Science.gov

Sample records for above-ground net primary

  1. Net Changes in Above Ground Woody Carbon Stock in Western Juniper Woodlands using Wavelet Techniques and Multi-temporal Aerial Photography

    NASA Astrophysics Data System (ADS)

    Strand, E. K.; Bunting, S. C.; Smith, A. M.

    2006-12-01

    Expansion of woody plant cover in semi-arid ecosystems previously occupied primarily by grasses and forbs has been identified as an important land cover change process affecting the global carbon budget. Although woody encroachment occurs worldwide, quantifying changes in carbon pools and fluxes related to this phenomenon via remote sensing is challenging because large areas are affected at a fine spatial resolution (1- 10 m) and, in many cases, at slow temporal rates. Two-dimensional spatial wavelet analysis (SWA) represents a novel image processing technique that has been successful in automatically and objectively quantifying ecologically relevant features at multiple scales. We apply SWA to current and historic 1-m resolution black and white aerial photography to quantify changes in above ground woody biomass and carbon stock of western juniper (Juniperus occidentalis subsp. occidentalis) expanding into sagebrush (Artemisia spp.) steppe on the Owyhee Plateau in southwestern Idaho. Due to the large land area (330,000 ha) and variable availability of historical photography, we sampled forty-eight 100-ha blocks situated across the area, stratified using topographic, soil, and land stewardship variables. The average juniper plant cover increased one-fold (from 5.3% to 10.4% total cover) at the site during the time period of 1939-1946 to 1998-2004. Juniper plant density has increased by 128% with a higher percentage of the plant population in the smaller size classes compared to the size distribution 60 years ago. After image-based SWA delineation of tree crown sizes, we computed the change in above ground woody plant biomass and carbon stock between the two time periods using allometry. Areas where the shrub steppe is dominated by low sagebrush (Artemisia arbuscula) has experienced little to no expansion of western juniper. However, on deeper, more well drained soils capable of supporting mountain big sagebrush (Artemisia tridentata subsp. vaseyana), the above

  2. Net one, net two: the primary care network income statement.

    PubMed

    Halley, M D; Little, A W

    1999-10-01

    Although hospital-owned primary care practices have been unprofitable for most hospitals, some hospitals are achieving competitive advantage and sustainable practice operations. A key to the success of some has been a net income reporting tool that separates practice operating expenses from the costs of creating and operating a network of practices to help healthcare organization managers, physicians, and staff to identify opportunities to improve the network's financial performance. This "Net One, Net Two" reporting allows operations leadership to be held accountable for Net One expenses and strategic leadership to be held accountable for Net Two expenses.

  3. DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND TYPICAL TERRA COTTA WINDOW SILL. CORNER OF CLAY AND 15TH STREETS - John Breuner & Company Building, 1515 Clay Street, Oakland, Alameda County, CA

  4. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh

    NASA Technical Reports Server (NTRS)

    Hardisky, M. A.; Klemas, V.; Daiber, F. C.; Roman, C. T.

    1984-01-01

    Net aerial primary productivity is the rate of storage of organic matter in above-ground plant issues exceeding the respiratory use by the plants during the period of measurement. It is pointed out that this plant tissue represents the fixed carbon available for transfer to and consumption by the heterotrophic organisms in a salt marsh or the estuary. One method of estimating annual net aerial primary productivity (NAPP) required multiple harvesting of the marsh vegetation. A rapid nondestructive remote sensing technique for estimating biomass and NAPP would, therefore, be a significant asset. The present investigation was designed to employ simple regression models, equating spectral radiance indices with Spartina alterniflora biomass to nondestructively estimate salt marsh biomass. The results of the study showed that the considered approach can be successfully used to estimate salt marsh biomass.

  5. QUANTIFYING UNCERTAINTY IN NET PRIMARY PRODUCTION MEASUREMENTS

    EPA Science Inventory

    Net primary production (NPP, e.g., g m-2 yr-1), a key ecosystem attribute, is estimated from a combination of other variables, e.g. standing crop biomass at several points in time, each of which is subject to errors in their measurement. These errors propagate as the variables a...

  6. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    NASA Astrophysics Data System (ADS)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  7. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction §...

  8. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction §...

  9. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction §...

  10. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction §...

  11. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction §...

  12. Regional analysis of ground and above-ground climate

    SciTech Connect

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  13. Global patterns in human consumption of net primary production

    NASA Astrophysics Data System (ADS)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  14. Global patterns in human consumption of net primary production.

    PubMed

    Imhoff, Marc L; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T

    2004-06-24

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production--the net amount of solar energy converted to plant organic matter through photosynthesis--can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production 'supply' and 'demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production 'imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  15. Single Baseline Tomography SAR for Forest Above Ground Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Wang, Xinshuang; Feng, Qi

    2013-01-01

    Single baseline tomography SAR is used for forest height estimation as its little restriction on the number of baselines and configurations of tracks in recent years. There existed two kinds of single baseline tomography SAR techniques, the polarimetric coherence tomography (PCT) and the sum of Kronecker product (SKP), algebraic synthesis (AS) and Capon spectral estimator approach (SKP-AS-Capon). Few researches on forest above ground biomass (AGB) estimation are there using single baseline tomography SAR. In this paper, PCT and SKP-AS-Capon approaches are proposed for forest AGB estimation. L-band data set acquired by E-SAR airborne system in 2003 for the forest test site in Traunstein, is used for this experiment. The result shows that single baseline polarimetric tomography SAR can obtain forest AGB in forest stand scale, and SKP-AS-Capon method has better detailed vertical structure information, while the Freeman 3-component combined PCT approach gets a homogenous vertical structure in forest stand.

  16. Global Patterns in Human Consumption of Net Primary Production

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.

    2004-01-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.

  17. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    SciTech Connect

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; Kiff, Scott D.; Reyna, David; Throckmorton, Daniel J.

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.

  18. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    DOE PAGES

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; Kiff, Scott D.; Reyna, David; Throckmorton, Daniel J.

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less

  19. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    NASA Astrophysics Data System (ADS)

    Aragão, L. E. O. C.; Malhi, Y.; Metcalfe, D. B.; Silva-Espejo, J. E.; Jiménez, E.; Navarrete, D.; Almeida, S.; Costa, A. C. L.; Salinas, N.; Phillips, O. L.; Anderson, L. O.; Alvarez, E.; Baker, T. R.; Goncalvez, P. H.; Huamán-Ovalle, J.; Mamani-Solórzano, M.; Meir, P.; Monteagudo, A.; Patiño, S.; Peñuela, M. C.; Prieto, A.; Quesada, C. A.; Rozas-Dávila, A.; Rudas, A.; Silva, J. A., Jr.; Vásquez, R.

    2009-12-01

    The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha-1 yr-1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha-1 yr-1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha-1 yr-1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  20. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    NASA Astrophysics Data System (ADS)

    Aragão, L. E. O. C.; Malhi, Y.; Metcalfe, D. B.; Silva-Espejo, J. E.; Jiménez, E.; Navarrete, D.; Almeida, S.; Costa, A. C. L.; Salinas, N.; Phillips, O. L.; . Anderson, L. O.; Baker, T. R.; Goncalvez, P. H.; Huamán-Ovalle, J.; Mamani-Solórzano, M.; Meir, P.; Monteagudo, A.; Peñuela, M. C.; Prieto, A.; Quesada, C. A.; Rozas-Dávila, A.; Rudas, A.; Silva Junior, J. A.; Vásquez, R.

    2009-02-01

    The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha-1 yr-1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha-1 yr-1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha-1 yr-1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  1. Estimating Aboveground Net Primary Productivity of Black Spruce along a Climatic Gradient in the Boreal Forest.

    NASA Astrophysics Data System (ADS)

    Bhatti, J.; Varem-Sanders, T.; Bouriaud, O.

    2005-12-01

    Net primary productivity (NPP) is the difference between carbon assimilation by photosynthesis and plant respiration quantifies the rate at which carbon is accumulated in the living vegetation. The ability to measure net primary productivity (NPP) over a period of years using relatively inexpensive methods can be a tremendous asset when assessing the forest response to climate change. This project investigates and evaluates a new comprehensive method of estimating multi-decadal historical black spruce productivity using biomass stocks and tree ring width measurements along a climatic gradient. Black spruce aboveground NPP was calculated for even aged stands along Boreal Forest Transect Case Study (BFTCS) with similar soil and fertility characteristics. Biomass functions were modified using local DBH-height functions to determine tree level with Dbh as the sole predictor. Above ground net primary productivity was estimated from the stand level change in biomass with measured litter production rate on these sites. Tree biomass increment and litter production increases from Central Saskatchewan at the southern limit of the boreal forest where the climate is warm and dry up to Thompson (Northern Manitoba) where the climate is wetter and colder. Aboveground NPP for mature stands ranges from 671 to 1567 kg C ha-1 yr-1. Both at the southern boreal sites and northern boreal sites, the tree productivity was highly sensitivity to climate variability. The younger mixed black spruce stands are considerably more productive than older pure stands. Litter production is a major component and accounts for 30 to 60% of aboveground NPP. Practical robust estimation of aboveground NPP using tree ring measurement offers the potential for application over large spatial and temporal scale.

  2. Reconstructing Above Ground Forest Biomass Increment and Uncertainty Using Tree-ring Data

    NASA Astrophysics Data System (ADS)

    Dawson, A.; Paciorek, C. J.; Moore, D. J.; Pedersen, N.; Barker Plotkin, A.; Hessl, A. E.; Dye, A.; Bishop, D. A.; Alexander, M. R.; McLachlan, J. S.

    2015-12-01

    In a changing terrestrial climate, it is becoming increasingly important to be able to quantify Earth systems cycles, including thecarbon cycle. Atmospheric concentrations of carbon dioxide continue toincrease as a result of anthropogenic activity, but less is understood about how forest systems will affect the carbon cycle. In practice, it is difficult to measure carbon flux in a forest system. Flux towers, satellite and remote sensing methods, and dynamic vegetation models have been used to quantify current and future forest net primary productivity. Tree rings provide us with information about forest carbon storage in the past, and have been used to reconstruct above ground biomass increment (aBI). However, uncertainty from measurement error, assumptions about tree architecture including circular stems and diameter-volume relationships, and the fading record - the challenge of quantifying the growth of previously live trees - are often not accounted for. As a first step towards reconstructing aBI and its uncertainty, we develop a tree ring sampling protocol and a Bayesian hierarchical model toestimate aBI while accounting for measurement and architecture uncertainty. Tree-ring and repeated census plot data have been collected from several sites using a protocol that allows us toquantify growth dependence across trees in a local area. We also use multiple cores per tree to investigate the number of cores needed to reduce uncertainty from the assumption of stem circularity. For short-time-scale reconstructions, we avoid the fading record issue by coring dead trees and co-locating tree-ring data with censuses, thus avoiding having to make assumptions about stand density andmortality. We also statistically investigate the importance of including census data and of coring dead trees to quantify how uncertainty and bias are affected as we go back further in time. Preliminary results show that the model is able to estimate yearly variation in aBI well for many decades

  3. Above-ground antineutrino detection for nuclear reactor monitoring

    NASA Astrophysics Data System (ADS)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of 6Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  4. Carbon Use Efficiency, and Net Primary Productivity of Terrestrial Vegetation

    NASA Astrophysics Data System (ADS)

    Choudhury, Bhaskar J.

    The carbon use efficiency (CUE), defined as the ratio of net carbon gain to gross carbon assimilation during a period, is a highly significant determinant of primary production of terrestrial plant communities. Available data for CUE is summarized. Then, a model for gross assimilation has been run using satellite and ancillary data to calculate annual net carbon gain or net primary productivity for the global land surface during four year period (1987-1990). The results are compared with other estimates. Interannual variability of 30-50% is found in some of the latitude bands

  5. Human Appropriation of Net Primary Production - Can Earth Keep Up?

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.

    2006-01-01

    The amount of Earth's vegetation or net primary production required to support human activities is powerful measure of aggregate human impacts on the biosphere. Biophysical models applied to consumption statistics were used to estimate the annual amount of net primary production in the form of elemental carbon required for food, fibre, and fuel-wood by the global population. The calculations were then compared to satellite-based estimates of Earth's average net primary production to produce a geographically explicit balance sheet of net primary production "supply" and "demand". Humans consume 20% of Earth's net primary production (11.5 petagrams carbon) annually and this percentage varies regionally from 6% (South America) to over 70% (Europe and Asia), and locally from near 0% (central Australia) to over 30,000% (New York City, USA). The uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations are vulnerable to climate change and suggest policy options for slowing future growth of NPP demand.

  6. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  7. Inter-annual Variability of Aboveground Net Primary Productivity in Regenerating Tropical Dry Forests

    NASA Astrophysics Data System (ADS)

    Powers, J. S.; Becknell, J. M.

    2015-12-01

    Globally, there are now more secondary forests regenerating following anthropogenic disturbance than primary forests. However, carbon dynamics in secondary tropical forests in general, and seasonally dry forests in particular, have not been as well studied as primary wet forests. Young, regenerating forests may be more sensitive to climatic variability than older forests because of their dynamic demographic rates. Similarly, seasonally dry tropical forests may be particularly sensitive to changes in precipitation, as tree growth is highly constrained by water availability. We examined how inter-annual variability in precipitation affected above-ground net primary productivity in chronosequences of dry forest in Costa Rica. Our sites included three forest cover types, whose distribution is linked to edaphic variation. Over our 6-yr dataset, annual rainfall varied from 1110 to 3040mm, with a 5-6 month dry season. ANPP ranged from 2.96 to 18.98 Mg ha-1 across sites that have been recovering for 7 to 67 years. Fine litter production dominated ANPP, and increased with forest age but not annual rainfall. By contrast, woody stem growth did not vary among forests that differed in age, but increased as a function of annual rainfall. These results differed by forest type. Lowland oak forests on low fertility soil had the lowest productivity and responses to rainfall, whereas forests on the highest fertility soils showed large increases in woody production with rainfall. Consistent with our expectation, younger forests on the intermediate soil type had higher variability in ANPP than older forests, but this was not significant for forests on the poor or high fertility soils. Our results highlight several important findings: 1) different components of ANPP vary in their responses to inter-annual variation in rainfall, 2) forest responses to climatic variability depend on species composition, which varies consistently with soil type in this landscape.

  8. Forecasting annual aboveground net primary production in the intermountain west

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...

  9. Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree productivity and soil organic matter in high fertility forests

    NASA Astrophysics Data System (ADS)

    Cotrufo, M.; Alberti, G.; Vicca, S.; Inglima, I.; Belelli-Marchesini, L.; Genesio, L.; Miglietta, F.; Marjanovic, H.; Martinez, C.; Matteucci, G.; Peressotti, A.; Petrella, L.; Rodeghiero, M.

    2013-12-01

    The release of organic compounds from roots is a key process influencing soil carbon (C) dynamics and nutrient availability in terrestrial ecosystems and is a process by which plants stimulate microbial activity and soil organic matter (SOM) mineralization thus releasing nitrogen (N) to sustain their gross and net primary production (GPP and NPP). Root inputs also contribute to soil organic matter (SOM) formation. In this study, we quantified the annual net root derived C input to soil (Net-Croot) across six high fertile forests using an in-growth core isotope technique. On the basis of Net-Croot, wood and coarse root biomass changes and eddy covariance data, we quantified net belowground C sequestration. This and GPP were inversely related to soil C:N, but not to climate or age. Because, at these high fertile sites, biomass growth did not change with soil C:N ratio, biomass growth-to-GPP ratio significantly increased with increasing soil C:N. This was true for both our six forest sites and for high fertile sites across a set of other 23 sites selected at global scale. We suggest that, at high fertile sites, the interaction between plant demand for nutrients, soil stoichiometry and microbial activity sustain higher ecosystem C-sink allocation to above ground tree biomass with increasing soil C:N ratio and that this clear and strong relationship can be used for modelling forest C sink partitioning between plant biomass and soil. When C:N is high, microbes have a low C use efficiency, respire more of the fresh C inputs by roots and prime SOM decomposition increasing N availability for tree uptake. Soil C sequestration would therefore decrease, whereas the extra N released during SOM decomposition can promote tree growth and ecosystem C sink allocation in aboveground biomass. Conversely, C is sequestered in soil when the low soil C:N promotes microbial C use efficiency and new SOM formation.

  10. Global net primary production and heterotrophic respiration for 1987

    SciTech Connect

    Hunt, R.E. Jr.; Piper, S.C.; Nemani, R. |

    1995-06-01

    An ecosystem process model, BIOME-BGC, was parameterized and used to simulate the actual net primary production and heterotrophic respiration using daily climatic data, land cover type, leaf area index gridded to 1{degree} latitude by 1{degree} longitude grid cells for the year 1987. Global net primary production was 52 Pg C. These estimates were validated directly by two different methods. First, the grid cells were aggregated and used as inputs to a 3D atmospheric transport model, to compare CO{sub 2} station data with predictions. We simulated the intra-annual variation of atmospheric CO{sub 2} well for the northern hemisphere, but not for the southern hemisphere. Second, we calculated the net {sup 13}C uptake of vegetation, which is a function of water use efficiency. The {sup 13}C/{sup 12}C ratios agreed with measured data, indicating a strong limitation of global primary processes by the hydrologic cycle, especially precipitation. These are different from other global carbon models as we can simulate the year-to-year variation of climate, including El Nino, on the global carbon cycle.

  11. Controls of vegetation structure and net primary production in restored grasslands

    USGS Publications Warehouse

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  12. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  13. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores

    PubMed Central

    Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing

    2015-01-01

    Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence. PMID:25681822

  14. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  15. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    NASA Astrophysics Data System (ADS)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  16. [Fractal relationship between above ground biomass and plant length or sheath height of Carex lasiocarpa population].

    PubMed

    He, Chiquan; Zhao, Kuiyi

    2003-04-01

    By using the principles and methods of fractal geometry theory, the relationship between above ground biomass and plant length or sheath height of Carex lasiocarpa population was studied. The results showed that there was a good static fractal relationship between them, and the resulted fractal dimension was an efficient description of the accumulation of above ground biomass in each organ. The dynamic fractal relationship showed that during the whole growing season, the increase of above ground biomass had a self-similarity, being a fractal growth process, and the pattern of its increase was the fractal dimension D. Based on these results, a fractal growth model of Carex lasiocarpa population was established, which regarded the bigger grass as the result of the amplification of seedling growth.

  17. Range vegetation type mapping and above-ground green biomass estimations using multispectral imagery. [Wyoming

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Gordon, R. C.

    1974-01-01

    The author has identified the following significant results. Range vegetation types have been successfully mapped on a portion of the 68,000 acre study site located west of Baggs, Wyoming, using ERTS-1 imagery. These types have been ascertained from field transects over a five year period. Comparable studies will be made with EREP imagery. Above-ground biomass estimation studies are being conducted utilizing double sampling techniques on two similar study sites. Information obtained will be correlated with percent relative reflectance measurements obtained on the ground which will be related to image brightness levels. This will provide an estimate of above-ground green biomass with multispectral imagery.

  18. Characteristics of train noise in above-ground and underground stations with side and island platforms

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  19. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  20. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  1. Above-ground biomass of mangrove species. I. Analysis of models

    NASA Astrophysics Data System (ADS)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  2. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  3. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  4. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  5. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage powerlines; clearances above ground. 77.807-1 Section 77.807-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface...

  6. ETR, TRA642. CAMERA IS ON SCAFFOLD OR CATWALK ABOVE GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. CAMERA IS ON SCAFFOLD OR CATWALK ABOVE GROUND FLOOR FOR A CONTEXTUAL VIEW OF REACTOR PIT AND CANAL. CAMERA FACING WESTERLY. INL NEGATIVE NO. 56-3717. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. PMID:26685781

  8. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio.

  9. Are Inventory Based and Remotely Sensed Above-Ground Biomass Estimates Consistent?

    PubMed Central

    Hill, Timothy C.; Williams, Mathew; Bloom, A. Anthony; Mitchard, Edward T. A.; Ryan, Casey M.

    2013-01-01

    Carbon emissions resulting from deforestation and forest degradation are poorly known at local, national and global scales. In part, this lack of knowledge results from uncertain above-ground biomass estimates. It is generally assumed that using more sophisticated methods of estimating above-ground biomass, which make use of remote sensing, will improve accuracy. We examine this assumption by calculating, and then comparing, above-ground biomass area density (AGBD) estimates from studies with differing levels of methodological sophistication. We consider estimates based on information from nine different studies at the scale of Africa, Mozambique and a 1160 km2 study area within Mozambique. The true AGBD is not known for these scales and so accuracy cannot be determined. Instead we consider the overall precision of estimates by grouping different studies. Since an the accuracy of an estimate cannot exceed its precision, this approach provides an upper limit on the overall accuracy of the group. This reveals poor precision at all scales, even between studies that are based on conceptually similar approaches. Mean AGBD estimates for Africa vary from 19.9 to 44.3 Mg ha−1, for Mozambique from 12.7 to 68.3 Mg ha−1, and for the 1160 km2 study area estimates range from 35.6 to 102.4 Mg ha−1. The original uncertainty estimates for each study, when available, are generally small in comparison with the differences between mean biomass estimates of different studies. We find that increasing methodological sophistication does not appear to result in improved precision of AGBD estimates, and moreover, inadequate estimates of uncertainty obscure any improvements in accuracy. Therefore, despite the clear advantages of remote sensing, there is a need to improve remotely sensed AGBD estimates if they are to provide accurate information on above-ground biomass. In particular, more robust and comprehensive uncertainty estimates are needed. PMID:24069275

  10. Seed rain and its relationship with above-ground vegetation of degraded Kobresia meadows.

    PubMed

    Shang, Zhan-Huan; Yang, Shi-Hai; Shi, Jian-Jun; Wang, Yan-Long; Long, Rui-Jun

    2013-01-01

    Seed rain is a crucial element in vegetation regeneration, but has been rarely studied in high altitude regions, particularly degraded Kobresia meadow. Weed infestation is a distinctive feature of pasture degradation in Kobresia meadows on the Tibetan plateau, the ecological mechanism of which is closely related with vegetation's seed rain. In this paper we assess the effect of vegetation degradation on seed rain and consider its implication for restoration of degraded Kobresia meadows in the headwater area of Yellow river, through analysis of seed species composition, number of seeds landing per m(2) of soil surface, and their relationship with above ground vegetation. Vegetation degradation had an impact on the species composition and numbers of seeds in seed rain and their relationship with above-ground vegetation. Within the un-degraded meadow, which provided a closed vegetation cover, 35 % of the seed rain was of sedge and gramineae species. However, within the degraded meadows, as the extent of degradation increased, so the total number of seeds m(-2) increased, with those derived from sedge and gramineae species forming a declining proportion of the total. Degradation of Kobresia meadow on the Tibetan plateau is exacerbated by the seed input of weed species (such as Oxytropis ochrocephala, Carum carvi, Aconitum pendulum, Pedicularis kansuensis in this study). Therefore, a major priority for the restoration of such degraded meadows should be the elimination of these weeds from the above ground vegetation by human intervention.

  11. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    2002-01-01

    The net primary productivity (C) or the annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of gross photosynthesis (A(sub g)) and respiration (R) per unit ground area. Available field observations show that R is a large and variable fraction of A(sub g), although it is generally recognized that there are considerable difficulties in determining these fluxes, and thus pose challenge in assessing the accuracy. Further uncertainties arise in extrapolating field measurements (which are acquired over a hectare or so area) to regional scale. Here, an approach is presented for determining these fluxes using satellite and ancillary data to be representative of regional scale and allow assessment of interannual variation. A, has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R(sub g) and R(sub m)).The R(sub m) has been determined from nitrogen content of plant tissue per unit ground area, while R(sub g) has been obtained as a fraction of the difference of A(sub g) and R(sub m). Results for five consecutive years (1986-1990) are presented for the Amazon-Tocontins, Mississippi, and Ob River basins.

  12. The allocation of ecosystem net primary productivity in tropical forests

    PubMed Central

    Malhi, Yadvinder; Doughty, Christopher; Galbraith, David

    2011-01-01

    The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of that ecosystem, and an important feature to correctly represent in terrestrial ecosystem models. Here, we collate and analyse a global dataset of NPP allocation in tropical forests, and compare this with the representation of NPP allocation in 13 terrestrial ecosystem models. On average, the data suggest an equal partitioning of allocation between all three main components (mean 34 ± 6% canopy, 39 ± 10% wood, 27 ± 11% fine roots), but there is substantial site-to-site variation in allocation to woody tissue versus allocation to fine roots. Allocation to canopy (leaves, flowers and fruit) shows much less variance. The mean allocation of the ecosystem models is close to the mean of the data, but the spread is much greater, with several models reporting allocation partitioning outside of the spread of the data. Where all main components of NPP cannot be measured, litterfall is a good predictor of overall NPP (r2 = 0.83 for linear fit forced through origin), stem growth is a moderate predictor and fine root production a poor predictor. Across sites the major component of variation of allocation is a shifting allocation between wood and fine roots, with allocation to the canopy being a relatively invariant component of total NPP. This suggests the dominant allocation trade-off is a ‘fine root versus wood’ trade-off, as opposed to the expected ‘root–shoot’ trade-off; such a trade-off has recently been posited on theoretical grounds for old-growth forest stands. We conclude by discussing the systematic biases in estimates of allocation introduced by missing NPP components, including herbivory, large leaf litter and root exudates production. These biases have a moderate effect on overall carbon allocation estimates, but are smaller than the observed range in allocation values across sites. PMID

  13. Cathodic protection of above ground storage tanks in an Arctic environment

    SciTech Connect

    Barletta, T.; Bayle, R.; Kennelley, K.

    1995-11-01

    A variety of cathodic protection retrofit systems are available today for above ground storage tanks. The presence of secondary containment liners, refrigeration systems, and an Arctic environment necessitates the use of a CP system in which the anodes are located in close proximity to the tank bottom. This paper presents operating experiences with several impressed current CP systems that were installed on existing large diameter tanks along the Pipeline. Impressed current CP retrofit systems that were evaluated include an abandoned tank bottom as the anode, a tank perimeter conductive polymer anode loop, and horizontally installed distributive anode systems beneath the tanks.

  14. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  15. Forest soil respiration rate and delta13C is regulated by recent above ground weather conditions.

    PubMed

    Ekblad, Alf; Boström, Björn; Holm, Anders; Comstedt, Daniel

    2005-03-01

    Soil respiration, a key component of the global carbon cycle, is a major source of uncertainty when estimating terrestrial carbon budgets at ecosystem and higher levels. Rates of soil and root respiration are assumed to be dependent on soil temperature and soil moisture yet these factors often barely explain half the seasonal variation in soil respiration. We here found that soil moisture (range 16.5-27.6% of dry weight) and soil temperature (range 8-17.5 degrees C) together explained 55% of the variance (cross-validated explained variance; Q2) in soil respiration rate (range 1.0-3.4 micromol C m(-2) s(-1)) in a Norway spruce (Picea abies) forest. We hypothesised that this was due to that the two components of soil respiration, root respiration and decomposition, are governed by different factors. We therefore applied PLS (partial least squares regression) multivariate modelling in which we, together with below ground temperature and soil moisture, used the recent above ground air temperature and air humidity (vapour pressure deficit, VPD) conditions as x-variables. We found that air temperature and VPD data collected 1-4 days before respiration measurements explained 86% of the seasonal variation in the rate of soil respiration. The addition of soil moisture and soil temperature to the PLS-models increased the Q2 to 93%. delta13C analysis of soil respiration supported the hypotheses that there was a fast flux of photosynthates to root respiration and a dependence on recent above ground weather conditions. Taken together, our results suggest that shoot activities the preceding 1-6 days influence, to a large degree, the rate of root and soil respiration. We propose this above ground influence on soil respiration to be proportionally largest in the middle of the growing season and in situations when there is large day-to-day shifts in the above ground weather conditions. During such conditions soil temperature may not exert the major control on root respiration. PMID

  16. Degradation of net primary production in a semiarid rangeland

    NASA Astrophysics Data System (ADS)

    Jackson, Hasan; Prince, Stephen D.

    2016-08-01

    Anthropogenic land degradation affects many biogeophysical processes, including reductions of net primary production (NPP). Degradation occurs at scales from small fields to continental and global. While measurement and monitoring of NPP in small areas is routine in some studies, for scales larger than 1 km2, and certainly global, there is no regular monitoring and certainly no attempt to measure degradation. Quantitative and repeatable techniques to assess the extent of deleterious effects and monitor changes are needed to evaluate its effects on, for example, economic yields of primary products such as crops, lumber, and forage, and as a measure of land surface properties which are currently missing from dynamic global vegetation models, assessments of carbon sequestration, and land surface models of heat, water, and carbon exchanges. This study employed the local NPP scaling (LNS) approach to identify patterns of anthropogenic degradation of NPP in the Burdekin Dry Tropics (BDT) region of Queensland, Australia, from 2000 to 2013. The method starts with land classification based on the environmental factors presumed to control (NPP) to group pixels having similar potential NPP. Then, satellite remotely sensing data were used to compare actual NPP with its potential. The difference in units of mass of carbon and percentage loss were the measure of degradation. The entire BDT (7.45 × 106 km2) was investigated at a spatial resolution of 250 × 250 m. The average annual reduction in NPP due to anthropogenic land degradation in the entire BDT was -2.14 MgC m-2 yr-1, or 17 % of the non-degraded potential, and the total reduction was -214 MgC yr-1. Extreme average annual losses of 524.8 gC m-2 yr-1 were detected. Approximately 20 % of the BDT was classified as "degraded". Varying severities and rates of degradation were found among the river basins, of which the Belyando and Suttor were highest. Interannual, negative trends in reductions of NPP occurred in 7 % of the

  17. Phosphorus Concentrations in Above Ground Plant Biomass under Changing Climate Conditions

    NASA Astrophysics Data System (ADS)

    Selvin, C.; Paytan, A.; Roberts, K.

    2013-12-01

    The Jasper Ridge Global Change Experiment explores the effects of climate change on annual grasslands with different combinations of elevated or ambient levels of carbon dioxide, heat, precipitation, and nitrate deposition. The nested split-plot design allows for analysis of each variable, combinations of variables, and secondary effects. In this study, plant nutrient levels in homogenized above ground biomass are analyzed to assess the utility of this parameter as a tool to describe the response of an ecosystem to environmental changes. Total phosphorus concentrations showed considerable variability within treatment (n=8) and therefore no significant differences between treatments (n=16) is found. Carbon and nitrogen concentrations in bulk above ground biomass are being analyzed to determine nitrogen and carbon ratios and further elucidate the environmental response of phosphorus levels in plants to the modified parameters. P concentrations and elemental ratios will also be related to other parameters such as soil humidity, microbial biomass, enzyme activity, and plant diversity to determine the parameters influencing P content in the biomass.

  18. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Houser, Paul (Technical Monitor)

    2001-01-01

    The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (A(sub g)) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of A(sub g), viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process-based approach has been taken to calculate A(sub g) and R using satellite and ancillary data. A(sub g) has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as

  19. Use of insecticide-impregnated bed nets in Gambian primary health care: economic aspects.

    PubMed Central

    MacCormack, C. P.; Snow, R. W.; Greenwood, B. M.

    1989-01-01

    Village-wide use of permethrin-impregnated bed nets, compared with placebo-treated nets, has reduced clinical attacks of malaria by 63% in the Gambia. Costs were calculated for nets made by local tailors and for their treatment with insecticide in the villages, as well as for targeted chemoprophylaxis and back-up treatment for fever, in a comprehensive malaria control strategy through primary health care. The villagers' preferences for bed net fabrics and willingness to pay for them, and their preferences for various items of expenditure by ranked order, age group, and sex are given. Ethnic differences in the use of bed nets are also discussed. PMID:2743540

  20. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    PubMed

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. PMID:26468247

  1. Net primary production of forests: a constant fraction of gross primary production?

    PubMed

    Waring, R. H.; Landsberg, J. J.; Williams, M.

    1998-02-01

    Considerable progress has been made in our ability to model and measure annual gross primary production (GPP) by terrestrial vegetation. But challenges remain in estimating maintenance respiration (R(m)) and net primary production (NPP). To search for possible common relationships, we assembled annual carbon budgets from six evergreen and one deciduous forest in Oregon, USA, three pine plantations in New South Wales, Australia, a deciduous forest in Massachusetts, USA, and a Nothofagus forest on the South Island of New Zealand. At all 12 sites, a standard procedure was followed to estimate annual NPP of foliage, branches, stems, and roots, the carbon expended in synthesis of these organs (R(g)), their R(m), and that of previously produced foliage and sapwood in boles, branches, and large roots. In the survey, total NPP ranged from 120 to 1660 g C m(-2) year(-1), whereas the calculated fraction allocated to roots varied from 0.22 to 0.63. Comparative analysis indicated that the total NPP/GPP ratio was conservative (0.47 +/- 0.04 SD). This finding supports the possibility of greatly simplifying forest growth models. The constancy of the NPP/GPP ratio also provides an incentive to renew efforts to understand the environmental factors affecting partitioning of NPP above and belowground.

  2. Assessing General Relationships Between Above-Ground Biomass and Vegetation Structure Parameters for Improved Carbon Estimate from Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, W.; Lee, S.; Strahler, A. H.; Woodcock, C. E.; Schaaf, C.; Yao, T.; Ranson, J.; Sun, G.; Blair, J. B.

    2009-12-01

    Lidar remote sensing uses vegetation height to estimate large-scale above-ground biomass. However, lidar height and biomass relationships are empirical and thus often lead to large uncertainties in above-ground biomass estimates. This study uses vegetation structure measurements from field: an airborne lidar (Laser Vegetation Imaging Sensor, LVIS)) and a full wave form ground-based lidar (Echidna® validation instrument, EVI) collected in the New England region in 2003 and 2007, to investigate using additional vegetation structure parameters besides height for improved above-ground biomass estimation from lidar. Our field data analysis shows that using woody volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve above-ground biomass estimates at large scale. This result is comparable to previous work by Chave et al. (2005), which focused on individual trees. However this study uses a slightly different approach, and our woody volume is estimated differently from Chave et al. (2005). Previous studies found that RH50 is a good predictor of above-ground biomass (Drake et al., 2002; 2003). Our LVIS data analysis shows that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, perform similarly or even better than RH50. We also found that the close relationship of RH100*cover and RH50*cover with woody volume explains why they are good predictors of above-ground biomass. RH50 is highly related to RH100*cover, and this explains why RH50 is a better predictor of biomass than RH100. This study shows that using structure parameters combining height and gap fraction improve above-ground biomass estimate compared to height alone, and fusion of lidar and optical remote sensing (to provide vegetation type) will provide better above-ground biomass estimates than lidar alone. Ground lidar analysis

  3. [Vegetation above-ground biomass and its affecting factors in water/wind erosion crisscross region on Loess Plateau].

    PubMed

    Wang, Jian-guo; Fan, Jun; Wang, Quan-jiu; Wang, Li

    2011-03-01

    Field investigations were conducted in Liudaogou small watershed in late September 2009 to study the differences of vegetation above-ground biomass, soil moisture content, and soil nutrient contents under different land use patterns, aimed to approach the vegetation above-ground biomass level and related affecting factors in typical small watershed in water/wind erosion crisscross region on Loess Plateau. The above-ground dry biomass of the main vegetations in Liudaogou was 177-2207 g x m(-2), and that in corn field, millet field, abandoned farmland, artificial grassland, natural grassland, and shrub land was 2097-2207, 518-775, 248-578, 280-545, 177-396, and 372-680 g x m(-2), respectively. The mean soil moisture content in 0-100 layer was the highest (14.2%) in farmlands and the lowest (10.9%) in shrub land. The coefficient of variation of soil moisture content was the greatest (26. 7% ) in abandoned farmland, indicating the strong spatial heterogeneity of soil moisture in this kind of farmland. The mean soil water storage was in the order of farmland > artificial grassland > natural grassland > shrub land. Soil dry layer was observed in alfalfa and caragana lands. There was a significant positive correlation (r = 0.639, P < 0.05) between above-ground dry biomass and 0-100 cm soil water storage, and also, a very significant positive correlation between above-ground fresh biomass and vegetation height. The above-ground biomass of the higher vegetations could potentially better control the wind and water erosion in the water/wind erosion crisscross region. Vegetation above-ground biomass was highly correlated with soil moisture and nutrient contents, but had no significant correlations with elevation, slope gradient, slope aspect, and soil bulk density.

  4. Above-ground biomass and structure of 260 African tropical forests.

    PubMed

    Lewis, Simon L; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M F; Phillips, Oliver L; Affum-Baffoe, Kofi; Baker, Timothy R; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E N; Fauset, Sophie; Feldpausch, Ted R; Foli, Ernest G; Gillet, Jean-François; Hamilton, Alan C; Harris, David J; Hart, Terese B; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J; Kearsley, Elizabeth; Leal, Miguel E; Lloyd, Jon; Lovett, Jon C; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R; Ojo, Lucas; Peh, Kelvin S-H; Pickavance, Georgia; Poulsen, John R; Reitsma, Jan M; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E; Talbot, Joey; Taplin, James R D; Taylor, David; Thomas, Sean C; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J T; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  5. Above-ground biomass and structure of 260 African tropical forests

    PubMed Central

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  6. Comment on 'A first map of tropical Africa's above-ground biomass derived from satellite imagery'

    NASA Astrophysics Data System (ADS)

    Mitchard, E. T. A.; Saatchi, S. S.; Lewis, S. L.; Feldpausch, T. R.; Gerard, F. F.; Woodhouse, I. H.; Meir, P.

    2011-10-01

    We present a critical evaluation of the above-ground biomass (AGB) map of Africa published in this journal by Baccini et al (2008 Environ. Res. Lett. 3 045011). We first test their map against an independent dataset of 1154 scientific inventory plots from 16 African countries, and find only weak correspondence between our field plots and the AGB value given for the surrounding 1 km pixel by Baccini et al. Separating our field data using a continental landcover classification suggests that the Baccini et al map underestimates the AGB of forests and woodlands, while overestimating the AGB of savannas and grasslands. Secondly, we compare their map to 216 000 × 0.25 ha spaceborne LiDAR footprints. A comparison between Lorey's height (basal-area-weighted average height) derived from the LiDAR data for 1 km pixels containing at least five LiDAR footprints again does not support the hypothesis that the Baccini et al map is accurate, and suggests that it significantly underestimates the AGB of higher AGB areas. We conclude that this is due to the unsuitability of some of the field data used by Baccini et al to create their map, and overfitting in their model, resulting in low accuracies outside the small areas from which their field data are drawn.

  7. NETS

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1993-01-01

    NETS development tool provides environment for simulation and development of neural networks - computer programs that "learn" from experience. Written in ANSI standard C, program allows user to generate C code for implementation of neural network.

  8. The secret life of ground squirrels: accelerometry reveals sex-dependent plasticity in above-ground activity

    PubMed Central

    Wilsterman, Kathryn; Zhang, Victor; Moore, Jeanette; Barnes, Brian M.; Buck, C. Loren

    2016-01-01

    The sexes differ in how and when they allocate energy towards reproduction, but how this influences phenotypic plasticity in daily activity patterns is unclear. Here, we use collar-mounted light loggers and triaxial accelerometers to examine factors that affect time spent above ground and overall dynamic body acceleration (ODBA), an index of activity-specific energy expenditure, across the active season of free-living, semi-fossorial arctic ground squirrels (Urocitellus parryii). We found high day-to-day variability in time spent above ground and ODBA with most of the variance explained by environmental conditions known to affect thermal exchange. In both years, females spent more time below ground compared with males during parturition and early lactation; however, this difference was fourfold larger in the second year, possibly, because females were in better body condition. Daily ODBA positively correlated with time spent above ground in both sexes, but females were more active per unit time above ground. Consequently, daily ODBA did not differ between the sexes when females were early in lactation, even though females were above ground three to six fewer hours each day. Further, on top of having the additional burden of milk production, ODBA data indicate females also had fragmented rest patterns and were more active during late lactation. Our results indicate that sex differences in reproductive requirements can have a substantial influence on activity patterns, but the size of this effect may be dependent on capital resources accrued during gestation. PMID:27703706

  9. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  10. Estimating Above Ground Biomass using LiDAR in the Northcoast Redwood Forests

    NASA Astrophysics Data System (ADS)

    Rao, M.; Stewart, E.

    2010-12-01

    In recent years, LiDAR (Light Intensity Detection Amplification and Ranging) is increasingly being used in estimating biophysical parameters related to forested environments. The main goal of the project is to estimate long-term biomass accumulation and carbon sequestration potential of the redwoods ecosystem. The project objectives are aimed at providing an assessment of carbon pools within the redwood ecosystem. Specifically, we intend to develop a relational model based on LiDAR-based canopy estimates and extensive ground-based measurements available for the old-growth redwood forest located within the Prairie Creek Redwoods State Park, CA. Our preliminary analysis involved developing a geospatial database, including LiDAR data collected in 2007 for the study site, and analyzing the data using USFS Fusion software. The study area comprised of a 12-acres section of coastal redwood (Sequoia sempervirens) in the Prairie Creek Redwoods State Park, located in Orick, CA. A series of analytical steps were executed using the USFS FUSION software to produce some intermediate data such as bare earth model, canopy height model, canopy coverage model, and canopy maxima treelist. Canopy maxima tree tops were compared to ground layer to determine height of tree tops. A total of over 1000 trees were estimated, and then with thinning (to eliminate errors due to low vegetation > 3 meters tall), a total of 950 trees were delineated. Ground measurements were imported as a point based shapefile and then compared to the treetop heights created from LiDAR data to the actual ground referenced data. The results were promising as most estimated treetops were within 1-3 meters of the ground measurements and generally within 3-5m of the actual tree height. Finally, we are in the process of applying some allometric equations to estimate above ground biomass using some of the LiDAR-derived canopy metrics.

  11. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  12. Root growth dynamics linked to above-ground growth in walnut (Juglans regia)

    PubMed Central

    Contador, Maria Loreto; Comas, Louise H.; Metcalf, Samuel G.; Stewart, William L.; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D.

    2015-01-01

    Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques. Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs

  13. The response of tundra plant biomass, above-ground production, nitrogen, and CO{sub 2} flux to experimental warming

    SciTech Connect

    Hobbie, S.E.; Chapin, F.S. III

    1998-07-01

    The authors manipulated air temperature in tussock tundra near Toolik Lake, Alaska, and determined the consequences for total plant biomass, aboveground net primary production (ANPP), ecosystem nitrogen (N) pools and N uptake, and ecosystem CO{sub 2} flux. After 3.5 growing seasons, in situ plastic greenhouses that raised air temperature during the growing season had little effect on total biomass, N content, or growing-season N uptake of the major plant and soil pools. Similarly, vascular ANPP and net ecosystem CO{sub 2} exchange did not change with warming, although net primary production of mosses decreased with warming. Such general lack of response supports the hypothesis that productivity in tundra is constrained by the indirect effects of cold temperatures rather than by cold growing-season temperatures per se. Despite no effect on net ecosystem CO{sub 2} flux, air warming stimulated early-season gross photosynthesis (GP) and ecosystem respiration (ER) throughout the growing season. This increased carbon turnover was probably associated with species-level responses to increased air temperature. Warming increased the aboveground biomass of the overstory shrub, dwarf birch (Betula nana), and caused a significant net redistribution of N from the understory evergreen shrub, Vaccinium vitis-idaea, to B. nana, despite no effects on soil temperature, total plant N, or N availability.

  14. Imaging the Socorro Magma Body Using Free Above-Ground Sources

    NASA Astrophysics Data System (ADS)

    Hyde, E.; Saldana, S.; Snelson, C. M.; Greschke, B.

    2008-12-01

    The Socorro Magma Body (SMB) is located within the Rio Grande Rift and is intersected by the Precambrian Socorro Fracture Zone near Socorro, NM. The SMB seems to be the source of a 5,000 km2 area of elevated seismic region known as the Socorro Seismic Anomaly. The first evidence of a subsurface reflector was from microearthquake studies. A COCORP seismic reflection profile provided further evidence for an essentially flat magmatic sill-like intrusion approximately 19 km below the surface, with less than a 1° slope and a lateral area of about 3400 km2 with an estimated thickness of about 100 m. A fundamental question regarding the SMB is related to the nature of its activity. The uplift associated with the SMB coupled with the presence of shallow earthquake swarms in the area is typically associated with the movement of magma, which may be indicative of active magmatic emplacement. As a pilot test to obtain P-wave velocity data, we used free explosive sources from the Energetic Materials Research and Testing Center (EMRTC) at New Mexico Tech in Socorro, NM. Our goals were to determine how much seismic energy is necessary to receive a decent signal back on the recorders and also to develop a preliminary refraction velocity model over the SMB. For this refraction experiment, 59 single-channel recorders (Texans - RT125a) were deployed over a distance of 125 km for a 1-week period centered at the EMRTC blast site. Over that time period, EMRTC set off six ~9,000 lb (4,082 kg) ANFO shots above ground. Although much of this energy went into the air, we were able to recover a small amount of this energy to build preliminary velocity models. The energy created by the blasts propagated about halfway through the array. These data have been used to produce a couple of 1-D models and a preliminary 2-D model of apparent velocity. We plan to use these results to develop a proposal to conduct a full controlled and passive-source experiment over the SMB in the near future.

  15. Investigating Appropriate Sampling Design for Estimating Above-Ground Biomass in Bruneian Lowland Mixed Dipterocarp Forest

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, D.; Abu Salim, K.; Yun, H. M.; Han, S.; Lee, W. K.; Davies, S. J.; Son, Y.

    2014-12-01

    Mixed tropical forest structure is highly heterogeneous unlike plantation or mixed temperate forest structure, and therefore, different sampling approaches are required. However, the appropriate sampling design for estimating the above-ground biomass (AGB) in Bruneian lowland mixed dipterocarp forest (MDF) has not yet been fully clarified. The aim of this study was to provide supportive information in sampling design for Bruneian forest carbon inventory. The study site was located at Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Six 60 m × 60 m quadrats were established, separated by a distance of approximately 100 m and each was subdivided into quadrats of 10 m × 10 m, at an elevation between 200 and 300 m above sea level. At each plot all free-standing trees with diameter at breast height (dbh) ≥ 1 cm were measured. The AGB for all trees with dbh ≥ 10 cm was estimated by allometric models. In order to analyze changes in the diameter-dependent parameters used for estimating the AGB, different quadrat areas, ranging from 10 m × 10 m to 60 m × 60 m, were used across the study area, starting at the South-West end and moving towards the North-East end. The derived result was as follows: (a) Big trees (dbh ≥ 70 cm) with sparse distribution have remarkable contribution to the total AGB in Bruneian lowland MDF, and therefore, special consideration is required when estimating the AGB of big trees. Stem number of trees with dbh ≥ 70 cm comprised only 2.7% of all trees with dbh ≥ 10 cm, but 38.5% of the total AGB. (b) For estimating the AGB of big trees at the given acceptable limit of precision (p), it is more efficient to use large quadrats than to use small quadrats, because the total sampling area decreases with the former. Our result showed that 239 20 m × 20 m quadrats (9.6 ha in total) were required, while 15 60 m × 60 m quadrats (5.4 ha in total) were required when estimating the AGB of the trees

  16. The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient.

    PubMed

    Blume-Werry, Gesche; Wilson, Scott D; Kreyling, Juergen; Milbau, Ann

    2016-02-01

    There is compelling evidence from experiments and observations that climate warming prolongs the growing season in arctic regions. Until now, the start, peak, and end of the growing season, which are used to model influences of vegetation on biogeochemical cycles, were commonly quantified using above-ground phenological data. Yet, over 80% of the plant biomass in arctic regions can be below ground, and the timing of root growth affects biogeochemical processes by influencing plant water and nutrient uptake, soil carbon input and microbial activity. We measured timing of above- and below-ground production in three plant communities along an arctic elevation gradient over two growing seasons. Below-ground production peaked later in the season and was more temporally uniform than above-ground production. Most importantly, the growing season continued c. 50% longer below than above ground. Our results strongly suggest that traditional above-ground estimates of phenology in arctic regions, including remotely sensed information, are not as complete a representation of whole-plant production intensity or duration, as studies that include root phenology. We therefore argue for explicit consideration of root phenology in studies of carbon and nutrient cycling, in terrestrial biosphere models, and scenarios of how arctic ecosystems will respond to climate warming.

  17. Legacies of precipitation fluctuations on primary production: theory and data synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we...

  18. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments

    NASA Astrophysics Data System (ADS)

    Sibanda, Mbulisi; Mutanga, Onisimo; Rouget, Mathieu

    2015-12-01

    The major constraint in understanding grass above ground biomass variations using remotely sensed data are the expenses associated with the data, as well as the limited number of techniques that can be applied to different management practices with minimal errors. New generation multispectral sensors such as Sentinel 2 Multispectral Imager (MSI) are promising for effective rangeland management due to their unique spectral bands and higher signal to noise ratio. This study resampled hyperspectral data to spectral resolutions of the newly launched Sentinel 2 MSI and the recently launched Landsat 8 OLI for comparison purposes. Using Sparse partial least squares regression, the resampled data was applied in estimating above ground biomass of grasses treated with different fertilizer combinations of ammonium sulfate, ammonium nitrate, phosphorus and lime as well as unfertilized experimental plots. Sentinel 2 MSI derived models satisfactorily performed (R2 = 0.81, RMSEP = 1.07 kg/m2, RMSEP_rel = 14.97) in estimating grass above ground biomass across different fertilizer treatments relative to Landsat 8 OLI (Landsat 8 OLI: R2 = 0.76, RMSEP = 1.15 kg/m2, RMSEP_rel = 16.04). In comparison, hyperspectral data derived models exhibited better grass above ground biomass estimation across complex fertilizer combinations (R2 = 0.92, RMSEP = 0.69 kg/m2, RMSEP_rel = 9.61). Although Sentinel 2 MSI bands and indices better predicted above ground biomass compared with Landsat 8 OLI bands and indices, there were no significant differences (α = 0.05) in the errors of prediction between the two new generational sensors across all fertilizer treatments. The findings of this study portrays Sentinel 2 MSI and Landsat 8 OLI as promising remotely sensed datasets for regional scale biomass estimation, particularly in resource scarce areas.

  19. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005

    NASA Astrophysics Data System (ADS)

    Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi; Zhang, Guodong; Yan, Wei; Li, Jiaxuan; Li, Bo; Dan, Li; Fisher, Joshua B.; Gao, Zhiqiang; He, Yong; Huntzinger, Deborah; Jain, Atul K.; Mao, Jiafu; Meng, Jihua; Michalak, Anna M.; Parazoo, Nicholas C.; Peng, Changhui; Poulter, Benjamin; Schwalm, Christopher R.; Shi, Xiaoying; Sun, Rui; Tao, Fulu; Tian, Hanqin; Wei, Yaxing; Zeng, Ning; Zhu, Qiuan; Zhu, Wenquan

    2016-05-01

    Despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr-1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36% and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr-1 during 1981-2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.

