Science.gov

Sample records for above-ground plant biomass

  1. Phosphorus Concentrations in Above Ground Plant Biomass under Changing Climate Conditions

    NASA Astrophysics Data System (ADS)

    Selvin, C.; Paytan, A.; Roberts, K.

    2013-12-01

    The Jasper Ridge Global Change Experiment explores the effects of climate change on annual grasslands with different combinations of elevated or ambient levels of carbon dioxide, heat, precipitation, and nitrate deposition. The nested split-plot design allows for analysis of each variable, combinations of variables, and secondary effects. In this study, plant nutrient levels in homogenized above ground biomass are analyzed to assess the utility of this parameter as a tool to describe the response of an ecosystem to environmental changes. Total phosphorus concentrations showed considerable variability within treatment (n=8) and therefore no significant differences between treatments (n=16) is found. Carbon and nitrogen concentrations in bulk above ground biomass are being analyzed to determine nitrogen and carbon ratios and further elucidate the environmental response of phosphorus levels in plants to the modified parameters. P concentrations and elemental ratios will also be related to other parameters such as soil humidity, microbial biomass, enzyme activity, and plant diversity to determine the parameters influencing P content in the biomass.

  2. A hyperspectral imaging system for an accurate prediction of the above-ground biomass of individual rice plants.

    PubMed

    Feng, Hui; Jiang, Ni; Huang, Chenglong; Fang, Wei; Yang, Wanneng; Chen, Guoxing; Xiong, Lizhong; Liu, Qian

    2013-09-01

    Biomass is an important component of the plant phenomics, and the existing methods for biomass estimation for individual plants are either destructive or lack accuracy. In this study, a hyperspectral imaging system was developed for the accurate prediction of the above-ground biomass of individual rice plants in the visible and near-infrared spectral region. First, the structure of the system and the influence of various parameters on the camera acquisition speed were established. Then the system was used to image 152 rice plants, which selected from the rice mini-core collection, in two stages, the tillering to elongation (T-E) stage and the booting to heading (B-H) stage. Several variables were extracted from the images. Following, linear stepwise regression analysis and 5-fold cross-validation were used to select effective variables for model construction and test the stability of the model, respectively. For the T-E stage, the R(2) value was 0.940 for the fresh weight (FW) and 0.935 for the dry weight (DW). For the B-H stage, the R(2) value was 0.891 for the FW and 0.783 for the DW. Moreover, estimations of the biomass using visible light images were also calculated. These comparisons showed that hyperspectral imaging performed better than the visible light imaging. Therefore, this study provides not only a stable hyperspectral imaging platform but also an accurate and nondestructive method for the prediction of biomass for individual rice plants. PMID:24089866

  3. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  4. Forest Above Ground Biomass Estimation in China

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Zeng, Y.; Wu, B.; Li, X.

    2013-12-01

    In order to study the carbon cycling in China deeply, a forest above ground biomass (AGB) estimation research is carried out under the support of 'Strategic Priority Research Program - Climate Change: Carbone Budget and Related Issues' of the Chinese Academy of Sciences (Carbon Project). The research aims to estimate the forest AGB in 2000, 2005 and 2010 in China, and analyzes its dynamic changes. The overall thinking of the research is using field works and airborne LiDAR data as basis to estimate the AGB in GLAS footprints, and then extrapolating discrete AGB to continuous results with optical and auxiliary data. Due to the large area of China, totally 8 sub-areas are marked out based on the different forest ecosystems and some other factors (Table 1 and Fig. 1). Here, a latest China's land cover product (the background of Fig 1), named 'ChinaCover', and also supported by the 'Carbon Project', is imported to classify the forest types. There are around 5000 sample plots (Table 1) surveyed by the 'Carbon Project'. It can provide a large number of training and validation data. At the same time, the research sets 6 other typical sample areas, which have areas of 60 to 200 km2, and airborne LiDAR flights are carried out to obtain high accuracy AGB in these areas. With the sample plots and 6 typical sample areas, the AGB in GLAS footprint is estimated. Since the sample plots and LiDAR flights were carried out in 2012, the height and area parameters extracted from GLAS footprint are corrected by tree growth model of different forest types. In a further step, extrapolation models are built together with time-series MODIS and auxiliary data. These models fully consider the time-series features and propose several long time-series indices to minimize the influence of spectral saturation. Results are validated by samples and compared to the result of some other researches. At last, the models are applied to the data of 2000, 2005 and 2010 to get the corresponding AGB maps

  5. The response of tundra plant biomass, above-ground production, nitrogen, and CO{sub 2} flux to experimental warming

    SciTech Connect

    Hobbie, S.E.; Chapin, F.S. III

    1998-07-01

    The authors manipulated air temperature in tussock tundra near Toolik Lake, Alaska, and determined the consequences for total plant biomass, aboveground net primary production (ANPP), ecosystem nitrogen (N) pools and N uptake, and ecosystem CO{sub 2} flux. After 3.5 growing seasons, in situ plastic greenhouses that raised air temperature during the growing season had little effect on total biomass, N content, or growing-season N uptake of the major plant and soil pools. Similarly, vascular ANPP and net ecosystem CO{sub 2} exchange did not change with warming, although net primary production of mosses decreased with warming. Such general lack of response supports the hypothesis that productivity in tundra is constrained by the indirect effects of cold temperatures rather than by cold growing-season temperatures per se. Despite no effect on net ecosystem CO{sub 2} flux, air warming stimulated early-season gross photosynthesis (GP) and ecosystem respiration (ER) throughout the growing season. This increased carbon turnover was probably associated with species-level responses to increased air temperature. Warming increased the aboveground biomass of the overstory shrub, dwarf birch (Betula nana), and caused a significant net redistribution of N from the understory evergreen shrub, Vaccinium vitis-idaea, to B. nana, despite no effects on soil temperature, total plant N, or N availability.

  6. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides

    PubMed Central

    Sánchez-Vilas, Julia; Bermúdez, Raimundo; Retuerto, Rubén

    2012-01-01

    Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the

  7. Impacts of cattle grazing on spatio-temporal variability of soil moisture and above-ground live plant biomass in mixed grasslands

    NASA Astrophysics Data System (ADS)

    Virk, Ravinder

    Areas with relatively high spatial heterogeneity generally have more biodiversity than spatially homogeneous areas due to increased potential habitat. Management practices such as controlled grazing also affect the biodiversity in grasslands, but the nature of this impact is not well understood. Therefore this thesis studies the impacts of variation in grazing on soil moisture and biomass heterogeneity. These are not only important in terms of management of protected grasslands, but also for designing an effective grazing system from a livestock management point of view. This research is a part of the cattle grazing experiment underway in Grasslands National Park (GNP) of Canada since 2006, as part of the adaptive management process for restoring ecological integrity of the northern mixed-grass prairie region. An experimental approach using field measurements and remote sensing (Landsat) was combined with modelling (CENTURY) to examine and predict the impacts of grazing intensity on the spatial heterogeneity and patterns of above-ground live plant biomass (ALB) in experimental pastures in a mixed grassland ecosystem. The field-based research quantified the temporal patterns and spatial variability in both soil moisture (SM) and ALB, and the influence of local intra-seasonal weather variability and slope location on the spatio-temporal variability of SM and ALB at field plot scales. Significant impacts of intra-seasonal weather variability, slope position and grazing pressure on SM and ALB across a range of scales (plot and local (within pasture)) were found. Grazing intensity significantly affected the ALB even after controlling for the effect of slope position. Satellite-based analysis extended the scale of interest to full pastures and the surrounding region to assess the effects of grazing intensity on the spatio-temporal pattern of ALB in mixed grasslands. Overall, low to moderate grazing intensity showed increase in ALB heterogeneity whereas no change in ALB

  8. Single Baseline Tomography SAR for Forest Above Ground Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Wang, Xinshuang; Feng, Qi

    2013-01-01

    Single baseline tomography SAR is used for forest height estimation as its little restriction on the number of baselines and configurations of tracks in recent years. There existed two kinds of single baseline tomography SAR techniques, the polarimetric coherence tomography (PCT) and the sum of Kronecker product (SKP), algebraic synthesis (AS) and Capon spectral estimator approach (SKP-AS-Capon). Few researches on forest above ground biomass (AGB) estimation are there using single baseline tomography SAR. In this paper, PCT and SKP-AS-Capon approaches are proposed for forest AGB estimation. L-band data set acquired by E-SAR airborne system in 2003 for the forest test site in Traunstein, is used for this experiment. The result shows that single baseline polarimetric tomography SAR can obtain forest AGB in forest stand scale, and SKP-AS-Capon method has better detailed vertical structure information, while the Freeman 3-component combined PCT approach gets a homogenous vertical structure in forest stand.

  9. Comparative study of above ground biomass estimates for conterminous US

    NASA Astrophysics Data System (ADS)

    Neeti, N.; Kennedy, R. E.

    2013-12-01

    Accurate estimates of forest biomass are important for carbon accounting at both regional and national scale. There are four above ground biomass (AGB) maps available for conterminous US, one from the National Aeronautics and Space Administration (NASA), two from the United States Forest Service (USFS) (Blackard and Wilson) and one from the Woods Hole Research Center (WHRC). Although all four maps are meant to represent similar quantities, spatial patterns of AGB vary considerably from map to map. To use any of these AGB maps for carbon accounting, it is important to understand sources of uncertainty in individual maps and agreement and disagreement among them. Therefore, we compared the four AGB maps at ecoregion and state level to gain understanding of map consistency, leveraging discrepancies among maps to gain insight into the method and data sources. We also developed statewide summaries to compare with FIA forest AGB estimates, which are typically reported at the state level. We examined both absolute differences among these aggregated maps, and relative differences among regions within each map. The result shows that NASA biomass estimates are highest and Blackard estimates are lowest compared to other maps at both ecoregion and state level. The AGB for WHRC and Wilson are very similar at both ecoregion and state level specifically in the lower biomass regions compared to higher biomass regions. This could be associated with the differences in the spatial resolution of the data sources uses to generate these maps. At state level, WHRC map is found to be most similar and NASA biomass estimates least similar to FIA plot data. We discuss these differences in light of the different methods and data sources used to generate the maps.

  10. Above-ground biomass of mangrove species. I. Analysis of models

    NASA Astrophysics Data System (ADS)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  11. Range vegetation type mapping and above-ground green biomass estimations using multispectral imagery. [Wyoming

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Gordon, R. C.

    1974-01-01

    The author has identified the following significant results. Range vegetation types have been successfully mapped on a portion of the 68,000 acre study site located west of Baggs, Wyoming, using ERTS-1 imagery. These types have been ascertained from field transects over a five year period. Comparable studies will be made with EREP imagery. Above-ground biomass estimation studies are being conducted utilizing double sampling techniques on two similar study sites. Information obtained will be correlated with percent relative reflectance measurements obtained on the ground which will be related to image brightness levels. This will provide an estimate of above-ground green biomass with multispectral imagery.

  12. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  13. Estimating above-ground carbon biomass in a newly restored coastal plain wetland using remote sensing.

    PubMed

    Riegel, Joseph B; Bernhardt, Emily; Swenson, Jennifer

    2013-01-01

    Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical challenge that must be overcome before a carbon offset market can be successfully implemented in the United States. Previous studies have shown that LiDAR (light detection and ranging) is well-suited for modeling above-ground biomass in mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in areas with young, aggrading vegetation. This study compared the abilities of discrete-return LiDAR and high resolution optical imagery to model above-ground carbon biomass at a young restored forested wetland site in eastern North Carolina. We found that the optical imagery model explained more of the observed variation in carbon biomass than the LiDAR model (adj-R(2) values of 0.34 and 0.18 respectively; root mean squared errors of 0.14 Mg C/ha and 0.17 Mg C/ha respectively). Optical imagery was also better able to predict high and low biomass extremes than the LiDAR model. Combining both the optical and LiDAR improved upon the optical model but only marginally (adj-R(2) of 0.37). These results suggest that the ability of discrete-return LiDAR to model above-ground biomass may be rather limited in areas with young, small trees and that high spatial resolution optical imagery may be the better tool in such areas. PMID:23840837

  14. Estimating Above-Ground Carbon Biomass in a Newly Restored Coastal Plain Wetland Using Remote Sensing

    PubMed Central

    Riegel, Joseph B.; Bernhardt, Emily; Swenson, Jennifer

    2013-01-01

    Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical challenge that must be overcome before a carbon offset market can be successfully implemented in the United States. Previous studies have shown that LiDAR (light detection and ranging) is well-suited for modeling above-ground biomass in mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in areas with young, aggrading vegetation. This study compared the abilities of discrete-return LiDAR and high resolution optical imagery to model above-ground carbon biomass at a young restored forested wetland site in eastern North Carolina. We found that the optical imagery model explained more of the observed variation in carbon biomass than the LiDAR model (adj-R2 values of 0.34 and 0.18 respectively; root mean squared errors of 0.14 Mg C/ha and 0.17 Mg C/ha respectively). Optical imagery was also better able to predict high and low biomass extremes than the LiDAR model. Combining both the optical and LiDAR improved upon the optical model but only marginally (adj-R2 of 0.37). These results suggest that the ability of discrete-return LiDAR to model above-ground biomass may be rather limited in areas with young, small trees and that high spatial resolution optical imagery may be the better tool in such areas. PMID:23840837

  15. Use of Radar to Estimate Above-Ground Biomass in Disturbed Tropical Landscapes

    NASA Technical Reports Server (NTRS)

    Houghton, R. A.

    1998-01-01

    The overall purpose of this work was to evaluate the use of satellite radar in distinguishing, first, different cover classes in tropical landscapes and, second, cover classes with different amounts of above-ground biomass. The work focused on Ama7onian forests around Paragominas, Para, Brazil where extensive ground data had been obtained through previous field work.

  16. Are Inventory Based and Remotely Sensed Above-Ground Biomass Estimates Consistent?

    PubMed Central

    Hill, Timothy C.; Williams, Mathew; Bloom, A. Anthony; Mitchard, Edward T. A.; Ryan, Casey M.

    2013-01-01

    Carbon emissions resulting from deforestation and forest degradation are poorly known at local, national and global scales. In part, this lack of knowledge results from uncertain above-ground biomass estimates. It is generally assumed that using more sophisticated methods of estimating above-ground biomass, which make use of remote sensing, will improve accuracy. We examine this assumption by calculating, and then comparing, above-ground biomass area density (AGBD) estimates from studies with differing levels of methodological sophistication. We consider estimates based on information from nine different studies at the scale of Africa, Mozambique and a 1160 km2 study area within Mozambique. The true AGBD is not known for these scales and so accuracy cannot be determined. Instead we consider the overall precision of estimates by grouping different studies. Since an the accuracy of an estimate cannot exceed its precision, this approach provides an upper limit on the overall accuracy of the group. This reveals poor precision at all scales, even between studies that are based on conceptually similar approaches. Mean AGBD estimates for Africa vary from 19.9 to 44.3 Mg ha−1, for Mozambique from 12.7 to 68.3 Mg ha−1, and for the 1160 km2 study area estimates range from 35.6 to 102.4 Mg ha−1. The original uncertainty estimates for each study, when available, are generally small in comparison with the differences between mean biomass estimates of different studies. We find that increasing methodological sophistication does not appear to result in improved precision of AGBD estimates, and moreover, inadequate estimates of uncertainty obscure any improvements in accuracy. Therefore, despite the clear advantages of remote sensing, there is a need to improve remotely sensed AGBD estimates if they are to provide accurate information on above-ground biomass. In particular, more robust and comprehensive uncertainty estimates are needed. PMID:24069275

  17. Latitudinal Characteristics of Below- and Above-ground Biomass of Typha: a Modelling Approach

    PubMed Central

    ASAEDA, TAKASHI; HAI, DINH NGOC; MANATUNGE, JAGATH; WILLIAMS, DAVID; ROBERTS, JANE

    2005-01-01

    • Background and Aims The latitudinal differences in the growth characteristics of Typha are largely unknown, although a number of studies have pointed out the effects of climate on the growth and productivity of Typha. Therefore, a dynamic growth model was developed for Typha to examine the effects of latitudinal changes in temperature and radiation on partitioning of the total biomass during the growing season into rhizomes, roots, flowering and vegetative shoots, and inflorescences. • Methods After validating the model with data from growth studies of Typha found in past literature, it was used to investigate the dynamics of above- and below-ground biomasses at three latitudes: 30°, 40° and 50°. • Key Results Regardless of the initial rhizome biomass, both above- and below-ground biomass values converged to a latitude-specific equilibrium produced by the balance between the total production and respiration and mortality losses. Above-ground biomass was high from 10° to 35° latitude with sufficient radiation, despite high metabolic losses; however, it decreased markedly at higher latitudes due to a low photosynthetic rate. Below-ground biomass, on the other hand, increased with latitude up to 40° due to decreasing metabolic losses, and then markedly decreased at higher latitudes. Above-ground biomass was enhanced with an increasing number of cohorts regardless of latitude. However, although more cohorts resulted in a larger below-ground biomass at low latitudes, the largest below-ground biomass was provided by a smaller number of cohorts at high latitudes. This difference is due to low production rates of late-season cohorts in high latitudes, compared with consumption for shooting and establishing foliage. • Conclusions The model could be used to predict the potential growth of Typha in given conditions over a wide range of latitudes and is useful for practical applications such as wetland management or wastewater treatment systems using Typha

  18. Assessing General Relationships Between Above-Ground Biomass and Vegetation Structure Parameters for Improved Carbon Estimate from Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, W.; Lee, S.; Strahler, A. H.; Woodcock, C. E.; Schaaf, C.; Yao, T.; Ranson, J.; Sun, G.; Blair, J. B.

    2009-12-01

    Lidar remote sensing uses vegetation height to estimate large-scale above-ground biomass. However, lidar height and biomass relationships are empirical and thus often lead to large uncertainties in above-ground biomass estimates. This study uses vegetation structure measurements from field: an airborne lidar (Laser Vegetation Imaging Sensor, LVIS)) and a full wave form ground-based lidar (Echidna® validation instrument, EVI) collected in the New England region in 2003 and 2007, to investigate using additional vegetation structure parameters besides height for improved above-ground biomass estimation from lidar. Our field data analysis shows that using woody volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve above-ground biomass estimates at large scale. This result is comparable to previous work by Chave et al. (2005), which focused on individual trees. However this study uses a slightly different approach, and our woody volume is estimated differently from Chave et al. (2005). Previous studies found that RH50 is a good predictor of above-ground biomass (Drake et al., 2002; 2003). Our LVIS data analysis shows that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, perform similarly or even better than RH50. We also found that the close relationship of RH100*cover and RH50*cover with woody volume explains why they are good predictors of above-ground biomass. RH50 is highly related to RH100*cover, and this explains why RH50 is a better predictor of biomass than RH100. This study shows that using structure parameters combining height and gap fraction improve above-ground biomass estimate compared to height alone, and fusion of lidar and optical remote sensing (to provide vegetation type) will provide better above-ground biomass estimates than lidar alone. Ground lidar analysis

  19. [Vegetation above-ground biomass and its affecting factors in water/wind erosion crisscross region on Loess Plateau].

    PubMed

    Wang, Jian-guo; Fan, Jun; Wang, Quan-jiu; Wang, Li

    2011-03-01

    Field investigations were conducted in Liudaogou small watershed in late September 2009 to study the differences of vegetation above-ground biomass, soil moisture content, and soil nutrient contents under different land use patterns, aimed to approach the vegetation above-ground biomass level and related affecting factors in typical small watershed in water/wind erosion crisscross region on Loess Plateau. The above-ground dry biomass of the main vegetations in Liudaogou was 177-2207 g x m(-2), and that in corn field, millet field, abandoned farmland, artificial grassland, natural grassland, and shrub land was 2097-2207, 518-775, 248-578, 280-545, 177-396, and 372-680 g x m(-2), respectively. The mean soil moisture content in 0-100 layer was the highest (14.2%) in farmlands and the lowest (10.9%) in shrub land. The coefficient of variation of soil moisture content was the greatest (26. 7% ) in abandoned farmland, indicating the strong spatial heterogeneity of soil moisture in this kind of farmland. The mean soil water storage was in the order of farmland > artificial grassland > natural grassland > shrub land. Soil dry layer was observed in alfalfa and caragana lands. There was a significant positive correlation (r = 0.639, P < 0.05) between above-ground dry biomass and 0-100 cm soil water storage, and also, a very significant positive correlation between above-ground fresh biomass and vegetation height. The above-ground biomass of the higher vegetations could potentially better control the wind and water erosion in the water/wind erosion crisscross region. Vegetation above-ground biomass was highly correlated with soil moisture and nutrient contents, but had no significant correlations with elevation, slope gradient, slope aspect, and soil bulk density. PMID:21657007

  20. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    NASA Astrophysics Data System (ADS)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  1. Above-ground biomass estimation of tuberous bulrush ( Bolboschoenus planiculmis) in mudflats using remotely sensed multispectral image

    NASA Astrophysics Data System (ADS)

    Kim, Ji Yoon; Im, Ran-Young; Do, Yuno; Kim, Gu-Yeon; Joo, Gea-Jae

    2016-03-01

    We present a multivariate regression approach for mapping the spatial distribution of above-ground biomass (AGB) of B. planiculmis using field data and coincident moderate spatial resolution satellite imagery. A total of 232 ground sample plots were used to estimate the biomass distribution in the Nakdong River estuary. Field data were overlain and correlated with digital values from an atmospherically corrected multispectral image (Landsat 8). The AGB distribution was derived using empirical models trained with field-measured AGB data. The final regression model for AGB estimation was composed using the OLI3, OLI4, and OLI7 spectral bands. The Pearson correlation between the observed and predicted biomass was significant (R = 0.84, p < 0.0001). OLI3 made the largest contribution to the final model (relative coefficient value: 53.4%) and revealed a negative relationship with the AGB biomass. The total distribution area of B. planiculmis was 1,922,979 m2. Based on the model estimation, the total AGB had a dry weight (DW) of approximately 298.2 tons. The distribution of high biomass stands (> 200 kg DW/900 m2) constituted approximately 23.91% of the total vegetated area. Our findings suggest the expandability of remotely sensed products to understand the distribution pattern of estuarine plant productivity at the landscape level.

  2. Estimating above-ground biomass on mountain meadows and pastures through remote sensing

    NASA Astrophysics Data System (ADS)

    Barrachina, M.; Cristóbal, J.; Tulla, A. F.

    2015-06-01

    Extensive stock-breeding systems developed in mountain areas like the Pyrenees are crucial for local farming economies and depend largely on above-ground biomass (AGB) in the form of grass produced on meadows and pastureland. In this study, a multiple linear regression analysis technique based on in-situ biomass collection and vegetation and wetness indices derived from Landsat-5 TM data is successfully applied in a mountainous Pyrenees area to model AGB. Temporal thoroughness of the data is ensured by using a large series of images. Results of on-site AGB collection show the importance for AGB models to capture the high interannual and intraseasonal variability that results from both meteorological conditions and farming practices. AGB models yield best results at midsummer and end of summer before mowing operations by farmers, with a mean R2, RMSE and PE for 2008 and 2009 midsummer of 0.76, 95 g m-2 and 27%, respectively; and with a mean R2, RMSE and PE for 2008 and 2009 end of summer of 0.74, 128 g m-2 and 36%, respectively. Although vegetation indices are a priori more related with biomass production, wetness indices play an important role in modeling AGB, being statistically selected more frequently (more than 50%) than other traditional vegetation indexes (around 27%) such as NDVI. This suggests that middle infrared bands are crucial descriptors of AGB. The methodology applied in this work compares favorably with other works in the literature, yielding better results than those works in mountain areas, owing to the ability of the proposed methodology to capture natural and anthropogenic variations in AGB which are the key to increasing AGB modeling accuracy.

  3. Comment on 'A first map of tropical Africa's above-ground biomass derived from satellite imagery'

    NASA Astrophysics Data System (ADS)

    Mitchard, E. T. A.; Saatchi, S. S.; Lewis, S. L.; Feldpausch, T. R.; Gerard, F. F.; Woodhouse, I. H.; Meir, P.

    2011-10-01

    We present a critical evaluation of the above-ground biomass (AGB) map of Africa published in this journal by Baccini et al (2008 Environ. Res. Lett. 3 045011). We first test their map against an independent dataset of 1154 scientific inventory plots from 16 African countries, and find only weak correspondence between our field plots and the AGB value given for the surrounding 1 km pixel by Baccini et al. Separating our field data using a continental landcover classification suggests that the Baccini et al map underestimates the AGB of forests and woodlands, while overestimating the AGB of savannas and grasslands. Secondly, we compare their map to 216 000 × 0.25 ha spaceborne LiDAR footprints. A comparison between Lorey's height (basal-area-weighted average height) derived from the LiDAR data for 1 km pixels containing at least five LiDAR footprints again does not support the hypothesis that the Baccini et al map is accurate, and suggests that it significantly underestimates the AGB of higher AGB areas. We conclude that this is due to the unsuitability of some of the field data used by Baccini et al to create their map, and overfitting in their model, resulting in low accuracies outside the small areas from which their field data are drawn.

  4. Above-ground biomass and structure of 260 African tropical forests

    PubMed Central

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  5. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  6. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  7. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    NASA Astrophysics Data System (ADS)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  8. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments

    NASA Astrophysics Data System (ADS)

    Sibanda, Mbulisi; Mutanga, Onisimo; Rouget, Mathieu

    2015-12-01

    The major constraint in understanding grass above ground biomass variations using remotely sensed data are the expenses associated with the data, as well as the limited number of techniques that can be applied to different management practices with minimal errors. New generation multispectral sensors such as Sentinel 2 Multispectral Imager (MSI) are promising for effective rangeland management due to their unique spectral bands and higher signal to noise ratio. This study resampled hyperspectral data to spectral resolutions of the newly launched Sentinel 2 MSI and the recently launched Landsat 8 OLI for comparison purposes. Using Sparse partial least squares regression, the resampled data was applied in estimating above ground biomass of grasses treated with different fertilizer combinations of ammonium sulfate, ammonium nitrate, phosphorus and lime as well as unfertilized experimental plots. Sentinel 2 MSI derived models satisfactorily performed (R2 = 0.81, RMSEP = 1.07 kg/m2, RMSEP_rel = 14.97) in estimating grass above ground biomass across different fertilizer treatments relative to Landsat 8 OLI (Landsat 8 OLI: R2 = 0.76, RMSEP = 1.15 kg/m2, RMSEP_rel = 16.04). In comparison, hyperspectral data derived models exhibited better grass above ground biomass estimation across complex fertilizer combinations (R2 = 0.92, RMSEP = 0.69 kg/m2, RMSEP_rel = 9.61). Although Sentinel 2 MSI bands and indices better predicted above ground biomass compared with Landsat 8 OLI bands and indices, there were no significant differences (α = 0.05) in the errors of prediction between the two new generational sensors across all fertilizer treatments. The findings of this study portrays Sentinel 2 MSI and Landsat 8 OLI as promising remotely sensed datasets for regional scale biomass estimation, particularly in resource scarce areas.

  9. Diversity and Above-Ground Biomass Patterns of Vascular Flora Induced by Flooding in the Drawdown Area of China's Three Gorges Reservoir

    PubMed Central

    Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  10. Investigating Appropriate Sampling Design for Estimating Above-Ground Biomass in Bruneian Lowland Mixed Dipterocarp Forest

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, D.; Abu Salim, K.; Yun, H. M.; Han, S.; Lee, W. K.; Davies, S. J.; Son, Y.

    2014-12-01

    Mixed tropical forest structure is highly heterogeneous unlike plantation or mixed temperate forest structure, and therefore, different sampling approaches are required. However, the appropriate sampling design for estimating the above-ground biomass (AGB) in Bruneian lowland mixed dipterocarp forest (MDF) has not yet been fully clarified. The aim of this study was to provide supportive information in sampling design for Bruneian forest carbon inventory. The study site was located at Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Six 60 m × 60 m quadrats were established, separated by a distance of approximately 100 m and each was subdivided into quadrats of 10 m × 10 m, at an elevation between 200 and 300 m above sea level. At each plot all free-standing trees with diameter at breast height (dbh) ≥ 1 cm were measured. The AGB for all trees with dbh ≥ 10 cm was estimated by allometric models. In order to analyze changes in the diameter-dependent parameters used for estimating the AGB, different quadrat areas, ranging from 10 m × 10 m to 60 m × 60 m, were used across the study area, starting at the South-West end and moving towards the North-East end. The derived result was as follows: (a) Big trees (dbh ≥ 70 cm) with sparse distribution have remarkable contribution to the total AGB in Bruneian lowland MDF, and therefore, special consideration is required when estimating the AGB of big trees. Stem number of trees with dbh ≥ 70 cm comprised only 2.7% of all trees with dbh ≥ 10 cm, but 38.5% of the total AGB. (b) For estimating the AGB of big trees at the given acceptable limit of precision (p), it is more efficient to use large quadrats than to use small quadrats, because the total sampling area decreases with the former. Our result showed that 239 20 m × 20 m quadrats (9.6 ha in total) were required, while 15 60 m × 60 m quadrats (5.4 ha in total) were required when estimating the AGB of the trees

  11. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.

    PubMed

    Zwicke, Marine; Alessio, Giorgio A; Thiery, Lionel; Falcimagne, Robert; Baumont, René; Rossignol, Nicolas; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-11-01

    Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more

  12. Above ground biomass estimation from lidar and hyperspectral airbone data in West African moist forests.

    NASA Astrophysics Data System (ADS)

    Vaglio Laurin, Gaia; Chen, Qi; Lindsell, Jeremy; Coomes, David; Cazzolla-Gatti, Roberto; Grieco, Elisa; Valentini, Riccardo

    2013-04-01

    The development of sound methods for the estimation of forest parameters such as Above Ground Biomass (AGB) and the need of data for different world regions and ecosystems, are widely recognized issues due to their relevance for both carbon cycle modeling and conservation and policy initiatives, such as the UN REDD+ program (Gibbs et al., 2007). The moist forests of the Upper Guinean Belt are poorly studied ecosystems (Vaglio Laurin et al. 2013) but their role is important due to the drier condition expected along the West African coasts according to future climate change scenarios (Gonzales, 2001). Remote sensing has proven to be an effective tool for AGB retrieval when coupled with field data. Lidar, with its ability to penetrate the canopy provides 3D information and best results. Nevertheless very limited research has been conducted in Africa tropical forests with lidar and none to our knowledge in West Africa. Hyperspectral sensors also offer promising data, being able to evidence very fine radiometric differences in vegetation reflectance. Their usefulness in estimating forest parameters is still under evaluation with contrasting findings (Andersen et al. 2008, Latifi et al. 2012), and additional studies are especially relevant in view of forthcoming satellite hyperspectral missions. In the framework of the EU ERC Africa GHG grant #247349, an airborne campaign collecting lidar and hyperspectral data has been conducted in March 2012 over forests reserves in Sierra Leone and Ghana, characterized by different logging histories and rainfall patterns, and including Gola Rainforest National Park, Ankasa National Park, Bia and Boin Forest Reserves. An Optech Gemini sensor collected the lidar dataset, while an AISA Eagle sensor collected hyperspectral data over 244 VIS-NIR bands. The lidar dataset, with a point density >10 ppm was processed using the TIFFS software (Toolbox for LiDAR Data Filtering and Forest Studies)(Chen 2007). The hyperspectral dataset, geo

  13. Study on forest above-ground biomass synergy inversion from GLAS and HJ-1 data

    NASA Astrophysics Data System (ADS)

    Fang, Zhou; Cao, Chunxiang; Ji, Wei; Xu, Min; Chen, Wei

    2012-10-01

    The need exists to develop a systematic approach to inventory and monitor global forests, both for carbon stock evaluation and for land use change analysis. The use of freely available satellite-based data for carbon stock estimation mitigates both the cost and the spatial limitations of field-based techniques. Spaceborne lidar data have been demonstrated as useful for forest aboveground biomass (AGB) estimation over a wide range of biomass values and forest types. However, the application of these data is limited because of their spatially discrete nature. Spaceborne multispectral sensors have been used extensively to estimate AGB, but these methods have been demonstrated as inappropriate for forest structure characterization in high-biomass mature forests. This study uses an integration of ICESat Geospatial Laser Altimeter System (GLAS) lidar and HJ-1 satellites data to develop methods to estimate AGB in an area of Qilian Mountains, Northwest China. Considering the study area belongs to mountainous terrain, the difficulties of this article are how to extract canopy height from GLAS waveform metrics. Combining with HJ-1 data and ground survey data of the study area, we establish forest biomass estimation model for the GLAS data based on BP neural network model. In order to estimate AGB, the training sample data includes the canopy height extracted from GLAS, LAI, vegetation coverage and several kinds of vegetation indices from HJ-1 data. The results of forest aboveground biomass are very close to the fields measured results, and are consistent with land cover data in the spatial distribution.

  14. Rapid assessment of above-ground biomass of Giant Reed using visibility estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid estimation of biomass and density of giant reed (Arundo donax L.) was developed using estimates of visibility as a predictive tool. Visibility estimates were derived by capturing digital images of a 0.25 m2 polystyrene whiteboard placed a set distance (1m) from the edge of gia...

  15. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    NASA Astrophysics Data System (ADS)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  16. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    PubMed

    Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions. PMID:22428035

  17. Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity

    PubMed Central

    Barlow, Jos; Silveira, Juliana M.; Mestre, Luiz A. M.; Andrade, Rafael B.; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z.; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A.

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions. PMID:22428035

  18. Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology.

    PubMed

    Toju, Hirokazu; Guimarães, Paulo R; Olesen, Jens M; Thompson, John N

    2015-10-01

    In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant-fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant-partner networks. Specifically, plant-fungus networks lacked a "nested" architecture, which has been considered to promote species coexistence in plant-partner networks. Rather, the below-ground networks had a conspicuous "antinested" topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions. PMID:26601279

  19. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes

    NASA Astrophysics Data System (ADS)

    Mitchard, E. T. A.; Saatchi, S. S.; Woodhouse, I. H.; Nangendo, G.; Ribeiro, N. S.; Williams, M.; Ryan, C. M.; Lewis, S. L.; Feldpausch, T. R.; Meir, P.

    2009-12-01

    Regional-scale above-ground biomass (AGB) estimates of tropical savannas and woodlands are highly uncertain, despite their global importance for ecosystems services and as carbon stores. In response, we collated field inventory data from 253 plots at four study sites in Cameroon, Uganda and Mozambique, and examined the relationships between field-measured AGB and cross-polarized radar backscatter values derived from ALOS PALSAR, an L-band satellite sensor. The relationships were highly significant, similar among sites, and displayed high prediction accuracies up to 150 Mg ha-1 (±˜20%). AGB predictions for any given site obtained using equations derived from data from only the other three sites generated only small increases in error. The results suggest that a widely applicable general relationship exists between AGB and L-band backscatter for lower-biomass tropical woody vegetation. This relationship allows regional-scale AGB estimation, required for example by planned REDD (Reducing Emissions from Deforestation and Degradation) schemes.

  20. Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest

    NASA Astrophysics Data System (ADS)

    Tsui, Olivier W.; Coops, Nicholas C.; Wulder, Michael A.; Marshall, Peter L.; McCardle, Adrian

    2012-04-01

    Height measurements from small-footprint discrete-return LiDAR and backscatter coefficients from C- and L-band radar were used independently and in combination to estimate above-ground component and total biomass for a coniferous temperate forest, located on Vancouver Island, British Columbia, Canada. Reference biomass data were obtained from plot-level data and used for comparison against the LiDAR and radar-based biomass models. For the LiDAR-only model, height metrics such as mean first return height and percentiles (e.g., 10th and 90th) of first returns correlated best to total above-ground and stem biomass. While percent of first returns above 2 m and percentiles (75th and 90th) of first returns height metrics correlated best to crown biomass. A comparison between above-ground components and total biomass indicate that stem biomass displayed the highest relationship with the LiDAR measurements while crown biomass showed the lowest relationship with relative root mean squared error ranging from 16% to 22%, respectively. Alternatively, the radar-only models indicated that for C-band radar, a combination of HH and VV backscatter demonstrated the most significant correlation with forest biomass compared to coherence based models with a relative root mean squared error of 53%. For L-band radar, a combination of HH and HV backscatter showed the most significant correlation compared to coherence based models with a relative root mean squared error of 44%. Exploring a mixture of C- and L-band backscatter and coherence based models revealed that a combination of C-HV and L-HV coherence magnitudes provided the best radar relationship with forest biomass with a relative root mean squared error of 35%. Also for all radar-based models, L- and C-band backscatter and coherence magnitudes were poorly correlated with individual biomass components when compared to total above-ground biomass. The addition of C- and L-band backscatter and coherence variables to the Li

  1. Interactive effects of frequent burning and timber harvesting on above ground carbon biomass in temperate eucalypt forests

    NASA Astrophysics Data System (ADS)

    Collins, Luke; Penman, Trent; Ximenes, Fabiano; Bradstock, Ross

    2015-04-01

    The sequestration of carbon has been identified as an important strategy to mitigate the effects of climate change. Fuel reduction burning and timber harvesting are two common co-occurring management practices within forests. Frequent burning and timber harvesting may alter forest carbon pools through the removal and redistribution of biomass and demographic and structural changes to tree communities. Synergistic and antagonistic interactions between frequent burning and harvesting are likely to occur, adding further complexity to the management of forest carbon stocks. Research aimed at understanding the interactive effects of frequent fire and timber harvesting on carbon biomass is lacking. This study utilised data from two long term (25 - 30 years) manipulative burning experiments conducted in southern Australia in temperate eucalypt forests dominated by resprouting canopy species. Specifically we examined the effect of fire frequency and harvesting on (i) total biomass of above ground carbon pools and (ii) demographic and structural characteristics of live trees. We also investigated some of the mechanisms driving these changes. Frequent burning reduced carbon biomass by up to 20% in the live tree carbon pool. Significant interactions occurred between fire and harvesting, whereby the reduction in biomass of trees >20 cm diameter breast height (DBH) was amplified by increased fire frequency. The biomass of trees <20 cm DBH increased with harvesting intensity in frequently burnt areas, but was unaffected by harvesting intensity in areas experiencing low fire frequency. Biomass of standing and fallen coarse woody debris was relatively unaffected by logging and fire frequency. Fire and harvesting significantly altered stand structure over the study period. Comparison of pre-treatment conditions to current conditions revealed that logged sites had a significantly greater increase in the number of small trees (<40 cm DBH) than unlogged sites. Logged sites showed a

  2. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands

    PubMed Central

    Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857

  3. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    NASA Astrophysics Data System (ADS)

    Anderson, L. O.; Malhi, Y.; Ladle, R. J.; Aragão, L. E. O. C.; Shimabukuro, Y.; Phillips, O. L.; Baker, T.; Costa, A. C. L.; Espejo, J. S.; Higuchi, N.; Laurance, W. F.; López-González, G.; Monteagudo, A.; Núñez-Vargas, P.; Peacock, J.; Quesada, C. A.; Almeida, S.

    2009-09-01

    Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of forests over Paleovarzea geomorphologycal formation, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  4. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    NASA Astrophysics Data System (ADS)

    Anderson, L. O.; Malhi, Y.; Ladle, R. J.; Aragão, L. E. O. C.; Shimabukuro, Y.; Phillips, O. L.; Baker, T.; Costa, A. C. L.; Espejo, J. S.; Higuchi, N.; Laurance, W. F.; López-González, G.; Monteagudo, A.; Núñez-Vargas, P.; Peacock, J.; Quesada, C. A.; Almeida, S.; Vásquez, R.

    2009-02-01

    Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of alluvial terrain forest, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  5. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands.

    PubMed

    Valbuena, Rubén; Heiskanen, Janne; Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857

  6. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  7. Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents - how different are co-occurring savanna and forest formations?

    NASA Astrophysics Data System (ADS)

    Veenendaal, E. M.; Torello-Raventos, M.; Feldpausch, T. R.; Domingues, T. F.; Gerard, F.; Schrodt, F.; Saiz, G.; Quesada, C. A.; Djagbletey, G.; Ford, A.; Kemp, J.; Marimon, B. S.; Marimon-Junior, B. H.; Lenza, E.; Ratter, J. A.; Maracahipes, L.; Sasaki, D.; Sonke, B.; Zapfack, L.; Villarroel, D.; Schwarz, M.; Yoko Ishida, F.; Gilpin, M.; Nardoto, G. B.; Affum-Baffoe, K.; Arroyo, L.; Bloomfield, K.; Ceca, G.; Compaore, H.; Davies, K.; Diallo, A.; Fyllas, N. M.; Gignoux, J.; Hien, F.; Johnson, M.; Mougin, E.; Hiernaux, P.; Killeen, T.; Metcalfe, D.; Miranda, H. S.; Steininger, M.; Sykora, K.; Bird, M. I.; Grace, J.; Lewis, S.; Phillips, O. L.; Lloyd, J.

    2015-05-01

    Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna-forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna-forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three continents coexistence

  8. Plant-herbivore-carnivore interactions in cotton, Gossypium hirsutum linking below ground and above ground

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most studies on plant-herbivore interactions have focused on either root or shoot herbivory in isolation, but recent studies show how above- and below ground herbivores may interact via a shared host plant. Cotton (Gossypium spp.) produces a variety of terpenoid aldehydes that exhibit toxicity to a...

  9. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  10. Forest above ground biomass estimation and forest/non-forest classification for Odisha, India, using L-band Synthetic Aperture Radar (SAR) data

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Kiran Chand, T. R.; Fararoda, R.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    Tropical forests contribute to approximately 40 % of the total carbon found in terrestrial biomass. In this context, forest/non-forest classification and estimation of forest above ground biomass over tropical regions are very important and relevant in understanding the contribution of tropical forests in global biogeochemical cycles, especially in terms of carbon pools and fluxes. Information on the spatio-temporal biomass distribution acts as a key input to Reducing Emissions from Deforestation and forest Degradation Plus (REDD+) action plans. This necessitates precise and reliable methods to estimate forest biomass and to reduce uncertainties in existing biomass quantification scenarios. The use of backscatter information from a host of allweather capable Synthetic Aperture Radar (SAR) systems during the recent past has demonstrated the potential of SAR data in forest above ground biomass estimation and forest / nonforest classification. In the present study, Advanced Land Observing Satellite (ALOS) / Phased Array L-band Synthetic Aperture Radar (PALSAR) data along with field inventory data have been used in forest above ground biomass estimation and forest / non-forest classification over Odisha state, India. The ALOSPALSAR 50 m spatial resolution orthorectified and radiometrically corrected HH/HV dual polarization data (digital numbers) for the year 2010 were converted to backscattering coefficient images (Schimada et al., 2009). The tree level measurements collected during field inventory (2009-'10) on Girth at Breast Height (GBH at 1.3 m above ground) and height of all individual trees at plot (plot size 0.1 ha) level were converted to biomass density using species specific allometric equations and wood densities. The field inventory based biomass estimations were empirically integrated with ALOS-PALSAR backscatter coefficients to derive spatial forest above ground biomass estimates for the study area. Further, The Support Vector Machines (SVM) based Radial

  11. The effect of freezing and drying on leaching of DOM from above ground vascular plant material from the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.

    2014-12-01

    Our understanding of the seasonal dynamics of fluvial dissolved organic matter (DOM) concentrations and fluxes in Arctic catchments has increased substantially during recent years, especially during the spring, which historically has been an under-sampled time period. While a number of studies have observed peaks in both DOM concentrations and fluxes during the spring snowmelt, our knowledge of the mechanisms that control these observations are still lacking. During the initial snowmelt period, frozen ground and the snow matrix act to constrain melt-water to the soil surface. We hypothesize that restriction of flow during this time facilitates leaching of DOM from senescent above ground vegetation and detritus contributing to the high DOM concentrations observed during the spring melt. This study focuses on the effect of freezing and drying on the leaching of dissolved organic carbon and nitrogen (DOC and DON) from above ground vascular plant material. Specifically, we examined the treatment effects of freezing, drying, and freeze-drying on three genera of common Alaskan Arctic vascular plants; Eriophorum (spp.), Carex (spp.), and Salix (spp.). Frozen and freeze-dried plant material released more DOC over the experimental 96 hour leaching period compared to plant material that was only dried. Qualitatively, these patterns were similar among the different plant types, while quantitatively Salix leached more DOC than either Eriophorum or Carex in all treatments. Similar patterns were also seen for DON between the different treatments and among the different plant types. Compositionally, DOM that was leached from frozen and freeze-dried material had higher C:N ratios than material that was only dried. Comparatively, DOM leached from Salix had much higher C:N ratios than either Eriophorum or Carex. During the first 24 hours of leaching, C:N ratios tended to increase followed by a subsequent leveling or decrease, suggesting that the composition of leached DOM varied

  12. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between above-ground and below-ground herbivores.

