and positively related to ADG (linear and quadratic, P < 0.01; R(2) = 0.70); however, G:F showed little relationship with NE(g) intake (P = 0.02; r(2) = 0.01). Our evaluations with measurements of DMI by cattle in commercial feedlots indicated the shortcomings of current published equations for predicting DMI and suggest the need for development of new equations with improved accuracy and precision. Furthermore, our data indicate that increasing NE(g) in- take increased ADG in a quadratic manner but did not affect G:F by pens of cattle in feedlots. These findings suggest a diminishing returns effect of energy intake on energy retention.

  16. Leptin concentrations in finishing beef steers and heifers and their association with dry matter intake, average daily gain, feed efficiency, and body composition.

    PubMed

    Foote, A P; Tait, R G; Keisler, D H; Hales, K E; Freetly, H C

    2016-04-01

    The objective of this experiment was to determine the association of circulating plasma leptin concentrations with production and body composition measures of finishing beef steers and heifers and to determine if multiple sampling time points improve the associations of plasma leptin concentrations with production and body composition traits. Individual dry matter intake (DMI) and ADG were determined for 84 d using steers and heifers (n = 127 steers and n = 109 heifers). Blood was collected on day 0, day 42, and day 83 for determination of plasma leptin concentrations. Leptin concentrations were greater in heifers than those in steers on day 0 (P < 0.001 for sex by day interaction), and leptin concentrations increased in both sexes but were not different from each other on day 83. Leptin concentrations at all 3 time points and the mean were shown to be positively associated with DMI (P ≤ 0.006), whereas the mean leptin concentration explaining 8.3% of the variance of DMI. Concentrations of leptin at day 42, day 83, and the mean of all 3 time points were positively associated with ADG (P ≤ 0.011). Mean leptin concentration was negatively associated with gain:feed ratio and positively associated with residual feed intake (RFI), indicating that more efficient cattle had lower leptin concentrations. However, leptin concentrations explained very little of the variation in residual feed intake (≤ 3.2% of the variance). Leptin concentrations were positively associated with body fat measured by ultrasonography at the 12th rib and over the rump (P < 0.001), with the mean leptin concentration explaining 21.9% and 12.7% of the variance in 12th rib and rump fat thickness, respectively. The same trend was observed with carcass composition where leptin concentrations were positively associated with 12th rib fat thickness, USDA-calculated yield grade (YG), and marbling score (P ≤ 0.006) and mean leptin concentration explained 16.8, 18.2, and 4.6% of the variance for 12th

  17. Predicting grass dry matter intake, milk yield and milk fat and protein yield of spring calving grazing dairy cows during the grazing season.

    PubMed

    O'Neill, B F; Lewis, E; O'Donovan, M; Shalloo, L; Galvin, N; Mulligan, F J; Boland, T M; Delagarde, R

    2013-08-01

    Predicting the grass dry matter intake (GDMI), milk yield (MY) or milk fat and protein yield (milk solids yield (MSY)) of the grazing dairy herd is difficult. Decisions with regard to grazing management are based on guesstimates of the GDMI of the herd, yet GDMI is a critical factor influencing MY and MSY. A data set containing animal, sward, grazing management and concentrate supplementation variables recorded during weeks of GDMI measurement was used to develop multiple regression equations to predict GDMI, MY and MSY. The data set contained data from 245 grazing herds from 10 published studies conducted at Teagasc, Moorepark. A forward stepwise multiple regression technique was used to develop the multiple regression equations for each of the dependent variables (GDMI, MY, MSY) for three periods during the grazing season: spring (SP; 5 March to 30 April), summer (SU; 1 May to 31 July) and autumn (AU; 1 August to 31 October). The equations generated highlighted the importance of different variables associated with GDMI, MY and MSY during the grazing season. Peak MY was associated with an increase in GDMI, MY and MSY during the grazing season with the exception of GDMI in SU when BW accounted for more of the variation. A higher body condition score (BCS) at calving was associated with a lower GDMI in SP and SU and a lower MY and MSY in all periods. A higher BCS was associated with a higher GDMI in SP and SU, a higher MY in SU and AU and a higher MSY in all periods. The pre-grazing herbage mass of the sward (PGHM) above 4 cm was associated with a quadratic effect on GDMI in SP, on MY in SP and SU and on MSY in SU. An increase in daily herbage allowance (DHA) above 4 cm was associated with an increase in GDMI in AU, an increase in MY in SU and AU and MSY in AU. Supplementing grazing dairy cows with concentrate reduced GDMI and increased MY and MSY in all periods. The equations generated can be used by the Irish dairy industry during the grazing season to predict the

  18. Stay-green ranking and maturity of corn hybrids: 1. Effects on dry matter yield, nutritional value, fermentation characteristics, and aerobic stability of silage hybrids in Florida.

    PubMed

    Arriola, K G; Kim, S C; Huisden, C M; Adesogan, A T

    2012-02-01

    This study determined effects of maturity, stay-green (SG) ranking, and hybrid source on dry matter (DM) yield, nutritive value, fermentation, and aerobic stability of corn hybrids. One high stay-green (HSG) hybrid and one average stay-green (ASG) hybrid with similar relative maturity (117 d) from each of 2 seed companies (Croplan Genetics, St. Paul, MN; Pioneer Hi-Bred International, Des Moines, IA) were grown on 1-× 6-m plots at random locations within each of 4 blocks. The hybrids were harvested at 25, 32, and 37% DM from each plot and separated into thirds for botanical fractionation and analysis, whole-plant chemical analysis, and ensiling. Chopped, whole plants were ensiled (8 kg) in quadruplicate in 20-L mini-silos for 107 d. A split-plot design was used for the study. Yields of whole-plant and digestible DM and concentrations of starch and DM increased with maturity, whereas concentrations of crude protein, water-soluble carbohydrates, and neutral detergent fiber decreased. High SG hybrids had greater DM yield than ASG hybrids when harvested at 25 and 37%, but not 32% DM. Unlike those from Croplan Genetics, the Pioneer HSG hybrid had greater ear and whole-plant DM concentration than their ASG hybrids. Stover moisture and CP concentration were greater among HSG versus ASG hybrids, particularly among Croplan Genetics hybrids. Croplan Genetics HSG hybrids had greater neutral and acid detergent fiber concentrations and lower in vitro DM digestibility in the unensiled whole-plant, the stover, and the silage than their ASG hybrids, whereas contrasting trends were evident for Pioneer hybrids. Silage fermentation indices were largely unaffected by hybrid SG ranking, maturity, or source. Yeast counts increased with maturity and exceeded 10(5) cfu/g; therefore, all silages deteriorated with 26 h, irrespective of treatment. Among the hybrids examined, the optimal maturity for optimizing DM yield and nutritive value of the ASG and HSG hybrids was 37% DM. Stay

  19. Effects of an exogenous protease on the fermentation and nutritive value of corn silage harvested at different dry matter contents and ensiled for various lengths of time.

    PubMed

    Windle, M C; Walker, N; Kung, L

    2014-05-01

    The objective of this experiment was to evaluate the effects of adding an experimental protease to corn plants harvested at different maturities on silage fermentation and in vitro ruminal starch digestibility (IVSD). Corn plants were harvested at maturities resulting in plants with 31 or 40% dry matter (DM). Plants were chopped, kernel processed, and treated with (1) only a 0.1 M phosphate buffer (pH 5.5, 5% vol/wt of fresh forage), (2) buffer with protease to obtain a final concentration of 20mg of protease/kg of wet forage, and (3) buffer with protease to obtain a final concentration of 2,000 mg of protease/kg of wet forage. Treated forages (about 500 g) were ensiled in nylon-polyethylene pouches and stored between 21 and 23°C for 0, 45, 90, and 150 d. Data were analyzed as a 2 × 3 × 4 factorial arrangement of treatments, with the main effects of harvest DM, dose of protease, days of ensiling, and their interactions. The treatment with the highest dose of protease resulted in more robust fermentations across harvest DM with higher concentrations of lactic and acetic acids compared with untreated silage. Concentrations of soluble protein (% of crude protein) increased with time of ensiling, regardless of DM content at harvest. However, averaged over both harvest DM contents, it increased by 37% for silages treated with the high dose of protease compared with an average 11% increase for untreated silages and silage treated with the low dose of protease, between d 0 and 45. Averaged over both harvest DM contents, the concentration of soluble protein peaked in silages treated with the high dose of protease after 45 d of ensiling, whereas it peaked at d 90 in untreated silages and silage treated with the low dose of protease. Similar changes occurred in the concentration of NH3-N due to length of ensiling and treatment with protease. In fresh forages, the concentration of starch for early- and late-harvested forages was similar, but IVSD was lower in the latter

  20. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents.

    PubMed

    Hu, W; Schmidt, R J; McDonell, E E; Klingerman, C M; Kung, L

    2009-08-01

    Whole-plant corn was harvested at 33 (normal) and 41% (moderately high) dry matter (DM) and ensiled in quadruplicate 20-L laboratory silos to investigate the effects of Lactobacillus buchneri 40788 (LB) or L. plantarum MTD-1 (LP) alone, or in combination, on the fermentation and aerobic stability of the resulting silage. Aerobic stability was defined as the amount of time after exposure to air for the silage temperature to reach 2 degrees C above ambient temperature. The chopped forage was used in a 2 x 2 x 2 factorial arrangement of treatments: normal and moderately high DM contents, LB at 0 (untreated) or 4 x 10(5) cfu/g of fresh forage, and LP at 0 or 1 x 10(5) cfu/g. After 240 d of ensiling, corn silage harvested at the moderately high DM had higher pH, higher concentrations of ethanol, and more yeasts compared with the silage ensiled at the normal DM content. Inoculation with LB did not affect the concentration of lactic acid in silages with a moderately high DM, but decreased the concentration of lactic acid in the silage with normal DM. Higher concentrations of acetic acid were found in the silage treated with LB compared with those not treated with this organism. Inoculation with LP increased the concentration of lactic acid only in the silage with the normal DM content. The concentration of acetic acid was lower in silage treated with LP with a moderately high DM content, but greater in the silage treated with LP with the normal DM content when compared with silages without this inoculant. Appreciable amounts of 1,2-propanediol (average 1.65%, DM basis) were found in all silages treated with LB regardless of the DM content. The addition of L. buchneri increased the concentration of NH(3)-N in silages but the addition of L. plantarum decreased it. Aerobic stability was improved in all silages treated with LB, with greater aerobic stability occurring in the silage with moderately high DM compared with silage with normal DM content. Inoculation with LP had no

  1. Relationships between dry matter content, ensiling, ammonia-nitrogen, and ruminal in vitro starch digestibility in high-moisture corn samples.

    PubMed

    Ferraretto, L F; Taysom, K; Taysom, D M; Shaver, R D; Hoffman, P C

    2014-05-01

    The objectives of the study were (1) to determine relationships between high-moisture corn (HMC) dry matter (DM), ammonia-N [% of crude protein (CP)], and soluble CP concentrations, and pH, with 7-h ruminal in vitro starch digestibility (ivStarchD), and (2) to evaluate the effect of ensiling on pH, ammonia-N, soluble CP, and ivStarchD measurements in HMC. A data set comprising 6,131 HMC samples (55 to 80% DM) obtained from a commercial feed analysis laboratory was used for this study. Month of sample submittal was assumed to be associated with length of the ensiling period. Data for month of sample submittal were analyzed using Proc Mixed in SAS (SAS Institute Inc., Cary, NC) with month as a fixed effect. Regressions to determine linear and quadratic relationships between ivStarchD and ammonia-N, soluble CP, pH, and DM content were performed using Proc Mixed. The ivStarchD increased by 9 percentage units from October to August of the following year. Similar results were observed for ammonia-N and soluble CP with increases from 1.8 to 4.6% of CP and 31.3 to 46.4% of CP, respectively, from October to August of the following year. Ammonia-N was positively related to ivStarchD (R(2)=0.61). The DM content of HMC at silo removal was negatively related (R(2)=0.47) to ivStarchD with a decrease of 1.6 percentage units in ivStarchD per 1-percentage-unit increase in DM content. The pH of HMC was negatively related to ammonia-N (R(2)=0.53), soluble CP (R(2)=0.57), and ivStarchD (R(2)=0.51). Combined, ammonia-N, DM, soluble CP, and pH provided a good prediction of ivStarchD (adjusted R(2)=0.70). Increasing pH, ammonia-N, soluble CP, and ivStarchD values indicate that HMC may need up to 10 mo of ensiling to reach maximum starch digestibility. Ammonia-N, DM content, soluble CP concentration, and pH are good indicators of ruminal in vitro starch digestibility for high-moisture corn.

  2. The effects of starch and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed forage proportion.

    PubMed

    Lechartier, C; Peyraud, J-L

    2011-05-01

    This study investigated the effects of the type (starch vs. nonstarch) and rate of ruminal degradation of carbohydrates from the concentrate on digestion in dairy cows fed corn silage-based diets. Six ruminally cannulated cows were assigned to 6 treatments in a 6 × 6 Latin square design. Treatments were arranged in a 3 × 2 factorial design. Two starch levels [25 and 41% dry matter (DM) for low starch (LS) and high starch (HS) diets, respectively] were obtained by replacing starch-rich feedstuffs by nonstarch feedstuffs. These starch levels were combined with slowly, moderately, and rapidly rumen-degradable feedstuffs to obtain 3 levels of rapidly degradable carbohydrates from concentrate (18, 23, and 28% DM). These levels were estimated from the DM disappearance of concentrate after 4h of in sacco incubation (CRDM). Wheat and corn grain were used as rapidly degradable and slowly degradable starch feedstuffs, respectively. Soybean hulls and citrus pulp were used as slowly degradable and rapidly degradable nonstarch feedstuffs, respectively. No interaction effect was found between dietary starch content and CRDM on pH range, volatile fatty acid (VFA) range, or VFA profile. Increasing CRDM led to a linear decrease in acetate-to-propionate ratio (from 2.7 to 2.1), and a linear increase in the pH and VFA ranges (from 0.86 to 1.12 pH units and from 34 to 56mM, respectively). Feeding HS diets decreased acetate-to-propionate ratio (2.6 vs. 2.0) and increased pH range (0.89 vs. 1.04 pH units), but had no effect on VFA range. Increasing CRDM linearly decreased mean ruminal pH in LS diets but linearly increased mean ruminal pH in HS diets. Fibrolytic activity was unaffected in LS diets but decreased strongly in HS diets (from 62 to 50%). These findings suggest that pH regulation differs on a short-term and on a longer-term basis. In the short-term, increasing CRDM increased the rate of VFA production, which may have been partly buffered under LS diets due to the higher

  3. Dry Matter Production, Photosynthesis of Flag Leaves and Water Use in Winter Wheat Are Affected by Supplemental Irrigation in the Huang-Huai-Hai Plain of China.

    PubMed

    Man, Jianguo; Shi, Yu; Yu, Zhenwen; Zhang, Yongli

    2015-01-01

    Winter wheat is threatened by drought in the Huang-Huai-Hai Plain of China, thus, effective water-saving irrigation practices are urgently required to maintain its high winter wheat production. This study was conducted from 2012 to 2014 to determine how supplemental irrigation (SI) affected soil moisture, photosynthesis, and dry matter (DM) production of winter wheat by measuring the moisture in 0-20 cm (W2), 0-40 cm (W3), and 0-60 cm (W4) soil profiles. Rainfed (W0) and local SI practice (W1, irrigation with 60 mm each at jointing and anthesis) treatments were designed as controls. The irrigation amount for W3 was significantly lower than that for W1 and W4 but higher than that for W2. The soil relative water content (SRWC) in 0-40 cm soil profiles at jointing after SI for W3 was significantly lower than that for W1 and W4 but higher than that for W2. W3 exhibited lower SRWC in 100-140 and 60-140 cm soil profiles at anthesis after SI and at maturity, respectively, but higher root length density in 60-100 cm soil profiles than W1, W2 and W4. Compared with W1, W2 and W4, photosynthetic and transpiration rates and stomatal conductance of flag leaves for W3 were significantly greater during grain filling, particularly at the mid and later stages. The total DM at maturity, DM in grain and leaves, post-anthesis DM accumulation and its contribution to grain and grain filling duration were higher for W3. The 1000-grain weight, grain yield and water use efficiency for W3 were the highest. Therefore, treatment of increasing SRWC in the 0-40 cm soil profiles to 65% and 70% field capacities at jointing and anthesis (W3), respectively, created a suitable soil moisture environment for winter wheat production, which could be considered as a high yield and water-saving treatment in Huang-Huai-Hai Plain, China.

  4. The effects of Propionibacterium acidipropionici and Lactobacillus plantarum, applied at ensiling, on the fermentation and aerobic stability of low dry matter corn and sorghum silages.