  20. Above ground biomass estimation from lidar and hyperspectral airbone data in West African moist forests.

    NASA Astrophysics Data System (ADS)

    Vaglio Laurin, Gaia; Chen, Qi; Lindsell, Jeremy; Coomes, David; Cazzolla-Gatti, Roberto; Grieco, Elisa; Valentini, Riccardo

    2013-04-01

    The development of sound methods for the estimation of forest parameters such as Above Ground Biomass (AGB) and the need of data for different world regions and ecosystems, are widely recognized issues due to their relevance for both carbon cycle modeling and conservation and policy initiatives, such as the UN REDD+ program (Gibbs et al., 2007). The moist forests of the Upper Guinean Belt are poorly studied ecosystems (Vaglio Laurin et al. 2013) but their role is important due to the drier condition expected along the West African coasts according to future climate change scenarios (Gonzales, 2001). Remote sensing has proven to be an effective tool for AGB retrieval when coupled with field data. Lidar, with its ability to penetrate the canopy provides 3D information and best results. Nevertheless very limited research has been conducted in Africa tropical forests with lidar and none to our knowledge in West Africa. Hyperspectral sensors also offer promising data, being able to evidence very fine radiometric differences in vegetation reflectance. Their usefulness in estimating forest parameters is still under evaluation with contrasting findings (Andersen et al. 2008, Latifi et al. 2012), and additional studies are especially relevant in view of forthcoming satellite hyperspectral missions. In the framework of the EU ERC Africa GHG grant #247349, an airborne campaign collecting lidar and hyperspectral data has been conducted in March 2012 over forests reserves in Sierra Leone and Ghana, characterized by different logging histories and rainfall patterns, and including Gola Rainforest National Park, Ankasa National Park, Bia and Boin Forest Reserves. An Optech Gemini sensor collected the lidar dataset, while an AISA Eagle sensor collected hyperspectral data over 244 VIS-NIR bands. The lidar dataset, with a point density >10 ppm was processed using the TIFFS software (Toolbox for LiDAR Data Filtering and Forest Studies)(Chen 2007). The hyperspectral dataset, geo

  1. Above-ground Biomass Investments and Light Interception of Tropical Forest Trees and Lianas Early in Succession

    PubMed Central

    Selaya, N. G.; Anten, N. P. R.; Oomen, R. J.; Matthies, M.; Werger, M. J. A.

    2007-01-01

    Background and Aims Crown structure and above-ground biomass investment was studied in relation to light interception of trees and lianas growing in a 6-month-old regenerating forest. Methods The vertical distribution of total above-ground biomass, height, diameter, stem density, leaf angles and crown depth were measured for individual plants of three short-lived pioneers (SLPs), four long-lived pioneers (LLPs) and three lianas. Daily light interception per individual Φd was calculated with a canopy model. The model was then used to estimate light interception per unit of leaf mass (Φleaf mass), total above-ground mass (Φmass) and crown structure efficiency (Ea, the ratio of absorbed vs. available light). Key Results The SLPs Trema and Ochroma intercepted higher amounts of light per unit leaf mass (Φleaf mass) because they had shallower crowns, resulting in higher crown use efficiency (Ea) than the other species. These SLPs (but not Cecropia) were also taller and intercepted more light per unit leaf area (Φarea). LLPs and lianas had considerably higher amounts of leaf mass and area per unit above-ground mass (LMR and LAR, respectively) and thus attained Φmass values similar to the SLPs (Φmass=Φarea×LAR). Lianas, which were mostly self-supporting, had light interception efficiencies similar to those of the trees. Conclusions These results show how, due to the trade-off between crown structure and biomass allocation, SLPs, and LLPs and lianas intercept similar amount of light per unit mass which may contribute to the ability of the latter two groups to persist. PMID:17210607

  2. Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity

    PubMed Central

    Barlow, Jos; Silveira, Juliana M.; Mestre, Luiz A. M.; Andrade, Rafael B.; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z.; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A.

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions. PMID:22428035

  3. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    PubMed

    Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  4. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    PubMed

    Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions. PMID:22428035

  5. Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production.

    PubMed

    Halsey, Kimberly H; Milligan, Allen J; Behrenfeld, Michael J

    2010-02-01

    Characterization of physiological variability in phytoplankton photosynthetic efficiencies is one of the greatest challenges in assessing ocean net primary production (NPP) from remote sensing of surface chlorophyll (Chl). Nutrient limitation strongly influences phytoplankton intracellular pigmentation, but its impact on Chl-specific NPP (NPP(*)) is debated. We monitored six indices of photosynthetic activity in steady-state Dunaliella tertiolecta cultures over a range of nitrate-limited growth rates (μ), including photosynthetic efficiency of PSII (F(v)/F(m)), O(2)-based gross and net production, 20 min and 24 h carbon assimilation, and carbon- and μ-based NPP. Across all growth rates, O(2)-based Chl-specific gross primary production (GPP(*)(O(2))), NPP(*), and F(v)/F(m) were constant. GPP(*)(O(2)) was 3.3 times greater than NPP(*). In stark contrast, Chl-specific short-term C fixation showed clear linear dependence on μ, reflecting differential allocation of photosynthate between short-lived C products and longer-term storage products. Indeed, (14)C incorporation into carbohydrates was five times greater in cells growing at 1.2 day(-1) than 0.12 day(-1). These storage products are catabolized for ATP and reductant generation within the period of a cell cycle. The relationship between Chl-specific gross and net O(2) production, short-term (14)C-uptake, NPP(*), and growth rate reflects cellular-level regulation of fundamental metabolic pathways in response to nutrient limitation. We conclude that growth rate-dependent photosynthate metabolism bridges the gap between gross and net production and resolves a controversial question regarding nutrient limitation effects on primary production measures.

  6. Below-ground plant–fungus network topology is not congruent with above-ground plant–animal network topology

    PubMed Central

    Toju, Hirokazu; Guimarães, Paulo R.; Olesen, Jens M.; Thompson, John N.

    2015-01-01

    In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant–fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant–partner networks. Specifically, plant–fungus networks lacked a “nested” architecture, which has been considered to promote species coexistence in plant–partner networks. Rather, the below-ground networks had a conspicuous “antinested” topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions. PMID:26601279

  7. Impact of Ground-Applied Termiticides on the Above-Ground Foraging Behavior of the Formosan Subterranean Termite

    PubMed Central

    Henderson, Gregg; Gautam, Bal K.; Wang, Cai

    2016-01-01

    We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%–4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study. PMID:27571108

  8. Tomato below ground-above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists.

    PubMed

    Battaglia, Donatella; Bossi, Simone; Cascone, Pasquale; Digilio, Maria Cristina; Prieto, Juliana Duran; Fanti, Paolo; Guerrieri, Emilio; Iodice, Luigi; Lingua, Guido; Lorito, Matteo; Maffei, Massimo E; Massa, Nadia; Ruocco, Michelina; Sasso, Raffaele; Trotta, Vincenzo

    2013-10-01

    Below ground and above ground plant-insect-microorganism interactions are complex and regulate most of the developmental responses of important crop plants such as tomato. We investigated the influence of root colonization by a nonmycorrhizal plant-growth-promoting fungus on direct and indirect defenses of tomato plant against aphids. The multitrophic system included the plant Solanum lycopersicum ('San Marzano nano'), the root-associated biocontrol fungus Trichoderma longibrachiatum strain MK1, the aphid Macrosiphum euphorbiae (a tomato pest), the aphid parasitoid Aphidius ervi, and the aphid predator Macrolophus pygmaeus. Laboratory bioassays were performed to assess the effect of T. longibrachiatum MK1, interacting with the tomato plant, on quantity and quality of volatile organic compounds (VOC) released by tomato plant, aphid development and reproduction, parasitoid behavior, and predator behavior and development. When compared with the uncolonized controls, plants whose roots were colonized by T. longibrachiatum MK1 showed quantitative differences in the release of specific VOC, better aphid population growth indices, a higher attractiveness toward the aphid parasitoid and the aphid predator, and a quicker development of aphid predator. These findings support the development of novel strategies of integrated control of aphid pests. The species-specific or strain-specific characteristics of these below ground-above ground interactions remain to be assessed.

  9. Impact of Ground-Applied Termiticides on the Above-Ground Foraging Behavior of the Formosan Subterranean Termite.

    PubMed

    Henderson, Gregg; Gautam, Bal K; Wang, Cai

    2016-01-01

    We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%-4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study. PMID:27571108

  10. Top-down and bottom-up inventory approach for above ground forest biomass and carbon monitoring in REDD framework using multi-resolution satellite data.

    PubMed

    Sharma, Laxmi Kant; Nathawat, Mahendra Singh; Sinha, Suman

    2013-10-01

    This study deals with the future scope of REDD (Reduced Emissions from Deforestation and forest Degradation) and REDD+ regimes for measuring and monitoring the current state and dynamics of carbon stocks over time with integrated geospatial and field-based biomass inventory approach. Multi-temporal and multi-resolution geospatial synergic approach incorporating satellite sensors from moderate to high resolution with stratified random sampling design is used. The inventory process involves a continuous forest inventory to facilitate the quantification of possible CO2 reductions over time using statistical up-scaling procedures on various levels. The combined approach was applied on a regional scale taking Himachal Pradesh (India), as a case study, with a hierarchy of forest strata representing the forest structure found in India. Biophysical modeling implemented revealed power regression model as the best fit (R (2) = 0.82) to model the relationship between Normalized Difference Vegetation Index and biomass which was further implemented to calculate multi-temporal above ground biomass and carbon sequestration. The calculated value of net carbon sequestered by the forests totaled to 11.52 million tons (Mt) over the period of 20 years at the rate of 0.58 Mt per year since 1990 while CO2 equivalent reduced from the environment by the forests under study during 20 years comes to 42.26 Mt in the study area.

  11. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China.

    PubMed

    Xu, C; Liu, M; An, S; Chen, J M; Yan, P

    2007-11-01

    Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP.

  12. Worldwide estimates and bibliography of net primary productivity derived from pre-1982 publications

    SciTech Connect

    Esser, G.; Lieth, H.F.H.; Scurlock, J.M.O.; Olson, R.J.

    1997-10-01

    An extensive compilation of more than 700 field estimates of net primary productivity of natural and agricultural ecosystems worldwide was synthesized in Germany in the 1970s and early 1980s. Although the Osnabrueck data set has not been updated since the 1980s, it represents a wealth of information for use in model development and validation. This report documents the development of this data set, its contents, and its recent availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which necessarily include assumptions and conversions that may not be universally applicable to all sites.

  13. Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes

    USGS Publications Warehouse

    Kicklighter, D.W.; Bondeau, A.; Schloss, A.L.; Kaduk, J.; McGuire, A.D.

    1999-01-01

    Annual and seasonal net primary productivity estimates (NPP) of 15 global models across latitudinal zones and biomes are compared. The models simulated NPP for contemporary climate using common, spatially explicit data sets for climate, soil texture, and normalized difference vegetation index (NDVI). Differences among NPP estimates varied over space and time. The largest differences occur during the summer months in boreal forests (50??to 60??N) and during the dry seasons of tropical evergreen forests. Differences in NPP estimates are related to model assumptions about vegetation structure, model parameterizations, and input data sets.

  14. Carbon sequestration in croplands is mainly driven by management leading to increased net primary production - evidence from long-term field experiments in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kätterer, Thomas; Bolinder, Martin Anders; Börjesson, Gunnar; Kirchmann, Holger; Poeplau, Christopher

    2014-05-01

    Sustainable intensification of agriculture in regions with high production potential is a prerequisite for providing services for an increasing human population, not only food, animal feed, fiber and biofuel but also to promote biodiversity and the beauty of landscapes. We investigated the effect of different management practices on soil fertility and carbon sequestration in long-term experiments, mainly from Northern Europe. In addition, a meta-analysis on the effect of catch crops was conducted. Improved management of croplands was found to be a win-win strategy resulting in both increased soil fertility and carbon sequestration. We quantified the effect of different management practices such as N fertilization, organic amendments, catch crops and ley-arable rotations versus continuous annual cropping systems on soil carbon stocks. Increasing net primary productivity (NPP) was found to be the main driver for higher soil carbon storage. Mineral N fertilization increased soil carbon stocks by 1-2 kg C ha-1 for each kg of N applied to cropland. Ley-arable rotations, being a combination of annual and perennial crops, are expected to have C stocks intermediate between those of continuous grass- and croplands. A summary of data from 15 long-term sites showed that on average 0.5 Mg ha-1 yr-1 (range 0.3 to 1.1; median 0.4 Mg ha-1 yr-1) more carbon was retained in soils in ley-arable compared to exclusively annual systems, depending on species composition, management, soil depth and the duration of the studies. The annual C accumulation rate for catch crops determined in the meta-analysis was well within that range (0.32±0.08 Mg C ha-1 yr-1). Retention factors calculated for straw, manure, sawdust, peat, sewage sludge and composted household waste varied widely in a decadal time scale. Retention of root and rhizodeposit carbon was higher than for above-ground crop residues. We conclude that NPP is the major driver for C sequestration and emphasize that increased soil

  15. Integrating disparate lidar data at the national scale to assess the relationships between height above ground, land cover and ecoregions

    USGS Publications Warehouse

    Stoker, Jason M.; Cochrane, Mark A.; Roy, David P.

    2013-01-01

    With the acquisition of lidar data for over 30 percent of the US, it is now possible to assess the three-dimensional distribution of features at the national scale. This paper integrates over 350 billion lidar points from 28 disparate datasets into a national-scale database and evaluates if height above ground is an important variable in the context of other nationalscale layers, such as the US Geological Survey National Land Cover Database and the US Environmental Protection Agency ecoregions maps. While the results were not homoscedastic and the available data did not allow for a complete height census in any of the classes, it does appear that where lidar data were used, there were detectable differences in heights among many of these national classification schemes. This study supports the hypothesis that there were real, detectable differences in heights in certain national-scale classification schemes, despite height not being a variable used in any of the classification routines.

  16. Comparing the impact of the 2003 and 2010 heatwaves on Net Primary Production in Europe

    NASA Astrophysics Data System (ADS)

    Bastos, Ana; Gouveia, Célia M.; Trigo, Ricardo M.; Running, Steve W.

    2013-04-01

    Climate variability is known to influence primary productivity on land ecosystems (Nemani et al., 2003). In particular, extreme climatic events such as major droughts and heatwaves are known to have severe impact on primary productivity and, therefore, to affect significantly the carbon dioxide uptake by land ecosystems at regional (Ciais et al., 2005) or even global scale (Zhao and Running, 2010). In the last decade, Europe was struck by two outstanding heatwaves, the 2003 event in Western Europe and the recent 2010 episode over Eastern Europe. Both were characterised by record breaking temperatures at the daily, weekly, monthly and seasonal scales, although the amplitude and spatial extent of the 2010 mega-heatwave surpassed the 2003 event (Barriopedro et al., 2011). This work aims to assess the influence of both mega-heatwaves on yearly Net Primary Production (NPP) and seasonal Net Photosynthesis (NP), which corresponds to the difference between Gross Primary Production and maintenance respiration. The work relies on yearly NPP and monthly NP data derived from satellite imagery obtained from MODIS (Moderate Resolution Imaging Spectroradiometer) sensor at 1km spatial resolution. Data were selected for the period between 2000 and 2011 over a region extending from 34.6N to 73.5N and 12.1W to 46.8E, covering Eurasia. In 2010 very low primary production anomalies are observed over a very large area in Eastern Europe, at the monthly, seasonal and yearly scale. In western Russia, yearly NPP anomalies fall below 50% of average. These widespread negative anomalous values of NP fields over the western Russia region match the patterns of very high temperature values combined with below-average precipitation, at the seasonal (summer) scale. Moreover, the impact of the heatwave is not only evident at the regional level but also at the wider continental (European) scale and is significantly more extensive and intense than the corresponding heatwave of 2003 in Western Europe

  17. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    NASA Astrophysics Data System (ADS)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  18. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.

    PubMed

    Johnson, Scott N; Mitchell, Carolyn; McNicol, James W; Thompson, Jacqueline; Karley, Alison J

    2013-09-01

    1. Terrestrial food webs are woven from complex interactions, often underpinned by plant-mediated interactions between herbivores and higher trophic groups. Below- and above-ground herbivores can influence one another via induced changes to a shared host plant, potentially shaping the wider community. However, empirical evidence linking laboratory observations to natural field populations has so far been elusive. 2. This study investigated how root-feeding weevils (Otiorhynchus sulcatus) influence different feeding guilds of herbivore (phloem-feeding aphids, Cryptomyzus galeopsidis, and leaf-chewing sawflies, Nematus olfaciens) in both controlled and field conditions. 3. We hypothesized that root herbivore-induced changes in plant nutrients (C, N, P and amino acids) and defensive compounds (phenolics) would underpin the interactions between root and foliar herbivores, and ultimately populations of natural enemies of the foliar herbivores in the field. 4. Weevils increased field populations of aphids by ca. 700%, which was followed by an increase in the abundance of aphid natural enemies. Weevils increased the proportion of foliar essential amino acids, and this change was positively correlated with aphid abundance, which increased by 90% on plants with weevils in controlled experiments. 5. In contrast, sawfly populations were 77% smaller during mid-June and adult emergence delayed by >14 days on plants with weevils. In controlled experiments, weevils impaired sawfly growth by 18%, which correlated with 35% reductions in leaf phosphorus caused by root herbivory, a previously unreported mechanism for above-ground-below-ground herbivore interactions. 6. This represents a clear demonstration of root herbivores affecting foliar herbivore community composition and natural enemy abundance in the field via two distinct plant-mediated nutritional mechanisms. Aphid populations, in particular, were initially driven by bottom-up effects (i.e. plant-mediated effects of root

  19. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems

    PubMed Central

    Haberl, Helmut; Erb, K. Heinz; Krausmann, Fridolin; Gaube, Veronika; Bondeau, Alberte; Plutzar, Christoph; Gingrich, Simone; Lucht, Wolfgang; Fischer-Kowalski, Marina

    2007-01-01

    Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest. PMID:17616580

  20. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems.

    PubMed

    Haberl, Helmut; Erb, K Heinz; Krausmann, Fridolin; Gaube, Veronika; Bondeau, Alberte; Plutzar, Christoph; Gingrich, Simone; Lucht, Wolfgang; Fischer-Kowalski, Marina

    2007-07-31

    Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest.

  1. Are Primary Care Providers Prepared To Care For Breast Cancer Survivors In The Safety Net?

    PubMed Central

    Dawes, Aaron J.; Hemmelgarn, Marian; Nguyen, David K.; Sacks, Greg D.; Clayton, Sheilah; Cope, Jacqueline; Ganz, Patricia A.; Maggard-Gibbons, Melinda

    2015-01-01

    Introduction With the growing number of breast cancer survivors outpacing the capacity of oncology providers, there is pressure to transition patients back to primary care. Primary care providers (PCPs) working in safety-net settings may have less experience treating survivors, and little is known about their knowledge and views on survivorship care. Objective To determine the knowledge, attitudes, and confidence of PCPs in the safety net at delivering care to breast cancer survivors. Participants A modified version of the National Cancer Institute’s Survey of Physician Attitudes Regarding Care of Cancer Survivors (SPARCCS) was given to providers at 2 county hospitals and 5 associated clinics (n=59). Focus groups were held to understand barriers to survivorship care. Results While most providers believed PCPs have the skills necessary to provide cancer-related follow-up, the vast majority were not comfortable providing these services themselves. Providers were adherent to American Society of Clinical Oncology recommendations for mammography (98%) and physical exam (87%); less than 1/3 were guideline-concordant for lab testing and only 6 providers (10%) met all recommendations. PCPs universally requested additional training on clinical guidelines and the provision of written survivorship care plans prior to transfer. Concerns voiced in qualitative sessions included unfamiliarity with the management of endocrine therapy and confusion regarding who would be responsible for certain aspects of care. Conclusion Safety-net providers currently lack knowledge and confidence at providing survivorship care to breast cancer patients. Opportunities exist for additional training in evidence-based guidelines and improved coordination of care between PCPs and oncology specialists. PMID:25536301

  2. Global human appropriation of net primary production doubled in the 20th century

    PubMed Central

    Krausmann, Fridolin; Erb, Karl-Heinz; Gingrich, Simone; Haberl, Helmut; Bondeau, Alberte; Gaube, Veronika; Lauk, Christian; Plutzar, Christoph; Searchinger, Timothy D.

    2013-01-01

    Global increases in population, consumption, and gross domestic product raise concerns about the sustainability of the current and future use of natural resources. The human appropriation of net primary production (HANPP) provides a useful measure of human intervention into the biosphere. The productive capacity of land is appropriated by harvesting or burning biomass and by converting natural ecosystems to managed lands with lower productivity. This work analyzes trends in HANPP from 1910 to 2005 and finds that although human population has grown fourfold and economic output 17-fold, global HANPP has only doubled. Despite this increase in efficiency, HANPP has still risen from 6.9 Gt of carbon per y in 1910 to 14.8 GtC/y in 2005, i.e., from 13% to 25% of the net primary production of potential vegetation. Biomass harvested per capita and year has slightly declined despite growth in consumption because of a decline in reliance on bioenergy and higher conversion efficiencies of primary biomass to products. The rise in efficiency is overwhelmingly due to increased crop yields, albeit frequently associated with substantial ecological costs, such as fossil energy inputs, soil degradation, and biodiversity loss. If humans can maintain the past trend lines in efficiency gains, we estimate that HANPP might only grow to 27–29% by 2050, but providing large amounts of bioenergy could increase global HANPP to 44%. This result calls for caution in refocusing the energy economy on land-based resources and for strategies that foster the continuation of increases in land-use efficiency without excessively increasing ecological costs of intensification. PMID:23733940

  3. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands.

    PubMed

    Ryals, Rebecca; Silver, Whendee L

    2013-01-01

    Most of the world's grasslands are managed for livestock production. A critical component of the long-term sustainability and profitability of rangelands (e.g., grazed grassland ecosystems) is the maintenance of plant production. Amending grassland soils with organic waste has been proposed as a means to increase net primary productivity (NPP) and ecosystem carbon (C) storage, while mitigating greenhouse gas emissions from waste management. Few studies have evaluated the effects of amendments on the C balance and greenhouse gas dynamics of grasslands. We used field manipulations replicated within and across two rangelands (a valley grassland and a coastal grassland) to determine the effects of a single application of composted green waste amendments on NPP and greenhouse gas emissions over three years. Amendments elevated total soil respiration by 18% +/- 4% at both sites but had no effect on nitrous oxide or methane emissions. Carbon losses were significantly offset by greater and sustained plant production. Amendments stimulated both above- and belowground NPP by 2.1 +/- 0.8 Mg C/ha to 4.7 +/- 0.7 Mg C/ha (mean +/- SE) over the three-year study period. Net ecosystem C storage increased by 25-70% without including the direct addition of compost C. The estimated magnitude of net ecosystem C storage was sensitive to estimates of heterotrophic soil respiration but was greater than controls in five out of six fields that received amendments. The sixth plot was the only one that exhibited lower soil moisture than the control, suggesting an important role of water limitation in these seasonally dry ecosystems. Treatment effects persisted over the course of the study, which were likely derived from increased water-holding capacity in most plots, and slow-release fertilization from compost decomposition. We conclude that a single application of composted organic matter can significantly increase grassland C storage, and that effects of a single application are likely to

  4. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands.

    PubMed

    Ryals, Rebecca; Silver, Whendee L

    2013-01-01

    Most of the world's grasslands are managed for livestock production. A critical component of the long-term sustainability and profitability of rangelands (e.g., grazed grassland ecosystems) is the maintenance of plant production. Amending grassland soils with organic waste has been proposed as a means to increase net primary productivity (NPP) and ecosystem carbon (C) storage, while mitigating greenhouse gas emissions from waste management. Few studies have evaluated the effects of amendments on the C balance and greenhouse gas dynamics of grasslands. We used field manipulations replicated within and across two rangelands (a valley grassland and a coastal grassland) to determine the effects of a single application of composted green waste amendments on NPP and greenhouse gas emissions over three years. Amendments elevated total soil respiration by 18% +/- 4% at both sites but had no effect on nitrous oxide or methane emissions. Carbon losses were significantly offset by greater and sustained plant production. Amendments stimulated both above- and belowground NPP by 2.1 +/- 0.8 Mg C/ha to 4.7 +/- 0.7 Mg C/ha (mean +/- SE) over the three-year study period. Net ecosystem C storage increased by 25-70% without including the direct addition of compost C. The estimated magnitude of net ecosystem C storage was sensitive to estimates of heterotrophic soil respiration but was greater than controls in five out of six fields that received amendments. The sixth plot was the only one that exhibited lower soil moisture than the control, suggesting an important role of water limitation in these seasonally dry ecosystems. Treatment effects persisted over the course of the study, which were likely derived from increased water-holding capacity in most plots, and slow-release fertilization from compost decomposition. We conclude that a single application of composted organic matter can significantly increase grassland C storage, and that effects of a single application are likely to

  5. The effect of freezing and drying on leaching of DOM from above ground vascular plant material from the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.

    2014-12-01

    Our understanding of the seasonal dynamics of fluvial dissolved organic matter (DOM) concentrations and fluxes in Arctic catchments has increased substantially during recent years, especially during the spring, which historically has been an under-sampled time period. While a number of studies have observed peaks in both DOM concentrations and fluxes during the spring snowmelt, our knowledge of the mechanisms that control these observations are still lacking. During the initial snowmelt period, frozen ground and the snow matrix act to constrain melt-water to the soil surface. We hypothesize that restriction of flow during this time facilitates leaching of DOM from senescent above ground vegetation and detritus contributing to the high DOM concentrations observed during the spring melt. This study focuses on the effect of freezing and drying on the leaching of dissolved organic carbon and nitrogen (DOC and DON) from above ground vascular plant material. Specifically, we examined the treatment effects of freezing, drying, and freeze-drying on three genera of common Alaskan Arctic vascular plants; Eriophorum (spp.), Carex (spp.), and Salix (spp.). Frozen and freeze-dried plant material released more DOC over the experimental 96 hour leaching period compared to plant material that was only dried. Qualitatively, these patterns were similar among the different plant types, while quantitatively Salix leached more DOC than either Eriophorum or Carex in all treatments. Similar patterns were also seen for DON between the different treatments and among the different plant types. Compositionally, DOM that was leached from frozen and freeze-dried material had higher C:N ratios than material that was only dried. Comparatively, DOM leached from Salix had much higher C:N ratios than either Eriophorum or Carex. During the first 24 hours of leaching, C:N ratios tended to increase followed by a subsequent leveling or decrease, suggesting that the composition of leached DOM varied

  6. The effects of tropospheric ozone on net primary productivity and implications for climate change.

    PubMed

    Ainsworth, Elizabeth A; Yendrek, Craig R; Sitch, Stephen; Collins, William J; Emberson, Lisa D

    2012-01-01

    Tropospheric ozone (O(3)) is a global air pollutant that causes billions of dollars in lost plant productivity annually. It is an important anthropogenic greenhouse gas, and as a secondary air pollutant, it is present at high concentrations in rural areas far from industrial sources. It also reduces plant productivity by entering leaves through the stomata, generating other reactive oxygen species and causing oxidative stress, which in turn decreases photosynthesis, plant growth, and biomass accumulation. The deposition of O(3) into vegetation through stomata is an important sink for tropospheric O(3), but this sink is modified by other aspects of environmental change, including rising atmospheric carbon dioxide concentrations, rising temperature, altered precipitation, and nitrogen availability. We review the atmospheric chemistry governing tropospheric O(3) mass balance, the effects of O(3) on stomatal conductance and net primary productivity, and implications for agriculture, carbon sequestration, and climate change.

  7. Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; Raynolds, M.; Walker, D. A.

    2003-01-01

    We have developed maps of dominant vegetation types, plant functional types, percent vegetation cover, aboveground plant biomass, and above and belowground annual net primary productivity for Canada north of the northern limit of trees. The area mapped covers 2.5 million km2 including glaciers. Ice-free land covers 2.3 million km2 and represents 42% of all ice-free land in the Circumpolar Arctic. The maps combine information on climate, soils, geology, hydrology, remotely sensed vegetation classifications, previous vegetation studies, and regional expertise to define polygons drawn using photo-interpretation of a 1:4,000,000 scale advanced very high resolution radiometer (AVHRR) color infrared image basemap. Polygons are linked to vegetation description, associated properties, and descriptive literature through a series of lookup tables in a graphic information systems (GIS) database developed as a component of the Circumpolar Arctic Vegetation Map (CAVM) project. Polygons are classified into 20 landcover types including 17 vegetation types. Half of the region is sparsely vegetated (<50% vegetation cover), primarily in the High Arctic (bioclimatic subzones A-C). Whereas most (86%) of the estimated aboveground plant biomass (1.5 × 1015 g) and 87% of the estimated above and belowground annual net primary productivity (2.28 × 1014 g yr-1) are concentrated in the Low Arctic (subzones D and E). The maps present more explicit spatial patterns of vegetation and ecosystem attributes than have been previously available, the GIS database is useful in summarizing ecosystem properties and can be easily updated and integrated into circumpolar mapping efforts, and the derived estimates fall within the range of current published estimates.

  8. Estimating crop net primary production using inventory data and MODIS-derived parameters

    SciTech Connect

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  9. Detection of above-ground and subsurface unexploded ordnance using ultrawideband (UWB) synthetic aperture radar (SAR) and electromagnetic modeling tools

    NASA Astrophysics Data System (ADS)

    Sullivan, Anders J.; Damarla, Thyagaraju; Geng, Norbert; Dong, Yanting; Carin, Lawrence

    2000-08-01

    Recent development of wideband, high-resolution SAR technology has shown that detecting buried targets over large open areas may be possible. Ground clutter and soil type are tow limiting factor influencing the practicality of using wideband SAR for wide-area target detection. In particular, the presence of strong ground clutter because of the unevenness, roughness or inconsistency of the soil itself may limit the radar's capability to resolve the target from the clutter. Likewise, the soil material properties can also play a major tole. The incident wave may experience significant attenuation as the wave penetrates lossy soil. In an attempt to more fully characterize this problem, fully polarimetric ultra-wideband measurements have been taken by the US Army Research Laboratory's SAR at test sites in Yuma, Arizona, and Elgin Air Force Base, Florida. SAR images have been generated for above-ground and subsurface unexploded ordnance targets, including 155-mm shells. Additionally, a full-wave method of moments (MoM) model has been developed for the electromagnetic scattering from these same targets, accounting for the lossy nature and frequency dependency of the various soils. An approximate model based on phys9cal optics (PO) has also been developed. The efficacy of using PO in lieu of the MoM to generate the electromagnetic scattering data is examined. We compare SAR images from the measured data with images produced by the MoM and PO simulations by using a standard back-projection technique.

  10. Above-ground biomass estimation of tuberous bulrush ( Bolboschoenus planiculmis) in mudflats using remotely sensed multispectral image

    NASA Astrophysics Data System (ADS)

    Kim, Ji Yoon; Im, Ran-Young; Do, Yuno; Kim, Gu-Yeon; Joo, Gea-Jae

    2016-03-01

    We present a multivariate regression approach for mapping the spatial distribution of above-ground biomass (AGB) of B. planiculmis using field data and coincident moderate spatial resolution satellite imagery. A total of 232 ground sample plots were used to estimate the biomass distribution in the Nakdong River estuary. Field data were overlain and correlated with digital values from an atmospherically corrected multispectral image (Landsat 8). The AGB distribution was derived using empirical models trained with field-measured AGB data. The final regression model for AGB estimation was composed using the OLI3, OLI4, and OLI7 spectral bands. The Pearson correlation between the observed and predicted biomass was significant (R = 0.84, p < 0.0001). OLI3 made the largest contribution to the final model (relative coefficient value: 53.4%) and revealed a negative relationship with the AGB biomass. The total distribution area of B. planiculmis was 1,922,979 m2. Based on the model estimation, the total AGB had a dry weight (DW) of approximately 298.2 tons. The distribution of high biomass stands (> 200 kg DW/900 m2) constituted approximately 23.91% of the total vegetated area. Our findings suggest the expandability of remotely sensed products to understand the distribution pattern of estuarine plant productivity at the landscape level.

  11. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    USGS Publications Warehouse

    Moore, Peggy E.; Van Wagtendonk, Jan W.; Yee, Julie L.; McClaran, Mitchel P.; Cole, David N.; McDougald, Neil K.; Brooks, Matthew L.

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate. Our objective was to describe patterns and variability in aboveground live vascular plant biomass in relation to climatic factors. We harvested aboveground biomass at peak growth from four 64-m2 plots each in xeric, mesic, and hydric meadows annually from 1994 to 2000. Data from nearby weather stations provided independent variables of spring snow water content, snow-free date, and thawing degree days for a cumulative index of available energy. We assembled these climatic variables into a set of mixed effects analysis of covariance models to evaluate their relationships with annual aboveground net primary productivity (ANPP), and we used an information theoretic approach to compare the quality of fit among candidate models. ANPP in the xeric meadow was negatively related to snow water content and thawing degree days and in the mesic meadow was negatively related to snow water content. Relationships between ANPP and these 2 covariates in the hydric meadow were not significant. Increasing snow water content may limit ANPP in these meadows if anaerobic conditions delay microbial activity and nutrient availability. Increased thawing degree days may limit ANPP in xeric meadows by prematurely depleting soil moisture. Large within-year variation of ANPP in the hydric meadow limited sensitivity to the climatic variables. These relationships suggest that, under projected warmer and drier conditions, ANPP will increase in mesic meadows but remain unchanged in xeric meadows because declines associated with increased temperatures would offset the increases from decreased snow water content.

  12. Estimating crop net primary production using national inventory data and MODIS-derived parameters

    NASA Astrophysics Data System (ADS)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; César Izaurralde, R.

    2013-06-01

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux between land and atmosphere. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale as well as national and continental scales. Existing satellite-based NPP products tend to underestimate NPP on croplands. An Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP over large multi-state regions. The method is documented here and evaluated for corn (Zea mays L.) and soybean (Glycine max L. Merr.) in Iowa and Illinois in 2006 and 2007. The method includes a crop-specific Enhanced Vegetation Index (EVI), shortwave radiation data estimated using the Mountain Climate Simulator (MTCLIM) algorithm, and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that corresponds to the Cropland Data Layer (CDL) land cover product. Results from the modeling framework captured the spatial NPP gradient across croplands of Iowa and Illinois, and also represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 917 g C m-2 yr-1 and 409 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Site comparisons with flux tower data show AgI-LUE NPP in close agreement with tower-derived NPP, lower than inventory-based NPP, and higher than MOD17A3 NPP. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  13. The Nitrogen Budget of a Northern Hardwood Forest: Sources and net Primary Productivity Requirements

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Vogel, C. S.; Gough, C. M.; Curtis, P. S.

    2006-12-01

    Nitrogen (N) limits net primary productivity (NPP) in most forests. Nearly all N required for NPP comes from decomposing organic matter, and is continuously recycled within the forest. However, atmospheric N deposition may augment forest N supply, increasing NPP. To quantify internal N cycling, atmospheric N inputs, and NPP, we developed an ecosystem-scale nitrogen (N) budget for a mixed deciduous forest in northern lower Michigan, USA. Sources of N were net N-mineralization (Nmin), wet (Dw) and bulk (Db) atmospheric N deposition, and canopy retention of bulk N deposition (CRN). We also quantified the N requirement of NPP, which was measured by biometric inventory of annual leaf, above- and belowground wood, and fine root mass production. Nmin supplied 44.3 kg N ha-1 yr-1 (88% of total annual N supply), while inorganic Dw supplied 4.8 kg N ha-1yr-1 (9% of total). Bulk organic N deposition contributed 1.5 kg N ha-1, or 3% of the total annual N supply. The forest canopy retained 2.2 kg N ha-1 of total Db, suggesting that 4% of the annual NPP N requirement could be met through canopy N uptake, if all N retained by the canopy was assimilated. Of the 53.5 kg N ha-1 yr-1 required for NPP, 61% was for fine root production, 32% was for leaf production, and 7% was for wood. Our N supply and forest NPP N requirement estimates were very close, with quantified N sources supplying 94% of the annual NPP N requirement. At our site, where Dw and organic Db provide 12% of the annual NPP N requirement, atmospheric N deposition makes a small but significant contribution to NPP. However, the minor contribution of CRN to the annual NPP N requirement indicates that N retained by the canopy has little effect on forest growth.

  14. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances

    PubMed Central

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  15. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.

    PubMed

    Zwicke, Marine; Alessio, Giorgio A; Thiery, Lionel; Falcimagne, Robert; Baumont, René; Rossignol, Nicolas; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-11-01

    Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more

  16. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances.

    PubMed

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012-2014) and drought treatments (2013-2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  17. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Jubanski, J.; Ballhorn, U.; Kronseder, K.; Franke, J.; Siegert, F.

    2013-06-01

    Quantification of tropical forest above-ground biomass (AGB) over large areas as input for Reduced Emissions from Deforestation and forest Degradation (REDD+) projects and climate change models is challenging. This is the first study which attempts to estimate AGB and its variability across large areas of tropical lowland forests in Central Kalimantan (Indonesia) through correlating airborne light detection and ranging (LiDAR) to forest inventory data. Two LiDAR height metrics were analysed, and regression models could be improved through the use of LiDAR point densities as input (R2 = 0.88; n = 52). Surveying with a LiDAR point density per square metre of about 4 resulted in the best cost / benefit ratio. We estimated AGB for 600 km of LiDAR tracks and showed that there exists a considerable variability of up to 140% within the same forest type due to varying environmental conditions. Impact from logging operations and the associated AGB losses dating back more than 10 yr could be assessed by LiDAR but not by multispectral satellite imagery. Comparison with a Landsat classification for a 1 million ha study area where AGB values were based on site-specific field inventory data, regional literature estimates, and default values by the Intergovernmental Panel on Climate Change (IPCC) showed an overestimation of 43%, 102%, and 137%, respectively. The results show that AGB overestimation may lead to wrong greenhouse gas (GHG) emission estimates due to deforestation in climate models. For REDD+ projects this leads to inaccurate carbon stock estimates and consequently to significantly wrong REDD+ based compensation payments.

  18. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands

    PubMed Central

    Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857

  19. Fungal endophytes in above-ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts

    PubMed Central

    Massimo, Nicholas C.; Nandi Devan, MM; Arendt, Kayla R.; Wilch, Margaret H.; Riddle, Jakob M.; Furr, Susan H.; Steen, Cole; U'Ren, Jana M.; Sandberg, Dustin C.; Arnold, A. Elizabeth

    2015-01-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in above-ground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on non-succulent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region, and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less-arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert plant communities, and can be used to optimize strategies for capturing endophyte biodiversity at regional scales. PMID

  20. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic

    PubMed Central

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D.; Hussein, Hany M.; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009–2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability. PMID:26083254

  1. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands.

    PubMed

    Valbuena, Rubén; Heiskanen, Janne; Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance.

  2. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    NASA Astrophysics Data System (ADS)

    Anderson, L. O.; Malhi, Y.; Ladle, R. J.; Aragão, L. E. O. C.; Shimabukuro, Y.; Phillips, O. L.; Baker, T.; Costa, A. C. L.; Espejo, J. S.; Higuchi, N.; Laurance, W. F.; López-González, G.; Monteagudo, A.; Núñez-Vargas, P.; Peacock, J.; Quesada, C. A.; Almeida, S.

    2009-09-01

    Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of forests over Paleovarzea geomorphologycal formation, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  3. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    NASA Astrophysics Data System (ADS)

    Anderson, L. O.; Malhi, Y.; Ladle, R. J.; Aragão, L. E. O. C.; Shimabukuro, Y.; Phillips, O. L.; Baker, T.; Costa, A. C. L.; Espejo, J. S.; Higuchi, N.; Laurance, W. F.; López-González, G.; Monteagudo, A.; Núñez-Vargas, P.; Peacock, J.; Quesada, C. A.; Almeida, S.; Vásquez, R.

    2009-02-01

    Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of alluvial terrain forest, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  4. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands.

    PubMed

    Valbuena, Rubén; Heiskanen, Janne; Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857

  5. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.

    PubMed

    Zwicke, Marine; Alessio, Giorgio A; Thiery, Lionel; Falcimagne, Robert; Baumont, René; Rossignol, Nicolas; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-11-01

    Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more

  6. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances.

    PubMed

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012-2014) and drought treatments (2013-2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest.

  7. Spatial heterogeneity in aboveground net primary production and species richness at multiple scales in the Chihuahuan Desert

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed patterns in spatial heterogeneity and the processes driving these patterns in two ecosystem properties, aboveground net primary production (ANPP) and species richness, at multiple scales in the Chihuahuan Desert. We used long-term data (1990-2009) to examine the importance of a suite of...

  8. Drivers of variation in aboveground net primary productivity and plant community composition differe across a broad precipitation gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has long been a goal of ecology to determine what factors drive variation in aboveground net primary production (ANPP). Total annual precipitation has been shown to be a strong predictor of ANPP across broad spatial scales, but a poor predictor at local scales. Here we aim to determine the amount...

  9. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    PubMed

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  10. Dynamic changes in terrestrial net primary production and their effects on evapotranspiration

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Chen, Yaning; Wang, Yang; Fang, Gonghuan

    2016-06-01

    The dramatic increase of global temperature since the year 2000 has a considerable impact on the global water cycle and vegetation dynamics. Little has been done about recent feedback of vegetation to climate in different parts of the world, and land evapotranspiration (ET) is the means of this feedback. Here we used the global 1 km MODIS net primary production (NPP) and ET data sets (2000-2014) to investigate their temporospatial changes under the context of global warming. The results showed that global NPP slightly increased in 2000-2014 at a rate of 0.06 PgC yr-2. More than 64 % of vegetated land in the Northern Hemisphere (NH) showed increased NPP (at a rate of 0.13 PgC yr-2), while 60.3 % of vegetated land in the Southern Hemisphere (SH) showed a decreasing trend (at a rate of -0.18 PgC yr-2). Vegetation greening and climate change promote rises of global ET. Specially, the increased rate of land ET in the NH (0.61 mm yr-2) is faster than that in the SH (0.41 mm yr-2). Over the same period, global warming and vegetation greening accelerate evaporation in soil moisture, thus reducing the amount of soil water storage. Continuation of these trends will likely exacerbate regional drought-induced disturbances and point to an increased risk of ecological drought, especially during regional dry climate phases.

  11. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Running, S. W.

    2010-12-01

    Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon per decade. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A theoretical explanation is given on why there are opposite NPP trends in the two hemispheres and why the SH is more sensitive to warming and drought than the NH. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

  12. Reduction in Global Terrestrial Net Primary Production from 2000 Through 2010 Measured by MODIS

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Running, S. W.

    2011-12-01

    Terrestrial net primary production (NPP) quantifies the amount atmospheric carbon fixed by vegetation and accumulated as biomass through photosynthesis, a key metric of land carbon sink strength, ecosystem functions and services. Previous studies have showed that climatic constraints were relaxing with increasing temperature and downward solar radiation, allowing an upward trend in the global NPP from 1982 to 1999. The last 11 years from 2000 are the warmest decade since instrumental measurements began in the 1880s, which could imply continued increases in NPP; however, our estimates suggest a slight reduction in the global NPP of 0.62 petagrams of carbon. Large scale regional droughts, such as 2003 and 2010 European heat waves, 2005 and 2010 Amazon droughts, are largely responsible for the regional NPP reductions. A drying trend in the Southern Hemisphere (SH) led to a reduction in NPP in the SH, counteracting a slightly increased NPP in the Northern Hemisphere, resulting in a slight reduction of the global NPP. The reduction in global NPP has critical implications for the evolution of the global carbon sink strength, proposed biofuel production and increasing food demands. Continuous monitoring is essential to determining whether the reduced NPP is a decadal variation and a turning point to a declining terrestrial carbon sequestration.

  13. The utility of estimating net primary productivity over Alaska using baseline AVHRR data

    USGS Publications Warehouse

    Markon, C.J.; Peterson, K.M.

    2002-01-01

    Net primary productivity (NPP) is a fundamental ecological variable that provides information about the health and status of vegetation communities. The Normalized Difference Vegetation Index, or NDVI, derived from the Advanced Very High Resolution Radiometer (AVHRR) is increasingly being used to model or predict NPP, especially over large remote areas. In this article, seven seasonally based metrics calculated from a seven-year baseline NDVI dataset were used to model NPP over Alaska, USA. For each growing season, they included maximum, mean and summed NDVI, total days, product of total days and maximum NDVI, an integral estimate of NDVI and a summed product of NDVI and solar radiation. Field (plot) derived NPP estimates were assigned to 18 land cover classes from an Alaskan statewide land cover database. Linear relationships between NPP and each NDVI metric were analysed at four scales: plot, 1-km, 10-km and 20-km pixels. Results show moderate to poor relationship between any of the metrics and NPP estimates for all data sets and scales. Use of NDVI for estimating NPP may be possible, but caution is required due to data seasonality, the scaling process used and land surface heterogeneity.

  14. Remote sensing of aboveground biomass and annual net aerial primary productivity in tidal wetlands

    SciTech Connect

    Hardisky, M.A.

    1983-01-01

    A technique was investigated for estimating biomass and net aerial primary productivity (NAPP) in Delaware tidal marshes from spectral data, describing marsh vegetation canopies. Spectral radiance data were collected with hand-held radiometers from the ground and from low altitude aircraft. Spectral wavebands corresponding to Landsat 4 thematic mapper bands 3, 4 and 5 and multispectral scanner bands 5 and 7 were employed. Spectral data, expressed as index values, were substituted into simple regression models to nondestructively compute total aboveground biomass. Dead biomass, salt crystals on plant leaves and soil background reflectance, all attenuated the spectral radiance index values. A large spectral contribution from any one of these canopy components caused an underestimate of live biomass. Biomass and annual NAPP of a S. alterniflora dominated salt marsh was estimated by traditional harvesting techniques and from ground-gathered spectral radiance data. The live and dead standing crop biomass estimates computed from spectral data were usually not significantly different from harvest biomass estimates. Spectral estimates of NAPP were usually within 10% of NAPP estimates calculated from harvest data. August live standing crop biomass estimates computed from ground-gathered spectral data for a tidal brackish marsh were generally within 10% of harvest estimates. Live biomass estimates computed from spectral data gathered from a low altitude aircraft were equally similar to harvest biomass estimates. The remote sensing technique holds much promise for rapid and accurate estimates of biomass and NAPP in tidal marshes.

  15. Measurements and simulation of forest leaf area index and net primary productivity in Northern China.

    PubMed

    Wang, P; Sun, R; Hu, J; Zhu, Q; Zhou, Y; Li, L; Chen, J M

    2007-11-01

    Large scale process-based modeling is a useful approach to estimate distributions of global net primary productivity (NPP). In this paper, in order to validate an existing NPP model with observed data at site level, field experiments were conducted at three sites in northern China. One site is located in Qilian Mountain in Gansu Province, and the other two sites are in Changbaishan Natural Reserve and Dunhua County in Jilin Province. Detailed field experiments are discussed and field data are used to validate the simulated NPP. Remotely sensed images including Landsat Enhanced Thematic Mapper plus (ETM+, 30 m spatial resolution in visible and near infrared bands) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 15m spatial resolution in visible and near infrared bands) are used to derive maps of land cover, leaf area index, and biomass. Based on these maps, field measured data, soil texture and daily meteorological data, NPP of these sites are simulated for year 2001 with the boreal ecosystem productivity simulator (BEPS). The NPP in these sites ranges from 80 to 800 gCm(-2)a(-1). The observed NPP agrees well with the modeled NPP. This study suggests that BEPS can be used to estimate NPP in northern China if remotely sensed images of high spatial resolution are available. PMID:17166651

  16. [Variation trends of natural vegetation net primary productivity in China under climate change scenario].

    PubMed

    Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he

    2011-04-01

    Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious. PMID:21774310

  17. Impacts of China's Three Gorges Dam Project on net primary productivity in the reservoir area.

    PubMed

    Xu, Xibao; Tan, Yan; Yang, Guishan; Li, Hengpeng; Su, Weizhong

    2011-10-15

    China's Three Gorges Dam Project (TGP) is the world's largest hydroelectric power project, and as a consequence the reservoir area is at risk of ecological degradation. This study uses net primary productivity (NPP) as an important indicator of the reservoir ecosystem's productivity to estimate the impacts of the TGP in the local resettlement region of the Three Gorges Reservoir Area (TGRA) over the 2000-2010 period. The modeling method is based upon the Carnegie Ames Stanford Approach (CASA) terrestrial carbon model and uses Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data for modeling simulation. The results demonstrate that total NPP in the resettlement region decreased by 8.0% (632.8Gg) from 2000 to 2010. The impact of the TGP on NPP is mainly mediated by land-use change brought about by the large-scale inundation of land and subsequent massive resettlement of both rural and urban residents. Nearby resettlement, land inundation, and relocation of old urban centers and affiliated urban dwellers are responsible for 54.3%, 28.0%, and 5.8% respectively of total NPP reduction in the resettlement region over the study period. The major national ecological projects implemented in the TGRA since 1998 have played a key role in offsetting the negative impacts of the TGP on NPP in the region.

  18. [Variation trends of natural vegetation net primary productivity in China under climate change scenario].

    PubMed

    Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he

    2011-04-01

    Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.

  19. Interannual variation in climate-potential net primary productivity relationships in differing ecosystems of California

    SciTech Connect

    Koch, G.W.; Randerson, J.T. )

    1994-06-01

    The seasonality and interannual variation in potential net primary production (NPP) were examined in differing vegetation types in California over three years of contrasting precipitation using co-registered maps of climate, vegetation, and 1km biweekly NDVI derived from high resolution satellite AVHRR data. Differences in seasonality of the vegetation types (annual grassland, chamise chaparral, deciduous oak woodland, and evergreen oak) were clearly evident and corresponded well to patterns observed in field studies. In years and locations having high precipitation the annual peak in NDVI occurred later in all vegetation classes. The annual sum of biweekly NDVI was correlated with annual precipitation in all vegetation types, although the slopes and intercepts of the regressions differed among types. Annual grassland showed the largest increase in sumNDVI per unit increase in total precipitation and most of the variation in grassland sumNDVI was explained by variation in autumn precipitation. In general the ratio of sumNDVI to annual precipitation was dependent on the temporal distribution of precipitation with respect to the long-term average pattern. Published relationships between precipitation and NPP were used to develop equations relating annual NDVI sum to NPP.

  20. Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland.

    PubMed

    Hungate, Bruce A; Day, Frank P; Dijkstra, Paul; Duval, Benjamin D; Hinkle, C Ross; Langley, J Adam; Megonigal, J Patrick; Stiling, Peter; Johnson, Dale W; Drake, Bert G

    2013-11-01

    Disturbance affects most terrestrial ecosystems and has the potential to shape their responses to chronic environmental change. Scrub-oak vegetation regenerating from fire disturbance in subtropical Florida was exposed to experimentally elevated carbon dioxide (CO₂) concentration (+350 μl l(-1)) using open-top chambers for 11 yr, punctuated by hurricane disturbance in year 8. Here, we report the effects of elevated CO₂ on aboveground and belowground net primary productivity (NPP) and nitrogen (N) cycling during this experiment. The stimulation of NPP and N uptake by elevated CO₂ peaked within 2 yr after disturbance by fire and hurricane, when soil nutrient availability was high. The stimulation subsequently declined and disappeared, coincident with low soil nutrient availability and with a CO₂ -induced reduction in the N concentration of oak stems. These findings show that strong growth responses to elevated CO₂ can be transient, are consistent with a progressively limited response to elevated CO₂ interrupted by disturbance, and illustrate the importance of biogeochemical responses to extreme events in modulating ecosystem responses to global environmental change.

  1. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity.