    PubMed

    Huang, Wei; Siemann, Evan; Yang, Xuefang; Wheeler, Gregory S; Ding, Jianqing

    2013-09-22

    To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics. PMID:23902902

  13. Fungal endophytes in above-ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts

    PubMed Central

    Massimo, Nicholas C.; Nandi Devan, MM; Arendt, Kayla R.; Wilch, Margaret H.; Riddle, Jakob M.; Furr, Susan H.; Steen, Cole; U'Ren, Jana M.; Sandberg, Dustin C.; Arnold, A. Elizabeth

    2015-01-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in above-ground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on non-succulent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region, and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less-arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert plant communities, and can be used to optimize strategies for capturing endophyte biodiversity at regional scales. PMID

  14. Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data

    NASA Astrophysics Data System (ADS)

    Behera, M. D.; Tripathi, P.; Mishra, B.; Kumar, Shashi; Chitale, V. S.; Behera, Soumit K.

    2016-01-01

    Mechanisms to mitigate climate change in tropical countries such as India require information on forest structural components i.e., biomass and carbon for conservation steps to be implemented successfully. The present study focuses on investigating the potential use of a one time, QuadPOL ALOS PALSAR L-band 25 m data to estimate above-ground biomass (AGB) using a water cloud model (WCM) in a wildlife sanctuary in India. A significant correlation was obtained between the SAR-derived backscatter coefficient (σ°) and the field measured AGB, with the maximum coefficient of determination for cross-polarized (HV) σ° for Shorea robusta, and the weakest correlation was observed with co-polarized (HH) σ° for Tectona grandis forests. The biomass of S. robusta and that of T. grandis were estimated on the basis of field-measured data at 444.7 ± 170.4 Mg/ha and 451 ± 179.4 Mg/ha respectively. The mean biomass values estimated using the WCM varied between 562 and 660 Mg/ha for S. robusta; between 590 and 710 Mg/ha for T. grandis using various polarized data. Our results highlighted the efficacy of one time, fully polarized PALSAR data for biomass and carbon estimate in a dense forest.

  15. Top-down and bottom-up inventory approach for above ground forest biomass and carbon monitoring in REDD framework using multi-resolution satellite data.

    PubMed

    Sharma, Laxmi Kant; Nathawat, Mahendra Singh; Sinha, Suman

    2013-10-01

    This study deals with the future scope of REDD (Reduced Emissions from Deforestation and forest Degradation) and REDD+ regimes for measuring and monitoring the current state and dynamics of carbon stocks over time with integrated geospatial and field-based biomass inventory approach. Multi-temporal and multi-resolution geospatial synergic approach incorporating satellite sensors from moderate to high resolution with stratified random sampling design is used. The inventory process involves a continuous forest inventory to facilitate the quantification of possible CO2 reductions over time using statistical up-scaling procedures on various levels. The combined approach was applied on a regional scale taking Himachal Pradesh (India), as a case study, with a hierarchy of forest strata representing the forest structure found in India. Biophysical modeling implemented revealed power regression model as the best fit (R (2) = 0.82) to model the relationship between Normalized Difference Vegetation Index and biomass which was further implemented to calculate multi-temporal above ground biomass and carbon sequestration. The calculated value of net carbon sequestered by the forests totaled to 11.52 million tons (Mt) over the period of 20 years at the rate of 0.58 Mt per year since 1990 while CO2 equivalent reduced from the environment by the forests under study during 20 years comes to 42.26 Mt in the study area. PMID:23604728

  16. Storage tanks: Going above ground

    SciTech Connect

    Wilson, T.C. )

    1994-03-01

    This article examines the trend toward above ground storage tanks for petroleum products and certain hazardous substances. The topics of the article include the advantages and disadvantages of above ground storage tanks, regulations for use of above ground storage tanks, design options, safety issues, and a description of typical users of above ground storage tanks.

  17. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome

    PubMed Central

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID

  18. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID:26402522

  19. Optimizing the number of training areas for modeling above-ground biomass with ALS and multispectral remote sensing in subtropical Nepal

    NASA Astrophysics Data System (ADS)

    Rana, Parvez; Gautam, Basanta; Tokola, Timo

    2016-07-01

    Remote sensing-based inventories of above-ground forest biomass (AGB) require a set of training plots representative of the area to be studied, the collection of which is the most expensive part of the analysis. These are time-consuming and costly because the large variety in forest conditions requires more plots to adequately capture this variability. A field campaign in general is challenging and is hampered by the complex topographic conditions, limited accessibility, steep mountainous terrains which increase labor efforts and costs. In addition it is also depend on the ratio between size of study area and number of training plots. In this study, we evaluate the number of training areas (sample size) required to estimate AGB for an area in the southern part of Nepal using airborne laser scanning (ALS), RapidEye and Landsat data. Three experiments were conducted: (i) AGB model performance, based on all the field training plots; (ii) reduction of the sample size, based on the ALS metrics and the AGB distribution; and (iii) prediction of the optimal number of training plots, based on the correlation between the remote sensing and field data. The AGB model was fitted using the sparse Bayesian method. AGB model performance was validated using an independent validation dataset. The effect of the strategies for reducing the sample size was readily apparent for the ALS-based AGB prediction, but the RapidEye and Landsat sensor data failed to capture any such effect. The results indicate that adequate coverage of the variability in tree height and density was an important condition for selecting the training plots. In addition, the ALS-based AGB prediction required the smallest number of training plots and was also quite stable with a small number of field plots.

  20. Sensitivity of Backscatter Intensity of ALOS/PALSAR to Above-ground Biomass and Other Biophysical Parameters of Boreal Forests in Alaska and Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Hayashi, M.; Kim, Y.; Ishii, R.; Kobayashi, H.; Shoyama, K.; Adachi, M.; Takahashi, A.; Saigusa, N.; Ito, A.

    2012-12-01

    For the better understanding of the carbon cycle in the global environment, investigations on the spatio-temporal variation of the carbon stock which is stored as vegetation biomass is important. The backscatter intensity of "Phased Array type L-band Synthetic Aperture Radar (PALSAR)" onboard the satellite "Advanced Land Observing Satellite (ALOS)" provides us the information which is applicable to estimate the forest above-ground biomass (AGB). This study examines the sensitivity of the backscatter intensity of ALOS/PALSAR to the forest AGB and other biophysical parameters (tree height, tree diameter at breast height (DBH), and tree stand density) for boreal forests in two geographical regions of Alaska and Kushiro, northern Japan, and compares the sensitivities in two regions. In Alaska, a forest survey was executed in the south-north transect (about 300 km long) along a trans-Alaska pipeline which profiles the ecotone from the boreal forest to tundra in 2007. Forest AGBs and other biophysical parameters at 29 forests along the transect were measured by Bitterlich method. In Kushiro, a forest survey was carried out at 42 forests in 2011 and those parameters were similarly obtained by Bitterlich method. 20 and 2 scenes of ALOS/PALSAR FBD Level 1.5 data that cover the regions in Alaska and Kushiro, respectively, were collected and mosaicked. Backscatter intensities of ALOS/PALSAR in HH (horizontally polarized transmitted and horizontally polarized received) and HV (horizontally polarized transmitted and vertically polarized received) modes were compared with the forest AGB and other biophysical parameters. The intensity generally increased with the increase of those biophysical parameters in both HV and HH modes, but the intensity in HV mode generally had a stronger correlation to those parameters than in HH mode in both Alaska and Kushiro. The HV intensity had strong correlation to the forest AGB and DBH, while weak correlation to the tree stand density in Alaska

  1. Estimating Above-Ground Biomass Within the Footprint of an Eddy-Covariance Flux Tower: Continuous LiDAR Based Estimates Compared With Discrete Inventory and Disturbance History Based Stratification Boundaries

    NASA Astrophysics Data System (ADS)

    Ferster, C. J.; Trofymow, J. A.; Coops, N. C.; Chen, B.; Black, T. A.

    2008-12-01

    Eddy-covariance (EC) flux towers provide data about carbon (C) exchange between land and the atmosphere at an ecosystem scale. However, important research questions need to be addressed when placing EC flux towers in complex heterogeneous forest landscapes, such as the coastal forests of Western Canada. Recently available footprint analysis, which describes the contribution function and catchment area where EC flux is being measured, can be used to relate EC flux tower measurements with the biological structure and carbon stock distributions of complex forest landscapes. In this study, above ground biomass is estimated near an EC flux tower using two approaches. In the first approach, a remote sensing based surface representing above ground biomass was estimated using small footprint, discrete return, light detection and ranging (LiDAR) data. Plot level LiDAR metrics were supplemented with metrics calculated using individual tree detection. A multiple regression model was developed to estimate above ground biomass using ground plot and LiDAR data, and then the model was applied across the EC flux footprint area to estimate the spatial distribution of above ground biomass. In the second approach, line boundaries from forest inventory, disturbance history, and site series were used to delineate discrete stratification units and the measured groundplot data assigned to the various strata. Within the heterogeneous tower footprint area, footprint weighting allows us to compare and contrast above ground biomass estimates from these two approaches. Using this methodology we then plan to compare, for the same period, ground-based measurements of ecosystem C stock changes with accumulative EC measured net ecosystem C flux.

  2. Development of a data driven process-based model for remote sensing of terrestrial ecosystem productivity, evapotranspiration, and above-ground biomass

    NASA Astrophysics Data System (ADS)

    El Masri, Bassil

    2011-12-01

    Modeling terrestrial ecosystem functions and structure has been a subject of increasing interest because of the importance of the terrestrial carbon cycle in global carbon budget and climate change. In this study, satellite data were used to estimate gross primary production (GPP), evapotranspiration (ET) for two deciduous forests: Morgan Monroe State forest (MMSF) in Indiana and Harvard forest in Massachusetts. Also, above-ground biomass (AGB) was estimated for the MMSF and the Howland forest (mixed forest) in Maine. Surface reflectance and temperature, vegetation indices, soil moisture, tree height and canopy area derived from the Moderate Resolution Imagining Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMRS-E), LIDAR, and aerial imagery respectively, were used for this purpose. These variables along with others derived from remotely sensed data were used as inputs variables to process-based models which estimated GPP and ET and to a regression model which estimated AGB. The process-based models were BIOME-BGC and the Penman-Monteith equation. Measured values for the carbon and water fluxes obtained from the Eddy covariance flux tower were compared to the modeled GPP and ET. The data driven methods produced good estimation of GPP and ET with an average root mean square error (RMSE) of 0.17 molC/m2 and 0.40 mm/day, respectively for the MMSF and the Harvard forest. In addition, allometric data for the MMSF were used to develop the regression model relating AGB with stem volume. The performance of the AGB regression model was compared to site measurements using remotely sensed data for the MMSF and the Howland forest where the model AGB RMSE ranged between 2.92--3.30 Kg C/m2. Sensitivity analysis revealed that improvement in maintenance respiration estimation and remotely sensed maximum photosynthetic activity as well as accurate estimate of canopy resistance will result in improved GPP and ET predictions. Moreover, AGB estimates were

  3. A cost effective and operational methodology for wall to wall Above Ground Biomass (AGB) and carbon stocks estimation and mapping: Nepal REDD+

    NASA Astrophysics Data System (ADS)

    Gilani, H., Sr.; Ganguly, S.; Zhang, G.; Koju, U. A.; Murthy, M. S. R.; Nemani, R. R.; Manandhar, U.; Thapa, G. J.

    2015-12-01

    Nepal is a landlocked country with 39% forest cover of the total land area (147,181 km2). Under the Forest Carbon Partnership Facility (FCPF) and implemented by the World Bank (WB), Nepal chosen as one of four countries best suitable for results-based payment system for Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+) scheme. At the national level Landsat based, from 1990 to 2000 the forest area has declined by 2%, i.e. by 1467 km2, whereas from 2000 to 2010 it has declined only by 0.12% i.e. 176 km2. A cost effective monitoring and evaluation system for REDD+ requires a balanced approach of remote sensing and ground measurements. This paper provides, for Nepal a cost effective and operational 30 m Above Ground Biomass (AGB) estimation and mapping methodology using freely available satellite data integrated with field inventory. Leaf Area Index (LAI) generated based on propose methodology by Ganguly et al. (2012) using Landsat-8 the OLI cloud free images. To generate tree canopy height map, a density scatter graph between the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat) estimated maximum height and Landsat LAI nearest to the center coordinates of the GLAS shots show a moderate but significant exponential correlation (31.211*LAI0.4593, R2= 0.33, RMSE=13.25 m). From the field well distributed circular (750m2 and 500m2), 1124 field plots (0.001% representation of forest cover) measured which were used for estimation AGB (ton/ha) using Sharma et al. (1990) proposed equations for all tree species of Nepal. A satisfactory linear relationship (AGB = 8.7018*Hmax-101.24, R2=0.67, RMSE=7.2 ton/ha) achieved between maximum canopy height (Hmax) and AGB (ton/ha). This cost effective and operational methodology is replicable, over 5-10 years with minimum ground samples through integration of satellite images. Developed AGB used to produce optimum fuel wood scenarios using population and road

  4. Estimating Mangrove Canopy Height and Above-Ground Biomass in Everglades National Park with Airbone LiDAR and TanDEM-X Data.

    NASA Astrophysics Data System (ADS)

    Feliciano, E. A.; Wdowinski, S.; Potts, M. D.; Fatoyinbo, T. E.; Lee, S. K.

    2014-12-01

    The coastal mangroves forests of Everglades National Park (ENP) are well protected from development. Nevertheless, climate change, hurricanes and other anthropogenic disturbances have affected these intertidal ecosystems. Understanding and monitoring forest structural parameters such as canopy height and above-ground biomass (AGB) are important for the establishment of an historical database for past, present and future ecosystem comparison. Forest canopy height has a well understood and directly proportional correlation with AGB. It is possible to derive it using (1) airborne LiDAR/Laser Scanning (ALS) or (2) space-borne radar systems such as Shuttle Radar Topography Mission (SRTM) and TanDEM-X (TDX). A previous study of the mangrove canopy height and AGB in the ENP was conducted a decade ago based on ALS data acquired in 2004 in conjunction with SRTM data, which were acquired in 2000 (Simard et al. 2006). In this study we estimated canopy height and AGB using an ALS dataset acquired in 2012 and TDX data acquired during the years 2012-2014. The ALS dataset was acquired along a 16.5 x 1.5 km swath of mangrove forest with variable canopy height. The sampled areas were representative of mangrove stature and structure in the whole ENP. Analysis of the ALS dataset showed that mangrove canopy height can reach up to ~25 meters close to the coastal ENP waters. Additionally, by comparing our ALS results with those of a previous study by Simard et al. (2006) we identified areas where mangrove height changes greater than ± 3 meters occurred. To expand the study area to the full ENP mangrove ecosystem we processed single-polarization TDX data to obtain a Digital Canopy Model (DCM) that represents the mangrove canopy height. In order to obtain the true canopy height we calibrated the TDX phase center height with ALS true canopy height. Preliminary results of a corrected single-polarized (HH) TDX scene show that mangrove canopy height can reach up to ~25 meters in the western

  5. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    NASA Astrophysics Data System (ADS)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked

  6. LINE-ABOVE-GROUND ATTENUATOR

    DOEpatents

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  7. Comparing the above-ground component biomass estimates of western junipers using airborne and full-waveform terrestrial laser scanning data

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Glenn, N. F.; Spaete, L.; Hardegree, S. P.

    2012-12-01

    With the rapid expansion into shrub steppe and grassland ecosystems over the last century, western juniper (Juniperus occidentalis var. occidentalis Hook) is becoming a major component of the regional carbon pool in the Intermountain West. Understanding how biomass is allocated across individual tree components is necessary to understand the uncertainties in biomass estimates and more accurately quantify biomass and carbon dynamics in these ecosystems. Estimates of component biomass are also important for canopy fuel load assessment and predicting rangeland fire behavior. Airborne LiDAR can capture vegetation structure over larger scales, but the high crown penetration and sampling density of terrestrial laser scanner (TLS) instruments can better capture tree components. In this study, we assessed the ability of airborne LiDAR to estimate biomass of tree components of western juniper with validation data from field measured tees and a full-waveform TLS. Sixteen juniper trees (height range 1.5-10 m) were randomly selected using a double sampling strategy from different height classes in the Reynolds Creek Experimental Watershed in the Owyhee Mountains, southwestern Idaho, USA. Each tree was scanned with a full-waveform TLS, and the dry biomass of each component (foliage, branches and main stem) were measured by destructive harvesting of the trees. We compare the allometric relationships of biomass estimates of the tree components obtained from field-measured trees and TLS-based estimates with the estimates from discrete-return airborne-LiDAR based estimates.

  8. Evaluating Post-fire Ecosystem Effects in Tussock Tundra of the Seward Peninsula: Characterizing Above-ground Biomass Accumulation, Soil Nutrient Pools, and Foliar Nitrogen.

    NASA Astrophysics Data System (ADS)

    Hollingsworth, T. N.; Mack, M. C.; Breen, A. L.

    2014-12-01

    Over the last century in the circumpolar north, changes in vegetation include shrub cover expansion and shifts in tree line. Invasion of tundra by trees and shrubs may be further facilitated by wildfire disturbance, which creates opportunities for establishment where recruitment is otherwise rare. Even moderate increases in warm-season temperatures are predicted to increase the likelihood of tundra fires. Understanding the consequences of a change in fire regime are complicated by the fact that there are relatively few large recent fires to study. However, the Seward Peninsula is a region that currently experiences more frequent and large fires than other tundra regions in Arctic Alaska. In this tundra region, there are areas of overlapping burns dating back to the 1970s. Using a chronosequence approach, we looked at post-fire biomass accumulation as well as foliar and soil C and N. Our experimental design incorporated sites that showed no evidence of recent burning, sites that burned in 1971, 1997, 2002, and 2011 as well as sites that burned multiple times over the last 30 years. We found that fire had a significant effect on total biomass and shrub basal area in tussock tundra. Our site that burned in 2011 had the lowest total biomass, about half of the biomass of our unburned site. However, our results indicated the site that burned in 1971 had over double the aboveground biomass and more soil N than the unburned site. We found that sites that repeatedly burned since 1971 were very similar in biomass to unburned tundra. This suggests that repeat fires keep a post-fire site at unburned levels of biomass. However, in these repeat fire sites, foliar C/N was ~25% greater and soil C and N was ~50% less than in unburned tundra. These results indicate that repeat fires are potentially causing nitrogen loss that not likely to be replenished into the system. As tundra fires become more frequent prediction of post-fire ecosystem effects is critical due to impacts on

  9. [Accuracy comparison of BJ-1, HJ and Landsat data in the retrieval of grassland vegetation coverage, leaf area index and above ground biomass].

    PubMed

    Wang, Hong-Yan; Li, Xiao-Song; Zhang, Jin; Gao, Zhi-Hai

    2013-10-01

    Domestic satellites BJ-1, HJ and the most widely used satellite Landsat were selected to systematically compare their abilities and differences on the estimation of the biophysical parameters of grassland in sandstorm source region in Beijing and Tianjin, with the combination of field-measured fractional coverage, leaf area index and aboveground biomass data. The result shows: (1) In terms of the surface reflectance, HJ-1B and Landsat have a higher correlation with biophysical parameters in red band, compared with BJ-1, while BJ-1's near infra-red band was obviously superior to HJ-1B and Landsat, (2) with respect to the vegetation indices, Landsat performed best, HJ-1B was the second, and BJ-1 was the worst, (3) compared with vegetation indices, multiple regression model can raise the estimation accuracy, BJ-1 based model improved significantly, while Landsat and HJ-1B based models were less obvious. Among them, the highest accuracy was acquired for leaf area index estimation through the BJ-1 based model (R2 = 0.61, RMSEP = 0.15). In general, domestic satellites have their own unique features, which remain a huge potential to be further tapped. PMID:24409740

  10. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    PubMed

    Tariq, Muhammad; Wright, Denis J; Bruce, Toby J A; Staley, Joanna T

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be

  11. Drought and Root Herbivory Interact to Alter the Response of Above-Ground Parasitoids to Aphid Infested Plants and Associated Plant Volatile Signals

    PubMed Central

    Tariq, Muhammad; Wright, Denis J.; Bruce, Toby J. A.; Staley, Joanna T.

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40–55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may

  12. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    SciTech Connect

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems.

  13. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  14. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  15. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  16. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  17. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground...

  18. Plant biomass degradation by fungi.

    PubMed

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi. PMID:25192611

  19. Delano Biomass Power Plant

    SciTech Connect

    Middleton, M.; Hendershaw, W.K.; Corbin, H.R.; Taylor, T.A.

    1995-12-31

    The Delano Biomass Power Plant utilizes orchard prunings, urban wood waste, almond shells, and cotton stalks to fuel a boiler for steam generation. The steam is condensed in a steam turbine/generator to produce 31.8 MW of power. The electrical power generated (27 MW net) is then sold to Southern California Edison Co. for distribution. By incorporating a cooling tower, demineralizer, brine concentration tower, and evaporation ponds this system is able to achieve zero discharge. Steam at 97{degrees}F is condensed with cooling water. The cooling water is recirculated through an evaporator tower. Due to the temperature of the water entering the tower (83{degrees}F), evaporation occurs leaving behind concentrated salts. A blowdown is used to remove these salts from the tower. Losses from evaporation or leaks require make up to the tower. Wastewater from various processes in the plant are passed to a brine concentration tower. This concentrate is then taken to the evaporation ponds. Concentrated blowdown of small volumes (approximately 2-4 gpm) from the brine tower is disposed of in evaporation ponds.

  20. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores

    PubMed Central

    Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing

    2015-01-01

    Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence. PMID:25681822

  1. DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND TYPICAL TERRA COTTA WINDOW SILL. CORNER OF CLAY AND 15TH STREETS - John Breuner & Company Building, 1515 Clay Street, Oakland, Alameda County, CA

  2. Influence of the simulated microgravity on biomass and contents of carbohydrates at virus-infected wheat plants

    NASA Astrophysics Data System (ADS)

    Mishchenko, L.; Silayeva, A.; Mishchenko, I.; Boyko, A.

    The effects of clinostating has been studied on the contents of biomass, soluble carbohydrates and starches in Wheat streak mosaic virus (WSMV) infected plants of wheat Donska semidwarf, Albatross Odessky, Kollectivna-3 (summer), and Apogee (early-ripe, superdwarf). Plants in conditions of horizontal and vertical rotation with a frequency 2 min-1 were grown in containers during 35 days. WSMV was accumulated on barley i dicator plants of Ros' variety for then subsequent infestation by this virus of a part of clinostating and motionless wheat plants in a stage of 3 leaves. Researches have shown, that the most suitable for ground experiments with clinostating were Kollectivna-3 and Apogee varieties. At vertical and horizontal rotation of wheat plants of Kollectivna - 3 variety the weight of roots increased and that of above-ground part (leaves and stalks) decreased in comparison with motionless control plants, that resulted in decrease of the ratio of a biomass of an above-ground part to a root system. In Apogee variety the weight of the above-ground part of healthy plants at vertical clinostating decreased by 23 % in comparison with motionless variant, and the biomass of virus-infected plants was reduced on the average by 14 % in comparison with infected motionless control. The weight of above-ground part of infected and healthy motionless plants practically did not differ. Vertical clinorotation of plants caused the reduction of ear weight while in horizontally rotated plants and in the motionless control there were no difference. The number of ears in Apogee variety practically did not change in all variants of the experiment, and plant weight at clinostating decreased in both healthy, and virus infected plants. For the period of cultivation in Kollectivna-3 variety ears were not formed at all. The contents of soluble carbohydrates (reducing and saccharose) in leaves and stalks of healthy and virus infected at clinostating was increased in Apogee in 1,6-2,2 times

  3. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  4. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. PMID:26685781

  5. Terrestrial laser scanning for plant height measurement and biomass estimation of maize

    NASA Astrophysics Data System (ADS)

    Tilly, N.; Hoffmeister, D.; Schiedung, H.; Hütt, C.; Brands, J.; Bareth, G.

    2014-09-01

    Over the last decades, the role of remote sensing gained in importance for monitoring applications in precision agriculture. A key factor for assessing the development of crops during the growing period is the actual biomass. As non-destructive methods of directly measuring biomass do not exist, parameters like plant height are considered as estimators. In this contribution, first results of multitemporal surveys on a maize field with a terrestrial laser scanner are shown. The achieved point clouds are interpolated to generate Crop Surface Models (CSM) that represent the top canopy. These CSMs are used for visualizing the spatial distribution of plant height differences within the field and calculating plant height above ground with a high resolution of 1 cm. In addition, manual measurements of plant height were carried out corresponding to each TLS campaign to verify the results. The high coefficient of determination (R² = 0.93) between both measurement methods shows the applicability of the presented approach. The established regression model between CSM-derived plant height and destructively measured biomass shows a varying performance depending on the considered time frame during the growing period. This study shows that TLS is a suitable and promising method for measuring plant height of maize. Moreover, it shows the potential of plant height as a non-destructive estimator for biomass in the early growing period. However, challenges are the non-linear development of plant height and biomass over the whole growing period.

  6. Regional analysis of ground and above-ground climate

    NASA Astrophysics Data System (ADS)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  7. Regional analysis of ground and above-ground climate

    SciTech Connect

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  8. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  9. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  10. Net Changes in Above Ground Woody Carbon Stock in Western Juniper Woodlands using Wavelet Techniques and Multi-temporal Aerial Photography

    NASA Astrophysics Data System (ADS)

    Strand, E. K.; Bunting, S. C.; Smith, A. M.

    2006-12-01

    Expansion of woody plant cover in semi-arid ecosystems previously occupied primarily by grasses and forbs has been identified as an important land cover change process affecting the global carbon budget. Although woody encroachment occurs worldwide, quantifying changes in carbon pools and fluxes related to this phenomenon via remote sensing is challenging because large areas are affected at a fine spatial resolution (1- 10 m) and, in many cases, at slow temporal rates. Two-dimensional spatial wavelet analysis (SWA) represents a novel image processing technique that has been successful in automatically and objectively quantifying ecologically relevant features at multiple scales. We apply SWA to current and historic 1-m resolution black and white aerial photography to quantify changes in above ground woody biomass and carbon stock of western juniper (Juniperus occidentalis subsp. occidentalis) expanding into sagebrush (Artemisia spp.) steppe on the Owyhee Plateau in southwestern Idaho. Due to the large land area (330,000 ha) and variable availability of historical photography, we sampled forty-eight 100-ha blocks situated across the area, stratified using topographic, soil, and land stewardship variables. The average juniper plant cover increased one-fold (from 5.3% to 10.4% total cover) at the site during the time period of 1939-1946 to 1998-2004. Juniper plant density has increased by 128% with a higher percentage of the plant population in the smaller size classes compared to the size distribution 60 years ago. After image-based SWA delineation of tree crown sizes, we computed the change in above ground woody plant biomass and carbon stock between the two time periods using allometry. Areas where the shrub steppe is dominated by low sagebrush (Artemisia arbuscula) has experienced little to no expansion of western juniper. However, on deeper, more well drained soils capable of supporting mountain big sagebrush (Artemisia tridentata subsp. vaseyana), the above

  11. Lessons learned from existing biomass power plants

    SciTech Connect

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  12. Freshwater aquatic plant biomass production in Florida

    SciTech Connect

    Reddy, K.R.; Sutton, D.L.; Bowes, G.

    1983-01-01

    About 8% (1.2 million ha) of the total surface area of Florida is occupied by freshwater. Many of these water bodies are eutrophic. Nutrients present in these water bodies can be potentially used to culture aquatic plants as a possible feedstock for methane production. This paper summarizes the results of known research findings on biomass production potential of freshwater aquatic plants in Florida and identifies key research needs to improve the quality and quantity of biomass yields. Among floating aquatic plants, biomass yield potential was in the order of water-hyacinth > water lettuce > pennywort > salvinia > duckweed > azolla. Pennywort, duckweed, and azolla appear to perform well during the cooler months compared to other aquatic plants. Among emergent plants, biomass yield potential was in the order of southern wild rice > cattails > soft rush > bulrush. Cultural techniques, nutrient management, and environmental factors influencing the biomass yields were discussed. 68 references.

  13. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    SciTech Connect

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; Kiff, Scott D.; Reyna, David; Throckmorton, Daniel J.

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.

  14. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    DOE PAGESBeta

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; Kiff, Scott D.; Reyna, David; Throckmorton, Daniel J.

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less

  15. Above-ground antineutrino detection for nuclear reactor monitoring

    NASA Astrophysics Data System (ADS)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of 6Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  16. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L. L.; Sayer, E. J.

    2013-11-01

    Global change has been shown to alter the amount of above-ground litter inputs to soil greatly, which could cause substantial cascading effects on below-ground biogeochemical cycling. Despite extensive study, there is uncertainty about how changes in above-ground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a meta-analysis on 70 litter-manipulation experiments in order to assess how changes in above-ground litter inputs alter soil physicochemical properties, carbon dynamics and nutrient cycles. Our results demonstrated that litter removal decreased soil respiration by 34%, microbial biomass carbon in the mineral soil by 39% and total carbon in the mineral soil by 10%, whereas litter addition increased them by 31, 26 and 10%, respectively. This suggests that greater litter inputs increase the soil carbon sink despite higher rates of carbon release and transformation. Total nitrogen and extractable inorganic nitrogen in the mineral soil decreased by 17 and 30%, respectively, under litter removal, but were not altered by litter addition. Overall, litter manipulation had a significant impact upon soil temperature and moisture, but not soil pH; litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Compared to other ecosystems, tropical and subtropical forests were more sensitive to variation in litter inputs, as altered litter inputs affected the turnover and accumulation of soil carbon and nutrients more substantially over a shorter time period. Our study demonstrates that although the magnitude of responses differed greatly among ecosystems, the direction of the responses was very similar across different ecosystems. Interactions between plant productivity and below-ground biogeochemical cycling need to be taken into account to predict ecosystem responses to environmental change.

  17. [Estimation of Winter Wheat Biomass Using Visible Spectral and BP Based Artificial Neural Networks].

    PubMed

    Cui, Ri-xian; Liu, Ya-dong; Fu, Jin-dong

    2015-09-01

    The objective of this study was to evaluate the feasibility of using color digital image analysis and back propagation (BP) based artificial neural networks (ANN) method to estimate above ground biomass at the canopy level of winter wheat field. Digital color images of winter wheat canopies grown under six levels of nitrogen treatments were taken with a digital camera for four times during the elongation stage and at the same time wheat plants were sampled to measure above ground biomass. Canopy cover (CC) and 10 color indices were calculated from winter wheat canopy images by using image analysis program (developed in Microsoft Visual Basic). Correlation analysis was carried out to identify the relationship between CC, 10 color indices and winter wheat above ground biomass. Stepwise multiple linear regression and BP based ANN methods were used to establish the models to estimate winter wheat above ground biomass. The results showed that CC, and two color indices had a significant cor- relation with above ground biomass. CC revealed the highest correlation with winter wheat above ground biomass. Stepwise multiple linear regression model constituting CC and color indices of NDI and b, and BP based ANN model with four variables (CC, g, b and NDI) for input was constructed to estimate winter wheat above ground biomass. The validation results indicate that the model using BP based ANN method has a better performance with higher R2 (0.903) and lower RMSE (61.706) and RRMSE (18.876) in comparation with the stepwise regression model. PMID:26669174

  18. Plant community composition and biomass in Gulf Coast Chenier Plain marshes: Responses to winter burning and structural marsh management

    USGS Publications Warehouse

    Gabrey, S.W.; Afton, A.D.

    2001-01-01

    Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.

  19. Energy biomass characteristics of chosen plants

    NASA Astrophysics Data System (ADS)

    Szyszlak-Bargłowicz, J.; Zając, G.; Piekarski, W.

    2012-04-01

    The chosen energy plants species: willow, mallow and Miscanthus are presented. Result of analysis of combustion heat and heating value of these species biomass indicate on possibility of their utilization as fuel for combustion and energy and heat production.

  20. Measuring bulrush culm relationships to estimate plant biomass within a southern California treatment wetland

    USGS Publications Warehouse

    Daniels, Joan S. (Thullen); Cade, Brian S.; Sartoris, James J.

    2010-01-01

    Assessment of emergent vegetation biomass can be time consuming and labor intensive. To establish a less onerous, yet accurate method, for determining emergent plant biomass than by direct measurements we collected vegetation data over a six-year period and modeled biomass using easily obtained variables: culm (stem) diameter, culm height and culm density. From 1998 through 2005, we collected emergent vegetation samples (Schoenoplectus californicus andSchoenoplectus acutus) at a constructed treatment wetland in San Jacinto, California during spring and fall. Various statistical models were run on the data to determine the strongest relationships. We found that the nonlinear relationship: CB=β0DHβ110ε, where CB was dry culm biomass (g m−2), DH was density of culms × average height of culms in a plot, and β0 and β1 were parameters to estimate, proved to be the best fit for predicting dried-live above-ground biomass of the two Schoenoplectus species. The random error distribution, ε, was either assumed to be normally distributed for mean regression estimates or assumed to be an unspecified continuous distribution for quantile regression estimates.

  1. Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining.

    PubMed

    Boominathan, Rengasamy; Saha-Chaudhury, N M; Sahajwalla, Veena; Doran, Pauline M

    2004-05-01

    An important step in phytomining operations is the recovery of metal from harvested plant material. In this work, a laboratory-scale horizontal tube furnace was used to generate Ni-enriched bio-ore from the dried biomass of Ni hyperaccumulator plants. Prior to furnace treatment, hairy roots of Alyssum bertolonii were exposed to Ni in liquid medium to give biomass Ni concentrations of 1.9% to 7.7% dry weight; whole plants of Berkheya coddii were grown in Ni-containing soil to produce above-ground Ni levels of up to 0.49% dry weight. The concentration of Ca in the Ni-treated B. coddii biomass was about 15 times greater than in A. bertolonii. After furnace treatment at 1200 degrees C under air, Ni-bearing residues with crystalline morphology and containing up to 82% Ni were generated from A. bertolonii. The net weight loss in the furnace and the degree of concentration of Ni were significantly reduced when the furnace was purged with nitrogen, reflecting the importance of oxidative processes in Ni enrichment. Ni in the B. coddii biomass was concentrated by a factor of about 17 to yield a residue containing 8.6% Ni; this bio-ore Ni content is substantially higher than the 1% to 2% Ni typically found in mined ore. However, the B. coddii samples after furnace treatment also contained about 34% Ca, mainly in the form of hydroxyapatite Ca(5)(PO(4))(3)OH. Such high Ca levels may present significant challenges for further metallurgical processing. This work demonstrates the feasibility of furnace treatment for generating Ni-rich bio-ore from hyperaccumulator plants. The results also suggest that minimizing the uptake of Ca and/or reducing the Ca content of the biomass prior to furnace treatment would be a worthwhile strategy for improving the quality of Ni bio-ore produced in phytomining operations. PMID:15083504

  2. Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach

    NASA Astrophysics Data System (ADS)

    Galeana-Pizaña, J. Mauricio; López-Caloca, Alejandra; López-Quiroz, Penélope; Silván-Cárdenas, José Luis; Couturier, Stéphane

    2014-08-01

    Forest conservation is considered an option for mitigating the effect of greenhouse gases on global climate, hence monitoring forest carbon pools at global and local levels is important. The present study explores the capability of remote-sensing variables (vegetation indices and textures derived from SPOT-5; backscattering coefficient and interferometric coherence of ALOS PALSAR images) for modeling the spatial distribution of above-ground biomass in the Environmental Conservation Zone of Mexico City. Correlation and spatial autocorrelation coefficients were used to select significant explanatory variables in fir and pine forests. The correlation for interferometric coherence in HV polarization was negative, with correlations coefficients r = -0.83 for the fir and r = -0.75 for the pine forests. Regression-kriging showed the least root mean square error among the spatial interpolation methods used, with 37.75 tC/ha for fir forests and 29.15 tC/ha for pine forests. The results showed that a hybrid geospatial method, based on interferometric coherence data and a regression-kriging interpolator, has good potential for estimating above-ground biomass carbon.

  3. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  4. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  5. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  6. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  7. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  8. Below-ground plant–fungus network topology is not congruent with above-ground plant–animal network topology

    PubMed Central

    Toju, Hirokazu; Guimarães, Paulo R.; Olesen, Jens M.; Thompson, John N.

    2015-01-01

    In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant–fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant–partner networks. Specifically, plant–fungus networks lacked a “nested” architecture, which has been considered to promote species coexistence in plant–partner networks. Rather, the below-ground networks had a conspicuous “antinested” topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions. PMID:26601279

  9. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  10. Recovery of above-ground woody biomass using operational modifications of conventional harvesting systems

    SciTech Connect

    Herschelman, J. W.; Domenech, D. W.

    1980-06-01

    Two harvesting systems were assembled during each of two summers to compare the operational efficiency of a whole tree harvesting system with a conventional harvesting system. Skidding of whole trees proved to be 27% more efficient than the skidding of primary stems because of operators habits of underutilizing skidder capacity. Although 5% more gals/hour were used by the whole tree system, there was a net gain of 21% more tons/gal. produced by this same system. A whole tree chipper was analyzed for its potential to process large hardwood trees for energy products. A comparison of five harvesting systems revealed that whole tree systems producing sawtimber, round pulpwood and energy chips proved most energy efficient and economically viable. A variety of machine/system factors were measured. It was determined that with certain modifications, whole tree chippers offer the best potential for processing logging residue for fuel. Forty-eight equations were developed predicting green and ovendry weights in summer and winter for whole tree weight, primary product weight, and the weight of limbs and tops for hardwood trees associated with the oak-hickory forest type in the Southern Appalachian Region based on diameter at breast height and whole tree length. Eight sawlog prediction equations were also developed based on log length, diameter small end outside bark and diameter large end outside bark. The energy efficiency of harvesting systems was studied by analyzing the equipment involved in manual and mechanized shortwood, longwood, and whole tree systems.

  11. Root growth dynamics linked to above-ground growth in walnut (Juglans regia)

    PubMed Central

    Contador, Maria Loreto; Comas, Louise H.; Metcalf, Samuel G.; Stewart, William L.; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D.

    2015-01-01

    Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques. Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs

  12. High dry matter whole-plant corn as a biomass feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research investigated the harvest, ambient pre-treatment, and storage of whole-plant corn as an alternative to conventional systems whereby corn grain and stover are fractionated at harvest. Harvesting the whole-plant, both grain and most of the above ground stover, after physiological maturity...

  13. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  14. ETR, TRA642. CAMERA IS ON SCAFFOLD OR CATWALK ABOVE GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. CAMERA IS ON SCAFFOLD OR CATWALK ABOVE GROUND FLOOR FOR A CONTEXTUAL VIEW OF REACTOR PIT AND CANAL. CAMERA FACING WESTERLY. INL NEGATIVE NO. 56-3717. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Characteristics of train noise in above-ground and underground stations with side and island platforms

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  16. Regulation of plant biomass utilization in Aspergillus.

    PubMed

    Kowalczyk, Joanna E; Benoit, Isabelle; de Vries, Ronald P

    2014-01-01

    The ability of fungi to survive in every known biotope, both natural and man-made, relies in part on their ability to use a wide range of carbon sources. Fungi degrade polymeric carbon sources present in the environment (polysaccharides, proteins, and lignins) to use the monomeric components as nutrients. However, the available carbon sources vary strongly in nature, both between biotopes and in time. The degradation of polymeric carbon sources is mediated through the production of a broad range of enzymes, the production of which is tightly controlled by a network of regulators and linked to the activation of catabolic pathways to convert the released monomers. This review summarizes the knowledge of Aspergillus regulators involved in plant biomass utilization. PMID:24767425

  17. Bimodal and multimodal plant biomass particle mixtures

    DOEpatents

    Dooley, James H.

    2013-07-09

    An industrial feedstock of plant biomass particles having fibers aligned in a grain, wherein the particles are individually characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L, wherein the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces, and wherein the particles in the feedstock are collectively characterized by having a bimodal or multimodal size distribution.

  18. The influence of mosquito control recirculation ditches on plant biomass, production and composition in two San Francisco Bay salt marshes

    NASA Astrophysics Data System (ADS)

    Balling, Steven S.; Resh, Vincent H.

    1983-02-01

    Vegetation of two San Francisco Bay, California, U.S.A. tidal marshes was examined to determine the effects of recirculation ditches designed to eliminate mosquito-breeding. Salicornia virginica L. biomass and production in Petaluma Marsh and plant species composition in Suisun Marsh were measured with respect to distance from ditches and natural channels. In Petaluma Marsh, both annual above-ground production estimates and infrared aerial photographs indicated that S. virginica growth rates were higher near ditches than in the open marsh. In the floristically diverse, less saline Suisun Marsh, there was a displacement of the more salt tolerant S. virginica by the less tolerant Juncus balticus Willd. and a significantly greater number of species near the ditches. Results in both marshes are correlated with low groundwater salinities near ditches and suggest that tidal circulation within ditches locally ameliorates extremes in soil conditions.

  19. How much biomass do plant communities pack per unit volume?

    PubMed Central

    Rheault, Guillaume; Bonin, Laurianne; Roca, Irene Torrecilla; Martin, Charles A.; Desrochers, Louis; Seiferling, Ian

    2015-01-01

    Aboveground production in terrestrial plant communities is commonly expressed in amount of carbon, or biomass, per unit surface. Alternatively, expressing production per unit volume allows the comparison of communities by their fundamental capacities in packing carbon. In this work we reanalyzed published data from more than 900 plant communities across nine ecosystems to show that standing dry biomass per unit volume (biomass packing) consistently averages around 1 kg/m3 and rarely exceeds 5 kg/m3 across ecosystem types. Furthermore, we examined how empirical relationships between aboveground production and plant species richness are modified when standing biomass is expressed per unit volume rather than surface. We propose that biomass packing emphasizes species coexistence mechanisms and may be an indicator of resource use efficiency in plant communities. PMID:25802814

  20. Patterns of Plant Biomass Partitioning Depend on Nitrogen Source

    PubMed Central

    Cambui, Camila Aguetoni; Svennerstam, Henrik; Gruffman, Linda; Nordin, Annika; Ganeteg, Ulrika; Näsholm, Torgny

    2011-01-01

    Nitrogen (N) availability is a strong determinant of plant biomass partitioning, but the role of different N sources in this process is unknown. Plants inhabiting low productivity ecosystems typically partition a large share of total biomass to belowground structures. In these systems, organic N may often dominate plant available N. With increasing productivity, plant biomass partitioning shifts to aboveground structures, along with a shift in available N to inorganic forms of N. We tested the hypothesis that the form of N taken up by plants is an important determinant of plant biomass partitioning by cultivating Arabidopsis thaliana on different N source mixtures. Plants grown on different N mixtures were similar in size, but those supplied with organic N displayed a significantly greater root fraction. 15N labelling suggested that, in this case, a larger share of absorbed organic N was retained in roots and split-root experiments suggested this may depend on a direct incorporation of absorbed amino acid N into roots. These results suggest the form of N acquired affects plant biomass partitioning and adds new information on the interaction between N and biomass partitioning in plants. PMID:21544211

  1. Biomass Production System (BPS) plant growth unit.

    PubMed

    Morrow, R C; Crabb, T M

    2000-01-01

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive. PMID:11543164

  2. BIOMASS GASIFICATION PILOT STUDY PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  3. Increase in C3 plant water-use efficiency and biomass over Glacial to present C02 concentrations

    NASA Astrophysics Data System (ADS)

    Policy, H. Wayne; Johnson, Hyrum B.; Marinot, Bruno D.; Mayeux, Herman S.

    1993-01-01

    ATMOSPHERIC CO2 concentration was 160 to 200 μmol mol-1 during the Last Glacial Maximum (LGM; about 18,000 years ago)1, rose to about 275 (μmol mol-1 10,000 years ago2,3, and has increased to about 350 μmol mol-1 since 1800 (ref. 4). Here we present data indicating that this increase in CO2 has enhanced biospheric carbon fixation and altered species abundances by increasing the water-use efficiency of biomass production of C3 plants, the bulk of the Earth's vegetation. We grew oats (Avena sativa), wild mustard (Brassica kaber) and wheat (Triticum aes-tivum cv. Seri M82 and Yaqui 54), all C3 annuals, and selected C4 grasses along daytime gradients of Glacial to present atmospheric CO2 concentrations in a 38-m-long chamber. We calculated parameters related to leaf photosynthesis and water-use efficiency from stable carbon isotope ratios (13C/12C) of whole leaves. Leaf water-use efficiency and above-ground biomass/plant of C3 species increased linearly and nearly proportionally with increasing CO2 concentrations. Direct effects of increasing CO2 on plants must be considered when modelling the global carbon cycle and effects of climate change on vegetation.

  4. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  5. Forest soil respiration rate and delta13C is regulated by recent above ground weather conditions.