    PubMed

    Filya, I; Sucu, E; Karabulut, A

    2006-05-01

    The aim of this work was to study the effects of applying a strain of Propionibacterium acidipropionici, with or without Lactobacillus plantarum, on the fermentation and aerobic stability characteristics of low dry matter (DM) corn (Zea mays L.) and sorghum (Sorghum bicolor L.) silages. Corn at the dent stage and sorghum at the flowering stage were harvested. Treatments comprised control (no additives), P. acidipropionici, L. plantarum and a combination of P. acidipropionici and L. plantarum. Fresh forages were sampled prior to ensiling. Bacterial inoculants were applied to the fresh forage at 1.0 x 10(6) colony-forming units per gram. After treatment, the chopped fresh materials were ensiled in 1.5-l anaerobic glass jars equipped with a lid that enabled gas release only. Three jars per treatment were sampled on days 2, 4, 8, 16 and 60 after ensiling, for chemical and microbiological analysis. At the end of the ensiling period, 60 days, the silages were subjected to an aerobic stability test. The L. plantarum inoculated silages had significantly higher levels of lactic acid than the controls, P. acidipropionici and combination of P. acidipropionici and L. plantarum inoculated silages (P<0.05). The P. acidipropionici did not increase propionic and acetic acid levels of the silages. After the aerobic exposure test, the L. plantarum and combination of P. acidipropionici and L. plantarum had produced more CO2 than the controls and the silages inoculated with P. acidipropionici (P<0.05). All silages had high levels of CO2 and high numbers of yeasts and molds in the experiment. Therefore, all silages were deteriorated under aerobic conditions. The P. acidipropionici and combination of P. acidipropionici and L. plantarum were not able to improve the aerobic stability of fast-fermenting silages, because they could not work well in this acidic environment. The results showed that P. acidipropionici and combination of P. acidipropionici and L. plantarum did not improve the

  5. Yield components, leaf pigment contents, patterns of seed filling, dry matter, LAI and LAID of some safflower (Carthamus tinctorius L.) genotypes in Iran.

    PubMed

    Mokhtassi-Bidgoli, A; Akbari, Gh Al; Mirhadi, M J; Pazoki, A R; Soufizadeh, S

    2007-05-01

    In order to assess the genotypic variation among yield components and different physiological parameters and their relationships with safflower seed yield, six safflower genotypes were grown in Pakdasht, Iran in a randomized complete block design with four replications, during 2003-2004 growing season. Among the genotypes, chlorophyll a, chlorophyll b, chlorophyll a+b, total carotenoids contents, chlorophyll a/chlorophyll b ratio and Chlorophyll a+b/total cartenoids ratio ranged from 0.78 to 1.10, from 0.54 to 0.71, from 1.37 to 1.71, from 0.09 to 0.13 mg g(-1), from 1.33 to 1.68 and from 13.52 to 14.82, respectively. Negative relationships existed between seed yield and pigment contents. There were significant yield differences among genotypes and varied from 2452.60 to 3897.20 kg ha(-1). A diverse range of capitulum diameter (24.08-28.91 mm), seed weight/capitulum (1.18-2.04 g), number of seeds/m2 (8704.5-13165.4), number of capitula/plant (16.38-23.27), number of seeds/capitulum (35.65-41.90) and 1000-seed weight (29.94-50.60 g) was recorded. Genotypes differed in HI and the HI values ranged from 21.83% (LRK-262) to 29.62% (IL.111). In the studied set of 6 safflower genotypes, total biomass and LAI peaked around after full flowering and at the beginning of flowering, respectively. Zarghan-279 (with the greatest LAID) had 25% longer LAID than LRV.51.51 (with the lowest LAID). Differences among genotypes for rate of seed filling and effective seed filling duration were significant and differences in seed yield could be attributed to differences in the rate of seed filling. The results of this experiment indicate that physiological parameters including rate of seed filling, rapid leaf formation and expansion and delayed plant senescence are the characteristics of high-yielding safflower. Also, higher dry matter accumulation, HI, seed weight/capitulum, 1000-seed weight and capitulum diameter were found to be closely related to high-yield genotypes.

  6. Dry Matter Production, Photosynthesis of Flag Leaves and Water Use in Winter Wheat Are Affected by Supplemental Irrigation in the Huang-Huai-Hai Plain of China

    PubMed Central

    Man, Jianguo; Shi, Yu; Yu, Zhenwen; Zhang, Yongli

    2015-01-01

    Winter wheat is threatened by drought in the Huang-Huai-Hai Plain of China, thus, effective water-saving irrigation practices are urgently required to maintain its high winter wheat production. This study was conducted from 2012 to 2014 to determine how supplemental irrigation (SI) affected soil moisture, photosynthesis, and dry matter (DM) production of winter wheat by measuring the moisture in 0–20 cm (W2), 0–40 cm (W3), and 0–60 cm (W4) soil profiles. Rainfed (W0) and local SI practice (W1, irrigation with 60 mm each at jointing and anthesis) treatments were designed as controls. The irrigation amount for W3 was significantly lower than that for W1 and W4 but higher than that for W2. The soil relative water content (SRWC) in 0–40 cm soil profiles at jointing after SI for W3 was significantly lower than that for W1 and W4 but higher than that for W2. W3 exhibited lower SRWC in 100–140 and 60–140 cm soil profiles at anthesis after SI and at maturity, respectively, but higher root length density in 60–100 cm soil profiles than W1, W2 and W4. Compared with W1, W2 and W4, photosynthetic and transpiration rates and stomatal conductance of flag leaves for W3 were significantly greater during grain filling, particularly at the mid and later stages. The total DM at maturity, DM in grain and leaves, post-anthesis DM accumulation and its contribution to grain and grain filling duration were higher for W3. The 1000-grain weight, grain yield and water use efficiency for W3 were the highest. Therefore, treatment of increasing SRWC in the 0–40 cm soil profiles to 65% and 70% field capacities at jointing and anthesis (W3), respectively, created a suitable soil moisture environment for winter wheat production, which could be considered as a high yield and water-saving treatment in Huang-Huai-Hai Plain, China. PMID:26335019

  7. Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows.

    PubMed

    Storm, A C; Kristensen, N B

    2010-09-01

    Effects of physical changes in consistency of ruminal contents on intraruminal equilibration and net portal fluxes of volatile fatty acids (VFA) in dairy cows were studied. Four Danish Holstein cows (121+/-17 d in milk, 591+/-24 kg of body weight, mean+/-SD) surgically fitted with a ruminal cannula and permanent indwelling catheters in the major splanchnic blood vessels were used. The experimental design was a 4x4 Latin square with a 2x2 factorial design of treatments. Treatments differed in forage (grass hay) particle size (FPS; 3.0 and 30 mm) and feed dry matter (DM) content of the total mixed ration (44.3 and 53.8%). The feed DM did not affect chewing time, ruminal variables, or net portal flux of VFA. However, decreasing the FPS decreased the overall chewing and rumination times by 151+/-55 and 135+/-29 min/d, respectively. No effect of the reduced chewing time was observed on ruminal pH or milk fat percentage. Cows maintained average ventral ruminal pH of 6.65+/-0.02, medial ruminal pH of 5.95+/-0.04, and milk fat of 4.42+/-0.12% with chewing time of 28.0+/-2.1 min/kg of DM when fed short particles. The medial ruminal pool of wet particulate matter was decreased by 10.53+/-2.29 kg with decreasing FPS, thereby decreasing the medial pool of total VFA, acetate, propionate, butyrate, isobutyrate, and isovalerate by 1,143+/-333, 720+/-205, 228+/-69, 140+/-51, 8.0+/-2.3, and 25.2+/-5.6 mmol, respectively. Ventral pool variables were not affected by treatments. Relatively large intraruminal differences of VFA concentrations and pH between the ventral and medial pools were observed, VFA concentrations being largest and pH being the lowest medially. This indicates that the ruminal mat acts as a barrier retaining VFA. The effects of reduced FPS were limited to the VFA pool sizes of the mat, leaving ruminal pH, ruminal VFA concentrations, and net portal flux of VFA unaffected. Consequently reduced FPS affected the intraruminal equilibration of VFA between mat and ventral

  8. Organic matter dynamics in four seasonally flooded forest communities of the Dismal Swamp

    SciTech Connect

    Megonigal, J.P.; Day, F.P. Jr. Old Dominion Univ., Norfolk, VA )

    1988-09-01

    Budgets of organic matter dynamics for plant communities of the Great Dismal Swamp were developed to summarize an extensive data base, determine patterns of biomass allocation, transfer and accumulation, and make comparisons with other forested wetlands. Above ground net primary production on the flooded sites (1,050-1,176 g m{sup {minus}2} yr{sup {minus}1}) was significant greater than on a rarely flooded site (831 g m{sup {minus}2} yr{sup {minus}1}). Estimates of below ground net primary production were comparable to above ground production on flooded sites (824-1,221 gm{sup {minus}2} yr{sup {minus}1}). However, productivity was nearly three times greater below ground than above ground on the rarely flooded site (2,256 g m{sup {minus}2} yr{sup {minus}1}). Above ground productivity in Dismal Swamp forests is relatively high compared to other forested wetlands. This is attributed to the timing and periodic nature of flood events. Fine root turnover is shown to be an important source of soil organic matter. Estimates indicate that roots contribute about 60% of the annual increment to soil organic matter. Leaf litter contributes 6-28% and wood debris contributes 5-15%. Comparisons with other forested wetlands suggest that detritus accounts for greater than half of the total organic matter (living + dead) in many wetland systems.

  9. Effect of maturity at harvest for whole-crop barley and oat on dry matter intake, sorting, and digestibility when fed to beef cattle.

    PubMed

    Rosser, C L; Beattie, A D; Block, H C; McKinnon, J J; Lardner, H A; Górka, P; Penner, G B

    2016-02-01

    The objectives were to evaluate the effect of harvest maturity of whole-crop oat (Study 1) and whole-crop barley (Study 2) on forage intake and sorting, ruminal fermentation, ruminal digestibility, and total tract digestibility when fed to beef heifers. In Study 1, 3 ruminally cannulated heifers (417 ± 5 kg) were used in a 3 × 3 Latin square design with 24-d periods. Whole-crop oat forage harvested at the late milk (LMILK), hard dough (HD), or ripe (RP) stages was fed for ad libitum intake and heifers were supplemented (1% of BW) with alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Maturity at harvest for whole-crop oat did not affect ( ≥ 0.058) forage intake, DE intake, amount of forage refused, ruminal short-chain fatty acid concentration, or digestibility of DM, OM, NDF, and ADF. Ruminal starch digestibility decreased ( < 0.001) from 92.6% at the LMILK stage to 90.0% at the RP stage, with total tract starch digestibility decreasing ( = 0.043) from 95.8% at the LMILK stage to 94.8% at the RP stage. Ruminal CP digestibility was reduced at the HD stage compared with the LMILK and RP stages ( < 0.001). Mean ruminal pH was greatest for the LMILK stage (6.36; = 0.003) compared with the HD and RP stages (6.30 and 6.28, respectively). In Study 2, 6 ruminally cannulated heifers (273 ± 16 kg) were used in a replicated 3 × 3 Latin square design with 24-d periods. Dietary treatments included ad libitum access to whole-crop barley harvested at the LMILK, HD, or RP stage and a constant rate (0.8% BW) of supplement containing alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Dry matter intake, ruminal content mass, and feeding behavior were not affected by harvest maturity ( ≥ 0.16). There was a decrease in total tract digestibility of DM, OM, and NDF observed at the HD stage compared with the LMILK and RP stages ( ≤ 0.004). Ruminal NDF digestibility decreased from 69.7% at the LMILK stage to 54.4% at the HD

  10. Short-term response in milk production, dry matter intake, and grazing behavior of dairy cows to changes in postgrazing sward height.

    PubMed

    Ganche, E; Delaby, L; O'Donovan, M; Boland, T M; Kennedy, E

    2014-05-01

    Postgrazing sward height (PGSH) can be altered to adjust the allowance of grass in the dairy cow's diet. This study aimed to investigate the short-term dairy cow response to a change in postgrazing height in early lactation. Ninety Holstein Friesian spring-calving cows were randomly assigned across 3 postgrazing height treatments (n=30): 2.7 cm (severe), 3.5 cm (low), and 4.2 cm (moderate) from February 14 to April 24, 2011. From April 25, animals were rerandomized within each treatment to graze across 2 postgrazing heights: 3.5 cm (low) or 4.5 cm (high). Animal production measurements were taken from April 4 to 24 (measurement period 1; M1) and from April 25 to May 15 (measurement period 2; M2). The 6 treatments (n=15) of M2 were severe-low, severe-high, low-low, low-high, moderate-low, and moderate-high. During M1, increasing postgrazing height from severe to low to moderate linearly increased daily milk yield (21.5, 24.6 and 25.8 kg/cow per day) and grass dry matter intake (GDMI; 13.2, 14.9, and 15.8 kg of DM/cow per day). Milk solids yield was reduced in the severe (-1,518 g/cow per day) treatment when compared with the low and moderate cows (1,866 g/cow per day, on average). The milk yield (MY) response to change in PGSH between M1 and M2 (VM1-M2) was established using VM1-M2 MY=-1.27-1.89 × PGSHM1 + 1.51 × PGSHM2 (R(2)=0.64). The MY response associated with each treatment between M1 and M2 (3 wk) were -1.03 kg/cow for severe-low, 0.68 kg/cow for severe-high, -2.56 kg/cow for low-low, -1.11 kg/cow for low-high, -4.17 kg/cow for moderate-low, and -2.39 kg/cow for moderate-high. The large increase in energy intake in severe-high between M1 and M2 was achieved through higher GDMI per minute and GDMI per bite, which supported the positive change in MY. Treatments low-high, moderate-low, and moderate-high recorded the highest overall cumulative milk yield (74 kg of milk solids/cow) over the 6-wk period, whereas severe-low and severe-high had the lowest (65 kg of

  11. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula.

    PubMed

    Tabacco, E; Righi, F; Quarantelli, A; Borreani, G

    2011-03-01

    The economic damage that results from aerobic deterioration of silage is a significant problem for farm profitability and feed quality. This paper quantifies the dry matter (DM) and nutritional losses that occur during the exposure of corn and sorghum silages to air over 14 d and assesses the possibility of enhancing the aerobic stability of silages through inoculation with lactic acid bacteria (LAB). The trial was carried out in Northern Italy on corn (50% milk line) and grain sorghum (early dough stage) silages. The crops were ensiled in 30-L jars, without a LAB inoculant (C), with a Lactobacillus plantarum inoculum (LP), and with a Lactobacillus buchneri inoculum (LB; theoretical rate of 1 × 10(6) cfu/g of fresh forage). The pre-ensiled material, the silage at silo opening, and the aerobically exposed silage were analyzed for DM content, fermentative profiles, yeast and mold count, starch, crude protein, ash, fiber components, 24-h and 48-h DM digestibility and neutral detergent fiber (NDF) degradability. The yield and nutrient analysis data of the corn and sorghum silages were used as input for Milk2006 to estimate the total digestible nutrients, net energy of lactation, and milk production per Mg of DM. The DM fermentation and respiration losses were also calculated. The inocula influenced the in vitro NDF digestibility at 24h, the net energy for lactation (NE(L)), and the predicted milk yield per megagram of DM, whereas the length of time of air exposure influenced DM digestibility at 24 and 48 h, the NE(L), and the predicted milk yield per megagram of DM in the corn silages. The inocula only influenced the milk yield per megagram of DM and the air exposure affected the DM digestibility at 24h, the NE(L), and the milk yield per megagram of DM in the sorghum silages. The milk yield, after 14 d of air exposure, decreased to 1,442, 1,418, and 1,277 kg/Mg of DM for C, LB, and LP corn silages, respectively, compared with an average value of 1,568 kg of silage at

  12. Restricting dairy cow access time to pasture in early lactation: the effects on milk production, grazing behaviour and dry matter intake.

    PubMed

    Kennedy, E; Curran, J; Mayes, B; McEvoy, M; Murphy, J P; O'Donovan, M

    2011-09-01

    One of the main aims of pasture-based systems of dairy production is to increase the proportion of grazed grass in the diet. This is most easily achieved by increasing the number of grazing days. However, periods of inclement weather conditions can reduce the number of days at pasture. The two objectives of this experiment were: (i) to investigate the effect of restricting pasture access time on animal production, grazing behaviour and dry matter intake (DMI) of spring calving dairy cows in early lactation; and (ii) to establish whether silage supplementation is required when cows return indoors after short grazing periods. In all, 52 Holstein-Friesian spring calving dairy cows were assigned to a four-treatment study from 25 February to 26 March 2008. The four treatments were: full-time access to pasture (22H; control); 4.5-h- pasture access after both milkings (2 × 4.5H); 3-h pasture access after both milkings (2 × 3H); 3-h pasture access after both milkings with silage supplementation by night (2 × 3SH). All treatments were offered 14.4 kg DM/cow per day herbage from swards, with a mean pre-grazing yield of 1739 kg DM/ha above 4 cm, - and were supplemented with 3 kg DM/cow per day of concentrate. The 2 × 3SH treatment was offered an additional 4 kg DM/cow of grass silage by night. Restricting pasture access time (2 × 3H, 2 × 3SH and 2 × 4.5H) had no effect on milk (28.3 kg/cow per day) and solids-corrected milk (27.2 kg/cow per day) yield when compared with the treatment grazing full time. Supplementing animals with grass silage did not increase milk production when compared with all other treatments. Milk protein concentration tended to be lower (P = 0.08; 32.2 g/kg) for the 2 × 3SH animals when compared with the 22H animals (33.7 g/kg). The grass DMI of the 2 × 3SH treatment was significantly lower (-2.3 kg DM/cow per day) than all other treatments (11.9 kg DM/cow per day), yet the total DMI of these animals was highest (16.6 kg DM/cow per day). The 22

  13. Integration of the effects of animal and dietary factors on total dry matter intake of dairy cows fed silage-based diets.

