Science.gov

Sample records for above-threshold ionization ati

  1. Measurement of intensity-dependent rates of above-threshold ionization (ATI) of atomic hydrogen at 248 nm

    SciTech Connect

    Nichols, T.D.

    1991-04-01

    Measured rates of multiphoton ionization (MPI) from the ground state of atomic hydrogen by a linearly polarized, subpicosecond KrF laser pulse at 248 nm wavelength are compared to predictions of lowest-order perturbation theory, Floquet theory, and Keldysh-Faisal-Reiss (KFR) theory with and without Coulomb correction for peak irradiance of 3 {times} 10{sup 12}W/cm{sup 2} to 2 {times} 10{sup 14}W/cm{sup 2}. The Coulomb-corrected Keldysh model falls closest to the measured rates, the others being much higher or much lower. At 5 {times} 10{sup 13}W/cm{sup 2}, the number of ATI electrons decreased by a factor of approximately 40 with each additional photon absorbed. ATI of the molecular hydrogen background and of atoms from photodissociation of the molecules were also observed. The experiment employed a crossed-beam technique at ultrahigh vacuum with an rf-discharge atomic hydrogen source and a magnetic-bottle type electron time-of-flight spectrometer to count the electrons in the different ATI channels separately. The apparatus was calibrated to allow comparison of absolute as well as relative ionization rates to the theoretical predictions. This calibration involved measuring the distribution of irradiance in a focal volume that moved randomly and changed its size from time to time. A data collection system under computer control divided the time-of-flight spectra into bins according to the energy of each laser pulse. This is the first measurement of absolute rates of ATI in atomic hydrogen, and the first measurement of absolute test of MPI in atomic hydrogen without a large factor to account for multiple modes in the laser field. As such, the results of this work are important to the development of ATI theories, which presently differ by orders of magnitude in their prediction of the ionization rates. They are also important to recent calculations of temperatures in laser-heated plasmas, many of which incorporate KFR theory.

  2. Analytic formulas for above threshold ionization or detachment plateau spectra

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.

    2009-11-01

    Closed form analytic formulas are derived in the tunneling limit for both above threshold detachment (ATD) of negative ions and above threshold ionization (ATI) of neutral atoms. These formulas provide a fully quantum justification of the well-known classical three-step scenario for strong field ionization and detachment spectra in the high energy region of the ATI or ATD plateau and also provide analytical insight into how the ATI/ATD rates may be controlled by varying the laser field parameters or by varying the atomic species.

  3. Above-threshold ionization of negative hydrogen

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, L. A. A.; Lambropoulos, P.

    1997-10-01

    We present detailed calculations for two-and three-photon above-threshold ionization of the negative hydrogen ion. In addition to calculated values for partial wave amplitudes and phase shifts pertaining to recent experimental results [Xin Miao Zhao et al., Phys. Rev. Lett. 78, 1656 (1997)], we also address the question of the asymmetry of photoelectron angular distributions in ionization under elliptically polarized radiation, which has been studied experimentally in other negative ions [C. Blondel and C. Delsart, Laser Phys. 3, 3 (1993); Nucl. Instrum. Methods Phys. Res. B 79, 156 (1993); F. Dulieu, C. Blondel, and C. Delsart, J. Phys. B 28, 3861 (1995)].

  4. Analytic formulas for above-threshold ionization or detachment plateau spectra

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.

    2009-03-01

    Closed-form analytic formulas are derived in the tunneling limit for both above-threshold detachment (ATD) of negative ions and above-threshold ionization (ATI) of neutral atoms. These formulas are shown to give precise agreement with essentially exact single-active-electron numerical results for detached or ionized electron energies corresponding to the high-energy end of the ATD and ATI plateaus (with only a small constant shift of electron energies being required in the case of ATI). These formulas for ATI and ATD rates thus provide an analytic explanation for the well-known oscillatory patterns of ATI and ATD rates as functions of electron energy and of the parameters of the laser field. They also provide an analytic explanation for the dependence of these rates on the initial orbital angular momentum of the active electron. Most significantly, these formulas provide a fully quantum justification of the well-known classical three-step scenario for strong-field ionization and detachment spectra in the high-energy region of the ATI or ATD plateau.