    PubMed

    Ekblad, Alf; Boström, Björn; Holm, Anders; Comstedt, Daniel

    2005-03-01

    Soil respiration, a key component of the global carbon cycle, is a major source of uncertainty when estimating terrestrial carbon budgets at ecosystem and higher levels. Rates of soil and root respiration are assumed to be dependent on soil temperature and soil moisture yet these factors often barely explain half the seasonal variation in soil respiration. We here found that soil moisture (range 16.5-27.6% of dry weight) and soil temperature (range 8-17.5 degrees C) together explained 55% of the variance (cross-validated explained variance; Q2) in soil respiration rate (range 1.0-3.4 micromol C m(-2) s(-1)) in a Norway spruce (Picea abies) forest. We hypothesised that this was due to that the two components of soil respiration, root respiration and decomposition, are governed by different factors. We therefore applied PLS (partial least squares regression) multivariate modelling in which we, together with below ground temperature and soil moisture, used the recent above ground air temperature and air humidity (vapour pressure deficit, VPD) conditions as x-variables. We found that air temperature and VPD data collected 1-4 days before respiration measurements explained 86% of the seasonal variation in the rate of soil respiration. The addition of soil moisture and soil temperature to the PLS-models increased the Q2 to 93%. delta13C analysis of soil respiration supported the hypotheses that there was a fast flux of photosynthates to root respiration and a dependence on recent above ground weather conditions. Taken together, our results suggest that shoot activities the preceding 1-6 days influence, to a large degree, the rate of root and soil respiration. We propose this above ground influence on soil respiration to be proportionally largest in the middle of the growing season and in situations when there is large day-to-day shifts in the above ground weather conditions. During such conditions soil temperature may not exert the major control on root respiration. PMID

  6. Deep Neural Networks for Above-Ground Detection in Very High Spatial Resolution Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Adam, F.; Datcu, M.; Esch, T.; Stilla, U.

    2015-03-01

    Deep Learning techniques have lately received increased attention for achieving state-of-the-art results in many classification problems, including various vision tasks. In this work, we implement a Deep Learning technique for classifying above-ground objects within urban environments by using a Multilayer Perceptron model and VHSR DEM data. In this context, we propose a novel method called M-ramp which significantly improves the classifier's estimations by neglecting artefacts, minimizing convergence time and improving overall accuracy. We support the importance of using the M-ramp model in DEM classification by conducting a set of experiments with both quantitative and qualitative results. Precisely, we initially train our algorithm with random DEM tiles and their respective point-labels, considering less than 0.1% over the test area, depicting the city center of Munich (25 km2). Furthermore with no additional training, we classify two much larger unseen extents of the greater Munich area (424 km2) and Dongying city, China (257 km2) and evaluate their respective results for proving knowledge-transferability. Through the use of M-ramp, we were able to accelerate the convergence by a magnitude of 8 and achieve a decrease in above-ground relative error by 24.8% and 5.5% over the different datasets.

  7. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    PubMed

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. PMID:26468247

  8. Influence of Plant Community Composition on Biomass Production in Planted Grasslands

    PubMed Central

    Henschell, Max A.; Webster, Christopher R.; Flaspohler, David J.; Fortin, Chad R.

    2015-01-01

    United States energy policy mandates increased use of renewable fuels. Restoring grasslands could contribute to a portion of this requirement through biomass harvest for bioenergy use. We investigated which plant community characteristics are associated with differences in biomass yield from a range of realistic native prairie plantings (n = 11; i.e., conservation planting, restoration, and wildlife cover). Our primary goal was to understand whether patterns in plant community composition and the Floristic Quality Index (FQI) were related to productivity as evidenced by dormant season biomass yield. FQI is an objective measure of how closely a plant community represents that of a pre-European settlement community. Our research was conducted in planted fields of native tallgrass prairie species, and provided a gradient in floristic quality index, species richness, species diversity, and species evenness in south-central Wisconsin during 2008 and 2009. We used a network of 15 randomly located 1 m2 plots within each field to characterize the plant community and estimate biomass yield by clipping the plots at the end of each growing season. While plant community composition and diversity varied significantly by planting type, biomass yield did not vary significantly among planting types (ANOVA; P >0.05). Biomass yield was positively correlated with plant community evenness, richness, C4 grass cover, and floristic quality index, but negatively correlated with plant species diversity in our multi-season multiple linear mixed effects models. Concordantly, plots with biomass yield in the lowest quartile (biomass yield < 3500 kh/ha) had 8% lower plant community evenness and 9% lower FQI scores than those in the upper quartile (biomass yield > 5800 kh/ha). Our results suggest that promoting the establishment of fields with high species evenness and floristic quality may increase biomass yield, while simultaneously supporting biodiversity. PMID:26018412

  9. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    PubMed

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements. PMID:24206564

  10. Unlocking the potential of lignocellulosic biomass through plant science.

    PubMed

    Marriott, Poppy E; Gómez, Leonardo D; McQueen-Mason, Simon J

    2016-03-01

    The aim of producing sustainable liquid biofuels and chemicals from lignocellulosic biomass remains high on the sustainability agenda, but is challenged by the costs of producing fermentable sugars from these materials. Sugars from plant biomass can be fermented to alcohols or even alkanes, creating a liquid fuel in which carbon released on combustion is balanced by its photosynthetic capture. Large amounts of sugar are present in the woody, nonfood parts of crops and could be used for fuel production without compromising global food security. However, the sugar in woody biomass is locked up in the complex and recalcitrant lignocellulosic plant cell wall, making it difficult and expensive to extract. In this paper, we review what is known about the major polymeric components of woody plant biomass, with an emphasis on the molecular interactions that contribute to its recalcitrance to enzymatic digestion. In addition, we review the extensive research that has been carried out in order to understand and reduce lignocellulose recalcitrance and enable more cost-effective production of fuel from woody plant biomass. PMID:26443261

  11. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants.

    PubMed

    Xiong, F S; Day, T A

    2001-02-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O(2) evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations. PMID:11161031

  12. Genetic relatedness influences plant biomass accumulation in eelgrass (Zostera marina).

    PubMed

    Stachowicz, John J; Kamel, Stephanie J; Hughes, A Randall; Grosberg, Richard K

    2013-05-01

    In multispecies assemblages, phylogenetic relatedness often predicts total community biomass. In assemblages dominated by a single species, increasing the number of genotypes increases total production, but the role of genetic relatedness is unknown. We used data from three published experiments and a field survey of eelgrass (Zostera marina), a habitat-forming marine angiosperm, to examine the strength and direction of the relationship between genetic relatedness and plant biomass. The genetic relatedness of an assemblage strongly predicted its biomass, more so than the number of genotypes. However, contrary to the pattern observed in multispecies assemblages, maximum biomass occurred in assemblages of more closely related individuals. The mechanisms underlying this pattern remain unclear; however, our data support a role for both trait differentiation and cooperation among kin. Many habitat-forming species interact intensely with conspecifics of varying relatedness; thus, genetic relatedness could influence the functioning of ecosystems dominated by such species. PMID:23594554

  13. Controversy over Biomass Plant at Florida State Heats up

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2009-01-01

    This article reports that Florida State University officials are gearing up for what could be another bruising battle this month over a proposed biomass plant that could bring the campus cleaner, cheaper energy and monetary support for alternative-energy research. Or, it could bring noise and pollution to a nearby neighborhood, according to…

  14. DEMONSTRATION OF A 200-KILOWATT BIOMASS FUELED POWER PLANT

    EPA Science Inventory

    The paper discusses the demonstration of a 200-kW biomass-fueled electric power plant. he objective of the demonstration is to evaluate the operating and performance characteristics of the system using lumber wastes for fuel. t is scheduled to accumulate 8000 hours of operation o...

  15. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... Draft EIS was published in the Federal Register at 76 FR 20624, on April 13, 2011, and in local...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation; Proposed Biomass Power Plant... (NEPA) and 7 CFR part 1794 related to possible financial assistance to Oglethorpe Power...

  16. 78 FR 26747 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Availability (NOA) of the Draft EIS was published in the Federal Register at 76 FR 20624, on April 13, 2011... NOA of the Final EIS for the proposed Project in the Federal Register on December 15, 2011 at 76 FR... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY:...

  17. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Prepare an EIS and Hold a Scoping Meeting was published in the Federal Register at 74 FR 30520, on June 26... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural... Environmental Policy Act (NEPA) and 7 CFR part 1794 related to possible financial assistance to Oglethorpe...

  18. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2016-02-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (5-year interval) airborne lidar data set for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved and/or coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change was estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 yr-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 Mg ha-1 yr-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 yr-1. This rate reduces by almost a third when fire probability is increased to 0.01 (fire return rate of 100 years), as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon

  19. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2015-09-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (five year interval) airborne lidar dataset for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved/coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change were estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 year-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a~tree-ring based analysis (1.19 and 1.13 Mg ha-1 year-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire occurrence) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 year-1. This rate reduces by almost a third when fire probability is increased to 0.01, as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space

  20. Measuring biomass and carbon stock in resprouting woody plants.

    PubMed

    Matula, Radim; Damborská, Lenka; Nečasová, Monika; Geršl, Milan; Šrámek, Martin

    2015-01-01

    Resprouting multi-stemmed woody plants form an important component of the woody vegetation in many ecosystems, but a clear methodology for reliable measurement of their size and quick, non-destructive estimation of their woody biomass and carbon stock is lacking. Our goal was to find a minimum number of sprouts, i.e., the most easily obtainable, and sprout parameters that should be measured for accurate sprout biomass and carbon stock estimates. Using data for 5 common temperate woody species, we modelled carbon stock and sprout biomass as a function of an increasing number of sprouts in an interaction with different sprout parameters. The mean basal diameter of only two to five of the thickest sprouts and the basal diameter and DBH of the thickest sprouts per stump proved to be accurate estimators for the total sprout biomass of the individual resprouters and the populations of resprouters, respectively. Carbon stock estimates were strongly correlated with biomass estimates, but relative carbon content varied among species. Our study demonstrated that the size of the resprouters can be easily measured, and their biomass and carbon stock estimated; therefore, resprouters can be simply incorporated into studies of woody vegetation. PMID:25719601

  1. Pyroligneous acid-the smoky acidic liquid from plant biomass.

    PubMed

    Mathew, Sindhu; Zakaria, Zainul Akmar

    2015-01-01

    Pyroligneous acid (PA) is a complex highly oxygenated aqueous liquid fraction obtained by the condensation of pyrolysis vapors, which result from the thermochemical breakdown or pyrolysis of plant biomass components such as cellulose, hemicellulose, and lignin. PA produced by the slow pyrolysis of plant biomass is a yellowish brown or dark brown liquid with acidic pH and usually comprises a complex mixture of guaiacols, catechols, syringols, phenols, vanillins, furans, pyrans, carboxaldehydes, hydroxyketones, sugars, alkyl aryl ethers, nitrogenated derivatives, alcohols, acetic acid, and other carboxylic acids. The phenolic components, namely guaiacol, alkyl guaiacols, syringol, and alkyl syringols, contribute to the smoky odor of PA. PA finds application in diverse areas, as antioxidant, antimicrobial, antiinflammatory, plant growth stimulator, coagulant for natural rubber, and termiticidal and pesticidal agent; is a source for valuable chemicals; and imparts a smoky flavor for food. PMID:25467926

  2. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic

    PubMed Central

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D.; Hussein, Hany M.; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009–2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability. PMID:26083254

  3. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    PubMed

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D; Hussein, Hany M; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability. PMID:26083254

  4. Iron nutrition, biomass production, and plant product quality.

    PubMed

    Briat, Jean-François; Dubos, Christian; Gaymard, Frédéric

    2015-01-01

    One of the grand challenges in modern agriculture is increasing biomass production, while improving plant product quality, in a sustainable way. Of the minerals, iron (Fe) plays a major role in this process because it is essential both for plant productivity and for the quality of their products. Fe homeostasis is an important determinant of photosynthetic efficiency in algae and higher plants, and we review here the impact of Fe limitation or excess on the structure and function of the photosynthetic apparatus. We also discuss the agronomic, plant breeding, and transgenic approaches that are used to remediate Fe deficiency of plants on calcareous soils, and suggest ways to increase the Fe content and bioavailability of the edible parts of crops to improve human diet. PMID:25153038

  5. Imaging the Socorro Magma Body Using Free Above-Ground Sources

    NASA Astrophysics Data System (ADS)

    Hyde, E.; Saldana, S.; Snelson, C. M.; Greschke, B.

    2008-12-01

    The Socorro Magma Body (SMB) is located within the Rio Grande Rift and is intersected by the Precambrian Socorro Fracture Zone near Socorro, NM. The SMB seems to be the source of a 5,000 km2 area of elevated seismic region known as the Socorro Seismic Anomaly. The first evidence of a subsurface reflector was from microearthquake studies. A COCORP seismic reflection profile provided further evidence for an essentially flat magmatic sill-like intrusion approximately 19 km below the surface, with less than a 1° slope and a lateral area of about 3400 km2 with an estimated thickness of about 100 m. A fundamental question regarding the SMB is related to the nature of its activity. The uplift associated with the SMB coupled with the presence of shallow earthquake swarms in the area is typically associated with the movement of magma, which may be indicative of active magmatic emplacement. As a pilot test to obtain P-wave velocity data, we used free explosive sources from the Energetic Materials Research and Testing Center (EMRTC) at New Mexico Tech in Socorro, NM. Our goals were to determine how much seismic energy is necessary to receive a decent signal back on the recorders and also to develop a preliminary refraction velocity model over the SMB. For this refraction experiment, 59 single-channel recorders (Texans - RT125a) were deployed over a distance of 125 km for a 1-week period centered at the EMRTC blast site. Over that time period, EMRTC set off six ~9,000 lb (4,082 kg) ANFO shots above ground. Although much of this energy went into the air, we were able to recover a small amount of this energy to build preliminary velocity models. The energy created by the blasts propagated about halfway through the array. These data have been used to produce a couple of 1-D models and a preliminary 2-D model of apparent velocity. We plan to use these results to develop a proposal to conduct a full controlled and passive-source experiment over the SMB in the near future.

  6. The ELSAM strategy of firing biomass in CFB power plants

    SciTech Connect

    Rasmussen, I.; Clausen, J.C.

    1995-12-31

    The Danish power pool ELSAM has launched a program for developing a coal and biomass-fired CFB concept for future power plants, as an option to achieve a substantial reduction of CO{sub 2} emissions associated with energy generation. The general development of CFB technology abroad and domestic experience gained from small-scale coal and straw firing form the basis for this program. Since January 1992 MIDTKRAFT Power Company has been operating an 80 MWth CFB cogeneration plant located at Grenaa. This plant is fired with a mixture of hard coal and surplus straw from farming. The share of straw ranges from 0-60% on an energy basis. Straw contains much larger amounts of chlorine and potassium than normal fossil fuels, which implies a higher potential of superheater corrosion and combustor fouling. This paper reviews the experience gained during the first 3 years of operation of the CFB plant. The record includes early superheater corrosion and fouling incidents, a heat surface modification and its impact on subsequent plant operation. Apart from operational experience the paper will review the results of the R and D activities executed at the Grenaa plant for further CFB development. Based on the specific experience from Grenaa and the general evolution of the CFB technology ELSAM has initiated a program for development of a 250 MWe CFB power plant concept, firing up to 60% biomass (wood waste and a limited amount of annular crops). USC steam conditions are adopted for the novel concept, implying an expected plant efficiency of 45% (LHV-based). Special emphasis is attached to plant operational flexibility with a view to fulfilling general power plant requirements.

  7. Climate Change Disproportionately Increases Herbivore over Plant or Parasitoid Biomass

    PubMed Central

    de Sassi, Claudio; Tylianakis, Jason M.

    2012-01-01

    All living organisms are linked through trophic relationships with resources and consumers, the balance of which determines overall ecosystem stability and functioning. Ecological research has identified a multitude of mechanisms that contribute to this balance, but ecologists are now challenged with predicting responses to global environmental changes. Despite a wealth of studies highlighting likely outcomes for specific mechanisms and subsets of a system (e.g., plants, plant-herbivore or predator-prey interactions), studies comparing overall effects of changes at multiple trophic levels are rare. We used a combination of experiments in a grassland system to test how biomass at the plant, herbivore and natural enemy (parasitoid) levels responds to the interactive effects of two key global change drivers: warming and nitrogen deposition. We found that higher temperatures and elevated nitrogen generated a multitrophic community that was increasingly dominated by herbivores. Moreover, we found synergistic effects of the drivers on biomass, which differed across trophic levels. Both absolute and relative biomass of herbivores increased disproportionately to that of plants and, in particular, parasitoids, which did not show any significant response to the treatments. Reduced parasitism rates mirrored the profound biomass changes in the system. These findings carry important implications for the response of biota to environmental changes; reduced top-down regulation is likely to coincide with an increase in herbivory, which in turn is likely to cascade to other fundamental ecosystem processes. Our findings also provide multitrophic data to support the general concern of increasing herbivore pest outbreaks in a warmer world. PMID:22815763

  8. Photoreceptor effects on plant biomass, resource allocation, and metabolic state.

    PubMed

    Yang, Deyue; Seaton, Daniel D; Krahmer, Johanna; Halliday, Karen J

    2016-07-01

    Plants sense the light environment through an ensemble of photoreceptors. Members of the phytochrome class of light receptors are known to play a critical role in seedling establishment, and are among the best-characterized plant signaling components. Phytochromes also regulate adult plant growth; however, our knowledge of this process is rather fragmented. This study demonstrates that phytochrome controls carbon allocation and biomass production in the developing plant. Phytochrome mutants have a reduced CO2 uptake, yet overaccumulate daytime sucrose and starch. This finding suggests that even though carbon fixation is impeded, the available carbon resources are not fully used for growth during the day. Supporting this notion, phytochrome depletion alters the proportion of day:night growth. In addition, phytochrome loss leads to sizeable reductions in overall growth, dry weight, total protein levels, and the expression of CELLULOSE SYNTHASE-LIKE genes. Because cellulose and protein are major constituents of plant biomass, our data point to an important role for phytochrome in regulating these fundamental components of plant productivity. We show that phytochrome loss impacts core metabolism, leading to elevated levels of tricarboxylic acid cycle intermediates, amino acids, sugar derivatives, and notably the stress metabolites proline and raffinose. Furthermore, the already growth-retarded phytochrome mutants are less responsive to growth-inhibiting abiotic stresses and have elevated expression of stress marker genes. This coordinated response appears to divert resources from energetically costly biomass production to improve resilience. In nature, this strategy may be activated in phytochrome-disabling, vegetation-dense habitats to enhance survival in potentially resource-limiting conditions. PMID:27330114

  9. Assessment of the phytoextraction potential of high biomass crop plants.

    PubMed

    Hernández-Allica, Javier; Becerril, José M; Garbisu, Carlos

    2008-03-01

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg(-1)), Zn (10 916 mg kg(-1)), and Cd (242 mg kg(-1)), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot(-1). We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. PMID:17644228

  10. Incentives and barriers to siting biomass ethanol plants

    SciTech Connect

    Donovan, C.T.; Fehrs, J.E.

    1996-12-31

    Currently, there are 38 facilities in the United States with the capacity to produce approximately 1.5 billion gallons of ethanol annually. Most are located in the Midwest and use corn as feedstock. Others use other starch-rich residues or waste materials, such as cheese whey, potato processing waste, and waste beer as feedstock. Ethanol can also be produced from cellulose-rich materials, such as wood waste, paper sludge, municipal solid waste, and short rotation woody crops. However, the processes to convert cellulosic biomass to ethanol are less technologically mature, which is the primary reason why no commercial facilities produce ethanol from cellulosic materials. A number of technical, economic, and environmental factors indicate there are substantial opportunities for producing ethanol from cellulosic materials. In the 11-state Northeast region alone (from Maine to Maryland), the amount of biomass materials discarded in 1993 and potentially available from energy crops in the future could produce more than 2.7 billion gallons per year of ethanol. If priority were placed in encouraging the use of high ethanol fuels (such as E85) in public vehicle fleets alone, as much as 175 million gallons per year of fuel could be used. Theoretical analyses of air, ash, and wastewater emissions from hypothetical biomass ethanol plants indicate such plants should be able to meet existing environmental standards. Sensitivity analyses of various siting issues indicate that the availability of production incentives, the cost of capital, and feedstock cost have the greatest impact on the economic viability of a biomass ethanol plant.

  11. Characterization of the straw stalk of the rapeseed plant as a biomass energy source

    SciTech Connect

    Karaosmanoglu, F.; Tetik, E.; Guerboy, B.; Sanli, I.

    1999-11-01

    Oil seed plants are important biomass energy sources. The rapeseed plant, which yields a high amount of vegetable oil, has a major position among other oil seed plants. In this study the straw stalk of the rapeseed plant (type 00 Brassica napus L.) has been investigated as a candidate for a biomass energy source.

  12. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    PubMed

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date. PMID:24641509

  13. A-xylosidase enhanced conversion of plant biomass into fermentable sugars

    DOEpatents

    Walton, Jonathan D.; Scott-Craig, John S.; Borrusch, Melissa

    2016-08-02

    The invention relates to increasing the availability of fermentable sugars from plant biomass, such as glucose and xylose. As described herein, .alpha.-xylosidases can be employed with cellulases to enhance biomass conversion into free, fermentable sugar residues.

  14. Have ozone effects on carbon sequestration been overestimated? A new biomass response function for wheat

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Danielsson, H.; Simpson, D.; Mills, G.

    2014-08-01

    Elevated levels of tropospheric ozone can significantly impair the growth of crops. The reduced removal of CO2 by plants leads to higher atmospheric concentrations of CO2, enhancing radiative forcing. Ozone effects on economic yield, e.g. the grain yield of wheat (Triticum aestivum L.), are currently used to model effects on radiative forcing. However, changes in grain yield do not necessarily reflect changes in total biomass. Based on an analysis of 22 ozone exposure experiments with field-grown wheat, we investigated whether the use of effects on grain yield as a proxy for effects on biomass under- or overestimates effects on biomass. First, we confirmed that effects on partitioning and biomass loss are both of significant importance for wheat yield loss. Then we derived ozone dose response functions for biomass loss and for harvest index (the proportion of above-ground biomass converted to grain) based on 12 experiments and recently developed ozone uptake modelling for wheat. Finally, we used a European-scale chemical transport model (EMEP MSC-West) to assess the effect of ozone on biomass (-9%) and grain yield (-14%) loss over Europe. Based on yield data per grid square, we estimated above-ground biomass losses due to ozone in 2000 in Europe, totalling 22.2 million tonnes. Incorrectly applying the grain yield response function to model effects on biomass instead of the biomass response function of this paper would have indicated total above-ground biomass losses totalling 38.1 million (i.e. overestimating effects by 15.9 million tonnes). A key conclusion from our study is that future assessments of ozone-induced loss of agroecosystem carbon storage should use response functions for biomass, such as that provided in this paper, not grain yield, to avoid overestimation of the indirect radiative forcing from ozone effects on crop biomass accumulation.

  15. Accelerated Sequestration of Terrestrial Plant Biomass in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Strand, S. E.

    2010-12-01

    One of the most efficient uses of aboveground agricultural residues to reduce atmospheric CO2 is burial in sites removed from contact with the atmosphere and in which degradation of lignocellulose is inhibited (Strand and Benford 2009). Similarly by burying forest residues greater benefits for atmospheric carbon accrue compared to incineration or bioethanol production. Accessible planetary sites that are most removed from contact with the atmosphere are primarily the deep ocean sediments. Many deep ocean sediment ecologies are acclimated to massive inputs of terrestrial plant biomass. Nonetheless, marine degradation rates of lignocellulose are slower than terrestrial rates (Keil et al. 2010). Additionally, anaerobic conditions are easily achieved in many deep ocean sediments, inhibiting lignocellulose degradation further, while the dominance of sulfate in the water column as electron acceptor prevents the release of methane from methanogenesis to the atmosphere. The potential benefit of massive removal of excess terrestrial biomass to the deep ocean will be estimated and compared to other uses including biochar and BECS. The impact of the biomass on the marine environment will be discussed and potential sequestration sites in the Gulf of Mexico and the Atlantic compared. Keil, R. G., J. M. Nuwer, et al. (2010). "Burial of agricultural byproducts in the deep sea as a form of carbon sequestration: A preliminary experiment." Marine Chemistry (In Press, online 6 August 2010). Strand, S. E. and G. Benford (2009). "Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments." Environ. Sci. Technol. 43(4): 1000-1007.

  16. Demonstration plant for pressurized gasification of biomass feedstocks

    SciTech Connect

    Trenka, A.R. ); Kinoshita, C.M.; Takahashi, P.K.; Phillips, V.D. ); Caldwell, C. Co., Pasadena, CA ); Kwok, R. ); Onischak, M.; Babu, S.P. (Institute of Gas Technology

    1991-01-01

    A project to design, construct, and operate a pressurized biomass gasification plant in Hawaii will begin in 1991. Negotiations are underway with the United States Department of Energy (DOE) which is co-funding the project with the state of Hawaii and industry. The gasifier is a scale-up of the pressurized fluidized-bed RENUGAS process developed by the Institute of Gas Technology (IGT). The project team consists of Pacific International Center for High Technology Research (PICHTR), Hawaii Natural Energy Institute (HNEI) of the University of Hawaii, Hawaiian Commercial and Sugar Company (HC S), The Ralph M. Parsons Company, and IGT. The gasifier will be designed for 70 tons per day of sugarcane fiber (bagasse) and will be located at the Paia factory of HC S on the island of Maui. In addition to bagasse, other feedstocks such as wood, biomass wastes, and refuse-derived-fuel may be evaluated. The demonstration plant will ultimately supply part of the process energy needs for the sugar factory. The operation and testing phase will provide process information for both air- and oxygen-blown gasification, and at both low and high pressures. The process will be evaluated for both fuel gas and synthesis gas production, and for electrical power production with advanced power generation schemes. 6 refs., 3 figs., 1 tab.

  17. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors.

    PubMed

    Thakur, Madhav Prakash; Milcu, Alexandru; Manning, Pete; Niklaus, Pascal A; Roscher, Christiane; Power, Sally; Reich, Peter B; Scheu, Stefan; Tilman, David; Ai, Fuxun; Guo, Hongyan; Ji, Rong; Pierce, Sarah; Ramirez, Nathaly Guerrero; Richter, Annabell Nicola; Steinauer, Katja; Strecker, Tanja; Vogel, Anja; Eisenhauer, Nico

    2015-11-01

    Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2 , nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC. PMID:26118993

  18. Ash characteristics and plant nutrients in some aquatic biomasses

    NASA Astrophysics Data System (ADS)

    Masto, Reginald; Pandit, Ankita; George, Joshy; Mukhopadhyay, Sangeeta; Selvi, Vetrivel; Ram, Lal

    2016-04-01

    Aquatic biomasses are explored as potential fuel source for direct combustion because of their faster growth and no land requirement. The energy density and the ash characteristics of the aquatic biomasses are to be evaluated for their suitability for energy extraction. In the study, four aquatic plant samples namely Eichornia crassipes, Hydrilla verticilleta, Lemna minor, Spirogyra spp were collected from a pond in Digwadih Campus of Central Institute of Mining and Fuel Research, Dhanbad. The biomasses were air dried, powdered and ashed at different temperatures. Volatile C was relatively lower in Spirogyra and Hydrilla (53 %) than Eichornia (62.6 %) or Lemna (59.7 %), whereas fixed C was higher for Eichornia and Lemna (about 10 %) and lower for Hydrilla (1 %). Ultimate analysis showed that the carbon content was in the order Eichornia > Lemna > Spirogyra > Hydrilla. The IR spectra of each raw biomass is compared to their respective ashes obtained at different temperatures (500-900°C). With increase in ashing temperature from 500-900°C there is gradual breakdown of the cellulosic structure hence, peaks around 2900-2800cm-1 caused by aliphatic C-H vibration tends to disappear slowly in ash. More number of peaks appears at lower wavenumbers in ashes of all the biomass samples indicating towards increased percentage of inorganic ion species. Considerable enrichment of SiO2 is validated with prominent peaks at 1100-900 cm-1 in all the ashes. Lemna and Spirogyra has a similar ash composition (Si > Al > Ca > K), whereas, Ca was higher in Hydrilla (Si > Ca > K > Al). Eichornia (Si > K > Ca > Al) has higher K and Ca than Al. SiO2 and Al2O3 were higher in Spirogyra, while SiO2 and CaO in Eichornia and Hydrilla. K first increased from 500-700/800⁰C, and then decreased from 800-900⁰C. Cl is lost slowly in ash from 500-700/800⁰C and then by a drastic reduction from 800-900⁰C. S is enhanced in ash at all temperatures although the change is quite small. Most of the Cl

  19. BAAD: a Biomass And Allometry Database for woody plants

    SciTech Connect

    Falster, Daniel; Duursma, Remko; Ishihara, Masae; Barneche, Diego; Fitzjohn, Richard; Varhammar, Angelica; Aiba, Masahiro; Ando, M.; Anten, Niels; Aspinwall, Michael J.; Baltzer, Jennifer; Baraloto, Christopher; Battaglia, Michael; Battles, John; Bond-Lamberty, Benjamin; van Breugel, Michiel; Camac, James; Claveau, Yves; Coll Mir, Llus; Dannoura, Dannoura; Delagrange, Sylvain; Domec, Jean-Cristophe; Fatemi, Farrah; Feng, Wang; Gargaglione, Veronica; Goto, Yoshiaki; Hagihara, Akio; Hall, Jefferson S.; Hamilton, Steve; Harja, Degi; Hiura, Tsutom; Holdaway, Robert; Hutley, L. B.; Ichie, Tomoaki; Jokela, Eric; Kantola, Anu; Kelly, Jeffery W.; Kenzo, Tanaka; King, David A.; Kloeppel, Brian; Kohyama, Takashi; Komiyama, Akira; Laclau, Jean-Paul; Lusk, Christopher; Maguire, Doug; le Maire, Guerric; Makela, Annikki; Markesteijn, Lars; Marshall, John; McCulloh, Kate; Miyata, Itsuo; Mokany, Karen; Mori, Shigeta; Myster, Randall; Nagano, Masahiro; Naidu, Shawna; Nouvellon, Yann; O'Grady, Anthony; O'Hara, Kevin; Ohtsuka, Toshiyuki; Osada, Noriyuki; Osunkoya, Olusegun O.; Luis Peri, Pablo; Petritan, Mary; Poorter, Lourens; Portsmuth, Angelika; Potvin, Catherine; Ransijn, Johannes; Reid, Douglas; Ribeiro, Sabina C.; Roberts, Scott; Rodriguez, Rolando; Saldana-Acosta, Angela; Santa-Regina, Ignacio; Sasa, Kaichiro; Gailia Selaya, Nadezhda; Sillett, Stephen; Sterck, Frank; Takagi, Kentaro; Tange, Takeshi; Tanouchi, Hiroyuki; Tissue, David; Umehara, Tohru; Utsugi, Hajime; Vadeboncoeur, Matthew; Valladares, Fernando; Vanninen, Petteri; Wang, Jian; Wenk, Elizabeth; Williams, Dick; Ximenes, Fabiano de Aquino; Yamaba, Atsushi; Yamada, Toshihiro; Yamakura, Takuo; Yanai, Ruth; York, Robert

    2015-05-07

    Quantifying the amount of mass or energy invested in plant tissues is of fundamental interest across a range of disciplines, including ecology, forestry, ecosystem science, and climate change science (Niklas, 1994; Chave et al. 2005; Falster et al. 2011). The allocation of net primary production into different plant components is an important process affecting the lifetime of carbon in ecosystems, and resource use and productivity by plants (Cannell & Dewar, 1994; Litton et al. 2007; Poorter et al. 2012). While many studies in have destructively harvested woody plants in the name of science, most of these data have only been made available in the form of summary tables or figures included in publications. Until now, the raw data has resided piecemeal on the hard drives of individual scientists spread around the world. Several studies have gathered together the fitted (allometric) equations for separate datasets (Ter-Mikaelian & Korzukhin, 1997; Jenkins et al. 2003; Zianis et al. 2005; Henry et al. 2013), but none have previously attempted to organize and share the raw individual plant data underpinning these equations on a large scale. Gathered together, such data would represent an important resource for the community, meeting a widely recognised need for rich, open data resources to solve ecological problems (Costello et al. 2013; Fady et al. 2014; Harfoot & Roberts, 2014; Costello et al. 2013). We (D.S. Falster and R.A. Duursma, with the help of D.R. Barneche, R.G. FitzJohn and A. Vårhammar) set out to create such a resource, by asking authors directly whether they would be willing to make their raw data files freely available. The response was overwhelming: nearly everyone we contacted was interested to contribute their raw data. Moreover, we were invited to incorporate another compilation led by M. Ishihara and focussing on Japanese literature. As a result, we present BAAD: a Biomass And Allometry Database for woody plants, comprising data collected in 174

  20. Have ozone effects on carbon sequestration been over-estimated? A new biomass response function for wheat

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Danielsson, H.; Simpson, D.; Mills, G.

    2014-04-01

    Elevated levels of tropospheric ozone can significantly impair the growth of crops. The reduced removal of CO2 by plants leads to higher atmospheric concentrations of CO2, enhancing radiative forcing. Ozone effects on economic yield, e.g. the grain yield of wheat (Triticum aestivum L.) are currently used to model effects on radiative forcing. However, changes in grain yield do not necessarily reflect changes in total biomass. Based on analysis of 21 ozone exposure experiments with field-grown wheat, we investigated whether use of effects on grain yield as a~proxy for effects on biomass under- or over-estimates effects on biomass. First, we confirmed that effects on partitioning and biomass loss are both of significant importance for wheat yield loss. Then we derived ozone dose response functions for biomass loss and for harvest index (the proportion of above-ground biomass converted to grain) based on twelve experiments and recently developed ozone uptake modelling for wheat. Finally, we used a European scale chemical transport model (EMEP MSC-West) to assess the effect of ozone on biomass (-9%) and grain yield (-14%) loss over Europe. Based on yield data per grid square, we estimated above ground biomass losses due to ozone in 2000 in Europe totalling 22.2 million tonnes. Incorrectly applying the grain yield response function to model effects on biomass instead of the biomass response function of this paper would have indicated total above ground biomass losses totalling 38.1 million (i.e. overestimating effects by 15.9 million tonnes). A key conclusion from our study is that future assessments of ozone induced loss of agroecosystem carbon storage should use response functions for biomass, such as that provided in this paper, not grain yield, to avoid overestimation of the indirect radiative forcing from ozone effects on crop biomass accumulation.

  1. Thermoelectric-Driven Autonomous Sensors for a Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Gubía, E.; Sorbet, F. J.

    2013-07-01

    This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.

  2. Engineered plant biomass particles coated with biological agents

    DOEpatents

    Dooley, James H.; Lanning, David N.

    2014-06-24

    Plant biomass particles coated with a biological agent such as a bacterium or seed, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  3. Engineered plant biomass particles coated with bioactive agents

    SciTech Connect

    Dooley, James H; Lanning, David N

    2013-07-30

    Plant biomass particles coated with a bioactive agent such as a fertilizer or pesticide, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  4. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    USGS Publications Warehouse

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  5. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California, forests

    USGS Publications Warehouse

    McGinnis, T.W.; Shook, C.D.; Keeley, J.E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  6. Visual Comparative Omics of Fungi for Plant Biomass Deconstruction

    PubMed Central

    Miyauchi, Shingo; Navarro, David; Grigoriev, Igor V.; Lipzen, Anna; Riley, Robert; Chevret, Didier; Grisel, Sacha; Berrin, Jean-Guy; Henrissat, Bernard; Rosso, Marie-Noëlle

    2016-01-01

    Wood-decay fungi contain the cellular mechanisms to decompose such plant cell wall components as cellulose, hemicellulose, and lignin. A multi-omics approach to the comparative analysis of wood-decay fungi gives not only new insights into their strategies for decomposing recalcitrant plant biomass, but also an understanding of how to exploit these mechanisms for biotechnological applications. We have developed an analytical workflow, Applied Biomass Conversion Design for Efficient Fungal Green Technology (ABCDEFGT), to simplify the analysis and interpretation of transcriptomic and secretomic data. ABCDEFGT utilizes self-organizing maps for grouping genes with similar transcription patterns, and an overlay with secreted proteins. The key feature of ABCDEFGT is simple graphic outputs of genome-wide transcriptomic and secretomic topographies, which enables visual inspection without a priori of the omics data and facilitates discoveries of co-regulated genes and proteins. Genome-wide omics landscapes were built with the newly sequenced fungal species Pycnoporus coccineus, Pycnoporus sanguineus, and Pycnoporus cinnabarinus grown on various carbon sources. Integration of the post-genomic data revealed a global overlap, confirming the pertinence of the genome-wide approach. ABCDEFGT was evaluated by comparison with the latest clustering method for ease of output interpretation, and ABCDEFGT gave a better biological representation of fungal behaviors. The genome-wide multi-omics strategy allowed us to determine the potential synergy of particular enzymes decomposing cellulose, hemicellulose, and lignin such as Lytic Polysaccharide Monooxygenases, modular enzymes associated with a cellulose binding module1, and Class II Peroxidase isoforms co-regulated with oxido-reductases. Overall, ABCDEFGT was capable of visualizing genome-wide transcriptional and secretomic profiles for intuitive interpretations and is suitable for exploration of newly-sequenced organisms. PMID:27605927

  7. Visual Comparative Omics of Fungi for Plant Biomass Deconstruction.

    PubMed

    Miyauchi, Shingo; Navarro, David; Grigoriev, Igor V; Lipzen, Anna; Riley, Robert; Chevret, Didier; Grisel, Sacha; Berrin, Jean-Guy; Henrissat, Bernard; Rosso, Marie-Noëlle

    2016-01-01

    Wood-decay fungi contain the cellular mechanisms to decompose such plant cell wall components as cellulose, hemicellulose, and lignin. A multi-omics approach to the comparative analysis of wood-decay fungi gives not only new insights into their strategies for decomposing recalcitrant plant biomass, but also an understanding of how to exploit these mechanisms for biotechnological applications. We have developed an analytical workflow, Applied Biomass Conversion Design for Efficient Fungal Green Technology (ABCDEFGT), to simplify the analysis and interpretation of transcriptomic and secretomic data. ABCDEFGT utilizes self-organizing maps for grouping genes with similar transcription patterns, and an overlay with secreted proteins. The key feature of ABCDEFGT is simple graphic outputs of genome-wide transcriptomic and secretomic topographies, which enables visual inspection without a priori of the omics data and facilitates discoveries of co-regulated genes and proteins. Genome-wide omics landscapes were built with the newly sequenced fungal species Pycnoporus coccineus, Pycnoporus sanguineus, and Pycnoporus cinnabarinus grown on various carbon sources. Integration of the post-genomic data revealed a global overlap, confirming the pertinence of the genome-wide approach. ABCDEFGT was evaluated by comparison with the latest clustering method for ease of output interpretation, and ABCDEFGT gave a better biological representation of fungal behaviors. The genome-wide multi-omics strategy allowed us to determine the potential synergy of particular enzymes decomposing cellulose, hemicellulose, and lignin such as Lytic Polysaccharide Monooxygenases, modular enzymes associated with a cellulose binding module1, and Class II Peroxidase isoforms co-regulated with oxido-reductases. Overall, ABCDEFGT was capable of visualizing genome-wide transcriptional and secretomic profiles for intuitive interpretations and is suitable for exploration of newly-sequenced organisms. PMID:27605927

  8. Impact of Ground-Applied Termiticides on the Above-Ground Foraging Behavior of the Formosan Subterranean Termite.

    PubMed

    Henderson, Gregg; Gautam, Bal K; Wang, Cai

    2016-01-01

    We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%-4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study. PMID:27571108

  9. Genome Sequence of Amycolatopsis sp Strain ATCC 39116, a Plant Biomass-Degrading Actinomycete

    SciTech Connect

    Davis, Jennifer R.; Goodwin, Lynne A.; Woyke, Tanja; Teshima, Hazuki; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Shunsheng; Han, James; Pitluck, Sam; Nolan, Matt; Mikhailova, Natalia; Land, Miriam L; Sello, Jason K.

    2012-01-01

    We announce the availability of a high-quality draft of the genome sequence of Amycolatopsis sp. strain 39116, one of few bacterial species that are known to consume the lignin component of plant biomass. This genome sequence will further ongoing efforts to use microorganisms for the conversion of plant biomass into fuels and high-value chemicals.

  10. Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete.

    PubMed

    Davis, Jennifer R; Goodwin, Lynne A; Woyke, Tanja; Teshima, Hazuki; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Shunsheng; Han, James; Pitluck, Sam; Nolan, Matt; Mikhailova, Natalia; Land, Miriam L; Sello, Jason K

    2012-05-01

    We announce the availability of a high-quality draft of the genome sequence of Amycolatopsis sp. strain 39116, one of few bacterial species that are known to consume the lignin component of plant biomass. This genome sequence will further ongoing efforts to use microorganisms for the conversion of plant biomass into fuels and high-value chemicals. PMID:22493203

  11. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    PubMed Central

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level. PMID:27119379

  12. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin

    2015-01-01

    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  13. Recovery of plant biomass and soil N cycling in Alaskan tundra following an unusual fire

    NASA Astrophysics Data System (ADS)

    Bret-Harte, M. S.; Mack, M. C.; Huebner, D. C.; Johnston, M.; Shaver, G. R.

    2012-12-01

    Climate warming is likely to increase the frequency of disturbances in the Arctic. The Anaktuvuk River fire of 2007 burned 1039 km2 of northern Alaskan tundra; this was unprecedented for this vegetation, which is clonal, slow-growing, and long-lived. We harvested plant biomass and soils from severely and moderately burned areas and controls in 2011 to assess recovery of plant productivity and soil N cycling four years after the fire. Biomass of vascular plants had recovered to nearly control levels in moderately burned areas, due primarily to resprouting by graminoids, particularly Eriophorum vaginatum. Graminoid biomass was actually greater in moderately burned tundra than in unburned tundra. Deciduous shrub and evergreen shrub biomass in moderately burned tundra was approximately half that seen in unburned tundra, but non-vascular plant biomass was much less, so that total aboveground biomass in moderately burned tundra had not returned to control levels. Severely burned tundra had less of all components of the community than in moderately burned tundra, except that there was higher biomass of non-vascular plants, due to colonization by fire-following liverworts and mosses. Productivity of vascular plants was similar in unburned and severely burned tundra plots, and higher in moderately burned plots, due in part to higher soil N availability. Recovery of plant biomass was largely due to resprouting of species that survived the fire, though numerous seedlings were seen. Biomass of vascular plants has recovered rapidly in the moderately burned sites, while severely burned sites and nonvascular plants are recovering more slowly, but the relative abundance of different species differs from unburned tundra. The relationship between spectral indices (NDVI, EVI-2) collected at the plot level and either biomass or NPP varied with burn category, which may complicate assessments of NPP by remote sensing following fire.

  14. Salt tolerance and stress level affect plant biomass-density relationships and neighbor effects

    NASA Astrophysics Data System (ADS)

    Yu, Zhenxing; Chen, Wenwen; Zhang, Qian; Yang, Haishui; Tang, Jianjun; Weiner, Jacob; Chen, Xin

    2014-07-01

    It has been shown that plant biomass-density relationships are altered under extreme or stressed conditions. We do not know whether variation in biomass-density relationships is a direct result of stress tolerance or occurs via changes in plant-plant interactions. Here, we evaluated biomass-density relationships and neighbor effects in six plant species that differ in salt tolerance in a salt marsh, and conducted a literature review of biomass-density relationship under higher and lower stress levels. Our field study showed that both neighbor effects and the exponent of the biomass-density relationship (α) varied among plant species with different degrees of salt tolerance. There was a positive relationship between neighbor effects (measured as relative interaction index) and α-value among the tested species. The literature review showed that α and its variation increased under higher stress. Our results indicate that plant species with different salinity tolerance differ in the direction and strength of neighbor effects, resulting in variation in biomass-density relationships. Our results support the hypothesis that differences in biomass-density relationships among species are not due to differences in stress tolerance alone, they are mediated by changes in plant-plant interactions.

  15. Integrating disparate lidar data at the national scale to assess the relationships between height above ground, land cover and ecoregions

    USGS Publications Warehouse

    Stoker, Jason M.; Cochrane, Mark A.; Roy, David P.

    2013-01-01

    With the acquisition of lidar data for over 30 percent of the US, it is now possible to assess the three-dimensional distribution of features at the national scale. This paper integrates over 350 billion lidar points from 28 disparate datasets into a national-scale database and evaluates if height above ground is an important variable in the context of other nationalscale layers, such as the US Geological Survey National Land Cover Database and the US Environmental Protection Agency ecoregions maps. While the results were not homoscedastic and the available data did not allow for a complete height census in any of the classes, it does appear that where lidar data were used, there were detectable differences in heights among many of these national classification schemes. This study supports the hypothesis that there were real, detectable differences in heights in certain national-scale classification schemes, despite height not being a variable used in any of the classification routines.

  16. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  17. Plant biomass and species composition along an environmental gradient in montane riparian meadows.