    PubMed

    Huhtanen, P; Rinne, M; Mäntysaari, P; Nousiainen, J

    2011-04-01

    An empirical regression model for the prediction of total dry matter intake (DMI) of dairy cows was developed and compared with four published intake models. The model was constructed to include both animal and dietary factors, which are known to affect DMI. For model development, a data set based on individual cow data from 10 change-over and four continuous milk production studies was collected (n = 1554). Relevant animal (live weight (LW), days in milk (DIM), parity and breed) and dietary (total and concentrate DMI, concentrate composition, forage digestibility and fermentation quality) data were collected. The model factors were limited to those that are available before the diets are fed to animals, that is, standardized energy corrected milk (sECM) yield, LW, DIM and diet quality (total diet DMI index (TDMI index)). As observed ECM yield is a function of both the production potential of the cow and diet quality, ECM yield standardized for DIM, TDMI index and metabolizable protein concentration was used in modelling. In the individual data set, correlation coefficients between sECM and TDMI index or DIM were much weaker (0.16 and 0.03) than corresponding coefficients with observed ECM (0.65 and 0.46), respectively. The model was constructed with a mixed model regression analysis using cow within trial as a random factor. The following mixed model was estimated for DMI prediction: DMI (kg DM/day) = -2.9 (±0.56)+0.258 (±0.011) × sECM (kg/day) + 0.0148 (±0.0009) × LW (kg) -0.0175 (±0.001) × DIM -5.85 (±0.41) × exp (-0.03 × DIM) + 0.09 (±0.002) × TDMI index. The mixed DMI model was evaluated with a treatment mean data set (207 studies, 992 diets), and the following relationship was found: Observed DMI (kg DM/day) = -0.10 (±0.33) + 1.004 (±0.019) × Predicted DMI (kg DM/day) with an adjusted residual mean square error of 0.362 kg/day. Evaluation of the residuals did not result in a significant mean bias or linear slope bias, and random error accounted

  14. Effects of bale moisture and bale diameter on spontaneous heating, dry matter recovery, in vitro true digestibility, and in situ disappearance kinetics of alfalfa-orchardgrass hays.

    PubMed

    Coblentz, W K; Hoffman, P C

    2009-06-01

    Alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) hay was made in 96 large-round bales over 3 harvests during 2006 and 2007 to assess the effects of spontaneous heating on dry matter (DM) recovery, in vitro true digestibility (IVTD), and in situ disappearance kinetics of DM. Throughout these harvests, bales were made at preset diameters of 0.9, 1.2, or 1.5 m and at moisture concentrations ranging from 9.3 to 46.6%. Internal bale temperatures were monitored daily during an outdoor storage period, reaching maxima of 77.2 degrees C (MAX) and 1,997 heating degree days >30 degrees C (HDD) for one specific combination of bale moisture, bale diameter, and harvest. Following storage, regressions of DM recovery on HDD and MAX indicated that DM recovery declined linearly in close association with measures of spontaneous heating. For HDD, slopes and intercepts differed across bale diameters, probably because the greater surface area per kilogram of DM for 0.9-m bales facilitated more rapid dissipation of heat than occurred from 1.2- or 1.5-m-diameter bales. Regardless of bale diameter, coefficients of determination were high (r(2) > or = 0.872) when HDD was used as the independent variable. Regressions of DM recovery on MAX also exhibited high r(2) statistics (> or = 0.833) and a common slope across bale diameters (-0.32 percentage units of DM/ degrees C). Changes in concentrations of IVTD during storage (poststorage - prestorage; DeltaIVTD) also were regressed on HDD and MAX. For HDD, the data were best fit with a nonlinear model in which DeltaIVTD became rapidly negative at <1,000 HDD, but was asymptotic thereafter. When MAX was used as the independent variable, a simple linear model (y = -0.23x + 9.5) provided the best fit. In both cases, coefficients of determination were comparable to those for DM recovery (R(2) or r(2) > or =0.820). Changes (poststorage - prestorage) in ruminal DM degradation rate (DeltaK(d)) and effective ruminal degradability of DM

  15. Complex aggregation patterns in drying nanocolloidal suspensions: size matters when it comes to the thermomechanical stability of nanoparticle-based structures.

    PubMed

    Darwich, Samer; Mougin, Karine; Haidara, Hamidou

    2010-11-16

    We report the results of a model study on the interrelation among the occurrence of complex aggregation patterns in drying nanofluids, the size of the constitutive nanoparticles (NPs), and the drying temperature, which is a critical issue in the genesis of complex drying patterns that was never systematically reported before. We show that one can achieve fine control over the occurrence and topological features of these drying-mediated complex structures through the combination of the particle size, the drying temperature, and the substrate surface energy. Most importantly, we show that a transition in the occurrence of the patterns appears with the temperature and the particle size, which accounts for the size dependence of the thermomechanical stability of the aggregates in the nanoscale range. Using simple phenomenological and scaling considerations, we showed that the thermomechanical stability of the aggregates was underpinned by physical quantities that scale with the size of the NPs (R) either as R(-2) or R(-3). These insights into the size-dependent dissipation mechanisms in nanoclusters should help in designing NPs-based structures with tailored thermomechanical and environmental stability and hence with an optimized morphological stability that guarantees their long-term functional properties.

  16. Effect of diet grinding and pelleting fed either dry or liquid feed on dry matter and pH in the stomach of pigs and the development of gastric ulcers.

    PubMed

    Mösseler, A; Wintermann, M; Sander, S J; Kamphues, J

    2012-12-01

    The physical form of diets has a marked impact on the development of gastric ulcers in pigs. Earlier studies showed effects of fine grinding and pelleting on the integrity of gastric mucosa as well as on local intragastric milieu. This study was conducted to evaluate the effects of dry or liquid feeding on intragastric milieu (DM and pH) in pigs. The 23 piglets were housed individually and fed with test diets and water ad lib for 6 wk. Both experimental diets [coarsely ground diet fed as mash (CM) vs. finely ground pelleted diet (FP)] were identical in ingredients (39.5% wheat, 34% barley, 20% soybean meal) and chemical composition and were either offered dry or in liquid (25% DM) form. At the end of the trial the animals were slaughtered; the stomach was removed and samples were taken from different localizations. Feeding diets dry or liquid had no effect on the pH (P > 0.05). The diet noticeably affected the gastric content. The FP diets resulted in a more liquid chyme (P < 0.05), and the intragastric pH did not differ between regions. Feeding CM caused marked effects of localization regarding pH (highest values: pars nonglandularis; lowest values: fundus). None of the pigs fed CM showed signs of gastric ulcers, but the score was markedly higher (P < 0.05) when pigs were fed FP. Therefore the predominant factor for development of gastric ulcers seems to be the structure (particle size) of the diet.

  17. Preliminary evidence of oxidation in standard oven drying of cotton: attenuated total reflectance/ Fourier transform spectroscopy, colorimetry, and particulate matter formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture is paramount to cotton fiber properties dictating harvesting, ginning, storage and spinning as well as others. Currently, oven drying in air is often utilized to generate the percentage of moisture in cotton fibers. Karl Fischer Titration another method for cotton moisture, has been compa...

  18. Effects of dietary glycerin inclusion at 0, 5, 10, and 15% of dry matter on energy metabolism and nutrient balance in finishing beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expansion of the biodiesel industry has increased the glycerin (GLY) supply. Glycerin is an energy-dense feed that can be used in ruminant species; however, the energy value of GLY is not known. Therefore, the effects of GLY inclusion at 0%, 5%, 10%, and 15% in dry-rolled corn (DRC)-based diets we...

  19. Dry Mouth

    MedlinePlus

    ... or chewing tobacco can increase dry mouth symptoms. Methamphetamine use. Methamphetamine use can cause severe dry mouth and damage to teeth, a condition also known as "meth mouth." If you don't have enough saliva ...

  20. Dry Mouth

    MedlinePlus

    Dry mouth is the feeling that there is not enough saliva in your mouth. Everyone has a dry mouth once in a while - if they are nervous, ... under stress. But if you have a dry mouth all or most of the time, it can ...

  1. The fate of P solubilization during decomposition of soil organic matter as regulated by drying-rewetting and freeze - thawing events

    NASA Astrophysics Data System (ADS)

    Yevdokimov, llya; Blagodatskaya, Evgenia

    2015-04-01

    Drying-rewetting and freeze-thawing events are known to provoke solubilization of nutrients in soil. However, immobilization-mineralization cycles of such an important nutrient as phosphorus under these abiotic perturbations are still poorly understandable, mainly because the P pulses are often disguised by fast processes of P sorption on soil particles. Our research aimed to elucidate the P release and its uptake by soil microorganisms depending on drying-rewetting and freeze-thawing events. The effect of abiotic factors was studied in incubation experiments with soil sampled from four soil types: Podzol (Corg 3.3%, pHH2O 3.5), Phaeozem (Corg 1.4%, pHH2O 5.6), Chernozem (Corg 3.4%, pHH2O 6.9), and Calcisol (Corg 1.9%, pHH2O 8.3). Three treatments were used: control (soil incubated at 22oC and 70% WHC), drying-rewetting (DRW) and freeze-thawing (FTH). Air-drying in DRW treatment was provided at 22oC temperature during 12 h, followed by 6 d exposition at this temperature, rewetting to 70% WHC and measuring water-extractable and microbial P pools 12 h after rewetting. Soil in FTH treatment was exposed to freezing at -10oC, 6 d exposition at the same temperature and 12 h thawing at 4oC followed by the same analytical procedures as for DRW treatment. Microbial and water extractable P pools were analyzed in control soil in parallel with those in DRW and FTH. Soil in all the treatments was labeled with a spike of 33P- orthophosphate. Microbial P was determined using the "direct" fumigation-extraction where 24 h exposition of soil to chloroform vapors was substituted by direct water/chloroform extraction; both water extractable and microbial P were analyzed after sorption on anion-exchange membranes. Despite the variability of soil pH and Corg content, all the soil types tested demonstrated similar trends: freeze-thawing led to increase in water extractable 33P, while soil in DRW treatments had lower 33P values compare to control. Microbial 33P followed the pattern FTH

  2. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains.

    PubMed

    Jaworski, N W; Lærke, H N; Bach Knudsen, K E; Stein, H H

    2015-03-01

    The objectives of this work were to determine carbohydrate composition and in vitro digestibility of DM and nonstarch polysaccharides (NSP) in corn, wheat, and sorghum and coproducts from these grains. In the initial part of this work, the carbohydrate composition of 12 feed ingredients was determined. The 12 ingredients included 3 grains (corn, sorghum, and wheat), 3 coproducts from the dry grind industry (corn distillers dried grains with solubles [DDGS] and 2 sources of sorghum DDGS), 4 coproducts from the wet milling industry (corn gluten meal, corn gluten feed, corn germ meal, and corn bran), and 2 coproducts from the flour milling industry (wheat middlings and wheat bran). Results indicated that grains contained more starch and less NSP compared with grain coproducts. The concentration of soluble NSP was low in all ingredients. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 22, 49, and 29% (DM basis), respectively, of the NSP in corn and corn coproducts and approximately 25, 43, and 32% (DM basis), respectively, of the NSP in sorghum and sorghum DDGS. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 16, 64, and 20% (DM basis), respectively, of the NSP in wheat and wheat coproducts. The concentration of lignin in grains was between 0.8 and 1.8% (DM basis), whereas coproducts contained between 2.2 and 11.5% lignin (DM basis). The in vitro ileal digestibility of NSP was close to zero or negative for all feed ingredients, indicating that pepsin and pancreas enzymes have no effect on in vitro degradation of NSP. A strong negative correlation ( = 0.97) between in vitro ileal digestibility of DM and the concentration of NSP in feed ingredients was observed. In vitro total tract digestibility of NSP ranged from 6.5% in corn bran to 57.3% in corn gluten meal. In conclusion, grains and grain coproducts contain mostly insoluble NSP and arabinoxylans make up the majority of the total NSP fraction. The in vitro

  3. Numerical Simulation of Shock Interaction with Above-Ground Structures

    DTIC Science & Technology

    1994-05-01

    d. Pressure Contours on Several X-Y Planes; a) Z=0.5 m, 200 steps; b) Z=1.5 m, 200 steps ; c ) Z=1.5 m, 600 steps; d) Z=1.0 m, 800 steps...Contours on the Tank Surfaces: a) Tank, 300 Time Steps; b) Expanded View Between the Wheels, 300 Time Steps ; c ) Tank, 600 Time Steps; d) Tank, 800 Time...Several X-Y Planes: a) Z=0.5 m, 200 Steps; b) Z=1.5 m, 200 Steps ; c ) Z=1.5 m, 600 Steps; d) Z=1.0 m, 800 Steps. 76 a e C Figure 3-15e-g. Press ’ure

  4. Estimating above-ground biomasss using lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Lim, Kevin S.; Treitz, Paul; Morrison, Ian; Baldwin, Ken

    2003-03-01

    Previous forest research using time-of-flight lidar suggests that there exists some quantile of the distribution of laser canopy heights that could provide an estimate of various forest biophysical properties. The results presented here not only support this theory, but also extend it by suggesting that a quantile of the distribution of all laser heights could provide estimates of aboveground biomass for forests with similar stand structure. Tolerant northern hardwood forests, composed predominantly of mature sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton), were surveyed using an ALTM 1225 (Optech Inc.) in August 2000. Field data for 49 circular plots, each 400 m2 in area, were collected in July 2000. Using site-specific allometric equations, total aboveground biomass and biomass components (i.e., stem wood, stem bark, live branches, and foliage) were derived for each plot. Three laser height metrics were derived from the lidar data: (i) maximum laser height; (ii) mean laser height; and (iii) mean laser height calculated from lidar returns filtered based on a threshold applied to the intensity return data LhIR). LhIR was identified as the best predictor of total aboveground biomass (R2 = 0.85) and biomass components (R2 between 0.84 to 0.85) when all plot types were considered.

  5. Installation of new bottom in existing above ground storage tank

    SciTech Connect

    Stapleton, W.E.

    1995-12-31

    New bottom installation in existing aboveground storage tanks is a simple process when the correct procedures are followed in preparation for the bottom replacement. An in-depth inspection must be conducted to determine the exact modifications required during the installation of the new bottom, internal decisions made as to type of construction required, and a detailed scope of work prepared to insure all aspects of the tank bottom replacement are detailed. Determining the scope of work requires an in-depth tank inspection, making decisions on the type of bottom to be installed, tank modifications required, tank appurtenance modifications and relocation, whether leak detection, cathodic protection, and secondary containment are to be installed and a decision on whether the old tank bottom will remain in place or be removed. Upon completion of the new bottom installation, a final check to ensure all modifications were performed per API-650 and API-653 and all non-destructive testing procedures were conducted, will insure a safe, leak free bottom providing many years of maintenance free service.

  6. Low-phytate barley cultivars improve the utilization of phosphorus, calcium, nitrogen, energy, and dry matter in diets fed to young swine.

    PubMed

    Veum, T L; Ledoux, D R; Raboy, V

    2007-04-01

    A 28-d experiment was conducted using 45 crossbred barrows with an average initial BW of 9.5 kg and age of 35 d to evaluate low-phytate barley (LPB) mutants (M) M422, M635, and M955, which were hulled, near-isogenic progeny of the normal barley (NB) Harrington and had 47, 66, and 80% less phytic acid, respectively, than NB. A hull-less LPB, M422-H, which was not near-isogenic to the other cultivars, was also evaluated. Apparent nutrient balance, bone measurements, and growth performance were the response criteria evaluated. The barrows were fed the diets to appetite in meal form in individual metabolism crates. Barley and soybean meal were the only sources of phytic acid. Dietary protein supplementation and ME/kg were equalized in all diets. The treatments were diets containing NB, M422, M635, or M422-H without or with added inorganic P (iP), or M955 without added iP. Diets with added iP contained 0.30% available P (aP), the same concentration of aP provided by the diet containing M955 without added iP. There were linear increases (P < or = 0.02) in ADG, G:F, metacarpal and radius bone strength, and fat-free dry weight, and in the absorption and retention (g/d and % of intake) of P and Ca with increasing dietary concentration of aP from the near-isogenic cultivars NB, M422, M635, or M955 without added iP. There were linear decreases in the grams (P < or = 0.02) and percentages (P < 0.001) of P and Ca excreted per day with increasing dietary concentration of aP without added iP. There were no responses for N or energy balance. Growth performance and bone response criteria did not differ for barrows fed the diet containing M955 or the near-isogenic diets containing NB, M422, or M635 with added iP. However, barrows fed the diet containing M955 had greater (P < or = 0.02) percentages of P, N, and energy absorption and retention, Ca absorption, and DM digestibility and had less (P < or = 0.02, g/d and %) excretion of P, N, energy, and Ca (g) per day than barrows fed the

  7. Effects of a perennial ryegrass diet or total mixed ration diet offered to spring-calving Holstein-Friesian dairy cows on methane emissions, dry matter intake, and milk production.