  5. Method for calculating multiphoton above-threshold processes in atoms: Two-photon above-threshold ionization

    SciTech Connect

    Manakov, N. L. Marmo, S. I.; Sviridov, S. A.

    2009-04-15

    The two-photon above-threshold ionization of atoms is calculated using numerical algorithms of the Pade approximation in the model-potential method with the Coulomb asymptotics. The total and differential cross sections of the above-threshold ionization of helium and alkali metal atoms by elliptically polarized radiation are presented. The dependence of the angular distribution of photoelectrons on the sign of the ellipticity of radiation (the elliptic dichroism phenomenon) is analyzed in the above-threshold frequency range.

  6. Classical-Quantum Correspondence for Above-Threshold Ionization

    NASA Astrophysics Data System (ADS)

    Li, Min; Geng, Ji-Wei; Liu, Hong; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Gong, Qihuang; Liu, Yunquan

    2014-03-01

    We measure high resolution photoelectron angular distributions (PADs) for above-threshold ionization of xenon atoms in infrared laser fields. Based on the Ammosov-Delone-Krainov theory, we develop an intuitive quantum-trajectory Monte Carlo model encoded with Feynman's path-integral approach, in which the Coulomb effect on electron trajectories and interference patterns are fully considered. We achieve a good agreement with the measured PADs of atoms for above-threshold ionization. The quantum-trajectory Monte Carlo theory sheds light on the role of ionic potential on PADs along the longitudinal and transverse direction with respect to the laser polarization, allowing us to unravel the classical coordinates (i.e., tunneling phase and initial momentum) at the tunnel exit for all of the photoelectrons of the PADs. We study the classical-quantum correspondence and build a bridge between the above-threshold ionization and the tunneling theory.

  7. Analytic Model for Description of Above-Threshold Ionization by an Intense, Short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Starace, Anthony F.; Frolov, M. V.; Knyazeva, D. V.; Manakov, N. L.; Geng, J.-W.; Peng, L.-Y.

    2015-05-01

    We present an analytic model for above-threshold ionization (ATI) of an atom by an intense, linearly-polarized short laser pulse. Our quantum analysis provides closed-form formulas for the differential probability of ATI, with amplitudes given by a coherent sum of partial amplitudes describing ionization by neighboring optical cycles near the peak of the intensity envelope of a short laser pulse. These analytic results explain key features of short-pulse ATI spectra, such as the left-right asymmetry in the ionized electron angular distribution, the multi-plateau structures, and both large-scale and fine-scale oscillation patterns resulting from quantum interferences of electron trajectories. The ATI spectrum in the middle part of the ATI plateau is shown to be sensitive to the spatial symmetry of the initial bound state of the active electron owing to contributions from multiple-return electron trajectories. An extension of our analytic formulas to real atoms provides results that are in good agreement with results of numerical solutions of the time-dependent Schrödinger equation for He and Ar atoms. Research supported in part by NSF Grant No. PHY-1208059, by RFBR Grant No. 13-02-00420, by Ministry of Ed. & Sci. of the Russian Fed. Proj. No. 1019, by NNSFC Grant Nos. 11322437, 11174016, and 11121091, and by the Dynasty Fdn. (MVF & DVK).

  8. Interference in above-threshold-ionization electron distributions from molecules

    SciTech Connect

    Henkel, Jost; Lein, Manfred; Engel, Volker

    2011-05-15

    We present quantum-mechanical studies on above-threshold ionization of molecular ions in two and three dimensions. The momentum distributions show signatures of interfering emissions from the molecular centers. These structures deviate from a simple double-slit model that ignores the electron-ion interaction, but they are reproduced by an eikonal model. Such distortions of the interference pattern are partly responsible for the absence of clear interference patterns in the angle-integrated electron energy spectra.