    PubMed

    Dwire, Kathleen A; Kauffman, J Boone; Brookshire, E N Jack; Baham, John E

    2004-04-01

    In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities-a priori defined as wet, moist, and dry meadow-along short streamside topographic gradients in two montane meadows in northeast Oregon. The objectives were to: (1). compare above- and belowground biomass in the three meadow communities; (2). examine relations among plant species richness, biomass distribution, water table depth, and soil redox potential along the streamside elevational gradients. We installed wells and platinum electrodes along transects (perpendicular to the stream; n=5 per site) through the three plant communities, and monitored water table depth and soil redox potential (10 and 25 cm depth) from July 1997 to August 1999. Mean water table depth and soil redox potential differed significantly along the transects, and characterized a strong environmental gradient. Community differences in plant species composition were reflected in biomass distribution. Highest total biomass (live+dead) occurred in the sedge-dominated wet meadows (4311+/-289 g/m(2)), intermediate biomass (2236+/-221 g/m(2)) was seen in the moist meadow communities, dominated by grasses and sedges, and lowest biomass (1403+/-113 g/m(2)) was observed in the more diverse dry meadows, dominated by grasses and forbs. In the wet and moist communities, belowground biomass (live+dead) comprised 68-81% of the totals. Rhizome-to-root ratios and distinctive vertical profiles of belowground biomass reflected characteristics of the dominant graminoid species within each community. Total biomass was positively correlated with mean water table depth, and negatively correlated with mean redox potential (10 cm and 25 cm depths; P <0.01) and species richness ( P <0.05), indicating that the distribution of biomass coincided with the

  18. Clean fuels from biomass. [feasibility of converting plant systems to fuels

    NASA Technical Reports Server (NTRS)

    Hsu, Y. Y.

    1974-01-01

    The feasibility of converting biomass to portable fuels is studied. Since plants synthesize biomass from H2O and CO2 with the help of solar energy, the conversion methods of pyrolysis, anaerobic fermentation, and hydrogenation are considered. Cost reduction methods and cost effectiveness are emphasized.

  19. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass.

    PubMed

    Deraison, Hélène; Badenhausser, Isabelle; Loeuille, Nicolas; Scherber, Christoph; Gross, Nicolas

    2015-12-01

    Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre-emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait-based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning. PMID:26439435

  20. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh

    NASA Technical Reports Server (NTRS)

    Hardisky, M. A.; Klemas, V.; Daiber, F. C.; Roman, C. T.

    1984-01-01

    Net aerial primary productivity is the rate of storage of organic matter in above-ground plant issues exceeding the respiratory use by the plants during the period of measurement. It is pointed out that this plant tissue represents the fixed carbon available for transfer to and consumption by the heterotrophic organisms in a salt marsh or the estuary. One method of estimating annual net aerial primary productivity (NAPP) required multiple harvesting of the marsh vegetation. A rapid nondestructive remote sensing technique for estimating biomass and NAPP would, therefore, be a significant asset. The present investigation was designed to employ simple regression models, equating spectral radiance indices with Spartina alterniflora biomass to nondestructively estimate salt marsh biomass. The results of the study showed that the considered approach can be successfully used to estimate salt marsh biomass.

  1. [Effects of large-area planting water hyacinth on macro-benthos community structure and biomass].

    PubMed

    Liu, Guo-Feng; Liu, Hai-Qin; Zhang, Zhi-Yong; Zhang, Ying-Ying; Yan, Shao-Hua; Zhong, Ji-Cheng; Fan, Cheng-Xin

    2010-12-01

    The effects on macro-benthos and benthos environment of planting 200 hm2 water hyacinth (E. crassipens) in Zhushan Bay, Lake Taihu, were studied during 8-10 months consecutive surveys. Results indicated that average densities of mollusca (the main species were Bellamya aeruginosa) in far-planting, near-planting and planting area were 276.67, 371.11 and 440.00 ind/m2, respectively, and biomass were 373.15, 486.57 and 672.54 g/m2, respectively, showed that average density and biomass of planting area's were higher than those of others. However, the average density and biomass of Oligochaeta (the main species was Limodrilus hoffmeisteri) and Chironomidae in planting area were lower than that of outside planting area. The density and biomass of three dominant species of benthic animal increased quickly during 8-9 months, decreased quickly in October inside and outside water hyacinth planting area. The reason of this phenomenon could be possible that lots of cyanobacteria cells died and consumed dissolve oxygen in proceed decomposing. Algae cells released lots of phosphorus and nitrogen simultaneously, so macro-benthos died in this environment. The indexes of Shannon-Weaver and Simpson indicated that water environment was in moderate polluted state. On the basis of the survey results, the large-area and high-density planting water hyacinth haven't demonstrated a great impact on macrobenthos and benthos environment in short planting time (about 6 months planting time). PMID:21360881

  2. Geographic and Habitat Origin Influence Biomass Production and Storage Translocation in the Clonal Plant Aegopodium podagraria

    PubMed Central

    D′Hertefeldt, Tina; Eneström, Johanna M.; Pettersson, Lars B.

    2014-01-01

    Through physiological integration, clonal plants can support ramets in unfavourable patches, exploit heterogeneously distributed resources and distribute resources that are taken up over large areas. Physiological integration generally increases in adverse conditions, but it is not well known which factors determine the evolution of physiological integration. The aim of this study was to investigate if clonal plants from Southern and Northern populations of the clonal herb Aegopodium podagraria differed in physiological integration in terms of translocation of carbon to the rhizomes, and in biomass production using a reciprocal transplant experiment. Aegopodium podagraria from shaded conditions have been suggested to share more resources than clones from open conditions and therefore, plants from forest and open populations within the Southern and Northern regions were included. The regional growing conditions greatly affected biomass production. Plants grown in North Sweden produced more biomass and allocated more biomass to shoots, while plants grown in South Sweden allocated more biomass to rhizomes. There was a regional origin effect as plants originating from North Sweden produced more biomass in both regions. Within the Northern region, plants from shaded habitats translocated more 14C to the rhizomes, suggesting more storage there than in plants from open habitats. In addition to genetic differentiation in biomass production between Northern and Southern populations, probably as a response to a shorter growing season in the North, there appeared to be genetic differentiation in physiological integration within the Northern region. This shows that both regional and local conditions need to be taken into account in future studies of genetic differentiation of physiological integration in clonal plants. PMID:24427305

  3. Estimating fresh biomass of maize plants from their RGB images in greenhouse phenotyping

    NASA Astrophysics Data System (ADS)

    Ge, Yufeng; Pandey, Piyush; Bai, Geng

    2016-05-01

    High throughput phenotyping (HTP) is an emerging frontier field across many basic and applied plant science disciplines. RGB imaging is most widely used in HTP to extract image-based phenotypes such as pixel volume or projected area. These image-based phenotypes are further used to derive plant physical parameters including plant fresh biomass, plant dry biomass, water use efficiency etc. In this paper, we investigated the robustness of regression models to predict fresh biomass of maize plants from image-based phenotypes. Data used in this study were from three different experiments. Data were grouped into five datasets, two for model development and three for independent model validation. Three image-derived phenotypes were investigated: BioVolume, Projected.Area.1, and Projected.Area.2. Models were assessed with R2, Bias, and RMSEP (Root Mean Squared Error of Prediction). The results showed that almost all models were validated with high R2 values, indicating that these digital phenotypes can be useful to rank plant biomass on a relative basis. However, in many occasions when accurate prediction of plant biomass is needed, it is important for researchers to know that models that relate image-based phenotypes to plant biomass should be carefully constructed. Our results show that the range of plant size and the genotypic diversity of the calibration sets in relation to the validation sets have large impact on the model accuracy. Large maize plants cause systematic bias as they grow toward the top-view camera. Excluding top-view images from modeling can there benefit modeling for the experiments involving large maize plants.

  4. Recombinant Bacillus subtilis that grows on untreated plant biomass.

    PubMed

    Anderson, Timothy D; Miller, J Izaak; Fierobe, Henri-Pierre; Clubb, Robert T

    2013-02-01

    Lignocellulosic biomass is a promising feedstock to produce biofuels and other valuable biocommodities. A major obstacle to its commercialization is the high cost of degrading biomass into fermentable sugars, which is typically achieved using cellulolytic enzymes from Trichoderma reesei. Here, we explore the use of microbes to break down biomass. Bacillus subtilis was engineered to display a multicellulase-containing minicellulosome. The complex contains a miniscaffoldin protein that is covalently attached to the cell wall and three noncovalently associated cellulase enzymes derived from Clostridium cellulolyticum (Cel48F, Cel9E, and Cel5A). The minicellulosome spontaneously assembles, thus increasing the practicality of the cells. The recombinant bacteria are highly cellulolytic and grew in minimal medium containing industrially relevant forms of biomass as the primary nutrient source (corn stover, hatched straw, and switch grass). Notably, growth did not require dilute acid pretreatment of the biomass and the cells achieved densities approaching those of cells cultured with glucose. An analysis of the sugars released from acid-pretreated corn stover indicates that the cells have stable cellulolytic activity that enables them to break down 62.3% ± 2.6% of the biomass. When supplemented with beta-glucosidase, the cells liberated 21% and 33% of the total available glucose and xylose in the biomass, respectively. As the cells display only three types of enzymes, increasing the number of displayed enzymes should lead to even more potent cellulolytic microbes. This work has important implications for the efficient conversion of lignocellulose to value-added biocommodities. PMID:23183968

  5. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    PubMed

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. PMID:25707745

  6. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances.

    PubMed

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012-2014) and drought treatments (2013-2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  7. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances

    PubMed Central

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  8. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    PubMed

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels. PMID:22779440

  9. Multivariate control of plant species richness and community biomass in blackland prairie

    USGS Publications Warehouse

    Weiher, E.; Forbes, S.; Schauwecker, T.; Grace, J.B.

    2004-01-01

    Recent studies have shown that patterns of plant species richness and community biomass are best understood in a multivariate context. The objective of this study was to develop and evaluate a multivariate hypothesis about how herbaceous biomass and richness relate to gradients in soil conditions and woody plant cover in blackland prairies. Structural equation modeling was used to investigate how soil characteristics and shade by scattered Juniperus virginiana trees relate to standing biomass and species richness in 99 0.25 m2 quadrats collected in eastern Mississippi, USA. Analysis proceeded in two stages. In the first stage, we evaluated the hypothesis that correlations among soil parameters could be represented by two underlying (latent) soil factors, mineral content and organic content. In the second stage, we evaluated the hypothesis that richness and biomass were related to (1) soil properties, (2) tree canopy extent, and (3) each other (i.e. reciprocal effects between richness and biomass). With some modification to the details of the original model, it was found that soil properties could be represented as two latent variables. In the overall model, 51% and 53% of the observed variation in richness and biomass were explained. The order of importance for variables explaining variations in richness was (1) soil organic content, (2) soil mineral content, (3) community biomass, and (4) tree canopy extent. The order of importance for variables explaining biomass was (1) tree canopy and (2) soil organic content, with neither soil mineral content nor species richness explaining significant variation in biomass. Based on these findings, we conclude that variations in richness are uniquely related to both variations in soil conditions and variations in herbaceous biomass. We further conclude that there is no evidence in these data for effects of species richness on biomass.

  10. Energy conversion of biomass with supercritical and subcritical water using large-scale plants.

    PubMed

    Okajima, Idzumi; Sako, Takeshi

    2014-01-01

    Exploiting unused or waste biomass as an alternative fuel is currently receiving much attention because of the potential reductions in CO2 emissions and the lower cost in comparison to expensive fossil fuels. If we are to use biomass domestically or industrially, we must be able to convert biomass to high-quality and easy-to-use liquid, gas, or solid fuels that have high-calorific values, low moisture and ash contents, uniform composition, and suitable for stored over long periods. In biomass treatment, hot and high-pressure water including supercritical and subcritical water is an excellent solvent, as it is clean and safe and its action on biomass can be optimized by varying the temperature and pressure. In this article, the conversion of waste biomass to fuel using hot and high-pressure water is reviewed, and the following examples are presented: the production of large amounts of hydrogen from waste biomass, the production of cheap bioethanol from non-food raw materials, and the production of composite powder fuel from refractory waste biomass in the rubble from the Great East Japan Earthquake. Several promising techniques for the conversion of biomass have been demonstrated in large-scale plants and commercial deployment is expected in the near future. PMID:23867098

  11. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    SciTech Connect

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  12. PILOT-PLANT EVALUATION OF POROUS BIOMASS SUPPORTS (JOURNAL VERSION)

    EPA Science Inventory

    Several porous biomass-support systems are currently available for use in the activated-sludge process. One of these systems, Captor, utilizes polyurethane foam pads to provide biofilm growth sites that transform an aerobic suspended-growth reactor into a fixed-film reactor. In a...

  13. Land Use and Management Practices Impact on Plant Biomass Carbon and Soil Carbon Dioxide Emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use and management practices may influence plant C input and soil CO2 emission, a greenhouse gas responsible for global warming. We evaluated the effect of a combination of irrigation, tillage, cropping system, and N fertilization on plant biomass (leaves + stems) C, soil temperature and water ...

  14. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize.

    PubMed

    Voorend, Wannes; Nelissen, Hilde; Vanholme, Ruben; De Vliegher, Alex; Van Breusegem, Frank; Boerjan, Wout; Roldán-Ruiz, Isabel; Muylle, Hilde; Inzé, Dirk

    2016-03-01

    Increased biomass yield and quality are of great importance for the improvement of feedstock for the biorefinery. For the production of bioethanol, both stem biomass yield and the conversion efficiency of the polysaccharides in the cell wall to fermentable sugars are of relevance. Increasing the endogenous levels of gibberellic acid (GA) by ectopic expression of GA20-OXIDASE1 (GA20-OX1), the rate-limiting step in GA biosynthesis, is known to affect cell division and cell expansion, resulting in larger plants and organs in several plant species. In this study, we examined biomass yield and quality traits of maize plants overexpressing GA20-OX1 (GA20-OX1). GA20-OX1 plants accumulated more vegetative biomass than control plants in greenhouse experiments, but not consistently over two years of field trials. The stems of these plants were longer but also more slender. Investigation of GA20-OX1 biomass quality using biochemical analyses showed the presence of more cellulose, lignin and cell wall residue. Cell wall analysis as well as expression analysis of lignin biosynthetic genes in developing stems revealed that cellulose and lignin were deposited earlier in development. Pretreatment of GA20-OX1 biomass with NaOH resulted in a higher saccharification efficiency per unit of dry weight, in agreement with the higher cellulose content. On the other hand, the cellulose-to-glucose conversion was slower upon HCl or hot-water pretreatment, presumably due to the higher lignin content. This study showed that biomass yield and quality traits can be interconnected, which is important for the development of future breeding strategies to improve lignocellulosic feedstock for bioethanol production. PMID:26903034

  15. Short leaf mutation and modified plant architecture as potential traits for improving biomass and abiotic stress tolerance in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The significant contributions of plant architecture to yield and biomass production have been the focus of attention in a number of crop plants. Recently, the relationship between plant architecture, biomass characteristics and responses to abiotic stresses has also been a subject of considerable in...

  16. Climate, Plant Biomass, NDVI, and LAI Relationships Along The Full Arctic Bioclimate Gradient

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Walker, D. A.; Jia, G. J.; Kelley, A. M.

    2005-12-01

    A common methodology for assessing the potential effects of terrestrial ecosystems to environmental change is to develop present-day spatial relationships between environmental variables and ecosystem properties. Spatial relationships between climate variables and ecosystem variables should of course be used cautiously when extrapolating these patterns over time, i.e. space-for-time substitutions. Nevertheless, this approach has been extremely useful along regional climate gradients, in addition to providing support for vegetation dynamics models. We are developing several datasets of latitude, temperature, aboveground plant biomass, the NDVI (normalized difference vegetation index) and LAI (leaf area index) for arctic tundra ecosystems along an 1800-km transect from the Low Arctic tundra in northern Alaska to the Polar Desert of the northern Canadian Archipelago. Another useful application of these data is the relationships between NDVI and aboveground plant biomass, which can allow for the conversion of satellite data to on-the-ground ecosystem properties. For the portion of our transect on the northern slope of Alaska, NDVI (from NOAA AVHRR data) decreased with increasing latitude, explaining 45% of the variance in LAI, 65% of aboveground biomass and 42% of shrub biomass. Along the same portion of the transect, LAI (measured from above the mosses and lichens) explained 69% of vascular plant biomass and 68% of shrub biomass. For the higher arctic portion of the transect, NDVI (measured using a handheld spectroradiometer) continued to decrease with latitude, and latitude explained 90% of the variation in NDVI. For these sites in the High Arctic, NDVI was most strongly related to the sum of moss and graminoid biomass (r2=0.60). Ultimately, our dataset will contain climate data, satellite NDVI, handheld NDVI, LAI, and various components of aboveground plant biomass for a complete synthesis along the full arctic bioclimate gradient.

  17. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from ‑20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass–temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  18. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    SciTech Connect

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  19. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.

    PubMed

    Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S

    2015-01-01

    The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics. PMID:25911233

  20. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  1. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    PubMed Central

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. PMID:26339128

  2. ENVIROMETAL TECHNOLOGIES, INC. - METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN ABOVE-GROUND REACTOR, INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    EnviroMetal Technology's metal-enhanced dechlorination technology employs an electrochemical process that involves oxidation of iron and reductive dehalogenation of halogenated VOCs in aqueous media. The process can be operated as an above ground reactor or can alternatively perf...

  3. Thermoset-cross-linked lignocellulose: a moldable plant biomass.

    PubMed

    Karumuri, Sriharsha; Hiziroglu, Salim; Kalkan, A Kaan

    2015-04-01

    The present work demonstrates a high biomass content (i.e., up to 90% by weight) and moldable material by controlled covalent cross-linking of lignocellulosic particles by a thermoset through epoxide-hydroxyl reactions. As an example for lignocellulosic biomass, Eastern redcedar was employed. Using scanning fluorescence microscopy and vibrational spectroscopy, macroscopic to molecular scale interactions of the thermoset with the lignocellulose have been revealed. Impregnation of the polymer resin into the biomass cellular network by capillary action as well as applied pressure results in a self-organizing structure in the form of thermoset microrods in a matrix of lignocellulose. We also infer permeation of the thermoset into the cell walls from the reaction of epoxides with the hydroxyls of the lignin. Compression tests reveal, at 30% thermoset content, thermoset-cross-linked lignocellulose has superior mechanical properties over a commercial wood plastic composite while comparable stiffness and strength to bulk epoxy and wood, respectively. The failure mechanism is understood to be crack propagation along the particle-thermoset interface and/or interparticle thermoset network. PMID:25734539

  4. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  5. Comparative assessment of utilization means of plant inedible biomass in the soil-like substrate concerning bioregenerative LSS

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Velichko, Vladimir; Ushakova, Sofya; Trifonov, Sergey V.

    Researches carried out at the Institute of Biophysics SB RAS (Russia) have shown that the soil-like substrate (SLS) was the promising biological substrate for inclusion of plant inedible biomass into matter turnover. Still, mineralization rate of plant residues introduced into the SLS strongly depends upon the character of its preliminary preparation and the plant species. So the given work is aimed at a comparative assessment of different approaches to utilization of plant inedible biomass in the SLS when growing plants on it. Efficiency criteria of plant wastes utilization in the SLS was the productivity of the plants grown on it. Radish was the test object. The wheat and radish inedible biomass was introduced into the SLS. The biomass amount of wheat straw inserted was equal on nitrogen content to the nitrogen value removed during the radish harvesting. During experiments three introduction ways of plant inedible biomass were used: 1) direct insertion of crushed biomass into the SLS; 2) introduction of plant wastes mineralized by a physical-chemical method; 3) a combination of two abovementioned ways of plant wastes preparation. The carried out researches have shown that the use of the third preparation way of plant wastes combining both a physical-chemical mineralization method and their direct introduction into the SLS was the most efficient to involve inedible biomass into the LSS intersystem mass exchange. Quantitative and qualitative characteristics of utilization processes of plant wastes in the SLS under study and their effect on the plants productivity are discussed.

  6. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.

    PubMed

    Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai

    2016-09-01

    Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients. PMID:27101947

  7. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants

    PubMed Central

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants. PMID:27304876

  8. Plant biomass and stem juice of the C4 sugarcane at elevated growth CO2 and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant biomass, stem juice and stem sugar were determined for four sugarcane cultivars grown for three months at daytime [CO2] of 360 (ambient) and 720 (doubled) ppm and temperatures (T) of 1.5 (near-ambient) and 6.0C higher than outside ambient T. Leaf area and biomass, stem biomass, stem juice and ...

  9. Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?

    NASA Astrophysics Data System (ADS)

    Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.

    2015-12-01

    Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.

  10. Potential of Co-firing of Woody Biomass in Coal Fired Power Plant

    NASA Astrophysics Data System (ADS)

    Makino, Yosuke; Kato, Takeyoshi; Suzuoki, Yasuo

    Taking the distributing woody biomass supply into account, this paper assesses the potential of a co-firing of woody biomass in utility's coal power plant from the both energy-saving and economical view points. Sawmill wastes, trimming wastes from fruit farms and streets, and thinning residues from forests in Aichi Prefecture are taken into account. Even though transportation energy is required, almost all of woody biomass can be more efficiently used in co-firing with coal than in a small-scale fuel cell system with gasification as a distributed utilization. When the capital cost of fuel cell system with 25% of total efficiency, including preprocess, gasification and power generation, is higher than 170× 103yen/kW, almost all of thinning residues can be more economically used in co-firing. The cost of woody biomass used in co-firing is also compared with the transaction cost of renewable power in the current RPS scheme. The result suggests the co-firing of woody biomass in coal fired power plant can be feasible measure for effective utilization of woody biomass.

  11. Plant roots and spectroscopic methods – analyzing species, biomass and vitality

    PubMed Central

    Rewald, Boris; Meinen, Catharina

    2013-01-01

    In order to understand plant functioning, plant community composition, and terrestrial biogeochemistry, it is decisive to study standing root biomass, (fine) root dynamics, and interactions belowground. While most plant taxa can be identified by visual criteria aboveground, roots show less distinctive features. Furthermore, root systems of neighboring plants are rarely spatially segregated; thus, most soil horizons and samples hold roots of more than one species necessitating root sorting according to taxa. In the last decades, various approaches, ranging from anatomical and morphological analyses to differences in chemical composition and DNA sequencing were applied to discern species’ identity and biomass belowground. Among those methods, a variety of spectroscopic methods was used to detect differences in the chemical composition of roots. In this review, spectroscopic methods used to study root systems of herbaceous and woody species in excised samples or in situ will be discussed. In detail, techniques will be reviewed according to their usability to discern root taxa, to determine root vitality, and to quantify root biomass non-destructively or in soil cores holding mixtures of plant roots. In addition, spectroscopic methods which may be able to play an increasing role in future studies on root biomass and related traits are highlighted. PMID:24130565

  12. Does Plant Biomass Manipulation in Static Chambers Affect Nitrous Oxide Emissions from Soils?

    PubMed

    Collier, Sarah M; Dean, Andrew P; Oates, Lawrence G; Ruark, Matthew D; Jackson, Randall D

    2016-03-01

    One of the most widespread approaches for measurement of greenhouse gas emissions from soils involves the use of static chambers. This method is relatively inexpensive, is easily replicated, and is ideally suited to plot-based experimental systems. Among its limitations is the loss of detection sensitivity with increasing chamber height, which creates challenges for deployment in systems including tall vegetation. It is not always possible to avoid inclusion of plants within chambers or to extend chamber height to fully accommodate plant growth. Thus, in many systems, such as perennial forages and biomass crops, plants growing within static chambers must either be trimmed or folded during lid closure. Currently, data on how different types of biomass manipulation affect measured results is limited. Here, we compare the effects of cutting vs. folding of biomass on nitrous oxide measurements in switchgrass ( L.) and alfalfa ( L.) systems. We report only limited evidence of treatment effects during discrete sampling events and little basis for concern that effects may intensify over time as biomass manipulation is repeatedly imposed. However, nonsignificant treatment effects that were consistently present amounted to significant overall trends in three out of the four systems studied. Such minor disparities in flux could amount to considerable quantities over time, suggesting that caution should be exercised when comparing cumulative emission values from studies using different biomass manipulation strategies. PMID:27065424

  13. Thermal analysis of solar biomass hybrid co-generation plants

    NASA Astrophysics Data System (ADS)

    Kaushika, N. D.; Mishra, Anuradha; Chakravarty, M. N.

    2005-12-01

    This article describes a co-generation plant based on the biogas being produced from the waste of distillery plant and highlights the possible configuration in which the plant can be hybridized with auxiliary solar energy source having the advantage of using financial incentives in several countries. In hybridization, the solar heat is used for heating the boiler feed water. The solar heat-generating unit consists of line focus parabolic trough collector, heat transportation system and heat delivery unit such as heat exchanger. The simulation model of heat and mass transfer processes in the solar field as well as the balance of the system is developed to investigate the technological feasibility of the concept in terms of plant yield and matching of subsystems.

  14. Utilization of emergent aquatic plants for biomass-energy-systems development

    SciTech Connect

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  15. Statistical models related to accumulated biomass of Hopea odorata in three soil series of ultisols

    NASA Astrophysics Data System (ADS)

    Maarof, Fauziah; Fauzi, Mohd Adi Faiz Ahmad; Mohamed, Shamsiah

    2014-07-01

    This paper presents results on statistical distribution fitting and polynomial regression on accumulated biomass of seven year-old tree species Hopea odorata, which were planted in three different soil series of ultisols, namely Rengggam, Baling and Kuala Berang. Data were collected from a study conducted in a Hopea odorata plantation at FRIM Research Station, Segamat, Johor. Thirty tree stands in each soil series were randomly sampled to measure their growth performance and accumulated biomass. The Kolmogorov-Smirnov and Anderson-Darling tests indicated that for all tree stands, diameter, height, above ground (stem, branch, leaves) and below ground (root) biomass were found to be best fitted with the four parameters Johnson's System Bounded (SB) distributions. Then, for each soil series, a polynomial regression model was estimated to describe the relationship between total accumulated biomass and functions of tree diameter and height.

  16. Design of Biomass Gasification and Combined Heat and Power Plant Based on Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Haydary, Juma; Jelemenský, Ľudovít

    Three types of wooden biomass were characterized by calorimetric measurements, proximate and elemental analysis, thermogravimetry, kinetics of thermal decomposition and gas composition. Using the Aspen steady state simulation, a plant with the processing capacity of 18 ton/h of biomass was modelled based on the experimental data obtained under laboratory conditions. The gasification process has been modelled in two steps. The first step of the model describes the thermal decomposition of the biomass based on a kinetic model and in the second step, the equilibrium composition of syngas is calculated by the Gibbs free energy of the expected components. The computer model of the plant besides the reactor model includes also a simulation of other plant facilities such as: feed drying employing the energy from the process, ash and tar separation, gas-steam cycle, and hot water production heat exchangers. The effect of the steam to air ratio on the conversion, syngas composition, and reactor temperature was analyzed. Employment of oxygen and air for partial combustion was compared. The designed computer model using all Aspen simulation facilities can be applied to study different aspects of biomass gasification in a Combined Heat and Power plant.

  17. Densified biomass as an alternative Army heating and power plant fuel. Final report

    SciTech Connect

    Hathaway, S.A.; Magrino, T.; Lin, J.S.; Duster, K.; Mahon, D.

    1980-03-01

    This investigation evaluated the technical and economic potential of using densified biomass (principally wood pellets) as a coal substitute in Army heating and power plants. The report reviews Department of Defense (DOD) experience with and tests of wood pellets; production of wood pellets (excluding silvicultural aspects); handling, storing, and feeding; combustion; major environental considerations; and economics of use.

  18. Biomass-fired plant practices total resource management

    SciTech Connect

    Not Available

    1993-04-01

    This article examines the utilization of woodwaste as power plant fuel, the town's wastewater discharge as cooling water, and flyash as a conditioner for local farmland. The topics of the article include woodwaste management, furnace and boiler details, air pollution control of flyash and nitrogen oxides, water treatment, and equipment changes.

  19. Regional biomass fired power plant siting Wisconsin project

    SciTech Connect

    Smith, M.L.

    1996-12-31

    The use of alternative fuels such as wood chips, wood products industry residues, refuse derived fuel, tire derived fuel and processed manufacturing paper waste fuel pellets has been practiced for a number of years in the state of Wisconsin. At present a relatively small quantity of the non-forestry urban wood waste is reclaimed for a variety of uses such as architectural mulch, animal bedding, nature trails in parks and recreational areas. Most is disposed of by landfills. This wood waste has low bulky density, depletes valuable landfill space, and in the Milwaukee area, currently costs $35-$50 per ton for hauling and disposal. This paper reviews the technical and economic feasibility of processing urban wood wastes using existing scrap processing facilities and transporting and supplying the wood fuel to existing stream and power generating facilities at state of Wisconsin institutions. The paper is based on a recent study funded by The Great Lakes Regional Biomass Energy Program. The capability of a large midwest auto shredding/scrap processing facility, one of 200 such facilities in the US, to serve as a central urban waste fuels processor is reviewed.

  20. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.

    PubMed

    Kolbusz, Magdalena Anna; Di Falco, Marcos; Ishmael, Nadeeza; Marqueteau, Sandrine; Moisan, Marie-Claude; Baptista, Cassio da Silva; Powlowski, Justin; Tsang, Adrian

    2014-11-01

    Myceliophthora thermophila is a thermophilic fungus whose genome encodes a wide range of carbohydrate-active enzymes (CAZymes) involved in plant biomass degradation. Such enzymes have potential applications in turning different kinds of lignocellulosic feedstock into sugar precursors for biofuels and chemicals. The present study examined and compared the transcriptomes and exoproteomes of M. thermophila during cultivation on different types of complex biomass to gain insight into how its secreted enzymatic machinery varies with different sources of lignocellulose. In the transcriptome analysis three monocot (barley, oat, triticale) and three dicot (alfalfa, canola, flax) plants were used whereas in the proteome analysis additional substrates, i.e. wood and corn stover pulps, were included. A core set of 59 genes encoding CAZymes was up-regulated in response to both monocot and dicot straws, including nine polysaccharide monooxygenases and GH10, but not GH11, xylanases. Genes encoding additional xylanolytic enzymes were up-regulated during growth on monocot straws, while genes encoding additional pectinolytic enzymes were up-regulated in response to dicot biomass. Exoproteome analysis was generally consistent with the conclusions drawn from transcriptome analysis, but additional CAZymes that accumulated to high levels were identified. Despite the wide variety of biomass sources tested some CAZy family members were not expressed under any condition. The results of this study provide a comprehensive view from both transcriptome and exoproteome levels, of how M. thermophila responds to a wide range of biomass sources using its genomic resources. PMID:24881579

  1. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    PubMed Central

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  2. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis.

    PubMed

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  3. Responses of Plant Community Composition and Biomass Production to Warming and Nitrogen Deposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China. PMID:25874975

  4. Food and fuel from plant biomass - will there be enough to go around?

    NASA Astrophysics Data System (ADS)

    DeLucia, E. H.; Gomez-Casanovas, N.; Greenberg, J. A.; Hudiburg, T. W.; Kantola, I. B.; Long, S.; Parton, W. J.; Miller, A. D.

    2013-12-01

    The ever-growing need for food and renewable energy is increasing the demand for biomass from wild and cultivated plants. The annual production of carbon in biomass - net primary production (NPP) - from terrestrial ecosystems globally is 57 Gt; of this total, humans currently appropriate 23-40%. Recent estimates suggest that the amount of plant biomass available for bioenergy is too small to significantly reduce our reliance on fossil fuels, and increasing biomass allocated to fuel would compete with the food supply. These estimates assume that maximum sustainable NPP is represented by that location's native vegetation. We invalidate this assumption by comparing NPP from native and cultivated crops at several locations globally. We also estimate the theoretical maximum biomass production (NPPmax) and the maximum biomass production that can be sustained by local water availability (NPPwater). Across six unfertilized, non-irrigated ecoregions, NPP from cultivated and non-native wild plants surpassed that of native vegetation by up to 500%. Using the rain-fed Midwestern US as an example agricultural region, we estimate NPPmax from the theoretical solar conversion efficiency of 6% to be 137 tonnes/ha, i.e. 6.8x current maize yields. This value drops to 3.8x current maize yields when constrained by local plant-available water (NPPwater) or when using an empirically observed solar conversion efficiency of 3.7%. Our analysis of terrestrial NPPwater using the highest observed solar conversion efficiency for C3 and C4 was approximately 10x greater than current estimates. These global results provide an upper bound for NPP at any given location. Crop improvement aimed at increasing solar conversion efficiency has the potential to dramatically increase NPP, and incorrect assumptions guiding current models may lead to underestimates of biomass production. However, our findings indicate that the limiting factor to plant production in rain-fed agro-ecosystems is plant

  5. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    DOEpatents

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.

  6. Process for producing ethanol from plant biomass using the fungus paecilomyces sp.

    DOEpatents

    Wu, Jung Fu

    1989-01-01

    A process for producing ethanol from plant biomass is disclosed. The process in cludes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces, which has the ability to ferment both cellobiose and xylose to ethanol, is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate.

  7. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    PubMed

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. PMID:27269671

  8. Nitrogen and phosphorus removal of locally adapted plant species used in constructed wetlands in China.

    PubMed

    Yu, Xia; König, Thomas; Qi, Zhang; Yongsheng, Gao

    2012-01-01

    This paper assesses the nitrogen and phosphorus removal efficiency of seven plant species (Schoenoplectus lacustris, Vetiveria zizanioides, Acorus calamus, Canna indica, Zizania latifolia, Phragmites communis, and Iris pseudacorus) commonly used in constructed wetland systems in southern China. The investigation considers two aspects that are relevant to determine nutrient removal efficiency: plants' biomass production and nutrient content in water effluent. Both assessments are correlated with each other. Three different hydraulic retention times with different nutrient loads have been applied in this ex-situ trial. The plants' biomass production correlates positively with the effluent's nutrient removal efficiency. Six out of seven species reviewed produce more biomass above ground than below ground (average: 67% of dried biomass in aerial part); only I. pseudacorus produces more biomass below ground. S. lacustris, V. zizanioides, I. pseudacorus, and C. indica have performed best in terms of nutrient removal efficiency (65.6-90.2% for nitrogen; 67.7-84.6% for phosphorus). PMID:22766855

  9. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance

    PubMed Central

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-01-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. PMID:25363806

  10. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2013-12-26

    Efficient conversion of lignocellulosic biomass to second-generation biofuels and valuable chemicals requires decomposition of resilient plant cell wall structure. Cell wall recalcitrance varies among plant species and even phenotypes, depending on the chemical composition of the noncellulosic matrix. Changing the amount and composition of branches attached to the hemicellulose backbone can significantly alter the cell wall strength and microstructure. We address the effect of hemicellulose composition on primary cell wall assembly forces by using the 3D-RISM-KH molecular theory of solvation, which provides statistical-mechanical sampling and molecular picture of hemicellulose arrangement around cellulose. We show that hemicellulose branches of arabinose, glucuronic acid, and especially glucuronate strengthen the primary cell wall by strongly coordinating to hydrogen bond donor sites on the cellulose surface. We reveal molecular forces maintaining the cell wall structure and provide directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing. PMID:24274712

  11. Economic Assessment of a Conceptual Biomass to Liquids Bio-Syntrolysis Plant

    SciTech Connect

    M. M. Plum; G. L. Hawkes

    2010-06-01

    A series of assessments evaluated the economic efficiency of integrating a nuclear electric power plant with a biomass to SynFuel plant under three market scenarios. Results strongly suggest that a nuclear assisted-BioSyntrolysis Process would be as cost competitive as other carbon feedstock to liquid fuels concepts while having significant advantages regarding CO2 greenhouse gas production. This concept may also be competitive for those energy markets where energy dense, fossil fuels are scarce while wind, hydroelectric, or other renewable energy sources can be produced at a relatively low cost. At this time, a realistic vision of this technology’s deployment of a biomass to synfuel plants powered by a nuclear 1100 MWe reactor. Accompanying an area of 25 miles by 25 miles, this integrated Enterprise could produce 24,000 BBLs of SynFuel daily; or 0.2% of the U.S.’s imported oil.

  12. Plant biomass degrading ability of the coprophilic ascomycete fungus Podospora anserina.

    PubMed

    Couturier, Marie; Tangthirasunun, Narumon; Ning, Xie; Brun, Sylvain; Gautier, Valérie; Bennati-Granier, Chloé; Silar, Philippe; Berrin, Jean-Guy

    2016-01-01

    The degradation of plant biomass is a major challenge towards the production of bio-based compounds and materials. As key lignocellulolytic enzyme producers, filamentous fungi represent a promising reservoir to tackle this challenge. Among them, the coprophilous ascomycete Podospora anserina has been used as a model organism to study various biological mechanisms because its genetics are well understood and controlled. In 2008, the sequencing of its genome revealed a great diversity of enzymes targeting plant carbohydrates and lignin. Since then, a large array of lignocellulose-acting enzymes has been characterized and genetic analyses have enabled the understanding of P. anserina metabolism and development on plant biomass. Overall, these research efforts shed light on P. anserina strategy to unlock recalcitrant lignocellulose deconstruction. PMID:27263000

  13. De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes

    PubMed Central

    2013-01-01

    Background Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data. Results We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes. Conclusions Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes. PMID:23414703

  14. Changes in tundra vascular plant biomass over thirty years at Imnavait Creek, Alaska.

    NASA Astrophysics Data System (ADS)

    Bret-Harte, M. S.; Euskirchen, E. S.; Edgar, C.; Huebner, D. C.; Okano, K.; Tucker, C.; Genet, H.; Ray, P. M.; Shaver, G. R.

    2014-12-01

    Understanding the magnitude of, and controls over, CO2 and water fluxes in arctic ecosystems is essential for accurate assessment and prediction of their responses to climate change. In 2013, we harvested vegetation and soils in the most common plant community types located in the source areas for fluxes measured by eddy covariance towers located in three representative Alaska tundra ecosystems along a toposequence (a ridge site composed of heath tundra and moist non-acidic tundra, a mid-slope site composed of moist acidic tussock tundra, and a valley bottom fen site composed of wet sedge tundra and moist acidic tundra) at Imnavait Creek, Alaska. While the purpose of this harvest was to relate biomass and production to estimates of overall net ecosystem CO2 exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER) obtained by micrometeorological methods, it also afforded an opportunity to compare with biomass harvests done in the 1980s in moist acidic tundra at Imnavait Creek; there have been no other harvests than ours at Imnavait since then. Our data showed that plant biomass and production were greatest in the tussock tundra at the mid-slope tower, and least in the wet sedge community at the fen tower, while plant diversity was greatest in the communities at the ridge site. Aboveground biomass of vascular plants in our 2013 harvest in moist acidic tundra was nearly three times higher than that measured approximately thirty years earlier in three harvests of nearby areas at Imnavait Creek, due to an increase in the biomass of shrubs and graminoids. Comparison with other biomass harvests from the vicinity of Toolik Field Station indicate that vascular plant biomass in moist acidic tundra has increased over this time period, with the greatest increase evident by the mid-1990s, and a more gradual increase through to the present time, despite no obvious increase in air temperature as seen in data from nearby climate stations. These data will be

  15. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    PubMed

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots <2 mm in diameter at 0-20 cm soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning. PMID

  16. Biomass energy: the scale of the potential resource.

    PubMed

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change. PMID:18215439

  17. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production.

    PubMed

    Liu, Fushan; Zhao, Qianru; Mano, Noel; Ahmed, Zaheer; Nitschke, Felix; Cai, Yinqqi; Chapman, Kent D; Steup, Martin; Tetlow, Ian J; Emes, Michael J

    2016-03-01

    We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch. PMID:26285603

  18. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle.

    PubMed

    Patyshakuliyeva, Aleksandrina; Post, Harm; Zhou, Miaomiao; Jurak, Edita; Heck, Albert J R; Hildén, Kristiina S; Kabel, Mirjam A; Mäkelä, Miia R; Altelaar, Maarten A F; de Vries, Ronald P

    2015-08-01

    The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and contributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass. Relatively little is known about how A. bisporus grows in the controlled environment in commercial production facilities and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were only highly expressed during the spawning stage day 16. In contrast, (hemi-)cellulolytic genes were highly expressed at the first flush, whereas low expression was observed at the second flush. The essential role for many highly expressed plant biomass degrading genes was supported by exo-proteome analysis. Our data also support a model of sequential lignocellulose degradation by wood-decaying fungi proposed in previous studies, concluding that lignin is degraded at the initial stage of growth in compost and is not modified after the spawning stage. The observed differences in gene expression involved in (hemi-)cellulose degradation between the first and second flushes could partially explain the reduction in the number of mushrooms during the second flush. PMID:26118398

  19. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    SciTech Connect

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  20. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    PubMed Central

    Suen, Garret; Scott, Jarrod J.; Aylward, Frank O.; Adams, Sandra M.; Tringe, Susannah G.; Pinto-Tomás, Adrián A.; Foster, Clifton E.; Pauly, Markus; Weimer, Paul J.; Barry, Kerrie W.; Goodwin, Lynne A.; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T.; Slater, Steven C.; Donohue, Timothy J.; Currie, Cameron R.

    2010-01-01

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. PMID:20885794

  1. An insect herbivore microbiome with high plant biomass-degrading capacity.

    PubMed

    Suen, Garret; Scott, Jarrod J; Aylward, Frank O; Adams, Sandra M; Tringe, Susannah G; Pinto-Tomás, Adrián A; Foster, Clifton E; Pauly, Markus; Weimer, Paul J; Barry, Kerrie W; Goodwin, Lynne A; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T; Slater, Steven C; Donohue, Timothy J; Currie, Cameron R

    2010-09-01

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. PMID:20885794

  2. Testing the Growth Rate Hypothesis in Vascular Plants with Above- and Below-Ground Biomass

    PubMed Central

    Yu, Qiang; Wu, Honghui; He, Nianpeng; Lü, Xiaotao; Wang, Zhiping; Elser, James J.; Wu, Jianguo; Han, Xingguo

    2012-01-01

    The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations. PMID:22427823

  3. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    PubMed Central

    2012-01-01

    Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels. PMID:22490508

  4. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    SciTech Connect

    Wei, H.; Tucker, M. P.; Baker, J. O.; Harris, M.; Luo, Y. H.; Xu, Q.; Himmel, M. E.; Ding, S. Y.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  5. Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Koptur, S.; Snyder, J.R.

    2004-01-01

    Species-specific allometric equations that provide estimates of biomass from measured plant attributes are currently unavailable for shrubs common to South Florida pine rocklands, where fire plays an important part in shaping the structure and function of ecosystems. We developed equations to estimate total aboveground biomass and fine fuel of 10 common hardwood species in the shrub layer of pine forests of the lower Florida Keys. Many equations that related biomass categories to crown area and height were significant (p < 0.05), but the form and variables comprising the best model varied among species. We applied the best-fit regression models to structural information from the shrub stratum in 18 plots on Big Pine Key, the most extensive pine forest in the Keys. Estimates based on species-specific equations indicated clearly that total aboveground shrub biomass and shrub fine fuel increased with time since last fire, but the relationships were non-linear. The relative proportion of biomass constituted by the major species also varied with stand age. Estimates based on mixed-species regressions differed slightly from estimates based on species-specific models, but the former could provide useful approximations in similar forests where species-specific regressions are not yet available. ?? 2004 Elsevier B.V. All rights reserved.

  6. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    SciTech Connect

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  7. Yield, biomass, and uptake of crop plants irrigated with TNT and RDX contaminated water

    SciTech Connect

    Simini, M.; Checkai, R.T.

    1995-12-31

    Crops grown in site-collected soil were irrigated with water containing 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) to simulate field conditions at Cornhusker Army Ammunition Plant, Nebraska. Pots were watered in an environment-controlled greenhouse to field capacity throughout the life-cycle of the crop with 2, 20, and 100 ppb RDX; 2,100, and 800ppb TNT; 100ppb RDX + 800ppb TNT; or uncontaminated water. Yield and biomass of tomato fruit, bush bean fruit, corn stover, and soybean seeds were significantly (p = 0.05) less when irrigated with the RDX + TNT treatment compared to controls. Lettuce leaves and radish root yield and biomass were unaffected by treatment level. Soil loading of RDX and TNT in response to evapotranspiration was greatest for tomato, corn, soybean, bush bean, and least for radish and lettuce. Plant tissue contaminant concentrations will be presented and discussed.

  8. The roles of community biomass and species pools in the regulation of plant diversity

    USGS Publications Warehouse

    Grace, J.B.