    PubMed

    O'Neill, B F; Deighton, M H; O'Loughlin, B M; Mulligan, F J; Boland, T M; O'Donovan, M; Lewis, E

    2011-04-01

    The objective of the present study was to compare the enteric methane (CH4) emissions and milk production of spring-calving Holstein-Friesian cows offered either a grazed perennial ryegrass diet or a total mixed ration (TMR) diet for 10 wk in early lactation. Forty-eight spring-calving Holstein-Friesian dairy cows were randomly assigned to 1 of 2 nutritional treatments for 10 wk: 1) grass or 2) TMR. The grass group received an allocation of 17 kg of dry matter (DM) of grass per cow per day with a pre-grazing herbage mass of 1,492 kg of DM/ha. The TMR offered per cow per day was composed of maize silage (7.5 kg of DM), concentrate blend (8.6 kg of DM), grass silage (3.5 kg of DM), molasses (0.7 kg of DM), and straw (0.5 kg of DM). Daily CH4 emissions were determined via the emissions from ruminants using a calibrated tracer technique for 5 consecutive days during wk 4 and 10 of the study. Simultaneously, herbage dry matter intake (DMI) for the grass group was estimated using the n-alkane technique, whereas DMI for the TMR group was recorded using the Griffith Elder feeding system. Cows offered TMR had higher milk yield (29.5 vs. 21.1 kg/d), solids-corrected milk yield (27.7 vs. 20.1 kg/d), fat and protein (FP) yield (2.09 vs. 1.54 kg/d), bodyweight change (0.54 kg of gain/d vs. 0.37 kg of loss/d), and body condition score change (0.36 unit gain vs. 0.33 unit loss) than did the grass group over the course of the 10-wk study. Methane emissions were higher for the TMR group than the grass group (397 vs. 251 g/cow per day). The TMR group also emitted more CH4 per kg of FP (200 vs. 174 g/kg of FP) than did the grass group. They also emitted more CH4 per kg of DMI (20.28 vs. 18.06 g/kg of DMI) than did the grass group. In this study, spring-calving cows, consuming a high quality perennial ryegrass diet in the spring, produced less enteric CH4 emissions per cow, per unit of intake, and per unit of FP than did cows offered a standard TMR diet.

  8. Use of genotype × environment interaction model to accommodate genetic heterogeneity for residual feed intake, dry matter intake, net energy in milk, and metabolic body weight in dairy cattle.

    PubMed

    Yao, C; de Los Campos, G; VandeHaar, M J; Spurlock, D M; Armentano, L E; Coffey, M; de Haas, Y; Veerkamp, R F; Staples, C R; Connor, E E; Wang, Z; Hanigan, M D; Tempelman, R J; Weigel, K A

    2017-03-01

    Feed efficiency in dairy cattle has gained much attention recently. Due to the cost-prohibitive measurement of individual feed intakes, combining data from multiple countries is often necessary to ensure an adequate reference population. It may then be essential to model genetic heterogeneity when making inferences about feed efficiency or selecting efficient cattle using genomic information. In this study, we constructed a marker × environment interaction model that decomposed marker effects into main effects and interaction components that were specific to each environment. We compared environment-specific variance component estimates and prediction accuracies from the interaction model analyses, an across-environment analyses ignoring population stratification, and a within-environment analyses using an international feed efficiency data set. Phenotypes included residual feed intake, dry matter intake, net energy in milk, and metabolic body weight from 3,656 cows measured in 3 broadly defined environments: North America (NAM), the Netherlands (NLD), and Scotland (SAC). Genotypic data included 57,574 single nucleotide polymorphisms per animal. The interaction model gave the highest prediction accuracy for metabolic body weight, which had the largest estimated heritabilities ranging from 0.37 to 0.55. The within-environment model performed the best when predicting residual feed intake, which had the lowest estimated heritabilities ranging from 0.13 to 0.41. For traits (dry matter intake and net energy in milk) with intermediate estimated heritabilities (0.21 to 0.50 and 0.17 to 0.53, respectively), performance of the 3 models was comparable. Genomic correlations between environments also were computed using variance component estimates from the interaction model. Averaged across all traits, genomic correlations were highest between NAM and NLD, and lowest between NAM and SAC. In conclusion, the interaction model provided a novel way to evaluate traits measured in

  9. Effects of collection time on flow of chromium and dry matter and on basal ileal endogenous losses of amino acids in growing pigs.

    PubMed

    Kim, B G; Liu, Y; Stein, H H

    2016-10-01

    The objectives of this experiment were to examine the diurnal patterns of chromium and DM flow at the distal ileum of pigs and to determine the effect of collection time on basal ileal endogenous losses (BEL) of CP and AA. Eight barrows with an initial BW of 34.6kg (SD = 2.1) were individually fitted with a T-cannula in the distal ileum and randomly allotted to a replicated 4× 4 Latin square design with 4 diets and 4 periods in each square. Three diets contained either corn, soybean meal, or distillers dried grains with solubles as the sole source of CP and AA. An N-free diet was also prepared. All diets contained 0.5% chromic oxide as an indigestible marker. Equal meals were provided at 0800 and 2000 h. Ileal digesta samples were collected in 2-h intervals from 0800 to 2000 h during the last 3 d of each 7-d period. The concentration of Cr in ileal digesta samples collected in each of the six 2-h periods exhibited a quadratic effect ( < 0.01) that increased and then decreased in pigs fed the CP containing diets. However, the concentration of Cr in ileal digesta collected in each of the six 2-h periods from pigs fed the N-free diet increased (linear, < 0.01). These differences were possibly related to differences in DM flow, because DM flow to the distal ileum had a pattern that was opposite of that observed for the concentration of Cr in the ileal digesta samples. The BEL of all indispensable AA and the sum of indispensable AA from pigs fed the N-free diet decreased (linear, < 0.05) in each of the six 2-h periods, with the exception that the BEL of Arg increased and then decreased (quadratic, < 0.05). The BEL of Asp, Cys, Glu, Ser, and Tyr also decreased (linear, < 0.05) during each of the six 2-h periods, whereas the BEL of Pro and the sum of dispensable AA increased and then decreased (quadratic, < 0.05) over the 12 h. Collection time did not affect BEL of CP. No differences were observed in the concentration of Cr, flow of DM, or basal endogenous loss of all AA

  10. century drying

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  11. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  12. Influence of the drying step within disk-based solid-phase extraction both on the recovery and the limit of quantification of organochlorine pesticides in surface waters including suspended particulate matter.

    PubMed

    Günter, Anastasia; Balsaa, Peter; Werres, Friedrich; Schmidt, Torsten C

    2016-06-10

    In this study, 21 organochlorine pesticides (OCPs) were determined based on sample preparation using solid-phase extraction disks (SPE disks) coupled with programmable temperature vaporizer (PTV)-large-volume injection gas-chromatography mass spectrometry (LVI-GC-MS). The work includes a comprehensive testing scheme on the suitability of the method for routine analysis of surface and drinking water including suspended particulate matter (SPM) with regard to requirements derived from the European Water Framework Directive (WFD, Directive 2000/60/EC). SPM is an important reservoir for OCPs, which contributes to the transport of these compounds in the aquatic environment. To achieve the detection limits required by the WFD, a high pre-concentration factor during sample preparation is necessary, which was achieved by disk SPE in this study. The performance of disk SPE is strongly influenced by the drying step, which could be significantly improved by effective elimination of the residual water by combination of a high vacuum pump and a low humidity atmosphere. Detection limits of the WFD in the ng/L range were achieved by large volume injection of 100μL sample extract. The recoveries ranged from 82% to 117% with an RSD smaller than 13%. The applicability of this method to natural samples was tested for instrumental qualification and system suitability evaluation. Successful participation in an interlaboratory comparison proved the suitability of the method for routine analysis.

  13. The questionably dry eye.

    PubMed Central

    Mackie, I. A.; Seal, D. V.

    1981-01-01

    This paper is concerned with the recognition of the dry eye when the clinical diagnosis is in doubt and other external eye diseases may be present. Papillary conjunctivitis is common to the dry eye as well as other pathological conditions and confuses the diagnosis. We have correlated the factors involved in the assessment for dryness. We have shown that particulate matter in the unstained tear film is associated with low tear lysozyme concentration. Tear flow and tear lysozyme are not necessarily interrelated, but a low lysozyme concentration (tear lysozyme ratio < 1.0) is associated with keratoconjunctivitis sicca. The Schirmer I test can produce false positive results, and we have suggested a modification to overcome this. This modified test will detect the eye with severely depleted lysozyme secretion, but it is unreliable for detecting the eye with moderately depleted secretion. We find that its lowest normal limit should be considered as 6 mm. Images PMID:7448154

  14. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies.

  15. A comparison of individual cow versus group concentrate allocation strategies on dry matter intake, milk production, tissue changes, and fertility of Holstein-Friesian cows offered a grass silage diet.

    PubMed

    Little, M W; O'Connell, N E; Ferris, C P

    2016-06-01

    A diverse range of concentrate allocation strategies are adopted on dairy farms. The objectives of this study were to examine the effects on cow performance [dry matter (DM) intake (DMI), milk yield and composition, body tissue changes, and fertility] of adopting 2 contrasting concentrate allocation strategies over the first 140 d of lactation. Seventy-seven Holstein-Friesian dairy cows were allocated to 1 of 2 concentrate allocation strategies at calving, namely group or individual cow. Cows on the group strategy were offered a mixed ration comprising grass silage and concentrates in a 50:50 ratio on a DM basis. Cows on the individual cow strategy were offered a basal mixed ration comprising grass silage and concentrates (the latter included in the mix to achieve a mean intake of 6kg/cow per day), which was formulated to meet the cow's energy requirements for maintenance plus 24kg of milk/cow per day. Additional concentrates were offered via an out-of-parlor feeding system, with the amount offered adjusted weekly based on each individual cow's milk yield during the previous week. In addition, all cows received a small quantity of straw in the mixed ration part of the diet (approximately 0.3kg/cow per day), plus 0.5kg of concentrate twice daily in the milking parlor. Mean concentrate intakes over the study period were similar with each of the 2 allocation strategies (11.5 and 11.7kg of DM/cow per day for group and individual cow, respectively), although the pattern of intake with each treatment differed over time. Concentrate allocation strategy had no effect on either milk yield (39.3 and 38.0kg/d for group and individual cow, respectively), milk composition, or milk constituent yield. The milk yield response curves with each treatment were largely aligned with the concentrate DMI curves. Cows on the individual cow treatment had a greater range of concentrate DMI and milk yields than those on the group treatment. With the exception of a tendency for cows on the

  16. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    SciTech Connect

    Durbin, Samuel; Lindgren, Eric R.

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the

  17. The effects of forage proportion and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed neutral detergent fiber and starch contents.

    PubMed

    Lechartier, C; Peyraud, J-L

    2010-02-01

    This study investigated the effects of the forage-to-concentrate (F:C) ratio and the rate of ruminal degradation of carbohydrates from the concentrate on digestion in dairy cows fed corn silage-based diets. Six cows with ruminal cannulas were assigned to 6 treatments in a 6x6 Latin square. Treatments were arranged in a 3x2 factorial design. Three proportions of neutral detergent fiber from forage [FNDF; 7.6, 13.2, and 18.9% of dry matter (DM)] were obtained by modifying F:C (20:80, 35:65, and 50:50). These F:C were combined with concentrates with either high or low content of rapidly degradable carbohydrates. The dietary content of rapidly degradable carbohydrates from the concentrate was estimated from the DM disappearance of concentrate after 4h of in sacco incubation (CRDM). Thus, 2 proportions of CRDM were tested (20 and 30% of DM). Wheat and corn grain were used as rapidly and slowly degradable starch sources, respectively. Soybean hulls and citrus pulp were used as slowly and rapidly degradable fiber sources, respectively. Concentrate composition was adjusted to maintain dietary starch and neutral detergent fiber contents at 35.9 and 28.9% of DM, respectively. There was no effect of the interaction between F:C and CRDM on DM intake (DMI), ruminal fermentation, chewing activity, and fibrolytic activity. When F:C decreased, DMI increased, the mean ruminal pH linearly decreased, and the pH range linearly increased from 0.95 to 1.27 pH unit. At the same time, the acetate-to-propionate ratio decreased linearly. Decreasing F:C linearly decreased the average time spent chewing per kilogram of DMI from 35.2 to 19.5min/kg of DMI and decreased ruminal liquid outflow from 11.6 to 9.2L/kg of DMI, suggesting a decrease in the salivary flow. Increasing CRDM decreased DMI and increased the time during which pH was below 6.0 (3.1 vs. 4.8h), the pH range (0.90 vs. 1.33), and the initial rate of pH drop. It also increased the volatile fatty acid range (35 vs. 59mM), thus

  18. Dry Macular Degeneration

    MedlinePlus

    Dry macular degeneration Overview By Mayo Clinic Staff Dry macular degeneration is a common eye disorder among people over 65. ... vision in your direct line of sight. Dry macular degeneration may first develop in one eye and then ...

  19. When matter matters

    SciTech Connect

    Easson, Damien A.; Sawicki, Ignacy; Vikman, Alexander E-mail: ignacy.sawicki@uni-heidelberg.de

    2013-07-01

    We study a recently proposed scenario for the early universe:Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions — to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.

  20. Dry mouth during cancer treatment

    MedlinePlus

    Chemotherapy - dry mouth; Radiation therapy - dry mouth; Transplant - dry mouth; Transplantation - dry mouth ... National Cancer Institute. Chemotherapy and you: support for people with cancer. Updated May 2007. ... ...

  1. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  2. Carbon allocation in a Bornean tropical rainforest without dry seasons.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Saitoh, Taku M; Ohashi, Mizue; Nakagawa, Michiko; Suzuki, Masakazu; Otsuki, Kyoichi; Kumagai, Tomo'omi

    2013-07-01

    To clarify characteristics of carbon (C) allocation in a Bornean tropical rainforest without dry seasons, gross primary production (GPP) and C allocation, i.e., above-ground net primary production (ANPP), aboveground plant respiration (APR), and total below-ground carbon flux (TBCF) for the forest were examined and compared with those from Amazonian tropical rainforests with dry seasons. GPP (30.61 MgC ha(-1) year(-1), eddy covariance measurements; 34.40 MgC ha(-1) year(-1), biometric measurements) was comparable to those for Amazonian rainforests. ANPP (6.76 MgC ha(-1) year(-1)) was comparable to, and APR (8.01 MgC ha(-1) year(-1)) was slightly lower than, their respective values for Amazonian rainforests, even though aboveground biomass was greater at our site. TBCF (19.63 MgC ha(-1) year(-1)) was higher than those for Amazonian forests. The comparable ANPP and higher TBCF were unexpected, since higher water availability would suggest less fine root competition for water, giving higher ANPP and lower TBCF to GPP. Low nutrient availability may explain the comparable ANPP and higher TBCF. These data show that there are variations in C allocation patterns among mature tropical rainforests, and the variations cannot be explained solely by differences in soil water availability.

  3. Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.

    PubMed

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-09-01

    Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.

  4. Storage characteristics of large round alfalfa bales: dry hay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Losses of forage dry matter (DM) and quality in large round bales of alfalfa stored outdoors can be substantial. The objective of this research was to determine the effect of wrap type and storage method on the preservation of dry alfalfa bales stored outdoors. Several methods to wrap large round ...

  5. A prototype detector for the CRESST-III low-mass dark matter search

    NASA Astrophysics Data System (ADS)

    Strauss, R.; Angloher, G.; Bauer, P.; Defay, X.; Erb, A.; Feilitzsch, F. v.; Iachellini, N. Ferreiro; Hampf, R.; Hauff, D.; Kiefer, M.; Lanfranchi, J.-C.; Langenkämper, A.; Mondragon, E.; Münster, A.; Oppenheimer, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Reindl, F.; Rothe, J.; Schönert, S.; Seidel, W.; Steiger, H.; Stodolsky, L.; Tanzke, A.; Thi, H. H. Trinh; Ulrich, A.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.

    2017-02-01

    The CRESST-III experiment which is dedicated to low-mass dark matter search uses scintillating CaWO4 crystals operated as cryogenic particle detectors. Background discrimination is achieved by exploiting the scintillating light signal of CaWO4 and by a novel active detector holder presented in this paper. In a test setup above ground, a nuclear-recoil energy threshold of Eth =(190.6 ± 5.2) eV is reached with a 24 g prototype detector, which corresponds to an estimated threshold of ∼50 eV when being operated in the low-noise CRESST cryostat. This is the lowest threshold reported for direct dark matter searches. For CRESST-III phase 1, ten such detector modules were installed in the cryostat which have the potential to improve significantly the sensitivity to scatterings of dark matter particles with masses down to ∼0.1 GeV/c2.

  6. Dry eye syndrome

    MedlinePlus

    ... of dry eyes include: Dry environment or workplace (wind, air conditioning) Sun exposure Smoking or second-hand ... NOT smoke and avoid second-hand smoke, direct wind, and air conditioning. Use a humidifier, especially in ...