  9. Channel-resolved above-threshold double ionization of acetylene.

    PubMed

    Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-04-24

    We experimentally investigate the channel-resolved above-threshold double ionization (ATDI) of acetylene in the multiphoton regime using an ultraviolet femtosecond laser pulse centered at 395 nm by measuring all the ejected electrons and ions in coincidence. As compared to the sequential process, diagonal lines in the electron-electron joint energy spectrum are observed for the nonsequential ATDI owing to the correlative sharing of the absorbed multiphoton energies. We demonstrate that the distinct channel-resolved sequential and nonsequential ATDI spectra can clearly reveal the photon-induced acetylene-vinylidene isomerization via proton migration on the cation or dication states. PMID:25955049

  10. Above-threshold ionization and photoelectron spectra in atomic systems driven by strong laser fields

    NASA Astrophysics Data System (ADS)

    Suárez, Noslen; Chacón, Alexis; Ciappina, Marcelo F.; Biegert, Jens; Lewenstein, Maciej

    2015-12-01

    Above-threshold ionization (ATI) results from strong-field laser-matter interaction and it is one of the fundamental processes that may be used to extract electron structural and dynamical information about the atomic or molecular target. Moreover, it can also be used to characterize the laser field itself. Here we develop an analytical description of ATI, which extends the theoretical strong-field approximation (SFA), for both the direct and rescattering transition amplitudes in atoms. From a nonlocal, but separable potential, the bound-free dipole and the rescattering transition matrix elements are analytically computed. In comparison with the standard approaches to the ATI process, our analytical derivation of the rescattering matrix elements allows us to study directly how the rescattering process depends on the atomic target and laser-pulse features; we can turn on and off contributions having different physical origins or corresponding to different physical mechanisms. We compare SFA results with the full numerical solutions of the time-dependent Schrödinger equation (TDSE) within the few-cycle pulse regime. Good agreement between our SFA and TDSE model is found for the ATI spectrum. Our model captures also the strong dependence of the photoelectron spectra on the carrier envelope phase of the laser field.

  11. Analytic model for the description of above-threshold ionization by an intense short laser pulse

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Knyazeva, D. V.; Manakov, N. L.; Geng, Ji-Wei; Peng, Liang-You; Starace, Anthony F.

    2014-06-01

    We present an analytic model for the description of above-threshold ionization (ATI) of an atom by an intense, linearly polarized short laser pulse. Our treatment is based upon a description of ATI by an infinitely long train of short laser pulses whereupon we take the limit that the time interval between pulses becomes infinite. In the quasiclassical approximation, we provide detailed quantum-mechanical derivations, within the time-dependent effective range (TDER) model, of the closed-form formulas for the differential probability P (p) of ATI by an intense, short laser pulse that were presented briefly by Frolov et al. [Phys. Rev. Lett. 108, 213002 (2012), 10.1103/PhysRevLett.108.213002] and that were used to describe key features of the high-energy part of ATI spectra for H and He atoms in an intense, few-cycle laser pulse, using a phenomenological generalization of the physically transparent TDER results to the case of real atoms. Moreover, we extend these results here to the case of an electron bound initially in a p state; we also take into account multiple-return electron trajectories. The ATI amplitude in our approach is given by a coherent sum of partial amplitudes describing ionization by neighboring optical cycles near the peak of the intensity envelope of a short laser pulse. These results provide an analytical explanation of key features in short-pulse ATI spectra, such as the left-right asymmetry in the ionized electron angular distribution, the multiplateau structures, and both large-scale and fine-scale oscillation patterns resulting from quantum interferences of electron trajectories. Our results show that the shape of the ATI spectrum in the middle part of the ATI plateau is sensitive to the spatial symmetry of the initial bound state of the active electron. This sensitivity originates from the contributions of multiple-return electron trajectories. Our analytic results are shown to be in good agreement with results of numerical solutions of the

  12. Molecular rescattering signature in above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Cornaggia, C.

    2008-10-01

    Above-threshold ionization electron spectra recorded with nonaligned molecules such as N2 , CO2 , and C3H4 exhibit the same classical kinematics features of electrons in strong laser fields as for atoms in the 1014Wcm-2 laser intensity range. The cutoff energies for direct and rescattered electrons are governed by the electron classical dynamics in the intense laser field. The main differences are found in the energy-resolved angular distributions. The molecular potential leads to a larger differential elastic cross section for forward-rescattered electrons and as a consequence to broader angular distributions for rescattered electrons with energies lower than 5Up , where Up is the ponderomotive potential.

  13. Phase space path-integral formulation of the above-threshold ionization

    SciTech Connect

    Milosevic, D. B.