    2001-01-01

    Considerable debate has developed over the importance of community biomass and species pools in the regulation of community diversity. Attempts to explain patterns of plant diversity as a function of community biomass or productivity have been only partially successful and in general, have explained only a fraction of the observed variation in diversity. At the same time studies that have focused on the importance of species pools have led some to conclude that diversity is primarily regulated in the short term by the size of the species pool rather than by biotic interactions. In this paper, I explore how community biomass and species pools may work in combination to regulate diversity in herbaceous plant communities. To address this problem, I employ a simple model in which the dynamics of species richness are a function of aboveground community biomass and environmentally controlled gradients in species pools. Model results lead to two main predictions about the role of biomass regulation: (1) Seasonal dynamics of richness will tend to follow a regular oscillation, with richness rising to peak values during the early to middle portion of the growing season and then declining during the latter part of the season. (2.) Seasonal dieback of aboveground tissues facilitates the long-term maintenance of high levels of richness in the community. The persistence of aboveground tissues and accumulation of litter are especially important in limiting the number of species through the suppression of recruitment. Model results also lead to two main predictions about the role of species pools: (1) The height and position of peak richness relative to community biomass will be influenced by the rate at which the species pool increases as available soil resources increase. (2) Variations in nonresource environmental factors (e.g. soil pH or soil salinity) have the potential to regulate species pools in a way that is uncorrelated with aboveground biomass. Under extreme conditions

  9. Temporal variability in aboveground plant biomass decreases as spatial variability increases.

    PubMed

    McGranahan, Devan Allen; Hovick, Torre J; Elmore, R Dwayne; Engle, David M; Fuhlendorf, Samuel D; Winter, Stephen L; Miller, James R; Debinski, Diane M

    2016-03-01

    Ecological theory predicts that diversity decreases variability in ecosystem function. We predict that, at the landscape scale, spatial variability created by a mosaic of contrasting patches that differ in time since disturbance will decrease temporal variability in aboveground plant biomass. Using data from a multi-year study of seven grazed tallgrass prairie landscapes, each experimentally managed for one to eight patches, we show that increased spatial variability driven by spatially patchy fire and herbivory reduces temporal variability in aboveground plant biomass. This pattern is associated with statistical evidence for the portfolio effect and a positive relationship between temporal variability and functional group synchrony as predicted by metacommunity variability theory. As disturbance from fire and grazing interact to create a shifting mosaic of spatially heterogeneous patches within a landscape, temporal variability in aboveground plant biomass can be dampened. These results suggest that spatially heterogeneous disturbance regimes contribute to a portfolio of ecosystem functions provided by biodiversity, including wildlife habitat, fuel, and forage. We discuss how spatial patterns of disturbance drive variability within and among patches. PMID:27197382

  10. Large-scale biomass plantings in Minnesota: Scale-up and demonstration projects in perspective

    SciTech Connect

    Kroll, T.; Downing, M.

    1995-09-01

    Scale-up projects are an important step toward demonstration and commercialization of woody biomass because simply planting extensive acreage of hybrid poplar will not develop markets. Project objectives are to document the cost to plant and establish, and effort needed to monitor and maintain woody biomass on agricultural land. Conversion technologies and alternative end-uses are examined in a larger framework in order to afford researchers and industrial partners information necessary to develop supply and demand on a local or regional scale. Likely to be determined are risk factors of crop failure and differences between establishment of research plots and agricultural scale field work. Production economics are only one consideration in understanding demonstration and scale-up. Others are environmental, marketing, industrial, and agricultural in nature. Markets for energy crops are only beginning to develop. Although information collected as a result of planting up to 5000 acres of hybrid poplar in central Minnesota will not necessarily be transferable to other areas of the country, a national perspective will come from development of regional markets for woody and herbaceous crops. Several feedstocks, with alternative markets in different regions will eventually comprise the entire picture of biofuels feedstock market development. Current projects offer opportunities to learn about the complexity and requirements that will move biomass from research and development to actual market development. These markets may include energy and other end-uses such as fiber.

  11. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (rp) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.

  12. New methods for early selection and development of plant genotypes for rapid biomass production

    SciTech Connect

    Anekonda, T.S.; Criddle, R.S.; Hansen, L.D.

    1994-12-31

    Calorespirometric investigation of respiratory metabolism and its temperature dependencies can be used to identify plants with superior growth characteristics. Measurements of the metabolic heat rate, rate of CO{sub 2} evolution and O{sub 2} uptake over a range of temperature are analyzed with a mechanistic model of plant growth to allow early selection of superior trees. This analysis provides information about indicies of genetic characteristics to use in breeding programs and guidelines for matching trees to appropriate climatic conditions. These procedures can enhance the rate of production of biomass by shortening the time to harvest and increase total economic returns.

  13. Proliferation of diversified clostridial species during biological soil disinfestation incorporated with plant biomass under various conditions.

    PubMed

    Mowlick, Subrata; Takehara, Toshiaki; Kaku, Nobuo; Ueki, Katsuji; Ueki, Atsuko

    2013-09-01

    Biological soil disinfestation (BSD) involves the anaerobic decomposition of plant biomass by microbial communities leading to control of plant pathogens. We analyzed bacterial communities in soil of a model experiment of BSD, as affected by biomass incorporation under various conditions, to find out the major anaerobic bacterial groups which emerged after BSD treatments. The soil was treated with Brassica juncea plants, wheat bran, or Avena strigosa plants, irrigated at 20 or 30 % moisture content and incubated at 25-30 °C for 17 days. The population of Fusarium oxysporum f. sp. spinaciae incorporated at the start of the experiment declined markedly for some BSD conditions and rather high concentrations of acetate and butyrate were detected from these BSD-treated soils. The polymerase chain reaction-denaturing gradient gel electrophoresis analysis based on the V3 region of 16S rRNA gene sequences from the soil DNA revealed that bacterial profiles greatly changed according to the treatment conditions. Based on the clone library analysis, phylogenetically diverse clostridial species appeared exceedingly dominant in the bacterial community of BSD soil incorporated with Brassica plants or wheat bran, in which the pathogen was suppressed completely. Species in the class Clostridia such as Clostridium saccharobutylicum, Clostridium acetobutylicum, Clostridium xylanovorans, Oxobacter pfennigii, Clostridium pasteurianum, Clostridium sufflavum, Clostridium cylindrosporum, etc. were commonly recognized as closely related species of the dominant clone groups from these soil samples. PMID:23132344

  14. A simple method for comparing fungal biomass in infected plant tissues.

    PubMed

    Ayliffe, Michael; Periyannan, Sambasivam K; Feechan, Angela; Dry, Ian; Schumann, Ulrike; Wang, Ming-Bo; Pryor, Anthony; Lagudah, Evans

    2013-06-01

    Plant phenotypes resistant and susceptible to fungal pathogens are usually scored using qualitative, subjective methods that are based upon disease symptoms or by an estimation of the amount of visible fungal growth. Given that plant resistance genes often confer partial resistance to fungal pathogens, a simple, sensitive, nonsubjective quantitative method for measuring pathogen growth would be highly advantageous. This report describes an in planta quantitative assay for fungal biomass based upon detection of chitin using wheat germ agglutinin conjugated to a fluorophore. Using this assay, the growth of wheat rust pathogens on wheat was assayed and the additivity of several adult plant and seedling resistance genes to Puccinia striiformis, P. graminis, and P. triticina was assayed on both glasshouse- and field-grown material. The assay can discriminate between individual rust pustules on a leaf segment or, alternatively, compare fungal growth on field plots. The quantification of Erysiphe necator (powdery mildew) growth on Vitis vinifera (grapevine) is also demonstrated, with resistant and susceptible cultivars readily distinguished. Given that chitin is a major cell wall component of many plant fungal pathogens, this robust assay will enable simple and accurate measurement of biomass accumulation in many plant-fungus interactions. PMID:23405866

  15. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    PubMed Central

    Agarwal, Umesh P.

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression can be achieved, the utility of the Raman investigations has increased significantly. Moreover, the development of several new capabilities such as estimation of cellulose-crystallinity, ability to analyze changes in cellulose conformation at the local and molecular level, and examination of water-cellulose interactions have made this technique essential for research in the field of plant science. The FT-Raman method has also been applied to research studies in the arenas of biofuels and nanocelluloses. Moreover, the ability to investigate plant lignins has been further refined with the availability of near-IR Raman. In this paper, we present 1064-nm FT-Raman spectroscopy methodology to investigate various compositional and structural properties of plant material. It is hoped that the described studies will motivate the research community in the plant biomass field to adapt this technique to investigate their specific research needs. PMID:25295049

  16. Biomass Allocation is an Important Determinant of the Tannin Concentration in Growing Plants

    PubMed Central

    Häring, D. A.; Suter, D.; Amrhein, N.; Lüscher, A.

    2007-01-01

    Background and aims Condensed tannins (CTs) in the diet affect consumers in a concentration-dependent manner. Because of their importance in plant defence against herbivores and pathogens as well as their potential application against gastrointestinal parasites of ruminants in agronomy, an understanding of the seasonal dynamics of CT concentrations during plant growth is essential. Methods Over a vegetation period, CT concentrations in leaves, stems and roots and the biomass proportions between these organs were investigated in Onobrychis viciifolia, Lotus corniculatus and Cichorium intybus. Based on the experimental data, a model has been suggested to predict CT concentrations in harvestable biomass of these species. Key Results During the experiment, leaf mass fractions of plants decreased from 85, 64, 85 to 30, 18, 39 % d. wt in Onobrychis, Lotus and Cichorium, respectively, and proportions of stems and roots increased accordingly. While CT concentrations almost doubled in leaves in Onobrychis (from 52 to 86 mg g−1 d. wt, P<0·001) and Lotus (from 25 to 54 mg g−1 d. wt, P<0·001), they were stable at low levels in expanding leaves of Cichorium (5 mg g−1 d. wt) and in stems and roots of all investigated species. Due to an inverse effect of the increasing CT concentrations in leaves and simultaneous dilution from increasing proportions of ‘CT-poor’ stems, CT concentrations in harvestable biomass were stable over time in all investigated species: 62, 26 and 5 mg g−1 d. wt for Onobrychis, Lotus and Cichorium, respectively. Conclusions As a consequence of the unequal distribution of tannins in different plant parts and due to the changing biomass proportions between them, various herbivores (e.g. a leaf-eating insect and a grazing ruminant) may find not only different concentrations of CT in their diets but also different CT dynamics during the season. For the prediction of seasonal variations of CT concentrations, biomass allocation and accumulation

  17. Effects of habitat management treatments on plant community composition and biomass in a Montane wetland

    USGS Publications Warehouse

    Austin, J.E.; Keough, J.R.; Pyle, W.H.

    2007-01-01

    Grazing and burning are commonly applied practices that can impact the diversity and biomass of wetland plant communities. We evaluated the vegetative response of wetlands and adjacent upland grasslands to four treatment regimes (continuous idle, fall prescribed burning followed by idle, annual fall cattle grazing, and rotation of summer grazing and idle) commonly used by the U.S. Fish and Wildlife Service. Our study area was Grays Lake, a large, montane wetland in southeastern Idaho that is bordered by extensive wet meadows. We identified seven plant cover types, representing the transition from dry meadow to deep wetland habitats: mixed deep marsh, spikerush slough, Baltic rush (Juncus balticus), moist meadow, alkali, mesic meadow, and dry meadow. We compared changes in community composition and total aboveground biomass of each plant cover type between 1998, when all units had been idled for three years, and 1999 (1 yr post-treatment) and 2000 (2 yr post-treatment). Analysis using non-metric multidimensional scaling indicated that compositional changes varied among cover types, treatments, and years following treatment. Treatment-related changes in community composition were greatest in mixed deep marsh, Baltic rush, and mesic meadow. In mixed deep marsh and Baltic rush, grazing and associated trampling contributed to changes in the plant community toward more open water and aquatic species and lower dominance of Baltic rush; grazing and trampling also seemed to contribute to increased cover in mesic meadow. Changing hydrological conditions, from multiple years of high water to increasing drought, was an important factor influencing community composition and may have interacted with management treatments. Biomass differed among treatments and between years within cover types. In the wettest cover types, fall burning and grazing rotation treatments had greater negative impact on biomass than the idle treatment, but in drier cover types, summer grazing stimulated

  18. Exploiting plant-microbe partnerships to improve biomass production and remediation

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Taghavi, S.; Newman, L.; Vangronsveld, J.

    2009-10-01

    Although many plant-associated bacteria have beneficial effects on their host, their importance during plant growth and development is still underestimated. A better understanding of their plant growth-promoting mechanisms could be exploited for sustainable growth of food and feed crops, biomass for biofuel production and feedstocks for industrial processes. Such plant growth-promoting mechanisms might facilitate higher production of energy crops in a more sustainable manner, even on marginal land, and thus contribute to avoiding conflicts between food and energy production. Furthermore, because many bacteria show a natural capacity to cope with contaminants, they could be exploited to improve the efficiency of phytoremediation or to protect the food chain by reducing levels of agrochemicals in food crops.

  19. Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons

    SciTech Connect

    Calamari, D.; Morosini, M.; Vighi, M. ); Bacci, E.; Focardi, S.; Gaggi, C. )

    1991-08-01

    Plant biomass plays a significant role in the global environmental partitioning phenomena and plants are good indicators of tropospheric contamination levels by chlorinated hydrocarbons. In the present research 300 samples of plants were collected in 265 areas distributed worldwide and analyzed for HCB (hexachlorobenzene), {alpha}-HCH (hexachlorocyclohexane), {gamma}-HCH, p,p{prime}-DDT,o,p{prime}-DDT, and p,p{prime}-DDE (degradation product of DDT). Global HCB distribution is strongly dependent on the temperature, the HCB being present mainly in samples from cold areas. The sum of DDTs show higher concentrations in samples from topical areas, while the sum of HCHs is higher in the plants from the Northern Hemisphere. These results are discussed, taking into account the role of physicochemical properties in determining the global distribution as well as the air age of the contamination.

  20. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park

    SciTech Connect

    Vishnivetskaya, Tatiana A.; Hamilton-Brehm, Scott D.; Podar, Mircea; Mosher, Jennifer J.; Palumbo, Anthony V.; Phelps, Tommy J.; Keller, Martin; Elkins, James G.

    2014-10-16

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this paper, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55–85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Finally, independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.

  1. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park

    DOE PAGESBeta

    Vishnivetskaya, Tatiana A.; Hamilton-Brehm, Scott D.; Podar, Mircea; Mosher, Jennifer J.; Palumbo, Anthony V.; Phelps, Tommy J.; Keller, Martin; Elkins, James G.

    2014-10-16

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this paper, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversitymore » in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55–85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Finally, independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.« less

  2. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.

    PubMed

    Vishnivetskaya, Tatiana A; Hamilton-Brehm, Scott D; Podar, Mircea; Mosher, Jennifer J; Palumbo, Anthony V; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2015-02-01

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures. PMID:25319238

  3. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes.

    PubMed

    Li, Xiaoxi; Rubæk, Gitte H; Sørensen, Peter

    2016-07-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300-500kgPha(-1) application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25Mgha(-1) straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. PMID:27082447

  4. Improved conversion of herbaceous biomass to biofuels: Potential for modification of key plant characteristics

    SciTech Connect

    Sladden, S.E.; Bransby, D.I. . Dept. of Agronomy and Soils)

    1989-10-01

    Biomass crops are converted to fuels via biochemical and thermochemical processes. The process preferred depends on properties and cost of available feedstocks, and on the specific products desired. Since most mature biomass crops are composed of up to 80% cell wall fibers, the properties of these fibers determine, to a large degree, the conversion potential of the crop. However, biomass crops also contain small amounts of proteins, soluble carbohydrates and interfering materials (e.g., tannins and silica) which also influence the desirability of the feedstock in specific conversion processes. Fortunately, wide variation exists in the chemical composition of potential biomass crops. Although the chemical composition of feedstocks can be influenced significantly with judicious management has species selection, some traits are sufficiently heritable to permit breeding for improved feedstock composition. In addition to breeding for specific compositional traits directly, selection for in vitro digestibility or for easily-measured canopy or physiological traits may lead to more rapid and efficient progress in feedstock improvement, provided those measurements are highly-correlated with desirable feedstock composition. At the same time breeders must improve, or at least avoid damaging, stand longevity, tendency of plants to lodge, and establishment traits (e.g., disease resistance and seedling vigor). 46 refs., 8 tabs.

  5. A supply chain network design model for biomass co-firing in coal-fired power plants

    SciTech Connect

    Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

    2014-01-01

    We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

  6. The major parameters on biomass pyrolysis for hyperaccumulative plants--A review.

    PubMed

    Dilks, R T; Monette, F; Glaus, M

    2016-03-01

    Phytoextraction is one of the main phytoremediation techniques and it has often been described as a potentially feasible in situ soil decontamination method of large amounts of heavy metals, organic pollutants and explosive compounds. As this remediation technique is approaching extensive on-field experimentation and commercialization, research focus is on investigating new ways to achieve the valorisation of its by-products. Biomass pyrolysis represents a key step to numerous valorisation options and it is characterized by differential output products that are determined by the operating conditions of the process and the characteristics of the input. However, when used to valorise plants that have undergone significant metal uptake, this strategy involves some new aspects related to harvest, procedure and final product reutilization. This paper reviews the studies made on biomass pyrolysis of plants with emphasis on the differential quality and distribution of pyrolysis products in relation with the variables of the process and the metal-rich phytoextraction feedstock properties. By investigating these parameters, this survey provides indications on ways to optimize the valorisation of phytoremediation by-products through biomass pyrolysis. PMID:26741543

  7. Effects of Produced Water on Soil Characteristics, Plant Biomass, and Secondary Metabolites.

    PubMed

    Burkhardt, Andy; Gawde, Archana; Cantrell, Charles L; Baxter, Holly L; Joyce, Blake L; Stewart, C Neal; Zheljazkov, Valtcho D

    2015-11-01

    The Powder River Basin in Wyoming and Montana contains the United States' largest coal reserve. The area produces large amounts of natural gas through extraction from water-saturated coalbeds. Determining the impacts of coalbed natural gas-produced efflux water on crops is important when considering its potential use as supplemental irrigation water. We hypothesized that coalbed natural gas water, because of its high salinity and sodicity, would affect plant secondary metabolism (essential oils) and biomass accumulation. A 2-yr field study was conducted in Wyoming to investigate the effects of produced water on two traditional bioenergy feedstocks-corn ( L.) and switchgrass ( L.)-and four novel biofuel feedstock species-spearmint ( L.), Japanese cornmint ( L.), lemongrass [ (Nees ex Steud.) J.F. Watson]), and common wormwood ( L.). The four nontraditional feedstock species were chosen because they contain high-value plant chemicals that can offset production costs. Essential oil content was significantly affected by coalbed natural gas water in lemongrass and spearmint. Oil content differences between two spearmint harvests in the same year indicated that there were significant changes between the growth stage of the plant and essential oil content; the first harvest averaged 0.42 g of oil per 100 g biomass while the second harvest (harvested before flowering) yielded only 0.19 g oil per 100 g dry biomass. Results indicated that produced water can be used for short-period (2 yr) irrigation of crops. However, prolonged use of untreated produced water for irrigation would likely have deleterious long-term effects on the soil and plants unless the water was treated or diluted (mixed) with good-quality water. PMID:26641346

  8. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    SciTech Connect

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  9. Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation.

    PubMed

    Guignard, Maïté S; Nichols, Richard A; Knell, Robert J; Macdonald, Andy; Romila, Catalina-Andreea; Trimmer, Mark; Leitch, Ilia J; Leitch, Andrew R

    2016-06-01

    Angiosperm genome sizes (GS) range c. 2400-fold, and as nucleic acids are amongst the most phosphorus- (P) and nitrogen (N)-demanding cellular biomolecules, we test the hypothesis that a key influence on plant biomass and species composition is the interaction between N and P availability and plant GS. We analysed the impact of different nutrient regimes on above-ground biomass of angiosperm species with different GS, ploidy level and Grime's C-S-R (competitive, stress-tolerant, ruderal) plant strategies growing at the Park Grass Experiment (Rothamsted, UK), established in 1856. The biomass-weighted mean GS of species growing on plots with the addition of both N and P fertilizer were significantly higher than that of plants growing on control plots and plots with either N or P. The plants on these N + P plots are dominated by polyploids with large GS and a competitive plant strategy. The results are consistent with our hypothesis that large genomes are costly to build and maintain under N and P limitation. Hence GS and ploidy are significant traits affecting biomass growth under different nutrient regimes, influencing plant community composition and ecosystem dynamics. We propose that GS is a critical factor needed in models that bridge the knowledge gap between biodiversity and ecosystem functioning. PMID:26875784

  10. Residential radon mitigations at Kitigan Zibi Anishinabeg: comparison of above ground level (RIM JOIST) and above roof line discharge of radon mitigation SUB-SLAB depressurization systems.

    PubMed

    Brossard, Mathieu; Brascoupé, Marcel; Ottawa, Celine Brazeau; Falcomer, Renato; Ottawa, William; Scott, Arthur; Whyte, Jeff

    2012-05-01

    Radon mitigations in nine houses were conducted by installing sub-slab depressurization systems (SSDS) with two types of discharge and fan locations: Ground level discharge with the fan located in the basement or roof-discharge with the fan located in the attic. This paper presents a detailed comparative analysis of the radon reduction efficiency, condensation problems, and the cost-effectiveness of both SSDS installation scenarios in nine houses. The mitigations from both SSDS scenarios were successful in reducing radon. The results of rim-joist installations discharging above ground level with the fans located in the basement show that a sealed radon fan with proper fittings and sealed piping were able to reduce the radon to acceptable levels in a cost-effective manner. PMID:22469999

  11. Verticillium dahliae Infects, Alters Plant Biomass, and Produces Inoculum on Rotation Crops.

    PubMed

    Wheeler, D L; Johnson, D A

    2016-06-01

    Verticillium wilt, caused by Verticillium dahliae, reduces yields of potato and mint. Crop rotation is a potential management tactic for Verticillium wilt; however, the wide host range of V. dahliae may limit the effectiveness of this tactic. The hypothesis that rotation crops are infected by V. dahliae inoculum originating from potato and mint was tested by inoculation of mustards, grasses, and Austrian winter pea with eight isolates of V. dahliae. Inoculum density was estimated from plants and soil. Typical wilt symptoms were not observed in any rotation crop but plant biomass of some crops was reduced, not affected, or increased by infection of specific isolates. Each isolate was host-specific and infected a subset of the rotation crops tested but microsclerotia from at least one isolate were observed on each rotation crop. Some isolates were host-adapted and differentially altered plant biomass or produced differential amounts of inoculum on rotation crops like arugula and Austrian winter pea, which supported more inoculum of specific isolates than potato. Evidence of asymptomatic and symptomatic infection and differential inoculum formation of V. dahliae on rotation crops presented here will be useful in designing rotations for management of Verticillium wilt. PMID:26828231

  12. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.

    PubMed

    Álvarez-López, V; Prieto-Fernández, Á; Cabello-Conejo, M I; Kidd, P S

    2016-04-01

    Ni phytomining is a promising technology for Ni recovery from low-grade ores such as ultramafic soils. Metal-hyperaccumulators are good candidates for phytomining due to their extraordinary capacity for Ni accumulation. However, many of these plants produce a low biomass, which makes the use of agronomic techniques for improving their growth necessary. In this study, the Ni hyperaccumulators Alyssum serpyllifolium ssp. lusitanicum, A. serpyllifolium ssp. malacitanum, Alyssum bertolonii and Noccaea goesingense were evaluated for their Ni phytoextraction efficiency from a Ni-rich serpentine soil. Effects of soil inorganic fertilisation (100:100:125kgNPKha(-1)) and soil organic amendment addition (2.5, 5 or 10% compost) on plant growth and Ni accumulation were determined. All soil treatments greatly improved plant growth, but the highest biomass production was generally found after addition of 2.5 or 5% compost (w/w). The most pronounced beneficial effects were observed for N. goesingense. Total Ni phytoextracted from soils was significantly improved using both soil treatments (inorganic and organic), despite the decrease observed in soil Ni availability and shoot Ni concentrations in compost-amended soils. The most promising results were found using intermediate amount of compost, indicating that these types of organic wastes can be incorporated into phytomining systems. PMID:26803735

  13. Flux Balance Analysis of Plant Metabolism: The Effect of Biomass Composition and Model Structure on Model Predictions

    PubMed Central

    Yuan, Huili; Cheung, C. Y. Maurice; Hilbers, Peter A. J.; van Riel, Natal A. W.

    2016-01-01

    The biomass composition represented in constraint-based metabolic models is a key component for predicting cellular metabolism using flux balance analysis (FBA). Despite major advances in analytical technologies, it is often challenging to obtain a detailed composition of all major biomass components experimentally. Studies examining the influence of the biomass composition on the predictions of metabolic models have so far mostly been done on models of microorganisms. Little is known about the impact of varying biomass composition on flux prediction in FBA models of plants, whose metabolism is very versatile and complex because of the presence of multiple subcellular compartments. Also, the published metabolic models of plants differ in size and complexity. In this study, we examined the sensitivity of the predicted fluxes of plant metabolic models to biomass composition and model structure. These questions were addressed by evaluating the sensitivity of predictions of growth rates and central carbon metabolic fluxes to varying biomass compositions in three different genome-/large-scale metabolic models of Arabidopsis thaliana. Our results showed that fluxes through the central carbon metabolism were robust to changes in biomass composition. Nevertheless, comparisons between the predictions from three models using identical modeling constraints and objective function showed that model predictions were sensitive to the structure of the models, highlighting large discrepancies between the published models. PMID:27200014

  14. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM -pre-treated biomass

    DOE PAGESBeta

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-04-23

    We report that cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is amore » trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. Lastly, we found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.« less

  15. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass.

    PubMed

    Pattathil, Sivakumar; Hahn, Michael G; Dale, Bruce E; Chundawat, Shishir P S

    2015-07-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. PMID:25911738

  16. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass

    PubMed Central

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-01-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. PMID:25911738

  17. Biomass Burning, Long-Range Atmospheric Transport and the Sedimentary Record of Plant Wax Biomarkers

    NASA Astrophysics Data System (ADS)

    Weber, J. C.; Conte, M. H.

    2007-12-01

    Sedimentary distributions of plant leaf wax molecular and isotopic composition can provide detailed information about past terrestrial ecosystem structure and its variability in response to climatic forcing. However, in many locales (e.g. marine sediments, high elevation lakes), sedimentary plant waxes are derived primarily from atmospheric deposition rather than from local fluvial input or direct runoff. Thus, an understanding of wax atmospheric transport and deposition is essential for accurate interpretation of the sedimentary signal. In this talk we synthesize results from our studies of wax aerosol composition and atmospheric transport at strategically located sites (Northern Alaska, Maine, Florida, Bermuda, Barbados, French Guiana) that sample continental air masses passing over major terrestrial ecosystems (tundra, North American boreal, temperate and southern pine forests, North African desert grasslands, Amazon rain forest). Wax aerosols in boundary layer air masses reflect a large regionally integrated source signal. Over the North Atlantic, the long-range atmospheric transport of plant waxes is essentially uncorrelated with episodes of high African dust transport. Rather, the highest plant wax aerosol concentrations are clearly associated with continental air masses that are laden with smoke from biomass burning, which enhances long-range transport both by the process of steam distillation of wax and other easily volatilized compounds off living (moisture-rich) vegetation in the advancing front of the fire and by deep atmospheric convection, which efficiently injects re- condensed particles into the lower troposphere where they can be most efficiently transported by high altitude winds. The direct linkage between enhanced long-range atmospheric transport of plant waxes and biomass burning suggests that the wax sedimentary record in localities dominated by atmospheric input strongly co-varies with climate-driven changes in fire frequency and is

  18. Design, simulation, analysis and optimization of transportation system for a biomass to ethanol conversion plant

    NASA Astrophysics Data System (ADS)

    Ravula, Poorna P.

    The US Department of Energy has set an ambitious goal of replacing 30% of current petroleum consumption with biomass and its products by the year 2030. To achieve this goal, various systems capable of handling biomass at this magnitude have to be designed and built. The transportation system for a cotton gin was studied and modeled with the current management policy (FIFO) used by the gin to gain understanding of a logistic system where the processing plant (gin) pays for the transportation of the feedstock. Alternate management policies for transporting cotton modules showed significant time savings of 24% in days-to-haul. To design a logistics system and management strategy that will minimize the cost of biomass delivery (round bales of switchgrass), a seven-county region in southern Piedmont region of Virginia was selected as the location for a 50 Mg/h bioprocessing plant which operates 24 h/day, 7 days/week. Some of the equipment are not be commercially available and need to be developed. The transport equipment (trucks, loaders and unloaders) was defined and the operational parameters estimated. One hundred and fifty-five secondary storage locations (SSLs) along with a 3.2-km procurement area for each SSL were determined for the region. The travel time from each SSL to the plant was calculated based on a network flow analysis. Seven different policies (strategies) for scheduling loaders were studied. The two key variables were maximum number of trucks required and the maximum at-plant inventory. Five policies were based on "Shortest Travel Time - Longest Travel Time" allocation and two policies were based on "Sector-based" allocation. Policies generating schedules with minimum truck requirement and at-plant storage were simulated. A discrete event simulation model for the logistic system was constructed and the productive operating times for system equipment and inventory was computed. Lowest delivered cost was 14.68/Mg with truck cost averaging 8.44/Mg and

  19. Topo-edaphic controls over woody plant biomass in South African savannas

    NASA Astrophysics Data System (ADS)

    Colgan, M. S.; Asner, G. P.; Levick, S. R.; Martin, R. E.; Chadwick, O. A.

    2012-05-01

    The distribution of woody biomass in savannas reflects spatial patterns fundamental to ecosystem processes, such as water flow, competition, and herbivory, and is a key contributor to savanna ecosystem services, such as fuelwood supply. While total precipitation sets an upper bound on savanna woody biomass, the extent to which substrate and terrain constrain trees and shrubs below this maximum remains poorly understood, often occluded by local-scale disturbances such as fire and trampling. Here we investigate the role of hillslope topography and soil properties in controlling woody plant aboveground biomass (AGB) in Kruger National Park, South Africa. Large-area sampling with airborne Light Detection and Ranging (LiDAR) provided a means to average across local-scale disturbances, revealing an unexpectedly linear relationship between AGB and hillslope-position on basalts, where biomass levels were lowest on crests, and linearly increased toward streams (R2 = 0.91). The observed pattern was different on granite substrates, where AGB exhibited a strongly non-linear relationship with hillslope position: AGB was high on crests, decreased midslope, and then increased near stream channels (R2 = 0.87). Overall, we observed 5-to-8-fold lower AGB on clayey, basalt-derived soil than on granites, and we suggest this is due to herbivore-fire interactions rather than lower hydraulic conductivity or clay shrinkage/swelling, as previously hypothesized. By mapping AGB within and outside fire and herbivore exclosures, we found that basalt-derived soils support tenfold higher AGB in the absence of fire and herbivory, suggesting high clay content alone is not a proximal limitation on AGB. Understanding how fire and herbivory contribute to AGB heterogeneity is critical to predicting future savanna carbon storage under a changing climate.

  20. Topo-edaphic controls over woody plant biomass in South African savannas

    NASA Astrophysics Data System (ADS)

    Colgan, M. S.; Asner, G. P.; Levick, S. R.; Martin, R. E.; Chadwick, O. A.

    2012-01-01

    The distribution of woody biomass in savannas reflects spatial patterns fundamental to ecosystem processes, such as water flow, competition, and herbivory, and is a key contributor to savanna ecosystem services, such as fuelwood supply. While total precipitation sets an upper bound on savanna woody biomass, the extent to which substrate and terrain constrain trees and shrubs below this maximum remains poorly understood, often occluded by local-scale disturbances such as fire and trampling. Here we investigate the role of hillslope topography and soil properties in controlling woody plant aboveground biomass (AGB) in Kruger National Park, South Africa. Large-area sampling with airborne Light Detection and Ranging (LiDAR) provided a means to average across local-scale disturbances, revealing an unexpectedly linear relationship between AGB and hillslope-position on basalts, where biomass levels were lowest on crests, and linearly increased toward streams (R2 = 0.91). The observed pattern was different on granite substrates, where AGB exhibited a strongly non-linear relationship with hillslope position: AGB was high on crests, decreased midslope, and then increased near stream channels (R2 = 0.87). Overall, we observed 5-to-8-fold lower AGB on clayey, basalt-derived soil than on granites, and we suggest this is due to herbivore-fire interactions rather than lower hydraulic conductivity or clay shrinkage/swelling, as previously hypothesized. By mapping AGB within and outside fire and herbivore exclosures, we found that basalt-derived soils support tenfold higher AGB in the absence of fire and herbivory, suggesting high clay content alone is not a~proximal limitation on AGB. Understanding how fire and herbivory contribute to AGB heterogeneity is critical to predicting future savanna carbon storage under a changing climate.

  1. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    NASA Astrophysics Data System (ADS)

    Fitzsimons, R. E.; Laurino, C. N.; Vallejos, R. H.

    1982-08-01

    The use of aquatic plants in artificial lakes as a biomass source for biogas and fertilizer production through anaerobic fermentation is evaluated, and the magnitude of this resource and the potential production of biogas and fertilizer are estimated. The specific case considered is the artificial lake that will be created by the construction of Parana Medio Hydroelectric Project on the middle Parana River in Argentina. The growth of the main aquatic plant, water hyacinth, on the middle Parana River has been measured, and its conversion to methane by anaerobic fermentation is determined. It is estimated that gross methane production may be between 1.0-4.1 x 10 to the 9th cu cm/year. The fermentation residue can be used as a soil conditioner, and it is estimated production of the residue may represent between 54,900-221,400 tons of nitrogen/year, a value which is 2-8 times the present nitrogen fertilizer demand in Argentina.

  2. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels

    PubMed Central

    Lebaudy, Anne; Vavasseur, Alain; Hosy, Eric; Dreyer, Ingo; Leonhardt, Nathalie; Thibaud, Jean-Baptiste; Véry, Anne-Aliénor; Simonneau, Thierry; Sentenac, Hervé

    2008-01-01

    At least four genes encoding plasma membrane inward K+ channels (Kin channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major Kin channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell Kin channel (GCKin) activity, providing a model to investigate the roles of this activity in the plant. GCKin activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCKin activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCKin activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments. PMID:18367672

  3. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.

    PubMed

    Steen, Eric J; Kang, Yisheng; Bokinsky, Gregory; Hu, Zhihao; Schirmer, Andreas; McClure, Amy; Del Cardayre, Stephen B; Keasling, Jay D

    2010-01-28

    Increasing energy costs and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. Major efforts to this end are focused on the microbial production of high-energy fuels by cost-effective 'consolidated bioprocesses'. Fatty acids are composed of long alkyl chains and represent nature's 'petroleum', being a primary metabolite used by cells for both chemical and energy storage functions. These energy-rich molecules are today isolated from plant and animal oils for a diverse set of products ranging from fuels to oleochemicals. A more scalable, controllable and economic route to this important class of chemicals would be through the microbial conversion of renewable feedstocks, such as biomass-derived carbohydrates. Here we demonstrate the engineering of Escherichia coli to produce structurally tailored fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars. Furthermore, we show engineering of the biodiesel-producing cells to express hemicellulases, a step towards producing these compounds directly from hemicellulose, a major component of plant-derived biomass. PMID:20111002

  4. Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams.

    PubMed

    Barros, Diana; Oliveira, Patrícia; Pascoal, Cláudia; Cássio, Fernanda

    2016-09-15

    Fungi, particularly aquatic hyphomycetes, have been recognized as playing a dominant role in microbial decomposition of plant litter in streams. In this study, we used a microcosm experiment with different levels of fungal diversity (species number and identity) using monocultures and combinations with up to five aquatic hyphomycete species (Articulospora tetracladia, Tricladium splendens, Heliscus submersus, Tetrachaetum elegans and Flagellospora curta) to assess the effects of ethanol and phenanthrene on three functional measures: plant litter decomposition, fungal biomass accrual and reproduction. Alder leaves were conditioned by fungi for 7days and then were exposed to phenanthrene (1mgL(-1)) dissolved in ethanol (0.1% final concentration) or ethanol (at the concentration used to solubilise phenanthrene) for further 24days. Exposure to ethanol alone or in combination with phenanthrene decreased leaf decomposition and fungal reproduction, but increased fungal biomass produced. All aspects of fungal activity varied with species number. Fungal activity in polycultures was generally higher than that expected from the sum of the weighted performances of participating species in monoculture, suggesting complementarity between species. However, the activity of fungi in polycultures did not exceed the activity of the most productive species either in the absence or presence of ethanol alone or with phenanthrene. PMID:27186876

  5. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    PubMed

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  6. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves

    PubMed Central

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-01-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  7. A hyperspectral approach to estimating biomass and plant production in a heterogeneous restored temperate peatland

    NASA Astrophysics Data System (ADS)

    Byrd, K. B.; Schile, L. M.; Windham-Myers, L.; Kelly, M.; Hatala, J.; Baldocchi, D. D.

    2012-12-01

    Restoration of drained peatlands that are managed to reverse subsidence through organic accretion holds significant potential for large-scale carbon storage and sequestration. This potential has been demonstrated in an experimental wetland restoration site established by the U.S. Geological Survey in 1997 on Twitchell Island in the Sacramento-San Joaquin River Delta, where soil carbon storage is up to 1 kg C m-2 and root and rhizome production can reach over 7 kg m-2 annually. Remote sensing-based estimation of biomass and productivity over a large spatial extent helps to monitor carbon storage potential of these restored peatlands. Extensive field measurements of plant biophysical characteristics such as biomass, leaf area index, and the fraction of absorbed photosynthetically active radiation (fAPAR) [an important variable in light-use efficiency (LUE) models] have been collected for agricultural systems and forests. However the small size and local spatial variability of U.S. Pacific Coast wetlands pose new challenges for measuring these variables in the field and generating estimates through remote sensing. In particular background effects of non-photosynthetic vegetation (NPV), floating aquatic vegetation, and inundation of wetland vegetation influence the relationship between field measurements and multispectral or hyperspectral indices. Working at the USGS experimental wetland site, characterized by variable water depth and substantial NPV, or thatch, we collected field data on hardstem bulrush (Schoenoplectus acutus) and cattail (Typha spp.) coupled with reflectance data from a field spectrometer (350-2500 nm) every two to three weeks during the summers of 2011 and 2012. We calculated aboveground biomass with existing allometric relationships, and fAPAR was measured with line and point quantum sensors. We analyzed reflectance data to develop hyperspectral and multispectral indices that predict biomass and fAPAR and account for background effects of water

  8. Leaf-cutter ant fungus gardens are biphasic mixed microbial bioreactors that convert plant biomass to polyols with biotechnological applications.

    PubMed

    Somera, Alexandre F; Lima, Adriel M; Dos Santos-Neto, Álvaro J; Lanças, Fernando M; Bacci, Maurício

    2015-07-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490

  9. Leaf-Cutter Ant Fungus Gardens Are Biphasic Mixed Microbial Bioreactors That Convert Plant Biomass to Polyols with Biotechnological Applications

    PubMed Central

    Somera, Alexandre F.; Lima, Adriel M.; dos Santos-Neto, Álvaro J.; Lanças, Fernando M.

    2015-01-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490

  10. [Changes of plant community biomass and soil nutrients during the vegetation succession on abandoned cultivated land in desert steppe region].

    PubMed

    An, Hui; Yang, Xin-Guo; Liu, Bing-Ru; Li, Xue-Bin; He, Xiu-Zhen; Song, Nai-Ping

    2011-12-01

    By the method of substituting temporal serial with spatial serial, and taking five abandoned cultivated lands with different ages (1, 4, 9, 12, and 20 years) in desert steppe region as test objects, this paper studied the change characteristics of plant community biomass and soil nutrients during vegetation succession. With the increasing abandoned years, the plant community aboveground biomass on the abandoned lands increased after an initial decrease, whereas the total nitrogen, total phosphorus, organic carbon contents, and carbon density in 0-60 cm soil layer increased first, decreased then, and increased again, with the maximum values of soil total nitrogen and phosphorus contents appeared on the abandoned lands with the ages 4 and 20 years. During vegetation succession, the effects of soil total nitrogen and organic carbon on plant community biomass were greater than those of soil total phosphorus and soil bulk density. PMID:22384580

  11. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion

    SciTech Connect

    Simoneit, B.R.T. ); Rogge, W.F.; Cass, G.R. ); Mazurek, M.A. ); Standley, L.J. ); Hildemann, L.M. )

    1993-11-01

    Biomass smoke aerosols contain thermally unaltered and partially altered biomarker compounds from major vegetation taxa. These compounds range from C[sub 8] to C[sub 31] and include phytosterols, lignans, phenolic products from lignin, and diterpenoids from resins. Certain of the higher molecular weight biomarkers are vaporized from the parent plant material and subsequently condense unaltered into the particle phase. Other compounds undergo pyrolytic alteration and possibly dimerization. In both cases it is possible to assign many of these compounds to the plant taxa of the unburned fuel. The diterpenoids are good indicators for smoke from burning of gymnosperm wood. The relative distribution of the OH/OCH[sub 3] substituent patterns on the phenolic products indicates the plant class of the biomass that was burned. Application of these relationships to the interpretation of ambient smoke aerosols may permit further evaluation of the sources that contribute to regional biomass burning. 80 refs., 5 figs., 1 tab.

  12. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases.

    PubMed

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2015-05-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification. PMID:25804821

  13. Using a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludge.

    PubMed

    Hei, Liang; Lee, Charles C C; Wang, Hui; Lin, Xiao-Yan; Chen, Xiao-Hong; Wu, Qi-Tang

    2016-10-01

    The study was carried out to investigate the use of a high biomass plant, Pennisetum hydridum, to treat municipal sewage sludge (MSS). An experiment composed of plots with four treatments, soil, fresh sludge, soil-sludge mixture and phyto-treated sludge, was conducted. It showed that the plant could not survive directly in fresh MSS when cultivated from stem cuttings. The experiment transplanting the incubated cutting with nurse medium of P. hydridum in soil and fresh MSS, showed that the plants grew normally in fresh MSS. The pilot experiment of P. hydridum and Alocasia macrorrhiza showed that the total yield and nutrient amount of P. hydridum were 9.2 times and 3.6 times more than that of A. macrorrhiza. After plant treatment, MSS was dried, stabilized and suitable to be landfilled or incinerated, with a calorific value of about 5.6MJ/kg (compared to the initial value of 1.9MJ/kg fresh sludge). PMID:26897473

  14. Nutrient-enhanced decomposition of plant biomass in a freshwater wetland

    USGS Publications Warehouse

    Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.

    2015-01-01

    We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.

  15. Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases

    PubMed Central

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2016-01-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocalli-mastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification. PMID:25804821

  16. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    PubMed

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. PMID:26197869

  17. Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor.

    PubMed

    Baque, Md Abdullahil; Moh, Sang-Hyun; Lee, Eun-Jung; Zhong, Jian-Jiang; Paek, Kee-Yoeup

    2012-01-01

    The increasing global demand for biomass of medicinal plant resources reflects the issues and crisis created by diminishing renewable resources and increasing consumer populations. Moreover, diverse usage of plants and reduced land for cultivation in the world accelerated the deficiency of plant resources. In addition, the preparation of safety of plant based medicine whips up demand for biomass of valuable medicinal plants. As one of alternative approach to upswing the productivity of plant-based pharmaceutical compounds, automation of adventitious root culture system in air-lift bioreactor was adopted to produce cosmic amount of root biomass along with enriched diverse bioactive molecules. In this review, various physiological, engineering parameters, and selection of proper cultivation strategy (fed-batch, two-stage etc.) affecting the biomass production and secondary metabolite accumulation have been discussed. In addition, advances in adventitious root cultures including factors for process scale-up as well as recent research aimed at maximizing automation of the bioreactor production processes are also highlighted. Examples of the scale-up of cultures of adventitious roots of Morinda citrifolia, Echinacea purpurea and angustifolia, Hypericum perforatum and Panax ginseng by applying 20 L to 10,000 L bioreactors in our lab were demonstrated with a view of commercial application. PMID:22123438

  18. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria

    PubMed Central

    Mauro-Herrera, Margarita; Doust, Andrew N.

    2016-01-01

    The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture. PMID:26985990

  19. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    PubMed

    Mauro-Herrera, Margarita; Doust, Andrew N

    2016-01-01

    The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture. PMID:26985990

  20. Controlled production of cellulases in plants for biomass conversion. Progress report, June 15, 1996--March 10, 1997

    SciTech Connect

    Danna, K.J.

    1997-06-01

    The goal of this project is to facilitate conversion of plant biomass to usable energy by developing transgenic plants that express genes for microbial cellulases, which can be activated after harvest of the plants. In particular, we want to determine the feasibility of targeting an endoglucanase and a cellobiohydrolase to the plant apoplast (cell wall milieu). The apoplast not only contains cellulose, the substrate for the enzymes, but also can tolerate large amounts of foreign protein. To avoid detrimental effects of cellulase expression in plants, we have chosen enzymes with high temperature optima; the genes for these enzymes are from thermophilic organisms that can use cellulose as a sole energy source.

  1. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    DOE PAGESBeta

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; Hahn, Michael G.; Mohnen, Debra; Westpheling, Janet

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thusmore » provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new and

  2. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    SciTech Connect

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; Hahn, Michael G.; Mohnen, Debra; Westpheling, Janet

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new

  3. Relative Crystallinity of Plant Biomass: Studies on Assembly, Adaptation and Acclimation

    PubMed Central

    Harris, Darby; DeBolt, Seth

    2008-01-01

    Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR). Relative crystallinity index (RCI) is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes. PMID:18682826

  4. Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation.