  7. Spent fuel dry storage technology development: Report of consolidated thermal data

    NASA Astrophysics Data System (ADS)

    Lundberg, W. L.

    1980-09-01

    A drywell/sealed cask technique for spent fuel storage is discussed. Experiments indicate that PWR fuel with decay heat levels in excess of 2 kW could be stored in isolated drywells in Nevada test site soil without exceeding the current fuel clad temperature limit (715 F). The ability to thermally analyze near surface drywells and above ground storage casks is assessed. It is concluded that the required analysis procedures, computer programs, etc., are already developed and available. Soil thermal conductivity requires additional study to better understand the soil drying mechanism and effects of moisture. Work is also required to develop an internal canister subchannel model. In addition, the ability of the overall drywell thermal model to accommodate thermal interaction effects between adjacent drywells should be confirmed.

  8. Dry deposition velocities

    SciTech Connect

    Sehmel, G.A.

    1984-03-01

    Dry deposition velocities are very difficult to predict accurately. In this article, reported values of dry deposition velocities are summarized. This summary includes values from the literature on field measurements of gas and particle dry deposition velocities, and the uncertainties inherent in extrapolating field results to predict dry deposition velocities are discussed. A new method is described for predicting dry deposition velocity using a least-squares correlation of surface mass transfer resistances evaluated in wind tunnel experiments. 14 references, 4 figures, 1 table.

  9. Structure of drying costs

    SciTech Connect

    Sztabert, Z.T.

    1996-05-01

    A knowledge of cost structure and cost behavior is necessary in the management activities, particularly in the domain of investment or production decision making, as well as in the areas of production cost planning and control. Prediction and analysis of values of cost components for different technologies of drying are important when selection of a drying method and drying equipment should be done. Cost structures of lumber and coal drying processes together with an application of the factor method for prediction of the drying cost are presented.

  10. Dark Matters

    ScienceCinema

    Joseph Silk

    2016-07-12

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  11. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  12. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  13. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  14. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  15. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  16. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  17. Open sun drying of green bean: influence of pretreatments on drying kinetics, colour and rehydration capacity

    NASA Astrophysics Data System (ADS)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2016-08-01

    Green bean (Phaseolus Vulgaris L), classified under legume family, is a primary source of dietary protein in human diets especially in the agricultural countries. Green bean is susceptible to rapid deterioration because of their high moisture content and in order to prevent and present the green bean drying process is applied. In this study, effects of pretreatments on drying kinetics, colour and rehydration capacity of green bean were investigated. It was observed that the pretreatment affected the drying time. The shortest drying times were obtained from pretreated samples with blanched. Drying times were determined as 47, 41 and 29 h for natural, salted and blanch, respectively. The results showed that pretreatment and ambient temperature significantly (P = 0.05) affected the drying rate and the drying time. The effective moisture diffusivity was determined by using Fick's second law and was found to be range between 3.15 × 10-10 and 1.2 × 10-10 m2/s for the pre-treated and natural green bean samples. The rehydration values were obtained 2.75, 2.71, 2.29 (g water/g dry matter) for the blanched, salted and natural samples. The effective diffusion coefficients were calculated using the data collected during the falling rate period and the experimental data are fitted to seven thin layer drying models which found in the literature. The Logarithmic model was found to best describe the drying behavior of fresh green beans under open air sun. Rehydration time and color parameters had been determined in order to improve the quality of dried green bean. Regarding with rehydration time and colour data, the best results were obtained at blanched drying conditions.

  18. Literacy Matters.

    ERIC Educational Resources Information Center

    Macedo, Donaldo

    2003-01-01

    Suggests that in an era of excessive high-stakes testing and a blind embrace of "technicism," literacy not only matters, but may represent one of the last hopes to "salvage our already feeble democracy." Concludes that literacy matters if, and only if, it is viewed as a democratic right and as a human right. (SG)

  19. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  20. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  1. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  2. Dry Snow Metamorphism

    DTIC Science & Technology

    2012-09-19

    REPORT Dry Snow Metamorphism Final Report Grant: 51065-EV 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of this project was to characterize the...structural evolution of dry snow as it underwent metamorphism under either quasi-isothermal conditions or a temperature gradient, and to determine...Z39.18 - 5-Aug-2011 Dry Snow Metamorphism Final Report Grant: 51065-EV Report Title ABSTRACT The goal of this project was to characterize the structural

  3. Indiana Corn Dry Mill

    SciTech Connect

    2006-09-01

    The goal of this project is to perform engineering, project design, and permitting for the creation and commercial demonstration of a corn dry mill biorefinery that will produce fuel-grade ethanol, distillers dry grain for animal feed, and carbon dioxide for industrial use.

  4. Tray Drying of Solids.

    ERIC Educational Resources Information Center

    Afacan, Artin; Masliyah, Jacob

    1984-01-01

    Describes a drying experiment useful in presenting the concept of simultaneous heat and mass transfer. Background information, equipment requirements, experimental procedures, and results are provided. The reasonably good agreement in the calculated rate of drying and that observed experimentally makes students feel confident in applying…

  5. Dry imaging cameras.

    PubMed

    Indrajit, Ik; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-04-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow.

  6. Packaged kiln dried firewood

    SciTech Connect

    Cutrara, A.

    1986-07-01

    A process is described for kiln drying firewood consisting of essentially uniform lengths of split firewood pieces, the process comprising splitting essentially uniform lengths of green tree logs to form firewood pieces, placing the firewood pieces in open mesh bags to provide a plurality of bags of firewood, placing the plurality of bags of green firewood pieces in a kiln drying oven, kiln drying the pieces at temperatures in excess of 150/sup 0/F. by moving heated air over the pieces until the pieces have an overall moisture content ranging from 15% up to 30% by weight, operating the kiln at a temperature below a level which would render the structural characteristics of the bag useless and removing the kiln dried firewood pieces in the plurality of bags from the kiln drying oven.

  7. Freeze-drying of live virus vaccines: A review.

    PubMed

    Hansen, L J J; Daoussi, R; Vervaet, C; Remon, J-P; De Beer, T R M

    2015-10-13

    Freeze-drying is the preferred method for stabilizing live, attenuated virus vaccines. After decades of research on several aspects of the process like the stabilization and destabilization mechanisms of the live, attenuated viruses during freeze-drying, the optimal formulation components and process settings are still matter of research. The molecular complexity of live, attenuated viruses, the multiple destabilization pathways and the lack of analytical techniques allowing the measurement of physicochemical changes in the antigen's structure during and after freeze-drying mean that they form a particular lyophilization challenge. The purpose of this review is to overview the available information on the development of the freeze-drying process of live, attenuated virus vaccines, herewith focusing on the freezing and drying stresses the viruses can undergo during processing as well as on the mechanisms and strategies (formulation and process) that are used to stabilize them during freeze-drying.

  8. Effects of drying and air-dry storage of soils on their capacity for denitrification of nitrate

    SciTech Connect

    Patten, D.K.; Bremner, J.M.; Blackmer, A.M.

    1980-01-01

    The effects of drying and air-dry storage of soils on their capacity for denitrification of nitrate were studied by determining the influence of these pretreatments on the ability of soils to reduce nitrate to gaseous forms of nitrogen (N/sub 2/, N/sub 2/O, and NO) when incubated anaerobically with nitrate for various times. It was found that drying of soils markedly increases their capacity for denitrification of nitrate under anaerobic conditions and that the effect observed increases as the temperature of drying is increased from 25/sup 0/ to 100/sup 0/C. Partial drying of soils and storage of air-dried soils also lead to a significant increase in their ability to denitrify nitrate under anaerobic conditions. Determination of the CO/sub 2/ produced when field-moist, partly dried, air-dried, and air-dried and stored soils were incubated anaerobically with nitrate showed that production of CO/sub 2/ was very highly correlated with production of (N/sub 2/O + N/sub 2/)-N. This suggests that drying and air-dry storage of soils increase their capacity to denitrify nitrate under anaerobic conditions by increasing the amount of soil organic matter readily utilized by denitrifying microorganisms.

  9. Management of dry cows for the prevention of milk fever and other mineral disorders.

    PubMed

    Oetzel, G R

    2000-07-01

    Mineral disorders in dairy cattle typically occur soon after calving and are often specifically related to nutritional management during the late dry period. The incidence of hypocalcemia, hypophosphatemia, and hypomagnesemia can be minimized by proper diet formulation and good overall nutritional management in the dry period. The addition of anions to the diet during the late dry period may be of particular benefit for preventing hypocalcemia; however, supplementation with anions will reduce dry matter intake if feeding management is not excellent.

  10. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  11. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  12. Acoustoconvection Drying of Meat

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.; Fedorov, A. V.

    2016-03-01

    The dynamics of moisture extraction from meat samples by the acoustoconvection and thermoconvection methods has been investigated. To describe the dynamics of moisture extraction from meat, we propose a simple relaxation model with a relaxation time of 8-10 min in satisfactorily describing experimental data on acoustoconvection drying of meat. For thermoconvection drying the relaxation time is thereby 30 and 45 min for the longitudinal and transverse positions of fibers, respectively.

  13. Drying SDS-Polyacrylamide Gels.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes a method for drying SDS-polyacrylamide gels. Gels containing proteins radiolabeled with (35)S-labeled amino acids must be dried before autoradiographic images can be obtained. Nonradioactive gels can also be preserved by drying.

  14. Guidance Matters

    ERIC Educational Resources Information Center

    Gartrell, Dan

    2006-01-01

    Conflicts happen all the time in early childhood classrooms--and just about everywhere else in life. Conflict management includes the ability to: (1) prevent conflicts from becoming too serious to resolve easily and (2) resolve conflicts peaceably no matter how serious they get. When a third person assists others in resolving a conflict, this is…

  15. Changes Matter!

    ERIC Educational Resources Information Center

    Lott, Kimberly; Jensen, Anitra

    2012-01-01

    Being able to distinguish between physical and chemical changes of matter is a foundational chemistry concept that at first seems like a simple elementary concept to teach, but students often have misconceptions that hinder their understanding. These misconceptions are seen among elementary students, but these ideas are perpetuated throughout…

  16. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Uman, M. A.; Lin, Y. T.; Standler, R. B.; Master, M. J.; Fisher, R. J.

    1980-01-01

    A lightning return stroke model with which the two station electric and magnetic fields measured at ground level can be reproduced is used to compute fields at altitudes up to 10 km and at ranges from 20 m to 10 km. These calculations provide the first detailed estimates of the return strokes fields that are encountered by aircraft in flight. With the advent of modern aircraft utilizing low voltage digital electronics and reduced electromagnetic shielding by way of structures containing advanced composite materials, these calculations are of considerable practical interest. Further, since airborne electric and magnetic field measurements are presently being attempted, a comparison of the calculations presented with appropriate experimental data, when they are available, will constitute a test of the return stroke model.

  17. A New Characterization of Supercooled Clouds below 10,000 Feet AGL (Above Ground Level).

    DTIC Science & Technology

    1983-06-01

    public through the National Technical Information Service, Springfield, Virginia 22161. DTIC E LECTE. 0... ~AUG 2 1983. Cm .)~U us epatt O of 1...nsportetion in the interest of information exchange. The United States Goverrment assumes no liability for the contents or use thereof. The United States...CT-83/22 9. Pvelnsiag Otrpoinaesll Nome end Address 10. We& Unit N. (TRAIS) FAA Technical Center Aircraft and Airport Systems Technology Div., ACT-30U

  18. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    PubMed

    Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  19. Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity

    PubMed Central

    Barlow, Jos; Silveira, Juliana M.; Mestre, Luiz A. M.; Andrade, Rafael B.; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z.; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A.

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions. PMID:22428035

  20. Skycrapper: an above-ground aerobic and solar-assisted composting toilet. Final report

    SciTech Connect

    Not Available

    1983-05-10

    The Skycrapper is a waterless alternative to the flush toilet: it is a simply built aerobic and solar-assisted composting toilet. The structure can be built by one person using common carpenter's tools and from materials available at most building supply stores. The particular architectural style of this prototype cost approximately $1500 in new materials and took 323 hours of design/construction time. Construction was completed in April 1981 and the toilet has been in use since, with the first cycle of composted products having been removed in January 1982. Solar heating data show that in the winter months at this 39/sup 0/N. latitude the interior daytime temperatures rose to an average 50/sup 0/F above the outdoor temperature; while at night the indoor temperatures remained 15/sup 0/ to 20/sup 0/F above the outdoor temperatures. The resulting final composted product comprised of a beginning mix of approximately 2/3 sawdust and 1/3 excrement plus paper was without any visible sign of either paper or feces, its appearance being that of a dark crumbly sawdust/humus mix. Never throughout the entire cycle were any foul odors detected associated with anaerobic decomposition. Laboratory analysis for coliform bacteria indicative of raw feces revealed a dramatic reduction in their number from a mid-cycle sample to a final composted product. Further experiments and fine-tuning of the composting process in this toilet are continuing.

  1. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests

    NASA Astrophysics Data System (ADS)

    Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo

    2016-10-01

    Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.

  2. Rapid assessment of above-ground biomass of Giant Reed using visibility estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid estimation of biomass and density of giant reed (Arundo donax L.) was developed using estimates of visibility as a predictive tool. Visibility estimates were derived by capturing digital images of a 0.25 m2 polystyrene whiteboard placed a set distance (1m) from the edge of gia...

  3. Evaluating safety risk of locating above ground utility structures in the highway right-of-way.

    PubMed

    El Esawey, Mohamed; Sayed, Tarek

    2012-11-01

    Roadside safety has been a concern for highway engineers and designers for many decades. A significant part of this concern is related to collisions with utility poles. Current practices and standards for placing utility poles are based on a combination of qualitative guidelines/heuristics and relatively outdated findings. Accordingly, there is a need to study the safety level associated with placing utility poles at different lateral offsets from the edge of the travel-way. In this paper a Safety Performance Function (SPF) is developed to relate roadway and roadside variables to utility pole collision frequency. It was found that increasing the poles offset has a more significant effect on reducing the frequency of utility pole collisions compared to increasing poles spacing. Based on the developed utility pole-SPF, design charts were provided to facilitate calculations and decision-making process. The developed utility pole-SPF was compared to a widely-used utility pole collisions model and the differences in the type of data and the development methodology were highlighted.

  4. Above Ground Carbon Stock Estimates of Mangrove Forest Using Worldview-2 Imagery in Teluk Benoa, Bali

    NASA Astrophysics Data System (ADS)

    Candra, E. D.; Hartono; Wicaksono, P.

    2016-11-01

    Mangrove forests have a role as an absorbent and a carbon sink to a reduction CO2 in the atmosphere. Based on the previous studies found that mangrove forests have the ability to sequestering carbon through photosynthesis and carbon burial of sediment effectively. The value and distribution of carbon stock are important to understand through remote sensing technology. In this study, will estimate the carbon stock using WorldView-2 imagery with and without distinction mangrove species. Worldview-2 is a high resolution image with 2 meters spatial resolution and eight spectral bands. Worldview-2 potential to estimate carbon stock in detail. Vegetation indices such as DVI (Difference Vegetation Index), EVI (Enhanced Vegetation Index), and MRE-SR (Modified Red Edge-Simple Ratio) and field data were modeled to determine the best vegetation indices to estimate carbon stocks. Carbon stock estimated by allometric equation approach specific to each species of mangrove. Worldview-2 imagery to map mangrove species with an accuracy of 80.95%. Total carbon stock estimation results in the study area of 35.349,87 tons of dominant species Rhizophora apiculata, Rhizophora mucronata and Sonneratia alba.

  5. Regulation of above ground storage tank emissions (Rube Goldberg and the reinvention of government)

    SciTech Connect

    Ferry, R.L.

    1997-05-01

    Much fanfare has been made of the Clinton administration`s reinvention of government. In the environmental arena, this is expressed as a sensitivity to the overlapping and duplicate nature of EPA regulations and the associated burden to perform unnecessary monitoring, recordkeeping, and reporting. While EPA has put forth numerous initiatives bearing labels such as simplification, burden reduction, and common sense, this reinvention has taken on a form that only Rube Goldberg could love. The overall outcome seems to be that a byzantine system of overlapping regulations with an associated monumental paperwork burden is now being buried under a byzantine system of overlapping simplification initiatives which carry an additional reporting and recordkeeping burden. This paper will examine the impact of these EPA actions on the regulations governing emissions from aboveground storage tanks.

  6. Trigger Point Dry Needling.

    PubMed

    2017-03-01

    Increasingly, physical therapists in the United States and throughout the world are using dry needling to treat musculoskeletal pain, even though this treatment has been a controversial addition to practice. To better generalize to physical therapy practice the findings about dry needling thus far, the authors of a study published in the March 2017 issue of JOSPT identified the need for a systematic review examining the effectiveness of dry needling performed by physical therapists on people with musculoskeletal pain. Their review offers a meta-analysis of data from several included studies and assesses the evidence for risks of bias. J Orthop Sports Phys Ther 2017;47(3):150. doi:10.2519/jospt.2017.0502.