    2013-04-15

    Atoms and molecules submitted to a strong laser field can emit electrons of high energies in the above-threshold ionization (ATI) process. This process finds a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits [P. Salieres et al., Science 292, 902 (2001)]. However, the connection with the Feynman path-integral formalism is explained only by intuition and analogy and within the so-called strong-field approximation (SFA). Using the phase space path-integral formalism we have obtained an exact result for the momentum-space matrix element of the total time-evolution operator. Applying this result to the ATI we show that the SFA and the so-called improved SFA are, respectively, the zeroth- and the first-order terms of the expansion in powers of the laser-free effective interaction of the electron with the rest of the atom (molecule). We have also presented the second-order term of this expansion which is responsible for the ATI with double scattering of the ionized electron.

  14. Roles of resonances and recollisions in strong-field atomic phenomena: Above-threshold ionization

    SciTech Connect

    Wassaf, Joseph; Veniard, Valerie; Taieeb, Richard; Maquet, Alfred

    2003-05-01

    We present the results of a set of quantal and classical calculations designed for simulating the photoelectron spectra observed when atoms are submitted to an intense laser field. We have concentrated the discussion on the range of parameters where conspicuous enhancements are observed in the high-energy part of the above-threshold ionization (ATI) spectra. Our results confirm that these enhancements result from a resonant transfer of population into the Rydberg states. Subsequent multiple returns, with elastic or inelastic recollisions of the electrons with the nucleus, when they are released in the continuum, also play an essential part. Our analysis highlights also the similarities as well as the differences observed in simulations, depending on the choice of the model potential, i.e., if it is either long range (Coulomb-like) or short range (with an exponentially decreasing tail)

  15. Resonancelike enhancement in high-order above-threshold ionization of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Wang, C.; Okunishi, M.; Hao, X.; Ito, Y.; Chen, J.; Yang, Y.; Lucchese, R. R.; Zhang, M.; Yan, B.; Li, W. D.; Ding, D.; Ueda, K.

    2016-04-01

    We investigate the resonance-like enhancement (RLE) in high-order above-threshold ionization (ATI) spectra of the polyatomic molecules C2H4 and C2H6 . In the spectrum-intensity maps, strong and weak RLE areas emerge alternatively for both C2H4 and C2H6 but in different sequences. Theoretical calculations using the strong-field approximation reproduce the experimental observation and analysis shows that the different characteristics of the two molecules can be attributed to interference effects of molecular orbitals with different symmetries. For C2H4 , the RLE structures are attributed to C-C centers of the highest occupied molecular orbital (HOMO) orbital. For C2H6 , in contrast, the C-C centers of the HOMO and HOMO-1 orbitals do not contribute to the RLE due to destructive interference but the hydrogen centers of the bonding HOMO-1 orbital give rise to the multiple RLE regions. In addition, clear experimental evidence of the existence of two types of the RLE and their dependence on the parity of ground state is shown. Our result, which strongly supports the channel-closing mechanism of the RLE, for the first time reveals the important role of low-lying orbitals and the differing roles of different atomic centers in the high-order ATI spectrum of molecules.

  16. Non-constant ponderomotive energy in above threshold ionization by intense few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Della Picca, Renata; Gramajo, Ana A.; Arbó, Diego G.; López, Sebastián D.; Garibotti, Carlos R.

    2015-09-01

    We analyze the contribution of the quiver kinetic energy acquired by an electron in an oscillating electric field to the energy balance in atomic ionization processes by a short laser pulse. Due to the time dependence of this additional kinetic energy, a temporal average is assumed to maintain a stationary energy conservation rule. This rule is used to predict the position of the peaks observed in the photo electron spectra (PE). For a flat top pulse envelope, the mean value of the quiver energy over the whole pulse leads to the concept of ponderomotive energy $U_{p}$. However for a short pulse with a fast changing field intensity a stationarity approximation could not be precise. We check these concepts by studying first the photoelectron (PE) spectrum within the Semiclassical Model (SCM) for a multiple steps pulses. The SCM offers the possibility to establish a connection between emission times and the PE spectrum in the energy domain. We show that PE substructures stem from ionization at different times mapping the pulse envelope. We also present the analysis of the PE spectrum for a realistic sine-squared envelope within the Coulomb-Volkov and \\textit{ab initio} calculations solving the time-dependent Schr\\"odinger equation. We found that the electron emission amplitudes produced at different times interfere with each other and produce a new additional pattern, that overlap the above-threshold ionization (ATI) peaks.