    PubMed

    Harris, Darby; DeBolt, Seth

    2008-01-01

    Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR). Relative crystallinity index (RCI) is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes. PMID:18682826

  5. Risks and benefits of marginal biomass-derived biochars for plant growth.

    PubMed

    Buss, Wolfram; Graham, Margaret C; Shepherd, Jessica G; Mašek, Ondřej

    2016-11-01

    In this study, 19 biochars from marginal biomass, representing all major biomass groups (woody materials, grass, an aquatic plant, anthropogenic wastes) were investigated regarding their content of available potentially toxic elements (PTEs) and nutrients (determined by NH4NO3-extractions) and their effects on cress (Lepidium sativum) seedling growth. The objective was to assess the potential and actual effects of biochar with increased PTE content on plant growth in the context of use in soil amendments and growing media. It showed that the percentage of available PTEs was highest for biochars produced at the highest treatment temperature (HTT) of 750°C. On average, however, for all 19 biochars, the percentage availability of Cu, Cr, Ni and Zn (<1.5% for all) was similar to the percentage availability reported in the literature for the same elements in soils at similar pH values which is a highly important finding. Most biochars exceeded German soil threshold values for NH4NO3-extractable PTEs, such as Zn (by up to 25-fold), As and Cd. Despite this, cress seedling growth tests with 5% biochar in sand did not show any correlations between inhibitory effects (observed in 5 of the 19 biochars) and the available PTE concentrations. Instead, the available K concentration and biochar pH were highly significantly, negatively correlated with seedling growth (K: p<0.001, pH: p=0.004). K had the highest available concentration of all elements and the highest percentage availability (47.7±19.7% of the total K was available). Consequently, available K contributed most to the osmotic pressure and high pH which negatively affected the seedlings. Although a potential risk if some of these marginal biomass-derived biochar were applied at high concentrations, e.g. 5% (>100tha(-1)), when applied at agriculturally realistic application rates (1-10tha(-1)), the resulting smaller increases in pH and available K concentration may actually be beneficial for plant growth. PMID:27362631

  6. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants

    PubMed Central

    Herrera, Javier

    2009-01-01

    Background and Aims While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. Methods The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Key Results Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200–400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Conclusions Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed. PMID:19258340

  7. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555.

    PubMed

    Kim, Seonghun; Park, Jang Min; Kim, Chul Ho

    2013-03-01

    Jerusalem artichoke is a low-requirement sugar crop containing cellulose and hemicellulose in the stalk and a high content of inulin in the tuber. However, the lignocellulosic component in Jerusalem artichoke stalk reduces the fermentability of the whole plant for efficient bioethanol production. In this study, Jerusalem artichoke stalk was pretreated sequentially with dilute acid and alkali, and then hydrolyzed enzymatically. During enzymatic hydrolysis, approximately 88 % of the glucan and xylan were converted to glucose and xylose, respectively. Batch and fed-batch simultaneous saccharification and fermentation of both pretreated stalk and tuber by Kluyveromyces marxianus CBS1555 were effectively performed, yielding 29.1 and 70.2 g/L ethanol, respectively. In fed-batch fermentation, ethanol productivity was 0.255 g ethanol per gram of dry Jerusalem artichoke biomass, or 0.361 g ethanol per gram of glucose, with a 0.924 g/L/h ethanol productivity. These results show that combining the tuber and the stalk hydrolysate is a useful strategy for whole biomass utilization in effective bioethanol fermentation from Jerusalem artichoke. PMID:23322254

  8. Increased plant biomass in a High Arctic heath community from 1981 to 2008.

    PubMed

    Hudson, J M G; Henry, G H R

    2009-10-01

    The Canadian High Arctic has been warming for several decades. Over this period, tundra plant communities have been influenced by regional climate change, as well as other disturbances. At a site on Ellesmere Island, Nunavut, Canada, we measured biomass and composition changes in a heath community over 13 years using a point-intercept method in permanent plots (1995-2007) and over 27 years using a biomass harvest comparison (1981-2008). Results from both methods indicate that the community became more productive over time, suggesting that this ecosystem is currently in transition. Bryophyte and evergreen shrub abundances increased, while deciduous shrub, forb, graminoid, and lichen cover did not change. Species diversity also remained unchanged. Because of the greater evergreen shrub cover, canopy height increased. From 1995 to 2007, mean annual temperature and growing season length increased at the site. Maximum thaw depth increased, while soil water content did not change. We attribute the increased productivity of this community to regional warming over the past 30-50 years. This study provides the first plot-based evidence for the recent pan-Arctic increase in tundra productivity detected by satellite-based remote-sensing and repeat-photography studies. These types of ground-level observations are critical tools for detecting and projecting long-term community-level responses to warming. PMID:19886474

  9. No cumulative effect of 10 years of elevated [CO2 ] on perennial plant biomass components in the Mojave Desert.

    PubMed

    Newingham, Beth A; Vanier, Cheryl H; Charlet, Therese N; Ogle, Kiona; Smith, Stanley D; Nowak, Robert S

    2013-07-01

    Elevated atmospheric CO2 concentrations ([CO2 ]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2 ] may be particularly large in deserts, but information on their long-term response is unknown. We evaluated the cumulative effects of elevated [CO2 ] on primary production at the Nevada Desert FACE (free-air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10-year elevated [CO2 ] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long-term results of elevated [CO2 ] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2 ] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above- and belowground components. However, elevated [CO2 ] increased short-term responses, including leaf water-use efficiency (WUE) as measured by carbon isotope discrimination and increased plot-level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above- and belowground pools significantly differed among dominant species, but responses to elevated [CO2 ] did not vary among species, photosynthetic pathway (C3 vs. C4 ), or growth form (drought-deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf-level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2 ] during the 10-year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2 ] is explained by inter

  10. Operational characteristics of a 1.2-MW biomass gasification and power generation plant.

    PubMed

    Wu, Chuang-zhi; Yin, Xiu-li; Ma, Long-long; Zhou, Zhao-qiu; Chen, Han-ping

    2009-01-01

    In this study, we analyzed the operational characteristics of a 1.2-MW rice husk gasification and power generation plant located in Changxing, Zhejiang province, China. The influences of gasification temperature, equivalence ratio (ER), feeding rate and rice husk water content on the gasification characteristics in a fluidized bed gasifier were investigated. The axial temperature profile in the dense phase of the gasifier showed that inadequate fluidization occurred inside the bed, and that the temperature was closely related to changes in ER and feeding rate. The bed temperature increased linearly with increasing ER when the feeding rate was kept constant, while a higher feeding rate corresponded to a lower bed temperature at fixed ER. The gas heating value decreased with increasing temperature, while the feeding rate had little effect. When the gasification temperature was 700-800 degrees C, the gas heating value ranged from 5450-6400 kJ/Nm(3). The water content of the rice husk had an obvious influence on the operation of the gasifier: increases in water content up to 15% resulted in increasing ER and gas yield, while water contents above 15% caused aberrant temperature fluctuations. The problems in this plant are discussed in the light of operational experience of MW-scale biomass gasification and power generation plants. PMID:19397988

  11. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.

    PubMed

    Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong

    2016-07-01

    Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production. PMID:27003793

  12. Deriving the optimal scale for relating topographic attributes and cover crop plant biomass

    NASA Astrophysics Data System (ADS)

    Muñoz, Juan D.; Kravchenko, Alexandra

    2012-12-01

    The use of cover crops generates a number of agro-ecological benefits for sustainable row-crop agriculture. However, their performance across agricultural fields is often highly spatially variable and there is insufficient information on factors affecting this variability and on tools to manage it. Topography is one of the main factors affecting spatial patterns of plant growth in the American Midwest. Digital elevation models are readily available for deriving topographic attributes; also sensor digital data can be used to indirectly assess cover crop biomass. However, processing procedures for identifying the proper scale of topographic and biomass representations are not well defined. The objectives of this study are to examine how relationships between cover crop biomass, assessed using the normalized difference vegetation index (NDVI), and topography depend on the neighborhood size used for deriving topographic attributes and creating NDVI maps; and identify the optimal neighborhood size for correlation and regression analyses. Slope, relative elevation and the potential solar radiation index were the variables that contributed the most to explaining variability in NDVI for raw data. However, other topographic attributes became significant predictors of NDVI at larger neighborhood sizes. We demonstrated that neighborhood size greatly affects some topographic attributes, i.e. curvature, flow accumulation, flow length and the wetness index; and changing the neighborhood size in both topography and NDVI considerably changes the strength of the prediction performance in multiple regression models. We studied six neighborhood sizes from 1 to 40 m and the original raw data. On average, across all studied fields the best performance of multiple regression, as determined by the adjusted-R2, was obtained at neighborhood sizes 20 and 40 m. Parameters of semivariogram models for terrain slope, such as the spatial autocorrelation range and the nugget/sill ratio, were

  13. Vegetable Seedling Breeding with Biochar Produced from Invasive Plant Biomass in South West of China

    NASA Astrophysics Data System (ADS)

    Li, Guitong; Tian, Yanfang; Liu, Cheng; Cao, Jianhua; Lin, Qimei; Zhao, Xiaorong

    2015-04-01

    Crofton Weed (Ageratina adenophora) is an invasive plant widely colonized in the southwest part of China, such as Yunnan, Guizhou, and Sichuan. It is estimated that the total biomass of this small shrub in China can be as much as 30 million tones. Many methods have been developed to control its malignant expansion, mostly by using its leaves as feed for livestock. Its stem is difficult to use, although it accounts for more than 90% of its total biomass. A biochar production system, using the stems of Crofton Weed as feedstock, was established at Xi-Yu Biological Science and Technology Company, Pan-Zhi-hua, Sichuan Province, China. The system is composed of feeder, hot-air dryer, pyrolyser, activator, steam producer, and biochar-based fertilizer producer. The energy for producing hot-air to pre-dry the feedstock and steam to activate the carbonized material comes from the re-use of the heat yielded from the pyrolysis process. The whole system is in a high level of automation and energy efficiency. With this system, local farmers can improve their income by collecting stems of Crofton Weed and selling them to the producer. It is a practical way to control this kind of invasive plant by offering economic value for the local people. The biochar can be used to produce new seedling substrate by replacing peat to protect wetland resource. The biochar seedling media was produced in a simple way and the effects on growth of vegetable seedlings was evaluated. Results showed that the response of vegetable seeds to the biochar seedling media was different, meaning more detailed studies need to done to find the reasons for some kinds of seeds failed to germinate in the tested biochar seedling media. This research was supported by the Ministry of Science and Technology of China under the Public Industry Science and Technology Project (201103027).

  14. Soil sand content can alter effects of different taxa of mycorrhizal fungi on plant biomass production of grassland species

    PubMed Central

    Zaller, Johann G.; Frank, Thomas; Drapela, Thomas

    2011-01-01

    In this greenhouse experiment we tested whether (i) ubiquitous arbuscular mycorrhizal fungi (AMF) taxa (Glomus claroideum, Glomus geosporum, Glomus intraradices, Glomus mosseae) singly and in a mixture differently affect growth and biomass production of four co-occurring grassland species (grass: Arrhenatherum elatius, non-leguminous forbs: Plantago lanceolata, Salvia pratensis and leguminous forb Trifolium pratense), and (ii) different soil sand contents alter AMF influence. We hypothesized that AMF effects on plants will increase with an increased AMF diversity and with increasing sand content. Percent AMF colonization of roots differed between plant species and AMF taxa and was higher with higher sand content. Plant growth responses to AMF were species-specific both regarding plants and AMF. Generally, biomass production of the non-leguminous forbs was the most responsive, the grass species the least and the legume intermediate both for AMF treatments and sand content. Across species, AMF influence on plant biomass increased with increasing soil sand content. Plant species growing in soil containing a mix of four AMF taxa showed similar growth responses than species in soil containing only one AMF taxon. These results suggest that both interference among AMF taxa and soil sand content can trigger the influence of AMF on plant production in grassland species. PMID:26109837

  15. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    PubMed Central

    Cu, T. T. T.; Nguyen, T. X.; Triolo, J. M.; Pedersen, L.; Le, V. D.; Le, P. D.; Sommer, S. G.

    2015-01-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg−1 volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam. PMID:25557826

  16. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    PubMed

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam. PMID:25557826

  17. Formation, composition and particle size distribution of fly-ashes from biomass combustion plants

    SciTech Connect

    Brunner, T.; Dahl, J.; Obernberger, I.

    1998-12-31

    Due to the fact that fly-ash particles and aerosols formed during biomass combustion and gasification processes are contaminated with environmentally harmful heavy metals like zinc, cadmium and lead, efficient dust removal from the flue gas is of great importance. In order to characterize biomass fly-ashes and to describe and investigate influencing factors on fly-ash and dust formation, comprehensive particle size measurements were performed with low pressure Berner-type cascade impactors under consideration of different combustion technologies and various types of biomass fuels (bark, wood chips and straw). The results showed that biomass fly-ash can be divided into two major fractions differing in particle size and composition. The first fraction consists of coarse fly-ash particles with an average particle size larger than 5{micro}m results from particles entrained from the fuel bed and is formed mainly by non-volatile minerals (Si, Ca, Mg). The second fraction consists of aerosols (particles smaller than 1{micro}m) which are formed when the flue gas is cooled (in the heat exchanger section) by condensation of volatile ash forming compounds. Chemical analyses of aerosol particles collected by low-pressure impactors revealed that these particles mainly consist of chlorides and sulfates of alkali compounds. These results are in accordance with the outputs of chemical equilibrium calculations performed for the test run conditions. Concerning heavy metal concentrations, the aerosols formed in grate furnaces contain considerable amounts of the environmentally relevant and volatile heavy metals Cd, Zn and Pb due to condensation of metal vapors with decreasing flue gas temperature. The aerosols formed in CFB combustion plants do not contain significant amounts of heavy metals which means that in these systems condensation of gaseous metal compounds does not play a major role. Chemical surface reactions between coarse fly-ash particles and metal vapors seem to be

  18. The Giant Knotweed (Fallopia sachalinensis var. Igniscum) as a new plant resource for biomass production for bioenergy

    NASA Astrophysics Data System (ADS)

    Lebzien, S.; Veste, M.; Fechner, H.; Koning, L.; Mantovani, D.; Freese, D.

    2012-04-01

    The cultivation of bioenergy crop for energetic biomass production and biogas will increase in the next decades in Europe and the world. In Germany maize is the most commonly used energy crops for biogas. To optimize the sustainability of bioenergy crop production new land management systems and crop species are needed. Herbaceous perennials have a great potential to fulfill this requirement. A new species for bioenergy production is the Giant Knotweed or Sakhalin Knotweed (Fallopia sachalinensis F. Schmidt ex Maxim., Fam. Polygonaceae) The knotweed is originated from Sakhalin, Korea and Japan .The plant is characterized by a high annual biomass production and can reach heights up to 3-4 m. As a new bioenergy crop the new cultivars IGNISCUM Basic (R) and IGNISCUM Candy (R) were cultured from the wild form and commercially used. Important is that both cultivars are not invasive. IGNISCUM Basic is used for combined heat and power plants. IGNISCUM Candy can be harvested 2-3 times during the growing season and the green biomass can be used for biogas production. Comprehensive test series are carried out to analyze the biogas. First results from lab investigations and experiments in biogas plants show that fresh matter of IGNISCUM Candy can well substitute maize as substrate in biogas power plants. Yields per hectare and the amount of biogas per ton of organic dry matter can be considered as almost equal to maize. Concerning the wooden biomass of IGNISCUM Basic values of combustion can be compared with wood chips from forest trees. For a sustainable and optimal production of biomass we develop cultivation technology for this species. Field experiments are arranged under different climatic and soil conditions across Germany from Schleswig-Holstein to southern Germany to investigate the plant growth and biomass production on the field scale. Physiological parameters are determined for the relations between growth stages, chlorophyll content, photosynthesis and plant

  19. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    USGS Publications Warehouse

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  20. [Effects of plant species combination and water body nutrient level on the biomass accumulation and allocation of three kinds functional plants].

    PubMed

    Sun, Li-Fang; Sun, Yi-Xiang; Zhou, Chang-Fang; An, Shu-Qing

    2009-10-01

    Four nutrient levels, i.e., 0.5 mg N x L(-1) and 0.1 mg P x L(-1) (I), 1.5 mg N x L(-1) and 0.3 mg P x L(-1) (II), 4.5 mg N x L(-1) and 0.9 mg P x L(-1) (III), and 13.5 mg N x L(-1) and 2.7 mg P x L(-1) (IV), were installed to study the effects of water body's nutrient level, plant species combination, and their interactions on the biomass accumulation and allocation of invasive floating species Eichhornia crassipes, native rooted leaf-floating species Jussiaea stipulacea, and submerged plant Vallisneria spiralis. The total, root, stem, and leaf biomass of E. crassipes and J. stipulacea, either in monoculture or in mixed-culture, increased with increasing water body's nutrient level, their total biomass in treatments III and IV being averagely 54.47% and 102.63% higher than that in treatments I and II, respectively. Under different plant species combination, the total, root, stem, and leaf biomass of V. spiralis showed a declining trend with the increase of nutrient level, and the total biomass of V. spiralis in treatments III and IV was averagely 45.88% lower than that in treatments I and II. The results of two-way ANOVA showed that water body's nutrient level had significant positive effects on the biomass of E. crassipes and J. stipulacea but negative effects on that of V. spiralis, and the effects of plant species combination varied with target plant species. PMID:20077692

  1. Weed management practices for organic production of trailing blackberry. II. Accumulation and loss of plant biomass and nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to assess the impact of cultivar and weed management on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer in trailing blackberry. Treatments included two cultivars, Marion and Black Diamond, each with ei...

  2. Planting date and seeding rate effects on sunn hemp biomass and nitrogen production for a winter cover crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunn hemp (Crotalaria juncea L.) is a tropical legume that produces plant biomass and nitrogen (N) quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a subsequent rye (Secale cereale L.) wi...

  3. Artificial defoliation effect on Populus growth, biomass production, and total nonstructural carbohydrate concentration

    SciTech Connect

    Reichenbacker, R.R.; Hart, E.R.; Schultz, R.C.

    1996-06-01

    The impact of artificial defoliation on Populus growth, biomass production, and total nonstructural carbohydrate concentration was examined. Four Populus clones were field planted and artificially defoliated. Assigned defoliation levels (0, 25, 50, or 75%) were applied to leaves of leaf plastochron index 0 through 8 during a 6-d period in a 3-step incremental manner to simulate cottonwood leaf beetle, Chrysomela scripta F., larval feeding patterns. Artificial defoliations were timed to coincide with the outbreaks of natural beetle populations in adjacent areas. After 2 growing seasons, trees were measured for height, diameter, and biomass accumulation. Root samples were collected from 0 and 75% defoliation treatments for each clone. Biomass was reduced an average of 33% as defoliation level increased from 0 to 75%. As defoliation level increased from 0 to 75%, a consistent allocation ratio of biomass to 2/3 above and 1/3 below ground components continued in all clones. An overcompensation response occurred in above ground biomass when a defoliation level of 25% was applied. Between 25 and 75% a strong linear trend of decreasing biomass as defoliation increased was indicated. Vitality of the tree, as indicated by total nonstructural carbohydrate content, was affected only slightly by increasing defoliation. 26 refs., 1 fig., 6 tabs.

  4. Optimization of a Steel Plant with Multiple Blast Furnaces Under Biomass Injection

    NASA Astrophysics Data System (ADS)

    Wiklund, Carl-Mikael; Pettersson, Frank; Saxén, Henrik

    2013-04-01

    The allocation of resources between several blast furnaces in an integrated steelmaking plant is studied with the aim of finding the lowest specific operation cost for steel production. In order to reduce the use of fossil fuels, biomass was considered as an auxiliary reductant in the furnace after partial pyrolysis in an external unit, as a complement to heavy fuel oil. The optimization considers raw material, energy, and emission costs and a possible credit for sold power and heat. To decrease computational requirements and to guarantee that the global optimum is found, a piecewise linearized model of the blast furnace was used in combination with linear models of the sinter-, coke-, and power plants, hot stoves, and basic oxygen furnace. The optimization was carried out under different constraints on the availability of some raw materials as well as for different efficiencies of the hot stoves of the blast furnaces. The results indicate that a non-uniform distribution of the production between the furnaces can be advantageous, and some surprising findings concerning the optimal resource allocation under constrained operation are reported.

  5. Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass

    PubMed Central

    Blumer-Schuette, Sara E.; Giannone, Richard J.; Zurawski, Jeffrey V.; Ozdemir, Inci; Ma, Qin; Yin, Yanbin; Xu, Ying; Kataeva, Irina; Poole, Farris L.; Adams, Michael W. W.; Hamilton-Brehm, Scott D.; Elkins, James G.; Larimer, Frank W.; Land, Miriam L.; Hauser, Loren J.; Cottingham, Robert W.; Hettich, Robert L.

    2012-01-01

    Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose. PMID:22636774

  6. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants.

    PubMed

    Saatz, Jessica; Vetterlein, Doris; Mattusch, Jürgen; Otto, Matthias; Daus, Birgit

    2015-09-01

    Rare earth elements (REE) are expected to become pollutants by enriching in the environment due to their wide applications nowadays. The uptake and distribution of gadolinium and yttrium and its influence on biomass production and nutrient balance was investigated in hydroponic solution experiments with maize plants using increasing application doses of 0.1, 1 and 10 mg L(-1). It could be shown that concentrations of up to 1 mg L(-1) of Gd and Y did not reduce or enhance the plant growth or alter the nutrient balance. 10 mg L(-1) Gd or Y resulted in REE concentrations of up to 1.2 weight-% in the roots and severe phosphate deficiency symptoms. Transfer rates showed that there was only little transport of Gd and Y from roots to shoots. Significant correlations were found between the concentration of Gd and Y in the nutrient solution and the root tissue concentration of Ca, Mg and P. PMID:25898235

  7. Effects of heavy metals contained in soil irrigated with a mixture of sewage sludge and effluent for thirty years on soil microbial biomass and plant growth

    NASA Astrophysics Data System (ADS)

    Katanda, Y.; Mushonga, C.; Banganayi, F.; Nyamangara, J.

    The use of sewage effluent as a source of nutrients and water in peri-urban crop production is widespread in developing countries. A study was conducted in 2005 at Crowborough and Firle farms (near Harare) to assess effect of Cd on microbial biomass and activity, effect of sewage sludge and effluent on soybean (Glycine max L (Merr)) nodulation, and uptake of Zn and Cu by lettuce ( Lactuca sativa L.), mustard rape ( Brassica juncea L.), covo ( Brassica napus) and star grass ( Cynodon nlemfuensis). The soil that was used had been irrigated with sewage sludge and effluent for 30 years. Soil collected from Crowborough farm was enriched with Cd to different concentrations (0.4-5 mg Cd kg -1 soil) using Cd(NO 3) 2 and microbial biomass C and N (chloroform-incubation extraction) and respiration rates (CO 2 evolution) determined. A similar experiment to determine the effect of repeated addition of small amounts of Cd to soil over time on the same parameters was conducted. Three vegetables and star grass were grown in a pot experiment and harvested at six weeks after transplanting for the determination of above ground dry matter yield, and Zn and Cu, uptake. In another pot experiment, two soybean varieties, Magoye and Solitaire, were harvested after eight weeks and nodule number and effectiveness, and above ground dry matter yield were then determined. Cd significantly decreased biomass C (68%) and N (73%). Microbial respiration also significantly decreased. It was concluded that long-term application of sewage sludge and effluent to soil has negative effects on soil micro organisms, including Rhizobia. These micro organisms are essential for N-fixation. The damage to Rhizobia, caused diminished nodulation of soybean. Mustard rape and lettuce can accumulate Zn and Cu beyond toxic limits without apparent reduction in growth thereby posing a serious concern to the food chain. The consumption of mustard rape and lettuce grown on soil amended with sewage sludge and effluent at

  8. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop.

    PubMed

    Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph

    2016-01-01

    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. PMID:27296645

  9. Factors associated with plant species richness in a coastal tall-grass prairie

    USGS Publications Warehouse

    Grace, J.B.; Allain, L.; Allen, C.

    2000-01-01

    In this study we examine the factors associated with variations in species richness within a remnant tall-grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro-elevation, soil characteristics, indications of recent disturbance, above-ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro-elevation, certain soil parameters, and light penetration through the canopy, but not with above-ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro-elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.

  10. The relationship between species richness and community biomass: the importance of environmental variables

    USGS Publications Warehouse

    Gough, L.; Grace, J.B.; Taylor, K.L.

    1994-01-01

    Several studies have used plant community biomass to predict species richness with varying success. In this study we examined the relationship between species richness and biomass for 36 marsh communities from two different watersheds. In addition, we measured several environmental variables and estimated the potential richness (the total number of species known to be able to occur in a community type) for each community. Above ground living and dead biomass combined was found to be weakly correlated with species richness (R2=0.02). Instead, a multiple regression model based on elevation (R2=0.47), salinity (R2=0.30), soil organic matter (R2=0.18), and biomass was able to explain 82% of the variance in species richness. It was found that environmental conditions could explain 89% of the variation in potential richness. Biomass had no relation to potential richness. When used as a predictor variable, potential richness was found to explain 72% of the variation in realized (observed) richness and biomass explained an addition 9% of the variance in realized richness. This finding suggests that realized richness in our system was controlled primarily by environmental regulation of potential richness and secondarily by biomass (as an indicator of competition). Further examination of the data revealed that when sites exposed to extreme environmental conditons were eliminated from the analysis, biomass became the primary predictor of realized richness and potential richness was of secondary importance. We conclude that community biomass has a limited capacity to predict species richness across a broad range of habitat conditions. Of particular importance is the inability of biomass to indicate the effect of environmental factors and evolutionary history on the potential species richness at a site.

  11. Above vs. belowground plant biomass along a barrier island: Implications for dune stabilization.

    PubMed

    Charbonneau, Bianca R; Wnek, John P; Langley, J Adam; Lee, Gina; Balsamo, Ronald A

    2016-11-01

    Coastal regions are inherently and increasingly vulnerable and geomorphologically unstable, yet are invaluable economic and residential hubs. Dunes are dynamic buffers to erosion and the most natural, economical, and effective defense for coastal communities. Vegetation is integral to dune structure as it facilitates accretion and stabilization. Differences in the vegetation and root density likely translate to variability in coastal erosion prevention, but this notion has been largely unconsidered. We directly compared stabilizing factors, depth and density, of the root systems of two dominant mid-Atlantic dune plant species, native American beach grass (Ammophila breviligulata) and invasive Asiatic sand sedge (Carex kobomugi). Despite high plant density, C. kobomugi is targeted for removal in restoration efforts as its roots are assumed to provide less effective stabilization than A. breviligulata. We collected 30 cores and hand dug 14 A. breviligulata ramets at Island Beach State Park, New Jersey to examine biomass, root:shoot ratios, and root density. C. kobomugi had a more extensive root system with a root:shoot ratio of 11.36:1 compared to 1.62:1 for A. breviligulata. Similarly, cores 60 cm deep and 7.6 cm wide were sufficient to attain fully intact A. breviligulata roots, which did not extend deeper than 40 cm, but insufficient for C. kobomugi roots which extended beyond the sampling system vertically and horizontally. Scaling these findings to m(-2), aboveground biomass is relatively equal, but C. kobomugi had over 700% more root mass m(-2) than A. breviligulata. These results have strong implications for dune management. The root system of C. kobomugi may be better adapted to stabilize dunes and thus protect coastal areas during small and large-scale perturbations than previously supposed. This is a unique situation whereby the creation of monocultures will hyperstabilize dunes and make them more resistant to erosion at the cost of reduced

  12. Micro-Spectroscopic Imaging of Lignin-Carbohydrate Complexes in Plant Cell Walls and Their Migration During Biomass Pretreatment

    SciTech Connect

    Zeng, Yining; Zhao, Shuai; Wei, Hui; Tucker, Melvin P.; Johnson, David K.; Himmel, Michael E.; Mosier, Nathan S.; Meilan, Richard; Ding, Shi-You

    2015-04-27

    In lignocellulosic biomass, lignin is the second most abundant biopolymer. In plant cell walls, lignin is associated with polysaccharides to form lignin-carbohydrate complexes (LCC). LCC have been considered to be a major factor that negatively affects the process of deconstructing biomass to simple sugars by cellulosic enzymes. Here, we report a micro-spectroscopic approach that combines fluorescence lifetime imaging microscopy and Stimulated Raman Scattering microscopy to probe in situ lignin concentration and conformation at each cell wall layer. This technique does not require extensive sample preparation or any external labels. Using poplar as a feedstock, for example, we observe variation of LCC in untreated tracheid poplar cell walls. The redistribution of LCC at tracheid poplar cell wall layers is also investigated when the chemical linkages between lignin and hemicellulose are cleaved during pretreatment. Our study would provide new insights into further improvement of the biomass pretreatment process.

  13. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    PubMed

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. PMID:24100190

  14. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

    SciTech Connect

    Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

    2009-11-15

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

  15. Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants.

    PubMed

    Fortier, Marie-Odile P; Sturm, Belinda S M

    2012-10-16

    Resource demand analyses indicate that algal biodiesel production would require unsustainable amounts of freshwater and fertilizer supplies. Alternatively, municipal wastewater effluent can be used, but this restricts production of algae to areas near wastewater treatment plants (WWTPs), and to date, there has been no geospatial analysis of the feasibility of collocating large algal ponds with WWTPs. The goals of this analysis were to determine the available areas by land cover type within radial extents (REs) up to 1.5 miles from WWTPs; to determine the limiting factor for algal production using wastewater; and to investigate the potential algal biomass production at urban, near-urban, and rural WWTPs in Kansas. Over 50% and 87% of the land around urban and rural WWTPs, respectively, was found to be potentially available for algal production. The analysis highlights a trade-off between urban WWTPs, which are generally land-limited but have excess wastewater effluent, and rural WWTPs, which are generally water-limited but have 96% of the total available land. Overall, commercial-scale algae production collocated with WWTPs is feasible; 29% of the Kansas liquid fuel demand could be met with implementation of ponds within 1 mile of all WWTPs and supplementation of water and nutrients when these are limited. PMID:22970803

  16. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    DOE PAGESBeta

    Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with themore » use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.« less

  17. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    SciTech Connect

    Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  18. Plant biomass in the Tanana River Basin, Alaska. Forest Service research paper

    SciTech Connect

    Mead, B.R.

    1995-01-01

    Vegetation biomass tables are presented for the Tanana River Basin. Average biomass for each species of tree, shrub, grass, forb, lichen, and moss in the 13 forest and 30 nonforest vegetation types is shown. These data combined with area estimates for each vegetation type provide a tool for estimating habitat carrying capacity for many wildlife species. Tree biomass is reported for the entire aboveground tree, thereby allowing estimates of total fiber content.

  19. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities.

    PubMed

    Baldwin, Andrew H; Jensen, Kai; Schönfeldt, Marisa

    2014-03-01

    Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no-migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (-14%) across latitudes in Europe and North America. Species richness and evenness of south-latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and

  20. Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system.

    PubMed

    Tikhomirov, A A; Ushakova, S A; Manukovsky, N S; Lisovsky, G M; Kudenko, Yu A; Kovalev, V S; Gribovskaya, I V; Tirrannen, L S; Zolotukhin, I G; Gros, J B; Lasseur, Ch

    2003-01-01

    The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants--SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances--products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. PMID:14649254

  1. Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu. A.; Kovalev, V. S.; Gribovskaya, I. V.; Tirranen, L. S.; Zolotukhin, I. G.; Gros, J. B.; Lasseur, Ch.

    2003-08-01

    The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants — SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances — products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover.

  2. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria.

    PubMed

    Sun, Leni; Wang, Xiaohan; Li, Ya

    2016-05-01

    The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil. PMID:26587767

  3. Adventitious Root Production and Plastic Resource Allocation to Biomass Determine Burial Tolerance in Woody Plants from Central Canadian Coastal Dunes

    PubMed Central

    DECH, JEFFERY P.; MAUN, M. ANWAR

    2006-01-01

    • Background and Aims Burial is a recurrent stress imposed upon plants of coastal dunes. Woody plants are buried on open coastal dunes and in forested areas behind active blowouts; however, little is known about the burial responses and adaptive traits of these species. The objectives of this study were: (a) to determine the growth and morphological responses to burial in sand of seven woody plant species native to central Canadian coastal dunes; and (b) to identify traits that determine burial tolerance in these species. • Methods Field experiments were conducted to determine the responses of each species to burial. Saplings were exposed to burial treatments of 0, 10, 25, 50 and 75 % of their height. Burial responses were evaluated based on regressions of total biomass, height, adventitious root production and percentage allocation to shoot, root and adventitious root biomass on percentage burial. • Key Results Pinus strobus and Picea glauca lacked burial tolerance. In response to the burial gradient, these species showed a strong linear decline in total biomass, minimal adventitious root production that peaked at moderate levels (25–50 % burial) and no change in allocation to shoots vs. roots. The tolerant species Juniperus virginiana, Thuja occidentalis and Picea mariana showed a quadratic response to burial, with little change in biomass up to 50 % burial, but a large decline at 75 %. These species produced abundant adventitious roots up to 50 % burial, but did not alter allocation patterns over the range of burial levels. Populus balsamifera and Salix cordata were stimulated by burial. These species showed linear increases in biomass with increasing burial, produced copious adventitious roots across the gradient and showed a clear shift in allocation to vertical shoot growth and adventitious root production at the expense of the original roots under high burial conditions. • Conclusions Adventitious root production and plastic resource

  4. Allometric analysis reveals relatively little variation in nitrogen versus biomass accrual in four plant species exposed to varying light, nutrients, water and CO2.

    PubMed

    Bernacchi, Carl J; Thompson, Jennifer N; Coleman, James S; McConnaughay, Kelly D M

    2007-10-01

    Nitrogen concentrations in plant tissues can vary as a function of resource availability. Altered rates of plant growth and development under varying resource availabilities were examined to determine their effects on changes in whole-plant N use efficiency (NUE). Three species of old-field annuals were grown at broadly varying light, nutrient and water levels, and four species at varying atmospheric concentrations of CO2. Study results show highly variable N accrual rates when expressed as a function of plant age or size, but similar patterns of whole-plant N versus non-N biomass accrual over a wide range of environmental conditions. However, severely light-limited plants showed increased N versus biomass accrual for two of three species, and severely nutrient-limited plants had decreased N versus biomass accrual for all species. Whole-plant N accrual versus age and N versus biomass accrual increased under saturating water for two of three species. A marginally significant, modest decrease in N versus biomass accrual was found at high CO2 levels for two of four species. Physiological adjustments in NUE, expressed as N versus biomass accrual, were limited to environments with severely limited or overabundant resources. PMID:17727413

  5. Phylogeny in Defining Model Plants for Lignocellulosic Ethanol Production: A Comparative Study of Brachypodium distachyon, Wheat, Maize, and Miscanthus x giganteus Leaf and Stem Biomass

    PubMed Central

    Meineke, Till; Manisseri, Chithra; Voigt, Christian A.

    2014-01-01

    The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat) with the C4 grasses Zea mays (maize) and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108–117 mg ethanol·g−1 dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type. PMID:25133818

  6. Predictive relationships between plant morphological traits and biomass yield in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum) has many valuable characteristics as a biofuel feedstock, but commercial viability will require further improvements of biomass yield to improve sustainability. Direct selection for biomass yield in switchgrass has proven difficult due to the many factors influencing b...

  7. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725

    PubMed Central

    Dam, Phuongan; Kataeva, Irina; Yang, Sung-Jae; Zhou, Fengfeng; Yin, Yanbin; Chou, Wenchi; Poole, Farris L.; Westpheling, Janet; Hettich, Robert; Giannone, Richard; Lewis, Derrick L.; Kelly, Robert; Gilbert, Harry J.; Henrissat, Bernard; Xu, Ying; Adams, Michael W. W.

    2011-01-01

    Caldicellulosiruptor bescii DSM 6725 utilizes various polysaccharides and grows efficiently on untreated high-lignin grasses and hardwood at an optimum temperature of ∼80°C. It is a promising anaerobic bacterium for studying high-temperature biomass conversion. Its genome contains 2666 protein-coding sequences organized into 1209 operons. Expression of 2196 genes (83%) was confirmed experimentally. At least 322 genes appear to have been obtained by lateral gene transfer (LGT). Putative functions were assigned to 364 conserved/hypothetical protein (C/HP) genes. The genome contains 171 and 88 genes related to carbohydrate transport and utilization, respectively. Growth on cellulose led to the up-regulation of 32 carbohydrate-active (CAZy), 61 sugar transport, 25 transcription factor and 234 C/HP genes. Some C/HPs were overproduced on cellulose or xylan, suggesting their involvement in polysaccharide conversion. A unique feature of the genome is enrichment with genes encoding multi-modular, multi-functional CAZy proteins organized into one large cluster, the products of which are proposed to act synergistically on different components of plant cell walls and to aid the ability of C. bescii to convert plant biomass. The high duplication of CAZy domains coupled with the ability to acquire foreign genes by LGT may have allowed the bacterium to rapidly adapt to changing plant biomass-rich environments. PMID:21227922

  8. Effects of migratory geese on plant communities of an Alaskan salt marsh

    USGS Publications Warehouse

    Zacheis, A.; Hupp, J.W.; Ruess, R.W.

    2001-01-01

    1. We studied the effects of lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) on two salt marsh plant communities in Cook Inlet, Alaska, a stopover area used during spring migration. From 1995 to 1997 we compared plant species composition and biomass on plots where geese were excluded from feeding with paired plots where foraging could occur. 2. Foraging intensity was low (650-1930 goose-days km-2) compared to other goose-grazing systems. 3. Canada geese fed mainly on above-ground shoots of Triglochin maritimum, Puccinellia spp. and Carex ramenskii, whereas the majority of the snow goose diet consisted of below-ground tissues of Plantago maritima and Triglochin maritimum. 4. Plant communities responded differently to goose herbivory. In the sedge meadow community, where feeding was primarily on above-ground shoots, there was no effect of grazing on the dominant species Carex ramenskii and Triglochin maritimum. In the herb meadow community, where snow geese fed on Plantago maritima roots and other below-ground tissues, there was a difference in the relative abundance of plant species between treatments. Biomass of Plantago maritima and Potentilla egedii was lower on grazed plots compared with exclosed, whereas biomass of Carex ramenskii was greater on grazed plots. There was no effect of herbivory on total standing crop biomass in either community. The variable effect of herbivory on Carex ramenskii between communities suggests that plant neighbours and competitive interactions are important factors in a species' response to herbivory. In addition, the type of herbivory (above- or below-ground) was important in determining plant community response to herbivory. 5. Litter accumulation was reduced in grazed areas compared with exclosed in both communities. Trampling of the previous year's litter into the soil surface by geese incorporated more litter into soils in grazed areas. 6. This study illustrates that even light herbivore

  9. Accumulation and distribution of arsenic and cadmium by tea plants*

    PubMed Central

    Shi, Yuan-zhi; Ruan, Jian-yun; Ma, Li-feng; Han, Wen-yan; Wang, Fang

    2008-01-01

    It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants, which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea. In this study, by field investigation and pot trial, we found that mobility of arsenic and cadmium in tea plants was low. Most arsenic and cadmium absorbed were fixed in feeding roots and only small amount was transported to the above-ground parts. Distribution of arsenic and cadmium, based on their concentrations of unit dry matter, in tea plants grown on un-contaminated soil was in the order: feeding roots>stems≈main roots>old leaves>young leaves. When tea plants were grown on polluted soils simulated by adding salts of these two metals, feeding roots possibly acted as a buffer and defense, and arsenic and cadmium were transported less to the above-ground parts. The concentration of cadmium in soil significantly and negatively correlated with chlorophyll content, photosynthetic rate, transpiration rate and biomass production of tea plants. PMID:18357630

  10. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S., III

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  11. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    PubMed

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance. PMID:26876611

  12. Direct Image-Based Enumeration of Clostridium phytofermentans Cells on Insoluble Plant Biomass Growth Substrates

    PubMed Central

    Alvelo-Maurosa, Jesús G.; Lee, Scott J.; Hazen, Samuel P.

    2015-01-01

    A dual-fluorescent-dye protocol to visualize and quantify Clostridium phytofermentans ISDg (ATCC 700394) cells growing on insoluble cellulosic substrates was developed by combining calcofluor white staining of the growth substrate with cell staining using the nucleic acid dye Syto 9. Cell growth, cell substrate attachment, and fermentation product formation were investigated in cultures containing either Whatman no. 1 filter paper, wild-type Sorghum bicolor, or a reduced-lignin S. bicolor double mutant (bmr-6 bmr-12 double mutant) as the growth substrate. After 3 days of growth, cell numbers in cultures grown on filter paper as the substrate were 6.0- and 2.2-fold higher than cell numbers in cultures with wild-type sorghum and double mutant sorghum, respectively. However, cells produced more ethanol per cell when grown with either sorghum substrate than with filter paper as the substrate. Ethanol yields of cultures were significantly higher with double mutant sorghum than with wild-type sorghum or filter paper as the substrate. Moreover, ethanol production correlated with cell attachment in sorghum cultures: 90% of cells were directly attached to the double mutant sorghum substrate, while only 76% of cells were attached to wild-type sorghum substrate. With filter paper as the growth substrate, ethanol production was correlated with cell number; however, with either wild-type or mutant sorghum, ethanol production did not correlate with cell number, suggesting that only a portion of the microbial cell population was active during growth on sorghum. The dual-staining procedure described here may be used to visualize and enumerate cells directly on insoluble cellulosic substrates, enabling in-depth studies of interactions of microbes with plant biomass. PMID:26637592

  13. Direct Image-Based Enumeration of Clostridium phytofermentans Cells on Insoluble Plant Biomass Growth Substrates.

    PubMed

    Alvelo-Maurosa, Jesús G; Lee, Scott J; Hazen, Samuel P; Leschine, Susan B

    2016-02-01

    A dual-fluorescent-dye protocol to visualize and quantify Clostridium phytofermentans ISDg (ATCC 700394) cells growing on insoluble cellulosic substrates was developed by combining calcofluor white staining of the growth substrate with cell staining using the nucleic acid dye Syto 9. Cell growth, cell substrate attachment, and fermentation product formation were investigated in cultures containing either Whatman no. 1 filter paper, wild-type Sorghum bicolor, or a reduced-lignin S. bicolor double mutant (bmr-6 bmr-12 double mutant) as the growth substrate. After 3 days of growth, cell numbers in cultures grown on filter paper as the substrate were 6.0- and 2.2-fold higher than cell numbers in cultures with wild-type sorghum and double mutant sorghum, respectively. However, cells produced more ethanol per cell when grown with either sorghum substrate than with filter paper as the substrate. Ethanol yields of cultures were significantly higher with double mutant sorghum than with wild-type sorghum or filter paper as the substrate. Moreover, ethanol production correlated with cell attachment in sorghum cultures: 90% of cells were directly attached to the double mutant sorghum substrate, while only 76% of cells were attached to wild-type sorghum substrate. With filter paper as the growth substrate, ethanol production was correlated with cell number; however, with either wild-type or mutant sorghum, ethanol production did not correlate with cell number, suggesting that only a portion of the microbial cell population was active during growth on sorghum. The dual-staining procedure described here may be used to visualize and enumerate cells directly on insoluble cellulosic substrates, enabling in-depth studies of interactions of microbes with plant biomass. PMID:26637592

  14. Changes in tundra vascular plant biomass over thirty years at Imnavait Creek, Alaska, and current ecosystem C and N dynamics.

    NASA Astrophysics Data System (ADS)

    Bret-Harte, M. S.; Shaver, G. R.; Euskirchen, E. S.; Huebner, D. C.; Drew, J. W.; Cherry, J. E.; Edgar, C.

    2015-12-01

    Understanding the magnitude of, and controls over, carbon fluxes in arctic ecosystems is essential for accurate assessment and prediction of their responses to climate change. In 2013, we harvested vegetation and soils in the most common plant community types in source areas for fluxes measured by eddy covariance towers located in three representative Alaska tundra ecosystems along a toposequence (a ridge site of heath tundra and moist non-acidic tundra, a mid-slope site of moist acidic tussock tundra, and a valley bottom site of wet sedge tundra and moist acidic tussock tundra) at Imnavait Creek, Alaska. This harvest sought to relate biomass, production, composition, and C and N stocks in soil and vegetation, to estimates of net ecosystem CO2 exchange obtained by micrometeorological methods. Soil C and N stocks in the seasonally unfrozen soil layer were greatest in the wet sedge community, and least in the heath community. In contrast, moist acidic tussock tundra at the valley bottom site had the highest C and N stocks in vascular plant biomass, while nearby wet sedge tundra had the lowest. Overall, soil C:N ratio was highest in moist acidic tussock tundra at the mid-slope site. Aboveground biomass of vascular plants in moist acidic tundra at the mid-slope site was nearly three times higher than that measured thirty years earlier in vegetation harvests of nearby areas at Imnavait Creek. Other harvests from sites near Toolik Field Station suggest that vascular plant biomass in moist acidic tundra has increased in multiple sites over this time period. Increased biomass in the mid-1990s corresponds with a switch from mostly negative to mostly positive spatially-averaged air temperature anomalies in the climate record. All our sites have been annual net sources of CO2 to the atmosphere over nine years of measurement, but in the last two years, the valley bottom site has been a particularly strong source, due to CO2 losses in fall and winter that correspond with a

  15. Twig and foliar biomass estimation equations for major plant species in the Tanana River basin of interior Alaska. Forest Service research paper

    SciTech Connect

    Yarie, J.; Mead, B.R.