    PubMed

    Stuart-Haëntjens, Ellen J; Curtis, Peter S; Fahey, Robert T; Vogel, Christoph S; Gough, Christopher M

    2015-09-01

    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C storage. Disturbances to forests occur along a continuum of severity, from low-intensity disturbance causing the mortality or defoliation of only a subset of trees to severe stand- replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest production changes across gradients of disturbance intensity. We used a gradient of tree mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood net primary production (ANPP,) responds to a range of disturbance severities; and (2) identify mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw declined nonlinearly with rising disturbance severity, remaining stable until >60% of the total tree basal area senesced. As upper canopy openness increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level photosynthesis and growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses and a reduction in total leaf area index (LAI). As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased with rising disturbance severity, except in plots beyond the disturbance threshold. These findings provide a mechanistic explanation for a nonlinear relationship between ANPPw, and disturbance severity, in which the physiological and growth enhancement of undisturbed vegetation is proportional to the level of disturbance until a threshold is exceeded. Our results have important ecological and management implications, demonstrating that in some ecosystems moderate levels of disturbance minimally alter forest production. PMID:26594704

  2. Assessing the impacts of droughts on net primary productivity in China.

    PubMed

    Pei, Fengsong; Li, Xia; Liu, Xiaoping; Lao, Chunhua

    2013-01-15

    Frequency and severity of droughts were projected to increase in many regions. However, their effects of temporal dynamics on the terrestrial carbon cycle remain uncertain, and hence deserve further investigation. In this paper, the droughts that occurred in China during 2001-2010 were identified by using the standardized precipitation index (SPI). Standardized anomaly index (SAI), which has been widely employed in reflecting precipitation, was extended to evaluate the anomalies of net primary productivity (NPP). In addition, influences of the droughts on vegetation were explored by examining the temporal dynamics of SAI-NPP along with area-weighted drought intensity at different time scales (1, 3, 6, 9 and 12 months). Year-to-year variability of NPP with several factors, including droughts, NDVI, radiation and temperature, was analyzed as well. Consequently, the droughts in the years 2001, 2006 and 2009 were well reconstructed. This indicates that SPI could be applied to the monitoring of the droughts in China during the past decade (2001-2010) effectively. Moreover, strongest correlations between droughts and NPP anomalies were found during or after the drought intensities reached their peak values. In addition, some droughts substantially reduced the countrywide NPP, whereas the others did not. These phenomena can be explained by the regional diversities of drought intensity, drought duration, areal extents of the droughts, as well as the cumulative and lag responses of vegetation to the precipitation deficits. Besides the drought conditions, normalized difference vegetation index (NDVI), radiation and temperature also contribute to the interannual variability of NPP.

  3. [Dynamics of biomass and net primary productivity in succession of south subtropical forests in southwest Guangdong].

    PubMed

    Yang, Qingpei; Li, Mingguang; Wang, Bosun; Li, Renwei; Wang, Changwei

    2003-12-01

    Coniferous forest (Pinus massoniana community), pine-borad leaved mixed forest (Pinus massoniana + Castanopsis kawakamii + Schima superba + Liquidambar formosana) and evergreen broad-leaved forest (Ixonanthes chinensis + Artocarpus styacifolius + Ormosia glaberrima + Cryptocarya concinna) are the three main communities representing 3 major stages in a secondary succession series in Heishiding Nature Reserve, Guangdong Province. Their biomass and net primary productivity (NPP) were studied by using harvest method (for trees and lianas) and clear cut method (for shrub and herb). The biomass and NPP were 246.697 t.hm-2 and 14.715 t.hm-2.yr-1 for the coniferous forest, 287.367 t.hm-2 and 17.179 t.hm-2.yr-1 for the pine-broad leaved mixed forest, and 357.976 t.hm-2 and 18.730 t.hm-2 yr-1 for the evergreen broad-leaved forest, respectively. These results indicated that these three stages were very close in the succession process, and that coniferous forest and mixed forest were more mature, while broad-leaved forest was relatively young. Therefore, under the conditions of no or only minor disturbance, their biomass and NPP showed an increasing trend with the succession of the forest communities in Heishiding.

  4. Modeling and spatially distributing forest net primary production at the regional scale.

    PubMed

    Mickler, Robert A; Earnhardt, Todd S; Moore, Jennifer A

    2002-04-01

    Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area's ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service's Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.

  5. Improved estimates of net primary productivity from modis satellite data at regional and local scales.

    PubMed

    Pan, Yude; Birdsey, Richard; Hom, John; McCullough, Kevin; Clark, Kenneth

    2006-02-01

    We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak-hickory forests in the region. However, MODIS underestimated NPP for less-dominant northern hardwood forests and overestimated NPP for coniferous forests. Causes of inaccurate estimates of NPP by MODIS were (1) an aggregated classification and parameterization of diverse deciduous forests in different climatic environments into a single class that averages different radiation conversion efficiencies; and (2) lack of soil water constraints on NPP for forests or areas that occur on thin or sandy, coarse-grained soil. We developed the "available soil water index" for adjusting the MODIS NPP estimates, which significantly improved NPP estimates for coniferous forests. The MODIS NPP estimates have many advantages such as globally continuous monitoring and remarkable accuracy for large scales. However, at regional or local scales, our study indicates that it is necessary to adjust estimates to specific vegetation types and soil water conditions.

  6. Spatial and Temporal Trends in terrestrial Ecosystems Net primary Production: A Model-Data Comparison

    NASA Astrophysics Data System (ADS)

    Rafique, R.; Asrar, G.; Zhao, F.; Zeng, N.

    2015-12-01

    The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. The global NPP, highly variable over space and time, cannot be directly observed; however, satellite based observations of Normalized Difference Vegetation Index (NDVI) are used as a proxy to understand and monitor the NPP dynamics. In this study, we used a combination of most recent NDVI dataset and modeled NPP (from TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 67% and 80% of the global land showed positive NDVI and NPP values, respectively, for this period. The global spatial trends of NPP and NDVI were consistent, and in general agreement; however, this consistency was more prominent regionally in Western Europe, Eurasia, Sahel region of Africa, India, and China. Generally, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except, for few years (e.g. 1990 and 1995-98). Northern hemisphere showed higher NDVI and NPP increasing trends over time compared to Southern hemisphere. Overall, the results of this study suggest that NDVI was able to capture the broader pattern of vegetation production as estimated by the ecosystem models. This pattern was stronger in temperate and boreal regions compared to tropical and extra tropical regions.

  7. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity.

    PubMed

    Stuart-Haëntjens, Ellen J; Curtis, Peter S; Fahey, Robert T; Vogel, Christoph S; Gough, Christopher M

    2015-09-01

    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C storage. Disturbances to forests occur along a continuum of severity, from low-intensity disturbance causing the mortality or defoliation of only a subset of trees to severe stand- replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest production changes across gradients of disturbance intensity. We used a gradient of tree mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood net primary production (ANPP,) responds to a range of disturbance severities; and (2) identify mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw declined nonlinearly with rising disturbance severity, remaining stable until >60% of the total tree basal area senesced. As upper canopy openness increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level photosynthesis and growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses and a reduction in total leaf area index (LAI). As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased with rising disturbance severity, except in plots beyond the disturbance threshold. These findings provide a mechanistic explanation for a nonlinear relationship between ANPPw, and disturbance severity, in which the physiological and growth enhancement of undisturbed vegetation is proportional to the level of disturbance until a threshold is exceeded. Our results have important ecological and management implications, demonstrating that in some ecosystems moderate levels of disturbance minimally alter forest production.

  8. Impacts of China's Three Gorges Dam Project on net primary productivity in the reservoir area.

    PubMed

    Xu, Xibao; Tan, Yan; Yang, Guishan; Li, Hengpeng; Su, Weizhong

    2011-10-15

    China's Three Gorges Dam Project (TGP) is the world's largest hydroelectric power project, and as a consequence the reservoir area is at risk of ecological degradation. This study uses net primary productivity (NPP) as an important indicator of the reservoir ecosystem's productivity to estimate the impacts of the TGP in the local resettlement region of the Three Gorges Reservoir Area (TGRA) over the 2000-2010 period. The modeling method is based upon the Carnegie Ames Stanford Approach (CASA) terrestrial carbon model and uses Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data for modeling simulation. The results demonstrate that total NPP in the resettlement region decreased by 8.0% (632.8Gg) from 2000 to 2010. The impact of the TGP on NPP is mainly mediated by land-use change brought about by the large-scale inundation of land and subsequent massive resettlement of both rural and urban residents. Nearby resettlement, land inundation, and relocation of old urban centers and affiliated urban dwellers are responsible for 54.3%, 28.0%, and 5.8% respectively of total NPP reduction in the resettlement region over the study period. The major national ecological projects implemented in the TGRA since 1998 have played a key role in offsetting the negative impacts of the TGP on NPP in the region. PMID:21889782

  9. Interactive effects of frequent burning and timber harvesting on above ground carbon biomass in temperate eucalypt forests

    NASA Astrophysics Data System (ADS)

    Collins, Luke; Penman, Trent; Ximenes, Fabiano; Bradstock, Ross

    2015-04-01

    The sequestration of carbon has been identified as an important strategy to mitigate the effects of climate change. Fuel reduction burning and timber harvesting are two common co-occurring management practices within forests. Frequent burning and timber harvesting may alter forest carbon pools through the removal and redistribution of biomass and demographic and structural changes to tree communities. Synergistic and antagonistic interactions between frequent burning and harvesting are likely to occur, adding further complexity to the management of forest carbon stocks. Research aimed at understanding the interactive effects of frequent fire and timber harvesting on carbon biomass is lacking. This study utilised data from two long term (25 - 30 years) manipulative burning experiments conducted in southern Australia in temperate eucalypt forests dominated by resprouting canopy species. Specifically we examined the effect of fire frequency and harvesting on (i) total biomass of above ground carbon pools and (ii) demographic and structural characteristics of live trees. We also investigated some of the mechanisms driving these changes. Frequent burning reduced carbon biomass by up to 20% in the live tree carbon pool. Significant interactions occurred between fire and harvesting, whereby the reduction in biomass of trees >20 cm diameter breast height (DBH) was amplified by increased fire frequency. The biomass of trees <20 cm DBH increased with harvesting intensity in frequently burnt areas, but was unaffected by harvesting intensity in areas experiencing low fire frequency. Biomass of standing and fallen coarse woody debris was relatively unaffected by logging and fire frequency. Fire and harvesting significantly altered stand structure over the study period. Comparison of pre-treatment conditions to current conditions revealed that logged sites had a significantly greater increase in the number of small trees (<40 cm DBH) than unlogged sites. Logged sites showed a

  10. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  11. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  12. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2016-02-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (5-year interval) airborne lidar data set for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved and/or coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change was estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 yr-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 Mg ha-1 yr-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 yr-1. This rate reduces by almost a third when fire probability is increased to 0.01 (fire return rate of 100 years), as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon

  13. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2015-09-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (five year interval) airborne lidar dataset for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved/coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change were estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 year-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a~tree-ring based analysis (1.19 and 1.13 Mg ha-1 year-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire occurrence) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 year-1. This rate reduces by almost a third when fire probability is increased to 0.01, as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space

  14. Tree-Ring Evidence for Volcanic Eruption Effects on Temperate and Boreal Tree Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Krakauer, N. Y.; Smith, N. V.; Randerson, J. T.

    2003-12-01

    following the Pinatubo or the 1982 El Chichón eruptions. For this region, non-volcanic climate variation may be more important than any eruption effects in causing interannual variability in net primary productivity after any individual eruption.

  15. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  16. ENVIROMETAL TECHNOLOGIES, INC. - METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN ABOVE-GROUND REACTOR, INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    EnviroMetal Technology's metal-enhanced dechlorination technology employs an electrochemical process that involves oxidation of iron and reductive dehalogenation of halogenated VOCs in aqueous media. The process can be operated as an above ground reactor or can alternatively perf...

  17. Edaphic and climatic effects on forest stand development, net primary production, and net ecosystem productivity simulated for Coastal Plain loblolly pine in Virginia

    NASA Astrophysics Data System (ADS)

    Sampson, D. A.; Wynne, R. H.; Seiler, J. R.

    2008-03-01

    We used SECRETS-3PG to simulate net primary production (NPP) and net ecosystem productivity (NEP) of loblolly pine (Pinus taeda L.) growing on the Virginia Coastal Plain, focusing on the effects of soils and climate, and stand age over a 30-year rotation. Soil type was influential, with heavier soils having greater NEP earlier in the rotation than lighter, sandier soils, although these differences disappeared by the rotation end. Climate had only a small effect. Stand age had the largest effect, with simulated annual NEP strongly negative during the first 5 to 8 years of development but peaking at +600 g C m-2 a-1 by age 13. Modest declines in NEP after 13 years were associated with declines in LAI as stands aged. The 30-year mean annual NEP was positive over most of the study area but in a few cases was indistinguishable from zero for northwestern portions of the study. Simulated annual NPP rose from zero to over 2300 g biomass m-2 a-1 by age 12, after which it declined to ˜1700 g biomass m-2 a-1 by rotation end. These results suggest that loblolly pine plantations on the Coastal Plain of Virginia may become net annual C sinks 5 to 9 years after planting but that when averaged over a whole rotation the net carbon accumulation during the baseline rotation simulated here is indistinguishable from zero. Our results also suggest, however, that this finding is sensitive to the length of the rotation, soil type (and thus fertility), and climate, implying that changes in management practices could significantly influence the carbon balance in managed loblolly pine plantations.

  18. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology.

    PubMed

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-02-04

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008-2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m(-2)·year(-1)), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m(-2)·year(-1)·to 2874.2 ± 794.0 g·m(-2)·year(-1). The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  19. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology

    PubMed Central

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-01-01

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008–2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m−2·year−1), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m−2·year−1·to 2874.2 ± 794.0 g·m−2·year−1. The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River. PMID:26861409

  20. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Raj, Rahul; Hamm, Nicholas Alexander Samuel; van der Tol, Christiaan; Stein, Alfred

    2016-03-01

    Gross primary production (GPP) can be separated from flux tower measurements of net ecosystem exchange (NEE) of CO2. This is used increasingly to validate process-based simulators and remote-sensing-derived estimates of simulated GPP at various time steps. Proper validation includes the uncertainty associated with this separation. In this study, uncertainty assessment was done in a Bayesian framework. It was applied to data from the Speulderbos forest site, The Netherlands. We estimated the uncertainty in GPP at half-hourly time steps, using a non-rectangular hyperbola (NRH) model for its separation from the flux tower measurements. The NRH model provides a robust empirical relationship between radiation and GPP. It includes the degree of curvature of the light response curve, radiation and temperature. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. We defined the prior distribution of each NRH parameter and used Markov chain Monte Carlo (MCMC) simulation to estimate the uncertainty in the separated GPP from the posterior distribution at half-hourly time steps. This time series also allowed us to estimate the uncertainty at daily time steps. We compared the informative with the non-informative prior distributions of the NRH parameters and found that both choices produced similar posterior distributions of GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.

  1. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity

    NASA Astrophysics Data System (ADS)

    Tian, Dashuan; Wang, Hong; Sun, Jian; Niu, Shuli

    2016-02-01

    The continually increasing nitrogen (N) deposition is expected to increase ecosystem aboveground net primary production (ANPP) until it exceeds plant N demand, causing a nonlinear response and N saturation for ANPP. However, the nonlinear response of ANPP to N addition gradient and the N saturation threshold have not been comprehensively quantified yet for terrestrial ecosystems. In this study, we compiled a global dataset of 44 experimental studies with at least three levels of N treatment. Nitrogen response efficiency (NRE, ANPP response per unit N addition) and the difference in NRE between N levels (ΔNRE) were quantified to test the nonlinearity in ANPP response. We found a universal response pattern of N saturation for ANPP with N addition gradient across all the studies and in different ecosystems. An averaged N saturation threshold for ANPP nonlinearity was found at the N addition rates of 5-6 g m-2 yr-1. The extent to which ANPP approaches N saturation varied with ecosystem type, N addition rate and environmental factors. ANPP in grasslands had lower NRE than those in forests and wetlands. Plant NRE decreased with reduced soil C:N ratio, and was the highest at intermediate levels of rainfall and temperature. These findings suggest that ANPP in grassland or the ecosystems with low soil C:N ratio (or low and high rainfall or temperature) is easier to be saturated with N enrichment. Overall, these results indicate that the beneficial effect of N deposition on plant productivity likely diminishes with continuous N enrichment when N loading surpasses the N saturation threshold for ANPP nonlinearity.

  2. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China

    SciTech Connect

    Wang, Peijuan; Xie, Donghui; Zhou, Yuyu; E, Youhao; Zhu, Qijiang

    2014-01-16

    The ecological structure in the arid and semi-arid region of Northwest China with forest, grassland, agriculture, Gobi, and desert, is complex, vulnerable, and unstable. It is a challenging and sustaining job to keep the ecological structure and improve its ecological function. Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity simulator (BEPS) model provides the possibility of NPP modeling in terrestrial ecosystem, but it has some limitations for application in arid and semi-arid regions. In this paper we improve the BEPS model, in terms of its water cycle by adding the processes of infiltration and surface runoff, to be applicable in arid and semi-arid regions. We model the NPP of forest, grass, and crop in Gansu Province as an experimental area in Northwest China in 2003 using the improved BEPS model, parameterized with moderate resolution remote sensing imageries and meteorological data. The modeled NPP using improved BEPS agrees better with the ground measurements in Qilian Mountain than that with original BEPS, with a higher R2 of 0.746 and lower root mean square error (RMSE) of 46.53 gC/m2 compared to R2 of 0.662 and RMSE of 60.19 gC/m2 from original BEPS. The modeled NPP of three vegetation types using improved BEPS show evident differences compared to that using original BEPS, with the highest difference ratio of 9.21% in forest and the lowest value of 4.29% in crop. The difference ratios between different vegetation types lie on the dependence on natural water sources. The modeled NPP in five geographic zones using improved BEPS are higher than those with original BEPS, with higher difference ratio in dry zones and lower value in wet zones.

  3. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology.

    PubMed

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-01-01

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008-2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m(-2)·year(-1)), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m(-2)·year(-1)·to 2874.2 ± 794.0 g·m(-2)·year(-1). The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River. PMID:26861409

  4. Impacts of large-scale oscillations on northern high-latitude terrestrial net primary production

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Kimball, J. S.; McDonald, K. C.; Cassano, J. J.; Running, S. W.

    2007-12-01

    We derived annual time series of vegetation net primary production (NPP) and growing season dynamics for the pan-Arctic basin and Alaska from 1983-2005. We used the MOD17A2/A3 production efficiency model driven by satellite based monthly leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) from NOAA AVHRR Pathfinder and NASA EOS MODIS records, with gridded daily surface meteorology developed from a regional correction of the NCEP/NCAR reanalysis and NASA Solar Radiation Budget daily shortwave solar radiation inputs to compute NPP on a grid cell by cell basis across the domain. Analyses of regional climate oscillations and satellite derived NPP and growing season dynamics for the pan-Arctic region indicate that the oscillations influence NPP by regulating seasonal patterns of low temperature and moisture constraints to photosynthesis. Early-spring (Feb-Apr) patterns of the Arctic Oscillation (AO) are proportional to growing season onset (r=-0.653; P=0.001), while growing season patterns of the Pacific Decadal Oscillation (PDO) are proportional to the supply of plant-available moisture for NPP (r=-0.471; P=0.023). Relatively strong, negative PDO phases from 1988-1991 and 1998-2002 coincided with prolonged regional droughts indicated by a standardized moisture stress index. These severe droughts resulted in widespread reductions in NPP, especially for relatively drought prone boreal ecosystems. The influence of AO and PDO patterns on northern high-latitude vegetation productivity appears to be decreasing and increasing, respectively, as low temperature constraints to plant growth relax and NPP becomes increasingly limited by available water supply under a warming climate. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  5. A new framework for evaluating the impacts of drought on net primary productivity of grassland.

    PubMed

    Lei, Tianjie; Wu, Jianjun; Li, Xiaohan; Geng, Guangpo; Shao, Changliang; Zhou, Hongkui; Wang, Qianfeng; Liu, Leizhen

    2015-12-01

    This paper presented a valuable framework for evaluating the impacts of droughts (single factor) on grassland ecosystems. This framework was defined as the quantitative magnitude of drought impact that unacceptable short-term and long-term effects on ecosystems may experience relative to the reference standard. Long-term effects on ecosystems may occur relative to the reference standard. Net primary productivity (NPP) was selected as the response indicator of drought to assess the quantitative impact of drought on Inner Mongolia grassland based on the Standardized Precipitation Index (SPI) and BIOME-BGC model. The framework consists of six main steps: 1) clearly defining drought scenarios, such as moderate, severe and extreme drought; 2) selecting an appropriate indicator of drought impact; 3) selecting an appropriate ecosystem model and verifying its capabilities, calibrating the bias and assessing the uncertainty; 4) assigning a level of unacceptable impact of drought on the indicator; 5) determining the response of the indicator to drought and normal weather state under global-change; and 6) investigating the unacceptable impact of drought at different spatial scales. We found NPP losses assessed using the new framework were more sensitive to drought and had higher precision than the long-term average method. Moreover, the total and average losses of NPP are different in different grassland types during the drought years from 1961-2009. NPP loss was significantly increased along a gradient of increasing drought levels. Meanwhile, NPP loss variation under the same drought level was different in different grassland types. The operational framework was particularly suited for integrative assessing the effects of different drought events and long-term droughts at multiple spatial scales, which provided essential insights for sciences and societies that must develop coping strategies for ecosystems for such events.

  6. Relationships between net primary productivity and forest stand age in U.S. forests

    NASA Astrophysics Data System (ADS)

    He, Liming; Chen, Jing M.; Pan, Yude; Birdsey, Richard; Kattge, Jens

    2012-09-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four terms to calculate NPP: annual accumulation of live biomass, annual mortality of aboveground and belowground biomass, foliage turnover to soil, and fine root turnover in soil. For U.S. forests the first two terms can be reliably estimated from the Forest Inventory and Analysis (FIA) data. Although the last two terms make up more than 50% of total NPP, direct estimates of these fluxes are highly uncertain due to limited availability of empirical relationships between aboveground biomass and foliage or fine root biomass. To resolve this problem, we developed a new approach using maps of leaf area index (LAI) and forest age at 1 km resolution to derive LAI-age relationships for 18 major forest type groups in the USA. These relationships were then used to derive foliage turnover estimates using species-specific trait data for leaf specific area and longevity. These turnover estimates were also used to derive the fine root turnover based on reliable relationships between fine root and foliage turnover. This combination of FIA data, remote sensing, and plant trait information allows for the first empirical and reliable NPP-age relationships for different forest types in the USA. The relationships show a general temporal pattern of rapid increase in NPP in the young ages of forest type groups, peak growth in the middle ages, and slow decline in the mature ages. The predicted patterns are influenced by climate conditions and can be affected by forest management. These relationships were further generalized to three major forest biomes for use by continental-scale carbon cycle models in conjunction with

  7. Estimating net primary production of natural grassland and its spatio-temporal distribution in China.

    PubMed

    Zhang, Meiling; Lal, Rattan; Zhao, Youyi; Jiang, Wenlan; Chen, Quangong

    2016-05-15

    The net primary production (NPP) of grassland largely determines terrestrial carbon (C) sinks, and thus plays an important role in the global C cycle. Comprehensive and sequential classification system of grasslands (CSCS) is a unique vegetation classification system (mainly for grassland) that is dependent on quantitative measurement indices [>0°C annual cumulative temperature (Σθ) and moisture index (K-value)]. Based on the relationship of the quantitative classification of CSCS and grassland NPP, a modified model of Carnegie-Ames-Stanford Approach (CASA) was used to predict the grassland NPP and its temporal and spatial distribution in China from 2004 to 2008. The scatter plot of the estimated NPP and the observed NPP showed that the estimated data can be accepted with correlation coefficient of 0.896 (P<0.05). The average annual NPP of grassland from 2004 to 2008 in China ranged from 443.23 to 554.40 g Cm(-2)yr.(-)(1). The NPP also showed spatial-temporal variations. There existed an increasing trend of NPP from the northwest to southeast due to the zonal distribution of vegetation. From the trend of monthly variations, it can be drawn that the NPP accumulation primarily occurred between April and October. The average NPP over seven months from April to October was 482.19 g Cm(-2), or about 88.78% of the annual total. The spatial-temporal trend suggests the importance of water and thermal regimes in determining the grassland NPP (i.e. water and thermal are key limited factors for the grassland production), which is also confirmed by a cluster analysis. The mean annual NPP and the total annual NPP differed significantly among grassland classes corresponding with different Σθ and K-value. The results demonstrate that the grassland NPP and the classes/super-classes in CSCS achieve the optimum coupling.

  8. [Vegetation net primary productivity in Northeast China in 2000-2008: simulation and seasonal change].

    PubMed

    Zhao, Guo-shuai; Wang, Jun-bang; Fan, Wen-yi; Ying, Tian-yu

    2011-03-01

    By using GLOPEM-CEVSA model, the spatiotemporal pattern and its affecting factors of the vegetation net primary productivity (NPP) in Northeast China in 2000-2008 were simulated, and, taking four forest ecosystem stations (Daxing' anling, Laoyeling, Liangshui and Changbai Mountains) as the cases, the seasonal changes and their main driving force of forest NPP in Northeast China were studied. In 2000-2008, the annual averaged vegetation NPP in the region was 445 g C x m(-2) x a(-1), being the highest in the areas from Changbai Mountains to Xiaoxing' anling Mountains and parts of Sanjiang Plain, followed by in the areas from Changbai Mountains to Liaohe River Plain, eastern Songnen Plain, Sanjiang Plain, and Daxing' anling Mountain, and the lowest in the sparse grass and desert areas in the west. Forest ecosystem had the highest annual averaged NPP, followed by shrub, cropland and grassland, and desert. In forest ecosystem, coniferous and broad-leaf mixed forests had the highest annual averaged NPP (722 g C x m(-2) x a(-1)), while deciduous needle-leaf forest had the lowest one (451 g C x m(-2) x a(-1)). During the study period, no significant inter-annual changes were observed in the forest NPP though it was higher in 2007 and 2008 probably due to the increased air temperature (1 degrees C-2 degrees C higher than that in other years). The beginning time of forest growth season in Northeast China advanced gradually from north to south, and the growth season became longer.

  9. Net primary productivity of aquatic vegetation of the Amazon floodplain: A multi-SAR satellite approach

    NASA Astrophysics Data System (ADS)

    Costa, Maycira

    Field measures were combined with synthetic aperture radar (SAR) images to evaluate the use of radar for estimating temporal biomass and mapping of aquatic vegetation in the lower Amazon. A SAR-based methodology was developed for quantification of the annual net primary productivity (NPP) of aquatic vegetation. The predictable monomodal flooding cycle of the floodplain is the primary control of the growth pattern of the aquatic vegetation. The total biomass increased steadily from November to August following the hydrological cycle. The spatial variability of the canopy biophysical properties was detectable with radar data. Significant correlation existed between backscattering coefficients and above water dry biomass, height, and percentage of canopy cover. The logarithmic relationship between backscattering coefficients and biomass suggested that (1) at low biomass, high transmissivity of the microwave radiation through the vegetation canopy occurred and the backscattering was a result of quasi-specular reflection of both C and L bands and a minor contribution of canopy volume scattering from C band; (2) at intermediate levels of biomass, moderate changes in backscattering values occurred and the backscattering saturation point was reached at 470, 660, and 620 gm-2, for C band, L band, and the index, respectively; and (3) at high biomass, the transmissivity of C and L band radiation was equally attenuated and backscattering approached similar values for both. The combination of the mapped area of seasonal aquatic vegetation with the SAR derived-biomass estimation allowed the calculation of the seasonal total biomass. By November, the new generation of aquatic vegetation started to develop; total biomass in the area was 0.1 x 1012 g. The steady growth of vegetation yielded a total biomass of 1.5 x 1012 g in an area of 395 km2 in May. From May onwards, with the water receding, some plants detached from the sediment and were carried towards the Amazon River

  10. Estimation of Net Primary Production (NPP) of Inner Mongolia in China

    NASA Astrophysics Data System (ADS)

    Park, J.; Kwak, Y.; Yasuda, Y.

    2009-12-01

    1. Introduction In the latter part of 1970's, the need for more precise calculation of the fixed-quantity of global land vegetation was emphasized. This data is necessary for estimating carbon income and expenditure at a global level. Research at the Mauna Loa volcano has clearly shown that the density of CO2 in the atmosphere is increasing. This increase is caused mainly by changes in human activities and the respiration of plants and animals. At present, however, the value of CO2 income and expenditure as calculated for human activities does not agree with the value thought to be contained in the marine and terrestrial carbon sinks. Clearly the value of primary production needs to be measured more precisely on a global scale. The use of satellite data immediately enables application at a global level, leading to higher precision of estimation when analyzing ecosystem models. In this study, we analyzed and compared Hohhot and Naiman, two regions in Inner Mongolia. In situ observation data (biomass and reflection data for each type of vegetation) was collected from 1999 to 2002. The results of these ground observations were then compared to the results from wide area measurement of vegetation index utilizing Terra/MODIS data 2. Application to satellite data The MODIS Surface Reflectance product (MOD09), with resolution of 250m, was utilized from April to November of 2002. MOD09 did atmosphere correction and geometric correction. Bands 1 (RED : 620-670nm) and 2 (NIR : 841-876nm) from MOD09 were used to produce a NDVI image. In addition, to remove the influence of cloud cover, monthly vegetation index images for May to September were generated using the Temporal Window Operation method (TWO : Park et al.1999), with the mid day of each month designated as a representative day. 3. Conclusion In this study, we estimate Net Primary Production (NPP) for a semiarid region of northern China using satellite data. An area in which pasturage is prohibited was studied in 1999

  11. The mPowerNet Approach to NOF ICT Training in Primary Mathematics.

    ERIC Educational Resources Information Center

    Bunker, Dan

    2000-01-01

    Introduces a course using mPowerNet to develop course material by using computers to teach numeracy. Presents the guiding principles of the course, mathematics material, course material, and course guidance. (ASK)

  12. Development of a data driven process-based model for remote sensing of terrestrial ecosystem productivity, evapotranspiration, and above-ground biomass

    NASA Astrophysics Data System (ADS)

    El Masri, Bassil

    2011-12-01

    Modeling terrestrial ecosystem functions and structure has been a subject of increasing interest because of the importance of the terrestrial carbon cycle in global carbon budget and climate change. In this study, satellite data were used to estimate gross primary production (GPP), evapotranspiration (ET) for two deciduous forests: Morgan Monroe State forest (MMSF) in Indiana and Harvard forest in Massachusetts. Also, above-ground biomass (AGB) was estimated for the MMSF and the Howland forest (mixed forest) in Maine. Surface reflectance and temperature, vegetation indices, soil moisture, tree height and canopy area derived from the Moderate Resolution Imagining Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMRS-E), LIDAR, and aerial imagery respectively, were used for this purpose. These variables along with others derived from remotely sensed data were used as inputs variables to process-based models which estimated GPP and ET and to a regression model which estimated AGB. The process-based models were BIOME-BGC and the Penman-Monteith equation. Measured values for the carbon and water fluxes obtained from the Eddy covariance flux tower were compared to the modeled GPP and ET. The data driven methods produced good estimation of GPP and ET with an average root mean square error (RMSE) of 0.17 molC/m2 and 0.40 mm/day, respectively for the MMSF and the Harvard forest. In addition, allometric data for the MMSF were used to develop the regression model relating AGB with stem volume. The performance of the AGB regression model was compared to site measurements using remotely sensed data for the MMSF and the Howland forest where the model AGB RMSE ranged between 2.92--3.30 Kg C/m2. Sensitivity analysis revealed that improvement in maintenance respiration estimation and remotely sensed maximum photosynthetic activity as well as accurate estimate of canopy resistance will result in improved GPP and ET predictions. Moreover, AGB estimates were

  13. Sea spray geoengineering can reduce ocean net primary productivity and carbon uptake

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Keller, David; Korhonen, Hannele; Matthews, Damon

    2016-04-01

    Sea spray geoengineering or marine cloud brightening is one of the proposed methods to deliberately increase planetary albedo and thus counteract climate change. Previous studies have shown that it has potential to significantly alter the global energy balance and reduce impacts on temperature and precipitation. However, its effects on ecosystems have received considerably less attention. Our goal is to assess the effects of sea spray geoengineering on marine biological productivity and global carbon cycle. We use the University of Victoria Earth System Climate Model (UVic ESCM) to simulate the effects of prescribed aerosol forcing from previous simulations with the aerosol-climate model ECHAM-HAMMOZ. In our baseline simulation (GEO), forcing from geoengineering was applied over three persistent stratocumulus regions off the coasts of North America, South America, and South Africa. The global mean forcing was -1 W m-2. Other forcings and emissions were set according to the RCP4.5 scenario. The control run (CTRL) was identical to GEO except that no geoengineering was present. As a more extreme case, we simulated a scenario where forcing from geoengineering was applied over all ocean area (GEO-ALL) giving a global mean forcing of -4.9 W m-2. Geoengineering decreased the global total ocean net primary productivity (NPP) during the first decades, but the effect was insignificant by the end of the 21st century. The decrease was caused by decreased temperature of the ocean and climate system in general, not by the decrease in available sunlight as might have been expected. This was demonstrated by two sensitivity simulations where geoengineering was affecting only either temperature or the light available to marine ecosystems. The simulation GEO-ALL behaves in a different way than GEO: ocean NPP was lower than that in CTRL for the first three decades of geoengineering as in GEO, but then NPP increased over the level in CTRL for the remaining of the simulation. In

  14. Quantifying Human Appropriated Net Primary Productivity (HANPP) in a Ghanaian Cocoa System

    NASA Astrophysics Data System (ADS)

    Morel, A.; Adu-Bredu, S.; Adu Sasu, M.; Ashley Asare, R.; Boyd, E.; Hirons, M. A.; Malhi, Y.; Mason, J.; Norris, K.; Robinson, E. J. Z.; McDermott, C. L.

    2015-12-01

    Ghana is the second largest producer of cocoa (Theobroma cacoa), exporting approximately 18 percent of global volumes. These cocoa farms are predominantly small-scale, ranging in size from 2-4 hectares (ha). Traditionally, the model of cocoa expansion in Ghana relied on clearing new areas of forest and establishing a farm under remnant forest trees. This is increasingly less practical due to few unprotected forest areas remaining and management practices favoring close to full sun cocoa to maximize short-term yields. This study is part of a larger project, ECOLMITS, which is an interdisciplinary, ESPA-funded[1] initiative exploring the ecological limits of ecosystem system services (ESS) for alleviating poverty in small-scale agroforestry systems. The ecological study plots are situated within and around the Kakum National Forest, a well-protected, moist-evergreen forest of the Lower Guinea Forest region. Net primary productivity (NPP) is a measure of the rate at which carbon dioxide (CO2) is incorporated into plant tissues (e.g. canopy, stem and root). For this study, NPP was monitored in situ using methods developed by the Global Environmental Monitoring Network (GEM, http://gem.tropicalforests.ox.ac.uk/). By comparing NPP measured in intact forest and farms, the human appropriated NPP (HANPP) of this system can be estimated. The forest measures provide the "potential" NPP of the region, and then the reduction in NPP for farm plots is calculated for both land-cover change (HANPPLUC) and cocoa harvesting (HANPPHARV). The results presented are of the first year of NPP measurements across the cocoa landscape, including measurements from intact forest, logged forest and cocoa farms across a shade gradient and located at varying distances from the forest edge (e.g. 100 m, 500 m, 1 km and 5 km). These measures will have implications for carbon sequestration potential over the region and long-term sustainability of the Ghanaian cocoa sector. [1] Ecosystem Services for

  15. Climatic controls on aboveground net primary production of tropical lowland rainforests

    NASA Astrophysics Data System (ADS)

    Hofhansl, F.; Drage, S.; Poelz, E.; Richter, A.; Wanek, W.

    2012-12-01

    Aboveground net primary production (ANPP) of tropical forests is driven by soil fertility and climate, the latter receiving special attention as recent projections of global circulation models predict Mesoamerican tropics to become drier and warmer. Given the scarcity of manipulative experiments, interannual climate variations caused by El Nino Southern Oscillation have been used to assess the potential responses of tropical ANPP to projected climate change. The focus of this study was (1) to investigate how seasonal and interannual climate variations affect ANPP and the partitioning between litterfall and stem increment on three forest sites differing in soil fertility and disturbance regime in SW Costa Rica, and (2) to identify major drivers of tropical forest ANPP by integrating our results into a dataset provided by the National Center for Ecological Analysis and Synthesis (NCEAS). While forest productivity was reported to decline in areas with high precipitation and temperature, we measured among the highest stem increments and litterfall rates published to date at a site with >6000 mm mean annual precipitation (MAP) and a mean annual temperature (MAT) of 28 °C. Based on the full dataset MAP was inversely correlated with litterfall, while MAT and soil fertility promoted stem increment. Therefore the percentage of litterfall and stem increment to ANPP shifted from 80:20 in low productive tropical forests to 40:60 at forest sites with high biomass production. Our results suggest that there is a shift in the allocation of biomass towards greater nutrient conservation (i.e. production of wood biomass) in more productive tropical forests while litterfall is sustaining nutrient recycling processes in less productive forests and that this relationship is driven by climate. We finally demonstrate that both ANPP components are sensitive to seasonal and interannual climate variation at the three forest sites studied, but that the controls differ for litterfall and stem

  16. Disturbance severity and net primary production resilience of a Great Lakes forest ecosystem

    NASA Astrophysics Data System (ADS)

    Goodrich-Stuart, E. J.; Fahey, R.; De La Cruz, A.; Gough, C. M.

    2013-12-01

    As many Eastern deciduous forests of North America transition from early to mid-succession, the future of regional terrestrial carbon (C) storage is uncertain. The gradual, patchy senescence of early-successional trees accompanying this transition is comparable in severity to moderate disturbances such as silvicultural thinnings or insect outbreaks. While stand-replacing disturbance causes forests to temporarily become C sources, more moderate disturbances may inflict little to no decline in C sequestration. Identifying the disturbance severity at which net primary production (NPP) declines and the underlying mechanisms that drive forest C storage resistance to disturbance is increasingly important as moderate disturbances increase in frequency and extent across the region. The Forest Accelerated Succession ExperimenT (FASET) at the University of Michigan Biological Station subjected 39 ha of forest to moderate disturbance in 2008 by advancing age-related tree mortality through the stem girdling of early successional aspen and birch. Stand-scale disturbance severity, expressed as relative basal area of girdled aspen and birch, was 39% but plot-scale severity varied substantially within the experimental area (9 to 66% in 0.1 ha plots) because of the heterogeneous distribution of aspen and birch. We used this disturbance severity gradient to examine: 1) the relationship between NPP resilience and disturbance severity; 2) the disturbance severity at which NPP resilience prompts a shift in dominance from canopy to subcanopy vegetation; 3) how NPP resilience relates to disturbance-driven changes in resource-use efficiency, and 4) how disturbance severity shapes emerging forest communities We found that NPP is highly resilient to low to moderate levels of disturbance, but that production declines once a higher disturbance threshold is exceeded. Several complementary mechanisms, including canopy structural reorganization and the reallocation of growth-limiting light and

  17. Water use efficiency of net primary production in global terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Xia, Lei; Wang, Fei; Mu, Xingmin; Jin, Kai; Sun, Wenyi; Gao, Peng; Zhao, Guangju

    2015-07-01

    The carbon and water cycles of terrestrial ecosystems, which are strongly coupled via water use efficiency (WUE), are influenced by global climate change. To explore the relationship between the carbon and water cycles and predict the effect of climate change on terrestrial ecosystems, it is necessary to study the WUE in global terrestrial ecosystems. In this study, the 13-year WUE (i.e., net primary production (NPP)/evapotranspiration (ET)) of global terrestrial ecosystems was calculated based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) NPP (MOD17A3) and ET (MOD16A3) products from 2000 to 2012. The results indicate that the annual average WUE decreased but not significantly, and the 13-year mean value was 868.88 mg C m -2 mm -1. The variation trend of WUE value for each pixel differed greatly across the terrestrial ecosystems. A significant variation ( P<0.05) occurred in about 18.50% of the land surface. WUE was spatially distributed from 0 to 2541 mg C m -2 mm -1, and 58.78% of the WUE values were concentrated in the interval of 600-1200 mg C m -2 mm -1. The WUE increased from north to south in Africa and Oceania and from east to west in Europe and South America. Both latitudinal and longitudinal gradients existed in Asia and North America. The following trends in the WUE of different continents and Köppen-Geiger climates were observed: Europe (1129.71 mg C m -2 mm -1)> Oceania (1084.46 mg C m -2 mm -1)> Africa (893.51 mg C m -2 mm -1)> South America (893.07 mg C m -2 mm -1)> North America (870.79 mg C m -2 mm -1)> Asia (738.98 mg C m -2 mm -1) and warm temperate climates (1094 mg C m -2 mm -1)> snowy climates (862 mg C m -2 mm -1)> arid climates (785 mg C m -2 mm -1)> equatorial climates (732 mg C m -2 mm -1)> polar climates (435 mg C m -2 mm -1). Based on the WUE value and the present or future rainfall, the maximum carbon that fixed in one region may be theoretically calculated. Also, under the background of global climatic change, WUE may

  18. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    PubMed

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  19. Diversity and Above-Ground Biomass Patterns of Vascular Flora Induced by Flooding in the Drawdown Area of China's Three Gorges Reservoir

    PubMed Central

    Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  20. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    PubMed

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  1. NET-Works: Linking families, communities and primary care to prevent obesity in preschool-age children.

    PubMed

    Sherwood, Nancy E; French, Simone A; Veblen-Mortenson, Sara; Crain, A Lauren; Berge, Jerica; Kunin-Batson, Alicia; Mitchell, Nathan; Senso, Meghan

    2013-11-01

    Obesity prevention in children offers a unique window of opportunity to establish healthful eating and physical activity behaviors to maintain a healthful body weight and avoid the adverse proximal and distal long-term health consequences of obesity. Given that obesity is the result of a complex interaction between biological, behavioral, family-based, and community environmental factors, intervention at multiple levels and across multiple settings is critical for both short- and long-term effectiveness. The Minnesota NET-Works (Now Everybody Together for Amazing and Healthful Kids) study is one of four obesity prevention and/or treatment trials that are part of the Childhood Obesity Prevention and Treatment (COPTR) Consortium. The goal of the NET-Works study is to evaluate an intervention that integrates home, community, primary care and neighborhood strategies to promote healthful eating, activity patterns, and body weight among low income, racially/ethnically diverse preschool-age children. Critical to the success of this intervention is the creation of linkages among the settings to support parents in making home environment and parenting behavior changes to foster healthful child growth. Five hundred racially/ethnically diverse, two-four year old children and their parent or primary caregiver will be randomized to the multi-component intervention or to a usual care comparison group for a three-year period. This paper describes the study design, measurement and intervention protocols, and statistical analysis plan for the NET-Works trial.

  2. Incentivizing Primary Care Providers to Innovate: Building Medical Homes in the Post-Katrina New Orleans Safety Net

    PubMed Central

    Rittenhouse, Diane R; Schmidt, Laura A; Wu, Kevin J; Wiley, James

    2014-01-01

    ObjectiveTo evaluate safety-net clinics’ responses to a novel community-wide Patient-Centered Medical Home (PCMH) financial incentive program in post-Katrina New Orleans. Data Sources/Study SettingBetween June 2008 and June 2010, we studied 50 primary care clinics in New Orleans receiving federal funds to expand services and improve care delivery. Study DesignMultiwave, longitudinal, observational study of a local safety-net primary care system. Data CollectionClinic-level data from a semiannual survey of clinic leaders (89.3 percent response rate), augmented by administrative records. Principal FindingsOverall, 62 percent of the clinics responded to financial incentives by achieving PCMH recognition from the National Committee on Quality Assurance (NCQA). Higher patient volume, higher baseline PCMH scores, and type of ownership were significant predictors of achieving NCQA recognition. The steepest increase in adoption of PCMH processes occurred among clinics achieving the highest, Level 3, NCQA recognition. Following NCQA recognition, 88.9 percent stabilized or increased their use of PCMH processes, although several specific PCMH processes had very low rates of adoption overall. ConclusionsFindings demonstrate that widespread PCMH implementation is possible in a safety-net environment when external financial incentives are aligned with the goal of practice innovation. PMID:23800148

  3. Exploring Global Patterns in Human Appropriation of Net Primary Production Using Earth Observation Satellites and Statistical Data

    NASA Astrophysics Data System (ADS)

    Imhoff, M.; Bounoua, L.

    2004-12-01

    A unique combination of satellite and socio-economic data were used to explore the relationship between human consumption and the carbon cycle. Biophysical models were applied to consumption data to estimate the annual amount of Earth's terrestrial net primary production humans require for food, fiber and fuel using the same modeling architecture as satellite-supported NPP measurements. The amount of Earth's NPP required to support human activities is a powerful measure of the aggregate human impacts on the biosphere and indicator of societal vulnerability to climate change. Equations were developed estimating the amount of landscape-level NPP required to generate all the products consumed by 230 countries including; vegetal foods, meat, milk, eggs, wood, fuel-wood, paper and fiber. The amount of NPP required was calculated on a per capita basis and projected onto a global map of population to create a spatially explicit map of NPP-carbon demand in units of elemental carbon. NPP demand was compared to a map of Earth's average annual net primary production or supply created using 17 years (1982-1998) of AVHRR vegetation index to produce a geographically accurate balance sheet of terrestrial NPP-carbon supply and demand. Globally, humans consume 20 percent of Earth's total net primary production on land. Regionally the NPP-carbon balance percentage varies from 6 to over 70 percent and locally from near 0 to over 30,000 percent in major urban areas. The uneven distribution of NPP-carbon supply and demand, indicate the degree to which various human populations rely on NPP imports, are vulnerable to climate change and suggest policy options for slowing future growth in NPP demand.

  4. A simulation model of net primary production at watershed scale in the hilly area of Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Xu, Hongmei; Gao, Qingzhu; Huang, Yongmei

    2006-08-01

    A vegetation-soil-integrated-model (VSIM) to simulate net primary production at watershed scale was developed to explore the effect of soil water dynamic on the primary production processes in arid and semi-arid in northwest China. The model coupled a soil water dynamic module and a vegetation growth module. The former is a daily time step, multi-horizon and distributed spatial model. The later included a mechanism model of stomatal conductance based on the mechanical character of guard cell, which used to reflect both the influence of soil water potential to stomatal conductance and the stomatal control to net photosynthesis and transpiration processes at leaf scale. Scaling up to canopy and watershed scale through considered the effect of canopy structure and heterogeneity of topography. The main inputs of the model includes photosynthetic characteristics of main vegetation type, metrological data, soil texture and physical properties, and DEM. The outputs are soil water of 4 soil layers, evaporation, transpiration, runoff, net primary production and biomass of leaf, stem and root. The model was used in Zhifanggou watershed, which located in forest steppe zone and belonged to hilly area of Loess Plateau, and the model validation was tested by field observation data sets and RS data sets. In the modeling experiment, simulations show to provide good approximation with field observation data. The simulated biomass of grass and sub-shrub are better than that of arbor and shrub, and the dynamic of LAI have well coherence with the results calculated by Landsat TM data. The model could reflect the processes of precipitation-runoff at the watershed, and indicate the spatio-temporal changes of soil water content.

  5. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L. L.; Sayer, E. J.

    2013-11-01

    Global change has been shown to alter the amount of above-ground litter inputs to soil greatly, which could cause substantial cascading effects on below-ground biogeochemical cycling. Despite extensive study, there is uncertainty about how changes in above-ground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a meta-analysis on 70 litter-manipulation experiments in order to assess how changes in above-ground litter inputs alter soil physicochemical properties, carbon dynamics and nutrient cycles. Our results demonstrated that litter removal decreased soil respiration by 34%, microbial biomass carbon in the mineral soil by 39% and total carbon in the mineral soil by 10%, whereas litter addition increased them by 31, 26 and 10%, respectively. This suggests that greater litter inputs increase the soil carbon sink despite higher rates of carbon release and transformation. Total nitrogen and extractable inorganic nitrogen in the mineral soil decreased by 17 and 30%, respectively, under litter removal, but were not altered by litter addition. Overall, litter manipulation had a significant impact upon soil temperature and moisture, but not soil pH; litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Compared to other ecosystems, tropical and subtropical forests were more sensitive to variation in litter inputs, as altered litter inputs affected the turnover and accumulation of soil carbon and nutrients more substantially over a shorter time period. Our study demonstrates that although the magnitude of responses differed greatly among ecosystems, the direction of the responses was very similar across different ecosystems. Interactions between plant productivity and below-ground biogeochemical cycling need to be taken into account to predict ecosystem responses to environmental change.

  6. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  7. [Distribution of 137Cs, 90Sr and their chemical analogues in the components of an above-ground part of a pine in a quasi-equilibrium condition].

    PubMed

    Mamikhin, S V; Manakhov, D V; Shcheglov, A I

    2014-01-01

    The additional study of the distribution of radioactive isotopes of caesium and strontium and their chemical analogues in the above-ground components of pine in the remote from the accident period was carried out. The results of the research confirmed the existence of analogy in the distribution of these elements on the components of this type of wood vegetation in the quasi-equilibrium (relatively radionuclides) condition. Also shown is the selective possibility of using the data on the ash content of the components of forest stands of pine and oak as an information analogue.

  8. Geospatial analysis of change in net primary productivity, 1998-2013, Inner Mongolian Desert steppe region, China

    NASA Astrophysics Data System (ADS)

    Wuliangha, B.; Han, W.; Sun, G. F.; Chen, J. B.

    2016-04-01

    Net primary productivity (NPP) is a quantitative measure of the carbon absorption by plants per unit time and space. The NPP is a key indicator to evaluate the productivity of vegetation communities in the natural environment. Consistent data on terrestrial NPP are urgently needed to constrain model estimates of carbon fluxes and hence to refine our understanding of ecosystem responses to climate change. It could also be an indicator to represent certain land cover characteristics. This study analyzed NPP changes from 1998 to 2013 in the Inner Mongolian Desert Steppe region of China through estimation of annual NPP using multiyear 10-day SPOT VEGETATION NDVI data and meteorological observation data from 1998 to 2013 by using a modified Carnegie-Ames-Stanford Approach (CASA) model. ArcGIS and ENVI software was used for spatial data processing; NPP inversion was performed and an integrated program was used for the modified CASA model. We also used related spatial information technologies, such as geographic information system, global navigation satellite system and remote sensing technology, to determine some 1 km2 random sampling pixels and regularly selected four 1m2 quadrats in each pixel, and we measured aboveground net primary productivity (ANPP) for accuracy assessment of modelled NPP. The final results show that the NPP had many obvious geospatial changes during the period from 1998 to 2013 in the Inner Mongolian Desert Steppe region.

  9. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

    PubMed

    Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.

    1997-01-01

    Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils. PMID:14759831

  10. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

    PubMed

    Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.

    1997-01-01

    Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils.