  7. Magnetically responsive dry fluids

    NASA Astrophysics Data System (ADS)

    Sousa, Filipa L.; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J. O.

    2013-07-01

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01784b

  8. Dark matter

    PubMed Central

    Peebles, P. James E.

    2015-01-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  9. Dynamic Matter

    NASA Astrophysics Data System (ADS)

    Hohner, Jack

    2003-05-01

    First postulate: Following the Big Bang, quarks, born from zero point mass, did not acquire a constant size. They are growing. Atomic distances remain relative to increasing quark diameter resulting in molecular density remaining constant. Current rate of quark growth results in an increase of Earth radius of approximately 2.8 cm/year. The perpetual growth is sustained by the conversion of space to matter. The equality of space to matter is algebraically derived from Newton's law of gravity. There results an inward flow of space at each quark. This creates a vector field of space flowing inward at the Earth. Next postulate: Einstein space curvature is actually inward flow of space. Although this appears as an ether theory, it does not conflict with relativity. The combined vector fields of all stars in the universe create a scalar field equal to C. Inward velocity of space at the surface of the Earth is calculated at 1.46 cm/sec. This is derived from space curvature formula from relativity. This value accelerates toward the nucleus of each atom until it terminates at C at the diameter of a quark. These two predictions of the velocity C demonstrate why it is the universal constant. This work predicts the gravitational constant from a derivation based on C. Several unifying aspects emerge including; equivalence principle, 5 dimensions, time, strong nuclear force, decreasing rotational velocity of Earth, dark matter, red shift and quantum mechanics. This theory is an extension of Einstein and Newton.

  10. Pore scale processes in dry soils

    NASA Astrophysics Data System (ADS)

    Schimel, J.

    2015-12-01

    Almost all soils experience regular drought and rewetting events. Yet most of our understanding of soil processes focuses on the moist periods, when plants are growing and nutrients are actively cycling. Yet, as soils dry, processes continue, yet change. Microbes shift their metabolic pathways from growth to survival, producing extracellular polymeric substances (EPS), sporulating, and going dormant. Under dry conditions, biotic processes are constrained but abiotic, chemical processes continue potentially altering soil aggregation and structure; in clayey California annual grassland & woodland soils pools of bioavailable water extractable organic carbon (WEOC) increase as does microbial biomass. Finally at rewetting, the pulse of water mobilizes resources, stimulates microbial activity and produces a flush of respiration and nutrient mineralization that can mobilize resources that had been previously inaccessible. One question that has driven much research has been where the organic matter comes from that drives these processes. We had hypothesized that the source of C for the dry-season increases was from the previous winter's dead roots, but field experiments where we maintained plots plant-free for two years showed no decline in the production of WEOC, nor in the early-season respiration pulses following rewetting. In this presentation, we will discuss recent work integrating measurements on aggregation (driven both by biotic and abiotic processes), EPS production, and the dynamics of WEOC and microbial biomass and how they function differently under dry and moist conditions.

  11. Dry piston coal feeder

    DOEpatents

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  12. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  13. Influence of dry matter intake, dry matter digestibility, and feeding behavior on body weight gain of beef steers.

    PubMed

    Davis, M P; Freetly, H C; Kuehn, L A; Wells, J E

    2014-07-01

    This study was conducted to determine the relative contribution of feeding behavior, DMI, apparent DM digestibility (DMD), and passage rate on variation in BW gain. One hundred forty-three crossbred steers were used in this study to determine the factors that contribute to variation in BW gain. Steers were 304 ± 1 d of age and had an initial BW of 338 ± 3 kg. Steers had ad libitum access to feed, and fresh feed was offered twice daily at 0800 and 1500 h. Individual feed intake and BW gains were determined for 106 d. Titanium dioxide was used as an external marker to estimate apparent DMD and passage rate. A multiple-regression analysis was used to determine the relative contribution of initial BW, feed intake, feeding behaviors, digestibility, and passage rate to variance in BW gain, and a path analysis was conducted to determine direct and indirect relationships of the variables. In the regression analysis, initial BW and DMI accounted for 33% of the variation in BW gain. Substituting meal events and meal size for DMI did not increase the amount of variance in BW gain (27%) accounted for by the regression model. There was a slight increase in the variance in BW gain (35%) when apparent DMD was added to initial BW and DMI. When meal events and meal size were substituted for DMI, there was a decrease (30%) in variance accounted for in BW gain. The regression coefficient for the passage rate did not differ from zero (P = 0.63) when the passage rate was substituted for apparent DMD in the regression model that also included initial BW and DMI, nor did it differ from zero (P = 0.39) in the model that substitutes meal events and meal size for DMI. Three models were used in the path analysis. For all 3 models there was a positive correlation (P < 0.001) between DMI and BW gain but not between apparent DMD and BW gain. In all 3 models there was a significant correlation between meal size, meal events, and initial BW on DMI (P < 0.001). Results of both the regression and path analyses suggest that both apparent DMD and passage rate accounted for small proportions of the variance, suggesting that they are minor contributors toward variance in BW gain among cattle fed the same concentrate diet.

  14. Quality of dry ginger (Zingiber officinale) by different drying methods.

    PubMed

    E, Jayashree; R, Visvanathan; T, John Zachariah

    2014-11-01

    Ginger rhizomes sliced to various lengths of 5, 10, 15, 20, 30, 40, 50 mm and whole rhizomes were dried from an initial moisture content of 81.3 % to final moisture content of less than 10 % by various drying methods like sun drying, solar tunnel drying and cabinet tray drying at temperatures of 50, 55, 60 and 65 °C. Slicing of ginger rhizomes significantly reduced the drying time of ginger in all the drying methods. It was observed that drying of whole ginger rhizomes under sun took the maximum time (9 days) followed by solar tunnel drying (8 days). Significant reduction in essential oil and oleoresin content of dry ginger was found as the slice length decreased. The important constituents of ginger essential oil like zingiberene, limonene, linalool, geraniol and nerolidol as determined using a gas chromatography was also found to decrease during slicing and as the drying temperature increased. The pungency constituents in the oleoresin of ginger like total gingerols and total shogoals as determined using a reverse phase high performance liquid chromatography also showed a decreasing trend on slicing and with the increase in drying temperature. It was observed from the drying studies that whole ginger rhizomes dried under sun drying or in a solar tunnel drier retained the maximum essential oil (13.9 mg/g) and oleoresin content (45.2 mg/g) of dry ginger. In mechanical drying, the drying temperature of 60 °C was considered optimum however there was about 12.2 % loss in essential oil at this temperature.

  15. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 0.1 g/kg black liquor solids (dry weight) . (3) From any lime kiln any...

  16. More stable productivity of semi natural grasslands than sown pastures in a seasonally dry climate.

    PubMed

    Ospina, Sonia; Rusch, Graciela M; Pezo, Danilo; Casanoves, Fernando; Sinclair, Fergus L

    2012-01-01

    In the Neotropics the predominant pathway to intensify productivity is generally thought to be to convert grasslands to sown pastures, mostly in monoculture. This article examines how above-ground net primary productivity (ANPP) in semi-natural grasslands and sown pastures in Central America respond to rainfall by: (i) assessing the relationships between ANPP and accumulated rainfall and indices of rainfall distribution, (ii) evaluating the variability of ANPP between and within seasons, and (iii) estimating the temporal stability of ANPP. We conducted sequential biomass harvests during 12 periods of 22 days and related those to rainfall. There were significant relationships between ANPP and cumulative rainfall in 22-day periods for both vegetation types and a model including a linear and quadratic term explained 74% of the variation in the data. There was also a significant correlation between ANPP and the number of rainfall events for both vegetation types. Sown pastures had higher ANPP increments per unit rainfall and higher ANPP at the peak of the rainy season than semi-natural grasslands. In contrast, semi-natural grasslands showed higher ANPP early in the dry season. The temporal stability of ANPP was higher in semi-natural grasslands than in the sown pastures in the dry season and over a whole annual cycle. Our results reveal that, contrary to conventional thinking amongst pasture scientists, there appears to be no increase in ANPP arising from replacing semi-natural grasslands with sown pastures under prevailing pasture management practices in seasonally dry climates, while the temporal distribution of ANPP is more even in semi-natural grasslands. Neither sown pastures nor semi-natural grasslands are productive towards the end of the dry season, indicating the potential importance of the widespread practice of retaining tree cover in pastures.

  17. More Stable Productivity of Semi Natural Grasslands than Sown Pastures in a Seasonally Dry Climate

    PubMed Central

    Ospina, Sonia; Rusch, Graciela M.; Pezo, Danilo; Casanoves, Fernando; Sinclair, Fergus L.

    2012-01-01

    In the Neotropics the predominant pathway to intensify productivity is generally thought to be to convert grasslands to sown pastures, mostly in monoculture. This article examines how above-ground net primary productivity (ANPP) in semi-natural grasslands and sown pastures in Central America respond to rainfall by: (i) assessing the relationships between ANPP and accumulated rainfall and indices of rainfall distribution, (ii) evaluating the variability of ANPP between and within seasons, and (iii) estimating the temporal stability of ANPP. We conducted sequential biomass harvests during 12 periods of 22 days and related those to rainfall. There were significant relationships between ANPP and cumulative rainfall in 22-day periods for both vegetation types and a model including a linear and quadratic term explained 74% of the variation in the data. There was also a significant correlation between ANPP and the number of rainfall events for both vegetation types. Sown pastures had higher ANPP increments per unit rainfall and higher ANPP at the peak of the rainy season than semi-natural grasslands. In contrast, semi-natural grasslands showed higher ANPP early in the dry season. The temporal stability of ANPP was higher in semi-natural grasslands than in the sown pastures in the dry season and over a whole annual cycle. Our results reveal that, contrary to conventional thinking amongst pasture scientists, there appears to be no increase in ANPP arising from replacing semi-natural grasslands with sown pastures under prevailing pasture management practices in seasonally dry climates, while the temporal distribution of ANPP is more even in semi-natural grasslands. Neither sown pastures nor semi-natural grasslands are productive towards the end of the dry season, indicating the potential importance of the widespread practice of retaining tree cover in pastures. PMID:22590506

  18. Inter-annual Variability of Aboveground Net Primary Productivity in Regenerating Tropical Dry Forests

    NASA Astrophysics Data System (ADS)

    Powers, J. S.; Becknell, J. M.

    2015-12-01

    Globally, there are now more secondary forests regenerating following anthropogenic disturbance than primary forests. However, carbon dynamics in secondary tropical forests in general, and seasonally dry forests in particular, have not been as well studied as primary wet forests. Young, regenerating forests may be more sensitive to climatic variability than older forests because of their dynamic demographic rates. Similarly, seasonally dry tropical forests may be particularly sensitive to changes in precipitation, as tree growth is highly constrained by water availability. We examined how inter-annual variability in precipitation affected above-ground net primary productivity in chronosequences of dry forest in Costa Rica. Our sites included three forest cover types, whose distribution is linked to edaphic variation. Over our 6-yr dataset, annual rainfall varied from 1110 to 3040mm, with a 5-6 month dry season. ANPP ranged from 2.96 to 18.98 Mg ha-1 across sites that have been recovering for 7 to 67 years. Fine litter production dominated ANPP, and increased with forest age but not annual rainfall. By contrast, woody stem growth did not vary among forests that differed in age, but increased as a function of annual rainfall. These results differed by forest type. Lowland oak forests on low fertility soil had the lowest productivity and responses to rainfall, whereas forests on the highest fertility soils showed large increases in woody production with rainfall. Consistent with our expectation, younger forests on the intermediate soil type had higher variability in ANPP than older forests, but this was not significant for forests on the poor or high fertility soils. Our results highlight several important findings: 1) different components of ANPP vary in their responses to inter-annual variation in rainfall, 2) forest responses to climatic variability depend on species composition, which varies consistently with soil type in this landscape.

  19. Variable Contribution of Soil and Plant Derived Carbon to Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Steinbeiss, S.; Gleixner, G.

    2005-12-01

    The seasonal variation in the amount and sources of dissolved organic matter (DOM) in soil profiles was investigated. In general DOM in soil solution can evolve from the decomposition and mobilization of soil organic matter (SOM), dissolution of dead microbial cells or from the input of plant material such as root exudates or decomposing litter. Here we used vegetation change from C3 to C4 plants to quantify the plant derived carbon in DOM. In 2002 an agricultural field was converted to an experimental grass land. The average carbon isotope value of SOM was -26.5 per mill (sd = 0.2) for the plough horizon. On two independent plots, each 10 x 20 m, we used Amaranthus retroflexus as C4 plant with a carbon isotope label of 13.0 per mill to distinguish unlabeled SOM and plant derived carbon sources. To quantify the contribution of litter input on DOM formation we applied a split plot design. One half had no litter and the other half double amount of above ground litter. Soil water was collected in 10, 20 and 30 cm depth biweekly and DOM concentrations in solution and carbon isotope ratios of the freeze dried and decarbonized material were investigated. During winter uniform concentrations of DOM of about 7 mg/l were measured throughout all depth and treatments. In spring when soil temperatures increase and water availability decreases DOM concentrations increased with similar rates in all depth. Even in the second year of Amaranth growth the carbon isotope ratios of DOM in winter and spring had no C4 signal. The carbon isotope ratios of -26 to -27 per mill suggest SOM as carbon source and contradict a contribution of root exudates to the DOM pool. During summer almost no soil solution was collected. After rewetting in fall DOM concentrations up to 50 mg/l in 10 cm depth and up to 35 mg/l in deeper layers were found. These high concentrations held carbon isotope signals from -25 to -26.5 per mill contradicting carbon input from plant material. With ongoing wetting of

  20. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  1. Ultrasonic Clothes Drying Technology

    SciTech Connect

    Patel, Viral; Momen, Ayyoub

    2016-05-09

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  2. Ultrasonic Clothes Drying Technology

    ScienceCinema

    Patel, Viral; Momen, Ayyoub

    2016-07-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  3. Superlubricity of dry nanocontacts

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Maier, Sabine; Meyer, Ernst

    2008-09-01

    We discuss how various forms of dry superlubricity, recently observed on the nanoscale, have been interpreted by simple phenomenological models. In particular, we review the cases of static and dynamic single-contact lubricity, thermolubricity, and structural lubricity. All these phenomena have been studied by friction force microscopy and explained using the classical Prandtl-Tomlinson model and its extensions, including thermal activation, temporal and spatial variations of the surface energy corrugation, and multiple-contact effects.

  4. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  5. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  6. Marginal Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  7. Simple Solutions for Dry Eye

    MedlinePlus

    ... are more concentrated in the tear film of dry eye patients. In hot weather, sleep with the windows shut and keep cool with air conditioning. • Dry eye patients often develop or aggravate allergies. An ...

  8. Hydrodynamics of soft active matter

    NASA Astrophysics Data System (ADS)

    Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi

    2013-07-01

    This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are “dry” systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or “wet” systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

  9. Terrestrial Planets Accreted Dry

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Blichert-Toft, J.

    2007-12-01

    Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert. Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer Solar System isolated the magma and kept it molten for some few tens of million years. The elemental distributions and the range of condensation temperatures show that the planets from the inner Solar System accreted dry. The interior of planets that lost up to 95% of their K cannot contain much water. Foundering of their wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process may have removed all the water from the surface of Venus 500 My ago and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet therefore is the key parameter controlling most of its evolutional features.

  10. Dry removal of asbestos.

    PubMed

    Elias, J D

    1981-08-01

    A method for the dry removal of friable asbestos has been developed. The Workplace Safety and Health Branch in Manitoba's Limited have co-operated in the production of an improved procedure. It was employed for the first time in the fall of 1979 when the Industrial Hygiene Section was asked for advice about removal of asbestos from a Winnipeg School Division warehouse. Fans were used to maintain the work area under negative pressure to prevent the spread of asbestos throughout the building. The exhaust air was filtered to prevent environmental contamination, and special precautions were taken to protect workers.

  11. Method of drying articles

    DOEpatents

    Janney, Mark A.; Kiggans, Jr., James O.

    1999-01-01

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  12. Method of drying articles

    DOEpatents

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  13. Electrohydrodynamic Drying of Carrot Slices

    PubMed Central

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique. PMID:25874695

  14. Electrohydrodynamic drying of carrot slices.

    PubMed

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique.

  15. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying.

    PubMed

    Venkitasamy, Chandrasekar; Brandl, Maria T; Wang, Bini; McHugh, Tara H; Zhang, Ruihong; Pan, Zhongli

    2017-04-04

    Pistachio nuts have been associated with outbreaks of foodborne disease and the industry has been impacted by numerous product recalls due to contamination with Salmonella enterica. The current hot air drying of pistachios has low energy efficiency and drying rates, and also does not guarantee the microbial safety of products. In the study described herein, dehulled and water-sorted pistachios with a moisture content (MC) of 38.14% (wet basis) were dried in a sequential infrared and hot air (SIRHA) drier to <9% MC. The decontamination efficacy was assessed by inoculating pistachios with Enterococcus faecium, a surrogate of Salmonella enterica used for quality control in the almond industry. Drying with IR alone saved 105min (34.4%) of drying time compared with hot air drying. SIRHA drying of pistachios for 2h with infrared (IR) heat followed by tempering at a product temperature of 70°C for 2h and then by hot air drying shortened the drying time by 40min (9.1%) compared with drying by hot air only. This SIRHA method also reduced the E. faecium cell population by 6.1-logCFU/g kernel and 5.41-logCFU/g shell of pistachios. The free fatty acid contents of SIRHA dried pistachios were on par with that of hot air dried samples. Despite significant differences in peroxide values (PV) of pistachio kernels dried with the SIRHA method compared with hot air drying at 70°C, the PV were within the permissible limit of 5Meq/kg for edible oils. Our findings demonstrate the efficacy of SIRHA drying in achieving simultaneous drying and decontamination of pistachios.