    1988-09-01

    Equations are presented for estimating the twig, foliage, and combined biomass for 58 plant species in interior Alaska. The equations can be used for estimating biomass from percentage of the foliar cover of 10-centimeter layers in a vertical profile from 0 to 6 meters. Few differences were found in regressions of the same species between layers except when the ratio of foliar-to-twig biomass changed drastically between layers, for example, Rosa acicularis Lindl. Eighteen species were tested for regression differences between years. Thirteen showed no significant differences, five were different. Of these five, three were feather mosses for which live and dead biomass are easily confused when measured.

  16. Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential

    SciTech Connect

    Woick, B.; Friedrich, R.

    1981-09-01

    Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.

  17. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia.

    PubMed

    Greenway, M; Woolley, A

    2001-01-01

    The surface flow wetland in Cairns, Australia consists of 3 linear channels each 65 m long. Channels 1 and 2 are 5 m wide and Channel 3 is 15 m wide. The wetland was constructed in 1994 and band planted with emergent macrophyte species and alternating open water sections. The wetland was monitored for plant growth and nutrient removal until 1997. During that period HRT was 16 days in Channel 1 and 10 days in Channels 2 and 3; mass loading rates were 2.4 kg Total N and 2.0 kg Total P ha(-1) d(-1) in Channel 1 and 3.7 kg TN and 3.3 kg TP ha(-1) d(-1) in Channels 2 and 3. The aim of this work was to determine the proportion of nutrient removal that could be attributed to direct uptake by macrophytes and incorporated into plant biomass. Over the 3 year monitoring period reduction in total mass of nutrients was: Channel 1: 26% P, 85% N; Channel 2: 28% P, 87% N; Channel 3: 21% P, 81% N. Percentage reduction of FRP (Filterable Reactive Phosphorus) was similar to TP; NOx removal was 97-98%. Mass removal rates for TN and TP were higher in Channels 2 and 3 despite greater nutrient loading rates and shorter detention times. Total FRP removal was 23 kg P in Channel 1, 33 kg P in Channel 2 and 70 kg P in Channel 3 of which plant biomass accounted for 65%, 44% and 47% respectively. Total nitrogen removal was 92 kg in Channel 1,154 kg in Channel 2 and 386 kg in Channel 3 of which plant biomass accounted for 47%, 27% and 27% respectively. Thus, in this tropical surface flow wetland supporting a mixture of emergent macrophytes and floating duckweed, vegetation is an important mechanism for direct nutrient removal. PMID:11804111

  18. Plant and arthropod community sensitivity to rainfall manipulation but not nitrogen enrichment in a successional grassland ecosystem.

    PubMed

    Lee, Mark A; Manning, Pete; Walker, Catherine S; Power, Sally A

    2014-12-01

    Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands. PMID:25224801

  19. Biomass and energy productivity of Leucaena under humid subtropical conditions

    SciTech Connect

    Othman, A.B.; Prine, G.M.

    1984-01-01

    A table shows the amount and energy content of above-ground biomass produced in 1982 and 1983 by the 12 most productive of 62 accessions of Leucanena spp. established in 1979 at the University of Florida. Mean annual biomass production of the 12 accessions was 29.3 and 24.7 Mg/ha, with energy contents of 19,690 and 19,820 J/g, in 1982 and 1983 respectively.

  20. Flexible C, N and P allocation in maize plants and soil microbial biomass under recurrent and long-term drought

    NASA Astrophysics Data System (ADS)

    Larionova, Alla; Semenov, Vyacheslav; Yevdokimov, Ilya; Blagodatskaya, Evgenia

    2016-04-01

    One of the negative effects of the global warming is increasing aridity worldwide. Alterations in plant and microbial C, N and P in response to drought events can differ considerably in magnitude and direction. Therefore, synchronization between C, N and P in plants, dissolved forms and microbial biomass in soil is of great interest. Our objective was to evaluate C:N:P stoichiometry relations in plants and soil as affected by moderate water shortage and severe drought with subsequent rewetting. We tested the sensitivity of stoichiometry ratios in plants, dissolved compounds and soil microbial biomass in greenhouse experiment with maize. Three treatments were used: i) control with constant soil moisture (CTL); ii) soil with constantly low wetness of 25% WHC (DRY) and iii) soil exposed to drying-rewetting events (DRW). N dynamics was the most sensitive to water stress in maize plants and soil, while P dynamics was almost unaffected by drought and rewetting. As a result, C:N and N:P ratios were also sensitive to water treatment indicating that C, N and P cycles were decoupled by the water stresses. High C:N ratios in CTL and low C:N ratios in DRY and DRW treatments indicate stoichiometric flexibility in plants and soil microbes. N allocation was found to respond to N shortage in CTL and increased salt concentrations in soil solution in DRY and DRW treatments. C:N:P stoichiometry in soil microbes was found flexible during active plant growth, while that at the end of growth season turned to almost homeostatic ratio. The research was supported by Russian Science Foundation (project 14-14-00625)

  1. Unique metabolites protect earthworms against plant polyphenols

    PubMed Central

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A. John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J.; McPhail, David; Takáts, Zoltán; Bundy, Jacob G.

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term ‘drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  2. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  3. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    PubMed Central

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  4. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    PubMed

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  5. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii

    PubMed Central

    Das, Aparajita; Kamal, Shwet; Shakil, Najam Akhtar; Sherameti, Irena; Oelmüller, Ralf; Dua, Meenakshi; Tuteja, Narendra; Johri, Atul Kumar; Varma, Ajit

    2012-01-01

    This study was undertaken to investigate the influence of plant probiotic fungus Piriformospora indica on the medicinal plant C. forskohlii. Interaction of the C. forskohlii with the root endophyte P. indica under field conditions, results in an overall increase in aerial biomass, chlorophyll contents and phosphorus acquisition. The fungus also promoted inflorescence development, consequently the amount of p-cymene in the inflorescence increased. Growth of the root thickness was reduced in P. indica treated plants as they became fibrous, but developed more lateral roots. Because of the smaller root biomass, the content of forskolin was decreased. The symbiotic interaction of C. forskohlii with P. indica under field conditions promoted biomass production of the aerial parts of the plant including flower development. The plant aerial parts are important source of metabolites for medicinal application. Therefore we suggest that the use of the root endophyte fungus P. indica in sustainable agriculture will enhance the medicinally important chemical production. PMID:22301976

  6. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley

    NASA Astrophysics Data System (ADS)

    Bendig, Juliane; Yu, Kang; Aasen, Helge; Bolten, Andreas; Bennertz, Simon; Broscheit, Janis; Gnyp, Martin L.; Bareth, Georg

    2015-07-01

    In this study we combined selected vegetation indices (VIs) and plant height information to estimate biomass in a summer barley experiment. The VIs were calculated from ground-based hyperspectral data and unmanned aerial vehicle (UAV)-based red green blue (RGB) imaging. In addition, the plant height information was obtained from UAV-based multi-temporal crop surface models (CSMs). The test site is a summer barley experiment comprising 18 cultivars and two nitrogen treatments located in Western Germany. We calculated five VIs from hyperspectral data. The normalised ratio index (NRI)-based index GnyLi (Gnyp et al., 2014) showed the highest correlation (R2 = 0.83) with dry biomass. In addition, we calculated three visible band VIs: the green red vegetation index (GRVI), the modified GRVI (MGRVI) and the red green blue VI (RGBVI), where the MGRVI and the RGBVI are newly developed VI. We found that the visible band VIs have potential for biomass prediction prior to heading stage. A robust estimate for biomass was obtained from the plant height models (R2 = 0.80-0.82). In a cross validation test, we compared plant height, selected VIs and their combination with plant height information. Combining VIs and plant height information by using multiple linear regression or multiple non-linear regression models performed better than the VIs alone. The visible band GRVI and the newly developed RGBVI are promising but need further investigation. However, the relationship between plant height and biomass produced the most robust results. In summary, the results indicate that plant height is competitive with VIs for biomass estimation in summer barley. Moreover, visible band VIs might be a useful addition to biomass estimation. The main limitation is that the visible band VIs work for early growing stages only.

  7. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.

    PubMed

    Li, Fengcheng; Zhang, Mingliang; Guo, Kai; Hu, Zhen; Zhang, Ran; Feng, Yongqing; Yi, Xiaoyan; Zou, Weihua; Wang, Lingqiang; Wu, Changyin; Tian, Jinshan; Lu, Tiegang; Xie, Guosheng; Peng, Liangcai

    2015-05-01

    Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with β-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice. PMID:25418842

  8. Mapping Africa Biomass with MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Baccini, A.; Houghton, R.

    2006-12-01

    Central Africa contains the second largest block of tropical forest remaining in the world, and is one of the largest carbon reservoirs on Earth. The carbon dynamics of the region differ substantially from other tropical forests because most deforestation and land use is associated with selective logging and small-scale landholders practicing traditional "slash-and-burn" agriculture. Despite estimates of 1-2 PgC/yr released to the atmosphere from tropical deforestation, the amount released from Central Africa is highly uncertain relative to the amounts released from other tropical forest areas. The uncertainty in carbon fluxes results from inadequate estimates of both rates of deforestation and standing stocks of carbon (forest biomass). Here we present new results mapping above-ground forest biomass for tropical Africa using machine learning techniques to integrate MODIS 1km spectral reflectance with forest inventory measurements to calibrate an empirical relationship. The derived forest biomass at each MODIS pixel shows the spatial distribution of forest biomass over the entire tropical forest region. The model has been tested in Uganda, Mali and part of Republic of Congo where field data were available. The regression tree model based on MODIS NBAR surface reflectance for Uganda, Mali and Republic of Congo explains 94 percent of the variance in above-ground biomass with a root mean square error (RMSE) of 27 Tons/ha. The approach shows promise for use of optical remote sensing data in mapping the spatial distribution of forest biomass across the region.

  9. Potential plant biomass estimation through field measurement and vegetation cover mapping using ALOS satellite imagery: Case study of Fujiyoshida City, Japan

    NASA Astrophysics Data System (ADS)

    Doko, T.; Chen, W.; Qazi, O.; Okabayashi, S.; Meguro, D.; Kanamori, T.; Jones, M.; Kawata, C.; Yagasaki, T.; Ichinose, T.; Sasaki, K.

    2014-03-01

    Biomass is a renewable energy source that is produced from living or recently living biological material. Vegetation type and biomass are considered important components that affect biosphere-atmosphere interactions. The ground assessment of biomass, however, has been found to be insufficient due to the limited spatial extent of surveys. This study aims to integrate field measurements with satellite remote sensing data for regional biomass mapping in Fujiyoshida City, Japan. Fujiyoshida City is situated on the northern slope of Mt. Fuji and includes a large area of forest land, named "Onshirin Forest". From 2011 to 2012, a field survey was conducted to calculate the biomass potential in situ as ground-truthed data. After fieldwork, ortho-rectified ALOS data with an AVNIR-2 scene (22 May 2008) was used to map the vegetation cover types. Japanese larch, Japanese red pine, mixed forest, other forest, grass, bare soil and roads, and buildings were identified using supervised classification. The total plant biomass was 163,252 tons. The biomass potential estimate from field measurements was extrapolated to the large forest area in Fujiyoshida City to estimate the potential plant biomass of specific vegetation cover types.

  10. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop

    PubMed Central

    Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph

    2016-01-01

    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. DOI: http://dx.doi.org/10.7554/eLife.13664.001 PMID:27296645

  11. A controlled aquatic ecological life support system (CAELSS) for combined production of fish and higher plant biomass suitable for integration into a lunar or planetary base.

    PubMed

    Blum, V; Andriske, M; Eichhorn, H; Kreuzberg, K; Schreibman, M P

    1995-10-01

    Based on the construction principle of the already operative Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) the concept of an aquaculture system for combined production of animal and plant biomass was developed. It consists of a tank for intensive fish culture which is equipped with a feeding lock representing also a trap for biomass removal followed by a water recycling system. This is an optimized version of the original C.E.B.A.S. filters adapted to higher water pollutions. It operates in a fully biological mode and is able to convert the high ammonia ion concentrations excreted by the fish gills into nitrite ions. The second biomass production site is a higher plant cultivator with an internal fiber optics light distributor which may utilize of solar energy. The selected water plant is a tropical rootless duckweed of the genus Wolffia which possesses a high capacity in nitrate elimination and is terrestrially cultured as a vegetable for human nutrition in Southeast Asia. It is produced in an improved suspension culture which allows the removal of excess biomass by tangential centrifugation. The plant cultivator is able to supply the whole system with oxygen for respiration and eliminates vice versa the carbon dioxide exhaled by the fish via photosynthesis. A gas exchanger may be used for emergency purposes or to deliver excess oxygen into the environment and may be implemented into the air regeneration system of a closed environment of higher order. The plant biomass is fed into a biomass processor which delivers condensed fresh and dried biomass as pellets. The recovered water is fed back into the aquaculture loop. The fresh plants can be used for human nutrition immediately or can be stored after sterilization in an adequate packing. The dried Wolffia pellets are collected and brought into the fish tank by an automated feeder. In parallel the water from the plant cultivator is driven back to the animal tank by a pump. The special feature of the

  12. Integrated transformations of plant biomass to valuable chemicals, biodegradable polymers and nanoporous carbons

    NASA Astrophysics Data System (ADS)

    Kuznetsov, B. N.; Chesnokov, N. V.; Taraban'ko, V. E.; Kuznetsova, S. A.; Petrov, A. V.

    2013-03-01

    Integrated transformations of wood biomass to valuable chemicals and materials are described. They include the main biomass components separation, the conversion of cellulose to glucose, levulinic acid, biodegradable polymers and lignin - to nanoporous carbons. For wood fractionation on pure cellulose and low molecular mass lignin the methods of catalytic oxidation and exploded autohydrolysis are used. The processes of acid-catalysed hydrolysis of cellulose to glucose and levulinic acid were optimized. New methods of biodegradable polymers synthesis from lactone of levulinic acid and nanoporous carbons from lignin were suggested.

  13. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM -pre-treated biomass

    SciTech Connect

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-04-23

    We report that cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. Lastly, we found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.

  14. Biomass fuels and coke plants are important sources of human exposure to polycyclic aromatic hydrocarbons, benzene and toluene.

    PubMed

    Fan, Ruifang; Li, Junnan; Chen, Laiguo; Xu, Zhencheng; He, Dechun; Zhou, Yuanxiu; Zhu, Yuanyuan; Wei, Fusheng; Li, Jihua

    2014-11-01

    Large amounts of carcinogenic polycyclic aromatic hydrocarbons (PAHs), benzene and toluene (BT) might be emitted from incomplete combustion reactions in both coal tar factories and biomass fuels in rural China. The health effects arising from exposure to PAHs and BT are a concern for residents of rural areas close to coal tar plants. To assess the environmental risk and major exposure sources, 100 coke plant workers and 25 farmers in Qujing, China were recruited. The levels of 10 mono-hydroxylated PAHs (OH-PAHs), four BT metabolites and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the urine collected from the subjects were measured. The 8-OHdG levels in the urine were determined to evaluate the oxidative DNA damage induced by the PAHs and BT. The results showed that the levels of the OH-PAHs, particularly those of 1-hydroxynathalene and 1-hydroxypyrene, in the farmers were 1-7 times higher than those in the workers. The concentrations of the BT metabolites were comparable between the workers and farmers. Although the exact work location within a coke oven plant might affect the levels of the OH-PAHs, one-way ANOVA revealed no significant differences for either the OH-PAHs levels or the BT concentrations among the three groups working at different work sites. The geometric mean concentration (9.17 µg/g creatinine) of 8-OHdG was significantly higher in the farmers than in the plant workers (6.27 µg/g creatinine). The levels of 8-OHdG did not correlate with the total concentrations of OH-PAHs and the total levels of BT metabolites. Incompletely combusted biomass fuels might be the major exposure source, contributing more PAHs and BT to the local residents of Qujing. The estimated daily intakes (EDIs) of naphthalene and fluorene for all of the workers and most of the farmers were below the reference doses (RfDs) recommended by the U.S. Environmental Protection Agency (EPA), except for the pyrene levels in two farmers. However, the EDIs of benzene in the workers and local

  15. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii

    PubMed Central

    Chung, Daehwan; Cha, Minseok; Guss, Adam M.; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169–172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production. PMID:24889625

  16. Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii

    SciTech Connect

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  17. Nutrient uptake, biomass yield and quantitative analysis of aliphatic aldehydes in cilantro plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the nutrient uptake, biomass production and yield of the major compounds in the essential oil of five genotypes of Coriandrum sativum L. The treatments were four accessions donated by the National Genetic Resources Advisory Council (NGRAC), U.S. Department...

  18. Controlled production of cellulases in plants for biomass conversion. Annual report, March 11, 1997--March 14, 1998

    SciTech Connect

    Danna, K.J.

    1998-06-01

    The goal of this project is to facilitate conversion of plant biomass to usable energy by developing transgenic plants that express genes for microbial cellulases, which can be activated after harvest of the plants. In particular, the feasibility of targeting an endoglucanase and a cellobiohydrolase to the plant apoplast (cell wall milieu) is to be determined. To avoid detrimental effects of cellulose expression in plants, enzymes with high temperature optima were chosen; the genes for these enzymes are from thermophilic organisms that can use cellulose as a sole energy source. During the past year (year 2 of the grant), efforts have been focused on testing expression of endoglucanase E{sub 1}, from Acidothermus cellulolyticus, in the apoplast of both tobacco suspension cells and Arabidopsis thaliana plants. Using the plasmids constructed during the first year, transgenic cells and plants that contain the gene for the E{sub 1} catalytic domain fused to a signal peptide sequence were obtained. This gene was constructed so that the fusion protein will be secreted into the apoplast. The enzyme is made in large quantities and is secreted into the apoplast. More importantly, it is enzymatically active when placed under optimal reaction conditions (high temperature). Moreover, the plant cells and intact plants exhibit no obvious problems with growth and development under laboratory conditions. Work has also continued to improve binary vectors for Agrobacterium-mediated transformation, to determine activity of E{sub 1} at various temperatures, and to investigate the activity of the 35S Cauliflower Mosaic Virus promoter in E. coli. 9 figs.

  19. Effects of Long-Term Trampling on the Above-Ground Forest Vegetation and Soil Seed Bank at the Base of Limestone Cliffs

    NASA Astrophysics Data System (ADS)

    Rusterholz, Hans-Peter; Verhoustraeten, Christine; Baur, Bruno

    2011-11-01

    Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.

  20. CO[sub 2] and fertility effects on above-ground growth and leaf gas exchange in Populus x euramericana cv. Eugenei

    SciTech Connect

    Vogel, C.S.; Curtis, P.S. )

    1993-06-01

    We examined the role of soil fertility in regulating tree responses to elevated atmospheric p(CO[sub 2]). Hardwood cuttings of Populus x euramericana cv. Eugenei were grown in northern Lower Michigan for 142 d (21 May - 10 October 1992) in open bottom root boxes filled with locally derived topsoil (high fertility) or 20% topsoil and 80% sand (low fertility) and exposed to ambient and twice ambient (700 [mu]bar) p(CO[sub 2]) in open top field chambers. Leaf area development was greatest at high fertility and elevated p(CO[sub 2]). There was no CO[sub 2] effect on leaf area at low fertility. Overall, light saturated CO[sub 2] assimilation rates (A) increased with time, reaching a maximum by 16 September. Except for initial and final sampling dates, elevated CO[sub 2] plants had greater A within a fertility treatment. Within CO[sub 2] treatments, high fertility plants had greater A only after 27 August. Assimilation vs intercellular p(CO[sub 2]) curves showed greater CO[sub 2] saturated A, increased initial dA/dC[sub i], and enhanced CO[sub 2] sensibility of A on 16 September relative to 3 August. Negative acclimation of A to elevated p(CO[sub 2]) occurred only late season at low fertility. Foliar dark respiration was reduced by low fertility and elevated p(CO[sub 2]).

  1. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock

    PubMed Central

    Li, Hao; Ahammed, Golam J.; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential. PMID:27313587

  2. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock.

    PubMed

    Li, Hao; Ahammed, Golam J; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential. PMID:27313587

  3. Effects of phosphate and thiosulphate on arsenic accumulation in Brassica juncea plants grown in soil and in hydroponic culture

    NASA Astrophysics Data System (ADS)

    Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Grifoni, Martina; Rosellini, Irene; Malagoli, Mario; Schiavon, Michela

    2013-04-01

    Arsenic is recognised as a toxic metalloid and a strong pollutant in soils of many countries. Thus, the reclamation of contaminated areas is fundamental in order to protect both human health and agricultural production. This study is focused on the assisted phytoextraction, a technology for reclaiming polluted soils that takes advantage of the capability of some plants to extract inorganic elements from soils with the aid of additive agents. The nutrients phosphorus, as phosphate, and sulphur, as thiosulphate, can compete with the form more oxidised of arsenic, both in soil and plant. This study examined the capability of thiosulphate (Th) and phosphate (Ph) to promote the release of As from soil surfaces in order to improve the phytoavailability and thus the absorption of As by Brassica juncea plants. In the first experiment B. juncea plants were grown on a soil that had been sampled from an industrial area strongly contaminated by As (790 mg As kg-1 soil). The second experiment was carried out in hydroponics where As has been added at a concentration (100 microM) similar to the As available concentration measured in soil. In both trials ammonium thiosulphate (at the concentration of 0.27 M in soil, and 400 microM in hydroponics) and potassium hydrogen phosphate (at the concentration of 0.05 M in soil, and 112 microM in hydroponics) were added. The biomass of B. juncea was determined and the accumulation of P, S and As in root and in the above-ground tissues have been analyzed. Our results showed that thiosulphate and phosphate acted either as nutrients and detoxifying agents, due to the stimulation of plant defensive systems, and influenced either the biomass production and the As accumulation in plant tissues. In the plants grown in soil, As accumulated at higher levels in the above-ground part than in the roots and the addition of Th induced a higher biomass production and a higher total As accumulation (concentration x biomass) in the above-ground tissues

  4. Biomass yield as affected by wheat harvest method

    SciTech Connect

    Allen, R.R.; Hollingsworth, L.D.

    1982-12-01

    Wheat biomass yield and the portions recoverable by different harvesting methods were investigated at Bushland, TX. Where all above-ground dry matter was removed by hand and threshed with a small bundle thresher; the grain, straw and chaff portions averaged about 40, 50, and 10, respectively, of the total biomass. When clipping samples at a simulated combine harvesting height (13-14 inches), the remaining stubble amounts ranged from 1500 to 3000 pounds per acre when grain yield levels averaged 3000 to 6000 pounds per acre. In treatments where the stubble was swathed and baled after conventional combine harvesting, the straw yields ranged from 2000 to 2800 pounds per acre. The bales accounted for 34 to 46 of the ''material other than grain.'' There was about 2000 pounds per acre of stubble remaining below the 3 to 4 inch swather cutting height. In treatments where the combine cutter-bar was operated near ground level (2 to 3 inches) and all straw discharge was caught (whole plant combining), the catchings ranged from 65 to 89 of the ''material other than grain.'' The catching weights ranged from 3900 to 6000 pounds per acre.

  5. Evaluation of three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea for Phytoremediation of Ni, Pb and Zn

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Amer, Nasser; Bitar, Lina Al; Mondelli, Donato; Dumontet, Stefano

    2013-04-01

    The success of phytoremediation depends upon the identification of suitable plants species that hyperaccumulate/tolerate heavy metals and produce large amounts of biomass. In this study, three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea, were grown hydroponically to assess their potential use in phytoremediation of Ni, Pb and Zn and biomass production. The objective of this research is to improve phytoremediation procedures by searching for a new endemic Mediterranean plant species which can be used for phytoremediation of low/moderate contamination in the Mediterranean arid and semiarid conditions and bioenergy production. The hydroponics experiment was carried out in a growth chamber using half strength Hoagland's solution as control (CTR) and 5 concentrations for Pb and Zn (5, 10, 25, 50 and 100 mg L-1) and 3 concentrations for Ni (1, 2, and 5 mg L-1). Complete randomized design with five replications was adopted. Main growth parameters (shoot and root dry weight, shoot and root length and chlorophyll content) were determined. Shoots and roots were analyzed for their metals contents. Some interesting contributions of this research are: (i) plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea, whereas heavy metal toxicity ranked as follows: Ni > Zn > Pb, (ii) none of the plant species was identified as hyperaccumulator, (iii) Atriplex halimus and Medicago lupulina can accumulate Ni, Pb and Zn in their roots, (iv) translocate small fraction to their above ground biomass, and (v) indicate moderate pollution levels of the environment. In addition, as they are a good biomass producer, they can be used in phytostabilisation of marginal lands and their above ground biomass can be used for livestock feeding as well for bioenergy production.

  6. Restricting the above ground sink corrects the root/shoot ratio and substantially boosts the yield potential per panicle in field-grown rice (Oryza sativa L.).

    PubMed

    Nada, Reham M; Abogadallah, Gaber M

    2016-04-01

    Rice has shallow, weak roots, but it is unknown how much increase in yield potential could be achieved if the root/shoot ratio is corrected. Removing all tillers except the main one, in a japonica (Sakha 101) and an indica (IR64) rice cultivar, instantly increased the root/shoot ratio from 0.21 to 1.16 in Sakha 101 and from 0.16 to 1.46 in IR64. Over 30 days after detillering, the root/shoot ratios of the detillered plants decreased to 0.49 in Sakha 101 and 0.46 in IR64 but remained significantly higher than in the controls. The detillered plants showed two- or fourfold increase in the main tiller fresh weight, as a consequence of more positive midday leaf relative water content (RWC), and consistently higher rates of stomatal conductance and photosynthesis, but not transpiration, compared with the controls. The enhanced photosynthesis in Sakha 101 after detillering resulted from both improved water status and higher Rubisco contents whereas in IR64, increasing the Rubisco content did not contribute to improving photosynthesis. Detillering did not increase the carbohydrate contents of leaves but prevented starch depletion at the end of grain filling. The leaf protein content during vegetative and reproductive stages, the grain filling rate, the number of filled grains per panicle were greatly improved, bringing about 38.3 and 35.9% increase in the harvested grain dry weight per panicle in Sakha 101 and IR64, respectively. We provide evidence that improving the root performance by increasing the root/shoot ratio would eliminate the current limitations to photosynthesis and growth in rice. PMID:26296302

  7. Spatial Variation in the Accumulation of Elements in Thalli of the Lichen Pseudevernia furfuracea (L.) Zopf Transplanted Around a Biomass Power Plant in Italy.

    PubMed

    Lucadamo, Lucio; Corapi, Anna; Loppi, Stefano; De Rosa, Rosanna; Barca, Donatella; Vespasiano, Giovanni; Gallo, Luana

    2016-04-01

    Thalli of the lichen Pseudevernia furfuracea were transplanted for 3 months at 32 sites located in and around an industrial area of S Italy whose main anthropogenic sources of atmospheric trace elements are a biomass power plant and vehicular emissions. Meteorological stations were deployed at four sites for finer detection of local wind patterns. The station near the biomass power plant showed a significant S-SE wind component not detectable by measurements made at the regional scale or by the other local meteorological stations. Sb, Sn, and Mo showed a very high degree of covariance and a statistically significant correlation with traffic rate. No element concentrations in the exposed thalli were correlated with distance from the biomass power plant, although Ti and Co concentrations showed a significant correlation with the "Potential Number of Times the Winds coming from the biomass power plant Reach each exposure Site" (PNTWRS). This value is calculated dividing the time (minutes) during the experimental trimester that the wind blows from the power plant into each of the four geographical sides by the time (minutes) the winds passing through the power plant take to reach the exposure sites in each of the four geographical sides.) during the period of thalli transplantation. Moreover, there were significant differences among clusters of sites with different levels of enrichment of Ti, Co, Al, V, and Cu and a "local control" group. These results, together with the high covariance of the Al-Ti and V-Co pairs, indicate an association between the biomass power plant and spatial variation of Ti, Co, Al, and V levels in the transplanted lichens. The nature of the fuels used in the biomass power plant explains the spatial variation of As, Cr, Cu, and Zn concentrations. PMID:26546421

  8. High Biomass Specific Methyl Halide Production Rates of Selected Coastal Marsh Plants and its Relationship to Halide Content

    NASA Astrophysics Data System (ADS)

    Manley, S. L.; Wang, N.; Cicerone, R. J.

    2002-12-01

    Salt tolerant coastal marsh plants (halophytes) have previously been shown to be globally significant producers of methyl chloride (MeCl) and methyl bromide (MeBr). While halophytes are known for their high salt content, there are few reports of their halide content. Our studies have attempted to quantify biomass specific methyl halide (MeX) production from these plants and relate it to tissue halide levels. MeCl, MeBr and MeI production rates and tissue chloride, bromide and iodide concentrations from selected coastal marsh plants were measured for nearly a year. Certain halophyte species (i.e. Batis and Frankenia) have very high summer biomass specific production rates for MeX (e.g. Frankenia: 1 ug MeCl /gfwt/hr; 80 ng MeBr/gfwt/hr; 8 ng MeI/gfwt/hr). These rates of MeCl and MeBr production are much higher than those from other coastal marsh plants or seaweeds. Plant halide levels remain high throughout the year, while MeX production peaks at a high level in mid summer falling to low winter rates. This implies a linkage to plant growth. Higher levels of chloride and bromide were seen in the fleshy marsh plants such as Batis (saltwort, approximately 20 percent dry wt chloride, 0.4 percent dry wt bromide) and Salicornia (pickleweed) than in the others such as Frankenia (alkali heath) approx 7 percent dry wt chloride, 0.1 percent dry wt bromide) or Spartina (cordgrass). No such trend was seen for iodide, which ranged from 4 - 10 ppm. Calculations show the daily halide losses from MeX production are far less than the variability in tissue halide content. MeX production removes a small fraction of the total tissue halide from these plants suggesting that MeX production is not a mechanism used by these species to control internal halide levels. Saltwort cell-free extracts incubated with bromide or iodide in the presence of S-adenosyl-L-methionine (SAM) produced the corresponding MeX. MeBr production was inhibited by caffeic acid the substrate of lignin-specific O

  9. Consolidated pretreatment and hydrolysis of plant biomass expressing cell wall degrading enzymes

    DOEpatents

    Raab, R. Michael; Zhang, Dongcheng; Bougri, Oleg

    2016-02-02

    Methods for consolidated pretreatment and hydrolysis of genetically engineered plants expressing cell wall degrading enzymes are provided. Expression cassettes and vectors for making transgenic plants are described. Plants engineered to express one or more cell wall degrading enzymes using expression cassettes and vectors of the invention are also provided.

  10. Influence of sticky trap color and height above ground on capture of alate Elatobium abietinum (Hemiptera: Aphididae) in Sitka spruce plantations.

    PubMed

    Straw, Nigel A; Williams, David T; Green, Gillian

    2011-02-01

    A series of field trials were used to assess the practicality of using sticky traps to monitor populations of green spruce aphid, Elatobium abietinum (Walker), in plantations of Sitka spruce. The highest numbers of alate E. abietinum were caught on sticky traps placed in the upper third of the live canopy at 9-17 m above the ground, whereas low numbers of aphids were caught just below the live canopy or at 2 m above the ground. Trials in 2005 with sticky traps of different colors showed that significantly more alate E. abietinum were caught on yellow, red, and green sticky traps than on white, blue, and black traps. A repeat trial in 2007 resulted in significantly more alate aphids being caught on red sticky traps than on traps of any other color except for green. Attraction to red is unusual among aphids, as aphids are thought not to possess a red-sensitive photoreceptor. The attraction of E. abietinum to red-colored sticky traps suggests that conifer-feeding aphids might have a fundamentally different color response compared with aphids that live on cereals, grasses, or herbaceous plants. Alternatively, the attraction to red might be a physiological artifact related to the presence of red-screening pigments in the aphid's compound eye. PMID:22182620

  11. Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU).

    PubMed

    Carriero, G; Emiliani, G; Giovannelli, A; Hoshika, Y; Manning, W J; Traversi, M L; Paoletti, E

    2015-11-01

    This is the longest continuous experiment where ethylenediurea (EDU) was used to protect plants from ozone (O3). Effects of long-term ambient O3 exposure (23 ppm h AOT40) on biomass of an O3 sensitive poplar clone (Oxford) were examined after six years from in-ground planting. Trees were irrigated with either water or 450 ppm EDU. Above (-51%) and below-ground biomass (-47%) was reduced by O3 although the effect was significant only for stem and coarse roots. Ambient O3 decreased diameter of the lower stem, and increased moisture content along the stem of not-protected plants (+16%). No other change in the physical wood structure was observed. A comparison with a previous assessment in the same experiment suggested that O3 effects on biomass partitioning to above-ground organs depend on the tree ontogenetic stage. The root/shoot ratios did not change, suggesting that previous short-term observations of reduced allocation to tree roots may be overestimated. PMID:26310976

  12. Synthesis of Biomass and Utilization of Plant Wastes in a Physical Model of a Biological Life Support System

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu A.; Kovalev, V. S.; Gribovksaya, I. V.; Tirranen, L. S.; Zolotukkhin, I. G.; Gros, J. B.; Lasseur, Ch.

    Biological life support systems (LSS) with highly closed intrasystem mass ex change mass ex change hold much promise for long-term human life support at planetary stations (Moon, Mars, etc.). The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotroph block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas ex change in such a system consists of respiratory gas ex change of SLS and photosynthesis and respiration of plants. Specifics of gas ex change dynamics of high plants -SLS complex has been considered. Relationship between such a gas ex change and photosynthetic active radiation (PAR) and age of plants has been established. SLS fertility has been shown to depend on its thickness and phase of maturity. The biogenic elements (potassium, phosphorus, nitrogen) in Liebig minimum have been found to include nitrogen which is the first to impair plants' growth in disruption of the process conditions. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances -products of ex change of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. In multiple recycle of the mat ter (more than 5 cycles) under the irradiance intensity of 150 W/m2 PAR and the SLS mass (dry weight) of 17.7 -19.9 kg/m2 average total harvest of

  13. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants

    PubMed Central

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel M.; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; Purvine, Samuel O.; Smith, Richard D.; Lipton, Mary S.; Burnum-Johnson, Kristin E.; Currie, Cameron R.

    2015-01-01

    Leaf-cutter ants are prolific and conspicuous constituents of Neotropical ecosystems that derive energy from specialized fungus gardens they cultivate using prodigious amounts of foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain plant biomass-degrading enzymes that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as ants incorporate it into the fungus garden. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous plant biomass-degrading enzymes likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three quarters of all biomass-degrading enzymes identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 40 of these enzymes enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass. PMID:26317212

  14. Biomass energy

    SciTech Connect

    Smil, V.

    1983-01-01

    This book offers a broad, interdisciplinary approach to assessing the factors that are key determinants to the use of biomass energies, stressing their limitations, complexities, uncertainties, links, and consequences. Considers photosynthesis, energy costs of nutrients, problems with monoculture, and the energy analysis of intensive tree plantations. Subjects are examined in terms of environmental and economic impact. Emphasizes the use and abuse of biomass energies in China, India, and Brazil. Topics include forests, trees for energy, crop residues, fuel crops, aquatic plants, and animal and human wastes. Recommended for environmental engineers and planners, and those involved in ecology, systematics, and forestry.

  15. Increased snow facilitates plant invasion in mixedgrass prairie.

    PubMed

    Blumenthlal, D; Chimner, R A; Welker, J M; Morgan, J A

    2008-07-01

    Although global change is known to influence plant invasion, little is known about interactions between altered precipitation and invasion. In the North American mixedgrass prairie, invasive species are often abundant in wet and nitrogen (N)-rich areas, suggesting that predicted changes in precipitation and N deposition could exacerbate invasion. Here, this possibility was tested by seeding six invasive species into experimental plots of mixedgrass prairie treated with a factorial combination of increased snow, summer irrigation, and N addition. Without added snow, seeded invasive species were rarely observed. Snow addition increased average above-ground biomass of Centaurea diffusa from 0.026 to 66 g m(-2), of Gypsophila paniculata from 0.1 to 7.3 g m(-2), and of Linaria dalmatica from 5 to 101 g m(-2). Given added snow, summer irrigation increased the density of G. paniculata, and N addition increased the density and biomass of L. dalmatica. Plant density responses mirrored those of plant biomass, indicating that increases in biomass resulted, in part, from increases in recruitment. In contrast to seeded invasive species, resident species did not respond to snow addition. These results suggest that increases in snowfall or variability of snowfall may exacerbate forb invasion in the mixedgrass prairie. PMID:19086291

  16. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.

    PubMed

    Tavares, Eveline Q P; De Souza, Amanda P; Buckeridge, Marcos S

    2015-07-01

    Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass. PMID:25922489

  17. Carbon dynamics in aboveground biomass of co-dominant plant species: related rather to leaf life span than to species

    NASA Astrophysics Data System (ADS)

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A.; Schnyder, Hans

    2016-04-01

    This study investigates the role of individual organisms in whole ecosystem carbon (C) fluxes. It is currently unknown if different plant community members share the same or different kinetics of C pools in aboveground biomass, thereby adding (or not) variability to the first steps in ecosystem C cycling. We assessed the residence times in metabolic and non-metabolic (or structural) C pools and the allocation pattern of assimilated C in aboveground plant parts of four co-existing, co-dominant species from different functional groups in a temperate grassland community. For this purpose continuous, 14-16 day long 13CO2/12CO2-labeling experiments were performed in Sept. 2006, May 2007 and Sept. 2007, and the tracer kinetics were analysed with compartmental modeling. In all experimental periods, the species shared vastly similar residence times in metabolic C (5-8 d). In contrast, the residence times in non-metabolic C ranged from 20 to 58 d (except one outlier) and the fraction of fixed C allocated to the non-metabolic pool from 7 to 45%. These variations in non-metabolic C kinetics were not systematically associated with species or experimental periods, but exhibited close relationships with (independent estimates of) leaf life span, particularly in the grasses. This adds new meaning to leaf life span as a functional trait in the leaf and plant economics spectrum and its implication for C cycle studies in grassland and also forest systems. As the four co-dominant species accounted for ~80% of total community shoot biomass, we should also expect that the observed similarities in pool kinetics and allocation will scale up to similar relationships at the community level.

  18. Pretreated densified biomass products

    SciTech Connect

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  19. Elimination of phenols, ammonia and cyanide in wash water from biomass gasification, and nitrogen recycling using planted trickling filters.

    PubMed

    Graber, Andreas; Skvarc, Robert; Junge-Berberović, Ranka

    2009-01-01

    Trickling filters were used to treat wash water from a wood gasifier. This wash water contained toxic substances such as ammonium, cyanide, phenols, and PAH. The goal was to develop a system that degraded toxic substances, and achieved full nitrification of ammonia. A 1 kW model wood gasifier plant delivered wash water for the experiments, which was standardised to a conductivity of 3 mS/cm by dilution. Toxicity was assessed by bacterial luminescence detection, germination test with cress (Lepidium sativum), and pot plants cultivated in a hydroponic setup irrigated continuously with the wastewater. Treatment experiments were done in both planted and unplanted trickling filters. Plant yield was similar to conventional hydroponic production systems. The trickling filters achieved complete detoxification of phenol, PAH and cyanide as well as full nitrification. The specific elimination rates were 100 g m(-3) Leca d(-1) for phenols and 90 g m(-3) Leca d(-1) for ammonium in planted systems. In unplanted trickling filters circulated for 63 h, phenol concentration decreased from 83.5 mg/L to 2.5 mg/L and cyanide concentration from 0.32 mg/L to 0.02 mg/L. PAH concentrations were reduced from 3,050 microg/L to 0.89 microg/L within 68 days. The assays demonstrated the feasibility of using the technique to construct a treatment system in a partially closed circulation for gasifier wash water. The principal advantage is to convert toxic effluents from biomass gasifiers into a non-toxic, nitrogen-rich fertiliser water, enabling subsequent use in plant production and thus income generation. However, the questions of long-term performance and possible accumulation of phenols and heavy metals in the produce still have to be studied. PMID:19955650

  20. Enrichment and broad representation of plant biomass-degrading enzymes in the specialized hyphal swellings of Leucoagaricus gongylophorus, the fungal symbiont of leaf-cutter ants

    DOE PAGESBeta

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel M.; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; et al

    2015-08-28

    Leaf-cutter ants are prolific and conspicuous constituents of Neotropical ecosystems that derive energy from specialized fungus gardens they cultivate using prodigious amounts of foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain plant biomass-degrading enzymes that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as ants incorporate it into the fungus garden. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plantmore » biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous plant biomass-degrading enzymes likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three quarters of all biomass-degrading enzymes identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 40 of these enzymes enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.« less

  1. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensenis, and Caldicellulosiruptor lactoaceticus

    SciTech Connect

    Blumer-Schuette, Sara E.; Ozdemir, Inci; Mistry, Dhaval; Lucas, Susan; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Land, Miriam L; Hauser, Loren John; Woyke, Tanja; Mikhailova, Natalia; Pati, Amrita; Kyrpides, Nikos C; Ivanova, N; Detter, J. Chris; Walston Davenport, Karen; Han, Cliff; Adams, Michael W. W.; Kelly, Robert M

    2011-01-01

    The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity.

  2. Cloning, Expression, and Purification of Xylanase Gene from Bacillus licheniformis for Use in Saccharification of Plant Biomass.

    PubMed

    Zafar, Asma; Aftab, Muhammad Nauman; Din, Zia Ud; Aftab, Saima; Iqbal, Irfana; Shahid, Anam; Tahir, Arifa; Haq, Ikram Ul

    2016-01-01

    The xylanase gene (xynA) of Bacillus licheniformis 9945A was cloned and expressed in Escherichia coli BL21(DE3) using pET-22b(+) as an expression vector. The recombinant xylanase enzyme was purified by ammonium sulfate precipitation, followed by single-step immobilized metal ion affinity chromatography with a 57.58-fold purification having 138.2 U/mg specific activity and recovery of 70.08 %. Molecular weight of the purified xylanase, 23 kDa, was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable for up to 70 °C with a broad pH range of 4-9 pH units. The enzyme activity was increased in the presence of metal ions especially Ca(+2) and decreased in the presence of EDTA, indicating that the xylanase was a metalloenzyme. However, an addition of 1-4 % Tween 80, β-mercaptoethanol, and DTT resulted in the increase of enzyme activity by 51, 52, and 5 %, respectively. Organic solvents with a concentration of 10-40 % slightly decreased the enzyme activity. The xylanase enzyme possesses the ability of bioconversion of plant biomasses like wheat straw, rice straw, and sugarcane bagasse. Among the different tested biomasses, the highest saccharification percentage was observed with 1 % sugarcane bagasse after 72 h of incubation at 50 °C with 20 units of enzyme. The results suggest that recombinant xylanase can be used in the bioconversion of natural biomasses into simple sugars which could be further used for the production of biofuel. PMID:26438315

  3. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. PMID:25871977

  4. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    PubMed Central

    2012-01-01

    Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process. PMID:22300648

  5. Implications of nutrient removal and biomass production by native and augmented algal populations at a municipal wastewater treatment plant.

    PubMed

    Drexler, Ivy L C; Bekaan, Sascha; Eskandari, Yasmin; Yeh, Daniel H

    2014-01-01

    Algal monocultures (Chlorella sorokiniana and Botryococcus braunii) and algal communities native to clarifiers of a wastewater treatment plant were batch cultivated in (1) clarified effluent following a biochemical oxygen demand (BOD) removal reactor post-BOD removal clarified effluent (PBCE), (2) clarified effluent following a nitrification reactor post-nitrification clarified effluent (PNCE), and (3) a reference media (RM). After 12 days, all algal species achieved nitrogen removal between 68 and 82% in PBCE and 37 and 99% in PNCE, and phosphorus removal between 91 and 100% in PBCE and 60 and 100% in PNCE. The pH of the wastewater samples increased above 9.8 after cultivation of each species, which likely aided ammonia volatilization and phosphorus adsorption. Both monocultures grew readily with wastewater as a feedstock, but B. braunii experienced significant crowding from endemic fauna. In most cases, native algal species' nutrient removal efficiency was competitive with augmented algal monocultures, and in some cases achieved a higher biomass yield, demonstrating the potential to utilize native species for nutrient polishing and algal biomass production. PMID:25325538

  6. Lidar-based biomass assessment for the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Wylie, B. K.; Stoker, J.; Nossov, D.