  11. Continental collision zones are primary sites for net continental crust growth — A testable hypothesis

    NASA Astrophysics Data System (ADS)

    Niu, Yaoling; Zhao, Zhidan; Zhu, Di-Cheng; Mo, Xuanxue

    2013-12-01

    The significance of the continental crust (CC) on which we live is self-evident. However, our knowledge remains limited on its origin, its way and rate of growth, and how it has acquired the "andesitic" composition from mantle derived magmas. Compared to rocks formed from mantle derived magmas in all geological environments, volcanic arc rocks associated with seafloor subduction share some common features with the CC; both are relatively depleted in "fluid-insoluble" elements (e.g., Nb, Ta and Ti), but enriched in "fluid-soluble" elements (e.g., U, K and Pb). These chemical characteristics are referred to as the "arc-like signature", and point to a possible link between subduction-zone magmatism and CC formation, thus leading to the "island arc" model widely accepted for the origin of the CC over the past 45 years. However, this "island-arc" model has many difficulties: e.g., (1) the bulk arc crust (AC) is basaltic whereas the bulk CC is andesitic; (2) the AC has variably large Sr excess whereas the CC is weakly Sr deficient; and (3) AC production is mass-balanced by subduction erosion and sediment recycling, thus contributing no net mass to the CC growth, at least in the Phanerozoic. Our recent and ongoing studies on granitoid rocks (both volcanic and intrusive) formed in response to the India-Asia continental collision (~ 55 ± 10 Ma) show remarkable compositional similarity to the bulk CC with the typical "arc-like signature". Also, these syncollisional granitoid rocks exhibit strong mantle isotopic signatures, meaning that they were recently derived from a mantle source. The petrology and geochemistry of these syncollisional granitoid rocks are most consistent with an origin via partial melting of the upper ocean crust (i.e., last fragments of underthrusting ocean crust upon collision) under amphibolite facies conditions, adding net mantle-derived materials to form juvenile CC mass. This leads to the logical and testable hypothesis that continental collision

  12. Forest above ground biomass estimation and forest/non-forest classification for Odisha, India, using L-band Synthetic Aperture Radar (SAR) data

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Kiran Chand, T. R.; Fararoda, R.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    Tropical forests contribute to approximately 40 % of the total carbon found in terrestrial biomass. In this context, forest/non-forest classification and estimation of forest above ground biomass over tropical regions are very important and relevant in understanding the contribution of tropical forests in global biogeochemical cycles, especially in terms of carbon pools and fluxes. Information on the spatio-temporal biomass distribution acts as a key input to Reducing Emissions from Deforestation and forest Degradation Plus (REDD+) action plans. This necessitates precise and reliable methods to estimate forest biomass and to reduce uncertainties in existing biomass quantification scenarios. The use of backscatter information from a host of allweather capable Synthetic Aperture Radar (SAR) systems during the recent past has demonstrated the potential of SAR data in forest above ground biomass estimation and forest / nonforest classification. In the present study, Advanced Land Observing Satellite (ALOS) / Phased Array L-band Synthetic Aperture Radar (PALSAR) data along with field inventory data have been used in forest above ground biomass estimation and forest / non-forest classification over Odisha state, India. The ALOSPALSAR 50 m spatial resolution orthorectified and radiometrically corrected HH/HV dual polarization data (digital numbers) for the year 2010 were converted to backscattering coefficient images (Schimada et al., 2009). The tree level measurements collected during field inventory (2009-'10) on Girth at Breast Height (GBH at 1.3 m above ground) and height of all individual trees at plot (plot size 0.1 ha) level were converted to biomass density using species specific allometric equations and wood densities. The field inventory based biomass estimations were empirically integrated with ALOS-PALSAR backscatter coefficients to derive spatial forest above ground biomass estimates for the study area. Further, The Support Vector Machines (SVM) based Radial

  13. Net primary productivity (NPP) of a biological soil crust (BSC) in northwestern Queensland, Australia.

    NASA Astrophysics Data System (ADS)

    Büdel, B.; Reichenberger, H.; Williams, W.

    2012-04-01

    In the tropical savanna of northwestern Queensland, BSCs are mainly composed of cyanobacteria, liverworts and more rarely, lichens. These BSCs cover up to 30% of the soil, thus stabilizing the soil surface against erosion. One of the major BSC types there is almost completely formed by the filamentous cyanobacterium Symplocastrum sp., with scattered occurrence of different species of the liverwort genus Riccia. Because of the local dominance of these crust type, we selected it for the determination of its NPP over a period of 18 months by setting up a semi-continuous and semi-automatic CO2 - gas exchange measuring device in the natural environment at Boodjamulla National Park. We found astonishingly high CO2-fixation rates of the Sympolcastrum sp. dominated crust type and also could show the crust was adapted to extremely high temperatures (47°C), at which time considerable positive net photosynthetic rates were still gained.

  14. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary productivity (ANPP) in most grasslands. In contrast, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to wa...

  15. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet.

    PubMed

    Malcovati, Luca; Hellström-Lindberg, Eva; Bowen, David; Adès, Lionel; Cermak, Jaroslav; Del Cañizo, Consuelo; Della Porta, Matteo G; Fenaux, Pierre; Gattermann, Norbert; Germing, Ulrich; Jansen, Joop H; Mittelman, Moshe; Mufti, Ghulam; Platzbecker, Uwe; Sanz, Guillermo F; Selleslag, Dominik; Skov-Holm, Mette; Stauder, Reinhard; Symeonidis, Argiris; van de Loosdrecht, Arjan A; de Witte, Theo; Cazzola, Mario

    2013-10-24

    Within the myelodysplastic syndrome (MDS) work package of the European LeukemiaNet, an Expert Panel was selected according to the framework elements of the National Institutes of Health Consensus Development Program. A systematic review of the literature was performed that included indexed original papers, indexed reviews and educational papers, and abstracts of conference proceedings. Guidelines were developed on the basis of a list of patient- and therapy-oriented questions, and recommendations were formulated and ranked according to the supporting level of evidence. MDSs should be classified according to the 2008 World Health Organization criteria. An accurate risk assessment requires the evaluation of not only disease-related factors but also of those related to extrahematologic comorbidity. The assessment of individual risk enables the identification of fit patients with a poor prognosis who are candidates for up-front intensive treatments, primarily allogeneic stem cell transplantation. A high proportion of MDS patients are not eligible for potentially curative treatment because of advanced age and/or clinically relevant comorbidities and poor performance status. In these patients, the therapeutic intervention is aimed at preventing cytopenia-related morbidity and preserving quality of life. A number of new agents are being developed for which the available evidence is not sufficient to recommend routine use. The inclusion of patients into prospective clinical trials is strongly recommended.

  16. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  17. Assessing the consistency between AVHRR and MODIS NDVI datasets for estimating terrestrial net primary productivity over India

    NASA Astrophysics Data System (ADS)

    Nayak, R. K.; Mishra, N.; Dadhwal, V. K.; Patel, N. R.; Salim, M.; Rao, K. H.; S Dutt, C. B.

    2016-08-01

    This study examines the consistency between the AVHRR and MODIS normalized difference vegetation index (NDVI) datasets in estimating net primary productivity (NPP) and net ecosystem productivity (NEP) over India during 2001-2006 in a terrestrial ecosystem model. Harmonic analysis is employed to estimate seasonal components of the time series. The stationary components (representing long-term mean) of the respective NDVI time series are highly coherent and exhibit inherent natural vegetation characteristics with high values over the forest, moderate over the cropland, and small over the grassland. Both data exhibit strong semi-annual oscillations over the cropland dominated Indo-Gangetic plains while annual oscillations are strong over most parts of the country. MODIS has larger annual amplitude than that of the AVHRR. The similar variability exists on the estimates of NPP and NEP across India. In an annual scale, MODIS-based NPP budget is 1.78 PgC, which is 27% higher than the AVHRR- based estimate. It revealed that the Indian terrestrial ecosystem remained the sink of atmospheric CO 2 during the study period with 42 TgC y -1 NEP budget associated with MODIS-based estimate against 18 TgC y -1 for the AVHRR-based estimate.

  18. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  19. Assessing the consistency between AVHRR and MODIS NDVI datasets for estimating terrestrial net primary productivity over India

    NASA Astrophysics Data System (ADS)

    Nayak, R. K.; Mishra, N.; Dadhwal, V. K.; Patel, N. R.; Salim, M.; Rao, K. H.; S Dutt, C. B.

    2016-08-01

    This study examines the consistency between the AVHRR and MODIS normalized difference vegetation index (NDVI) datasets in estimating net primary productivity (NPP) and net ecosystem productivity (NEP) over India during 2001-2006 in a terrestrial ecosystem model. Harmonic analysis is employed to estimate seasonal components of the time series. The stationary components (representing long-term mean) of the respective NDVI time series are highly coherent and exhibit inherent natural vegetation characteristics with high values over the forest, moderate over the cropland, and small over the grassland. Both data exhibit strong semi-annual oscillations over the cropland dominated Indo-Gangetic plains while annual oscillations are strong over most parts of the country. MODIS has larger annual amplitude than that of the AVHRR. The similar variability exists on the estimates of NPP and NEP across India. In an annual scale, MODIS-based NPP budget is 1.78 PgC, which is 27 % higher than the AVHRR- based estimate. It revealed that the Indian terrestrial ecosystem remained the sink of atmospheric CO 2 during the study period with 42 TgC y -1 NEP budget associated with MODIS-based estimate against 18 TgC y -1 for the AVHRR-based estimate.

  20. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  1. Residential radon mitigations at Kitigan Zibi Anishinabeg: comparison of above ground level (RIM JOIST) and above roof line discharge of radon mitigation SUB-SLAB depressurization systems.

    PubMed

    Brossard, Mathieu; Brascoupé, Marcel; Ottawa, Celine Brazeau; Falcomer, Renato; Ottawa, William; Scott, Arthur; Whyte, Jeff

    2012-05-01

    Radon mitigations in nine houses were conducted by installing sub-slab depressurization systems (SSDS) with two types of discharge and fan locations: Ground level discharge with the fan located in the basement or roof-discharge with the fan located in the attic. This paper presents a detailed comparative analysis of the radon reduction efficiency, condensation problems, and the cost-effectiveness of both SSDS installation scenarios in nine houses. The mitigations from both SSDS scenarios were successful in reducing radon. The results of rim-joist installations discharging above ground level with the fans located in the basement show that a sealed radon fan with proper fittings and sealed piping were able to reduce the radon to acceptable levels in a cost-effective manner. PMID:22469999

  2. Modeling the spatial-temporal dynamics of net primary production in Yangtze River Basin using IBIS model

    USGS Publications Warehouse

    Zhang, Z.; Jiang, H.; Liu, J.; Zhu, Q.; Wei, X.; Jiang, Z.; Zhou, G.; Zhang, X.; Han, J.

    2011-01-01

    The climate change has significantly affected the carbon cycling in Yangtze River Basin. To better understand the alternation pattern for the relationship between carbon cycling and climate change, the net primary production (NPP) were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the average annual NPP per square meter was about 0.518 kg C in Yangtze River Basin. The high NPP levels were mainly distributed in the southeast area of Sichuan, and the highest value reached 1.05 kg C/m2. The NPP increased based on the simulated temporal trends. The spatiotemporal variability of the NPP in the vegetation types was obvious, and it was depended on the climate and soil condition. We found the drought climate was one of critical factor that impacts the alterations of the NPP in the area by the simulation. ?? 2011 IEEE.

  3. Simulating spatiotemporal dynamics of sichuan grassland net primary productivity using the CASA model and in situ observations.

    PubMed

    Tang, Chuanjiang; Fu, Xinyu; Jiang, Dong; Fu, Jingying; Zhang, Xinyue; Zhou, Su

    2014-01-01

    Net primary productivity (NPP) is an important indicator for grassland resource management and sustainable development. In this paper, the NPP of Sichuan grasslands was estimated by the Carnegie-Ames-Stanford Approach (CASA) model. The results were validated with in situ data. The overall precision reached 70%; alpine meadow had the highest precision at greater than 75%, among the three types of grasslands validated. The spatial and temporal variations of Sichuan grasslands were analyzed. The absorbed photosynthetic active radiation (APAR), light use efficiency (ε), and NPP of Sichuan grasslands peaked in August, which was a vigorous growth period during 2011. High values of APAR existed in the southwest regions in altitudes from 2000 m to 4000 m. Light use efficiency (ε) varied in the different types of grasslands. The Sichuan grassland NPP was mainly distributed in the region of 3000-5000 m altitude. The NPP of alpine meadow accounted for 50% of the total NPP of Sichuan grasslands.

  4. Element concentrations in the forest moss Hylocomium splendens: variation associated with altitude, net primary production and soil chemistry.

    PubMed

    Gerdol, Renato; Bragazza, Luca; Marchesini, Roberta

    2002-01-01

    Net primary production (NPP) of the forest moss Hylocomium splendens increased significantly along an elevational gradient in the southern Alps of Italy. Extracellularly bound metals (Al, Ca, Co, Cr, Fe, Ni, Mo, Ni, Pb) showed declining concentrations in moss tissue with increasing altitude, presumably because the amount of exchange sites on the cell wall increases less than total biomass. Concentrations of intracellular elements did not vary (Cd, Cu, Mg, Na, Zn), or even increased (K) with altitude. The observed patterns were always independent of precipitation amount and soil concentrations of exchangeable elements. A higher soil nutrient status only enhanced K uptake by the moss. We concluded that variations in moss NPP, associated with elevational gradients, may significantly affect estimates of atmospheric deposition based on moss analysis in mountainous regions.

  5. Estimation Terrestrial Net Primary Productivity Based on CASA Model: a Case Study in Minnan Urban Agglomeration, China

    NASA Astrophysics Data System (ADS)

    Hua, L. Z.; Liu, H.; Zhang, X. L.; Zheng, Y.; Man, W.; Yin, K.

    2014-03-01

    Net Primary Productivity (NPP) is a key component of the terrestrial carbon cycle. The research of net primary productivity will help in understanding the amount of carbon fixed by terrestrial vegetation and its influencing factors. Model simulation is considered as a cost-effective and time-efficient method for the estimation of regional and global NPP. In the paper, a terrestrial biosphere model, CASA (Carnegie Ames Stanford Approach), was applied to estimate monthly NPP in Minnan urban agglomeration (i.e. Xiamen, Zhangzhou and Quanzhou cities) of Fujian province, China, in 2009 and 2010, by incorporating satellite observation of SPOT Vegetation NDVI data together with other climatic parameters and landuse map. The model estimates average annual terrestrial NPP of Minnan area as 16.3 million Mg C. NPP decreased from southwest to the northeast. The higher NPP values exceeding 720 gC·m- 2·a -1 showed in North Zhangzhou city and lower values under 500 gC·m- 2·a -1 showed in the some areas of northeast Quanzhou city. Seasonal variations of NPP were large. It was about 45% of the total annual NPP in the three months in summer, and the NPP values were very low in winter. From 2009 to 2010, the value of annual NPP showed a slightly decrease trend, approximately 7.8% because the annual temperature for 2010 decline 13.6% compared with 2009 in despite of an increase in rainfall of about 34.3%. The results indicate that temperature was a main limiting factor on vegetation growth, but water is not a limiting factor in the rainy area.

  6. Global Human Appropriation of Net Primary Production for Biomass Consumption in the European Union, 1986–2007

    PubMed Central

    Erb, Karl‐Heinz; Haberl, Helmut

    2015-01-01

    Summary The ongoing globalization process strengthens the connections between different geographic regions through trade. Biomass products, such as food, fiber, or bioenergy, are increasingly traded globally, thereby leading to telecouplings between distant, seemingly unrelated regions. For example, restrictions for agricultural production or changes in bioenergy demand in Europe or the United States might contribute to deforestation in Latin America or Sub‐Saharan Africa. One approach to analyze trade‐related land‐use effects of the global socioeconomic biomass metabolism is the “embodied human appropriation of net primary production” or eHANPP. eHANPP accounts allocate to any product the entire amount of the human appropriation of net primary production (HANPP) that emerges throughout its supply chain. This allows consumption‐based accounts to move beyond simple area‐demand approaches by taking differences in natural productivity as well as in land‐use intensity into account, both across land‐use types as well as across world regions. In this article, we discuss the eHANPP related to the European Union's (EU) consumption of biomass products in the period 1986–2007, based on a consistent global trade data set derived from bilateral data. We find a considerable dependency of the EU on the appropriation of biological productivity outside its own boundaries, with increasing reliance on Latin America as a main supplier. By using the EU as an illustrative example, we demonstrate the usefulness of eHANPP for assessing land‐use impacts caused by nations’ socioeconomic activities and conclude that the eHANPP approach can provide useful information to better manage ecosystems globally in the face of an increasingly interconnected world. PMID:27524879

  7. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau.

    PubMed

    Gao, Yanhua; Zhou, Xu; Wang, Qiao; Wang, Changzuo; Zhan, Zhiming; Chen, Liangfu; Yan, Junxia; Qu, Ran

    2013-02-01

    Alpine ecosystems are highly sensitive to global climate changes. The Tibetan Plateau is one of the areas that are most sensitive to global climate change. Increases in temperature and changes in precipitation can impact the plateau's ecosystem productivity. Net primary productivity (NPP) is one of the most important factors in the carbon cycle of terrestrial ecosystems. In this paper, a light-use-efficiency model was used to estimate the net primary productivity in the Tibetan Plateau. The model is based on a 1-km×1-km-resolution map of vegetation type, multi-temporal 500-m-resolution MODIS data and daily meteorological data. The spatial distribution pattern and dynamic change of the annual NPP from 2001 to 2008 are analyzed. Then, we analyzed the response of the NPP to temperature and precipitation changes. The results show that the mean annual NPP of alpine ecosystems in the Tibetan Plateau is equal to 0.472 Pg C and that the NPP exhibits significant seasonal and interannual variation due to the combined effects of temperature and precipitation changes. Finally, to analyze the effect of temperature and precipitation on the inter-annual change of the NPP, the correlation coefficient between temperature, precipitation and the NPP was computed. It was found that the relations among air temperature, precipitation and the NPP in the Tibetan Plateau region are different. The annual average temperature increase had a significantly positive effect on the vegetation NPP (R(2)=0.83). In contrast, the annual precipitation changes had a weakly negative effect on the vegetation NPP (R(2)=0.373).

  8. Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie-Ames-Stanford approach (CASA) model

    NASA Astrophysics Data System (ADS)

    Cao, S.; Sanchez-Azofeifa, GA; Duran, SM; Calvo-Rodriguez, S.

    2016-07-01

    Although tropical dry forests (TDFs) cover roughly 42% of all tropical ecosystems, extensive deforestation and habitat fragmentation pose important limitations for their conservation and restoration worldwide. In order to develop conservation policies for this endangered ecosystem, it is necessary to quantify their provision of ecosystems services such as carbon sequestration and primary production. In this paper we explore the potential of the Carnegie-Ames-Stanford approach (CASA) for estimating aboveground net primary productivity (ANPP) in a secondary TDF located at the Santa Rosa National Park (SRNP), Costa Rica. We calculated ANPP using the CASA model (ANPPCASA) in three successional stages (early, intermediate, and late). Each stage has a stand age of 21 years, 32 years, and 50+ years, respectively, estimated as the age since land abandonment. Our results showed that the ANPPCASA for early, intermediate, and late successional stages were 3.22 Mg C ha-1 yr-1, 8.90 Mg C ha-1 yr-1, and 7.59 Mg C ha-1 yr-1, respectively, which are comparable with rates of carbon uptake in other TDFs. Our results indicate that key variables that influence ANPP in our dry forest site were stand age and precipitation seasonality. Incident photosynthetically active radiation and temperature were not dominant in the ANPPCASA. The results of this study highlight the potential of the use of remote sensing techniques and the importance of incorporating successional stage in accurate regional TDF ANPP estimation.

  9. Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie–Ames–Stanford approach (CASA) model

    NASA Astrophysics Data System (ADS)

    Cao, S.; Sanchez-Azofeifa, GA; Duran, SM; Calvo-Rodriguez, S.

    2016-07-01

    Although tropical dry forests (TDFs) cover roughly 42% of all tropical ecosystems, extensive deforestation and habitat fragmentation pose important limitations for their conservation and restoration worldwide. In order to develop conservation policies for this endangered ecosystem, it is necessary to quantify their provision of ecosystems services such as carbon sequestration and primary production. In this paper we explore the potential of the Carnegie–Ames–Stanford approach (CASA) for estimating aboveground net primary productivity (ANPP) in a secondary TDF located at the Santa Rosa National Park (SRNP), Costa Rica. We calculated ANPP using the CASA model (ANPPCASA) in three successional stages (early, intermediate, and late). Each stage has a stand age of 21 years, 32 years, and 50+ years, respectively, estimated as the age since land abandonment. Our results showed that the ANPPCASA for early, intermediate, and late successional stages were 3.22 Mg C ha‑1 yr‑1, 8.90 Mg C ha‑1 yr‑1, and 7.59 Mg C ha‑1 yr‑1, respectively, which are comparable with rates of carbon uptake in other TDFs. Our results indicate that key variables that influence ANPP in our dry forest site were stand age and precipitation seasonality. Incident photosynthetically active radiation and temperature were not dominant in the ANPPCASA. The results of this study highlight the potential of the use of remote sensing techniques and the importance of incorporating successional stage in accurate regional TDF ANPP estimation.

  10. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides

    PubMed Central

    Sánchez-Vilas, Julia; Bermúdez, Raimundo; Retuerto, Rubén

    2012-01-01

    Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the

  11. Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents - how different are co-occurring savanna and forest formations?

    NASA Astrophysics Data System (ADS)

    Veenendaal, E. M.; Torello-Raventos, M.; Feldpausch, T. R.; Domingues, T. F.; Gerard, F.; Schrodt, F.; Saiz, G.; Quesada, C. A.; Djagbletey, G.; Ford, A.; Kemp, J.; Marimon, B. S.; Marimon-Junior, B. H.; Lenza, E.; Ratter, J. A.; Maracahipes, L.; Sasaki, D.; Sonke, B.; Zapfack, L.; Villarroel, D.; Schwarz, M.; Yoko Ishida, F.; Gilpin, M.; Nardoto, G. B.; Affum-Baffoe, K.; Arroyo, L.; Bloomfield, K.; Ceca, G.; Compaore, H.; Davies, K.; Diallo, A.; Fyllas, N. M.; Gignoux, J.; Hien, F.; Johnson, M.; Mougin, E.; Hiernaux, P.; Killeen, T.; Metcalfe, D.; Miranda, H. S.; Steininger, M.; Sykora, K.; Bird, M. I.; Grace, J.; Lewis, S.; Phillips, O. L.; Lloyd, J.

    2015-05-01

    Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna-forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna-forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three continents coexistence

  12. Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment.

    PubMed

    Liberloo, Marion; Lukac, Martin; Calfapietra, Carlo; Hoosbeek, Marcel R; Gielen, Birgit; Miglietta, Franco; Scarascia-Mugnozza, Giuseppe E; Ceulemans, Reinhart

    2009-01-01

    A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar (Populus) plantation to 6 yr of free air CO(2) enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO(2) concentrations ([CO(2)]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO(2)]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO(2)] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO(2)] to above-ground pools, as fine root biomass declined and its [CO(2)] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO(2)] during the 6 yr experiment. However, elevated [CO(2)] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO(2)] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.

  13. Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data

    NASA Astrophysics Data System (ADS)

    Behera, M. D.; Tripathi, P.; Mishra, B.; Kumar, Shashi; Chitale, V. S.; Behera, Soumit K.

    2016-01-01

    Mechanisms to mitigate climate change in tropical countries such as India require information on forest structural components i.e., biomass and carbon for conservation steps to be implemented successfully. The present study focuses on investigating the potential use of a one time, QuadPOL ALOS PALSAR L-band 25 m data to estimate above-ground biomass (AGB) using a water cloud model (WCM) in a wildlife sanctuary in India. A significant correlation was obtained between the SAR-derived backscatter coefficient (σ°) and the field measured AGB, with the maximum coefficient of determination for cross-polarized (HV) σ° for Shorea robusta, and the weakest correlation was observed with co-polarized (HH) σ° for Tectona grandis forests. The biomass of S. robusta and that of T. grandis were estimated on the basis of field-measured data at 444.7 ± 170.4 Mg/ha and 451 ± 179.4 Mg/ha respectively. The mean biomass values estimated using the WCM varied between 562 and 660 Mg/ha for S. robusta; between 590 and 710 Mg/ha for T. grandis using various polarized data. Our results highlighted the efficacy of one time, fully polarized PALSAR data for biomass and carbon estimate in a dense forest.

  14. VARIABILITY IN NET PRIMARY PRODUCTION AND CARBON STORAGE IN BIOMASS ACROSS OREGON FORESTS - AN ASSESSMENT INTEGRATING DATA FROM FOREST INVENTORIES, INTENSIVE SITES, AND REMOTE SENSING. (R828309)

    EPA Science Inventory

    We used a combination of data from USDA Forest Service inventories, intensive
    chronosequences, extensive sites, and satellite remote sensing, to estimate biomass
    and net primary production (NPP) for the forested region of western Oregon. The
    study area was divided int...

  15. Decadal drought deaccelerated the increasing trend of annual net primary production in tropical or subtropical forests in southern China

    NASA Astrophysics Data System (ADS)

    Wang, Wantong; Wang, Jinxia; Liu, Xingzhao; Zhou, Guoyi; Yan, Junhua

    2016-06-01

    Previous investigations have identified that the effects of climate change on net primary production (NPP) of global forests have varied both spatially and temporally, and that warming has increased the NPP for many forests. However, other factors, such as available soil water for plant growth, could limit these incremental responses to warming. In our investigation we have quantified the responses of NPP of tropical or subtropical forests in southern China to warming and drought stress over the past three decades (1981 to 2012) using data from five forest research stations and satellite measurements. NPP, mean annual temperature (MAT) and annual days without rainfall showed an increase of 0.076 g C m‑2 a‑2 (standardized), 0.057 °C a‑1 (standardized) and 0.067 d a‑1 (standardized) during the study period, respectively. However, incremental NPP was deaccelerated at a rate of approximately 20.8% per decade. This deacceleration was primarily caused by a decrease in available soil water which resulted from warming (mainly occurring in winter and autumn) and the changes in rainfall pattern. The result indicates that intensifying drought stress would limit future increases of forest NPP in southern China.

  16. Assessing the impact of the urbanization process on net primary productivity in China in 1989-2000.

    PubMed

    Tian, Guangjin; Qiao, Zhi

    2014-01-01

    Urban development affects the material circulation and energy flow of ecosystems, thereby affecting the Net Primary Productivity (NPP). The loss of NPP due to urban expansion was calculated integrating GLO-PEM with remote sensing and GIS techniques in China during the period of 1989-2000. Using urban expansion and the mean NPP for the different land use types in the fourteen regions, the total loss of NPP was calculated as 0.95 Tg C, which accounted for 0.03% of the national NPP of 1989. The total loss of NPP due to the transformation from cropland to urban land accounted for 91.93%, followed by forest (7.17%) and grassland (0.69%). However, the conversion from unused land, industrial and construction land, and water bodies to urban land resulted in an increase in the NPP. The regions locating in eastern China and middle China had large reductions in the total NPP due to urban expansion.

  17. Decadal drought deaccelerated the increasing trend of annual net primary production in tropical or subtropical forests in southern China

    PubMed Central

    Wang, Wantong; Wang, Jinxia; Liu, Xingzhao; Zhou, Guoyi; Yan, Junhua

    2016-01-01

    Previous investigations have identified that the effects of climate change on net primary production (NPP) of global forests have varied both spatially and temporally, and that warming has increased the NPP for many forests. However, other factors, such as available soil water for plant growth, could limit these incremental responses to warming. In our investigation we have quantified the responses of NPP of tropical or subtropical forests in southern China to warming and drought stress over the past three decades (1981 to 2012) using data from five forest research stations and satellite measurements. NPP, mean annual temperature (MAT) and annual days without rainfall showed an increase of 0.076 g C m−2 a−2 (standardized), 0.057 °C a−1 (standardized) and 0.067 d a−1 (standardized) during the study period, respectively. However, incremental NPP was deaccelerated at a rate of approximately 20.8% per decade. This deacceleration was primarily caused by a decrease in available soil water which resulted from warming (mainly occurring in winter and autumn) and the changes in rainfall pattern. The result indicates that intensifying drought stress would limit future increases of forest NPP in southern China. PMID:27356766

  18. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis

    USGS Publications Warehouse

    Cleveland, Cory C.; Townsend, Alan R.; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M.C.; Chuyong, George; Dobrowski, Solomon Z.; Grierson, Pauline; Harms, Kyle E.; Houlton, Benjamin Z.; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C.; Sierra, Carlos A.; Silver, Whendee L.; Tanner, Edmund V.J.; Wieder, William R.

    2011-01-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO2 exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (< 1000 m), a regression tree analysis revealed that foliar and soil-based measurements of phosphorus (P) were the only variables that explained a significant proportion of the variation in ANPP, although the relationships were weak. However, foliar P, foliar nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0–10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations – especially in lowland forests – to elucidate the most important nutrient interactions and controls.

  19. The global impact factors of net primary production in different land cover types from 2005 to 2011.

    PubMed

    Yu, Bo; Chen, Fang

    2016-01-01

    With the seriously polluted environment due to social development, the sustainability of net primary production (NPP), which is used to feed most lives on the earth, has become one of the biggest concerns that we have to consider for the sake of food shortage. There have been many researches analyzing one or two potential impact factors of NPP based on field observation data, which brings about many uncertainties for further calculation. Moreover, the frequently used process-based models heavily depend on the understandings of researchers about the NPP process. The premises of such models hinder the impact factor analysis from being objective and confident. To overcome such shortages, we collected 27 potential impact factors of global NPP in terms of eight land cover types. The feature variables include atmosphere, biosphere, anthroposphere and lithosphere parameters, which can be obtained from public available remote sensed products. The experiment shows that latitude, irradiance ultraviolet and normalized difference vegetation index are dominant factors impacting global NPP. Anthropogenic activities, precipitation and surface emissivity are influencing NPP calculation largely. However, some commonly used biosphere parameters in process-based models are actually not playing that important roles in NPP estimation. This work provides a new insight in analyzing NPP impact factors, being more objective and comprehensive compared with frequently used process-based models. PMID:27536518

  20. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000

    NASA Astrophysics Data System (ADS)

    Monfreda, Chad; Ramankutty, Navin; Foley, Jonathan A.

    2008-03-01

    Croplands cover ~15 million km2 of the planet and provide the bulk of the food and fiber essential to human well-being. Most global land cover data sets from satellites group croplands into just a few categories, thereby excluding information that is critical for answering key questions ranging from biodiversity conservation to food security to biogeochemical cycling. Information about agricultural land use practices like crop selection, yield, and fertilizer use is even more limited. Here we present land use data sets created by combining national, state, and county level census statistics with a recently updated global data set of croplands on a 5 min by 5 min (~10 km by 10 km) latitude-longitude grid. The resulting land use data sets depict circa the year 2000 the area (harvested) and yield of 175 distinct crops of the world. We aggregate these individual crop maps to produce novel maps of 11 major crop groups, crop net primary production, and four physiologically based crop types: annuals/perennials, herbaceous/shrubs/trees, C3/C4, and leguminous/nonleguminous.

  1. The global impact factors of net primary production in different land cover types from 2005 to 2011.

    PubMed

    Yu, Bo; Chen, Fang

    2016-01-01

    With the seriously polluted environment due to social development, the sustainability of net primary production (NPP), which is used to feed most lives on the earth, has become one of the biggest concerns that we have to consider for the sake of food shortage. There have been many researches analyzing one or two potential impact factors of NPP based on field observation data, which brings about many uncertainties for further calculation. Moreover, the frequently used process-based models heavily depend on the understandings of researchers about the NPP process. The premises of such models hinder the impact factor analysis from being objective and confident. To overcome such shortages, we collected 27 potential impact factors of global NPP in terms of eight land cover types. The feature variables include atmosphere, biosphere, anthroposphere and lithosphere parameters, which can be obtained from public available remote sensed products. The experiment shows that latitude, irradiance ultraviolet and normalized difference vegetation index are dominant factors impacting global NPP. Anthropogenic activities, precipitation and surface emissivity are influencing NPP calculation largely. However, some commonly used biosphere parameters in process-based models are actually not playing that important roles in NPP estimation. This work provides a new insight in analyzing NPP impact factors, being more objective and comprehensive compared with frequently used process-based models.

  2. Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments.

    PubMed

    Smith, Melinda D; La Pierre, Kimberly J; Collins, Scott L; Knapp, Alan K; Gross, Katherine L; Barrett, John E; Frey, Serita D; Gough, Laura; Miller, Robert J; Morris, James T; Rustad, Lindsey E; Yarie, John

    2015-04-01

    Many global change drivers chronically alter resource availability in terrestrial ecosystems. Such resource alterations are known to affect aboveground net primary production (ANPP) in the short term; however, it is unknown if patterns of response change through time. We examined the magnitude, direction, and pattern of ANPP responses to a wide range of global change drivers by compiling 73 datasets from long-term (>5 years) experiments that varied by ecosystem type, length of manipulation, and the type of manipulation. Chronic resource alterations resulted in a significant change in ANPP irrespective of ecosystem type, the length of the experiment, and the resource manipulated. However, the pattern of ecosystem response over time varied with ecosystem type and manipulation length. Continuous directional responses were the most common pattern observed in herbaceous-dominated ecosystems. Continuous directional responses also were frequently observed in longer-term experiments (>11 years) and were, in some cases, accompanied by large shifts in community composition. In contrast, stepped responses were common in forests and other ecosystems (salt marshes and dry valleys) and with nutrient manipulations. Our results suggest that the response of ANPP to chronic resource manipulations can be quite variable; however, responses persist once they occur, as few transient responses were observed. Shifts in plant community composition over time could be important determinants of patterns of terrestrial ecosystem sensitivity, but comparative, long-term studies are required to understand how and why ecosystems differ in their sensitivity to chronic resource alterations.

  3. Decadal drought deaccelerated the increasing trend of annual net primary production in tropical or subtropical forests in southern China.

    PubMed

    Wang, Wantong; Wang, Jinxia; Liu, Xingzhao; Zhou, Guoyi; Yan, Junhua

    2016-01-01

    Previous investigations have identified that the effects of climate change on net primary production (NPP) of global forests have varied both spatially and temporally, and that warming has increased the NPP for many forests. However, other factors, such as available soil water for plant growth, could limit these incremental responses to warming. In our investigation we have quantified the responses of NPP of tropical or subtropical forests in southern China to warming and drought stress over the past three decades (1981 to 2012) using data from five forest research stations and satellite measurements. NPP, mean annual temperature (MAT) and annual days without rainfall showed an increase of 0.076 g C m(-2) a(-2) (standardized), 0.057 °C a(-1) (standardized) and 0.067 d a(-1) (standardized) during the study period, respectively. However, incremental NPP was deaccelerated at a rate of approximately 20.8% per decade. This deacceleration was primarily caused by a decrease in available soil water which resulted from warming (mainly occurring in winter and autumn) and the changes in rainfall pattern. The result indicates that intensifying drought stress would limit future increases of forest NPP in southern China. PMID:27356766

  4. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems.

    PubMed

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-04-19

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle.

  5. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-04-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle.

  6. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.

    PubMed

    Cleveland, Cory C; Townsend, Alan R; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M C; Chuyong, George; Dobrowski, Solomon Z; Grierson, Pauline; Harms, Kyle E; Houlton, Benjamin Z; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C; Sierra, Carlos A; Silver, Whendee L; Tanner, Edmund V J; Wieder, William R

    2011-09-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (< 1000 m), a regression tree analysis revealed that foliar and soil-based measurements of phosphorus (P) were the only variables that explained a significant proportion of the variation in ANPP, although the relationships were weak. However, foliar P, foliar nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0-10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations - especially in lowland forests - to elucidate the most important nutrient interactions and controls.

  7. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems

    PubMed Central

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-01-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle. PMID:27091439

  8. Temporal trends in aboveground net primary production of semi-arid shrublands exposed to experimental N deposition

    NASA Astrophysics Data System (ADS)

    Vourlitis, G. L.

    2011-12-01

    Southern Californian chaparral and coastal sage scrub (CSS) shrublands are exposed to high-levels of dry-atmospheric nitrogen (N) deposition. A field experiment was conducted over 8 years in a post-fire chaparral and a mature CSS stand to assess the effects of cumulative, dry-season N inputs on aboveground net primary production (NPP). We hypothesized that the NPP chaparral and CSS would significantly increase in response to N exposure because previous research indicated to the productivity of these semi-arid shrublands was limited by N. Our results indicate that N addition eventually increased the NPP of both shrublands; however, trends in NPP varied over time and were affected by interannual variations in rainfall. For example, added N in post-fire chaparral initially inhibited NPP, but over time NPP increased consistently in plots exposed to added N. For CSS, temporal trends in NPP were independent of cumulative N exposure; however, a pattern emerged where the effect of N exposure was significantly related to annual rainfall. NPP increased significantly to N exposure when rainfall exceeded approximately 400 mm year-1 but declined with N exposure during dry years. These results support our hypothesis that N enrichment will increase the NPP of these semi-arid shrublands; however, temporal patterns may take years to emerge (chaparral) or be modified by annual variations in rainfall (CSS).

  9. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model

    NASA Astrophysics Data System (ADS)

    Felzer, B.; Kicklighter, D.; Melillo, J.; Wang, C.; Zhuang, Q.; Prinn, R.

    2004-07-01

    The effects of air pollution on vegetation may provide an important control on the carbon cycle that has not yet been widely considered. Prolonged exposure to high levels of ozone, in particular, has been observed to inhibit photosynthesis by direct cellular damage within the leaves and through possible changes in stomatal conductance. We have incorporated empirical equations derived for trees (hardwoods and pines) and crops into the Terrestrial Ecosystem Model to explore the effects of ozone on net primary production (NPP) and carbon sequestration across the conterminous United States. Our results show a 2.6 6.8% mean reduction for the United States in annual NPP in response to modelled historical ozone levels during the late 1980s-early 1990s. The largest decreases (over 13% in some locations) occur in the Midwest agricultural lands, during the mid-summer when ozone levels are highest. Carbon sequestration since the 1950s has been reduced by 18 38 Tg C yr-1 with the presence of ozone. Thus the effects of ozone on NPP and carbon sequestration should be factored into future calculations of the United States' carbon budget.

  10. [Change of vegetation net primary productivity in Yellow River watersheds from 2001 to 2010 and its climatic driving factors analysis].

    PubMed

    Chen, Qiang; Chen, Yun-Hao; Wang, Meng-Jie; Jiang, Wei-Guo; Hou, Peng; Li, Ying

    2014-10-01

    Based on the MODIS-NDVI remotely sensed imagery, this paper analyzed the spatial distribution of vegetation net primary production (NPP) calculated by CASA model in Yellow River watersheds from 2001 to 2010. Associated with the temperature and precipitation data in the same period, this article respectively analyzed the change trends of vegetation NPP in six ecosystems with different spatial and temporal scales, and the relationship between NPP and climate factors. The results indicated that in terms of spatial scale, the vegetation NPP gradually reduced from northwest to southeast, the average of annual NPP was 108.53 Tg C, and the spatial distribution of vegetation NPP was highly related with the land cover types. In terms of temporal scale, the vegetation NPP gradually increased from 2001 to 2010, but this change trend had large differences in these regions. On annual level, the vegetation NPP had no significant correlation with climate factors, but precipitation and temperature had considerable impacts on the vegetation NPP on monthly level. The correlations between NPP and climate factors were different in different ecosystems, so did the time lag effect of the climate factors. The air temperature response of the NPP variation was relatively sensitive in forest ecosystem and the precipitation response was significant in grassland and wetland ecosystems. Additionally, the precipitation response of the NPP variation in grassland ecosystem had time lag effect and so did the air temperature response in desert ecosystem.

  11. Spatiotemporal patterns of cropland area and net primary production in the central United States estimated from USDA agricultural information

    NASA Astrophysics Data System (ADS)

    Hicke, Jeffrey A.; Lobell, David B.

    2004-10-01

    The central United States, which is dominated by agriculture, has been selected as the first North American Carbon Program intensive campaign. Data sets that describe spatiotemporal variability in carbon fluxes are needed to support this campaign. Here we report the behavior of county cropland net primary production (NPP) in the first intensive region derived using USDA information together with crop-specific parameters that convert agronomic data into carbon fluxes. Total cropland area in the eight-state region was ~550,000 km2 (40% of total area), with some interannual variability but no temporal trend from 1972 to 2001. Regional production (P) was 0.3 Pg C yr-1 in the late 1990s, roughly 64% of the total US crop production. P was highest in the central counties (>1.2 Tg C yr-1). In contrast to area, both NPP (flux per unit area) and P (spatially aggregated flux) increased during the study period (46 and 51%, respectively). Corn was the dominant crop type grown in the region, contributing 58% of the total production, with soybeans second most productive but substantially less (20%) despite similar harvested area. Maximum year-to-year variability in P was high, generally greater than 30% for most counties, though exceeding 80% for some counties.

  12. [Variation trends of China terrestrial vegetation net primary productivity and its responses to climate factors in 1982-2000].

    PubMed

    Hou, Ying-Yu; Liu, Qin-Huo; Yan, Hao; Tian, Guo-Liang

    2007-07-01

    A new estimation model of vegetation net primary production (NPP) based on remote sensing data and climatic data was presented, with which, the NPP of China terrestrial vegetation in 1982-2000 was estimated, and the intra- and inter- annual variation patterns of the NPP and its responses to climate factors were studied. The results showed that there was an obvious seasonal regularity in the intra-annual variation of the NPP. In 1982-2000, all the terrestrial vegetation types presented an increasing annual NPP, with the greatest increment for deciduous needle leaf forests and the smallest one for grasses. Evergreen broadleaf forests had the largest inter-annual variation, while grasses had the smallest one. Comparing with temperature, precipitation played a stronger driving role in the intra-annual variation of the NPP, and the effects of precipitation and temperature were more obvious in North China than in South China. The driving roles of the climate factors varied with season and latitude.

  13. Maintenance of coat protein N-terminal net charge and not primary sequence is essential for zucchini yellow mosaic virus systemic infectivity.

    PubMed

    Kimalov, Boaz; Gal-On, Amit; Stav, Ran; Belausov, Eduard; Arazi, Tzahi

    2004-11-01

    Zucchini yellow mosaic virus (ZYMV) surface exposed coat protein (CP) N-terminal domain (Nt) is 43 aa long and contains an equal number of positively and negatively charged amino acid residues (CP-Nt net charge = 0). A ZYMV-AGII truncation mutant lacking the first 20 aa of its CP-Nt (AGII-CP Delta 20; CP-Nt net charge = +2) was found to be systemically non-infectious even though AGII mutants harbouring larger CP-Nt deletions were previously demonstrated to be fully infectious. Nevertheless, AGII-CP Delta 20 infectivity was restored by fusion to its CP-Nt two Asp residues or a negatively charged Myc peptide, both predicted to neutralize CP-Nt net positive charge. To evaluate further the significance of CP-Nt net charge for AGII infectivity, a series of CP-Nt net charge mutants was generated and analysed for systemic infectivity of squash plants. AGII-CP(KKK) harbouring a CP-Nt amino fusion of three Lys residues (CP-Nt net charge = +3) was not systemically infectious. Addition of up to four Asp residues to CP-Nt did not abolish virus infectivity, although certain mutants were genetically unstable and had delayed infectivity. Addition of five negatively charged residues abolished infectivity (AGII-CP(DDDDD); CP-Nt net charge = -5) even though a recombinant CP(DDDDD) could assemble into potyviral-like particle in bacteria. Neutralization of CP-Nt net charge by fusing Asp or Lys residues recovered infectivity of AGII-CP(KKK) and AGII-CP(DDDDD). GFP-tagging of these mutants has demonstrated that both viruses have defective cell-to-cell movement. Together, these findings suggest that maintenance of CP-Nt net charge and not primary sequence is essential for ZYMV infectivity.

  14. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  15. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome

    PubMed Central

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID

  16. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    USGS Publications Warehouse

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  17. Optimizing the number of training areas for modeling above-ground biomass with ALS and multispectral remote sensing in subtropical Nepal

    NASA Astrophysics Data System (ADS)

    Rana, Parvez; Gautam, Basanta; Tokola, Timo

    2016-07-01

    Remote sensing-based inventories of above-ground forest biomass (AGB) require a set of training plots representative of the area to be studied, the collection of which is the most expensive part of the analysis. These are time-consuming and costly because the large variety in forest conditions requires more plots to adequately capture this variability. A field campaign in general is challenging and is hampered by the complex topographic conditions, limited accessibility, steep mountainous terrains which increase labor efforts and costs. In addition it is also depend on the ratio between size of study area and number of training plots. In this study, we evaluate the number of training areas (sample size) required to estimate AGB for an area in the southern part of Nepal using airborne laser scanning (ALS), RapidEye and Landsat data. Three experiments were conducted: (i) AGB model performance, based on all the field training plots; (ii) reduction of the sample size, based on the ALS metrics and the AGB distribution; and (iii) prediction of the optimal number of training plots, based on the correlation between the remote sensing and field data. The AGB model was fitted using the sparse Bayesian method. AGB model performance was validated using an independent validation dataset. The effect of the strategies for reducing the sample size was readily apparent for the ALS-based AGB prediction, but the RapidEye and Landsat sensor data failed to capture any such effect. The results indicate that adequate coverage of the variability in tree height and density was an important condition for selecting the training plots. In addition, the ALS-based AGB prediction required the smallest number of training plots and was also quite stable with a small number of field plots.

  18. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.

  19. A comparison of plot-based satellite and Earth system model estimates of tropical forest net primary production

    NASA Astrophysics Data System (ADS)

    Cleveland, Cory C.; Taylor, Philip; Chadwick, K. Dana; Dahlin, Kyla; Doughty, Christopher E.; Malhi, Yadvinder; Smith, W. Kolby; Sullivan, Benjamin W.; Wieder, William R.; Townsend, Alan R.

    2015-05-01

    Net primary production (NPP) by plants represents the largest annual flux of carbon dioxide (CO2) from the atmosphere to the terrestrial biosphere, playing a critical role in the global carbon (C) cycle and the Earth's climate. Rates of NPP in tropical forests are thought to be among the highest on Earth, but debates about the magnitude, patterns, and controls of NPP in the tropics highlight uncertainty in our understanding of how tropical forests may respond to environmental change. Here, we compared tropical NPP estimates generated using three common approaches: (1) field-based methods scaled from plot-level measurements of plant biomass, (2) radiation-based methods that model NPP from satellite-derived radiation absorption by plants, (3) and biogeochemical model-based methods. For undisturbed tropical forests as a whole, the three methods produced similar NPP estimates (i.e., ~ 10 Pg C yr-1). However, the three different approaches produced vastly different patterns of NPP both in space and through time, suggesting that our understanding of tropical NPP is poor and that our ability to predict the response of NPP in the tropics to environmental change is limited. To address this shortcoming, we suggest the development of an expanded, high-density, permanent network of sites where NPP is continuously evaluated using multiple approaches. Well-designed NPP megatransects that include a high-density plot network would significantly increase the accuracy and certainty in the observed rates and patterns of tropical NPP and improve the reliability of Earth system models used to predict NPP-carbon cycle-climate interactions into the future.

  20. Ground-Based Lidar Measurements of Forest Canopy Structure as Predictors of Net Primary Production Across Successional Time

    NASA Astrophysics Data System (ADS)

    Scheuermann, C. M.; Gough, C. M.; Nave, L. E.

    2015-12-01

    Forest canopy structure is a key predictor of gas exchange processes that control carbon (C) uptake, including the allocation of photosynthetically fixed C to new plant biomass growth, or net primary production (NPP). Prior work suggests forest canopy structural complexity (CSC), the arrangement of leaves within a volume of canopy, changes as forests develop and is a strong predictor of NPP. However, the expressions of CSC that best predict NPP over decadal to century timescales is unknown. Our objectives were to use multiple remote sensing observations to characterize forest canopy structure in increasing dimensional complexity over a forest age gradient, and to identify which expressions of physical structure best served as proxies of NPP. The study at the University of Michigan Biological Station in Pellston, MI, USA uses two parallel forest chronosequences with different harvesting and fire disturbance histories and includes three old-growth ecosystems varying in canopy composition. We have derived several expressions of 2-D and 3-D forest canopy structure from hemispherical images, a ground-based portable canopy lidar (PCL), and a 3-D terrestrial lidar scanner (TLS), and are relating these structural metrics with NPP and light and nitrogen allocation within the canopy. Preliminary analysis shows that old-growth stands converged on a common mean CSC, but with substantially higher within-stand variation in complexity as deciduous tree species increased in forest canopy dominance. Forest stands that were more intensely disturbed were slower to recover leaf area index (LAI) as they regrew, but 2-D measures of CSC increased similarly as forests aged, regardless of disturbance history. Ongoing work will relate long-term trends in forest CSC with NPP and resource allocation to determine which forest structure remote sensing products are most useful for modeling and scaling C cycling processes through different stages of forest development.

  1. Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model.

    PubMed

    Nayak, Rabindra K; Patel, N R; Dadhwal, V K

    2010-11-01

    In the present study, the Carnegie-Ames-Stanford Approach (CASA), a terrestrial biosphere model, has been used to investigate spatiotemporal pattern of net primary productivity (NPP) during 2003 over the Indian subcontinent. The model drivers at 2-min spatial resolution were derived from National Oceanic and Atmospheric Administration advanced very high resolution radiometer normalized difference vegetation index, weather inputs, and soil and land cover maps. The annual NPP was estimated to be 1.57 Pg C (at the rate of 544 g C m(-2)), of which 56% contributed by croplands (with 53% of geographic area of the country (GAC)), 18.5% by broadleaf deciduous forest (15% of GAC), 10% by broadleaf evergreen forest (5% of GAC), and 8% by mixed shrub and grassland (19% of GAC). There is very good agreement between the modeled NPP and ground-based cropland NPP estimates over the western India (R2=0.54; p=0.05). The comparison of CASA-based annual NPP estimates with the similar products from other operational algorithms such as C-fix and Moderate Resolution Imaging Spectroradiometer (MODIS) indicate that high agreement exists between the CASA and MODIS products over all land covers of the country, while agreement between CASA and C-Fix products is relatively low over the region dominated by agriculture and grassland, and the agreement is very low over the forest land. Sensitivity analysis suggest that the difference could be due to inclusion of variable light use efficiency (LUE) across different land cover types and environment stress scalars as downregulator of NPP in the present CASA model study. Sensitivity analysis further shows that the CASA model can overestimate the NPP by 50% of the national budget in absence of downregulators and underestimate the NPP by 27% of the national budget by the use of constant LUE (0.39 gC MJ(-1)) across different vegetation cover types.

  2. Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains

    SciTech Connect

    Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

    2012-12-15

    The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30°N-40°N and 40°N-50°N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

  3. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    PubMed

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect. PMID:27396112

  4. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  5. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest.