  16. Advances in drying: Volume 4

    SciTech Connect

    Mujumdar, A.S.

    1987-01-01

    Topics covered in this volume include recent thoughts in modeling of drying phenomena, use of computers in rational design of drying particulates, recent advances in drying of wood, and heat/mass transfer phenomena in drying of solids. As the readers will no doubt notice, special effort is made to ensure the truly international nature of the contents of this serial publication. As existing knowledge on drying and dryers becomes more widely and readily accessible, it is expected that more and more dryers will be designed rationally rather than built solely with the benefit of empiricism.

  17. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  18. Age matters.

    PubMed

    McCutcheon, James Edgar; Marinelli, Michela

    2009-03-01

    The age of an experimental animal can be a critical variable, yet age matters are often overlooked within neuroscience. Many studies make use of young animals, without considering possible differences between immature and mature subjects. This is especially problematic when attempting to model traits or diseases that do not emerge until adulthood. In this commentary we discuss the reasons for this apparent bias in age of experimental animals, and illustrate the problem with a systematic review of published articles on long-term potentiation. Additionally, we review the developmental stages of a rat and discuss the difficulty of using the weight of an animal as a predictor of its age. Finally, we provide original data from our laboratory and review published data to emphasize that development is an ongoing process that does not end with puberty. Developmental changes can be quantitative in nature, involving gradual changes, rapid switches, or inverted U-shaped curves. Changes can also be qualitative. Thus, phenomena that appear to be unitary may be governed by different mechanisms at different ages. We conclude that selection of the age of the animals may be critically important in the design and interpretation of neurobiological studies.

  19. Dry EEG Electrodes

    PubMed Central

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  20. Mind Over Matter: Cocaine

    MedlinePlus

    ... Over Matter Teaching Guide and Series / Cocaine Print Mind Over Matter: Cocaine Order Free Publication in: English ... how drugs affect the brain and nervous system. Mind Over Matter is produced by the National Institute ...

  1. Steam drying -- Modeling and applications

    SciTech Connect

    Wimmerstedt, R.; Hager, J.

    1996-08-01

    The concept of steam drying originates from the mid of the last century. However, a broad industrial acceptance of the technique has so far not taken place. The paper deals with modelling the steam drying process and applications of steam drying within certain industrial sectors where the technique has been deemed to have special opportunities. In the modelling section the mass and heat transfer processes are described along with equilibrium, capillarity and sorption phenomena occurring in porous materials during the steam drying process. In addition existing models in the literature are presented. The applications discussed involve drying of fuels with high moisture contents, cattle feed exemplified by sugar beet pulp, lumber, paper pulp, paper and sludges. Steam drying is compared to flue gas drying of biofuels prior to combustion in a boiler. With reference to a current installation in Sweden, the exergy losses, as manifested by loss of co-generation capacity, are discussed. The energy saving potential when using steam drying of sugar beet pulp as compared to other possible plant configurations is demonstrated. Mechanical vapor recompression applied to steam drying is analyzed with reference to reported data from industrial plants. Finally, environmental advantages when using steam drying are presented.

  2. Dry aging of beef; Review.

    PubMed

    Dashdorj, Dashmaa; Tripathi, Vinay Kumar; Cho, Soohyun; Kim, Younghoon; Hwang, Inho

    2016-01-01

    The present review has mainly focused on the specific parameters including aging (aging days, temperature, relative humidity, and air flow), eating quality (flavor, tenderness and juiciness), microbiological quality and economic (shrinkage, retail yields and cost) involved beef dry aging process. Dry aging is the process where beef carcasses or primal cuts are hanged and aged for 28 to 55 d under controlling environment conditions in a refrigerated room with 0° to 4 °C and with relative humidity of 75 to 80 %. However there are various opinions on dry aging procedures and purveyors of such products are passionate about their programs. Recently, there has been an increased interest in dry aging process by a wider array of purveyors and retailers in the many countries. Dry aging process is very costly because of high aging shrinkage (6 to15 %), trims loss (3 to 24 %), risk of contamination and the requirement of highest grades meat with. The packaging in highly moisture-permeable bag may positively impact on safety, quality and shelf stability of dry aged beef. The key effect of dry aging is the concentration of the flavor that can only be described as "dry-aged beef". But the contribution of flavor compounds of proteolysis and lipolysis to the cooked dry aged beef flavor is not fully known. Also there are limited scientific studies of aging parameters on the quality and palatability of dry aged beef.

  3. Dry Ice Etches Terrain

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface.

    The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain.

    Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.

  4. [Tear osmolarity and dry eye].

    PubMed

    Pan, Shi-yin; Xiao, Xiang-hua; Wang, Yang-zheng; Liu, Xian-ning; Zhu, Xiu-ping

    2011-05-01

    Dry eye is a common eye disease, and its incidence rate has been escalating. The increased tear osmolarity is one of the main reasons for complaint, damage and inflammation of dry eye patients. With the breakthrough of testing technology for tear osmolarity, more research and application of tear osmolarity was reported, and papers on tear osmolarity of normal eye and dry eye in different regions were also published. In this article, the progress of the tear osmolarity research, the range of tear osmolarity and its application in diagnosis and therapy of dry eye was introduced, and the prospect for the clinical application of hypotonic artificial tears was also discussed.

  5. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  6. Conducting compositions of matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  7. Conducting Compositions of Matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    1999-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  8. Investigation of rehydration kinetics of open-sun dried okra samples

    NASA Astrophysics Data System (ADS)

    Gökçe Kocabay, Özlem; İsmail, Osman

    2017-01-01

    In this study rehydration kinetics of open-sun dried okra, which dried naturally and two pre-treatment, was investigated at 25 and 50 °C. By the obtained data, parameters with respect to rehydration kinetics and diffusion mechanism were calculated. In dehydration experiments, it was determined that blanching pre-treatment has influence on the drying time and okra samples were dried at 18 h. On the contrary in rehydration experiments maximum equilibrium rehydration values were achieved with the okras dried naturally. Experimental equilibrium rehydration (R eq ), theoretical equilibrium rehydration (R max ) and diffusion coefficient (D) of okra dried naturally at 50 °C were calculated as 5.57 (g water/g dry matter), 5.96 (g water/g dry matter) and 2.17 × 10-10 (m2/s), respectively. Rehydration exponent (n) value, which is also important to identify the diffusion type of dried okra, was determined as between 0.332 and 0.383. Because of the exponent value n < 0.50, diffusion was defined as natural Fick type.

  9. Sessile nanofluid droplet drying.

    PubMed

    Zhong, Xin; Crivoi, Alexandru; Duan, Fei

    2015-03-01

    Nanofluid droplet evaporation has gained much audience nowadays due to its wide applications in painting, coating, surface patterning, particle deposition, etc. This paper reviews the drying progress and deposition formation from the evaporative sessile droplets with the suspended insoluble solutes, especially nanoparticles. The main content covers the evaporation fundamental, the particle self-assembly, and deposition patterns in sessile nanofluid droplet. Both experimental and theoretical studies are presented. The effects of the type, concentration and size of nanoparticles on the spreading and evaporative dynamics are elucidated at first, serving the basis for the understanding of particle motion and deposition process which are introduced afterward. Stressing on particle assembly and production of desirable residue patterns, we express abundant experimental interventions, various types of deposits, and the effects on nanoparticle deposition. The review ends with the introduction of theoretical investigations, including the Navier-Stokes equations in terms of solutions, the Diffusion Limited Aggregation approach, the Kinetic Monte Carlo method, and the Dynamical Density Functional Theory. Nanoparticles have shown great influences in spreading, evaporation rate, evaporation regime, fluid flow and pattern formation of sessile droplets. Under different experimental conditions, various deposition patterns can be formed. The existing theoretical approaches are able to predict fluid dynamics, particle motion and deposition patterns in the particular cases. On the basis of further understanding of the effects of fluid dynamics and particle motion, the desirable patterns can be obtained with appropriate experimental regulations.

  10. Staying dry under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul; Cruz-Chu, Eduardo; Megaridis, Constantine; Walther, Jens; Koumoutsakos, Petros; Patankar, Neelesh

    2012-11-01

    Lotus leaves are known for their non-wetting properties due to the presence of surface texture. The superhydrophobic behavior arises because of the prevention of liquid water from entering the pores of the roughness. Present superhydrophobic materials rely on air trapped within the surface pores to avoid liquid permeation. This is typically unsustainable for immersed bodies due to dissolution of the air, especially under elevated pressures. Here, molecular dynamics simulations are used to demonstrate the non-wetting behavior of an immersed ten-nanometer pore. This is accomplished by establishing thermodynamically sustained vapor pockets of the surrounding liquid medium. Over 300,000 atoms were used to construct the nanopore geometry and simulate SPC/E water molecules. Ambient pressure was varied along two isotherms (300 K, and 500 K). This approach for vapor-stabilization could offer valuable guidance for maintaining surfaces dry even in a submerged state without relying on trapped air. The approach may be extended to control general phase behavior of water adjacent to textured surfaces. ISEN support is gratefully acknowledged.

  11. Forward Osmosis Brine Drying

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek

    2015-01-01

    The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.

  12. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  13. Whey drying on porous carriers

    SciTech Connect

    Mitura, E.; Kaminski, W.

    1996-05-01

    Whey is treated very often as a waste which pollutes the natural environment. Whey which is a valuable source of protein, lacrose, vitamins and mineral salts should be utilized completely. The present paper is a proposal of whey drying on porous carriers. It is proved experimentally that the proposed drying method guarantees good product quality.

  14. Dry eye disease after LASIK

    PubMed Central

    Ţuru, L; Alexandrescu, C; Stana, D; Tudosescu, R

    2012-01-01

    LASIK is a surgical tehnique for the correction of refractive errors (myopia, hyperopia, astygmatism). It results in a reshape of the cornea with ocular surface and especially tear film disease. It is a cause for a iatrogenic dry eye syndrome. Neurogenic and inflamatory theory explain this disease. The main therapy of dry eye is the replacement with artificial tears. PMID:22574092

  15. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  16. Hot, Dry and Cloudy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy

    This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system.

    The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles.

    Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged

  17. Space and Industrial Brine Drying Technologies

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  18. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    PubMed

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying.

  19. Simulation of the evolution of root water foraging strategies in dry and shallow soils

    PubMed Central

    Renton, Michael; Poot, Pieter

    2014-01-01

    Background and Aims The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional–structural root growth model. Methods A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally – the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. Key Results The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Conclusions Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More

  20. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    PubMed

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  1. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  2. Variation in internal N efficiency of maize and impact on yield-goal based N recommendations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal N efficiency (IE) is defined as grain dry matter (DM) produced per unit of N in the above-ground plant at physiological maturity (R6). Internal N efficiency defines the target for plant N content at R6 in yield-goal based N rate recommendations (currently used in 30 U.S. states) and several...

  3. Chemodestructive fractionation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Rusakov, A. V.

    2016-06-01

    The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.

  4. Responses of spring wheat (Triticum aestivum L.) to ozone produced by either electric discharge and dry air or by UV-lamps and ambient air.

    PubMed

    Mortensen, L; Jørgensen, H E

    1996-01-01

    The aim of the present study was to examine if ozone produced similar effects on spring wheat growth with and without small amounts of nitrogen oxides. Two methods were used to produce ozone: the first method consisted of dry pressurized air fed to an electric discharge generator generating the byproducts, N2O5 and N2O, the second method consisted of ambient air fed to UV-lamps. Two spring wheat cultivars (Triticum aestivum L. cvs Minaret and Eridano) were exposed in small open-top chambers to charcoal-filtered air, non-filtered ambient air, and non-filtered ambient air with the addition of ozone for 8 h (0900 to 1700 h) daily, for five weeks. Plants were harvested every week. The growth of Minaret was shown to be more sensitive to O3 than that of Eridano. Leaf senescence increased with increasing ozone level in both cultivars. The total above-ground biomass dry weight decreased with increasing ozone concentration in Minaret, but not in Eridano. The Minaret plants reacted with more damaged leaf dry weight and inhibition of growth when O3 was produced by UV-lamps than when O3 was produced by air fed to an electric discharge generator. This could be explained by more nitrogen content per plant but not by increased nitrogen concentration in plant tissue in plants exposed to increased O3 and small amounts of incidental nitrogen oxides.

  5. No Heat Spray Drying Technology

    SciTech Connect

    Beetz, Charles

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  6. Drying of thin colloidal films

    NASA Astrophysics Data System (ADS)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  7. Lyophilization, Reconstitution, and DBP Formation in Reverse-Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking w...

  8. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect

    Orloff, D.I.; Phelan, P.M.

    1993-12-01

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  9. Aging and dry eye disease

    PubMed Central

    Ding, Juan; Sullivan, David A.

    2012-01-01

    Dry eye disease is a prevalent eye disorder that in particular affects the elderly population. One of the major causes of dry eye, meibomian gland dysfunction (MGD), shows increased prevalence with aging. MGD is caused by hyperkeratinization of the ductal epithelium of meibomian gland and reduced quantity and/or quality of meibum, the holocrine product that stabilizes and prevents the evaporation of the tear film. Of note, retinoids which are used in current anti-aging cosmetics may promote the development of MGD and dry eye disease. In this review, we will discuss the possible mechanisms of age-related MGD. PMID:22569356

  10. Do Variations in Detrital Inputs Influence Stable Soil Organic Matter? - An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Townsend, K.; Brewer, E.; Caldwell, B.; Kalbitz, K.; Plante, A.

    2007-12-01

    Recognition of the importance of feedbacks from plants in determining soil nutrient dynamics and C storage led to a large number of litter decomposition studies. Despite growing knowledge of short-term litter dynamics, we know relatively little about the fate of plant litter and its role in determining SOM content and nutrient cycling over time scales ranging from decades and centuries. To address this gap, we established long-term studies of controls on soil organic matter formation in an old-growth forest at the H.J. Andrews Experimental Forest, OR. This study complements a network of recently established similar experiments that pan climatic and soil gradients, as well as the original DIRT experiment established in the Wisconsin Arboretum in 1956 in both grassland and forested sites. The central goal of the DIRT project is to assess how rates and sources of plant litter inputs control the accumulation and dynamics of organic matter and nutrients in forest soils over decadal time scales. Treatment plots include doubled litter (needle) inputs , doubled wood, no above ground litter (screened) inputs, no root inputs (trenched), and no inputs (screened and trenched). For the 50th anniversary of the Wisconsin sites and the 10th anniversary of the H.J. Andrews site, we used sequential density fractionation of soils from all treatments to determine if adding or removing either below- or above-ground litter inputs influenced carbon stabilization as soil organic matter. After 50 years, double litter plots in both prairie and forested soils had higher %C in the 0-10 cm horizon. In the forested site, plots showed increased C content of the lightest fraction, which represents relatively young SOM with a short turnover time. However, the first two heavy fractions also showed increases in C with added aboveground litter, suggesting the importance of aboveground litter inputs to SOM in the forest. No such pattern existed for the prairie soil, and we hypothesize that this is

  11. Spent fuel drying system test results (second dry-run)

    SciTech Connect

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0.

  12. Why Arrhythmia Matters

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Why Arrhythmia Matters Updated:Dec 21,2016 When the heart's ... fibrillation. This content was last reviewed September 2016. Arrhythmia • Home • About Arrhythmia • Why Arrhythmia Matters • Understand Your ...

  13. Asymmetric dark matter

    SciTech Connect

    Kumar, Jason

    2014-06-24

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  14. States of Matter

    NASA Video Gallery

    NASA scientists and engineers utilize the basic principles of the states of matter on a daily basis. The states and properties of matter are very important to the design and construction of NASA sp...

  15. Dilute Acid Pretreatment of Oven-dried Switchgrass Germplasms for Bioethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioethanol production potential of three oven-dried switchgrass germplasms (St6-1, St6- 3E and St6-3F) containing 26.65 to 29.28% glucan, 17.92 to 19.37% xylan, and 17.74 to 19.23% lignin (dry matter basis) was investigated. Evaluation of the effect of three acid concentrations (0.5, 1.0 and 1.5% w/...

  16. Saccharification and Fermentation of Dilute-Acid-Pretreated Freeze-Dried Switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioethanol production potential of three oven-dried switchgrass germplasms (St6-1, St6-3 3E and St6-3F) containing 26.65 to 29.28% glucan, 17.92 to 19.37% xylan, and 17.74 to 19.23% lignin (dry matter basis) was investigated. Evaluation of the effect of three acid concentrations (0.5, 1.0 and 1.5% w...