  17. Nonconstant ponderomotive energy in above-threshold ionization by intense short laser pulses

    NASA Astrophysics Data System (ADS)

    Della Picca, R.; Gramajo, A. A.; Garibotti, C. R.; López, S. D.; Arbó, D. G.

    2016-02-01

    We analyze the contribution of the quiver kinetic energy acquired by an electron in an oscillating electric field of a short laser pulse to the energy balance in atomic ionization processes. Due to the time dependence of this additional kinetic energy, a temporal average is assumed to preserve a stationary energy conservation rule, which is used to predict the position of the energy peaks observed in the photoelectron (PE) spectra. For a plane wave and a flattop pulse, the mean value of the quiver energy over the whole pulse leads to the concept of ponderomotive energy Up. However, for a short pulse with a fast changing intensity, the stationary approximation loses its validity. We check these concepts by studying first the PE spectrum within the semiclassical model (SCM) for multiple-step pulses. The SCM offers the possibility to establish a connection between emission times and the PE spectrum in the energy domain. We show that PE substructures stem from ionization at different times mapping the pulse envelope. We also analyze the PE spectrum for a realistic sine-squared envelope within the Coulomb-Volkov and ab initio calculations solving the time-dependent Schrödinger equation. We found that the electron emission amplitudes produced at different times interfere with each other producing, in this way, a new additional pattern that modulates the above-threshold ionization (ATI) peaks.

  18. Above-threshold ionization near the 3p4d {sup 1}F{sup o} autoionizing state in magnesium

    SciTech Connect

    Reber, A.; Baynard, T.; Berry, R.S.; Martin, F.; Bachau, H.

    2005-05-15

    Two-photon above-threshold ionization (ATI) relative cross sections from the 3 {sup 1}P state of Mg have been measured using two-color ionization in the focus of a magnetic bottle spectrometer and have been calculated using the Green's-function method in the Feshbach formalism and an L{sup 2}-integrable close-coupling approach, with a basis of L{sup 2}-integrable B-spline functions. We report these cross sections in the region of 3d4p {sup 1}F{sup o} autoionizing state, with photon energies of 3.3-3.6 eV. This is one of the few direct comparisons between ab initio theory and experiments in ATI in the vicinity of a Feshbach resonance. A good agreement between theory and experiment is found in the relative total cross sections.

  19. Controlling high-order harmonic generation and above-threshold ionization with an attosecond-pulse train

    SciTech Connect

    Figueira de Morisson Faria, C.; Salieres, P.; Villain, P.; Lewenstein, M.

    2006-11-15

    We perform a detailed analysis of how high-order harmonic generation (HHG) and above-threshold ionization (ATI) can be controlled by a time-delayed attosecond-pulse train superposed to a strong, near-infrared laser field. In particular we show that the high-order harmonic and photoelectron intensities, the high-order harmonic plateau structure and cutoff energies, and the ATI angular distributions can be manipulated by changing this delay. This is a direct consequence of the fact that the attosecond pulse train can be employed as a tool for constraining the instant an electronic wave packet is ejected in the continuum. A change in such initial conditions strongly affects its subsequent motion in the laser field, and thus HHG and ATI. In our studies, we employ the strong-field approximation and explain the features observed in terms of interference effects between various electron quantum orbits. Our results are in agreement with recent experimental findings and theoretical studies employing purely numerical methods.

  20. Electron-nuclear energy sharing in above-threshold multiphoton dissociative ionization of H2.

    PubMed

    Wu, J; Kunitski, M; Pitzer, M; Trinter, F; Schmidt, L Ph H; Jahnke, T; Magrakvelidze, M; Madsen, C B; Madsen, L B; Thumm, U; Dörner, R

    2013-07-12

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles. PMID:23889391

  1. Influence of multi-photon excitation on the atomic above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Tian, Yuan-Ye; Wang, Chun-Cheng; Li, Su-Yu; Guo, Fu-Ming; Ding, Da-Jun; Wim-G, Roeterdink; Chen, Ji-Gen; Zeng, Si-Liang; Liu, Xue-Shen; Yang, Yu-Jun

    2015-04-01

    Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrödinger equation of a hydrogen-like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in above-threshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the above-threshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grants Nos. 11274141, 11034003, 11304116, 11274001, and 11247024), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20140101168JC).