    PubMed

    Hardiman, Brady S; Bohrer, Gil; Gough, Christopher M; Vogel, Christoph S; Curtisi, Peter S

    2011-09-01

    The even-aged northern hardwood forests of the Upper Great Lakes Region are undergoing an ecological transition during which structural and biotic complexity is increasing. Early-successional aspen (Populus spp.) and birch (Betula papyrifera) are senescing at an accelerating rate and are being replaced by middle-successional species including northern red oak (Quercus rubra), red maple (Acer rubrum), and white pine (Pinus strobus). Canopy structural complexity may increase due to forest age, canopy disturbances, and changing species diversity. More structurally complex canopies may enhance carbon (C) sequestration in old forests. We hypothesize that these biotic and structural alterations will result in increased structural complexity of the maturing canopy with implications for forest C uptake. At the University of Michigan Biological Station (UMBS), we combined a decade of observations of net primary productivity (NPP), leaf area index (LAI), site index, canopy tree-species diversity, and stand age with canopy structure measurements made with portable canopy lidar (PCL) in 30 forested plots. We then evaluated the relative impact of stand characteristics on productivity through succession using data collected over a nine-year period. We found that effects of canopy structural complexity on wood NPP (NPPw) were similar in magnitude to the effects of total leaf area and site quality. Furthermore, our results suggest that the effect of stand age on NPPw is mediated primarily through its effect on canopy structural complexity. Stand-level diversity of canopy-tree species was not significantly related to either canopy structure or NPPw. We conclude that increasing canopy structural complexity provides a mechanism for the potential maintenance of productivity in aging forests. PMID:21939078

  6. Modeling of temporal and spatial coherency of net primary production (MODIS NPP) in the mountain forests of South Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, Yulia; Soukhovolsky, Vlad

    Net primary production (NPP) of mountain forest is very variable and depends on a variety of external modifying factors such as intensity and spectrum of solar radiation, climatic conditions in the area. Less studied are features of long-term NPP dynamics associated with self-regulation processes of tree growth in a forest. Mountain forests are a convenient object for analysis and modeling of long-term NPP changes that do not depend on climatic factors, since in mountain forests climatic conditions are uniquely determined by altitude Temporal and spatial coherence of mean annual NPP time series (Yrs. 2000 - 2012) was studied according to data from satellite observations of MODIS/TERRA. Mean annual NPP estimates' series were examined for different altitudinal zones in the Sayan Mountains (South of Central Siberia). Altitudes ranged from 600 to 1.800 meters above sea level. This area is lengthful vertically and has well-marked mountain-belt vegetation complexes, where mixed forests, fir and pine coniferous forests, alpine meadows and alpine tundra successively come one after another. Spatial and temporal coherence of NPP time series for different habitats is analyzed. The analysis showed that variations in annual NPP values of the fir (Abies sibirica) at different altitudes (450-1700 m) are synchronized. These variations in NPP values are described by the AR(2) model. Such behavior of studied NPP time series suggests a lag in growth of woody plants. In this case, the current NPP is influenced by the NPP values of the two previous years. At higher altitudes, where the density of the trees decreases and herbaceous plants become dominant, the range and synchronization of NPP variations decrease.

  7. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest.

    PubMed

    Hardiman, Brady S; Bohrer, Gil; Gough, Christopher M; Vogel, Christoph S; Curtisi, Peter S

    2011-09-01

    The even-aged northern hardwood forests of the Upper Great Lakes Region are undergoing an ecological transition during which structural and biotic complexity is increasing. Early-successional aspen (Populus spp.) and birch (Betula papyrifera) are senescing at an accelerating rate and are being replaced by middle-successional species including northern red oak (Quercus rubra), red maple (Acer rubrum), and white pine (Pinus strobus). Canopy structural complexity may increase due to forest age, canopy disturbances, and changing species diversity. More structurally complex canopies may enhance carbon (C) sequestration in old forests. We hypothesize that these biotic and structural alterations will result in increased structural complexity of the maturing canopy with implications for forest C uptake. At the University of Michigan Biological Station (UMBS), we combined a decade of observations of net primary productivity (NPP), leaf area index (LAI), site index, canopy tree-species diversity, and stand age with canopy structure measurements made with portable canopy lidar (PCL) in 30 forested plots. We then evaluated the relative impact of stand characteristics on productivity through succession using data collected over a nine-year period. We found that effects of canopy structural complexity on wood NPP (NPPw) were similar in magnitude to the effects of total leaf area and site quality. Furthermore, our results suggest that the effect of stand age on NPPw is mediated primarily through its effect on canopy structural complexity. Stand-level diversity of canopy-tree species was not significantly related to either canopy structure or NPPw. We conclude that increasing canopy structural complexity provides a mechanism for the potential maintenance of productivity in aging forests.

  8. Evaluating spatial-temporal dynamics of net primary productivity of different forest types in northeastern China based on improved FORCCHN.

    PubMed

    Zhao, Junfang; Yan, Xiaodong; Guo, Jianping; Jia, Gensuo

    2012-01-01

    An improved individual-based forest ecosystem carbon budget model for China (FORCCHN) was applied to investigate the spatial-temporal dynamics of net primary productivity of different forest types in northeastern China. In this study, the forests of northeastern China were categorized into four ecological types according to their habitats and generic characteristics (evergreen broadleaf forest, deciduous broadleaf forest, evergreen needleleaf forest and deciduous needleleaf forest). The results showed that distribution and change of forest NPP in northeastern China were related to the different forest types. From 1981 to 2002, among the forest types in northeastern China, per unit area NPP and total NPP of deciduous broadleaf forest were the highest, with the values of 729.4 gC/(m(2)•yr) and 106.0 TgC/yr, respectively, followed by mixed broadleaf- needleleaf forest, deciduous needleleaf forest and evergreen needleleaf forest. From 1981 to 2002, per unit area NPP and total NPP of different forest types in northeastern China exhibited significant trends of interannual increase, and rapid increase was found between the 1980s and 1990s. The contribution of the different forest type's NPP to total NPP in northeastern China was clearly different. The greatest was deciduous broadleaf forest, followed by mixed broadleaf- needleleaf forest and deciduous needleleaf forest. The smallest was evergreen needleleaf forest. Spatial difference in NPP between different forest types was remarkable. High NPP values of deciduous needleleaf forest, mixed broadleaf- needleleaf forest and deciduous broadleaf forest were found in the Daxing'anling region, the southeastern of Xiaoxing'anling and Jilin province, and the Changbai Mountain, respectively. However, no regional differences were found for evergreen needleleaf NPP. This study provided not only an estimation NPP of different forest types in northeastern China but also a useful methodology for estimating forest carbon storage at

  9. Evaluating Spatial-Temporal Dynamics of Net Primary Productivity of Different Forest Types in Northeastern China Based on Improved FORCCHN

    PubMed Central

    Zhao, Junfang; Yan, Xiaodong; Guo, Jianping; Jia, Gensuo

    2012-01-01

    An improved individual-based forest ecosystem carbon budget model for China (FORCCHN) was applied to investigate the spatial-temporal dynamics of net primary productivity of different forest types in northeastern China. In this study, the forests of northeastern China were categorized into four ecological types according to their habitats and generic characteristics (evergreen broadleaf forest, deciduous broadleaf forest, evergreen needleleaf forest and deciduous needleleaf forest). The results showed that distribution and change of forest NPP in northeastern China were related to the different forest types. From 1981 to 2002, among the forest types in northeastern China, per unit area NPP and total NPP of deciduous broadleaf forest were the highest, with the values of 729.4 gC/(m2•yr) and 106.0 TgC/yr, respectively, followed by mixed broadleaf- needleleaf forest, deciduous needleleaf forest and evergreen needleleaf forest. From 1981 to 2002, per unit area NPP and total NPP of different forest types in northeastern China exhibited significant trends of interannual increase, and rapid increase was found between the 1980s and 1990s. The contribution of the different forest type’s NPP to total NPP in northeastern China was clearly different. The greatest was deciduous broadleaf forest, followed by mixed broadleaf- needleleaf forest and deciduous needleleaf forest. The smallest was evergreen needleleaf forest. Spatial difference in NPP between different forest types was remarkable. High NPP values of deciduous needleleaf forest, mixed broadleaf- needleleaf forest and deciduous broadleaf forest were found in the Daxing’anling region, the southeastern of Xiaoxing’anling and Jilin province, and the Changbai Mountain, respectively. However, no regional differences were found for evergreen needleleaf NPP. This study provided not only an estimation NPP of different forest types in northeastern China but also a useful methodology for estimating forest carbon storage

  10. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  11. Terrestrial ecosystem model performance for net primary productivity and its vulnerability to climate change in permafrost regions

    NASA Astrophysics Data System (ADS)

    Xia, J.; McGuire, A. D.; Lawrence, D. M.; Burke, E.; Chen, X.; Delire, C. L.; Koven, C. D.; MacDougall, A. H.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D. P.; Miller, P. A.; Moore, J. C.; Smith, B.; Sueyoshi, T.; Shi, Z.; Yan, L.; Liang, J.; Jiang, L.; Luo, Y.

    2014-12-01

    A more accurate prediction of future climate-carbon (C) cycle feedbacks requires better understanding and improved representation of the carbon cycle in permafrost regions within current earth system models. Here, we evaluated 10 terrestrial ecosystem models for their estimated net primary productivity (NPP) and its vulnerability to climate change in permafrost regions in the Northern Hemisphere. Those models were run retrospectively between 1960 and 2009. In comparison with MODIS satellite estimates, most models produce higher NPP (310 ± 12 g C m-2 yr-1) than MODIS (240 ± 20 g C m-2 yr-1) over the permafrost regions during 2000‒2009. The modeled NPP was then decomposed into gross primary productivity (GPP) and the NPP/GPP ratio (i.e., C use efficiency; CUE). By comparing the simulated GPP with a flux-tower-based database [Jung et al. Journal of Geophysical Research 116 (2011) G00J07] (JU11), we found although models only produce 10.6% higher mean GPP than JU11 over 1982‒2009, there was a two-fold disparity among models (397 to 830 g C m-2 yr-1). The model-to-model variation in GPP mainly resulted from the seasonal peak GPP and in low-latitudinal permafrost regions such as the Tibetan Plateau. Most models overestimate the CUE in permafrost regions in comparison to calculated CUE from the MODIS NPP and JU11 GPP products and observation-based estimates at 8 forest sites. The models vary in their sensitivities of NPP, GPP and CUE to historical changes in air temperature, atmospheric CO2 concentration and precipitation. For example, climate warming enhanced NPP in four models via increasing GPP but reduced NPP in two other models by decreasing both GPP and CUE. The results indicate that the model predictability of C cycle in permafrost regions can be improved by better representation of those processes controlling the seasonal maximum GPP and the CUE as well as their sensitivity to climate change.

  12. A cost effective and operational methodology for wall to wall Above Ground Biomass (AGB) and carbon stocks estimation and mapping: Nepal REDD+

    NASA Astrophysics Data System (ADS)

    Gilani, H., Sr.; Ganguly, S.; Zhang, G.; Koju, U. A.; Murthy, M. S. R.; Nemani, R. R.; Manandhar, U.; Thapa, G. J.

    2015-12-01

    Nepal is a landlocked country with 39% forest cover of the total land area (147,181 km2). Under the Forest Carbon Partnership Facility (FCPF) and implemented by the World Bank (WB), Nepal chosen as one of four countries best suitable for results-based payment system for Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+) scheme. At the national level Landsat based, from 1990 to 2000 the forest area has declined by 2%, i.e. by 1467 km2, whereas from 2000 to 2010 it has declined only by 0.12% i.e. 176 km2. A cost effective monitoring and evaluation system for REDD+ requires a balanced approach of remote sensing and ground measurements. This paper provides, for Nepal a cost effective and operational 30 m Above Ground Biomass (AGB) estimation and mapping methodology using freely available satellite data integrated with field inventory. Leaf Area Index (LAI) generated based on propose methodology by Ganguly et al. (2012) using Landsat-8 the OLI cloud free images. To generate tree canopy height map, a density scatter graph between the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat) estimated maximum height and Landsat LAI nearest to the center coordinates of the GLAS shots show a moderate but significant exponential correlation (31.211*LAI0.4593, R2= 0.33, RMSE=13.25 m). From the field well distributed circular (750m2 and 500m2), 1124 field plots (0.001% representation of forest cover) measured which were used for estimation AGB (ton/ha) using Sharma et al. (1990) proposed equations for all tree species of Nepal. A satisfactory linear relationship (AGB = 8.7018*Hmax-101.24, R2=0.67, RMSE=7.2 ton/ha) achieved between maximum canopy height (Hmax) and AGB (ton/ha). This cost effective and operational methodology is replicable, over 5-10 years with minimum ground samples through integration of satellite images. Developed AGB used to produce optimum fuel wood scenarios using population and road

  13. Impacts of cattle grazing on spatio-temporal variability of soil moisture and above-ground live plant biomass in mixed grasslands

    NASA Astrophysics Data System (ADS)

    Virk, Ravinder

    Areas with relatively high spatial heterogeneity generally have more biodiversity than spatially homogeneous areas due to increased potential habitat. Management practices such as controlled grazing also affect the biodiversity in grasslands, but the nature of this impact is not well understood. Therefore this thesis studies the impacts of variation in grazing on soil moisture and biomass heterogeneity. These are not only important in terms of management of protected grasslands, but also for designing an effective grazing system from a livestock management point of view. This research is a part of the cattle grazing experiment underway in Grasslands National Park (GNP) of Canada since 2006, as part of the adaptive management process for restoring ecological integrity of the northern mixed-grass prairie region. An experimental approach using field measurements and remote sensing (Landsat) was combined with modelling (CENTURY) to examine and predict the impacts of grazing intensity on the spatial heterogeneity and patterns of above-ground live plant biomass (ALB) in experimental pastures in a mixed grassland ecosystem. The field-based research quantified the temporal patterns and spatial variability in both soil moisture (SM) and ALB, and the influence of local intra-seasonal weather variability and slope location on the spatio-temporal variability of SM and ALB at field plot scales. Significant impacts of intra-seasonal weather variability, slope position and grazing pressure on SM and ALB across a range of scales (plot and local (within pasture)) were found. Grazing intensity significantly affected the ALB even after controlling for the effect of slope position. Satellite-based analysis extended the scale of interest to full pastures and the surrounding region to assess the effects of grazing intensity on the spatio-temporal pattern of ALB in mixed grasslands. Overall, low to moderate grazing intensity showed increase in ALB heterogeneity whereas no change in ALB

  14. Estimating Mangrove Canopy Height and Above-Ground Biomass in Everglades National Park with Airbone LiDAR and TanDEM-X Data.

    NASA Astrophysics Data System (ADS)

    Feliciano, E. A.; Wdowinski, S.; Potts, M. D.; Fatoyinbo, T. E.; Lee, S. K.

    2014-12-01

    The coastal mangroves forests of Everglades National Park (ENP) are well protected from development. Nevertheless, climate change, hurricanes and other anthropogenic disturbances have affected these intertidal ecosystems. Understanding and monitoring forest structural parameters such as canopy height and above-ground biomass (AGB) are important for the establishment of an historical database for past, present and future ecosystem comparison. Forest canopy height has a well understood and directly proportional correlation with AGB. It is possible to derive it using (1) airborne LiDAR/Laser Scanning (ALS) or (2) space-borne radar systems such as Shuttle Radar Topography Mission (SRTM) and TanDEM-X (TDX). A previous study of the mangrove canopy height and AGB in the ENP was conducted a decade ago based on ALS data acquired in 2004 in conjunction with SRTM data, which were acquired in 2000 (Simard et al. 2006). In this study we estimated canopy height and AGB using an ALS dataset acquired in 2012 and TDX data acquired during the years 2012-2014. The ALS dataset was acquired along a 16.5 x 1.5 km swath of mangrove forest with variable canopy height. The sampled areas were representative of mangrove stature and structure in the whole ENP. Analysis of the ALS dataset showed that mangrove canopy height can reach up to ~25 meters close to the coastal ENP waters. Additionally, by comparing our ALS results with those of a previous study by Simard et al. (2006) we identified areas where mangrove height changes greater than ± 3 meters occurred. To expand the study area to the full ENP mangrove ecosystem we processed single-polarization TDX data to obtain a Digital Canopy Model (DCM) that represents the mangrove canopy height. In order to obtain the true canopy height we calibrated the TDX phase center height with ALS true canopy height. Preliminary results of a corrected single-polarized (HH) TDX scene show that mangrove canopy height can reach up to ~25 meters in the western

  15. Sensitivity of Backscatter Intensity of ALOS/PALSAR to Above-ground Biomass and Other Biophysical Parameters of Boreal Forests in Alaska and Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Hayashi, M.; Kim, Y.; Ishii, R.; Kobayashi, H.; Shoyama, K.; Adachi, M.; Takahashi, A.; Saigusa, N.; Ito, A.

    2012-12-01

    For the better understanding of the carbon cycle in the global environment, investigations on the spatio-temporal variation of the carbon stock which is stored as vegetation biomass is important. The backscatter intensity of "Phased Array type L-band Synthetic Aperture Radar (PALSAR)" onboard the satellite "Advanced Land Observing Satellite (ALOS)" provides us the information which is applicable to estimate the forest above-ground biomass (AGB). This study examines the sensitivity of the backscatter intensity of ALOS/PALSAR to the forest AGB and other biophysical parameters (tree height, tree diameter at breast height (DBH), and tree stand density) for boreal forests in two geographical regions of Alaska and Kushiro, northern Japan, and compares the sensitivities in two regions. In Alaska, a forest survey was executed in the south-north transect (about 300 km long) along a trans-Alaska pipeline which profiles the ecotone from the boreal forest to tundra in 2007. Forest AGBs and other biophysical parameters at 29 forests along the transect were measured by Bitterlich method. In Kushiro, a forest survey was carried out at 42 forests in 2011 and those parameters were similarly obtained by Bitterlich method. 20 and 2 scenes of ALOS/PALSAR FBD Level 1.5 data that cover the regions in Alaska and Kushiro, respectively, were collected and mosaicked. Backscatter intensities of ALOS/PALSAR in HH (horizontally polarized transmitted and horizontally polarized received) and HV (horizontally polarized transmitted and vertically polarized received) modes were compared with the forest AGB and other biophysical parameters. The intensity generally increased with the increase of those biophysical parameters in both HV and HH modes, but the intensity in HV mode generally had a stronger correlation to those parameters than in HH mode in both Alaska and Kushiro. The HV intensity had strong correlation to the forest AGB and DBH, while weak correlation to the tree stand density in Alaska

  16. Continental Collision Zones are Primary Sites of net Continental Crustal Growth: Evidence From the Linzizong Volcanic Succession in Southern Tibet

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Mo, X.; Dong, G.; Zhao, Z.; Hou, Z.; Zhou, S.; Ke, S.

    2007-12-01

    The Linzizong volcanics (ca. 65-45Ma) and the coeval batholiths (ca. 60-40Ma) of andesitic-to-rhyolitic composition are magmatic response to the India-Asia continental collision that began at ca. 70-65Ma and ended at ca. 45-40Ma with convergence continuing to present [1,2]. These syncollisional magmatic rocks are widely distributed along much of the >1500km long Gangdese Belt immediately north of the India-Asia suture (Yarlung-Zangbo) in southern Tibet [2-6]. Our study of the Linzizong volcanics from the Linzhou Basin (near Lhasa) encourages the proposal that syncollisional granitoid magmatism may in fact account for much of the net contribution to continental crust growth. The Linzizong volcanics in the Linzhou Basin show a first-order temporal change from the lower andesitic formation (64.4-60.6Ma), to the middle dacitic formation (ca. 54Ma), and to the upper rhyolitic formation (48.7-43.9Ma). The three formations show no systematic but overlapping Nd-Sr isotope variations. The isotopically depleted samples with ɛNd(t)>0 (up to + 8) indicate that their primary sources are of mantle origin. The best source candidate in the broad context of Tethyan ocean closing and India- Asia collision is the remaining part of the Tethyan ocean crust [6]. This ocean crust melts when reaching its hydrous solidus during and soon after the collision in the amphibolite facies, producing andesitic melts parental to the Linzizong volcanics (also the coeval batholiths) with inherited mantle isotopic signatures [6]. Ilmenite is abundant in amphibolite [7], and partial melting of amphibolite with ilmenite as a residual phase accounts for the depletion of Nb, Ta and Ti in the melt. The effect of ocean crust alteration plus involvement of mature crustal materials (e.g., recycled terrigeneous sediments) enhances the elevated abundances of Ba, Rb, Th, U, K and Pb in the melt [8,9]. These give the syncolissional Linzizong volcanics characteristic "arc-like" geochemical signature. Residual

  17. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest.

    PubMed

    Alvarez-Clare, S; Mack, M C; Brooks, M

    2013-07-01

    Experimental evidence for limitation of net primary productivity (NPP) by nitrogen (N) or phosphorus (P) in lowland tropical forests is rare, and the results from the few existing studies have been inconclusive. To directly test if N or P limit NPP in a lowland tropical wet forest in Costa Rica, we conducted a full factorial fertilization experiment (4 treatments x 6 replicates in 30 x 30 m plots). We focused on the influence of tree size and taxa on nutrient limitation, because in these forests a wide variety of tree functional traits related to nutrient acquisition and use are likely to regulate biogeochemical processes. After 2.7 years, a higher percentage of trees per plot increased basal area (BA) with P additions (66.45% +/- 3.28% without P vs. 76.88% +/- 3.28% with P), but there were no other community-level responses to N or P additions on BA increase, litterfall productivity, or root growth. Phosphorus additions resulted in doubled stem growth rates in small trees (5-10 cm diameter at breast height (dbh); [P < or = 0.01]) but had no effect on intermediate (10-30 cm dbh) or large trees (> 30 cm dbh). Phosphorus additions also increased the percentage of seedling survival from 59% to 78% (P < 0.01), as well as the percentage of seedlings that grew (P = 0.03), and increased leaf number (P = 0.02). Trees from Pentaclethra macroloba, the most abundant species, did not increase growth rates with fertilization (P = 0.40). In contrast, the most abundant palms (Socratea exorrhiza) had more than two times higher stem growth rates with P additions (P = 0.01). Our experiment reiterates that P availability is a significant driver of plant processes in these systems, but highlights the importance of considering different aspects of the plant community when making predictions concerning nutrient limitation. We postulate that in diverse, lowland tropical forests "heterogeneous nutrient limitation" occurs, not only driven by variability in nutrient responses among taxa

  18. Calculating net primary productivity of forest ecosystem with G4M model: case study on South Korea

    NASA Astrophysics Data System (ADS)

    Sung, S.; Forsell, N.; Kindermann, G.; Lee, D. K.

    2015-12-01

    Net primary productivity (NPP) is considered as an important indicator for forest ecosystem since the role of forest is highlighted as a stepping stone for mitigating climate change. Especially rapidly urbanizing countries which have high carbon dioxide emission have large interest in calculating forest NPP under climate change. Also maximizing carbon sequestration in forest sector has became a global goal to minimize the impacts of climate change. Therefore, the objective of this research is estimating carbon stock change under the different climate change scenarios by using G4M (Global Forestry Model) model in South Korea. We analyzed four climate change scenarios in different Representative Concentration Pathway (RCP). In this study we used higher resolution data (1kmx1km) to produce precise estimation on NPP from regionalized four climate change scenarios in G4M model. Finally, we set up other environmental variables for G4M such as water holding capacity, soil type and elevation. As a result of this study, temperature showed significant trend during 2011 to 2100. Average annual temperature increased more than 5℃ in RCP 8.5 scenario while 1℃ increased in RCP 2.6 scenario. Each standard deviation of the annual average temperature showed similar trend. Average annual precipitation showed similarity within four scenarios. However the standard deviation of average annual precipitation is higher in RCP8.5 scenario which indicates the ranges of precipitation is wider in RCP8.5 scenario. These results present that climate indicators such as temperature and precipitation have uncertainties in climate change scenarios. NPP has changed from 5-13tC/ha/year in RCP2.6 scenario to 9-21 tC/ha/year in RCP8.5 scenario in 2100. In addition the spatial distribution of NPP presented different trend among the scenarios. In conclusion we calculated differences in temperature and precipitation and NPP change in different climate change scenarios. This study can be applied for

  19. Spatial and temporal patterns of net primary productivity in the duration of 1981-2000 in Guangdong, China

    USGS Publications Warehouse

    Liu, Hai-Gui; Tang, Xu-Li; Zhou, Guo-Yi; Liu, Shu-Guang

    2007-01-01

    The knowledge of net primary production (NPP) dynamics at regional scale will help to understand terrestrial carbon cycling, especially with respect to land use and global climate change. Guangdong province has high plant growth potential because of plenty of light, heat, and water resources in this region. Forest coverage increased significantly from less than 30% in the early l980s to approximately 60% in 2000 owing to the launching of the "Greening Guangdong in 10 years", a provincial afforestation and reforestation project started in 1985. Meanwhile, economy growth has been fast in Guangdong province during the past 20 years. Long-term spatial and temporal NPP dynamics in Guangdong province are not well-known. To fill this knowledge gap, the spatial and temporal patterns of annual NPP from 1981 to 2000, derived from the global production efficiency model (GLO-PEM), were analyzed in this study. NPP patterns were compared at three spatial scales (i. e. , province, region, and city) and among three major forest types (i. e. , broadleaf, coniferous, and mixed). The results showed that for the entire province annual NPP varied between (1360 ±431) and (1626 ± 471) g/(m^2•a), with a mean value of (1480 ±407)g/(m^2•a). NPP increased to the maximum value (1534 ±121 g/(m^2•a)) in late 1980s (1986~1990) while decreased in early 1990s (1991~1995), and then recovered slightly in late 1990s (1996~2000). NPP differed distinctly across geographic regions, with the highest in the southwest coastal region, followed by the southeast coastal region, and the lowest in the inner land region. The differences were probably caused by vegetation composition, heat and water resources, and the distribution of the cropland. NPP dynamics of 21 cities were divided into three types. NPP kept stable in 12 cities including Shaoguan, Qingyuan, and Meizhou etc. NPP increased in Chaozhou, Shanwei, Zhanjiang and Jieyang, and decreased significantly (p<0.05) in 5 cities (i. e. , Foshan

  20. Uncertainty Analysis of Gross Primary Production Separated from Net Ecosystem Exchange Measurements at Speulderbos Forest, The Netherlands

    NASA Astrophysics Data System (ADS)

    Raj, Rahul; Hamm, Nicholas Alexander Samuel; van der Tol, Christiaan; Stein, Alfred

    2015-04-01

    Gross primary production (GPP), separated from the flux tower measurements of net ecosystem exchange (NEE) of CO2, is used increasingly to validate process-based simulators and remote sensing-derived estimates of simulated GPP at various time scales. Proper implementation of validation requires knowledge of the uncertainty associated with the separated GPP at different time scales so that the propagated uncertainty can be determined. We estimate the uncertainty in GPP at half-hourly to yearly time scales. Flux tower measurements of NEE results from two major fluxes GPP and ecosystem respiration (Reco) as NEE = GPP - Reco and therefore GPP can be separated from NEE. We used a non-rectangular hyperbola (NRH) model to separate half-hourly GPP from the three years of continuous flux tower measurements of half-hourly NEE at the Speulderbos forest site, The Netherlands. NRH includes the variables that influence GPP, in particular radiation, vapor pressure deficit, and temperature. In addition, NRH model provides a robust empirical relationship between radiation and GPP by including the degree of curvature of light response curve. NRH was fitted to the measured NEE data on a daily basis. Variation in the parameters of this model was studied within each year. We did not obtain a single optimized value of each parameter of NRH model, instead we defined the prior distribution of each parameters based on literature search. We adopted a Bayesian approach, which was implemented using Markov chain Monte Carlo (MCMC) simulation to update the prior distribution of each parameter on a daily basis. This allowed us to estimate the uncertainty in the separated GPP at the half-hourly time scale. The results of this approach generated the empirical distribution of GPP at each half-hour, which are a measure of uncertainty. The time series of empirical distributions of half-hourly GPP values also allowed us to estimate the uncertainty at daily, monthly and yearly time scales. Our research

  1. Relationships between net primary productivity and forest stand age derived from Forest Inventory and Analysis data and remote sensing imagery

    NASA Astrophysics Data System (ADS)

    He, L.; Chen, J. M.; Pan, Y.; Birdsey, R.

    2010-12-01

    Forest net primary productivity (NPP) varies greatly with stand age, and quantitative information on NPP-age relationship is therefore fundamentally important for forest carbon cycle modeling. We may use four terms to calculate NPP: annual accumulation of live biomass, annual mortality of aboveground and belowground biomass, foliage turnover to soil, and fine root turnover in soil. To derive NPP-age relationships for US forests, the Forest Inventory and Analysis (FIA) data are used to estimate the first two terms. The last two terms make up more than 50% of total NPP, but their estimates are highly uncertain based on limited available empirical relationships between aboveground biomass and foliage or fine root biomass. These estimates are mostly confounded by unknown variations of the turnover rates (TR) related to stand age because such field information is rare. To resolve this problem, we developed a new approach by using a leaf area index (LAI) map and a forest age map at 1 km resolution to derive LAI-age relationships for 18 major forest species groups in the USA. These relationships are then used to derive foliage TR using species-specific leaf longevity values. These relationships are also used for estimating the fine root TR based on reliable relationships between fine root and foliage TR. This combination of FIA and remote sensing data allows us for the first time to derive reliable NPP-age relationships for different forest types in USA (Figure 1). The derived relationships show a general temporal pattern of rapid increase in NPP in early ages, peak growth in mid-ages, and slow decline in old ages. The patterns are subjected to climate conditions, and can also be influenced by forest management. These relationships are further generalized for three major forest biomes for continental-scale carbon cycle modeling in conjunction with remotely sensed land cover types. The NPP relationships derived here may have many uses for analysis of management and climate

  2. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: A model-data comparison

    DOE PAGES

    Rafique, Rashid; Zhao, Fang; de Jong, Rogier; Zeng, Ning; Asrar, Ghassem

    2016-02-25

    The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. We used a combination of the most recent NDVI and model–based NPP estimates (from five models of the TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 80% and 67% of the global land area showed positive NPP and NDVI values, respectively, for this period. The global NPP was estimated to be about 63 Pg C y-1, with an increase of 0.214 Pg Cmore » y-1 y-1. Similarly, the global mean NDVI was estimated to be 0.33, with an increasing trend of 0.00041 y-1. The spatial patterns of NPP and NDVI demonstrated substantial variability, especially at the regional level, for most part of the globe. However, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except for few years (e.g. 1990 and 1995-98). Generally, the Northern Hemisphere showed stronger NDVI and NPP increasing trends over time compared to the Southern Hemisphere; however, NDVI showed larger trends in Temperate regions while NPP showed larger trends in Boreal regions. Among the five models, the maximum and minimum NPP were produced by JULES (72.4 Pg C y-1) and LPJ (53.72 Pg C y-1) models, respectively. At latitudinal level, the NDVI and NPP ranges were ~0.035 y-1 to ~-0.016 y-1 and ~0.10 Pg C y-1 y-1 to ~-0.047 Pg C y-1 y-1, respectively. Overall, the results of this study suggest that the modeled NPP generally correspond to the NDVI trends in the temporal dimension. Lastly, the significant variability in spatial patterns of NPP and NDVI trends points to a need for research to understand the causes of these discrepancies between molded and observed ecosystem dynamics, and the carbon cycle.« less

  3. Modeling of Carbon Sequestration on Eucalyptus Plantation in Brazililian Cerrado Region for Better Characterization of Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Echeverri, J. D.; Siqueira, M. B.

    2013-05-01

    Managed Forests have important roles in climate change due to their contribution to CO2 sequestration stored in their biomass, soils and products therefrom. Terrestrial net primary production (NPP, kgC/m2), equal to gross primary production minus autotrophic respiration, represents the carbon available for plant allocation to leaves, stems, roots, defensive compounds, and reproduction and is the basic measure of biological productivity. Tree growth, food production, fossil fuel production, and atmospheric CO2 levels are all strongly controlled by NPP. Accurate quantification of NPP at local to global scales is therefore central topic for carbon cycle researchers, foresters, land and resource managers, and politicians. For recent or current NPP estimates, satellite remote sensing can be used but for future climate scenarios, simulation models are required. There is an increasing trend to displace natural Brazilian Cerrado to Eucalyptus for paper mills and energy conversion from biomass. The objective of this research exercise is to characterize NPP from managed Eucalyptus plantation in the Brazilian Cerrado. The models selected for this study were the 3-PG and Biome-BGC. The selection of these models aims to cover a range of complexity that allow the evaluation of the processes modeled as to its relevance to a best estimate of productivity in eucalyptus forests. 3-PG model is the simplest of the models chosen for this exercise. Its main purpose is to estimate productivity of forests in timber production. The model uses the relationship of quantum efficiency in the transformation of light energy into biomass for vegetative growth calculations in steps in time of one month. Adverse weather conditions are treated with reduction factors applied in the top efficiency. The second model is the Biome-BGC that uses biology and geochemistry principles to estimate leaf-level photosynthesis based on limiting factors such as availability of light and nutrient constraints. The

  4. Shuttle Net, Tuna Net

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Rockwell International, NASA's prime contractor for the Space Shuttle, asked West Coast Netting (WCN) to develop a safety net for personnel working on the Shuttle Orbiter. This could not be an ordinary net, it had to be relatively small, yet have extraordinary tensile strength. It also had to be fire resistant and resistant to ultraviolet (UV) light. After six months, WCN found the requisite fiber, a polyester-like material called NOMEX. The company was forced to invent a more sophisticated twisting process since conventional methods did not approach specified breaking strength. The resulting product, the Hyperester net, sinks faster and fishes deeper, making it attractive to fishing fleets. A patented treatment for UV protection and greater abrasion resistance make Hyperester nets last longer, and the no-shrink feature is an economic bonus.

  5. An inter-comparison of plot-scale, satellite and earth system model estimates of tropical net primary productivity (Invited)

    NASA Astrophysics Data System (ADS)

    Townsend, A. R.; Cleveland, C. C.; Taylor, P.; Dahlin, K.; Wieder, W. R.; Smith, W. K.; Sullivan, B. W.; Chadwick, K.; Doughty, C.

    2013-12-01

    Tropical forests exchange more CO2 with the atmosphere than any other biome, making them a key control over Earth's climate. And yet, our ability to both measure and model the tropical carbon (C) cycle remains far from ideal, creating a substantial challenge for the development of Earth system models that couple the climate system with ecosystem dynamics. In part, this deficit arises from a lack of sufficient data combined with a biome that displays enormous biogeochemical heterogeneity. Here, we compare a new synthesis of plot-based measurements of tropical net primary productivity (NPP ) compared with two commonly used approaches to evaluating the tropical C cycle at large scales: NPP estimates derived from 1) the MODIS MOD-17 algorithm, and 2) the Community Land Model version 4.5. We also assess the major drivers of variance in NPP in each method, partly as a way to explore how well modeled and satellite-derived values compare to field-based measurements of NPP responses to environmental variables. At the largest scale, MODIS, CLM and a simple climate-based extrapolation of the plot-scale data compare reasonably well: multi-year averaged pan-tropical NPP values from the three approaches were 9.4, 10.8 and 9.5 PgC/yr, respectively. However, inter-comparisons at finer spatial and temporal scales reveal substantial differences among the three methods. For example, CLM predicts a steady increase in tropical NPP throughout the last decade or more, largely because of model assumptions surrounding the importance of CO2 fertilization, while MOD-17 produces a declining NPP trend. CLM also predicts significant N-limitation of lowland forest NPP, a finding that does not agree with most field-based evidence. MODIS estimates show little dependence on fPAR (fraction of absorbed photosynthetically active radiation), in part because the complex canopy architecture creates a radiative transfer environment that the MODIS sensor cannot resolve. Therefore, variation in MODIS

  6. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    PubMed

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability

  7. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    PubMed

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability

  8. Impacts of climate and land use change on ecosystem hydrology and net primary productivity: Linking water availability to food security in Asia

    NASA Astrophysics Data System (ADS)

    Dangal, S. R. S.; Tian, H.; Pan, S.; Zhang, B.; Yang, J.

    2015-12-01

    The nexus approach to food, water and energy security in Asia is extremely important and relevant as the region has to feed two-third of the world's population and accounts for 59% of the global water consumption. The distribution pattern of food, water and energy resources have been shaped by the legacy effect of both natural and anthropogenic disturbances and therefore are vulnerable to climate change and human activities including land use/cover change (LUCC) and land management (irrigation and nitrogen fertilization). In this study, we used the Dynamic Land Ecosystem Model (DLEM) to examine the effects of climate change, land use/cover change, and land management practices (irrigation and nitrogen fertilization) on the spatiotemporal trends and variability in water availability and its role in limiting net primary productivity (NPP) and food security in the 20th and early 21st centuries. Our specific objectives are to quantify how climate change, LUCC and other environmental changes have interactively affected carbon and water dynamics across the Asian region. In particular, we separated the Asian region into several sub-region based on the primary limiting factor - water, food and energy. We then quantified how changes in environmental factors have altered the water and food resources during the past century. We particularly focused on Net Primary Productivity (NPP) and water cycle (Evapotranspiration, discharge, and runoff) as a measure of available food and water resources, respectively while understanding the linkage between food and water resources in Asia.

  9. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  10. [Effects of drip irrigation with plastic mulching on the net primary productivity, soil heterotrophic respiration, and net CO2 exchange flux of cotton field ecosystem in Xinjiang, Northwest China].

    PubMed

    Li, Zhi-Guo; Zhang, Run-Hua; Lai, Dong-Mei; Yan, Zheng-Yue; Jiang, Li; Tian, Chang-Yan

    2012-04-01

    In April-October, 2009, a field experiment was conducted to study the effects of drip irrigation with plastic mulching (MD) on the net primary productivity (NPP), soil heterotrophic respiration (Rh) , and net CO2 exchange flux (NEF(CO2)) of cotton field ecosystem in Xinjiang, taking the traditional flood irrigation with no mulching (NF) as the control. With the increasing time, the NPP, Rh, and NEF(CO2) in treatments MD and NF all presented a trend of increasing first and decreased then. As compared with NF, MD increased the aboveground and belowground biomass and the NPP of cotton, and decreased the Rh. Over the whole growth period, the Rh in treatment MD (214 g C x m(-2)) was smaller than that in treatment NF (317 g C x m(-2)), but the NEF(CO2) in treatment MD (1030 g C x m(-2)) was higher than that in treatment NF (649 g C x m(-2)). Treatment MD could fix the atmospheric CO2 approximately 479 g C x m(-2) higher than treatment NF. Drip irrigation with plastic mulching could promote crop productivity while decreasing soil CO2 emission, being an important agricultural measure for the carbon sequestration and emission reduction of cropland ecosystems in arid area.

  11. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy-covariance, biometric and continuous soil chamber measurements

    NASA Astrophysics Data System (ADS)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2012-10-01

    Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested

  12. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    NASA Astrophysics Data System (ADS)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2013-05-01

    Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher

  13. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock

    PubMed Central

    Li, Hao; Ahammed, Golam J.; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential. PMID:27313587

  14. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock.

    PubMed

    Li, Hao; Ahammed, Golam J; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential. PMID:27313587

  15. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    PubMed Central

    Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-01-01

    Abstract The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen‐carbon interactions. PMID:27773953

  16. Monitoring and Predicting the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Field Program

    NASA Astrophysics Data System (ADS)

    Exports Science Definition Team

    2016-04-01

    Ocean ecosystems play a critical role in the Earth's carbon cycle and its quantification on global scales remains one of the greatest challenges in global ocean biogeochemistry. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) science plan is to develop a predictive understanding of the export and fate of global ocean primary production and its implications for the Earth's carbon cycle in present and future climates. NASA's satellite ocean-color data record has revolutionized our understanding of global marine systems. EXPORTS is designed to advance the utility of NASA ocean color assets to predict how changes in ocean primary production will impact the global carbon cycle. EXPORTS will create a predictive understanding of both the export of organic carbon from the euphotic zone and its fate in the underlying "twilight zone" (depths of 500 m or more) where variable fractions of exported organic carbon are respired back to CO2. Ultimately, it is the sequestration of deep organic carbon transport that defines the impact of ocean biota on atmospheric CO2 levels and hence climate. EXPORTS will generate a new, detailed understanding of ocean carbon transport processes and pathways linking upper ocean phytoplankton processes to the export and fate of organic matter in the underlying twilight zone using a combination of field campaigns, remote sensing and numerical modeling. The overarching objective for EXPORTS is to ensure the success of future satellite missions by establishing mechanistic relationships between remotely sensed signals and carbon cycle processes. Through a process-oriented approach, EXPORTS will foster new insights on ocean carbon cycling that will maximize its societal relevance and be a key component in the U.S. investment to understand Earth as an integrated system.

  17. Effect of warming on the altitudinal distribution of soil moisture and net primary production in a synthetic mountain catchment

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.

    2011-12-01

    Marco P Maneta Dept of Geosciences, University of Montana, Missoula, MT 59812 Generally, the trend towards a warmer climate is thought to lead to a more water-stressed environment. This signal has been sought and detected in the analysis of snow water equivalent and river discharge data from the network of SNOTEL sites and river gauges, in the frequency of forest fires and in the shift of species uphill in elevation. While at a large scale this trend is well documented, local departures are expected, especially in regions of complex topography. Recent studies show that in mountain regions, small scale atmospheric processes can significantly alter the local climate leading to counterintuitive results such as increased precipitation and increased snowpack that results in increased moisture regimes and larger spring peak stream flows. A recent study has observed a significant downhill shift in the optimal elevation of plant species in the last century in California, this shift being attributed to increased energy and moisture availability and demonstrating that temperature and energy alone, as used in many ecological models, do not adequately explain the distribution of vegetation. Using an ecohydrologic model on a synthetic mountain setting we investigate how changes in the temperature regime (defined by the average temperature and lapse rate) and altitudinal distribution of precipitation lead to changes in the altitudinal distribution of soil moisture and primary production, including a downhill shift in primary production. This is because earlier snowmelt increases the amount of available water despite the expected increase of atmospheric water demand associated with higher temperatures.

  18. Mimic nets.

    PubMed

    Johnson, G E

    1993-01-01

    This paper introduces techniques to train feedforward nets to automate ranking and classification tasks. The techniques are denoted mimic nets since the nets can always mimic self-consistent training data. The mimic nets are constructed not for any neurological analogy, but for computational ease and purposeful utility. Mimic nets are designed for problems requiring sensible extrapolation from noiseless training data, and errorless recall of the training data. Linear programming algorithms are utilized to train the net to exactly mimic the expert in all training situations, to identify efficacious features, and to assess the training data. The number of nodes and the number of connections, the structure of the mimic net, are adapted together with weights in the net. The existence of a mimic net for every consistent set of training data is demonstrated.

  19. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

    USGS Publications Warehouse

    Bradford, J.B.

    2011-01-01

    Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  20. Quantifying and Modelling the Seasonality of Pantropical Forest Net Primary Production Using Field Observations and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wagner, F. H.; Hérault, B.; Anderson, L. O.; Rossi, V.; Aragão, L. E.

    2014-12-01

    Climate models predict a range of changes in the Amazonian region, including increased frequency of extreme climatic events, increased average temperatures, increased atmospheric CO2 and reduced rainfall intensity. Understanding tree growth response to climate is important because wood production is the main way carbon enters the forest ecosystem. The response of tropical tree growth to changing climate could drive a change in the direction of the flux from terrestrial ecosystems to the atmosphere. Recently, in French Guiana, we have observed that the peak increase in biomass (early wet season), estimated by diameter growth, was not correlated with the peak in chlorophyll activity (early dry season) in French Guiana. This could reflect different timing in the use of photosynthesis products by the plant for primary growth, i.e. shoot growth and leaves production, and secondary growth, i.e. wood production. To go further, we conducted an analysis combining information on monthly tree growth measurements from 13694 trees (73 pan-tropical forest sites) and monthly litterfall measurements (81 South American sites), with their correspondent monthly climate data and satellite derived vegetation indices (MODIS EVI and NDVI), to calibrate, parameterize and validate a pan-tropical model of biomass production. Specifically, we aim to (i) analyze if there is a coherence between the biological mechanisms observed from field and from satellite measurements and (ii) determine the relative contribution of climate and environmental site characteristics on the seasonal biomass production. The results of this work will provide a novel pantropical description of the carbon cycle in tropical forest ecosystems at a seasonal time scale as a function of site and climate characteristics and will be used to quantify changes in tropical forest functioning, in terms of the responses of carbon fluxes to climate change using the CMIP5 climate scenarios.

  1. Plant invasion impacts on the gross and net primary production of the salt marsh on eastern coast of China: Insights from leaf to ecosystem

    NASA Astrophysics Data System (ADS)

    Ge, Zhen-Ming; Guo, Hai-Qiang; Zhao, Bin; Zhang, Li-Quan

    2015-01-01

    exotic Spartina alterniflora from North America has been rapidly invading the entire Chinese coast, while the impacts of plant invasion on the gross (GPP) and net primary production (NPP) of the coastal salt marshes were less known. In this study, we investigated the photosynthetic performance, leaf characteristics, and primary production of the exotic C4 grass and the dominant native C3 grass (Phragmites australis) in two marsh mixtures (equipped with eddy covariance systems) in the Yangtze Estuary. The light-saturated photosynthetic rate and annual peak leaf area index (LAI) of S. alterniflora was higher than that of P. australis throughout the growing season. The leaf nitrogen content of P. australis declined sharper during the latter growing season than that of S. alterniflora. The leaf-to-canopy production model with species-specific (C3 and C4 types) parameterizations could reasonably simulate the daily trends and annual GPP amount against the 3 year flux measurements from 2005 to 2007, and the modeled NPP agreed with biomass measurements from the two species during 2012. The percentage contributions of GPP between S. alterniflora and P. australis were on average 5.82:1 and 2.91:1 in the two mixtures, respectively. The annual NPP amounts from S. alterniflora were higher by approximately 1.6 times than that from P. australis. Our results suggested that higher photosynthesis efficiency, higher LAI, and longer growing season resulted in greater GPP and NPP in the exotic species relative to the native species. The rapid expansion rate of S. alterniflora further made it the leading contributor of primary production in the salt marsh.

  2. Canopy carbon net assimilation of an urban, naturally assembled brownfield forest

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Wadhwa, S.; Tripathee, R.; Gallagher, F. J.

    2010-12-01

    In this study, we have been investigating an urban brownfield at Liberty State Park that has been abandoned approximately for 40 years. Natural colonization has taken place that allowed a pioneer forest to grow with primarily Betula populifera and Populus spec. Despite soil metal contamination this urban forest exhibits moderate annual productivity and serves as a carbon sink. Diameters at breast height (DBH, 1.35 m above ground) of all trees in a study plot were measured. Aboveground biomass equations were determined for both species through destructive sampling. Aboveground net primary production was about 770 gC m-2 a-1 in 2009. Canopy net assimilation (AnC) was modeled with the canopy conductance constrained assimilation (4CA) model using measured sapflux derived conductance and photosynthetic parameters measured with a LICOR 6400. Annual AnC in 2009 was approximately 1500 gC m-2 a-1 thus with a partitioning of biomass and respiration in the same range of most natural forest with less anthropogenic induced stress. Urban brownfields thus can serve as C sinks and provide phytostabilization of contaminants.

  3. Nitrogen Fertilization Effects on Net Ecosystem and Net Primary Productivities as Determined from Flux Tower, Biometric, and Model Estimates for a Coastal Douglas-fir Forest in British Columbia

    NASA Astrophysics Data System (ADS)

    Trofymow, J. A.; Metsaranta, J. M.; Black, T. A.; Jassal, R. S.; Filipescu, C.

    2013-12-01

    In coastal BC, 6,000-10,000 ha of public and significant areas of private forest land are annually fertilized with nitrogen, with or without thinning, to increase merchantable wood and reduce rotation age. Fertilization has also been viewed as a way to increase carbon (C) sequestration in forests and obtain C offsets. Such offset projects must demonstrate additionality with reference to a baseline and include monitoring to verify net C gains over the project period. Models in combination with field-plot measurements are currently the accepted methods for most C offset protocols. On eastern Vancouver Island, measurements of net ecosystem production (NEP), ecosystem respiration (Re) and gross primary productivity (GPP) using the eddy-covariance (EC) technique as well as component C fluxes and stocks have been made since 1998 in an intermediate-aged Douglas-fir dominated forest planted in 1949. In January 2007 an area around the EC flux tower was aerially fertilized with 200 kg urea-N ha-1. Ground plots in the fertilized area and an adjacent unfertilized control area were also monitored for soil (Rs) and heterotrophic (Rh) respiration, litterfall, and tree growth. To determine fertilization effects on whole tree growth, sample trees were felled in both areas for the 4-year (2003-06) pre- and the 4-year (2007-10) post-fertilization periods and were compared with EC NEP estimates and tree-ring based NEP estimates from Carbon Budget Model - Canadian Forest Sector (CBM-CFS3) for the same periods. Empirical equations using climate and C fluxes from 1998-2006 were derived to estimate what the EC fluxes would have been in 2007-10 for the fertilized area had it been unfertilized. Mean EC NEP for 2007-10 was 561 g C m2 y-1 , a 64% increase above pre-fertilization NEP (341 g C m2 y-1) or 28% increase above estimated unfertilized NEP (438 g C m2 y-1). Most of the increase was attributed to increased tree C uptake (i.e., GPP), with little change in Re. In 2007 fertilization

  4. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change

    NASA Astrophysics Data System (ADS)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2015-02-01

    Midlatitude treed bogs represent significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites: control, recent (1-3 years; experimental) and older drained (10-13 years), with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and estimated tree root respiration (Rr; across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The CO2-C balance was calculated by adding the net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to the driest and the warmest 2013, the control site was a CO2-C sink of 92, 70 and 76 g m-2, the experimental site was a CO2-C source of 14, 57 and 135 g m-2, and the drained site was a progressively smaller source of 26, 23 and 13 g CO2-C m-2. The short-term drainage at the experimental site resulted in small changes in vegetation coverage and large net CO2 emissions at the microforms. In contrast, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) on the hummocks and lichen in the hollows leading to the highest CO2 uptake at the drained hummocks and significant losses in the hollows. The tree NPP (including above- and below-ground growth and litter fall) in 2011 and 2012 was significantly higher at the drained site (92 and 83 g C m-2) than at the experimental (58 and 55 g C m-2) and control (52 and 46 g C m-2) sites. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ~ 1 °C and differential air warming of ~ 6 °C at midday full sun over the study years. Warming significantly enhanced shrub growth and the CO2 sink function of the drained

  5. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming

    USGS Publications Warehouse

    Mowll, Whitney; Blumenthal, Dana M.; Cherwin, Karie; Smith, Anine; Symstad, Amy J.; Vermeire, Lance; Collins, Scott L.; Smith, Melinda D.; Knapp, Alan K.

    2015-01-01

    Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary production (ANPP) in most grasslands. Conversely, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to warming is a challenge, and raises the question: how sensitive will grassland ANPP be to warming? We evaluated climate and multi-year ANPP data (67 years) from eight western US grasslands arrayed along mean annual temperature (MAT; ~7-14 °C) and mean annual precipitation (MAP; ~250-500 mm) gradients. Weused regression and analysis of covariance to assess relationships between ANPP and temperature, as well as precipitation (annual and growing season) to evaluate temperature sensitivity of ANPP. We also related ANPP to the standardized precipitation evaporation index (SPEI), which combines precipitation and evapotranspiration to better represent moisture available for plant growth. Regression models indicated that variation in growing season temperature was negatively related to total and graminoid ANPP, but precipitation was a stronger predictor than temperature. Growing season temperature was also a significant parameter in more complex models, but again precipitation was consistently a stronger predictor of ANPP. Surprisingly, neither annual nor growing season SPEI were as strongly related to ANPP as precipitation. We conclude that forecasted warming likely will affect ANPP in these grasslands, but that predicting temperature effects from natural climatic gradients is difficult. This is because, unlike precipitation, warming effects can be positive or negative and moderated by shifts in the C3/C4 ratios of plant communities.

  6. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming.