  17. Sustaining dry surfaces under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  18. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-08-18

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  19. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  20. Dry PMR-15 Resin Powders

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.; Roberts, Gary D.

    1988-01-01

    Shelf lives of PMR-15 polymides lengthened. Procedure involves quenching of monomer reactions by vacuum drying of PRM-15 resin solutions at 70 to 90 degree F immediately after preparation of solutions. Absence of solvent eliminates formation of higher esters and reduces formation of imides to negligible level. Provides fully-formulated dry PMR-15 resin powder readily dissolvable in solvent at room temperature immediately before use. Resins used in variety of aerospace, aeronautical, and commercial applications.

  1. Drying in cyclones -- A review

    SciTech Connect

    Nebra, S.A.; Silva, M.A.; Mujumdar, A.S.

    2000-03-01

    This paper presents an overview of the flow, heat and mass transfer characteristics of vortex (or cyclone) dryers. The focus is on the potential of the cyclone configuration for drying of particulates. A selective review is made of the literature pertains to single phase and gas-particle flow in cyclone geometries. Recent data on drying of particulates in cyclone dryers are summarized. 56 refs.

  2. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  3. Impeded Dark Matter

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-12-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario "Impeded Dark Matter". We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  4. Drying temperature effects on fish dry mass measurements

    USGS Publications Warehouse

    Lantry, B.F.; O'Gorman, R.

    2007-01-01

    Analysis of tissue composition in fish often requires dry samples. Time needed to dry fish decreases as temperature is increased, but additional volatile material may be lost. Effects of 10??C temperature increases on percentage dry mass (%DM) were tested against 60??C controls for groups of lake trout Salvelinus namaycush, rainbow smelt Osmerus mordax, slimy sculpin Cottus cognatus, and alewife Alosa pseudoharengus. Lake trout %DMs were lower at greater temperatures, but not significantly different from 60??C controls. Rainbow smelt and slimy sculpin %DMs were lower at greater temperatures and differences were significant when test temperatures reached 90??C. Significant differences were not found in tests using alewives because variability in %DM was high between fish. To avoid inter-fish variability, 30 alewives were each dried successively at 60, 70, 80, and then 90??C and for all fish %DM declined at each higher temperature. In general, %DMs were lower at greater temperatures and after reaching a stable dry weight, fish did not lose additional mass if temperature remained constant. Results indicate that caution should be used when comparing dry mass related indices from fish dried at different temperatures because %DM was negatively related to temperature. The differences in %DM observed with rising temperature could account for substantial portions of the variability in reported energy values for the species tested. Differences in %DM means for the 60 vs. 80??C and 60 vs. 90??C tests for rainbow smelt and alewife could represent of from 8 to 38% of observed annual energy cycles for Lakes Ontario and Michigan.

  5. Morphology of drying blood pools

    NASA Astrophysics Data System (ADS)

    Laan, Nick; Smith, Fiona; Nicloux, Celine; Brutin, David; D-Blood project Collaboration

    2016-11-01

    Often blood pools are found on crime scenes providing information concerning the events and sequence of events that took place on the scene. However, there is a lack of knowledge concerning the drying dynamics of blood pools. This study focuses on the drying process of blood pools to determine what relevant information can be obtained for the forensic application. We recorded the drying process of blood pools with a camera and measured the weight. We found that the drying process can be separated into five different: coagulation, gelation, rim desiccation, centre desiccation, and final desiccation. Moreover, we found that the weight of the blood pool diminishes similarly and in a reproducible way for blood pools created in various conditions. In addition, we verify that the size of the blood pools is directly related to its volume and the wettability of the surface. Our study clearly shows that blood pools dry in a reproducible fashion. This preliminary work highlights the difficult task that represents blood pool analysis in forensic investigations, and how internal and external parameters influence its dynamics. We conclude that understanding the drying process dynamics would be advancement in timeline reconstitution of events. ANR funded project: D-Blood Project.

  6. Dry Eyes and Glaucoma: Double Trouble

    MedlinePlus

    ... News About Us Donate In This Section Dry Eyes and Glaucoma: Double Trouble email Send this article ... disease bothers the patient more. What Causes Dry Eye Syndrome? Dry eye can be caused by many ...

  7. The Kiln Drying of Wood for Airplanes

    NASA Technical Reports Server (NTRS)

    Tiemann, Harry D

    1919-01-01

    This report is descriptive of various methods used in the kiln drying of woods for airplanes and gives the results of physical tests on different types of woods after being dried by the various kiln-drying methods.

  8. Secretly asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  9. How dark matter came to matter

    NASA Astrophysics Data System (ADS)

    de Swart, J. G.; Bertone, G.; van Dongen, J.

    2017-03-01

    The history of the dark matter problem can be traced back to at least the 1930s, but it was not until the early 1970s that the issue of 'missing matter' was widely recognized as problematic. In the latter period, previously separate issues involving missing mass were brought together in a single anomaly. We argue that reference to a straightforward accumulation of evidence alone is inadequate to comprehend this episode. Rather, the rise of cosmological research, the accompanying renewed interest in the theory of relativity and changes in the manpower division of astronomy in the 1960s are key to understanding how dark matter came to matter. At the same time, this story may also enlighten us on the methodological dimensions of past practices of physics and cosmology.

  10. The physics of strange matter

    SciTech Connect

    Olinto, A.V. |

    1991-12-01

    Strange matter may be the ground state of matter. We review the phenomenology and astrophysical implications of strange matter, and discuss the possible ways for testing the strange matter hypothesis.

  11. Big Questions: Dark Matter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  12. Gas storage in "dry water" and "dry gel" clathrates.

    PubMed

    Carter, Benjamin O; Wang, Weixing; Adams, Dave J; Cooper, Andrew I

    2010-03-02

    "Dry water" (DW) is a free-flowing powder prepared by mixing water, hydrophobic silica particles, and air at high speeds. We demonstrated recently that DW can be used to dramatically enhance methane uptake rates in methane gas hydrate (MGH). Here, we expand on our initial work, demonstrating that DW can be used to increase the kinetics of formation of gas clathrates for gases other than methane, such as CO(2) and Kr. We also show that the stability of the system toward coalescence can be increased via the inclusion of a gelling agent to form a "dry gel", thus dramatically improving the recyclability of the material. For example, the addition of gellan gum allows effective reuse over at least eight clathration cycles without the need for reblending. DW and its "dry gel" modification may represent a potential platform for recyclable gas storage or gas separation on a practicable time scale in a static, unmixed system.

  13. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Calciners and... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and for calciners and dryers installed in series and in excess of 0.057 g/dscm (0.025 gr/dscf) for dryers; and...

  14. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Calciners and... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and for calciners and dryers installed in series and in excess of 0.057 g/dscm (0.025 gr/dscf) for dryers; and...

  15. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Calciners and... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and for calciners and dryers installed in series and in excess of 0.057 g/dscm (0.025 gr/dscf) for dryers; and...

  16. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Calciners and... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and for calciners and dryers installed in series and in excess of 0.057 g/dscm (0.025 gr/dscf) for dryers; and...

  17. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Calciners and... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and for calciners and dryers installed in series and in excess of 0.057 g/dscm (0.025 gr/dscf) for dryers; and...

  18. The ghost of a recent invasion in the reduced feeding rates of spitting cobras during the dry season in a rainforest region of tropical Africa?

    NASA Astrophysics Data System (ADS)

    Luiselli, Luca

    2001-12-01

    Two species of cobras ( Naja melanoleuca and Naja nigricollis) are known to occur in south eastern Nigeria, where much of the pristine rainforest surface has been felled in the last thirty years, and where the actual landscape is generally constituted by a mosaic of farmlands, plantations, suburban areas, with a few remnant forest fragments. In this region, Naja nigricollis is currently extending its range, especially by exploiting recently deforested areas. Based on the known general distribution range of this species and on the available literature data, it appears that Naja nigricollis has been colonizing the forested region of south eastern Nigeria, starting from the relatively arid savannas of central Nigeria, where this species aestivates during the driest months. In the forest region, however, snakes do not need to aestivate during the dry season. Nevertheless, whereas Naja melanoleuca has a foraging activity extended all-the-year round, Naja nigricollis reduces feeding rates during the dry months, although it does not suspend above-ground activity in these months. I suggest that rainforest spitting cobras suspend feeding during the dry months because their behaviour is just a 'ghost' of their recent past, when they were 'normal' spitting cobras of dry savana regions, which were thus constrained to aestivate during the dry season as it is the rule in this species in central and northern Nigeria. The 'gost-of-the-past hypothesis' seems to fit well with the 'invading' presence of Naja nigricollis in Nigerian areas where they were reported as rare or, even, absent, up to a few decades ago. Other hypotheses are discussed, and rejected.

  19. Spent fuel drying system test results (first dry-run)

    SciTech Connect

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental

  20. Potential evapotranspiration and continental drying

    NASA Astrophysics Data System (ADS)

    Milly, P. C. D.; Dunne, K. A.

    2016-10-01

    By various measures (drought area and intensity, climatic aridity index, and climatic water deficits), some observational analyses have suggested that much of the Earth’s land has been drying during recent decades, but such drying seems inconsistent with observations of dryland greening and decreasing pan evaporation. `Offline’ analyses of climate-model outputs from anthropogenic climate change (ACC) experiments portend continuation of putative drying through the twenty-first century, despite an expected increase in global land precipitation. A ubiquitous increase in estimates of potential evapotranspiration (PET), driven by atmospheric warming, underlies the drying trends, but may be a methodological artefact. Here we show that the PET estimator commonly used (the Penman-Monteith PET for either an open-water surface or a reference crop) severely overpredicts the changes in non-water-stressed evapotranspiration computed in the climate models themselves in ACC experiments. This overprediction is partially due to neglect of stomatal conductance reductions commonly induced by increasing atmospheric CO2 concentrations in climate models. Our findings imply that historical and future tendencies towards continental drying, as characterized by offline-computed runoff, as well as other PET-dependent metrics, may be considerably weaker and less extensive than previously thought.

  1. Potential evapotranspiration and continental drying

    USGS Publications Warehouse

    Milly, Paul C.D.; Dunne, Krista A.

    2016-01-01

    By various measures (drought area and intensity, climatic aridity index, and climatic water deficits), some observational analyses have suggested that much of the Earth’s land has been drying during recent decades, but such drying seems inconsistent with observations of dryland greening and decreasing pan evaporation. ‘Offline’ analyses of climate-model outputs from anthropogenic climate change (ACC) experiments portend continuation of putative drying through the twenty-first century, despite an expected increase in global land precipitation. A ubiquitous increase in estimates of potential evapotranspiration (PET), driven by atmospheric warming, underlies the drying trends, but may be a methodological artefact. Here we show that the PET estimator commonly used (the Penman–Monteith PET for either an open-water surface or a reference crop) severely overpredicts the changes in non-water-stressed evapotranspiration computed in the climate models themselves in ACC experiments. This overprediction is partially due to neglect of stomatal conductance reductions commonly induced by increasing atmospheric CO2 concentrations in climate models. Our findings imply that historical and future tendencies towards continental drying, as characterized by offline-computed runoff, as well as other PET-dependent metrics, may be considerably weaker and less extensive than previously thought.

  2. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals.

    PubMed

    Wang, Changhui; Pei, Yuansheng; Zhao, Yaqian

    2015-01-01

    In this work, the labilities of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in air-dried (for 60 days) and fresh dewatered WTRs were compared using the Toxicity Characteristic Leaching Procedure (TCLP), fractionation, in vitro digestion and a plant enrichment test. The results showed that the air-dried and fresh dewatered WTRs had different properties, e.g., organic matter composition and available nutrients. The air-dried and fresh dewatered WTRs were non-haf zardous according to the TCLP assessment method used in the United States; however, the metals in the two types of WTRs had different lability. Compared with the metals in the fresh dewatered WTRs, those in the air-dried WTRs tended to be in more stable fractions and also exhibited lower bioaccessibility and bioavailability. Therefore, air-drying can decrease the metal lability and thereby reduce the potential metal pollution risk of WTRs.

  3. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process.

  4. Fragmentation of drying paint layers

    NASA Astrophysics Data System (ADS)

    Bakos, Katinka; Dombi, András; Járai-Szabó, Ferenc; Néda, Zoltán

    2013-11-01

    Fragmentation of thin layers of drying granular materials on a frictional surface are studied both by experiments and computer simulations. Besides a qualitative description of the fragmentation phenomenon, the dependence of the average fragment size as a function of the layer thickness is thoroughly investigated. Experiments are done using a special nail polish, which forms characteristic crack structures during drying. In order to control the layer thickness, we diluted the nail polish in acetone and evaporated in a controlled manner different volumes of this solution on glass surfaces. During the evaporation process we managed to get an instable paint layer, which formed cracks as it dried out. In order to understand the obtained structures a previously developed spring-block model was implemented in a three-dimensional version. The experimental and simulation results proved to be in excellent qualitative and quantitative agreement. An earlier suggested scaling relation between the average fragment size and the layer thickness is reconfirmed.

  5. Teachers Matter. Yes. Schools Matter. Yes. Districts Matter--Really?

    ERIC Educational Resources Information Center

    Chenoweth, Karin

    2015-01-01

    School districts shape the conditions in which schools operate and as such can support or undermine school success and thus student success. All of which is to say that school districts matter. This article looks at the success of two districts whose low-income and minority students beat the odds in academic achievement. Lessons from these…

  6. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    Given the increasing importance of reducing development time for new pharmaceutical products, formulation and process development scientists must continually look for ways to "work smarter, not harder." Within the product development arena, this means reducing the amount of trial and error empiricism in arriving at a formulation and identification of processing conditions which will result in a quality final dosage form. Characterization of the freezing behavior of the intended formulation is necessary for developing processing conditions which will result in the shortest drying time while maintaining all critical quality attributes of the freeze-dried product. Analysis of frozen systems was discussed in detail, particularly with respect to the glass transition as the physical event underlying collapse during freeze-drying, eutectic mixture formation, and crystallization events upon warming of frozen systems. Experiments to determine how freezing and freeze-drying behavior is affected by changes in the composition of the formulation are often useful in establishing the "robustness" of a formulation. It is not uncommon for seemingly subtle changes in composition of the formulation, such as a change in formulation pH, buffer salt, drug concentration, or an additional excipient, to result in striking differences in freezing and freeze-drying behavior. With regard to selecting a formulation, it is wise to keep the formulation as simple as possible. If a buffer is needed, a minimum concentration should be used. The same principle applies to added salts: If used at all, the concentration should be kept to a minimum. For many proteins a combination of an amorphous excipient, such as a disaccharide, and a crystallizing excipient, such as glycine, will result in a suitable combination of chemical stability and physical stability of the freeze-dried solid. Concepts of heat and mass transfer are valuable in rational design of processing conditions. Heat transfer by conduction

  7. Drying leather with vacuum and toggling sequentially

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated a drying method that will enable leather to be dried under vacuum and stretch sequentially to improve area yield. Vacuum drying offers fast speed at a low temperature, which would be advantageous to heat-vulnerable chrome-free leather. Adding a toggle action after vacuum drying cou...

  8. 7 CFR 58.813 - Dry whey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry whey. 58.813 Section 58.813 Agriculture... Products Bearing Usda Official Identification § 58.813 Dry whey. The quality requirements for dry whey shall be in accordance with the U.S. Standards for Dry Whey. Supplemental Specifications for...

  9. Foam-mat Drying Technology: A Review.

    PubMed

    Hardy, Z; Jideani, V A

    2015-07-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method which allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40 -90°C) at atmospheric pressure. Methyl cellulose (0.25 - 2%), egg white (3 - 20%), maltodextrin (0.5 - 05%) and gum Arabic (2 - 9%) are the commonly utilised additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous and sticky products which cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying and improved product quality it provides.

  10. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  11. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  12. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  13. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  14. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida...

  15. Complex Dark Matter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  16. Codecaying Dark Matter.

    PubMed

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  17. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  18. Ghost dark matter

    SciTech Connect

    Furukawa, Tomonori; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Sugiyama, Naoshi; Mukohyama, Shinji E-mail: shu@a.phys.nagoya-u.ac.jp E-mail: naoshi@a.phys.nagoya-u.ac.jp

    2010-05-01

    We revisit ghost dark matter, the possibility that ghost condensation may serve as an alternative to dark matter. In particular, we investigate the Friedmann-Robertson-Walker (FRW) background evolution and the large-scale structure (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmological constant and ghost dark matter. The FRW background of the ΛGDM universe is indistinguishable from that of the standard ΛCDM universe if M∼>1eV, where M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger bound: M∼>10eV. For smaller M, ghost dark matter would have non-negligible sound speed after the matter-radiation equality, and thus the matter power spectrum would significantly differ from observation. These bounds are compatible with the phenomenological upper bound M∼<100GeV known in the literature.

  19. Dry machinability of aluminum alloys.

    SciTech Connect

    Shareef, I.; Natarajan, M.; Ajayi, O. O.; Energy Technology; Department of IMET

    2005-01-01

    Adverse effects of the use of cutting fluids and environmental concerns with regard to cutting fluid disposability is compelling indu