    2010-12-01

    Climate change is expected to have a significant impact on high-latitude forests in terms of their ability to sequester carbon as expressed as pools of standing total biomass and soil organic matter. Above ground biomass is an important driver in ecosystem process models used to assess, predict, and understand climate change impacts. Therefore, it is of compelling interest to acquire accurate assessments of current biomass levels for these high-latitude forests, a particular challenge because of their vastness and remoteness. At this time, remote sensing is the only feasible method through which to acquire such assessments. In this study, the use of lidar data for estimating shrub and tree biomass for the Yukon Flats region of Alaska’s Yukon River Basin (YRB) is demonstrated. The lidar data were acquired in the late summer and fall of 2009 as were an initial set of field sampling data collected for training and validation purposes. The 2009 field campaigns were located near Canvasback Lake and Boot Lake in the YRB. Various tallies of biomass were calculated from the field data using allometric equations (Bond-Lamberty et al. 2002, Yarie et al. 2007, Mack et al. 2008). Additional field data were also collected during two 2010 field campaigns at different locations in the Yukon Flats. Linear regressions have been developed based on field-based shrub and tree biomass and various lidar metrics of canopy height calculated for the plots (900 m^2). A multiple linear regression performed at the plot level resulted in a strong relationship (R^2=0.88) between observed and predicted biomass at the plot level. The coefficients for this regression were used to generate a shrub and tree biomass map for the entire Yukon Flats study area covered by lidar. This biomass map will be evaluated using additional field data collected in 2010 as well as other remote sensing data sources. Furthermore, additional lidar metrics (e.g. height of median energy) are being derived from the raw

  7. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    NASA Astrophysics Data System (ADS)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  8. Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: a stable isotope and mass balance assessment.

    PubMed

    Chen, Yi; Wen, Yue; Zhou, Qi; Vymazal, Jan

    2014-10-15

    Nitrate is commonly found in the influent of subsurface-batch constructed wetlands (SSB CWs) used for tertiary wastewater treatments. To understand the effects of plants and the litter on nitrate removal, as well as on nitrogen transformation in SSB CWs, six laboratory-scale SSB CW microcosms were set up in duplicate and were operated as batch systems with hydraulic residence time (HRT) of 5d. The presence of Typha latifolia enhanced nitrate removal in SSB CWs, and the N removed by plant uptake was mainly stored in aboveground biomass. Typha litter addition greatly improved nitrate removal in SSB CWs through continuous input of labile organic carbon, and calculated enrichment factors (ε) were between -12.1‰--13.9‰ from the nitrogen stable isotope analysis, suggesting that denitrification plays a dominant role in the N removal. Most significantly, simultaneous sulfur-based autotrophic and heterotrophic denitrification was observed in CWs. Finally, mass balance showed that denitrification, sedimentation burial and plant uptake respectively contributed 54%-94%, 1%-46% and 7.5%-14.3% to the N removal in CWs. PMID:25000198

  9. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    PubMed

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability. PMID:20864338

  10. Unprecedented development of anammox in presence of organic carbon using seed biomass from a tannery Common Effluent Treatment Plant (CETP).

    PubMed

    Anjali, G; Sabumon, P C

    2014-02-01

    This work describes development of a microbial consortium dominant in anammox in presence of organic carbon (available through cell lyses) by employing simple sequencing batch operation in 23 cycles exceeding 400days. Seed biomass from a tannery Common Effluent Treatment Plant (CETP) was enriched for anammox and attained maximum removals of NH4-N (95%) and NO2-N (98%). The anammox was confirmed by nitrogen mass balance in a controlled batch experiment and by DNA extraction-PCR-agarose gel electrophoresis. The effective anammox followed first order reaction kinetics with rate constant of 0.0141/h and half-saturation constant of 10.6mg/L. Evidence for coexistence of denitrification (99% NO2-N removal) and anammox (57.8% NH4-N removal) was demonstrated. This study opens-up possible application of microbial consortium dominant in anammox for simultaneous removal of ammonia and organic carbon from wastewaters. PMID:24333699

  11. Evaluation of research in plant biomass production for liquid fuel conversion: The case of India, Brazil and Japan

    SciTech Connect

    Thomas, S.M. )

    1992-01-01

    The aims of this study were to identify research activities in the field of plant biomass production for liquid fuel conversion and to evaluate research in areas outside the USA and EEC. Results are presented for three countries: Japan, India and Brazil. Research groups were identified from a range of information sources. Data were collected by interview and related to funding, information access, staffing, publication policy and degree of awareness of other research groups in the field. Bibliometric analysis and peer review were used as indicators in an attempt to assess research output. The findings are discussed in relation to agro-industrial policy in Japan, the use of marginal land in India and the Proalcohol program in Brazil.

  12. Pathways of Leymus chinensis Individual Aboveground Biomass Decline in Natural Semiarid Grassland Induced by Overgrazing: A Study at the Plant Functional Trait Scale.

    PubMed

    Li, Xiliang; Liu, Zhiying; Wang, Zhen; Wu, Xinhong; Li, Xinle; Hu, Jing; Shi, Hongxiao; Guo, Fenghui; Zhang, Yong; Hou, Xiangyang

    2015-01-01

    Natural grassland productivity, which is based on an individual plant's aboveground biomass (AB) and its interaction with herbivores, can obviously affect terrestrial ecosystem services and the grassland's agricultural production. As plant traits have been linked to both AB and ecosystem success, they may provide a useful approach to understand the changes in individual plants and grassland productivity in response to grazing on a generic level. Unfortunately, the current lack of studies on how plant traits affect AB affected by herbivores leaves a major gap in our understanding of the mechanism of grassland productivity decline. This study, therefore, aims to analyze the paths of overgrazing-induced decline in the individual AB of Leymus chinensis (the dominant species of meadow-steppe grassland in northern China) on a plant functional trait scale. Using a paired-sampling approach, we compared the differences in the functional traits of L. chinensis in long-term grazing-excluded and experimental grazing grassland plots over a continuous period of approximately 20 years (located in meadow steppe lands in Hailar, Inner Mongolia, China). We found a highly significant decline in the individual height and biomass (leaf, stem, and the whole plant) of L. chinensis as a result of overgrazing. Biomass allocation and leaf mass per unit area were significantly affected by the variation in individual size. Grazing clearly enhanced the sensitivity of the leaf-to-stem biomass ratio in response to variation in individual size. Moreover, using a method of standardized major axis estimation, we found that the biomass in the leaves, stems, and the plant as a whole had highly significant allometric scaling with various functional traits. Also, the slopes of the allometric equations of these relationships were significantly altered by grazing. Therefore, a clear implication of this is that grazing promotes an asymmetrical response of different plant functional traits to variation in

  13. EFFECTS OF SOIL MOISTURE ON STRUCTURAL AND BIOMASS CHARACTERISTICS OF FOUR SALT MARSH PLANTS

    EPA Science Inventory

    In a controlled greenhouse experiment young Deschampsia cespitosa,Grindelia integrifolia Distichlis spicata and Salicornia virginica plants were subjected to dry, field capacity, and saturated soil conditions. lant height, stem diameter, stem density, number of leaves, number and...

  14. Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from North China Grasslands.

    PubMed

    Song, Xiliang; Wang, Yuhui; Lv, Xiaomin

    2016-03-01

    Influential factors of global change affect plant carbon uptake and biomass simultaneously. Although the effects from warming and precipitation change have been extensive studied separately, the responses of plant biomass, photosynthesis, and lipid peroxidation to the interaction of these factors are still not fully understood. In this study, we examined the physiological responses of two dominant plant species from grasslands of northern China with different functional traits to combinations of five simulated warming patterns and five simulated precipitation patterns in environment-controlled chambers. Our results showed that the biomass, net CO 2 assimilation rate (P n), maximal efficiency of photosystem II photochemistry (F v/F m), and chlorophyll content (Chl) of Stipa grandis and Leymus chinensis were enhanced by moderate warming and plus precipitation, but they declined drastically with high temperature and drought. High temperature and drought also led to significant malondialdehyde (MDA) accumulation, which had a negative correlation with leaf biomass. The lower level of lipid peroxidation in leaves of S. grandis suggests that this species is better protected from oxidative damage under heat stress, drought stress and their interactive conditions than L. chinensis. Using the subordinate function values method, we found S. grandis to be more sensitive to climate change than L. chinensis and the gross biomass and root biomass of S. grandis and the leaf biomass of L. chinensis were most sensitive to climate change. Furthermore, the P n of both S. grandis and L. chinensis had a significant linear relationship with F v/F m and Chl, indicating that carbon assimilation may be caused by nonstomatal limitations. PMID:26933491

  15. Environmental effects of planting biomass crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.E.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous. and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  16. Pathways of Leymus chinensis Individual Aboveground Biomass Decline in Natural Semiarid Grassland Induced by Overgrazing: A Study at the Plant Functional Trait Scale

    PubMed Central

    Wang, Zhen; Wu, Xinhong; Li, Xinle; Hu, Jing; Shi, Hongxiao; Guo, Fenghui; Zhang, Yong; Hou, Xiangyang

    2015-01-01

    Natural grassland productivity, which is based on an individual plant’s aboveground biomass (AB) and its interaction with herbivores, can obviously affect terrestrial ecosystem services and the grassland’s agricultural production. As plant traits have been linked to both AB and ecosystem success, they may provide a useful approach to understand the changes in individual plants and grassland productivity in response to grazing on a generic level. Unfortunately, the current lack of studies on how plant traits affect AB affected by herbivores leaves a major gap in our understanding of the mechanism of grassland productivity decline. This study, therefore, aims to analyze the paths of overgrazing-induced decline in the individual AB of Leymus chinensis (the dominant species of meadow-steppe grassland in northern China) on a plant functional trait scale. Using a paired-sampling approach, we compared the differences in the functional traits of L. chinensis in long-term grazing-excluded and experimental grazing grassland plots over a continuous period of approximately 20 years (located in meadow steppe lands in Hailar, Inner Mongolia, China). We found a highly significant decline in the individual height and biomass (leaf, stem, and the whole plant) of L. chinensis as a result of overgrazing. Biomass allocation and leaf mass per unit area were significantly affected by the variation in individual size. Grazing clearly enhanced the sensitivity of the leaf-to-stem biomass ratio in response to variation in individual size. Moreover, using a method of standardized major axis estimation, we found that the biomass in the leaves, stems, and the plant as a whole had highly significant allometric scaling with various functional traits. Also, the slopes of the allometric equations of these relationships were significantly altered by grazing. Therefore, a clear implication of this is that grazing promotes an asymmetrical response of different plant functional traits to variation

  17. Prediction of vegetation biomass and biochemical composition using PROBE-1 hyperspectral imagery in Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Mirik, Mustafa

    2001-07-01

    Plant above-ground biomass and biochemical contents were predicted using ratio-based vegetation indices of PROBE-1 1 m2 resolution hyperspectral imagery acquired in August 1999 over Yellowstone National Park, WY. The PROBE-1 remote sensing detector gathers information of the earth's surface from the 423 to 2507 nm portion of the electromagnetic spectrum with an average, minimum, and maximum of 15, 10.7, and 19.8 nm bandwidth, respectively. The detector consists of 4 channels, each of which has 32 bands, for a total of 128 bands. Aboveground plant biomass was clipped and stripped in fifty-six 1 m 2 plots, with vegetation stratified manually into components consisting of sedge, grass, forb, willow, sage, and litter. After drying and weighing, samples from each plot were combined for further chemical analysis. Nitrogen, phosphorus, ash, and nutrient detergent fiber analyses of biomass samples were determined using standard nutrient analysis procedures. Ground study plots were matched to the corresponding image pixels for the regression analysis. Very weak to very strong correlations were found by regressing the biomass and biochemical components on custom-built, ratio-based vegetation indices. The coefficients of determination (R2) of the simple regression models were 0.88 and 0.85 for the total and live biomass, respectively. Values of R2 were 0.88 and 0.71 for the nutrient detergent fiber and nitrogen, respectively. The conclusion from these analyses is that the PROBE-1 1 m2 resolution hyperspectral imaging system can be used with an acceptable degree of accuracy to estimate, at the landscape level, both aboveground biomass and its biochemical constituents.

  18. The effect of row spacing and seeding rate on biomass production and plant stand characteristics of non-irrigated photoperiod-sensitive sorghum (Sorghum bicolor (L) Moench)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the effect of row spacing and seeding rate on yield and plant stand characteristics of high-biomass sorghum, a photoperiod-sensitive sorghum cultivar was sown at three different row spacings and seeding rates for four site-years from 2009 to 2010 in Alabama and Arkansas, USA. Measurement...

  19. BIOMASS-FUELED, SMALL-SCALE, INTEGRATED-GASIFIER, GAS-TURBINE POWER PLANT: PROGRESS REPORT ON THE PHASE 2 DEVELOPMENT

    EPA Science Inventory

    The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...

  20. From plant biomass to bio-based chemicals: latest developments in xylan research.

    PubMed

    Deutschmann, Rudolf; Dekker, Robert F H

    2012-01-01

    For a hundred years or more, oil and natural gas has supplied fuel and other raw chemicals to support economic growth. In the last decades their shrinking reservoirs and the increasing cost of production has become obvious, leading researchers to look for alternative substitutes of all the chemical materials presently derived from oil and gas. This review is focused on xylan, the second most abundant plant polysaccharide on our planet. Some xylan-derived products have already found commercial applications (ethanol, xylitol, xylo-oligosaccharides) while others could have a great future in a wide range of industries. The chemical and structural variations of xylans produced by different plants, and the concentration of xylan in various plant resources are summarized. This review discusses the latest research developments in extraction and purification methodologies, and chemical modification, as well as the analytical methods necessary for xylan related research. PMID:22776161

  1. Influence of windthrows and tree species on forest soil plant biomass and carbon stocks

    NASA Astrophysics Data System (ADS)

    Veselinovic, B.; Hager, H.

    2012-04-01

    The role of forests has generally been recognized in climate change mitigation and adaptation strategies and policies (e.g. Kyoto Protocol within articles 3.3 and 3.4, RES-E Directive of EU, Country Biomass Action Plans etc.). Application of mitigation actions, to decrease of CO2-emissions and, as the increase of carbon(C)-stocks and appropriate GHG-accounting has been hampered due to a lack of reliable data and good statistical models for the factors influencing C-sequestration in and its release from these systems (e.g. natural and human induced disturbances). Highest uncertainties are still present for estimation of soil C-stocks, which is at the same time the second biggest C-reservoir on earth. Spruce monocultures have been a widely used management practice in central Europe during the past century. Such stands are in lower altitudes (e.g. submontane to lower montane elevation zone) and on heavy soils unstable and prone to disturbances, especially on blowdown. As the windthrow-areas act as CO2-source, we hypothesize that conversion to natural beech and oak forests will provide sustainable wood supply and higher stability of stands against blowdown, which simultaneously provides the long-term belowground C-sequestration. This work focuses on influence of Norway spruce, Common beech and Oak stands on belowground C-dynamics (mineral soil, humus and belowground biomass) taking into consideration the increased impact of windthrows on spruce monocultures as a result of climate change. For this purpose the 300-700m altitude and pseudogley (planosols/temporally logged) soils were chosen in order to evaluate long-term impacts of the observed tree species on belowground C-dynamics and human induced disturbances on secondary spruce stands. Using the false chronosequence approach, the C-pools have been estimated for different compartments and age classes. The sampling of forest floor and surface vegetation was done using 30x30 (homogenous plots) and 50x50cm (inhomogeneous

  2. Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests.

    PubMed

    Keeling, Helen C; Baker, Timothy R; Martinez, Rodolfo Vasquez; Monteagudo, Abel; Phillips, Oliver L

    2008-12-01

    Species' functional traits may help determine rates of carbon gain, with physiological and morphological trade-offs relating to shade tolerance affecting photosynthetic capacity and carbon allocation strategies. However, few studies have examined these trade-offs from the perspective of whole-plant biomass gain of adult trees. We compared tree-level annual diameter increments and annual above-ground biomass (AGB) increments in eight long-term plots in hyper-diverse northwest Amazonia to wood density (rho; a proxy for shade tolerance), whilst also controlling for resource supply (light and soil fertility). rho and annual diameter increment were negatively related, confirming expected differences in allocation associated with shade tolerance, such that light-demanding species allocate a greater proportion of carbon to diameter gain at the expense of woody tissue density. However, contrary to expectations, we found a positive relationship between rho and annual AGB increment in more fertile sites, although AGB gain did not differ significantly with rho class on low-fertility sites. Whole-plant carbon gain may be greater in shade-tolerant species due to higher total leaf area, despite lower leaf-level carbon assimilation rates. Alternatively, rates of carbon loss may be higher in more light-demanding species: higher rates of litterfall, respiration or allocation to roots, are all plausible mechanisms. However, the relationships between rho and AGB and diameter increments were weak; resource availability always exerted a stronger influence on tree growth rates. PMID:18853192

  3. Effects of Planting Date on Biomass Production by Grass pea (Lathyrus sativus L.).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass pea is a cool-season legume commonly grown for human consumption and livestock feed in Asia and East Africa. A better understanding of the agronomic importance of planting date and the influence of photoperiod may lead to improved management strategies for cultivation of grass pea in the sout...

  4. Biogas production from plant biomass used for phytoremediation of industrial wastes.

    PubMed

    Verma, V K; Singh, Y P; Rai, J P N

    2007-05-01

    In present study, potentials of water hyacinth (Eichhornia crassipes) and water chestnut (Trapa bispinnosa) employed for phytoremediation of toxic metal rich brass and electroplating industry effluent, were examined in terms of biogas generation. Inability of the plants to grow in undiluted effluent directed to select 20%, 40% and 60% effluent concentrations (with deionized water) for phytoremediation experiments. Slurry of both the plants used for phytoremediation produced significantly more biogas than that by the control plants grown in unpolluted water; the effect being more pronounced with plants used for phytoremediation of 20% effluent. Maximum cumulative production of biogas (2430c.c./100gdm of water hyacinth and 1940c.c./100gdm of water chest nut) and per cent methane content (63.82% for water hyacinth and 57.04% for water chestnut) was observed at 5mm particle size and 1:1 substrate/inoculum ratio, after twenty days incubation. Biogas production was quicker (maximum from 8-12days) in water hyacinth than in water chestnut (maximum from 12-16days). The qualitative and quantitative variations in biogas production were correlated with COD, C, N, C/N ratio and toxic metal contents of the slurry used. PMID:16831546

  5. An insect herbivore microbiome with high plant biomass-degrading capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a...

  6. Fundamental aspects of radiation-thermal transformations of cellulose and plant biomass

    NASA Astrophysics Data System (ADS)

    Ponomarev, Alexandr V.; Ershov, Boris G.

    2012-10-01

    The results of radiation-thermal transformations of cellulose are generalized. It is shown that an event of radiation chemical destruction of polymeric cellulose chain involves local 'explosion' of the glucopyranose ring, resulting in carbon dioxide and compounds with terminal carbonyl and carboxyl groups. Effects of the absorbed radiation dose rate and heating conditions on the product composition and yields are analyzed. It is shown that at high dose rates (>= 1 kGy s-1), instantaneous and uniform heating of the whole sample promotes high-energy processes with distillation of liquid condensate mainly composed of furfural and other furan derivatives, which are considered among the most promising components of alternative engine fuels. The mechanism of the radiation-thermal transformations comprising the formation of terminal radical and dehydration, elimination and decomposition of the glucopyranose unit of cellulose to give furfural and formaldehyde is discussed. It is substantiated that utilization of accelerated electrons could provide implementation of direct one-step transformation of cellulose and lignocellulose biomass into components of liquid engine fuel and intermediates for large-scale chemical synthesis. The bibliography includes 99 references.

  7. Plant traits, productivity, biomass and soil properties from forest sites in the Pacific Northwest, 1999-2014.

    PubMed

    Berner, Logan T; Law, Beverly E

    2016-01-01

    Plant trait measurements are needed for evaluating ecological responses to environmental conditions and for ecosystem process model development, parameterization, and testing. We present a standardized dataset integrating measurements from projects conducted by the Terrestrial Ecosystem Research and Regional Analysis- Pacific Northwest (TERRA-PNW) research group between 1999 and 2014 across Oregon and Northern California, where measurements were collected for scaling and modeling regional terrestrial carbon processes with models such as Biome-BGC and the Community Land Model. The dataset contains measurements of specific leaf area, leaf longevity, leaf carbon and nitrogen for 35 tree and shrub species derived from more than 1,200 branch samples collected from over 200 forest plots, including several AmeriFlux sites. The dataset also contains plot-level measurements of forest composition, structure (e.g., tree biomass), and productivity, as well as measurements of soil structure (e.g., bulk density) and chemistry (e.g., carbon). Publically-archiving regional datasets of standardized, co-located, and geo-referenced plant trait measurements will advance the ability of earth system models to capture species-level climate sensitivity at regional to global scales. PMID:26784559

  8. Plant traits, productivity, biomass and soil properties from forest sites in the Pacific Northwest, 1999–2014

    PubMed Central

    Berner, Logan T.; Law, Beverly E.

    2016-01-01

    Plant trait measurements are needed for evaluating ecological responses to environmental conditions and for ecosystem process model development, parameterization, and testing. We present a standardized dataset integrating measurements from projects conducted by the Terrestrial Ecosystem Research and Regional Analysis- Pacific Northwest (TERRA-PNW) research group between 1999 and 2014 across Oregon and Northern California, where measurements were collected for scaling and modeling regional terrestrial carbon processes with models such as Biome-BGC and the Community Land Model. The dataset contains measurements of specific leaf area, leaf longevity, leaf carbon and nitrogen for 35 tree and shrub species derived from more than 1,200 branch samples collected from over 200 forest plots, including several AmeriFlux sites. The dataset also contains plot-level measurements of forest composition, structure (e.g., tree biomass), and productivity, as well as measurements of soil structure (e.g., bulk density) and chemistry (e.g., carbon). Publically-archiving regional datasets of standardized, co-located, and geo-referenced plant trait measurements will advance the ability of earth system models to capture species-level climate sensitivity at regional to global scales. PMID:26784559

  9. Modelling air quality impact of a biomass energy power plant in a mountain valley in Central Italy

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele; Cinque, Giovanni; Tuccella, Paolo; Visconti, Guido; Verdecchia, Marco; Iarlori, Marco; Rizi, Vincenzo

    2012-12-01

    In this study, we investigate the potential impact on local air quality of a biomass power plant, which is planned for installation near L'Aquila, a city of 70,000 people located in a mountain valley in Central Italy. The assessment is carried out by applying a one year simulation with the CALPUFF model, following the recommendations of the U. S. Environmental Protection Agency. Meteorological input is produced with CALMET model, fed with both MM5 meteorological fields at 3 km resolution and wind observations from a surface weather station. We estimate small (<0.5 μg m-3) annual average increments to SO2, NO2 and PM10 ambient levels over the domain of interest, but significant (up to 50% for NO2) enhancements and several violations (up to 141 for NO2) of hourly limits for human protection within 1.5 km from the source. These results anticipate a larger negative effect on local air quality than those published by the building firm of the plant. We also suggest that a minimum distance of 5 km from the nearest residential area would represent a significant decrease of population exposure.

  10. Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization

    PubMed Central

    Zurawski, Jeffrey V.; Conway, Jonathan M.; Lee, Laura L.; Simpson, Hunter J.; Izquierdo, Javier A.; Blumer-Schuette, Sara; Nookaew, Intawat; Adams, Michael W. W.

    2015-01-01

    Microbiological, genomic and transcriptomic analyses were used to examine three species from the bacterial genus Caldicellulosiruptor with respect to their capacity to convert the carbohydrate content of lignocellulosic biomass at 70°C to simple sugars, acetate, lactate, CO2, and H2. Caldicellulosiruptor bescii, C. kronotskyensis, and C. saccharolyticus solubilized 38%, 36%, and 29% (by weight) of unpretreated switchgrass (Panicum virgatum) (5 g/liter), respectively, which was about half of the amount of crystalline cellulose (Avicel; 5 g/liter) that was solubilized under the same conditions. The lower yields with C. saccharolyticus, not appreciably greater than the thermal control for switchgrass, were unexpected, given that its genome encodes the same glycoside hydrolase 9 (GH9)-GH48 multidomain cellulase (CelA) found in the other two species. However, the genome of C. saccharolyticus lacks two other cellulases with GH48 domains, which could be responsible for its lower levels of solubilization. Transcriptomes for growth of each species comparing cellulose to switchgrass showed that many carbohydrate ABC transporters and multidomain extracellular glycoside hydrolases were differentially regulated, reflecting the heterogeneity of lignocellulose. However, significant differences in transcription levels for conserved genes among the three species were noted, indicating unexpectedly diverse regulatory strategies for deconstruction for these closely related bacteria. Genes encoding the Che-type chemotaxis system and flagellum biosynthesis were upregulated in C. kronotskyensis and C. bescii during growth on cellulose, implicating motility in substrate utilization. The results here show that capacity for plant biomass deconstruction varies across Caldicellulosiruptor species and depends in a complex way on GH genome inventory, substrate composition, and gene regulation. PMID:26253670

  11. Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants.

    PubMed

    Lanzerstorfer, Christof

    2015-04-01

    For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of (K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO4(3-) was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3±0.8 μm, spread of particle size distribution 19±11, particle density 2620±80 kg/m3 and angle of repose 50°±1°. The density of the straw fly ashes is lower (2260±80 kg/m3) and the spread of the size distribution is higher (72±24). For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller, surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress. PMID:25872727

  12. Biomass, productivity and density of the seagrass Thalassia testudinum at three sites in Cahuita National Park, Costa Rica.

    PubMed

    Paynter, C K; Cortés, J; Engels, M

    2001-12-01

    The basic ecology of seagrass beds was investigated by comparing biomass, productivity and density of Thalassia testudinum (turtle grass) at three sites: Puerto Vargas, Punta Cahuita and Rio Perezoso, in Cahuita National Park, Limón, Costa Rica, over a two month period (March-April 1999). Above ground biomass, density, and productivity were highest in the Puerto Vargas site while Punta Cahuita had the least non-green above ground biomass was significantly lower in total biomass than Puerto Vargas. Punta Cahuita was distinguished by the largest grain size, a very hard substrate, and shallower water. Rio Perezoso, on the other hand, had extremely fine sediment and lower salinity, while Puerto Vargas was intermediate both in sediment size and environmental conditions. It appears, therefore, that higher biomass and productivity result from a combination of moderate environmental characteristics and an intermediate sediment size. PMID:15264540

  13. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants

    SciTech Connect

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; Purvine, Samuel O.; Smith, Richard D.; Lipton, Mary S.; Burnum-Johnson, Kristin E.; Currie, Cameron R.

    2015-08-28

    Leaf-cutter ants are prolific and conspicuous Neotropical herbivores that derive energy from specialized fungus gardens they cultivate using foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain lignocellulases that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as it is foraged by the ants. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous lignocellulases likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three-quarters of all lignocellulases identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 23 lignocellulases enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.

  14. Expression of ZmGA20ox cDNA alters plant morphology and increases biomass production of switchgrass (Panicum virgatum L.).

    PubMed

    Do, Phat T; De Tar, Joann R; Lee, Hyeyoung; Folta, Michelle K; Zhang, Zhanyuan J

    2016-07-01

    Switchgrass (Panicum virgatum L.) is considered a model herbaceous energy crop for the USA, for its adaptation to marginal land, low rainfall and nutrient-deficient soils; however, its low biomass yield is one of several constraints, and this might be rectified by modulating plant growth regulator levels. In this study, we have determined whether the expression of the Zea mays gibberellin 20-oxidase (ZmGA20ox) cDNA in switchgrass will improve biomass production. The ZmGA20ox gene was placed under the control of constitutive CaMV35S promoter with a strong TMV omega enhancer, and introduced into switchgrass via Agrobacterium-mediated transformation. The transgene integration and expression levels of ZmGA20ox in T0 plants were analysed using Southern blot and qRT-PCR. Under glasshouse conditions, selected transgenic plants exhibited longer leaves, internodes and tillers, which resulted in twofold increased biomass. These phenotypic alterations correlated with the levels of transgene expression and the particular gibberellin content. Expression of ZmGA20ox also affected the expression of genes coding for key enzymes in lignin biosynthesis. Our results suggest that the employment of ectopic ZmGA20ox and selection for natural variants with high level expression of endogenous GA20ox are appropriate approaches to increase biomass production of switchgrass and other monocot biofuel crops. PMID:26801525

  15. Quantification of seasonal biomass effects on cosmic-ray soil water content determination

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Bogena, Heye; Hendriks-Franssen, Harrie-Jan; Huisman, Johan Alexander; Montzka, Carsten; Vereecken, Harry

    2014-05-01

    Cosmic-ray soil moisture probes (CRS) utilize the fact that high-energy cosmic-ray neutrons are moderated (slowed to lower energies) as they most effective collide with terrestrial hydrogen atoms contained in water molecules. Low-energy cosmic-ray neutron intensity near the ground is therefore a measure of the water content of nearby soils and any water on the ground. In this study we present calibration results of a cosmic-ray soil moisture network in the Rur catchment, Germany. We propose a method to correct for above ground biomass vegetation effects on neutron flux density to improve soil water content estimates from cosmic-ray measurements. The correction for above ground water equivalents aims to remove biases in soil water content measurements on sites with high seasonal vegetation dynamics such as agricultural fields. Above ground biomass is estimated as function of the normalized difference vegetation index using regression equations. The regression equations were obtained from literature information, ground-based control measurements, a crop growth model and globally available data from the Moderate Resolution Imaging Spectrometer (MODIS). The results show that above ground biomass could be well estimated during the first half of the year. Seasonal changes in vegetation water content yielded biases in soil water content of ~0.05 cm³/cm³ that could be corrected for with the vegetation correction. The vegetation correction has particularly high potential when applied at long term cosmic-ray monitoring sites and the cosmic-ray rover.

  16. Fresh Biomass Estimation in Heterogeneous Grassland Using Hyperspectral Measurements and Multivariate Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.

    2014-12-01

    Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.

  17. River Self-Restoration: Interactions between Plants and Fluvial Processes

    NASA Astrophysics Data System (ADS)

    Gurnell, Angela

    2014-05-01

    This paper presents evidence from European rivers of the nature and consequences of plant-fluvial process interactions. While the examples are representative of different climates, riparian and aquatic plant species, and river geomorphological types, they are linked by a general conceptual model of plant-fluvial process interactions that can be adapted to local conditions. Riparian and aquatic plants both affect and respond to fluvial processes. Their above ground biomass modifies the flow field and retains sediment, whereas their below-ground biomass affects the hydraulic and mechanical properties of the substrate and consequently the moisture regime and erodibility of the land surface. At the same time plants are disturbed, removed and buried by fluvial processes. Thus the margins of river systems provide a critical zone where plants and fluvial processes interact to produce a diverse mosaic of dynamic landforms that are characteristic of naturally-functioning river ecosystems. It is important to understand these interactions between aquatic and riparian plants and fluvial processes, and to recognize how they contribute to trajectories of natural river channel recovery from human interventions. The interactions have a significant influence on river systems across space scales from individual plants to entire river corridors. Plant-scale phenomena structure patch-scale geomorphological forms and processes. Interactions between patches contribute to larger-scale and longer-term river geomorphological phenomena. Furthermore, the influence of plants varies through time as above and below ground biomass alter within the annual growth cycle, over longer-term growth trajectories, and in response to drivers of change such as climatic and hydrological fluctuations and extremes. If river management and restoration works with these natural interactions and recovery processes, outcomes have the best chance of being cost-effective and sustainable.

  18. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas

    USGS Publications Warehouse

    Namgail, T.; Rawat, G.S.; Mishra, C.; van Wieren, S.E.; Prins, H.H.T.

    2012-01-01

    A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood. We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western Himalaya. We used generalized linear and generalized additive models to assess the relationship between these vegetation parameters and altitude. We found a hump-shaped relationship between aboveground phytomass and altitude. We suspect that this is engendered by low rainfall and trampling/excessive grazing at lower slopes by domestic livestock, and low temperature and low nutrient levels at higher slopes. We also found a unimodal relationship between plant species-richness and altitude at a single mountain as well as at the scale of entire Ladakh. The species-richness at the single mountain peaked between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Perhaps biotic factors such as grazing and precipitation are, respectively, important in generating this pattern at the single mountain and entire Ladakh. ?? 2011 The Author(s).

  19. Sulfate removal and sulfur transformation in constructed wetlands: The roles of filling material and plant biomass.

    PubMed

    Chen, Yi; Wen, Yue; Zhou, Qi; Huang, Jingang; Vymazal, Jan; Kuschk, Peter

    2016-10-01

    Sulfate in effluent is a challenging issue for wastewater reuse around the world. In this study, sulfur (S) removal and transformation in five batch constructed wetlands (CWs) treating secondary effluent were investigated. The results showed that the presence of the plant cattail (Typha latifolia) had little effect on sulfate removal, while the carbon-rich litter it generated greatly improved sulfate removal, but with limited sulfide accumulation in the pore-water. After sulfate removal, most of the S was deposited with the valence states S (-II) and S (0) on the iron-rich gravel surface, and acid volatile sulfide was the main S sink in the litter-added CWs. High-throughput pyrosequencing revealed that sulfate-reducing bacteria (i.e. Desulfobacter) and sulfide-oxidizing bacteria (i.e. Thiobacillus) were dominant in the litter-added CWs, which led to a sustainable S cycle between sulfate and sulfide. Overall, this study suggests that recycling plant litter and iron-rich filling material in CWs gives an opportunity to utilize the S in the wastewater as both an electron acceptor for sulfate reduction and as an electron donor for nitrate reduction coupled with sulfide oxidation. This leads to the simultaneous removal of sulfate, nitrate, and organics without discharging toxic sulfide into the receiving water body. PMID:27423407

  20. Biomass Estimates for Five Western States.

    SciTech Connect

    Howard, James O.

    1990-10-01

    The purpose of this report is to describe the woody biomass resource within US Department of Energy's Pacific Northwest and Alaska Regional Biomass Program, comprised of southeast Alaska, Idaho, Montana, Oregon, and Washington. In addition to the regional forest biomass assessment, information will be presented for logging residue, which represents current energy conversion opportunities. The information presented in the report is based on data and relationships already published. Regionally applicable biomass equations are generally not available for species occurring in the west. Because of this, a number of assumptions were made to develop whole-tree biomass tables. These assumptions are required to link algorithms from biomass studies to regional timber inventory data published by the Forest Inventory and Analysis Research Units (FIA), of the Pacific Northwest and Intermountain Research Stations, US Forest Service. These sources and assumptions will be identified later in this report. Tabular biomass data will be presented for 11 resource areas, identified in the FS inventory publications. This report does not include information for the vast area encompassing interior Alaska. Total tress biomass as defined in the report refers to the above ground weight of a tree above a 1.0 foot stump, and exclusive of foliage. A glossary is included that defines specific terms as used in the report. Inventory terminology is derived from forest inventory reports from Forest Inventory and Analysis units at the Intermountain and Pacific Northwest Research Stations. 39 refs., 15 figs., 23 tabs.

  1. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    NASA Astrophysics Data System (ADS)

    Amirabedin, Ehsan; Pooyanfar, Mirparham; Rahim, Murad A.; Topal, Hüseyin

    2014-12-01

    Trigeneration or Combined Cooling, Heat and Power (CCHP) which is based upon combined heat and power (CHP) systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP) can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  2. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    SciTech Connect

    Fitzsimons, R.E.; Laurino, C.N.; Vallejos, R.H.

    1982-01-01

    The Argentine government's Agua y Energia Electrica is planning to construct a hydroelectric power-generation facility on the middle Parana River, which is already heavily infested with aquatic weeds such as water hyacinth. These species will probably proliferate in the lakes that will be formed by the power project and perhaps seriously interfere with the facility. As a solution to this problem, Argentine biochemists propose mechanical harvesting and anaerobic fermentation of the aquatic plants to produce biogas and fertilizer. According to an evaluation of this potential resource, gross methane production could reach 37-153 billion CF (1.0-4.1 billion m/sup 3/)/yr, and the digested residue could provide 60,500-244,000 tons (54,900-221,400 metric tons)/yr of nitrogen, which represents 2-8 times Argentina's current nitrogen fertilizer demand.

  3. Factors Determining Forest Diversity and Biomass on a Tropical Volcano, Mt. Rinjani, Lombok, Indonesia

    PubMed Central

    Dossa, Gbadamassi G. O.; Paudel, Ekananda; Fujinuma, Junichi; Yu, Haiying; Chutipong, Wanlop; Zhang, Yuan; Paz, Sherryl; Harrison, Rhett D.

    2013-01-01

    Tropical volcanoes are an important but understudied ecosystem, and the relationships between plant species diversity and compositional change and elevation may differ from mountains created by uplift, because of their younger and more homogeneous soils. We sampled vegetation over an altitudinal gradient on Mt. Rinjani, Lombok, Indonesia. We modeled alpha- (plot) and beta- (among plot) diversity (Fisher's alpha), compositional change, and biomass against elevation and selected covariates. We also examined community phylogenetic structure across the elevational gradient. We recorded 902 trees and shrubs among 92 species, and 67 species of ground-cover plants. For understorey, subcanopy and canopy plants, an increase in elevation was associated with a decline in alpha-diversity, whereas data for ground-cover plants suggested a hump-shaped pattern. Elevation was consistently the most important factor in determining alpha-diversity for all components. The alpha-diversity of ground-cover vegetation was also negatively correlated with leaf area index, which suggests low light conditions in the understorey may limit diversity at lower elevations. Beta-diversity increased with elevation for ground-cover plants and declined at higher elevations for other components of the vegetation. However, statistical power was low and we could not resolve the relative importance to beta-diversity of different factors. Multivariate GLMs of variation in community composition among plots explained 67.05%, 27.63%, 18.24%, and 19.80% of the variation (deviance) for ground-cover, understorey, subcanopy and canopy plants, respectively, and demonstrated that elevation was a consistently important factor in determining community composition. Above-ground biomass showed no significant pattern with elevation and was also not significantly associated with alpha-diversity. At lower elevations communities had a random phylogenetic structure, but from 1600 m communities were phylogenetically clustered

  4. Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance.

    PubMed

    Wuddineh, Wegi A; Mazarei, Mitra; Zhang, Jiyi; Poovaiah, Charleson R; Mann, David G J; Ziebell, Angela; Sykes, Robert W; Davis, Mark F; Udvardi, Michael K; Stewart, Charles Neal

    2015-06-01

    Gibberellin 2-oxidases (GA2oxs) are a group of 2-oxoglutarate-dependent dioxygenases that catalyse the deactivation of bioactive GA or its precursors through 2β-hydroxylation reaction. In this study, putatively novel switchgrass C20 GA2ox genes were identified with the aim of genetically engineering switchgrass for improved architecture and reduced biomass recalcitrance for biofuel. Three C20 GA2ox genes showed differential regulation patterns among tissues including roots, seedlings and reproductive parts. Using a transgenic approach, we showed that overexpression of two C20 GA2ox genes, that is PvGA2ox5 and PvGA2ox9, resulted in characteristic GA-deficient phenotypes with dark-green leaves and modified plant architecture. The changes in plant morphology appeared to be associated with GA2ox transcript abundance. Exogenous application of GA rescued the GA-deficient phenotypes in transgenic lines. Transgenic semi-dwarf lines displayed increased tillering and reduced lignin content, and the syringyl/guaiacyl lignin monomer ratio accompanied by the reduced expression of lignin biosynthetic genes compared to nontransgenic plants. A moderate increase in the level of glucose release in these transgenic lines might be attributed to reduced biomass recalcitrance as a result of reduced lignin content and lignin composition. Our results suggest that overexpression of GA2ox genes in switchgrass is a feasible strategy to improve plant architecture and reduce biomass recalcitrance for biofuel. PMID:25400275

  5. A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria.

    PubMed

    Scott, Israel M; Rubinstein, Gabe M; Lipscomb, Gina L; Basen, Mirko; Schut, Gerrit J; Rhaesa, Amanda M; Lancaster, W Andrew; Poole, Farris L; Kelly, Robert M; Adams, Michael W W

    2015-10-01

    Caldicellulosiruptor bescii grows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment. C. bescii ferments both C5 and C6 sugars primarily to hydrogen gas, lactate, acetate, and CO2 and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of the C. bescii genome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism of C. bescii has a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway in C. bescii was demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus. Furthermore, C. bescii also contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, in C. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism. PMID:26276113

  6. Soil-Derived Microbial Consortia Enriched with Different Plant Biomass Reveal Distinct Players Acting in Lignocellulose Degradation.

    PubMed

    de Lima Brossi, Maria Julia; Jiménez, Diego Javier; Cortes-Tolalpa, Larisa; van Elsas, Jan Dirk

    2016-04-01

    Here, we investigated how different plant biomass, and-for one substrate-pH, drive the composition of degrader microbial consortia. We bred such consortia from forest soil, incubated along nine aerobic sequential - batch enrichments with wheat straw (WS1, pH 7.2; WS2, pH 9.0), switchgrass (SG, pH 7.2), and corn stover (CS, pH 7.2) as carbon sources. Lignocellulosic compounds (lignin, cellulose and xylan) were best degraded in treatment SG, followed by CS, WS1 and WS2. In terms of composition, the consortia became relatively stable after transfers 4 to 6, as evidenced by PCR-DGGE profiles obtained from each consortium DNA. The final consortia differed by ~40 % (bacteria) and ~60 % (fungi) across treatments. A 'core' community represented by 5/16 (bacteria) and 3/14 (fungi) bands was discerned, next to a variable part. The composition of the final microbial consortia was strongly driven by the substrate, as taxonomically-diverse consortia appeared in the different substrate treatments, but not in the (WS) different pH one. Biodegradative strains affiliated to Sphingobacterium kitahiroshimense, Raoultella terrigena, Pseudomonas putida, Stenotrophomonas rhizophila (bacteria), Coniochaeta ligniaria and Acremonium sp. (fungi) were recovered in at least three treatments, whereas strains affiliated to Delftia tsuruhatensis, Paenibacillus xylanexedens, Sanguibacter inulus and Comamonas jiangduensis were treatment-specific. PMID:26487437

  7. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice

    PubMed Central

    Song, Xian Jun; Kuroha, Takeshi; Ayano, Madoka; Furuta, Tomoyuki; Nagai, Keisuke; Komeda, Norio; Segami, Shuhei; Miura, Kotaro; Ogawa, Daisuke; Kamura, Takumi; Suzuki, Takamasa; Higashiyama, Tetsuya; Yamasaki, Masanori; Mori, Hitoshi; Inukai, Yoshiaki; Wu, Jianzhong; Kitano, Hidemi; Sakakibara, Hitoshi; Jacobsen, Steven E.; Ashikari, Motoyuki

    2015-01-01

    Grain weight is an important crop yield component; however, its underlying regulatory mechanisms are largely unknown. Here, we identify a grain-weight quantitative trait locus (QTL) encoding a new-type GNAT-like protein that harbors intrinsic histone acetyltransferase activity (OsglHAT1). Our genetic and molecular evidences pinpointed the QTL-OsglHAT1’s allelic variations to a 1.2-kb region upstream of the gene body, which is consistent with its function as a positive regulator of the traits. Elevated OsglHAT1 expression enhances grain weight and yield by enlarging spikelet hulls via increasing cell number and accelerating grain filling, and increases global acetylation levels of histone H4. OsglHAT1 localizes to the nucleus, where it likely functions through the regulation of transcription. Despite its positive agronomical effects on grain weight, yield, and plant biomass, the rare allele elevating OsglHAT1 expression has so far escaped human selection. Our findings reveal the first example, to our knowledge, of a QTL for a yield component trait being due to a chromatin modifier that has the potential to improve crop high-yield breeding. PMID:25535376

  8. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    PubMed

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system. PMID:25982984

  9. A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria

    PubMed Central

    Scott, Israel M.; Rubinstein, Gabe M.; Lipscomb, Gina L.; Basen, Mirko; Schut, Gerrit J.; Rhaesa, Amanda M.; Lancaster, W. Andrew; Poole, Farris L.; Kelly, Robert M.

    2015-01-01

    Caldicellulosiruptor bescii grows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment. C. bescii ferments both C5 and C6 sugars primarily to hydrogen gas, lactate, acetate, and CO2 and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of the C. bescii genome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism of C. bescii has a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway in C. bescii was demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus. Furthermore, C. bescii also contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, in C. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism. PMID:26276113

  10. [Feasibility of the use of degraded inedible biomass of plants as a nutrient liquid for hydroponic cultivation].

    PubMed

    Guo, S S; Ai, W D; Hou, W H; Shi, W W

    2001-10-01

    Objective. To demonstrate that the recycled liquid, which originated from lettuce inedible biomass degraded by fixed microorganism (correction of microorgannism) and enzyme, can be used as a nutrient solution for lettuce hydroponic cultivation. Method. After biologically degrading the weighted, oven-dried and milled leaves and roots of lettuce in a biological reactor under aerobic condition, the original effluent and its supplemented effluent were used as nutrients for lettuce hydroponic cultivation. Result. The average dried weight (ADW) of lettuce from the original effluent group was approximately half of that from the control group, and the ADW from supplemented effluent group was about equal to that from the control group; some qualities of the lettuce such as a relatively lower content of NO3- from both the original effluent group and the supplemented effluent one improved, and some of those such as a relatively higher content of NO2- dropped. Conclusion. The biologically-degraded effluent was able to be used as nutrient solution for lettuce hydroponic cultivation, although the effects of the inorganic ion-supplemented effluent were much better; the plants of lettuce from the biologically-degraded effluent were safely edible. PMID:11842852

  11. Experimental Study and Optimization of Thermoelectricity-Driven Autonomous Sensors for the Chimney of a Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Aranguren,