    PubMed

    Mowll, Whitney; Blumenthal, Dana M; Cherwin, Karie; Smith, Anine; Symstad, Amy J; Vermeire, Lance T; Collins, Scott L; Smith, Melinda D; Knapp, Alan K

    2015-04-01

    Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary production (ANPP) in most grasslands. Conversely, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to warming is a challenge, and raises the question: how sensitive will grassland ANPP be to warming? We evaluated climate and multi-year ANPP data (67 years) from eight western US grasslands arrayed along mean annual temperature (MAT; ~7-14 °C) and mean annual precipitation (MAP; ~250-500 mm) gradients. We used regression and analysis of covariance to assess relationships between ANPP and temperature, as well as precipitation (annual and growing season) to evaluate temperature sensitivity of ANPP. We also related ANPP to the standardized precipitation evaporation index (SPEI), which combines precipitation and evapotranspiration to better represent moisture available for plant growth. Regression models indicated that variation in growing season temperature was negatively related to total and graminoid ANPP, but precipitation was a stronger predictor than temperature. Growing season temperature was also a significant parameter in more complex models, but again precipitation was consistently a stronger predictor of ANPP. Surprisingly, neither annual nor growing season SPEI were as strongly related to ANPP as precipitation. We conclude that forecasted warming likely will affect ANPP in these grasslands, but that predicting temperature effects from natural climatic gradients is difficult. This is because, unlike precipitation, warming effects can be positive or negative and moderated by shifts in the C3/C4 ratios of plant communities.

  7. Assessing the response of seasonal variation of net primary productivity to climate using remote sensing data and geographic information system techniques in Xinjiang.

    PubMed

    Peng, Dai-Liang; Huang, Jing-Feng; Cai, Cheng-Xia; Deng, Rui; Xu, Jun-Feng

    2008-12-01

    Net primary productivity (NPP) is a key component of energy and matter transformation in the terrestrial ecosystem, and the responses of NPP to global change locally and regionally have been one of the most important aspects in climate-vegetation relationship studies. In order to isolate causal climatic factors, it is very important to assess the response of seasonal variation of NPP to climate. In this paper, NPP in Xinjiang was estimated by NOAA/AVHRR Normalized Difference Vegetation Index (NDVI) data and geographic information system (GIS) techniques. The impact of climatic factors (air temperature, precipitation and sunshine percentage) on seasonal variations of NPP was studied by time lag and serial correlation ageing analysis. The results showed that the NPP for different land cover types have a similar correlation with any one of the three climatic factors, and precipitation is the major climatic factor influencing the seasonal variation of NPP in Xinjiang. It was found that the positive correlation at 0 lag appeared between NPP and precipitation and the serial correlation ageing was 0 d in most areas of Xinjiang, which indicated that the response of NPP to precipitation was immediate. However, NPP of different land cover types showed significant positive correlation at 2 month lag with air temperature, and the impact of which could persist 1 month as a whole. No correlation was found between NPP and sunshine percentage.

  8. Assessing the impact of urbanization on net primary productivity using multi-scale remote sensing data: a case study of Xuzhou, China

    NASA Astrophysics Data System (ADS)

    Tan, Kun; Zhou, Songyang; Li, Erzhu; Du, Peijun

    2015-06-01

    An improved Carnegie Ames Stanford Approach (CASA) model based on two kinds of remote sensing (RS) data, Landsat Enhanced Thematic Mapper Plus (ETM +) and Moderate Resolution Imaging Spectro-radiometer (MODIS), and climate variables were applied to estimate the Net Primary Productivity (NPP) of Xuzhou in June of each year from 2001 to 2010. The NPP of the study area decreased as the spatial scale increased. The average NPP of terrestrial vegetation in Xuzhou showed a decreasing trend in recent years, likely due to changes in climate and environment. The study area was divided into four sub-regions, designated as highest, moderately high, moderately low, and lowest in NPP. The area designated as the lowest sub-region in NPP increased with expanding scale, indicating that the NPP distribution varied with different spatial scales. The NPP of different vegetation types was also significantly influenced by scale. In particular, the NPP of urban woodland produced lower estimates because of mixed pixels. Similar trends in NPP were observed with different RS data. In addition, expansion of residential areas and reduction of vegetated areas were the major reasons for NPP change. Land cover changes in urban areas reduced NPP, which could chiefly be attributed to human-induced disturbance.

  9. Assessing the impact of urbanization on net primary productivity using multi-scale remote sensing data: a case study of Xuzhou, China

    NASA Astrophysics Data System (ADS)

    Tan, Kun; Zhou, Songyang; Li, Erzhu; Du, Peijun

    2014-09-01

    An improved Carnegie Ames Stanford Approach (CASA) model based on two kinds of remote sensing (RS) data, Landsat Enhanced Thematic Mapper Plus (ETM +) and Moderate Resolution Imaging Spectro-radiometer (MODIS), and climate variables were applied to estimate the Net Primary Productivity (NPP) of Xuzhou in June of each year from 2001 to 2010. The NPP of the study area decreased as the spatial scale increased. The average NPP of terrestrial vegetation in Xuzhou showed a decreasing trend in recent years, likely due to changes in climate and environment. The study area was divided into four sub-regions, designated as highest, moderately high, moderately low, and lowest in NPP. The area designated as the lowest sub-region in NPP increased with expanding scale, indicating that the NPP distribution varied with different spatial scales. The NPP of different vegetation types was also significantly influenced by scale. In particular, the NPP of urban woodland produced lower estimates because of mixed pixels. Similar trends in NPP were observed with different RS data. In addition, expansion of residential areas and reduction of vegetated areas were the major reasons for NPP change. Land cover changes in urban areas reduced NPP, which could chiefly be attributed to human-induced disturbance.

  10. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  11. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie.

    PubMed

    Xu, Xia; Sherry, Rebecca A; Niu, Shuli; Li, Dejun; Luo, Yiqi

    2013-09-01

    Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP , defined as the fraction of belowground NPP (BNPP) to NPP], and rain-use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and half), and annual clipping in a mixed-grass prairie in Oklahoma, USA since July, 2009. Across the years, warming significantly increased BNPP, fBNPP , and RUEBNPP by an average of 11.6%, 2.8%, and 6.6%, respectively. This indicates that BNPP was more sensitive to warming than aboveground NPP (ANPP) since warming did not change ANPP and RUEANPP much. Double precipitation stimulated ANPP, BNPP, and NPP but suppressed RUEANPP , RUEBNPP , and RUENPP while half precipitation decreased ANPP, BNPP, and NPP but increased RUEANPP , RUEBNPP , and RUENPP . Clipping interacted with altered precipitation in impacting RUEANPP , RUEBNPP , and RUENPP , suggesting land use could confound the effects of precipitation changes on ecosystem processes. Soil moisture was found to be a main factor in regulating variation in ANPP, BNPP, and NPP while soil temperature was the dominant factor influencing fBNPP . These findings suggest that BNPP is critical point to future research. Additionally, results from single-factor manipulative experiments should be treated with caution due to the non-additive interactive effects of warming with altered precipitation and land use (clipping).

  12. [Net primary productivity of Leymus chinensis steppe in Xilin River basin of Inner Mongolia and its responses to global climate change].

    PubMed

    Yuan, Fei; Han, Xing-Guo; Ge, Jian-Ping; Wu, Jian-Guo

    2008-10-01

    CENTURY model was utilized to simulate the annual aboveground net primary production (ANPP) of Leymus chinensis steppe, a dominant community type in Xilin River basin of Inner Mongolia steppe region. The results showed that the model performed reasonably well in predicting the dynamics of the ANPP. The scenario-based simulations indicated that though the variations of air temperature and precipitation due to global climate change as well as the elevated CO2 would significantly affect the dynamics of the ANPP, precipitation was the key affecting factor. Several GCM models had predicted that the precipitation in this region would decrease in the future, and consequently, it was likely that the ANPP would also decrease. Nevertheless, the simulation results showed that while the ANPP decreased in most climate change scenarios, it might also increase in the following climate change scenarios: 1) if the atmospheric CO2 concentration was doubled, air temperature was increased by 2 degrees C, and precipitation was kept unchanged or increased by 10%-20%, and 2) if the atmospheric CO2 concentration was kept unchanged, air temperature was increased by 2 degrees C, and precipitation was increased by 20%. Overall, it was evident that climate change would have significant effects on the steppe in Xilin River basin of Inner Mongolia.

  13. The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest.

    PubMed

    Mund, M; Kutsch, W L; Wirth, C; Kahl, T; Knohl, A; Skomarkova, M V; Schulze, E-D

    2010-06-01

    The periodic production of large seed crops by trees (masting) and its interaction with stem growth has long been the objective of tree physiology research. However, very little is known about the effects of masting on stem growth and total net primary productivity (NPP) at the stand scale. This study was conducted in an old-growth, mixed deciduous forest dominated by Fagus sylvatica (L.) and covers the period from 2003 to 2007, which comprised wet, dry and regular years as well as two masts of Fagus and one mast of the co-dominant tree species Fraxinus excelsior (L.) and Acer pseudoplatanus (L.). We combined analyses of weather conditions and stem growth at the tree level (inter- and intra-annual) with fruit, stem and leaf production, and estimates of total NPP at the stand level. Finally, we compared the annual demand of carbon for biomass production with net canopy assimilation (NCA), derived from eddy covariance flux measurements, chamber measurements and modelling. Annual stem growth of Fagus was most favoured by warm periods in spring and that of Fraxinus by high precipitation in June. For stem growth of Acer and for fruit production, no significant relationships with mean weather conditions were found. Intra-annual stem growth of all species was strongly reduced when the relative plant-available water in soil dropped below a threshold of about 60% between May and July. The inter-annual variations of NCA, total NPP and leaf NPP at the stand level were low (mean values 1313, 662 and 168 g C m(-2) year(-1), respectively), while wood and fruit production varied more and contrarily (wood: 169-241 g C m(-2) year(-1); fruits: 21-142 g C m(-2) year(-1)). In all years, an annual surplus of newly assimilated carbon was calculated (on average 100 g C m(-2) year(-1)). The results suggest that stem growth is generally not limited by insufficient carbon resources; only in mast years a short-term carbon shortage may occur in spring. In contrast to common assumption, stem

  14. Net Gains

    ERIC Educational Resources Information Center

    Fielker, David

    2008-01-01

    The Easter conference 2008 had several activities which for the author raised the same questions on cube nets in some work with eight-year-olds some time ago. In this article, the author muses on some problems from the Easter conference regarding nets of shapes. (Contains 1 note.)

  15. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink

    NASA Astrophysics Data System (ADS)

    Buermann, Wolfgang; Beaulieu, Claudie; Parida, Bikash; Medvigy, David; Collatz, George J.; Sheffield, Justin; Sarmiento, Jorge L.

    2016-03-01

    The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ˜ 1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ˜ 30 % larger than observed (or ˜ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.

  16. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau.

    PubMed

    Gao, Qingzhu; Guo, Yaqi; Xu, Hongmei; Ganjurjav, Hasbagen; Li, Yue; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Liu, Shuo

    2016-06-01

    Changes in climate have caused impacts on ecosystems on all continents scale, and climate change is also projected to be a stressor on most ecosystems even at the rate of low- to medium-range warming scenarios. Alpine ecosystem in the Qinghai-Tibetan Plateau is vulnerable to climate change. To quantify the climate change impacts on alpine ecosystems, we simulated the vegetation distribution and net primary production in the Qinghai-Tibetan Plateau for three future periods (2020s, 2050s and 2080s) using climate projection for RCPs (Representative Concentration Pathways) RCP4.5 and RCP8.5 scenarios. The modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ model) was parameter and test to make it applicable to the Qinghai-Tibetan Plateau. Climate projections that were applied to LPJ model in the Qinghai-Tibetan Plateau showed trends toward warmer and wetter conditions. Results based on climate projections indicated changes from 1.3°C to 4.2°C in annual temperature and changes from 2% to 5% in annual precipitation. The main impacts on vegetation distribution was increase in the area of forests and shrubs, decrease in alpine meadows which mainly replaced by shrubs which dominated the eastern plateau, and expanding in alpine steppes to the northwest dominated the western and northern plateau. The NPP was projected to increase by 79% and 134% under the RCP4.5 and RCP8.5. The projected NPP generally increased about 200gC·m(-2)·yr(-1) in most parts of the plateau with a gradual increase from the eastern to the western region of the Qinghai-Tibetan Plateau at the end of this century.

  17. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau.

    PubMed

    Gao, Qingzhu; Guo, Yaqi; Xu, Hongmei; Ganjurjav, Hasbagen; Li, Yue; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Liu, Shuo

    2016-06-01

    Changes in climate have caused impacts on ecosystems on all continents scale, and climate change is also projected to be a stressor on most ecosystems even at the rate of low- to medium-range warming scenarios. Alpine ecosystem in the Qinghai-Tibetan Plateau is vulnerable to climate change. To quantify the climate change impacts on alpine ecosystems, we simulated the vegetation distribution and net primary production in the Qinghai-Tibetan Plateau for three future periods (2020s, 2050s and 2080s) using climate projection for RCPs (Representative Concentration Pathways) RCP4.5 and RCP8.5 scenarios. The modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ model) was parameter and test to make it applicable to the Qinghai-Tibetan Plateau. Climate projections that were applied to LPJ model in the Qinghai-Tibetan Plateau showed trends toward warmer and wetter conditions. Results based on climate projections indicated changes from 1.3°C to 4.2°C in annual temperature and changes from 2% to 5% in annual precipitation. The main impacts on vegetation distribution was increase in the area of forests and shrubs, decrease in alpine meadows which mainly replaced by shrubs which dominated the eastern plateau, and expanding in alpine steppes to the northwest dominated the western and northern plateau. The NPP was projected to increase by 79% and 134% under the RCP4.5 and RCP8.5. The projected NPP generally increased about 200gC·m(-2)·yr(-1) in most parts of the plateau with a gradual increase from the eastern to the western region of the Qinghai-Tibetan Plateau at the end of this century. PMID:26950617

  18. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models

    DOE PAGES

    Fu, Weiwei; Randerson, James T.; Moore, J. Keith

    2016-09-16

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16 % and EP by 7–18 %. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. Community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate

  19. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    SciTech Connect

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, N.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen

    2014-05-06

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m-2 yr-1 and total NPP in the range of 318–490 Tg C yr-1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m-2 yr-1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m-2 yr-1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. Finally, we suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.

  20. Natural and socioeconomic determinants of the embodied human appropriation of net primary production and its relation to other resource use indicators

    PubMed Central

    Haberl, Helmut; Steinberger, Julia K.; Plutzar, Christoph; Erb, Karl-Heinz; Gaube, Veronika; Gingrich, Simone; Krausmann, Fridolin

    2012-01-01

    Indicators of resource use such as material and energy flow accounts, emission data and the ecological footprint inform societies about their performance by evaluating resource use efficiency and the effectiveness of sustainability policies. The human appropriation of net primary production (HANPP) is an indicator of land-use intensity on each nation's territory used in research as well as in environmental reports. ‘Embodied HANPP’ (eHANPP) measures the HANPP anywhere on earth resulting from a nation's domestic biomass consumption. The objectives of this article are (i) to study the relation between eHANPP and other resource use indicators and (ii) to analyse socioeconomic and natural determinants of global eHANPP patterns in the year 2000. We discuss a statistical analysis of >140 countries aiming to better understand these relationships. We found that indicators of material and energy throughput, fossil-energy related CO2 emissions as well as the ecological footprint are highly correlated with each other as well as with GDP, while eHANPP is neither correlated with other resource use indicators nor with GDP, despite a strong correlation between final biomass consumption and GDP. This can be explained by improvements in agricultural efficiency associated with GDP growth. Only about half of the variation in eHANPP can be explained by differences in national land-use systems, suggesting a considerable influence of trade on eHANPP patterns. eHANPP related with biomass trade can largely be explained by differences in natural endowment, in particular the availability of productive area. We conclude that eHANPP can deliver important complimentary information to indicators that primarily monitor socioeconomic metabolism. PMID:23470886

  1. Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation.

    PubMed

    Geissler, Maren; Gottschling, Christine; Aguado, Ainhara; Rauch, Uwe; Wetzel, Christian H; Hatt, Hanns; Faissner, Andreas

    2013-05-01

    The extracellular matrix (ECM) of the brain plays crucial roles during the development, maturation, and regeneration of the CNS. In a subpopulation of neurons, the ECM condenses to superstructures called perineuronal nets (PNNs) that surround synapses. Camillo Golgi described PNNs a century ago, yet their biological functions remain elusive. Here, we studied a mouse mutant that lacks four ECM components highly enriched in the developing brain: the glycoproteins tenascin-C and tenascin-R and the chondroitin sulfate proteoglycans brevican and neurocan. Primary embryonic hippocampal neurons and astrocytes were cultivated using a cell insert system that allows for co-culture of distinct cell populations in the absence of direct membrane contacts. The wild-type and knock-out cells were combined in the four possible permutations. Using this approach, neurons cultivated in the presence of mutant astrocytes displayed a transient increase of synapses after 2 weeks. However, after a period of 3 weeks or longer, synapse formation and stabilization were compromised when either neuron or astrocyte cell populations or both were of mutant origin. The development of PNN structures was observed, but their size was substantially reduced on knock-out neurons. The synaptic activity of both wild-type and knock-out neurons was monitored using whole-cell patch clamping. The salient observation was a reduced frequency of IPSCs and EPSCs, whereas the amplitudes were not modified. Remarkably, the knock-out neuron phenotypes could not be rescued by wild-type astrocytes. We conclude that the elimination of four ECM genes compromises neuronal function.

  2. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models

    NASA Astrophysics Data System (ADS)

    Fu, Weiwei; Randerson, James T.; Moore, J. Keith

    2016-09-01

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2-16 % and EP by 7-18 %. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positive biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface-ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. Community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export

  3. The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of northwest China.

    PubMed

    Li, Fang; Zhao, Wenzhi; Liu, Hu

    2013-01-01

    Rainfall events can be characterized as "pulses", which are discrete and variable episodes that can significantly influence the structure and function of desert ecosystems, including shifts in aboveground net primary productivity (ANPP). To determine the threshold and hierarchical response of rainfall event size on the Normalized Difference Vegetation Index (NDVI, a proxy for ANPP) and the difference across a desert area in northwestern China with two habitats - dune and desert - we selected 17 independent summer rainfall events from 2005 to 2012, and obtained a corresponding NDVI dataset extracted from MODIS images. Based on the threshold-delay model and statistical analysis, the results showed that the response of NDVI to rainfall pulses began at about a 5 mm event size. Furthermore, when the rainfall event size was more than 30 mm, NDVI rapidly increased 3- to 6-fold compared with the response to events of less than 30 mm, suggesting that 30 mm was the threshold for a large NDVI response. These results revealed the importance of the 5 mm and 30 mm rainfall events for plant survival and growth in desert regions. There was an 8- to 16-day lag time between the rainfall event and the NDVI response, and the response duration varied with rainfall event size, reaching a maximum of 32 days. Due to differences in soil physical and mineralogical properties, and to biodiversity structure and the root systems' abilities to exploit moisture, dune and desert areas differed in precipitation responses: dune habitats were characterized by a single, late summer productivity peak; in contrast, deserts showed a multi-peak pattern throughout the growing season.

  4. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Bao, Yuhai; Qin, Zhihao; Xin, Xiaoping; Bao, Yulong; Bayarsaikan, Sainbuyin; Zhou, Yi; Chuntai, Bilegtmandakh

    2016-04-01

    Since the estimate of moisture stress coefficients (MSC) in the current Carnegie-Ames-Stanford-Approach (CASA) model still requires considerable inputs from ground meteorological data and many soil parameters, here we present a modified CASA model by introducing the land-surface water index (LSWI) and scaled precipitation to model the vegetation net primary productivity (NPP) in the arid and semiarid climate of the Mongolian Plateau. The field-observed NPP data and a previously proposed model (the Yu-CASA model) were used to evaluate the performance of our LSWI-based CASA model. The results show that the NPP predicted by both the LSWI-based CASA model and the Yu-CASA model showed good agreement with the observed NPP in the grassland ecosystems in the study area, with coefficients of determination of 0.717 and 0.714, respectively. The LSWI-based CASA model also performed comparably with the Yu-CASA model at both biome and per-pixel scales when keeping other inputs unchanged, with a difference of approximately 16 g C in the growing-season total NPP and an average value of 2.3 g C bias for each month. This indicates that, unlike an earlier method that estimated MSC based entirely on climatic variables or a soil moisture model, the method proposed here simplifies the model structure, reduces the need for ground measurements, and can provide results comparable with those from earlier models. The LSWI-based CASA model is potentially an alternative method for modelling NPP for a wide range of vegetation types in the Mongolian Plateau.

  5. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Fu, W.; Randerson, J.; Moore, J. K.

    2015-08-01

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth System Models (ESMs) performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, global NPP in the 2090s is reduced by 2.3-16 % and EP by 7-18 %. The models with the largest increases in stratification (and largest relative reductions in NPP and EP) also show the largest positive biases in stratification for the contemporary period, suggesting some potential overestimation of climate impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface ocean warming and freshening that is accompanied by decreases in NPP, EP, and surface macronutrient concentrations. There is considerable variability across models in the absolute magnitude of these fluxes, surface nutrient concentrations, and their perturbations by climate change, indicating large model uncertainties. The negative response of NPP and EP to stratification increases reflects a bottom-up control, as nutrient flux to the euphotic zone declines. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This is driven by phytoplankton community composition shifts, with a reduced percentage of NPP by large phytoplankton under RCP 8.5, as smaller phytoplankton are favored under the increasing nutrient stress. Thus, projections of the NPP response to climate change in the CMIP5 models are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump, and the resulting (highly variable) levels of regenerated production. Community composition is represented relatively simply in the CMIP5 models, and should be expanded to better capture the

  6. Tracing trade-related telecouplings in the global land-system using the embodied human appropriation of net primary production framework

    NASA Astrophysics Data System (ADS)

    Haberl, H.; Kastner, T.; Schaffartzik, A.; Erb, K. H.

    2015-12-01

    Global land-system change is influenced by a complex set of drivers that transcend spatial, institutional and temporal scales. The notion of "telecouplings" is gaining importance in Land System Science as a framework to address that complexity of drivers. One of them is the trade in land-based products, which forges connections between different geographic regions. Trade in land-based products is growing rapidly, thereby creating an increasing spatial disconnect between the locations where primary products (e.g. crops, fodder or timber) are grown and harvested and where the related environmental pressures occur, and the locations where final products (e.g. food, fiber or bioenergy) are consumed. Governing land-related sustainability issues such as GHG emissions or pressures on biodiversity and ecosystems related with land-use changes requires information on trade-related telecouplings, e.g. in order to avoid leakage effects. However, tracing land use (change) related with flows of traded products is challenging, among others due to (a) the lack of easily implementable metrics to account for differences in land quality and land-use intensity, and (b) the lack of satisfactory methods to allocate land to products that are traded and consumed. Drawing from a database derived from FAO statistics that allows tracing bilateral trade flows between ~200 countries at a resolution of ~500 products for the time period 1986-2006, this presentation will discuss how the framework of embodied human appropriation of net primary production (eHANPP) can help tackling these difficult issues. The HANPP framework allows to consistently represent important aspects of land quality and land-use intensity, e.g. natural productivity potential or land-use efficiency. In terms of allocation of land to products, eHANPP is a factor-based approach, and the presentation will discuss differences to alternative methods such as environmentally extended input-output analysis. We will use the available

  7. Game Theory .net.

    ERIC Educational Resources Information Center

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  8. Catamaran Nets

    NASA Technical Reports Server (NTRS)

    1990-01-01

    West Coast Netting, Inc.'s net of Hyperester twine, is made of three strands of fiber twisted together by a company-invented sophisticated twisting machine and process that maintain precisely the same tension on each strand. The resulting twine offers higher strength and improved abrasion resistance. The technology that created the Hyperester supertwine has found spinoff applications, first as an extra-efficient seine for tuna fishing, then as a capture net for law enforcement agencies. The newest one is as a deck for racing catamarans. Hyperester twine net has been used on most of the high performance racing catamarans of recent years, including the America's Cup Challenge boats. They are tough and hold up well in the continual exposure to sunlight and saltwater.

  9. Impact of Drought and Precipitation Seasonality on Net Primary Production and Plant Community Composition Across a Grassland Ecotone in New Mexico

    NASA Astrophysics Data System (ADS)

    Collins, S. L.; Thomey, M. L.; Brown, R. F.; Gehres, N.; Petrie, M. D.; Vanderbilt, K.; Pockman, W.

    2014-12-01

    In the southwestern US, climate change will impact the amount, timing and variability of rainfall during the summer monsoon. Changes in amount and seasonality of precipitation are likely to affect plant community dynamics and ecosystem processes, especially along ecotones. In 2012, we established a rainfall manipulation experiment (EDGE-Extreme Drought in Grasslands Experiment) in Chihuahuan Desert grassland (CDG) dominated by black grama and shortgrass steppe (SGS) dominated by blue grama across a grassland ecotone in central New Mexico. EDGE includes two rainfall treatments, chronic drought (~66% reduction in monsoon rainfall) and altered timing of the summer monsoon. Chronic drought is imposed from July through September by rainout shelters with roof panels that cover 66% of the surface area. To alter precipitation seasonality complete rainout shelters are erected in July and August, and all rainfall that occurred during this period is captured, stored, and then reapplied in several large rain events during September and October. Thus, this treatment receives the same amount of precipitation as ambient but differs in seasonality and frequency of rain events. We measured soil moisture, aboveground net primary production (ANPP), and plant species composition in each replicate (n=10) of each treatment at CDG and SGS sites. There were no significant pre-treatment differences in ANPP or plant species richness at either site. In 2013 following an above average monsoon, ambient ANPP was 99.4 g m-2 at CDG and 44.3 g m-2 at SGS. Event size reduction resulted in a 75% reduction in ANPP at CDG but only a 33% reduction in ANPP at SGS. Shifting the monsoon to later in the growing season resulted in a 50% and 43% reduction in ANPP at CDG and SGS, respectively. Thus, ANPP at CDG partially recovered from the mid-summer drought with late season precipitation but SGS did not. Event size reduction also resulted in a decrease in species richness at CDG, but not at SGS. These short

  10. Impact of drought and precipitation seasonality on net primary production and plant community composition across a grassland ecotone in New Mexico

    NASA Astrophysics Data System (ADS)

    Collins, Scott; Thomey, Michell; Brown, Renee; Gehres, Nate; Petrie, Matthew; Vanderbilt, Kristin; Pockman, William

    2015-04-01

    In the southwestern US, climate change will impact the amount, timing and variability of rainfall during the summer monsoon. Changes in amount and seasonality of precipitation are likely to affect plant community dynamics and ecosystem processes, especially along ecotones. In 2012, we established a rainfall manipulation experiment (EDGE-Extreme Drought in Grasslands Experiment) in Chihuahuan Desert grassland (CDG) dominated by black grama and shortgrass steppe (SGS) dominated by blue grama across a grassland ecotone in central New Mexico. EDGE includes two rainfall treatments, chronic drought (~66% reduction in monsoon rainfall) and altered timing of the summer monsoon. Chronic drought is imposed from July through September by rainout shelters with roof panels that cover 66% of the surface area. To alter precipitation seasonality complete rainout shelters are erected in July and August, and all rainfall that occurred during this period is captured, stored, and then reapplied in several large rain events during September and October. Thus, this treatment receives the same amount of precipitation as ambient but differs in seasonality and frequency of rain events. We measured soil moisture, aboveground net primary production (ANPP), and plant species composition in each replicate (n=10) of each treatment at CDG and SGS sites. There were no significant pre-treatment differences in ANPP or plant species richness at either site. In 2013 following an above average monsoon, ambient ANPP was 99.4 g m-2 at CDG and 44.3 g m-2 at SGS. Event size reduction resulted in a 75% reduction in ANPP at CDG but only a 33% reduction in ANPP at SGS. Shifting the monsoon to later in the growing season resulted in a 50% and 43% reduction in ANPP at CDG and SGS, respectively. Thus, ANPP at CDG partially recovered from the mid-summer drought with late season precipitation but SGS did not. Event size reduction also resulted in a decrease in species richness at CDG, but not at SGS. These short

  11. [Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved-Korean pine forest in Northeast China].

    PubMed

    Liu, Qi; Cai, Hui-Ying; Jin, Guang-Ze

    2013-10-01

    To accurately quantify forest carbon density and net primary productivity (NPP) is of great significance in estimating the role of forest ecosystems in global carbon cycle. By using the forest inventory and allometry approaches, this paper measured the carbon density and NPP of the virgin broadleaved-Korean pine (Pinus koraiensis) forest and of the broadleaved-Korean pine forest after 34 years selective-cutting (the cutting intensity was 30%, and the cutting trees were in large diameter class). The total carbon density of the virgin and selective-cutting broadleaved-Korean pine forests was (397.95 +/- 93.82) and (355.61 +/- 59.37) t C x hm(-2), respectively. In the virgin forest, the carbon density of the vegetation, debris, and soil accounted for 31.0%, 3.1%, and 65.9% of the total carbon pool, respectively; in the selective-cutting forest, the corresponding values were 31.7%, 2.9%, and 65.4%, respectively. No significant differences were observed in the total carbon density and the carbon density of each component between the two forests. The total NPP of the virgin and selective-cutting forests was (36.27 +/- 0.36) and (6.35 +/- 0.70) t C x hm(-2) x a(-1), among which, the NPP of overstory, understory, and fine roots in virgin forest and selective-cutting forest accounted for 60.3%, 2.0%, and 37.7%, and 66.1%, 2.0%, and 31.2%, respectively. No significant differences were observed in the total NPP and the contribution rate of each component between the two forests. However, the ratios of the needle and broadleaf NPPs of the virgin and selective-cutting forests were 47.24:52.76 and 20.48:79.52, respectively, with a significant difference. The results indicated that the carbon density and NPP of the broadleaved-Korean pine forest after 34 years selective-cutting recovered to the levels of the virgin broadleaved-Korean pine forest.

  12. Exploring the response of net primary productivity variations to urban expansion and climate change: a scenario analysis for Guangdong Province in China.

    PubMed

    Pei, Fengsong; Li, Xia; Liu, Xiaoping; Lao, Chunhua; Xia, Gengrui

    2015-03-01

    Urban land development alters landscapes and carbon cycle, especially net primary productivity (NPP). Despite projections that NPP is often reduced by urbanization, little is known about NPP changes under future urban expansion and climate change conditions. In this paper, terrestrial NPP was calculated by using Biome-BGC model. However, this model does not explicitly address urban lands. Hence, we proposed a method of NPP-fraction to detect future urban NPP, assuming that the ratio of real NPP to potential NPP for urban cells remains constant for decades. Furthermore, NPP dynamics were explored by integrating the Biome-BGC and the cellular automata (CA), a widely used method for modeling urban growth. Consequently, urban expansion, climate change and their associated effects on the NPP were analyzed for the period of 2010-2039 using Guangdong Province in China as a case study. In addition, four scenarios were designed to reflect future conditions, namely baseline, climate change, urban expansion and comprehensive scenarios. Our analyses indicate that vegetation NPP in urban cells may increase (17.63 gC m(-2) year(-1)-23.35 gC m(-2) year(-1)) in the climate change scenario. However, future urban expansion may cause some NPP losses of 241.61 gC m(-2) year(-1), decupling the NPP increase of the climate change factor. Taking into account both climate change and urban expansion, vegetation NPP in urban area may decrease, minimally at a rate of 228.54 gC m(-2) year(-1) to 231.74 gC m(-2) year(-1). Nevertheless, they may account for an overall NPP increase of 0.78 TgC year(-1) to 1.28 TgC year(-1) in the whole province. All these show that the provincial NPP increase from climate change may offset the NPP decrease from urban expansion. Despite these results, it is of great significance to regulate reasonable expansion of urban lands to maintain carbon balance.

  13. [Effect of climate change on net primary productivity of Korean pine (Pinus koraiensis) at different successional stages of broad-leaved Korean pine forest].

    PubMed

    Qiu, Yang; Gao, Lu-Shuang; Zhang, Xue; Guo, Jing; Ma, Zhi-Yuan

    2014-07-01

    Pinus koraiensis in broad-leaved Korean pine forests of Changbai Mountain at different successional stages (secondary poplar-birch forest, secondary coniferous and broad-leaved forest and the primitive Korean pine forest) were selected in this paper as the research objects. In this research, the annual growth of net primary productivity (NPP) (1921-2006) of P. koraiensis was obtained by combining the tree-ring chronology and relative growth formulae, the correlation between NPP of P. koraiensis and climatic factors was developed, and the annual growth of NPP of P. koraiensis at different successional stages in relation to climatic variation within different climate periods were analyzed. The results showed that, in the research period, the correlations between climatic factors and NPP of P. koraiensis at different successional stages were different. With increasing the temperature, the correlations between NPP of P. koraiensis in the secondary poplar-birch forest and the minimum temperatures of previous and current growing seasons changed from being significantly negative to being significantly positive. The positive correlation between NPP of P. koraiensis in the secondary coniferous and broad-leaved forest and the minimum temperature in current spring changed into significantly positive correlation between NPP of P. koraiensis and the temperatures in previous and current growing seasons. The climatic factors had a stronger hysteresis effect on NPP of P. koraiensis in the secondary coniferous and broad-leaved forest, but NPP of P. koraiensis in the primitive Korean pine forest had weaker correlation with temperature but stronger positive correlation with the precipitation of previous growing season. The increases of minimum and mean temperatures were obvious, but no significant variations of the maximum temperature and precipitation were observed at our site. The climatic variation facilitated the increase of the NPP of P. koraiensis in the secondary poplar

  14. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    NASA Astrophysics Data System (ADS)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked

  15. Comparison of efficacy of five types of long-lasting insecticidal nets against Anopheles fluviatilis, the primary malaria vector in east-central India.

    PubMed

    Gunasekaran, K; Sahu, S S; Vijayakumar, T; Vaidyanathan, K; Yadav, R S; Pigeon, O; Jambulingam, P

    2014-07-01

    Five types of long-lasting insecticidal nets (LNs), namely, Olyset, Netprotect, PermaNet, DuraNet, and Interceptor, were tested after 20 washes for efficacy in terms of mortality, deterrence effect, blood-feeding inhibition, and induced exophily of the malaria vector Anopheles fluviatilis in experimental huts in Malkangiri district of Odisha State, India. Efficacy of the three synthetic pyrethroids (SPs) used in the LNs was also analyzed. Use of LNs reduced the entry of An. fluviatilis into the huts by 73.3-83.2%, and the five LNs were comparable in terms of deterrence. The exit rate of An. fluviatilis from the huts with untreated net was 56.3%, and relative to this, Olyset followed by DuraNet induced significantly a higher exophily. In contrast, the exit rate was significantly lower with Interceptor. Among the three SPs, permethrin induced significantly greater exophily relative to the untreated control, and as a result of this, permethrin-treated Olyset produced a lower mortality. Blood-feeding rate of An. fluviatilis was significantly lower with all the five LNs than the control. Similarly, all the three SPs significantly inhibited blood feeding compared with the control. Interceptor and DuraNet, both alphacypermethrin-treated LNs, caused relatively a higher mortality of An. fluviatilis than the other LNs. The five brands of LNs and three SPs tested in the current study were equally effective in terms of deterrence and blood-feeding inhibition; only exiting and killing effect differed among them. Permethrin-treated LNs induced greater exophily, while, overall, alphacypermethrin-treated LNs killed more An. fluviatilis that entered the huts. Advantage of deterrence, excito-repellent, and killing effects of LNs and appropriate selection of SP for net treatment are discussed in this paper.

  16. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India

    NASA Astrophysics Data System (ADS)

    Sannigrahi, Srikanta; Sen, Somnath; Paul, Saikat

    2016-04-01

    Net Primary Production (NPP) of mangrove ecosystem and its capacity to sequester carbon from the atmosphere may be used to quantify the regulatory ecosystem services. Three major group of parameters has been set up as BioClimatic Parameters (BCP): (Photosynthetically Active Radiation (PAR), Absorbed PAR (APAR), Fraction of PAR (FPAR), Photochemical Reflectance Index (PRI), Light Use Efficiency (LUE)), BioPhysical Parameters (BPP) :(Normalize Difference Vegetation Index (NDVI), scaled NDVI, Enhanced Vegetation Index (EVI), scaled EVI, Optimised and Modified Soil Adjusted Vegetation Index (OSAVI, MSAVI), Leaf Area Index (LAI)), and Environmental Limiting Parameters (ELP) (Temperature Stress (TS), Land Surface Water Index (LSWI), Normalize Soil Water Index (NSWI), Water Stress Scalar (WS), Inversed WS (iWS) Land Surface Temperature (LST), scaled LST, Vapor Pressure Deficit (VPD), scaled VPD, and Soil Water Deficit Index (SWDI)). Several LUE models namely Carnegie Ames Stanford Approach (CASA), Eddy Covariance - LUE (EC-LUE), Global Production Efficiency Model (GloPEM), Vegetation Photosynthesis Model (VPM), MOD NPP model, Temperature and Greenness Model (TG), Greenness and Radiation model (GR) and MOD17 was adopted in this study to assess the spatiotemporal nature of carbon fluxes. Above and Below Ground Biomass (AGB & BGB) was calculated using field based estimation of OSAVI and NDVI. Microclimatic zonation has been set up to assess the impact of coastal climate on environmental limiting factors. MODerate Resolution Imaging Spectroradiometer (MODIS) based yearly Gross Primary Production (GPP) and NPP product MOD17 was also tested with LUE based results with standard model validation statistics: Root Mean Square of Error (RMSE), Mean Absolute Error (MEA), Bias, Coefficient of Variation (CV) and Coefficient of Determination (R2). The performance of CASA NPP was tested with the ground based NPP with R2 = 0.89 RMSE = 3.28 P = 0.01. Among the all adopted models, EC

  17. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration

    USGS Publications Warehouse

    McGuire, David A.; Melillo, J.M.; Kicklighter, D.W.; Pan, Y.; Xiao, X.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L.

    1997-01-01

    We ran the terrestrial ecosystem model (TEM) for the globe at 0.5?? resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yr-1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yr-1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics ("lower N" simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics ("lower N+D" simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7,5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yr-1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The

  18. Primary productivity of angiosperm and macroalgae dominated habitats in a New England salt marsh: a comparative analysis

    USGS Publications Warehouse

    Roman, C.T.; Able, K.W.; Lazzari, M.A.; Heck, K.L.

    1990-01-01

    Net primary productivity estimates were made for the major macrophyte dominated habitats of the Nauset Marsh system, Cape Cod, Massachusetts. Above-ground primary productivity of short form Spartina alterniflora, the dominant habitat of the system, was 664 g m-2 y-1. Productivity of the other dominant angiosperm (Zostera marina) was estimated to range from 444?987 g m-2 y-1. The marsh creekbank habitat was dominated by an intertidal zone of fucoid algae (Ascophyllum nodosum ecad. scorpioides, 1179 g m-2 y-1; Fucus vesiculosus, 426 g m-2 y-1), mixed intertidal filamentous algae (91 g m-2 y-1), and a subtidal zone of assorted macroalgae (68 g m-2 y-1). Intertidal mudflats were dominated by Cladophora gracilis, with net production ranging from 59?637 g m-2 y-1. These angiosperm and macrophyte and macrophyte dominated habitats produce over 3 ? 106 kg y-1 of biomass (1?2 ? 106 kg carbon y-1). Twenty-eight per cent (28%) of this carbon production is derived from the Zostera and macroalgae habitats. Although S. alterniflora is considered the major macrophyte primary producer in Nauset Marsh and other north temperate salt marshes, it is concluded that other habitats also contribute significantly to total system carbon production.

  19. Social Nets

    NASA Astrophysics Data System (ADS)

    Csermely, Peter

    This is not only the time to get down to work, as I noted at the end of the last chapter, but also a time to thank you for your patience in coming along with me on this trip to Netland. We have reached an important point. We are just about to rise above ourselves. In the last chapter, we surveyed some of the networks in our body, and in this chapter the same body will be an element of a larger network, the social net. The current chapter will give me a good opportunity to understand my obsession with building social networks.

  20. CARBON BUDGET FOR A SUB-TROPICAL SEAGRASS DOMINATED COASTAL LAGOON: HOW IMPORTANT ARE SEAGRASSES TO TOTAL ECOSYSTEM NET PRIMARY PRODUCTION?

    EPA Science Inventory

    Seagrasses dominate macrophyte biomass in many estuaries. Historically, it has been assumed that because of the large standing stock seagrasses also dominate primary production. We tested this assumption by developing 3 carbon budgets to examine the contribution of autotrophic ...

  1. Seasonal and interannual patterns in primary production, respiration and net ecosystem metabolism in three estuaries in the northeast Gulf of Mexico

    EPA Science Inventory

    Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism par...

  2. Strengthening the safety net.

    PubMed

    May, Ellen Lanser

    2004-01-01

    If you've ever built a house of cards or played a game of Jenga, you know how quickly an ill-timed move can destroy your goal of maintaining equilibrium. The consequence of upsetting one piece of the whole is a common metaphor many safety net providers use to help other healthcare organizations understand their role in the system. The fiscal and physical pressure on just one safety net provider can create a dangerous ripple effect in a community, threatening the stability of other area providers and access to care for the patients they serve. "We have created a complicated tension within our healthcare system," says Stuart H. Altman, Ph.D., HFACHE, professor, National Health Policy, at Brandeis University in Waltham, MA. "If any single major sector of the system is out of balance, the others will be affected in a very negative way." Depending (in part) on geography as well as local and state politics, the fate of "non"-safety net providers can hinge on the success of those organizations whose primary mission is to provide indigent care. "If the safety net fails, the whole healthcare system could potentially collapse because the remaining providers simply cannot handle all of the demand," says C. Duane Dauner, FACHE, president of the California Healthcare Association in Sacramento. The current situations in Washington, D.C., Dallas, and several California counties illustrate this domino effect Dauner describes. PMID:14716922

  3. NET Confusion

    PubMed Central

    Malachowa, Natalia; Kobayashi, Scott D.; Quinn, Mark T.; DeLeo, Frank R.

    2016-01-01

    Neutrophils are arguably the most important white blood cell for defense against bacterial and fungal infections. These leukocytes are produced in high numbers on a daily basis in humans and are recruited rapidly to injured/infected tissues. Phagocytosis and subsequent intraphagosomal killing and digestion of microbes have historically been the accepted means by which neutrophils carry out their role in innate host defense. Indeed, neutrophils contain and produce numerous cytotoxic molecules, including antimicrobial peptides, proteases, and reactive oxygen species, that are highly effective at killing the vast majority of ingested microbes. On the other hand, it is these characteristics – high numbers and toxicity – that endow neutrophils with the potential to injure and destroy host tissues. This potential is borne out by many inflammatory processes and diseases. Therefore, it is not surprising that host mechanisms exist to control virtually all steps in the neutrophil activation process and to prevent unintended neutrophil activation and/or lysis during the resolution of inflammatory responses or during steady-state turnover. The notion that neutrophil extracellular traps (NETs) form by cytolysis as a standard host defense mechanism seems inconsistent with these aforementioned neutrophil “containment” processes. It is with this caveat in mind that we provide perspective on the role of NETs in human host defense and disease. PMID:27446089

  4. NET Confusion.

    PubMed

    Malachowa, Natalia; Kobayashi, Scott D; Quinn, Mark T; DeLeo, Frank R

    2016-01-01

    Neutrophils are arguably the most important white blood cell for defense against bacterial and fungal infections. These leukocytes are produced in high numbers on a daily basis in humans and are recruited rapidly to injured/infected tissues. Phagocytosis and subsequent intraphagosomal killing and digestion of microbes have historically been the accepted means by which neutrophils carry out their role in innate host defense. Indeed, neutrophils contain and produce numerous cytotoxic molecules, including antimicrobial peptides, proteases, and reactive oxygen species, that are highly effective at killing the vast majority of ingested microbes. On the other hand, it is these characteristics - high numbers and toxicity - that endow neutrophils with the potential to injure and destroy host tissues. This potential is borne out by many inflammatory processes and diseases. Therefore, it is not surprising that host mechanisms exist to control virtually all steps in the neutrophil activation process and to prevent unintended neutrophil activation and/or lysis during the resolution of inflammatory responses or during steady-state turnover. The notion that neutrophil extracellular traps (NETs) form by cytolysis as a standard host defense mechanism seems inconsistent with these aforementioned neutrophil "containment" processes. It is with this caveat in mind that we provide perspective on the role of NETs in human host defense and disease. PMID:27446089

  5. Neural nets.

    PubMed

    Hejnol, Andreas; Rentzsch, Fabian

    2015-09-21

    Although modern evolutionary biology has abandoned the use of 'lower' or 'higher' for animals, the quote of G.H. Parker captures quite well the current understanding of the nerve net as the evolutionarily oldest organization of the nervous system, the major organ system responsible for processing information and coordinating animal behaviour. The degree of complexity of a nervous system - in particular its organization into substructures such as brains and nerve cords - shows fascinating variations between animals. Even within an individual, the nervous system can show parallel existing types of organizations that are only partially connected, illustrated by the well-known central and peripheral nervous system. In general, the architecture of the nervous system is adapted to the specific needs and lifestyle of the individual species. How these diverse and complex nervous systems evolved is an ongoing debate among zoologists and evolutionary biologists.

  6. How the Impacts of N Loading on Resource Limitation, Functional Composition of Plankton, and Net Primary Production Influence Nitrate Uptake and Trophic Transfer in Lake Ecosystems

    NASA Astrophysics Data System (ADS)

    Ballantyne, F.; Mellard, J.

    2015-12-01

    Nitrogen (N) loading in aquatic ecosystems can have a multitude of effects. Increased N availability often elevates primary production, but typically also alters community composition and trophic structure. How all the myriad impacts of N loading conspire to produce whole ecosystem responses to perturbation is not well understood. To characterize how whole ecosystems response to perturbation along a gradient of N loading, we added nitrate (and phosphate) to large in situ aquatic mesocosms at different rates over the course of three months and quantified biomass distributions across multiple size classes, plankton community composition (including functional traits), and N flow among size classes in both the epilimnion and the hypolimnion prior and subsequent to a one week shading perturbation. Increased N loading resulted in greater rates of light attenuation with depth, which in turn selected for species with higher tolerance to light limitation and low inorganic C availability, but also resulted in increased rates of primary production and top-down grazing pressure. Different degrees of N loading resulted in different rates of nitrate uptake and trophic transfer, as calculated from 15N pulse-chase additions, both prior and subsequent to the shading pertubation, with the loading effect diminished after the perturbation. N loading was positively associated with the rate of N transfer between the epilimnion, where the N was added, and the hypolimnion. A complex picture of whole ecosystem response to perturbation along a gradient of N loading emerges. N loading appears to simplify resource competition among phytoplankton by alleviating N limitation to an extent, and at the same time supports elevated production across trophic levels. Nitrate uptake rate is contingent on standing stock phytoplankton biomass and resource limitation status. Rates of nitrate removal from the water column depend on how N loading alters the abiotic environment (primarily light availability

  7. Climate Change Response of Ocean Net Primary Production (NPP) and Export Production (EP) Regulated by Stratification Increases in The CMIP5 models

    NASA Astrophysics Data System (ADS)

    Fu, W.; Randerson, J. T.; Moore, J. K.

    2014-12-01

    Ocean warming due to rising atmospheric CO2 has increasing impacts on ocean ecosystems by modifying the ecophysiology and distribution of marine organisms, and by altering ocean circulation and stratification. We explore ocean NPP and EP changes at the global scale with simulations performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the representative concentration pathway (RCP) 8.5 scenario, although models differ in their significantly in their direct temperature impacts on production and remineralization. The Earth system models used here project similar NPP trends albeit the magnitudes vary substantially. In general, projected changes in the 2090s for NPP range between -2.3 to -16.2% while export production reach -7 to -18% relative to 1990s. This is accompanied by increased stratification by 17-30%. Results indicate that globally reduced NPP is closely related to increased ocean stratification (R2=0.78). This is especially the case for global export production, that seems to be mostly controlled by the increased stratification (R2=0.95). We also identify phytoplankton community impacts on these patterns, that vary across the models. The negative response of NPP to climate change may be through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. There are large disagreements among the CMIP5 models in terms of simulated nutrient and oxygen concentrations for the 1990s, and their trends over time with climate change. In addition, potentially important marine biogeochemical feedbacks on the climate system were not well represented in the CMIP5 models, including important feedbacks with aerosol deposition and the marine iron cycle, and feedbacks involving the oxygen minimum zones and the marine nitrogen cycle. Thus, these substantial reductions in primary productivity and export production over

  8. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. |; Rosener, B.

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  9. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. . Dept. of Computer Science Oak Ridge National Lab., TN ); Rosener, B. . Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  10. Numerical simulation of shock interaction with above-ground structures

    NASA Astrophysics Data System (ADS)

    Baum, Joseph D.; Lohner, Rainald

    1994-05-01

    This final report for DNA contract DNA 001-89-C-0098 for the time period May 15, 1989 to Dec 31, 1992 describes the results of several of the computations conducted under this research effort. The numerical simulations conducted simulated shock wave diffraction phenomenon about complex-geometry two-dimensional and three-dimensional structures. Since a significant part of this effort was composed of parametric studies that have been delivered to the sponsors, the Defense Nuclear Agency and the Air Force Ballistic Missile Organization (BMO), and conducted under the now defunct Rail Garrison project, we included in this report a detailed description of the results of the major computations, and a brief summary of all the repetitive computations. The final report is divided into three sections. Chapter 1 describes in detail the two-dimensional numerical methodology and typical two-dimensional computation, i.e., the application of the numerical methodology to the simulation of shock interaction with a typical 2-D train (a 2-D cut at the center of a 3-D train). Chapter 2 describes the numerical development of a passive shock reflector, a major effort undertaken in this project. The objective of this effort was to design a passive device that, while allowing the ventilation of the enclosure under steady conditions, will prevent blast waves impinging on the wall from entering the enclosure when the structure is impacted by a shock.

  11. No Safety Net Required

    ERIC Educational Resources Information Center

    Benigni, Mark D.; Moylan, Maureen

    2009-01-01

    This article discusses the Berlin (Connecticut) High School's NET (Non-Traditional Educational Training) program. NET is a self-contained program that is composed of three components: academics, social and emotional support, and vocational training. Rather than treat students alike, the NET program tailors their high school experience to meet…

  12. Legacies of precipitation fluctuations on primary production: theory and data synthesis

    PubMed Central

    Sala, Osvaldo E.; Gherardi, Laureano A.; Reichmann, Lara; Jobbágy, Esteban; Peters, Debra

    2012-01-01

    Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we propose a theory of controls of ANPP based on four hypotheses about legacies of wet and dry years that explains space versus time differences in ANPP–precipitation relationships. We tested the hypotheses using 16 long-term series of ANPP. We found that legacies revealed by the association of current- versus previous-year conditions through the temporal series occur across all ecosystem types from deserts to mesic grasslands. Therefore, previous-year precipitation and ANPP control a significant fraction of current-year production. We developed unified models for the controls of ANPP through space and time. The relative importance of current-versus previous-year precipitation changes along a gradient of mean annual precipitation with the importance of current-year PPT decreasing, whereas the importance of previous-year PPT remains constant as mean annual precipitation increases. Finally, our results suggest that ANPP will respond to climate-change-driven alterations in water availability and, more importantly, that the magnitude of the response will increase with time. PMID:23045711

  13. Evaluating atmospheric CO2 effects on gross primary productivity and net ecosystem exchanges of terrestrial ecosystems in the conterminous United States using the AmeriFlux data and an artificial neural network approach

    DOE PAGES

    Liu, Shaoqing; Zhuang, Qianlai; He, Yujie; Noormets, Asko; Chen, Jiquan; Gu, Lianhong

    2016-01-21

    Quantitative understanding of regional gross primary productivity (GPP) and net ecosystem exchanges (NEE) and their responses to environmental changes are critical to quantifying the feedbacks of ecosystems to the global climate system. Numerous studies have used the eddy flux data to upscale the eddy covariance derived carbon fluxes from stand scales to regional and global scales. However, few studies incorporated atmospheric carbon dioxide (CO2) concentrations into those extrapolations. In this study, we consider the effect of atmospheric CO2 using an artificial neural network (ANN) approach to upscale the AmeriFlux tower of NEE and the derived GPP to the conterminous Unitedmore » States. Two ANN models incorporating remote sensing variables at an 8-day time step were developed. One included CO2 as an explanatory variable and the other did not. The models were first trained, validated using eddy flux data, and then extrapolated to the region at a 0.05° × 0.05° (latitude × longitude) resolution from 2001 to 2006. We found that both models performed well in simulating site-level carbon fluxes. The spatially-averaged annual GPP with and without considering the atmospheric CO2 were 789 and 788 g C m-2 yr-1, respectively (for NEE, the values were -112 and -109 g C m-2 yr-1, respectively). Model predictions were comparable with previous published results and MODIS GPP products. However, the difference in GPP between the two models exhibited a great spatial and seasonal variability, with an annual difference of 200 g C m-2 yr-1. Further analysis suggested that air temperature played an important role in determining the atmospheric CO2 effects on carbon fluxes. In addition, the simulation that did not consider atmospheric CO2 failed to detect ecosystem responses to droughts in part of the US in 2006. In conclusion, we suggest that the spatially and temporally varied atmospheric CO2 concentrations should be factored into carbon quantification when scaling eddy flux

  14. Evaluating atmospheric CO2 effects on gross primary productivity and net ecosystem exchanges of terrestrial ecosystems in the conterminous United States using the AmeriFlux data and an artificial neural network approach

    SciTech Connect

    Liu, Shaoqing; Zhuang, Qianlai; He, Yujie; Noormets, Asko; Chen, Jiquan; Gu, Lianhong

    2016-01-01

    Quantitative understanding of regional gross primary productivity (GPP) and net ecosystem exchanges (NEE) and their responses to environmental changes are critical to quantifying the feedbacks of ecosystems to the global climate system. Numerous studies have used the eddy flux data to upscale the eddy covariance derived carbon fluxes from stand scales to regional and global scales. However, few studies incorporated atmospheric carbon dioxide (CO2) concentrations into those extrapolations. Here, we consider the effect of atmospheric CO2 using an artificial neural network (ANN) approach to upscale the AmeriFlux tower of NEE and the derived GPP to the conterminous United States. Two ANN models incorporating remote sensing variables at an 8-day time step were developed. One included CO2 as an explanatory variable and the other did not. The models were first trained, validated using eddy flux data, and then extrapolated to the region at a 0.05 degrees x 0.05 degrees (latitude x longitude) resolution from 2001 to 2006. We found that both models performed well in simulating site-level carbon fluxes. The spatially averaged annual GPP with and without considering the atmospheric CO2 were 789 and 788 g Cm-2 yr(-1), respectively (for NEE, the values were 112 and 109 g Cm-2 yr(-1), respectively). Model predictions were comparable with previous published results and MODIS GPP products. However, the difference in GPP between the two models exhibited a great spatial and seasonal variability, with an annual difference of 200 g Cm-2 yr(-1). Further analysis suggested that air temperature played an important role in determining the atmospheric CO2 effects on carbon fluxes. In addition, the simulation that did not consider atmospheric CO2 failed to detect ecosystem responses to droughts in part of the US in 2006. The study suggests that the spatially and temporally varied atmospheric CO2 concentrations should be factored into carbon quantification when scaling eddy flux data to a

  15. A NET Outcome

    PubMed Central

    Lu, Thea; Kobayashi, Scott D.; Quinn, Mark T.; DeLeo, Frank R.

    2012-01-01

    Neutrophils constitute a critical part of innate immunity and are well known for their ability to phagocytose and kill invading microorganisms. The microbicidal processes employed by neutrophils are highly effective at killing most ingested bacteria and fungi. However, an alternative non-phagocytic antimicrobial mechanism of neutrophils has been proposed whereby microorganisms are eliminated by neutrophil extracellular traps (NETs). NETs are comprised of DNA, histones, and antimicrobial proteins extruded by neutrophils during NETosis, a cell death pathway reported to be distinct from apoptosis, phagocytosis-induced cell death, and necrosis. Although multiple laboratories have reported NETs using various stimuli in vitro, the molecular mechanisms involved in this process have yet to be definitively elucidated, and many questions regarding the formation and putative role or function of NETs in innate host defense remain unanswered. It is with these questions in mind that we provide some reflection and perspective on NETs and NETosis. PMID:23227026

  16. Neural timing nets.

    PubMed

    Cariani, P A

    2001-01-01

    Formulations of artificial neural networks are directly related to assumptions about neural coding in the brain. Traditional connectionist networks assume channel-based rate coding, while time-delay networks convert temporally-coded inputs into rate-coded outputs. Neural timing nets that operate on time structured input spike trains to produce meaningful time-structured outputs are proposed. Basic computational properties of simple feedforward and recurrent timing nets are outlined and applied to auditory computations. Feed-forward timing nets consist of arrays of coincidence detectors connected via tapped delay lines. These temporal sieves extract common spike patterns in their inputs that can subserve extraction of common fundamental frequencies (periodicity pitch) and common spectrum (timbre). Feedforward timing nets can also be used to separate time-shifted patterns, fusing patterns with similar internal temporal structure and spatially segregating different ones. Simple recurrent timing nets consisting of arrays of delay loops amplify and separate recurring time patterns. Single- and multichannel recurrent timing nets are presented that demonstrate the separation of concurrent, double vowels. Timing nets constitute a new and general neural network strategy for performing temporal computations on neural spike trains: extraction of common periodicities, detection of recurring temporal patterns, and formation and separation of invariant spike patterns that subserve auditory objects.

  17. Investigating impacts of economic growth on the environment using remote sensing tools: A case study of gross domestic product and net primary production in China from 2001 to 2007

    NASA Astrophysics Data System (ADS)

    Zhao, Naizhuo

    Pursuing sustainable co-development of economy and environment has been established as a basic national policy by the present Chinese government. However, studies regarding actual outcomes of the co-development policy at the whole Chinese scale are still limited. Detecting China's economic growth and changes of environmental quality will not only contribute to evaluation of outcomes of the co-development policy but more importantly is an opportunity to examine the suitability of the IPAT model and improve our understanding of human-environment interactions. The core of the IPAT theory is an equation where I=PxAxT that models human impact on the environment as a function of changes to population (P), affluence ( A), and technology (T). The IPAT theory emphasizes that economic growth will inevitably produce negative impacts on the environment. Thus, if China's environmental quality declined while economic growth occurred, then the IPAT theory will be substantiated. Otherwise, the suitability of the IPAT theory will be called into question and its tenets must be reconsidered. In this dissertation research I selected gross domestic product (GDP) and net primary production (NPP) as indicators to evaluate production of social and ecological systems respectively. The main study objectives are (1) to develop a methodology to facilitate integration of the two indicators derived from demographic data sources and satellite imagery at different geographic scales, (2) to jointly explore changing patterns of China's economic and ecological production (i.e., spatially and temporally coincident patterns of change in GDP and NPP) across different spatial scales, (3) to analyze whether economic growth has produced negative impacts on ecosystem production and whether the impacts correlate to the economic growth, and finally (4) to discuss whether the IPAT theory is suitable for explaining the joint changes of GDP and NPP in China or if it is in need of modification. To fulfill the

  18. Thermal adaptation of net ecosystem exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). In this study, we const...

  19. NetState

    2005-09-01

    NetState is a distributed network monitoring system. It uses passive sensors to develop status information on a target network. Two major features provided by NetState are version and port tracking. Version tracking maintains information about software and operating systems versions. Port tracking identifies information about active TOP and UDP ports. Multiple NetState sniffers can be deployed, one at each entry point of the target network. The sniffers monitor network traffic, then send the information tomore » the NetState server. The information is stored in centralized database which can then be accessed via standard SQL database queries or this web-based GUI, for further analysis and display.« less

  20. SpawnNet

    SciTech Connect

    2014-12-23

    SpawnNet provides a networking interface similar to Linux sockets that runs natively on High-performance network interfaces. It is intended to be used to bootstrap parallel jobs and communication libraries like MPI.

  1. NetState

    SciTech Connect

    Durgin, Nancy; Mai, Yuqing; Hutchins, James

    2005-09-01

    NetState is a distributed network monitoring system. It uses passive sensors to develop status information on a target network. Two major features provided by NetState are version and port tracking. Version tracking maintains information about software and operating systems versions. Port tracking identifies information about active TOP and UDP ports. Multiple NetState sniffers can be deployed, one at each entry point of the target network. The sniffers monitor network traffic, then send the information to the NetState server. The information is stored in centralized database which can then be accessed via standard SQL database queries or this web-based GUI, for further analysis and display.

  2. NASA's Software Bank (NETS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NETS (A Neural Network Development Tool) is a software system for mimicking the human brain. It is used in a University of Arkansas project in pattern matching of chemical systems. If successful, chemists would be able to identify mixtures of compounds without long and costly separation procedures. Using NETS, the group has trained the computer to recognize pattern relationships in a known compound and associate the results to an unknown compound. The research appears to be promising.

  3. A Vision for the Net Generation Media Center. Media Matters

    ERIC Educational Resources Information Center

    Johnson, Doug

    2005-01-01

    Many children today have never lived in a home without a computer. They are the "Net Generation," constantly "connected" by iPod, cell phone, keyboard, digital video camera, or game controller to various technologies. Recent studies have found that Net Genners see technology as "embedded in society," a primary means of connection with friends, and…

  4. Investigating impacts of economic growth on the environment using remote sensing tools: A case study of gross domestic product and net primary production in China from 2001 to 2007

    NASA Astrophysics Data System (ADS)

    Zhao, Naizhuo

    Pursuing sustainable co-development of economy and environment has been established as a basic national policy by the present Chinese government. However, studies regarding actual outcomes of the co-development policy at the whole Chinese scale are still limited. Detecting China's economic growth and changes of environmental quality will not only contribute to evaluation of outcomes of the co-development policy but more importantly is an opportunity to examine the suitability of the IPAT model and improve our understanding of human-environment interactions. The core of the IPAT theory is an equation where I=PxAxT that models human impact on the environment as a function of changes to population (P), affluence ( A), and technology (T). The IPAT theory emphasizes that economic growth will inevitably produce negative impacts on the environment. Thus, if China's environmental quality declined while economic growth occurred, then the IPAT theory will be substantiated. Otherwise, the suitability of the IPAT theory will be called into question and its tenets must be reconsidered. In this dissertation research I selected gross domestic product (GDP) and net primary production (NPP) as indicators to evaluate production of social and ecological systems respectively. The main study objectives are (1) to develop a methodology to facilitate integration of the two indicators derived from demographic data sources and satellite imagery at different geographic scales, (2) to jointly explore changing patterns of China's economic and ecological production (i.e., spatially and temporally coincident patterns of change in GDP and NPP) across different spatial scales, (3) to analyze whether economic growth has produced negative impacts on ecosystem production and whether the impacts correlate to the economic growth, and finally (4) to discuss whether the IPAT theory is suitable for explaining the joint changes of GDP and NPP in China or if it is in need of modification. To fulfill the

  5. WhaleNet/environet

    SciTech Connect

    Williamson, J.M.

    1994-12-31

    WhaleNet has established a network where students, educators, and scientists can interact and share data for use in interdisciplinary curricular and student research activities in classrooms around the world by utilizing telecommunication. This program enables students to participate in marine/whale research programs in real-time with WhaleNet data and supplementary curriculum materials regardless of their geographic location. Systems have been established with research organizations and whale watch companies whereby research data is posted by scientists and students participating in whale watches on the WhaleNet bulletin board and shared with participating classrooms. WhaleNet presently has contacts with classrooms across the nation, and with research groups, whale watch organizations, science museums, and universities from Alaska to North Carolina, Hawaii to Maine, and Belize to Norway. WhaleNet has plans to make existing whale and fisheries research databases available for classroom use and to have research data from satellite tagging programs on various species of whales available for classroom access in real-time.

  6. Invariance and neural nets.

    PubMed

    Barnard, E; Casasent, D

    1991-01-01

    Application of neural nets to invariant pattern recognition is considered. The authors study various techniques for obtaining this invariance with neural net classifiers and identify the invariant-feature technique as the most suitable for current neural classifiers. A novel formulation of invariance in terms of constraints on the feature values leads to a general method for transforming any given feature space so that it becomes invariant to specified transformations. A case study using range imagery is used to exemplify these ideas, and good performance is obtained.

  7. MASTER Net: optical transients

    NASA Astrophysics Data System (ADS)

    Gress, O.; Shumkov, V.; Pogrosheva, T.; Shurpakov, S.; Lipunov, V.; Buckley, D.; Lopez, R. Rebolo; Ricart, M. Serra; Podesta, R.; Levato, H. O.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Chazov, V.; Kornilov, V.; Ivanov, K.; Vladimirov, V.; Potter, S.; Lopez, C.; Podesta, F.; Saffe, C.

    2016-10-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 14h 38m 49.60s -44d 37m 24.5s on 2016-10-01.73438 UT with unfiltered m_OT=16.4m (mlim=19.7m).

  8. Mobile robot sense net

    NASA Astrophysics Data System (ADS)

    Konolige, Kurt G.; Gutmann, Steffen; Guzzoni, Didier; Ficklin, Robert W.; Nicewarner, Keith E.

    1999-08-01

    Mobile robot hardware and software is developing to the point where interesting applications for groups of such robots can be contemplated. We envision a set of mobots acting to map and perform surveillance or other task within an indoor environment (the Sense Net). A typical application of the Sense Net would be to detect survivors in buildings damaged by earthquake or other disaster, where human searchers would be put a risk. As a team, the Sense Net could reconnoiter a set of buildings faster, more reliably, and more comprehensibly than an individual mobot. The team, for example, could dynamically form subteams to perform task that cannot be done by individual robots, such as measuring the range to a distant object by forming a long baseline stereo sensor form a pari of mobots. In addition, the team could automatically reconfigure itself to handle contingencies such as disabled mobots. This paper is a report of our current progress in developing the Sense Net, after the first year of a two-year project. In our approach, each mobot has sufficient autonomy to perform several tasks, such as mapping unknown areas, navigating to specific positions, and detecting, tracking, characterizing, and classifying human and vehicular activity. We detail how some of these tasks are accomplished, and how the mobot group is tasked.

  9. Nonmetro Net Outmigration Stops.

    ERIC Educational Resources Information Center

    Cromartie, John B.

    1992-01-01

    Annual population losses from net migration for nonmetro areas declined from 0.38-0.20 percent during the period of 1988-91. However, annual inmigration and outmigration flows were consistently above 1.5 million (about 3 percent of nonmetro population). During the three-year period, nonmetro areas consistently lost young adults and those with…

  10. NetB and necrotic enteritis: the hole movable story.

    PubMed

    Rood, Julian I; Keyburn, Anthony L; Moore, Robert J

    2016-06-01

    Clostridium perfringens is the primary causative agent of avian necrotic enteritis. Our understanding of the pathogenesis of this economically important disease has been enhanced by the discovery of C. perfringens NetB toxin, which belongs to the α-haemolysin family of β-pore-forming toxins. In a chicken disease model, the analysis of an isogenic set of strains comprising the wild type, a netB mutant, and its complemented derivative, fulfilled molecular Koch's postulates and revealed that NetB was essential for disease. These results were consistent with epidemiological surveys, which generally found that there was a higher prevalence of netB carriage in C. perfringens isolates from diseased poultry compared to healthy birds. The netB gene has been shown to be located on large conjugative plasmids that are closely related to other toxin plasmids from C. perfringens, which has potential implications for the epidemiology of necrotic enteritis infections. The crystal structures of both monomeric NetB and the heptameric NetB pore have been determined, the latter revealed a central pore diameter of approximately 26 Å. Finally, it has been shown that vaccine preparations that include NetB can protect chickens against disease and a series of single amino acid substitution derivatives of NetB that have potential value for vaccine formulations have been isolated and analysed. It is likely that NetB will be an important antigen to include in an effective, commercially viable, necrotic enteritis vaccine. PMID:27009522

  11. Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.

    PubMed

    Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin

    2016-07-01

    Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data.

  12. Net ecosystem production in a subarctic peatland

    SciTech Connect

    Luken, J.O.

    1984-01-01

    A mass balance approach was used to determine the rates of carbon storage in three areas of a subarctic bog near Fairbanks, Alaska (latitude 64/sup 0/52'N). Aboveground net primary production was 20.3, 74.2, and 77.4 gm/sup -2/yr/sup -1/ for nonvascular plants, the shrub and herb layer, and the tree layer of the bog forest, respectively. Aboveground net primary production was 83.7 and 58.2 g m/sup -2/yr/sup -1/ for nonvascular plants and the shrub and herb layer of the Andromeda bog, respectively, in the Carex lawns, aboveground net primary production was 194.9 and 111.7 g m/sup -2/yr/sup -1/ for nonvascular and vascular plants, respectively. Sphagnum mosses are important components of this peatbog ecosystem due to their high rates of net primary production and slow rates of decomposition. Experimental manipulations of light level, water table level, and nutrient availability indicated that terminal extension rates and volumetric density of the Sphagnum stands are controlled primarily by light and water table levels. An explanation of Sphagnum zonation in hummock-hollow complexes is presented which incorporates aspects of growth rate, stand morphology, and reproductive mode. Soil carbon dioxide efflux rates were measured in a number of different hummock-hollow microhabitats. Approximately 75% of the variance associated with soil respiration could be explained by regression equations with soil moisture and soil temperature as independent variables. Carbohydrate limitation of soil microbial populations was demonstrated in both laboratory and field experiments.

  13. Quantum Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Williams, Colin P.

    1997-01-01

    The capacity of classical neurocomputers is limited by the number of classical degrees of freedom which is roughly proportional to the size of the computer. By Contrast, a Hypothetical quantum neurocomputer can implement an exponentially large number of the degrees of freedom within the same size. In this paper an attempt is made to reconcile linear reversible structure of quantum evolution with nonlinear irreversible dynamics for neural nets.

  14. Net production of oxygen in the subtropical ocean.

    PubMed

    Riser, Stephen C; Johnson, Kenneth S

    2008-01-17

    The question of whether the plankton communities in low-nutrient regions of the ocean, comprising 80% of the global ocean surface area, are net producers or consumers of oxygen and fixed carbon is a key uncertainty in the global carbon cycle. Direct measurements in bottle experiments indicate net oxygen consumption in the sunlit zone, whereas geochemical evidence suggests that the upper ocean is a net source of oxygen. One possible resolution to this conflict is that primary production in the gyres is episodic and thus difficult to observe: in this model, oligotrophic regions would be net consumers of oxygen during most of the year, but strong, brief events with high primary production rates might produce enough fixed carbon and dissolved oxygen to yield net production as an average over the annual cycle. Here we examine the balance of oxygen production over three years at sites in the North and South Pacific subtropical gyres using the new technique of oxygen sensors deployed on profiling floats. We find that mixing events during early winter homogenize the upper water column and cause low oxygen concentrations. Oxygen then increases below the mixed layer at a nearly constant rate that is similar to independent measures of net community production. This continuous oxygen increase is consistent with an ecosystem that is a net producer of fixed carbon (net autotrophic) throughout the year, with episodic events not required to sustain positive oxygen production. PMID:18202655

  15. Teaching Tennis for Net Success.

    ERIC Educational Resources Information Center

    Young, Bryce

    1989-01-01

    A program for teaching tennis to beginners, NET (Net Easy Teaching) is described. The program addresses three common needs shared by tennis students: active involvement in hitting the ball, clearing the net, and positive reinforcement. A sample lesson plan is included. (IAH)

  16. Current net ecosystem exchange of CO2 in a young mixed forest: any heritage from the previous ecosystem?

    NASA Astrophysics Data System (ADS)

    Violette, Aurélie; Heinesch, Bernard; Erpicum, Michel; Carnol, Monique; Aubinet, Marc; François, Louis

    2013-04-01

    For 15 years, networks of flux towers have been developed to determine accurate carbon balance with the eddy-covariance method and determine if forests are sink or source of carbon. However, for prediction of the evolution of carbon cycle and climate, major uncertainties remain on the ecosystem respiration (Reco, which includes the respiration of above ground part of trees, roots respiration and mineralization of the soil organic matter), the gross primary productivity (GPP) and their difference, the net ecosystem exchange (NEE) of forests. These uncertainties are consequences of spatial and inter-annual variability, driven by previous and current climatic conditions, as well as by the particular history of the site (management, diseases, etc.). In this study we focus on the carbon cycle in two mixed forests in the Belgian Ardennes. The first site, Vielsalm, is a mature stand mostly composed of beeches (Fagus sylvatica) and douglas fir (Pseudotsuga menziesii) from 80 to 100 years old. The second site, La Robinette, was covered before 1995 with spruces. After an important windfall and a clear cutting, the site was replanted, between 1995 and 2000, with spruces (Piceas abies) and deciduous species (mostly Betula pendula, Aulnus glutinosa and Salix aurita). The challenge here is to highlight how initial conditions can influence the current behavior of the carbon cycle in a growing stand compared to a mature one, where initial conditions are supposed to be forgotten. A modeling approach suits particularly well for sensitivity tests and estimation of the temporal lag between an event and the ecosystem response. We use the forest ecosystem model ASPECTS (Rasse et al., Ecological Modelling 141, 35-52, 2001). This model predicts long-term forest growth by calculating, over time, hourly NEE. It was developed and already validated on the Vielsalm forest. Modelling results are confronted to eddy-covariance data on both sites from 2006 to 2011. The main difference between both

  17. Horizontal ichthyoplankton tow-net system with unobstructed net opening

    USGS Publications Warehouse

    Nester, Robert T.

    1987-01-01

    The larval fish sampler described here consists of a modified bridle, frame, and net system with an obstruction-free net opening and is small enough for use on boats 10 m or less in length. The tow net features a square net frame attached to a 0.5-m-diameter cylinder-on-cone plankton net with a bridle designed to eliminate all obstructions forward of the net opening, significantly reducing currents and vibrations in the water directly preceding the net. This system was effective in collecting larvae representing more than 25 species of fish at sampling depths ranging from surface to 10 m and could easily be used at greater depths.

  18. Helminth.net: expansions to Nematode.net and an introduction to Trematode.net.

    PubMed

    Martin, John; Rosa, Bruce A; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N; Brindley, Paul J; Mitreva, Makedonka

    2015-01-01

    Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases' interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species' omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net.

  19. Helminth.net: expansions to Nematode.net and an introduction to Trematode.net

    PubMed Central

    Martin, John; Rosa, Bruce A.; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N.; Brindley, Paul J.; Mitreva, Makedonka

    2015-01-01

    Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net. PMID:25392426

  20. Getting to Net Zero

    SciTech Connect

    Crawley, D.; Pless, S.; Torcellini, P.

    2009-09-01

    Buildings have a significant impact on energy use and the environment. Commercial and residential buildings use almost 40% of the primary energy and approximately 70% of the electricity in the United States.

  1. The equivalency between logic Petri workflow nets and workflow nets.

    PubMed

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented. PMID:25821845

  2. The Equivalency between Logic Petri Workflow Nets and Workflow Nets

    PubMed Central

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented. PMID:25821845

  3. A model of global net ecosystem production

    SciTech Connect

    Potter, C.S.; Matson, P.A. ); Field, C.B.; Randerson, J. ); Vitousek, P.M.; Mooney, H.A. )

    1993-06-01

    We present an ecosystem modeling approach to resolve global climate and edaphic controls on seasonal NEP patterns. Global remote sensing, climate and land surface data sets are used as inputs to drive a terrestrial carbon cycle model at 1[degrees]lat/lon resolution. monthly net primary productivity (NPP) is calculated using surface radiation and NDVI to determine photosynthesis, which is subsequently adjusted by temperature, water and nitrogen stress factors. Total nitrogen availability is coupled to net mineralization rates from litter soil carbon pools. Soil respiration and NPP balance one another globally at around 60 Gt C yr[sup [minus]1]. The seasonal amplitude of global NEP is 1.2 Gt C. Although substantial month-to-month variation is observed for tropical forest areas, seasonal amplitude is driven globally by boreal and temperate forest ecosystems between 650 and 30[degrees] N latitude.

  4. OglNet

    SciTech Connect

    Verba, Jared

    2010-03-10

    OglNet is designed to capture and visualize network packets as they move from their source to intended destination. This creates a three dimensional representation of an active network and can show misconfigured components, potential security breaches and possible hostile network traffic. This visual representation is customizable by the user and also includes how network components interact with servers around the world. The software is able to process live or real time traffic feeds as well as offline historical network packet captures. As packets are read into the system, they are processed and visualized in an easy to understand display that includes network names, IP addresses, and global positioning. The software can process and display up to six million packets per second.

  5. OglNet

    2010-03-10

    OglNet is designed to capture and visualize network packets as they move from their source to intended destination. This creates a three dimensional representation of an active network and can show misconfigured components, potential security breaches and possible hostile network traffic. This visual representation is customizable by the user and also includes how network components interact with servers around the world. The software is able to process live or real time traffic feeds as wellmore » as offline historical network packet captures. As packets are read into the system, they are processed and visualized in an easy to understand display that includes network names, IP addresses, and global positioning. The software can process and display up to six million packets per second.« less

  6. NetView technical research

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is the Final Technical Report for the NetView Technical Research task. This report is prepared in accordance with Contract Data Requirements List (CDRL) item A002. NetView assistance was provided and details are presented under the following headings: NetView Management Systems (NMS) project tasks; WBAFB IBM 3090; WPAFB AMDAHL; WPAFB IBM 3084; Hill AFB; McClellan AFB AMDAHL; McClellan AFB IBM 3090; and Warner-Robins AFB.

  7. AdaNET executive summary

    NASA Technical Reports Server (NTRS)

    Digman, R. Michael

    1988-01-01

    The goal of AdaNET is to transfer existing and emerging software engineering technology from the Federal government to the private sector. The views and perspectives of the current project participants on long and short term goals for AdaNET; organizational structure; resources and returns; summary of identified AdaNET services; and the summary of the organizational model currently under discussion are presented.

  8. Amyloid fibrils trigger the release of neutrophil extracellular traps (NETs), causing fibril fragmentation by NET-associated elastase.

    PubMed

    Azevedo, Estefania P C; Guimarães-Costa, Anderson B; Torezani, Guilherme S; Braga, Carolina A; Palhano, Fernando L; Kelly, Jeffery W; Saraiva, Elvira M; Foguel, Debora

    2012-10-26

    The accumulation of amyloid fibrils is a feature of amyloid diseases, where cell toxicity is due to soluble oligomeric species that precede fibril formation or are formed by fibril fragmentation, but the mechanism(s) of fragmentation is still unclear. Neutrophil-derived elastase and histones were found in amyloid deposits from patients with different systemic amyloidoses. Neutrophil extracellular traps (NETs) are key players in a death mechanism in which neutrophils release DNA traps decorated with proteins such as elastase and histones to entangle pathogens. Here, we asked whether NETs are triggered by amyloid fibrils, reasoning that because proteases are present in NETs, protease digestion of amyloid may generate soluble, cytotoxic species. We show that amyloid fibrils from three different sources (α-synuclein, Sup35, and transthyretin) induced NADPH oxidase-dependent NETs in vitro from human neutrophils. Surprisingly, NET-associated elastase digested amyloid fibrils into short species that were cytotoxic for BHK-21 and HepG2 cells. In tissue sections from patients with primary amyloidosis, we also observed the co-localization of NETs with amyloid deposits as well as with oligomers, which are probably derived from elastase-induced fibril degradation (amyloidolysis). These data reveal that release of NETs, so far described to be elicited by pathogens, can also be triggered by amyloid fibrils. Moreover, the involvement of NETs in amyloidoses might be crucial for the production of toxic species derived from fibril fragmentation.

  9. An aerial netting study of insects migrating at high altitude over England.

    PubMed

    Chapman, J W; Reynolds, D R; Smith, A D; Smith, E T; Woiwod, I P

    2004-04-01

    Day and night sampling of windborne arthropods at a height of 200 m above ground was undertaken at Cardington, Bedfordshire, UK, during July 1999, 2000 and 2002, using a net supported by a tethered balloon. The results from this study are compared with those from the classic aerial sampling programmes carried out by Hardy, Freeman and colleagues over the UK and North Sea in the 1930s. In the present study, aerial netting was undertaken at night as well as daytime, and so the diel periodicity of migration could be investigated, and comparisons made with the results from Lewis and Taylor's extensive survey of flight periodicity near ground level. In some taxa with day-time emigration, quite large populations could continue in high-altitude flight after dark, perhaps to a previously underrated extent, and this would greatly increase their potential migratory range. Any trend towards increases in night temperatures, associated with global warming, would facilitate movements of this type in the UK. Observations on the windborne migration of a variety of species, particularly those of economic significance or of radar-detectable size, are briefly discussed.

  10. SensorNet Node Suite

    2004-09-01

    The software in the SensorNet Node adopts and builds on IEEE 1451 interface principles to read data from and control sensors, stores the data in internal database structures, and transmits it in adapted Web Feature Services protocol packets to the SensorNet database. Failover software ensures that at least one available mode of communication remains alive.

  11. CAPEOPEN.NET CLASS LIBRARY

    EPA Science Inventory

    The Cape-Open for .Net class library is a collection of classes that implement the Cape-Open v.1.0 interfaces in the .Net framework. This is a tool to aid process modeling component (PMC) developers in producing CAPE-OPEN compliant objects using the latest version of the Visual S...

  12. Neural nets on the MPP

    NASA Technical Reports Server (NTRS)

    Hastings, Harold M.; Waner, Stefan

    1987-01-01

    The Massively Parallel Processor (MPP) is an ideal machine for computer experiments with simulated neural nets as well as more general cellular automata. Experiments using the MPP with a formal model neural network are described. The results on problem mapping and computational efficiency apply equally well to the neural nets of Hopfield, Hinton et al., and Geman and Geman.

  13. KM3NeT

    SciTech Connect

    Jong, M. de; Collaboration: KM3NeT Collaboration

    2015-07-15

    KM3NeT is a large research infrastructure, that will consist of a network of deep-sea neutrino telescopes in the Mediterranean Sea. The main objective of KM3NeT is the discovery and subsequent observation of high-energy neutrino sources in the Universe. A further physics perspective is the measurement of the mass hierarchy of neutrinos. A corresponding study, ORCA, is ongoing within KM3NeT. A cost effective technology for (very) large water Cherenkov detectors has been developed based on a new generation of low price 3-inch photo-multiplier tubes. Following the successful deployment and operation of two prototypes, the construction of the KM3NeT research infrastructure has started. The prospects of the different phases of the implementation of KM3NeT are summarised.

  14. KM3NeT

    NASA Astrophysics Data System (ADS)

    de Jong, M.

    2015-07-01

    KM3NeT is a large research infrastructure, that will consist of a network of deep-sea neutrino telescopes in the Mediterranean Sea. The main objective of KM3NeT is the discovery and subsequent observation of high-energy neutrino sources in the Universe. A further physics perspective is the measurement of the mass hierarchy of neutrinos. A corresponding study, ORCA, is ongoing within KM3NeT. A cost effective technology for (very) large water Cherenkov detectors has been developed based on a new generation of low price 3-inch photo-multiplier tubes. Following the successful deployment and operation of two prototypes, the construction of the KM3NeT research infrastructure has started. The prospects of the different phases of the implementation of KM3NeT are summarised.

  15. CF-netCDF Standardization

    NASA Astrophysics Data System (ADS)

    Domenico, B.; Nativi, S.; Rew, R. K.

    2009-12-01

    NetCDF has long been a de facto standard for data storage and access in several communities. More recently it has been recognized by the NASA Standards Process Group and the NOAA IOOS DMAC as a de jure standard. Within the OGC, CF-netCDF is being considered as an extension to the latest recognized version of the WCS. A new initiative is underway to establish CF-netCDF as an OGC binary encoding standard in its own right. The idea is that, establishing CF-netCDF as a separate OGC encoding standard will simplify the process of using it as a payload for other standard access protocols such as the WFS and SOS. The approach is modeled on that taken for establishing KML as an OGC standard for XML encoding. One difference is that CF-netCDF will be standardized with a core and a set of extensions.. The standardization process for the core and each of the extension will involve the following steps: -- Make the existing NASA standard the basis for the OGC Core Candidate Standard for CF-netCDF -- Submit an initial draft Candidate Standard to the OGC Technical Committee (TC) -- Form a CF-netCDF Standard Working Group (SWG) -- In the CF-netCDF SWG, refine the Candidate Standard document into a draft for public comment -- Submit the Candidate Standard to the OGC TC to be submitted for public comment -- Incorporate public comment suggestions and submit the result as an OGC Standard Specification. In parallel initiatives will be undertaken for extension standard for specific CF conventions (e.g., gridded data, point data collections, swath data, etc.)., for netCDF APIs, and for NcML (the netCDF Markup Language)-GML. The presentation will outline the plan and provide a report on the status of the initiative at the time of the meeting.

  16. TacNet Tracker Software

    SciTech Connect

    WISEMAN, JAMES; & STEVENS, JAMES

    2008-08-04

    The TacNet Tracker will be used for the monitoring and real-time tracking of personnel and assets in an unlimited number of specific applications. The TacNet Tracker software is a VxWorks Operating System based programming package that controls the functionality for the wearable Tracker. One main use of the TacNet Tracker is in Blue Force Tracking, the ability to track the good guys in an adversarial situation or in a force-on-force or real battle conditions. The purpose of blue force tracking is to provide situational awareness to the battlefield commanders and personnel. There are practical military applications with the TacNet Tracker.The mesh network is a wireless IP communications network that moves data packets from source IP addresses to specific destination IP addresses. Addresses on the TacNet infrastructure utilize an 8-bit network mask (255.0.0.0). In other words, valid TacNet addresses range from 10.0.0.1 to 10.254.254.254. The TacNet software design uses uni-cast transmission techniques because earlier mesh network software releases did not provide for the ability to utilize multi-cast data movement. The TacNet design employs a list of addresses to move information within the TacNet infrastructure. For example, a convoy text file containing the IP addresses of all valid receivers of TacNet information could be used for transmitting the information and for limiting transmission to addresses on the list.

  17. TacNet Tracker Software

    2008-08-04

    The TacNet Tracker will be used for the monitoring and real-time tracking of personnel and assets in an unlimited number of specific applications. The TacNet Tracker software is a VxWorks Operating System based programming package that controls the functionality for the wearable Tracker. One main use of the TacNet Tracker is in Blue Force Tracking, the ability to track the good guys in an adversarial situation or in a force-on-force or real battle conditions. Themore » purpose of blue force tracking is to provide situational awareness to the battlefield commanders and personnel. There are practical military applications with the TacNet Tracker.The mesh network is a wireless IP communications network that moves data packets from source IP addresses to specific destination IP addresses. Addresses on the TacNet infrastructure utilize an 8-bit network mask (255.0.0.0). In other words, valid TacNet addresses range from 10.0.0.1 to 10.254.254.254. The TacNet software design uses uni-cast transmission techniques because earlier mesh network software releases did not provide for the ability to utilize multi-cast data movement. The TacNet design employs a list of addresses to move information within the TacNet infrastructure. For example, a convoy text file containing the IP addresses of all valid receivers of TacNet information could be used for transmitting the information and for limiting transmission to addresses on the list.« less

  18. Controls on the variability of net infiltration to desert sandstone

    USGS Publications Warehouse

    Heilweil, V.M.; McKinney, T.S.; Zhdanov, M.S.; Watt, D.E.

    2007-01-01

    As populations grow in and climates and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration becomes critically important for accurately inventorying water resources and mapping contamination vulnerability. This paper presents a conceptual model of net infiltration to desert sandstone and then develops an empirical equation for its spatial quantification at the watershed scale using linear least squares inversion methods for evaluating controlling parameters (independent variables) based on estimated net infiltration rates (dependent variables). Net infiltration rates used for this regression analysis were calculated from environmental tracers in boreholes and more than 3000 linear meters of vadose zone excavations in an upland basin in southwestern Utah underlain by Navajo sandstone. Soil coarseness, distance to upgradient outcrop, and topographic slope were shown to be the primary physical parameters controlling the spatial variability of net infiltration. Although the method should be transferable to other desert sandstone settings for determining the relative spatial distribution of net infiltration, further study is needed to evaluate the effects of other potential parameters such as slope aspect, outcrop parameters, and climate on absolute net infiltration rates. Copyright 2007 by the American Geophysical Union.

  19. Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems

    USGS Publications Warehouse

    Randerson, J.T.; Chapin, F. S.; Harden, J.W.; Neff, J.C.; Harmon, M.E.

    2002-01-01

    The conceptual framework used by ecologists and biogeochemists must allow for accurate and clearly defined comparisons of carbon fluxes made with disparate techniques across a spectrum of temporal and spatial scales. Consistent with usage over the past four decades, we define "net ecosystem production" (NEP) as the net carbon accumulation by ecosystems. Past use of this term has been ambiguous, because it has been used conceptually as a measure of carbon accumulation by ecosystems, but it has often been calculated considering only the balance between gross primary production (GPP) and ecosystem respiration. This calculation ignores other carbon fluxes from ecosystems (e.g., leaching of dissolved carbon and losses associated with disturbance). To avoid conceptual ambiguities, we argue that NEP be defined, as in the past, as the net carbon accumulation by ecosystems and that it explicitly incorporate all the carbon fluxes from an ecosystem, including autotrophic respiration, heterotrophic respiration, losses associated with disturbance, dissolved and particulate carbon losses, volatile organic compound emissions, and lateral transfers among ecosystems. Net biome productivity (NBP), which has been proposed to account for carbon loss during episodic disturbance, is equivalent to NEP at regional or global scales. The multi-scale conceptual framework we describe provides continuity between flux measurements made at the scale of soil profiles and chambers, forest inventories, eddy covariance towers, aircraft, and inversions of remote atmospheric flask samples, allowing a direct comparison of NEP estimates made at all temporal and spatial scales.

  20. AdaNET research project

    NASA Technical Reports Server (NTRS)

    Digman, R. Michael

    1988-01-01

    The components necessary for the success of the commercialization of an Ada Technology Transition Network are reported in detail. The organizational plan presents the planned structure for services development and technical transition of AdaNET services to potential user communities. The Business Plan is the operational plan for the AdaNET service as a commercial venture. The Technical Plan is the plan from which the AdaNET can be designed including detailed requirements analysis. Also contained is an analysis of user fees and charges, and a proposed user fee schedule.

  1. 29 CFR 4204.13 - Net income and net tangible assets tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Net income and net tangible assets tests. 4204.13 Section....13 Net income and net tangible assets tests. (a) General. The criteria under this section are that either— (1) Net income test. The purchaser's average net income after taxes for its three most...

  2. 26 CFR 1.904(f)-3 - Allocation of net operating losses and net capital losses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Allocation of net operating losses and net....904(f)-3 Allocation of net operating losses and net capital losses. For rules relating to the allocation of net operating losses and net capital losses, see § 1.904(g)-3T....

  3. Illinois WorkNet System, NOCTI Partner for Real-World Credentials

    ERIC Educational Resources Information Center

    Telger, Natasha; Foster, John C.

    2011-01-01

    This article describes one assessment that provides a college- and career-ready individual for employers. In Illinois, workNet is the state's primary online workforce development Web site and resource for Workforce Investment Act services. With help from NOCTI, workNet offers assessments that identify the skills and interests of participants,…

  4. Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.

    PubMed

    Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin

    2016-07-01

    Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data. PMID:26668087

  5. Suburban poverty and the health care safety net.

    PubMed

    Felland, Laurie E; Lauer, Johanna R; Cunningham, Peter J

    2009-07-01

    Although suburban poverty has increased in the past decade, the availability of health care services for low-income and uninsured people in the suburbs has not kept pace. According to a new study by the Center for Studying Health System Change (HSC) of five communities--Boston, Cleveland, Indianapolis, Miami and Seattle--low-income people living in suburban areas face significant challenges accessing care because of inadequate transportation, language barriers and lack of awareness of health care options. Low-income people often rely on suburban hospital emergency departments (EDs) and urban safety net hospitals and health centers. Some urban providers are feeling the strain of caring for increasing numbers of patients from both the city and the suburbs. Both urban and suburban providers are attempting to redirect patients to more appropriate care near where they live by expanding primary care capacity, improving access to specialists, reducing transportation challenges, and generating revenues to support safety net services. Efforts to improve safety net services in suburban areas are hampered by greater geographic dispersion of the suburban poor and jurisdictional issues in funding safety net services. To improve the suburban safety net, policy makers may want to consider flexible and targeted approaches to providing care, regional collaboration to share resources, and geographic pockets of need when allocating resources for community health centers and other safety net services and facilities.

  6. Bioinformatics: searching the Net.

    PubMed

    Kastin, S; Wexler, J

    1998-04-01

    During the past 30 years, there has been an explosion in the volume of published medical information. As this volume has increased, so has the need for efficient methods for searching the data. MEDLINE, the primary medical database, is currently limited to abstracts of the medical literature. MEDLINE searches use AND/OR/NOT logical searching for keywords that have been assigned to each article and for textwords included in article abstracts. Recently, the complete text of some scientific journals, including figures and tables, has become accessible electronically. Keyword and textword searches can provide an overwhelming number of results. Search engines that use phrase searching, or searches that limit the number of words between two finds, improve the precision of search engines. The development of the Internet as a vehicle for worldwide communication, and the emergence of the World Wide Web (WWW) as a common vehicle for communication have made instantaneous access to much of the entire body of medical information an exciting possibility. There is more than one way to search the WWW for information. At the present time, two broad strategies have emerged for cataloging the WWW: directories and search engines. These allow more efficient searching of the WWW. Directories catalog WWW information by creating categories and subcategories of information and then publishing pointers to information within the category listings. Directories are analogous to yellow pages of the phone book. Search engines make no attempt to categorize information. They automatically scour the WWW looking for words and then automatically create an index of those words. When a specific search engine is used, its index is searched for a particular word. Usually, search engines are nonspecific and produce voluminous results. Use of AND/OR/NOT and "near" and "adjacent" search refinements greatly improve the results of a search. Search engines that limit their scope to specific sites, and

  7. GEP-NETS update: functional localisation and scintigraphy in neuroendocrine tumours of the gastrointestinal tract and pancreas (GEP-NETs).

    PubMed

    de Herder, Wouter W

    2014-05-01

    For patients with neuroendocrine tumours (NETs) of the gastrointestinal tract and pancreas (GEP) (GEP-NETs), excellent care should ideally be provided by a multidisciplinary team of skilled health care professionals. In these patients, a combination of nuclear medicine imaging and conventional radiological imaging techniques is usually mandatory for primary tumour visualisation, tumour staging and evaluation of treatment. In specific cases, as in patients with occult insulinomas, sampling procedures can provide a clue as to where to localise the insulin-hypersecreting pancreatic NETs. Recent developments in these fields have led to an increase in the detection rate of primary GEP-NETs and their metastatic deposits. Radiopharmaceuticals targeted at specific tumour cell properties and processes can be used to provide sensitive and specific whole-body imaging. Functional imaging also allows for patient selection for receptor-based therapies and prediction of the efficacy of such therapies. Positron emission tomography/computed tomography (CT) and single-photon emission CT/CT are used to map functional images with anatomical localisations. As a result, tumour imaging and tumour follow-up strategies can be optimised for every individual GEP-NET patient. In some cases, functional imaging might give indications with regard to future tumour behaviour and prognosis.

  8. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    PubMed

    Andersen, Lykke E; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions. PMID:26990865

  9. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model

    PubMed Central

    Andersen, Lykke E.; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990–2000 and 2000–2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990–2000 to about 93 million tons per year during 2000–2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions. PMID:26990865

  10. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    PubMed

    Andersen, Lykke E; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions.

  11. Grazing alters net ecosystem C fluxes and the net global warming potential of a subtropical pasture

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; DeLucia, N.; DeLucia, E. H.; Boughton, E.; Garrett, J. C.; Keel, E.; Bernacchi, C.

    2015-12-01

    The impact of grazing on CO2 and CH4 fluxes from subtropical pastures and thus on the climate system is uncertain, although these systems account for a substantial portion of global carbon storage. We investigated how cattle grazing affects net ecosystem CO2 exchange (NEE) and CH4 emissions in subtropical pastures using the eddy covariance technique over two complete wet-dry seasonal cycles. Grazing increased soil wetness but did not affect soil temperature. By removing aboveground biomass, grazing consistently decreased gross primary productivity (16% and 8 % in 2013-2014 and 2014-2015) and reduced ecosystem respiration (Re, 20% and 38% in 2013-2014 and 2014-2015). Lower Re in grazed (GP) than in ungrazed pasture (UP) was also explained by decreased soil and heterotrophic respiration and root biomass. Grazing increased the net CO2 sink strength of the pasture (-86 ± 5 gC m-2 yr-1 in GP vs. -76 ± 6 gC m-2 yr-1 in UP in 2013-2014; -118 ± 9 gC m-2 yr-1 in GP vs. +142 ± 6 gC m-2 yr-1 UP in 2014-2015). Over both wet-dry seasonal cycles, both ecosystems were net sources of CH4, and variations in fluxes without cattle present were driven by changes in soil wetness and temperature. The presence of cattle and greater soil moisture cased by the removal of aboveground biomass, caused greater total net ecosystem CH4 emissions from GP than from UP (16% and 8 % in 2013-2014 and 2014-2015). Wetter soils under GP were responsible for 21-56% of the difference in net CH4 emissions between pastures, suggesting that enhanced CH4 production from wetter soils due to cattle presence can be a major contributor to annual CH4 fluxes. Combining CO2 and CH4 to calculate a C budget revealed that grazing increased the net C sink strength of the pasture (-72 gC m-2 yr-1 in GP vs. -66 gC m-2 yr-1 in UP in 2013-2014; -114 gC m-2 yr-1 in GP vs. +144 gC m-2 yr-1 in UP in 2014-2015). Accounting for NEE and the radiative forcing of CH4, grazing increased the net global warming potential (GWP) of

  12. Grazing alters the net C sink strength and the net global warming potential of a subtropical pasture

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; DeLucia, N.; DeLucia, E. H.; Boughton, E. H.; Keel, E.; Bernacchi, C.

    2014-12-01

    Grazing profoundly affects climate by altering the exchange of greenhouse gases (GHG; CO2 and CH4) between terrestrial ecosystems and the atmosphere. Little is known about how this disturbance affects the GHG exchange from subtropical pastures although they account for a substantial portion of global grazing lands. Here, we investigated how cattle grazing affect net ecosystem CO2 exchange (NEE) and CH4 emissions in subtropical semi-native pasture using the eddy covariance technique. Soil moisture was greater under grazed than ungrazed pastures but soil temperature was similar between treatments. By removing aboveground biomass, grazing reduced gross primary productivity (GPP, 16%). While ungrazed pastures had higher GPP than grazed pastures, they also had higher ecosystem respiration (Re, 20%) along with higher heterotrophic respiration. As a result, annual sums of NEE were similar in grazed and ungrazed pastures and both systems were net sinks for CO2 (-86 ± 5 gC m-2 yr-1 in grazed pasture, and -76 ± 6 gC m-2 yr-1 in ungrazed pasture). Including C removal by grazers in the C budget, grazing reduced the C sink strength (250%) and grazed pasture became a net source of C to the atmosphere. Increased soil wetness and CH4 production from enteric ruminant fermentation enhanced net ecosystem CH4 emissions (16%) in grazed than in ungrazed pastures. The net global warming potential (GWP) was higher (34%) in grazed than in ungrazed pastures, but both systems were net sources of GHGs when accounting for the radiative forcing of CH4. Our results suggest that grazing reduces the net C sink strength and increases the net GWP of subtropical pastures. Improved understanding of how grazing affects ecosystem GHG fluxes is essential to predicting the role of pastures on the global C cycle.

  13. 27 CFR 5.38 - Net contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Net contents. 5.38 Section... Spirits § 5.38 Net contents. (a) Bottles conforming to metric standards of fill. The net contents of....47a. (b) Bottles not conforming to the metric standards of fill. The net contents for...

  14. 27 CFR 4.37 - Net contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Net contents. 4.37 Section... contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is... net content of wine for which no standard of fill is prescribed in § 4.72 shall be stated in...

  15. 27 CFR 5.38 - Net contents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Net contents. 5.38 Section... Spirits § 5.38 Net contents. (a) Bottles conforming to metric standards of fill. The net contents of....47a. (b) Bottles not conforming to the metric standards of fill. The net contents for...

  16. 27 CFR 4.37 - Net contents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Net contents. 4.37 Section... contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is... net content of wine for which no standard of fill is prescribed in § 4.72 shall be stated in...

  17. 47 CFR 65.450 - Net income.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.450 Section 65.450... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.450 Net income. (a) Net... these services. The calculation of expenses entering into the determination of net income shall...

  18. 29 CFR 1926.105 - Safety nets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Safety nets. 1926.105 Section 1926.105 Labor Regulations... Safety nets. (a) Safety nets shall be provided when workplaces are more than 25 feet above the ground or..., safety lines, or safety belts is impractical. (b) Where safety net protection is required by this...

  19. 27 CFR 19.644 - Net contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Net contents. 19.644... Requirements § 19.644 Net contents. The net contents of liquor bottles shall be shown on the label, unless the statement of the net contents is permanently marked on the side, front, or back of the bottle. (Sec....

  20. 27 CFR 5.38 - Net contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Net contents. 5.38 Section... Spirits § 5.38 Net contents. (a) Bottles conforming to metric standards of fill. The net contents of....47a. (b) Bottles not conforming to the metric standards of fill. The net contents for...

  1. 27 CFR 4.37 - Net contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Net contents. 4.37 Section... contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is... net content of wine for which no standard of fill is prescribed in § 4.73 shall be stated in...

  2. 27 CFR 5.38 - Net contents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Net contents. 5.38 Section... Spirits § 5.38 Net contents. (a) Bottles conforming to metric standards of fill. The net contents of....47a. (b) Bottles not conforming to the metric standards of fill. The net contents for...

  3. 27 CFR 4.37 - Net contents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Net contents. 4.37 Section... contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is... net content of wine for which no standard of fill is prescribed in § 4.72 shall be stated in...

  4. 27 CFR 4.37 - Net contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Net contents. 4.37 Section... contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is... net content of wine for which no standard of fill is prescribed in § 4.72 shall be stated in...

  5. 27 CFR 5.38 - Net contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Net contents. 5.38 Section... Spirits § 5.38 Net contents. (a) Bottles conforming to metric standards of fill. The net contents of....47a. (b) Bottles not conforming to the metric standards of fill. The net contents for...

  6. Symmetry breaking in neural nets.

    PubMed

    Pessa, E

    1988-01-01

    In this paper two well-known homogeneous models of neural nets undergoing symmetry-breaking transitions are studied in order to see if, after the transition, there is the appearance of Goldstone modes. These have been found only in an approximate way; there are indications, however, that they can play a prominent role when the tissue is subjected to external inputs, constraining it to be slaved to the characteristics of those. This circumstance should be essential in explaining how a structured net can store complex inputs and give subsequently ordered outputs.

  7. Money for nothing? The net costs of medical training.

    PubMed

    Barros, Pedro P; Machado, Sara R

    2010-09-01

    One of the stages of medical training is the residency programme. Hosting institutions often claim compensation for the training provided. How much should this compensation be? According to our results, given the benefits arising from having residents among the house staff, no transfer (either tuition fee or subsidy) should be set to compensate the hosting institution for providing medical training. This paper quantifies the net costs of medical training, defined as the training costs over and above the wage paid. We jointly consider two effects. On the one hand, residents take extra time and resources from both the hosting institution and the supervisor. On the other hand, residents can be regarded as a less expensive substitute to nurses and/or graduate physicians, in the production of health care, both in primary care centres and hospitals. The net effect can be either positive or negative. We use the fact that residents, in Portugal, are centrally allocated to National Health Service hospitals to treat them as a fixed exogenous production factor. The data used comes from Portuguese hospitals and primary care centres. Cost function estimates point to a small negative marginal impact of residents on hospitals' (-0.02%) and primary care centres' (-0.9%) costs. Nonetheless, there is a positive relation between size and cost to the very large hospitals and primary care centres. Our approach to estimation of residents' costs controls for other teaching activities hospitals might have (namely undergraduate Medical Schools). Overall, the net costs of medical training appear to be quite small.

  8. Neural Network Development Tool (NETS)

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1990-01-01

    Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.

  9. The power of neural nets

    NASA Technical Reports Server (NTRS)

    Ryan, J. P.; Shah, B. H.

    1987-01-01

    Implementation of the Hopfield net which is used in the image processing type of applications where only partial information about the image may be available is discussed. The image classification type of algorithm of Hopfield and other learning algorithms, such as the Boltzmann machine and the back-propagation training algorithm, have many vital applications in space.

  10. Optimization for training neural nets.

    PubMed

    Barnard, E

    1992-01-01

    Various techniques of optimizing criterion functions to train neural-net classifiers are investigated. These techniques include three standard deterministic techniques (variable metric, conjugate gradient, and steepest descent), and a new stochastic technique. It is found that the stochastic technique is preferable on problems with large training sets and that the convergence rates of the variable metric and conjugate gradient techniques are similar.

  11. Generalization in probabilistic RAM nets.

    PubMed

    Clarkson, T G; Guan, Y; Taylor, J G; Gorse, D

    1993-01-01

    The probabilistic RAM (pRAM) is a hardware-realizable neural device which is stochastic in operation and highly nonlinear. Even small nets of pRAMs offer high levels of functionality. The means by which a pRAM network generalizes when trained in noise is shown and the results of this behavior are described.

  12. Videotutoring via AppalNet.

    ERIC Educational Resources Information Center

    Buchanan, Harriette C.

    The Videotutoring via AppalNet project at Appalachian State University in North Carolina offers supplementary, tutorial assistance to students in certain high risk courses such as history, biology, and mathematics. This program enables instructors to tape test review sessions which are broadcast live and then later rebroadcast at other times on…

  13. SophiNet Version 12

    SciTech Connect

    2012-08-09

    SophiNet Version 12 is part of the code contained in the application ‘oglnet’ and comprises the portions that make ‘oglnet’ receive and display Sophia data from the Sophia Daemon ‘sophiad’. Specifically this encompasses the channel, host and alert receiving and the treeview HUD widget.

  14. The Net Generation Cheating Challenge

    ERIC Educational Resources Information Center

    Milliron, Valerie; Sandoe, Kent

    2008-01-01

    Integral to higher education, academic integrity stands as a cornerstone of academic life. However, compelling evidence of widespread academic dishonesty among Net-Generation students threatens to undermine both the environment of trust that nourishes integrity and the safeguards that help ensure it. Working from their experience with widespread…

  15. 26 CFR 1.172-4 - Net operating loss carrybacks and net operating loss carryovers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Net operating loss carrybacks and net operating... Corporations (continued) § 1.172-4 Net operating loss carrybacks and net operating loss carryovers. (a) General provisions—(1) Years to which loss may be carried—(i) In general. In order to compute the net operating...

  16. An electronic consumer health library: NetWellness.

    PubMed Central

    Guard, R; Haag, D; Kaya, B; Marine, S; Morris, T; Schick, L; Shoemaker, S

    1996-01-01

    NetWellness is a community-based, consumer-defined grant program supporting the delivery of electronic health information to rural residents of southern Ohio and urban and suburban communities in the Greater Cincinnati tri-state region. NetWellness is a collaboratively developed and publicly and privately funded demonstration project. Information is delivered via ISDN, standard dial, dedicated network connections, and the Internet. TriState Online (Greater Cincinnati's Free-Net) and other southern Ohio Free-Nets are key access points in the larger project communities. The other access points are more than forty workstations distributed at public sites throughout the project's primary geographical area. Design strengths and limitations, training initiatives, technical issues, and the project's impact on medical librarianship are examined in this paper. Also discussed are ways of determining community needs and interest, building political alliances, finding and developing funding sources, and overcoming technical obstacles. NetWellness's Internet address is: http:@www.netwellness.org. PMID:8913548

  17. Caught in the Net: Perineuronal Nets and Addiction.

    PubMed

    Slaker, Megan; Blacktop, Jordan M; Sorg, Barbara A

    2016-01-01

    Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM). Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs). This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction. PMID:26904301

  18. Caught in the Net: Perineuronal Nets and Addiction.

    PubMed

    Slaker, Megan; Blacktop, Jordan M; Sorg, Barbara A

    2016-01-01

    Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM). Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs). This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  19. Caught in the Net: Perineuronal Nets and Addiction

    PubMed Central

    Slaker, Megan; Blacktop, Jordan M.; Sorg, Barbara A.

    2016-01-01

    Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM). Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs). This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction. PMID:26904301

  20. Capturing birds with mist nets: A review

    USGS Publications Warehouse

    Keyes, B.E.; Grue, C.E.

    1982-01-01

    Herein we have tried to provide a comprehensive review of mist-netting techniques suitable for both novice and experienced netters. General mist-netting procedures and modifications developed by netters for particular bird species and habitats are included. Factors which influence capture success, including site selection, net specifications and placement, weather, and time of day, are discussed. Guidelines are presented for the care of netted birds and the use of mist-net data in the study of bird communities. The advantages of the use of mist nets over other methods of capturing birds are also discussed.

  1. Petri net controllers for distributed robotic systems

    NASA Technical Reports Server (NTRS)

    Lefebvre, D. R.; Saridis, George N.

    1992-01-01

    Petri nets are a well established modelling technique for analyzing parallel systems. When coupled with an event-driven operating system, Petri nets can provide an effective means for integrating and controlling the functions of distributed robotic applications. Recent work has shown that Petri net graphs can also serve as remarkably intuitive operator interfaces. In this paper, the advantages of using Petri nets as high-level controllers to coordinate robotic functions are outlined, the considerations for designing Petri net controllers are discussed, and simple Petri net structures for implementing an interface for operator supervision are presented. A detailed example is presented which illustrates these concepts for a sensor-based assembly application.

  2. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  3. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  4. Prosocial behavior on the Net.

    PubMed

    Sproull, Lee

    2011-01-01

    Volunteers and charitable organizations contribute significantly to community welfare through their prosocial behavior: that is, discretionary behavior such as assisting, comforting, sharing, and cooperating intended to help worthy beneficiaries. This essay focuses on prosocial behavior on the Internet. It describes how offline charitable organizations are using the Net to become more efficient and effective. It also considers entirely new models of Net-based volunteer behavior directed at creating socially beneficial information goods and services. After exploring the scope and diversity of online prosocial behavior, the essay focuses on ways to encourage this kind of behavior through appropriate task and social structures, motivational signals, and trust indicators. It concludes by asking how local offline communities ultimately could be diminished or strengthened as prosocial behavior increases online.

  5. AdaNET research plan

    NASA Technical Reports Server (NTRS)

    Mcbride, John G.

    1990-01-01

    The mission of the AdaNET research effort is to determine how to increase the availability of reusable Ada components and associated software engineering technology to both private and Federal sectors. The effort is structured to define the requirements for transfer of Federally developed software technology, study feasible approaches to meeting the requirements, and to gain experience in applying various technologies and practices. The overall approach to the development of the AdaNET System Specification is presented. A work breakdown structure is presented with each research activity described in detail. The deliverables for each work area are summarized. The overall organization and responsibilities for each research area are described. The schedule and necessary resources are presented for each research activity. The estimated cost is summarized for each activity. The project plan is fully described in the Super Project Expert data file contained on the floppy disk attached to the back cover of this plan.

  6. Prosocial behavior on the Net.

    PubMed

    Sproull, Lee

    2011-01-01

    Volunteers and charitable organizations contribute significantly to community welfare through their prosocial behavior: that is, discretionary behavior such as assisting, comforting, sharing, and cooperating intended to help worthy beneficiaries. This essay focuses on prosocial behavior on the Internet. It describes how offline charitable organizations are using the Net to become more efficient and effective. It also considers entirely new models of Net-based volunteer behavior directed at creating socially beneficial information goods and services. After exploring the scope and diversity of online prosocial behavior, the essay focuses on ways to encourage this kind of behavior through appropriate task and social structures, motivational signals, and trust indicators. It concludes by asking how local offline communities ultimately could be diminished or strengthened as prosocial behavior increases online. PMID:22167915

  7. Below- and above-ground controls on tree water use in lowland tropical forests

    NASA Astrophysics Data System (ADS)

    Meinzer, F. C.; Woodruff, D.; McCulloh, K.; Domec, J.

    2012-12-01

    Even in moist tropical forests, fluctuations in soil water availability and atmospheric evaporative demand can constrain tree water use. Our research in three lowland tropical forest sites in Panama over the past two decades has identified a series of tree biophysical and functional traits related to daily and seasonal patterns of uptake, transport and loss of water. Studies combining measurements of sap flow and natural abundance of hydrogen isotopes in soil and xylem water during the dry season show considerable variation in depth of soil water uptake among co-occurring species. Trees able to exploit progressively deeper sources of soil water during the dry season, as indicated by increasingly negative xylem water hydrogen isotope ratios, were also able to maintain constant or even increased rates of water use. Injections of a stable isotope tracer (deuterated water) into tree trunks revealed a considerable range of water transit and residence times among co-occurring, similarly-sized trees. Components of tree hydraulic architecture were also strong determinants of patterns of water use. Sapwood hydraulic capacitance, the amount of water released per unit change in tissue water potential, was a strong predictor of several tree water use and water relations traits, including sap velocity, water residence time, daily maximum branch xylem tension, and the time of day at which stomata began to increasingly restrict transpiration. Among early and late successional species, hydraulic traits such as trunk-to-branch tapering of xylem vessels, branch sap flux, branch sapwood specific conductivity and whole-tree leaf area-specific hydraulic conductance scaled uniformly with branch wood density. Consistent with differences in trunk-to-branch tapering of vessels between early and late successional species, the ratio of branch to trunk sap flux was substantially greater in early successional species. Among species, stomatal conductance and transpiration per unit leaf area scaled uniformly with branch leaf-specific conductivity and with the branch leaf area to sapwood area ratio; a tree architecture-based proxy for leaf-specific conductivity. At the canopy-atmosphere interface, a combination of high stomatal conductance and relatively large leaf size enhanced the role of the boundary layer over stomata in controlling transpiration (increased decoupling coefficient; omega). Uniform scaling of tree water use characteristics with simple biophysical, hydraulic and architectural traits across species may facilitate predictions of changes in tropical forest water use with shifts in species composition associated with climate change and changing land-use.

  8. Above-ground herbivory causes rapid and sustained changes in mycorrhizal colonization of grasses.

    PubMed

    Wearn, James A; Gange, Alan C

    2007-10-01

    Arbuscular mycorrhizal fungi (AMF) play a vital role in ecosystem functioning. In most grasslands, herbivory by both vertebrate and invertebrate herbivores is common and thus in order to assess herbivore effects on multitrophic-level interactions both should be considered. This study investigated the effects of grazing by rabbit and insect herbivores on root-colonization of grasses by AMF in two lowland grasslands in southern England, UK. A long-term exclosure site was used to provide a temporal assessment in order to elucidate whether any short-term responses to herbivore removal were sustained. Root samples from three grass species at each site were analysed in terms of total mycorrhizal colonization and proportional colonization by individual mycorrhizal structures. Colonization levels were up to 1.6 times greater under moderate levels of rabbit grazing (with summer maxima of 25% and winter minima of 11%) than in intensely grazed swards or fenced plots at both sites. The change was fast (within 8 weeks), consistent throughout the sampled field plots, and temporally sustainable over a 19-year period. There was no significant effect of insect herbivory on total colonization but proportional colonization by different AM structures was affected on some sample dates where vertebrate herbivores had been removed, indicating a slight effect on fungal structure allocation. The results suggest that the type of herbivore and perhaps more importantly the intensity of grazing are key determinants of below-ground effects upon mycorrhizal-host plant symbiosis. The data suggest that the extent of mycorrhizal colonization within grass host plants is strongly influenced by C assimilation and allocation.

  9. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests

    NASA Astrophysics Data System (ADS)

    Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo

    2016-10-01

    Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.

  10. Rapid assessment of above-ground biomass of Giant Reed using visibility estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid estimation of biomass and density of giant reed (Arundo donax L.) was developed using estimates of visibility as a predictive tool. Visibility estimates were derived by capturing digital images of a 0.25 m2 polystyrene whiteboard placed a set distance (1m) from the edge of gia...

  11. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Uman, M. A.; Lin, Y. T.; Standler, R. B.; Master, M. J.; Fisher, R. J.

    1980-01-01

    A lightning return stroke model with which the two station electric and magnetic fields measured at ground level can be reproduced is used to compute fields at altitudes up to 10 km and at ranges from 20 m to 10 km. These calculations provide the first detailed estimates of the return strokes fields that are encountered by aircraft in flight. With the advent of modern aircraft utilizing low voltage digital electronics and reduced electromagnetic shielding by way of structures containing advanced composite materials, these calculations are of considerable practical interest. Further, since airborne electric and magnetic field measurements are presently being attempted, a comparison of the calculations presented with appropriate experimental data, when they are available, will constitute a test of the return stroke model.

  12. Software reuse issues affecting AdaNET

    NASA Technical Reports Server (NTRS)

    Mcbride, John G.

    1989-01-01

    The AdaNet program is reviewing its long-term goals and strategies. A significant concern is whether current AdaNet plans adequately address the major strategic issues of software reuse technology. The major reuse issues of providing AdaNet services that should be addressed as part of future AdaNet development are identified and reviewed. Before significant development proceeds, a plan should be developed to resolve the aforementioned issues. This plan should also specify a detailed approach to develop AdaNet. A three phased strategy is recommended. The first phase would consist of requirements analysis and produce an AdaNet system requirements specification. It would consider the requirements of AdaNet in terms of mission needs, commercial realities, and administrative policies affecting development, and the experience of AdaNet and other projects promoting the transfer software engineering technology. Specifically, requirements analysis would be performed to better understand the requirements for AdaNet functions. The second phase would provide a detailed design of the system. The AdaNet should be designed with emphasis on the use of existing technology readily available to the AdaNet program. A number of reuse products are available upon which AdaNet could be based. This would significantly reduce the risk and cost of providing an AdaNet system. Once a design was developed, implementation would proceed in the third phase.

  13. Multiscale optimization in neural nets.

    PubMed

    Mjolsness, E; Garrett, C D; Miranker, W L

    1991-01-01

    One way to speed up convergence in a large optimization problem is to introduce a smaller, approximate version of the problem at a coarser scale and to alternate between relaxation steps for the fine-scale and coarse-scale problems. Such an optimization method for neural networks governed by quite general objective functions is presented. At the coarse scale, there is a smaller approximating neural net which, like the original net, is nonlinear and has a nonquadratic objective function. The transitions and information flow from fine to coarse scale and back do not disrupt the optimization, and the user need only specify a partition of the original fine-scale variables. Thus, the method can be applied easily to many problems and networks. There is generally about a fivefold improvement in estimated cost under the multiscale method. In the networks to which it was applied, a nontrivial speedup by a constant factor of between two and five was observed, independent of problem size. Further improvements in computational cost are very likely to be available, especially for problem-specific multiscale neural net methods.

  14. On Net Currents in Sunspots

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Parameswaran

    2012-07-01

    Vector magnetic fields of sunspots, as measured in the photosphere, show structures on a variety of special scales. Simple inversions of stokes profiles yield average values of the vector fields at a single height. Vertical component of the current density obtained from such magnetograms is also distributed on sub-arc second scales. However, the net current, obtained by spatial integration of the current density must vanish on account of the confined nature of the sunspot fields. Various measurements of the net current show different results. In this talk, I will discuss all such results, including the evolution of net current in the case of NOAA AR 10930 during the period 10 December 2006 to 15 December 2006. The implications of such an evolution for initiating eruptions in the solar corona are also discussed. Finally, the advantage of measuring currents at different layers of the solar atmosphere will be pointed out. This will be a major science goal of the upcoming Multi Application Solar Telescope (MAST) of the Udaipur Solar Observatory.

  15. Eddy covariance measurements of net C exchange in the CAM bioenergy crop, Agave tequiliana

    NASA Astrophysics Data System (ADS)

    Owen, Nick A.; Choncubhair, Órlaith Ní; Males, Jamie; del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-04-01

    Bioenergy crop cultivation may focus more on low grade and marginal lands in order to avoid competition with food production for land and water resources. However, in many regions, this would require improvements in plant water-use efficiency that are beyond the physiological capacity of most C3 and C4 bioenergy crop candidates. Crassulacean acid metabolism (CAM) plants, such as Agave tequiliana, can combine high above-ground productivity with as little as 20% of the water demand of C3 and C4 crops. This is achieved through temporal separation of carboxylase activities, with stomata opening at night to allow gas exchange and minimise transpirational losses. Previous studies have employed 'bottom-up' methodologies to investigate carbon (C) accumulation and productivity in Agave, by scaling leaf-level gas exchange and titratable acidity (TA) with leaf area index or maximum productivity. We used the eddy covariance (EC) technique to quantify ecosystem-scale gas exchange over an Agave plantation in Mexico ('top-down' approach). Measurements were made over 252 days, including the transition from wet to dry periods. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Net ecosystem exchange of CO2 displayed a CAM rhythm that alternated from a net C sink at night to a net C source during the day and partitioned canopy fluxes (gross C assimilation, FA,EC) showed a characteristic four-phase CO2 exchange pattern. The projected ecosystem C balance indicated that the site was a net sink of -333 ± 24 g C m-2 y-1, comprising cumulative soil respiration of 692 ± 7 g C m-2 y-1 and FA,EC of -1025 ± 25 g C m-2 y-1. EC-estimated biomass yield was 20.1 Mg ha-1 y-1. Average integrated daily FA,EC was -234 ± 5 mmol CO2 m-2 d-1 and persisted almost unchanged after 70 days of drought conditions. Our results suggest that the carbon acquisition strategy of drought avoidance employed by Agave

  16. Eddy covariance measurements of net C exchange in the CAM bioenergy crop, Agave tequiliana

    NASA Astrophysics Data System (ADS)

    Owen, Nick A.; Choncubhair, Órlaith Ní; Males, Jamie; del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-04-01

    Bioenergy crop cultivation may focus more on low grade and marginal lands in order to avoid competition with food production for land and water resources. However, in many regions, this would require improvements in plant water-use efficiency that are beyond the physiological capacity of most C3 and C4 bioenergy crop candidates. Crassulacean acid metabolism (CAM) plants, such as Agave tequiliana, can combine high above-ground productivity with as little as 20% of the water demand of C3 and C4 crops. This is achieved through temporal separation of carboxylase activities, with stomata opening at night to allow gas exchange and minimise transpirational losses. Previous studies have employed 'bottom-up' methodologies to investigate carbon (C) accumulation and productivity in Agave, by scaling leaf-level gas exchange and titratable acidity (TA) with leaf area index or maximum productivity. We used the eddy covariance (EC) technique to quantify ecosystem-scale gas exchange over an Agave plantation in Mexico ('top-down' approach). Measurements were made over 252 days, including the transition from wet to dry periods. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Net ecosystem exchange of CO2 displayed a CAM rhythm that alternated from a net C sink at night to a net C source during the day and partitioned canopy fluxes (gross C assimilation, FA,EC) showed a characteristic four-phase CO2 exchange pattern. The projected ecosystem C balance indicated that the site was a net sink of -333 ± 24 g C m‑2 y‑1, comprising cumulative soil respiration of 692 ± 7 g C m‑2 y‑1 and FA,EC of -1025 ± 25 g C m‑2 y‑1. EC-estimated biomass yield was 20.1 Mg ha‑1 y‑1. Average integrated daily FA,EC was -234 ± 5 mmol CO2 m‑2 d‑1 and persisted almost unchanged after 70 days of drought conditions. Our results suggest that the carbon acquisition strategy of drought avoidance

  17. [Improving Health Care for Patients with Somatoform and Functional Disorders: A Collaborative Stepped Care Network (Sofu-Net)].

    PubMed

    Shedden-Mora, Meike; Lau, Katharina; Kuby, Amina; Groß, Beatrice; Gladigau, Maria; Fabisch, Alexandra; Löwe, Bernd

    2015-07-01

    The management of somatoform disorders in primary care is often limited due to low diagnostic accuracy, delayed referral to psychotherapy and overuse of health care. To address these difficulties, this study aimed to establish a collaborative stepped health care network (Sofu-Net). Sofu-Net was established among 41 primary care physicians, 35 psychotherapists and 8 mental health clinics. Baseline assessment in primary care showed elevated psychopathology and deficits in health care among patients with somatoform symptoms. Network partners provided positive evaluations of Sofu-Net.

  18. 29 CFR 1926.105 - Safety nets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nets be required for bridge construction. (d) The mesh size of nets shall not exceed 6 inches by 6...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Personal Protective and Life Saving Equipment §...

  19. 29 CFR 1926.105 - Safety nets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nets be required for bridge construction. (d) The mesh size of nets shall not exceed 6 inches by 6...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Personal Protective and Life Saving Equipment §...

  20. 29 CFR 1926.105 - Safety nets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nets be required for bridge construction. (d) The mesh size of nets shall not exceed 6 inches by 6...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Personal Protective and Life Saving Equipment §...

  1. 27 CFR 7.27 - Net contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Net contents. 7.27 Section... Beverages § 7.27 Net contents. (a) Net contents shall be stated as follows: (1) If less than 1 pint, in fluid ounces, or fractions of a pint. (2) If 1 pint, 1 quart, or 1 gallon, the net contents shall be...

  2. 27 CFR 7.27 - Net contents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Net contents. 7.27 Section... Beverages § 7.27 Net contents. (a) Net contents shall be stated as follows: (1) If less than 1 pint, in fluid ounces, or fractions of a pint. (2) If 1 pint, 1 quart, or 1 gallon, the net contents shall be...

  3. 27 CFR 7.27 - Net contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Net contents. 7.27 Section... Beverages § 7.27 Net contents. (a) Net contents shall be stated as follows: (1) If less than 1 pint, in fluid ounces, or fractions of a pint. (2) If 1 pint, 1 quart, or 1 gallon, the net contents shall be...

  4. 27 CFR 7.27 - Net contents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Net contents. 7.27 Section... Beverages § 7.27 Net contents. (a) Net contents shall be stated as follows: (1) If less than 1 pint, in fluid ounces, or fractions of a pint. (2) If 1 pint, 1 quart, or 1 gallon, the net contents shall be...

  5. 27 CFR 7.27 - Net contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Net contents. 7.27 Section... Beverages § 7.27 Net contents. (a) Net contents shall be stated as follows: (1) If less than 1 pint, in fluid ounces, or fractions of a pint. (2) If 1 pint, 1 quart, or 1 gallon, the net contents shall be...

  6. Adaptive-clustering optical neural net.

    PubMed

    Casasent, D P; Barnard, E

    1990-06-10

    Pattern recognition techniques (for clustering and linear discriminant function selection) are combined with neural net methods (that provide an automated method to combine linear discriminant functions into piecewise linear discriminant surfaces). The resulting adaptive-clustering neural net is suitable for optical implementation and has certain desirable properties in comparison with other neural nets. Simulation results are provided.

  7. 47 CFR 69.302 - Net investment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net investment. 69.302 Section 69.302 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B...

  8. 46 CFR 69.63 - Net tonnage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Net tonnage. 69.63 Section 69.63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DOCUMENTATION AND MEASUREMENT OF VESSELS MEASUREMENT OF VESSELS Convention Measurement System § 69.63 Net tonnage. Net tonnage (NT) is determined by the formula:...

  9. 47 CFR 65.500 - Net income.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.500 Section 65.500... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Interexchange Carriers § 65.500 Net income. The net income methodology specified in § 65.450 shall be utilized by all interexchange carriers that...

  10. 25 CFR 502.16 - Net revenues.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Net revenues. 502.16 Section 502.16 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS OF THIS CHAPTER § 502.16 Net revenues. Net revenues means gross gaming revenues of an Indian gaming operation less—...

  11. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Net savings. 436.20 Section 436.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found...

  12. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Net savings. 436.20 Section 436.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found...

  13. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Net savings. 436.20 Section 436.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found...

  14. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an...

  15. 10 CFR 436.20 - Net savings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an...

  16. 29 CFR 1926.105 - Safety nets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Safety nets. 1926.105 Section 1926.105 Labor Regulations... Safety nets. (a) Safety nets shall be provided when workplaces are more than 25 feet above the ground or water surface, or other surfaces where the use of ladders, scaffolds, catch platforms, temporary...

  17. 47 CFR 69.302 - Net investment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission,...

  18. 47 CFR 69.302 - Net investment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission,...

  19. 47 CFR 69.302 - Net investment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission,...

  20. 47 CFR 69.302 - Net investment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission,...

  1. New Mexico AIDS InfoNet

    MedlinePlus

    ... English Español | Spanish नेपाली | Nepali About the AIDS InfoNet The AIDS InfoNet is an educational project ... site visitor and her/his healthcare provider. The AIDS InfoNet provides current information on HIV/AIDS treatment ...

  2. 29 CFR 4062.4 - Determinations of net worth and collective net worth.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Determinations of net worth and collective net worth. 4062... CORPORATION LIABILITY LIABILITY FOR TERMINATION OF SINGLE-EMPLOYER PLANS § 4062.4 Determinations of net worth and collective net worth. (a) General rules. When a contributing sponsor, or member(s) of...

  3. 29 CFR 4062.4 - Determinations of net worth and collective net worth.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Determinations of net worth and collective net worth. 4062... CORPORATION LIABILITY LIABILITY FOR TERMINATION OF SINGLE-EMPLOYER PLANS § 4062.4 Determinations of net worth and collective net worth. (a) General rules. When a contributing sponsor, or member(s) of...

  4. Survival analysis and neural nets.

    PubMed

    Liestøl, K; Andersen, P K; Andersen, U

    1994-06-30

    We consider feed-forward neural nets and their relation to regression models for survival data. We show how the back-propagation algorithm may be used to obtain maximum likelihood estimates in certain standard regression models for survival data, as well as in various generalizations of these. Examples concerning malignant melanoma and post-partum amenorrhoea during lactation are used as illustration. We conclude that although problems with the substantial number of parameters and their interpretation remain, the feed-forward neural network models are flexible extensions to the standard regression models and thereby candidates for use in prediction and exploratory analyses in larger data sets.

  5. Artificial nets from superconducting nanogranules

    SciTech Connect

    Ovchinnikov, Yu. N.; Kresin, V. Z.

    2012-06-15

    We show that a large transport current can flow through superconducting nets composed of nano-clusters. Although thermal and quantum fluctuations lead to a finite value of dissipation, this value can be very small in one- and two-dimensional systems for realistic parameters of the nanoclusters and distances between them. The value of the action for vortex tunneling at zero temperature can be made sufficiently large to make the dissipation negligibly small. We estimate the temperature T{sub 0} of the transition from the thermal activation to quantum tunneling.

  6. Isomorphisms between Petri nets and dataflow graphs

    NASA Technical Reports Server (NTRS)

    Kavi, Krishna M.; Buckles, Billy P.; Bhat, U. Narayan

    1987-01-01

    Dataflow graphs are a generalized model of computation. Uninterpreted dataflow graphs with nondeterminism resolved via probabilities are shown to be isomorphic to a class of Petri nets known as free choice nets. Petri net analysis methods are readily available in the literature and this result makes those methods accessible to dataflow research. Nevertheless, combinatorial explosion can render Petri net analysis inoperative. Using a previously known technique for decomposing free choice nets into smaller components, it is demonstrated that, in principle, it is possible to determine aspects of the overall behavior from the particular behavior of components.

  7. Access to care provided by better safety net systems for the uninsured: measuring and conceptualizing adequacy.

    PubMed

    Hall, Mark A

    2011-08-01

    This descriptive study assesses the access to care provided by five model and diverse safety net programs that enroll uninsured adults in a coordinated system offering primary care, hospital care, prescription drugs, and most specialist services. Physician use by safety net program members was similar to insured groups. However, there was less use of hospitals in the two programs that relied on uncompensated charity care. Considering access measures commonly used in population-based surveys, the uninsured in these five communities fared no better than uninsured elsewhere. However, respondents may consider enrollment in a well-structured safety net program to be equivalent to insurance. If so, population surveys may be least accurate in identifying uninsured people in the very communities that have the best safety net programs. On balance the five safety net systems profiled here meet the needs of low-income uninsured residents at a level that is roughly similar to that for people with insurance.

  8. Chronic kidney disease care in the US safety net.

    PubMed

    Tuot, Delphine S; Grubbs, Vanessa

    2015-01-01

    The US Health Care System provides a patchwork of services, known as the safety net, for the uninsured, underinsured, and indigent populations who would otherwise have little access to health care services. Individuals who rely on safety-net facilities are from racial/ethnic minority groups, have low socioeconomic status, and often have low health literacy and/or limited English proficiency. They shoulder a disproportionate burden of CKD in the United States and experience excess CKD-associated morbidity and mortality. Suboptimal delivery of CKD care may be contributing and is an area of active translational research. Several initiatives that show promise in improving safety-net CKD care delivery include those that enhance diagnostic and management skills of primary care providers, rely on comprehensive care management programs led by nonphysicians, and leverage technology to enhance patient access to virtual nephrology expertise. Uncovering better ways to translate scientific evidence into practice for vulnerable patients with CKD is a formidable challenge that will require national surveillance of CKD quality measures across diverse ambulatory health systems, including safety nets. Only then will the nephrology community be to identify and share best practices to enhance health and mitigate disparities of care among patients with CKD. PMID:25573515

  9. Pro-Nets versus No-Nets: Differences in Urban Older Adults' Predilections for Internet Use

    ERIC Educational Resources Information Center

    Cresci, M. Kay; Yarandi, Hossein N.; Morrell, Roger W.

    2010-01-01

    Enthusiasm for information technology (IT) is growing among older adults. Many older adults enjoy IT and the Internet (Pro-Nets), but others have no desire to use it (No-Nets). This study found that Pro-Nets and No-Nets were different on a number of variables that might predict IT use. No-Nets were older, had less education and income, were…

  10. The QuarkNet Collaboration

    NASA Astrophysics Data System (ADS)

    Erzberger, A.

    2003-12-01

    QuarkNet is a long-term high school education project, supported by NSF and DOE and carried out by a collaboration of university and laboratory research groups. These research groups are part of major international particle physics experiments, including those at CERN in Switzerland, Fermilab in Illinois, and SLAC in California. Goals and Objectives: A major goal is to engage students and teachers in authentic scientific research; they gain a first-hand understanding of research and its application in the inquiry method of learning. Teachers enhance their content knowledge, increase their abilities to solve science-related problems, engage students in scientific inquiry, and develop responsibility for their own professional development. Students learn fundamental physics and are motivated by current research questions as they analyze real data. A second goal is to engage particle physicists with current issues in science education, including their understanding of the National Science Education Standards and local science education needs and what constitutes age-appropriate content. Project Design: Working with physicists nationwide, we have established a project framework with three program areas-teacher research experience, teacher development programs, and online resources and inquiry-based activities. Eight-week research appointments allow teachers to experience scientific research first-hand. In teacher institutes the next summer these teachers and scientists lead a group of teachers through a short research scenario lasting two to three weeks and assist them in creating similar scenarios for their students. When fully implemented QuarkNet will support centers associated with 60 particle physics research groups at universities and laboratories in the U. S. The QuarkNet website provides: - Experimental data for use in inquiry-based activities. - Opportunities for communication and collaboration among physicists, teachers and students. - A place for students to

  11. Organizing uninsured safety-net access to specialist physician services.

    PubMed

    Hall, Mark A

    2013-05-01

    Arranging referrals for specialist services is often the greatest difficulty that safety-net access programs face in attempting to provide fairly comprehensive services for the uninsured. When office-based community specialists are asked to care for uninsured patients, they cite the following barriers: difficulty determining which patients merit charity care, having to arrange for services patients need from other providers, and concerns about liability for providing inadequate care. Solutions to these barriers to specialist access can be found in the same institutional arrangements that support primary care and hospital services for the uninsured. These safety-net organization structures can be extended to include specialist physician care by funding community health centers to contract for specialist referrals, using free-standing referral programs to subsidize community specialists who accept uninsured patients at discounted rates, and encouraging hospitals through tax exemption or disproportionate share funding to require specialists on their medical staffs to accept an allocation of uninsured office-based referrals.

  12. Incidence of foodborne illnesses--FoodNet, 1997.

    PubMed

    1998-09-25

    Each year, millions of persons become ill from foodborne diseases, though many cases are not reported. The Foodborne Diseases Active Surveillance Network (Food-Net), the primary foodborne diseases component of CDC's Emerging Infections Program, was developed to better characterize, understand, and respond to foodborne illnesses in the United States. This report describes FoodNet surveillance data from 1997, the second year of surveillance, and compares findings with data from 1996. The findings demonstrate regional and seasonal differences in the reported incidence of certain bacterial and parasitic diseases and that substantial changes occurred in the incidence of illnesses caused by some pathogens (e.g., Vibrio and Escherichia coli O157:H7) but the overall incidence of illness caused by the seven diseases under surveillance in both years changed little.

  13. Generalised nets and intelligent systems

    NASA Astrophysics Data System (ADS)

    Atanassov, Krassimir; Hadjiski, Mincho

    2010-07-01

    This paper contains a short discussion and examples of the possibility for using the apparatus of generalised nets (GNs) for modelling of intelligent systems (ISs). A formal definition of the concept of an IS is introduced and illustrated. The GN approach for modelling is discussed and the architectural principles used in it are given. The modelling possibilities of the GNs are illustrated by the ideas for extensions of the concept of an expert system. A series of extensions of this concept are described. A GN model is given, which describes the process of construction of an IS. Some open problems are formulated. In the Appendix, short remarks on the concept of a GN are given: the definition and some components of the GN theory.

  14. Can leaf net carbon gain acclimate to keep up with global warming?

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Manzoni, Stefano; Way, Danielle; Hurry, Vaughan

    2016-04-01

    Plants are able to adjust their physiological activity to fluctuations and long-term changes in their growing environment. Nevertheless, projected increases in temperature will occur with unprecedented speed. Will global warming exceed the thermal acclimation capacity of leaves, thus reducing net CO2 assimilation? Such a reduction in net CO2 assimilation rate (Anet) in response to warming may deplete ecosystems' net primary productivity, with global impacts on the carbon cycling. Here we combine data on net photosynthetic thermal acclimation to changes in temperature with a probabilistic description of leaf temperature variability. We analytically obtain the probability distribution of the net CO2 assimilation rate as a function of species-specific leaf traits and growing conditions. Using this approach, we study the effects of mean leaf temperature and its variability on average Anet and the frequency of occurrence of sub-optimal thermal conditions. To maximize the net CO2 assimilation in warmer conditions, the thermal optimum for Anet (Topt) must track the growing temperature. Observations suggest that plants' thermal acclimation capacity is limited, so that growing temperatures cannot be tracked by the Topt. It is thus likely that net CO2 assimilation rates will decline in the future. Furthermore, for set leaf traits, large fluctuations in leaf temperature reduce average Anet and increase the frequency of occurrence of sub-optimal conditions for net CO2 assimilation.

  15. Syphilis - primary

    MedlinePlus

    Primary syphilis; Secondary syphilis; Late syphilis; Tertiary syphilis ... Syphilis is a sexually transmitted, infectious disease caused by the spirochete bacterium Treponema pallidum . This bacterium causes ...

  16. Tooth avulsions resulting from basketball net entanglement.

    PubMed

    Kumamoto, D P; Winters, J; Novickas, D; Mesa, K

    1997-09-01

    The authors conducted a survey of dentists reporting tooth avulsions from basketball net accidents. Although the number of people injured was small, the dental injuries were serious. In many cases, multiple teeth were avulsed as a result of the maxillary anterior teeth becoming entangled in the basketball net while the patients were attempting to slamdunk a basketball either on a lowered backboard or from a raised take-off area. The authors present recommendations for preventing tooth avulsions resulting from basketball net entanglement.

  17. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  18. Noisy neural nets exhibiting epileptic features.

    PubMed

    Kokkinidis, M; Anninos, P

    1985-04-01

    On the basis of our previous studies of noisy neural nets we propose a model for the explanation of epileptic phenomena. Our neural net model is capable of exhibiting epileptic features if the number of spontaneously firing neurons is periodically increased beyond a certain threshold. Some alternative epileptogenic mechanisms are also discussed. The epileptic behavior of the neural net is determined by a combination of certain parameters of its phase diagram. The general features of the model are consistent with several experimental observations and explain some poorly understood clinical phenomena. The differences between normal and epileptic neural nets are explained in terms of the structural properties of the model.

  19. [Pilot study to evaluate the efficiency of insecticide-treated mosquito net fences for the protection of horses against nuisance insects in northern Brandenburg].

    PubMed

    Bauer, Burkhard; Blank, Julia; Heile, Cornelia; Schein, Eberhard; Clausen, Peter-Henning

    2006-01-01

    A fence of black mosquito netting of 100 cm height, pre-treated with 80 mg/m2 of deltamethrin and UV-protected, was used to shelter horses from nuisance and biting insects on pasture in northern Brandenburg. The netting material was attached to the surrounding poles of the existing fences at a height of 15 cm above ground. Three trial groups were selected grazing in spatially separated areas with comparable densities of insect populations. One paddock was completely fenced apart from a wall of 170 cm height and 70 m length. The second pasture had only partial protection with 126 m (13.4%) of fence out of a total perimeter of 942 m. The third pasture served as control. Trap catches outside the fully or partially protected pasture were by at least 60% lower than those recorded for the control pasture. Digital pictures from five different anatomical regions indicated fewer flies on horses kept at the completely or partially protected areas as compared to the control area. The average attack rate in the protected areas amounted to 4.4 and 7.6 flies per horse at the completely or partially protected areas, respectively, as opposed to horses on the control pasture with 172.1 flies. In comparison to the control pasture the horses grazing on the protected areas showed fewer defensive movements, grazing in an undisturbed manner.

  20. Price smarter on the Net.

    PubMed

    Baker, W; Marn, M; Zawada, C

    2001-02-01

    Companies generally have set prices on the Internet in two ways. Many start-ups have offered untenably low prices in a rush to capture first-mover advantage. Many incumbents have simply charged the same prices on-line as they do off-line. Either way, companies are missing a big opportunity. The fundamental value of the Internet lies not in lowering prices or making them consistent but in optimizing them. After all, if it's easy for customers to compare prices on the Internet, it's also easy for companies to track customers' behavior and adjust prices accordingly. The Net lets companies optimize prices in three ways. First, it lets them set and announce prices with greater precision. Different prices can be tested easily, and customers' responses can be collected instantly. Companies can set the most profitable prices, and they can tap into previously hidden customer demand. Second, because it's so easy to change prices on the Internet, companies can adjust prices in response to even small fluctuations in market conditions, customer demand, or competitors' behavior. Third, companies can use the clickstream data and purchase histories that it collects through the Internet to segment customers quickly. Then it can offer segment-specific prices or promotions immediately. By taking full advantage of the unique possibilities afforded by the Internet to set prices with precision, adapt to changing circumstances quickly, and segment customers accurately, companies can get their pricing right. It's one of the ultimate drivers of e-business success.

  1. Parallelizing Timed Petri Net simulations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1993-01-01

    The possibility of using parallel processing to accelerate the simulation of Timed Petri Nets (TPN's) was studied. It was recognized that complex system development tools often transform system descriptions into TPN's or TPN-like models, which are then simulated to obtain information about system behavior. Viewed this way, it was important that the parallelization of TPN's be as automatic as possible, to admit the possibility of the parallelization being embedded in the system design tool. Later years of the grant were devoted to examining the problem of joint performance and reliability analysis, to explore whether both types of analysis could be accomplished within a single framework. In this final report, the results of our studies are summarized. We believe that the problem of parallelizing TPN's automatically for MIMD architectures has been almost completely solved for a large and important class of problems. Our initial investigations into joint performance/reliability analysis are two-fold; it was shown that Monte Carlo simulation, with importance sampling, offers promise of joint analysis in the context of a single tool, and methods for the parallel simulation of general Continuous Time Markov Chains, a model framework within which joint performance/reliability models can be cast, were developed. However, very much more work is needed to determine the scope and generality of these approaches. The results obtained in our two studies, future directions for this type of work, and a list of publications are included.

  2. A Rooted Net of Life

    PubMed Central

    2011-01-01

    Abstract Phylogenetic reconstruction using DNA and protein sequences has allowed the reconstruction of evolutionary histories encompassing all life. We present and discuss a means to incorporate much of this rich narrative into a single model that acknowledges the discrete evolutionary units that constitute the organism. Briefly, this Rooted Net of Life genome phylogeny is constructed around an initial, well resolved and rooted tree scaffold inferred from a supermatrix of combined ribosomal genes. Extant sampled ribosomes form the leaves of the tree scaffold. These leaves, but not necessarily the deeper parts of the scaffold, can be considered to represent a genome or pan-genome, and to be associated with members of other gene families within that sequenced (pan)genome. Unrooted phylogenies of gene families containing four or more members are reconstructed and superimposed over the scaffold. Initially, reticulations are formed where incongruities between topologies exist. Given sufficient evidence, edges may then be differentiated as those representing vertical lines of inheritance within lineages and those representing horizontal genetic transfers or endosymbioses between lineages. Reviewers W. Ford Doolittle, Eric Bapteste and Robert Beiko. PMID:21936906

  3. Policy for the Net and the Internet.

    ERIC Educational Resources Information Center

    Braman, Sandra

    1995-01-01

    Reviews the literature on Internet information policy: an awareness of new policy issues, attempts to apply existing legal regulations to new processes, and the need for new policies for the Net. Explores policy issues that affect the structure of government, the economy, society, designers of the Net, and international issues. Contains 658…

  4. Teaching and Learning with the Net Generation

    ERIC Educational Resources Information Center

    Barnes, Kassandra; Marateo, Raymond C.; Ferris, S. Pixy

    2007-01-01

    As the Net Generation places increasingly greater demands on educators, students and teachers must jointly consider innovative ways of teaching and learning. In this, educators are supported by the fact that the Net Generation wants to learn. However, these same educators should not fail to realize that this generation learns differently from…

  5. Application of neural nets in structural optimization

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hajela, Prabhat

    1993-01-01

    The biological motivation for Artificial Neural Net developments is briefly discussed, and the most popular paradigm, the feedforward supervised learning net with error back propagation training algorithm, is introduced. Possible approaches for utilization in structural optimization is illustrated through simple examples. Other currently ongoing developments for application in structural mechanics are also mentioned.

  6. Net Tuition Trends in the United States

    ERIC Educational Resources Information Center

    Gillen, Andrew; Coleman, James; Zhong, Hans

    2008-01-01

    This report documents the latest trends in net tuition for American higher education. Affordability has become a topic of concern for many, but there is a lack of information on the relevant concepts of tuition, primarily published vs. net. This report seeks to shed light on this topic. While few doubt that published tuition rates (sticker price)…

  7. Workshop: Promoting Sustainability Through Net Zero Strategies

    EPA Science Inventory

    In 2011, EPA’s Office of Research and Development (ORD) signed an MOU with the U.S. Army to support the Army’s Net Zero initiative. The 17 Net Zero pilot installations aim to produce as much energy as used; limit freshwater use and increase water reuse; and reduce the generation ...

  8. FloriNet Handbook for Participating Libraries.

    ERIC Educational Resources Information Center

    Florida Dept. of State, Tallahassee. Div. of Library and Information Services.

    FloriNet--the Florida Library Online Resource Information Network--was first envisioned by a Florida Network Planning Task Force in 1994 as the aggregate of networked information in Florida libraries, including library networks, independent libraries, statewide databases, Free-Nets, and as-yet unimagined information resources. This document is a…

  9. How is ERBE net radiation defined?

    Atmospheric Science Data Center

    2014-12-08

    ... at top of the atmosphere (TOA) as the following: Net (TOA) = Solar_down (TOA) - SW_up (TOA) - LW_up (TOA) where Solar_down (TOA) ... a net radiative energy surplus/deficit of the Earth system, respectively. ERBE: General Questions ...

  10. Using EasyNet in Libraries.

    ERIC Educational Resources Information Center

    Still, Julie

    1991-01-01

    Describes EasyNet, a gateway service that allows users access to over 900 databases. Use of EasyNet at the University of Richmond (Virginia) libraries is explained, search strategies are discussed, problems with the price structure are examined, and its use both as an end-user service and for mediated searching is described. (LRW)

  11. Incremental Net Effects in Multiple Regression

    ERIC Educational Resources Information Center

    Lipovetsky, Stan; Conklin, Michael

    2005-01-01

    A regular problem in regression analysis is estimating the comparative importance of the predictors in the model. This work considers the 'net effects', or shares of the predictors in the coefficient of the multiple determination, which is a widely used characteristic of the quality of a regression model. Estimation of the net effects can be a…

  12. The Net Neutrality Debate: The Basics

    ERIC Educational Resources Information Center

    Greenfield, Rich

    2006-01-01

    Rich Greenfield examines the basics of today's net neutrality debate that is likely to be an ongoing issue for society. Greenfield states the problems inherent in the definition of "net neutrality" used by Common Cause: "Network neutrality is the principle that Internet users should be able to access any web content they choose and use any…

  13. VruiNet Version 12(SOPHIA)

    SciTech Connect

    None, None

    2012-08-09

    VruiNet Version 12 is the code used exclusively by the executable ‘vruinet’. VruiNet Version 12 provides a wrapper around the code for ‘oglnet’ that makes it compatible for VRUI systems such as the CAVE at CAES.

  14. Radar and sensor netting - Present and future

    NASA Astrophysics Data System (ADS)

    Farina, A.; Studer, F. A.

    1986-01-01

    It is pointed out that a natural evolution of radar systems leads to the netting of radars dispersed on a certain portion of the surveillance space. The motivation for this evolution was provided by the possibility of fusing a great amount of data taken by radars operating independently. Multiradar tracking (MRT) represents a well-known system employed in civilian and military applications. The multistatic radar system is another well known netting concept. The present paper has the objective to provide some information regarding the potential of the netted system concepts. The netting of sensors other than radars is also promising, taking into account lasers, TV, radiometer, and acoustic devices. Attention is given to details concerning the multiradar system concept (the present), the multistatic system concept, wideband netting (the future), the multisensor system concept (the future), and artificial intelligence.

  15. [Primary hyperparathyroidism].

    PubMed

    Maruani, G; Cornière, N; Nicolet, L; Baron, S; Courbebaisse, M; Renaud, S; Houillier, P

    2013-10-01

    For the past 40 years, primary hyperparathyroidism has been recognized as a common endocrine disease which is, most often, "non-symptomatic", without the occurrence of nephrolithiasis or osteitis fibrosa cystica. Our knowledge in the pathophysiology has increased largely and diagnosis of primary hyperparathyroidism is usually easy. The only radical treatment is surgery and the surgical indications have been codified by several consensus conferences. For patients who do not undergo surgery, prolonged medical monitoring is needed.

  16. Neural Net Safety Monitor Design

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a floating limiter (FL) concept1 that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly floating and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually hit the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The

  17. Safety-net providers in some US communities have increasingly embraced coordinated care models.

    PubMed

    Cunningham, Peter; Felland, Laurie; Stark, Lucy

    2012-08-01

    Safety-net organizations, which provide health services to uninsured and low-income people, increasingly are looking for ways to coordinate services among providers to improve access to and quality of care and to reduce costs. In this analysis, a part of the Community Tracking Study, we examined trends in safety-net coordination activities from 2000 to 2010 within twelve communities in the United States and found a notable increase in such activities. Six of the twelve communities had made formal efforts to link uninsured people to medical homes and coordinate care with specialists in 2010, compared to only two communities in 2000. We also identified key attributes of safety-net coordinated care systems, such as reliance on a medical home for meeting patients' primary care needs, and lingering challenges to safety-net integration, such as competition among hospitals and community health centers for Medicaid patients.

  18. Workflow Concerns and Workarounds of Readers in an Urban Safety Net Teleretinal Screening Study

    PubMed Central

    Fish, Allison; George, Sheba; Terrien, Elizabeth; Eccles, Alicia; Baker, Richard; Ogunyemi, Omolola

    2011-01-01

    Telemedicine holds great promise for increased access to specialty care services for safety net clinic patients. However, the adoption of these technologies is not a seamless transition for clinicians working in resource-poor settings. Previous research has analyzed workflow issues that arise in primary care settings when adopting telehealth tools but has not examined the unique workflow challenges facing specialists who provide assessments to safety net clinics. Findings are presented from a case study that employed qualitative methodologies as part of an assessment of a teleretinal screening program in Los Angeles urban safety net clinics. The program utilizes external ophthalmologists to perform retinal readings. The case study provides insights into how difficulties that arise in reader workflow are resolved and identifies unique factors requiring consideration when highly trained specialists perform teleretinal readings. The discussion outlines important issues to address when developing telehealth workflow protocols for the safety net, specifically, and their broader applicability in telemedicine. PMID:22195095

  19. Do HMO and its for-profit expansion jeopardize the survival of hospital safety net services?

    PubMed

    Shen, Yu-Chu

    2009-03-01

    This study examines the effect of health maintenance organizations (HMOs) and for-profit HMO share on the survival of safety net services in hospitals between 1990 and 2004. The primary data sources are the American Hospital Association Annual Surveys, the Medicare hospital cost reports, and the HMO enrollment and ownership data from Interstudy. I analyze the risks of shutting down each safety net service separately using the proportional hazard models. I find that the risks of shutting down hospital safety net services do not vary by different levels of overall HMO penetration. However, conditional on the overall HMO penetration level, increasing for-profit presence of HMO does increase the risks of shutting down several safety net services. Policies evaluating the for-profit expansion or ownership conversion of health plans should take this potential adverse effect into consideration.

  20. The Clinicopathologic Features and Treatment of 607 Hindgut Neuroendocrine Tumor (NET) Patients at a Single Institution.

    PubMed

    Kim, Seung Tae; Ha, Sang Yun; Lee, Jeeyun; Hong, Sung No; Chang, Dong Kyung; Kim, Young Ho; Park, Yoon Ah; Huh, Jung Wook; Cho, Yong Beom; Yun, Seong Hyeon; Lee, Woo Yong; Kim, Hee Cheol; Park, Young Suk

    2016-05-01

    The clinicopathologic features of hindgut neuroendocrine tumor (NET) as well as the treatment outcomes are not well known. There are currently no published data on treatment outcomes for patients with metastatic hindgut NET. The aim of this study was to conduct a comprehensive analysis of clinicopathologic features, treatments and survival in hindgut NET patients. Among patients who were pathologically diagnosed with hindgut NET at Samsung Medical Center between March 2001 and February 2015, 607 were analyzed in this study. Hindgut NETs were defined as NETs that originated from the transverse and distal colon, rectum, and anus. Primary sites included 81 colon (13.3%) and 526 rectum (86.7%). According to the WHO classification, 578 patients (95.2%) had grade 1