  2. Charge-distribution effect of imaging molecular structure by high-order above-threshold ionization

    SciTech Connect

    Wang Bingbing; Fu Panming; Guo Yingchun; Zhang Bin; Zhao Zengxiu; Yan Zongchao

    2010-10-15

    Using a triatomic molecular model, we show that the interference pattern in the high-order above-threshold ionization (HATI) spectrum depends dramatically on the charge distribution of the molecular ion. Therefore the charge distribution can be considered a crucial factor for imaging a molecular geometric structure. Based on this study, a general destructive interference formula for each above-threshold ionization channel is obtained for a polyatomic molecule concerning the positions and charge values of each nuclei. Comparisons are made for the HATI spectra of CO{sub 2}, O{sub 2}, NO{sub 2}, and N{sub 2}. These results may shed light on imaging complex molecular structure by the HATI spectrum.

  3. Molecular above-threshold-ionization angular distributions with attosecond bichromatic intense XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-01-01

    Angular distributions of molecular above-threshold ionization (MATI) in bichromatic attosecond extreme ultraviolet (XUV) linear polarization laser pulses have been theoretically investigated. Multiphoton ionization in a prealigned molecular ion H2+ produces clear MATI spectra which show a forward-backward asymmetry in angular and momentum distributions which is critically sensitive to the carrier envelope phase (CEP) φ, the time delay Δτ between the two laser pulses, and the photoelectron kinetic energies Ee. The features of the asymmetry in MATI angular distributions are described well by multiphoton perturbative ionization models. Phase differences of continuum electron wave functions can be extracted from the CEP φ and time delay Δτ dependent ionization asymmetry ratio created by interfering multiphoton ionization pathways. At large internuclear distances MATI angular distributions exhibit more complex features due to laser-induced electron diffraction where continuum electron wavelengths are less than the internuclear distance.

  4. Molecular above-threshold-ionization angular distributions with intense circularly polarized attosecond XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-05-01

    Photoionization of aligned and fixed nuclei three-dimensional H2+ and two-dimensional H2 by intense circularly polarized attosecond extreme ultraviolet laser pulses is investigated from numerical solutions of the time-dependent Schrödinger equation. Molecular above-threshold-ionization angular distributions are found to be rotated with respect to the two laser perpendicular polarizations or, equivalently the symmetry axes of the molecule. The angle of rotation is critically sensitive to laser wavelength λ, photoelectron energy Een, and molecular internuclear distance R. The correlated interaction of the two electrons in H2 is shown to also influence such angular distribution rotations in different electronic states.

  5. GeV Electrons Acceleration in Focused Laser Fields after Above-threshold Ionization

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2003-04-09

    Electrons produced as a result of above-threshold ionization of high-Z atoms can be accelerated by currently producible laser pulses up to GeV energies, as shown recently in Hu and Starace, Phys. Rev. Lett. 88 (2002) Article No. 245003. To describe electron acceleration by general focused laser fields, we employ an analytical model based on a Hamiltonian, fully relativistic, ponderomotive approach. Analytical expressions are derived and the applicability conditions of the ponderomotive formulation are studied both analytically and numerically. The theoretical predictions are supported by the numerical simulations.

  6. Elliptical polarization favors long quantum orbits in high-order above-threshold ionization of noble gases.

    PubMed

    Lai, XuanYang; Wang, ChuanLiang; Chen, YongJu; Hu, ZiLong; Quan, Wei; Liu, XiaoJun; Chen, Jing; Cheng, Ya; Xu, ZhiZhan; Becker, Wilhelm

    2013-01-25

    We demonstrate the significant role of long quantum orbits in strong-field atomic processes by investigating experimentally and theoretically the above-threshold ionization spectra of noble gases in intense elliptically polarized laser pulses. With increasing laser ellipticity, the yields of different energy regions of the measured electron spectrum in high-order above-threshold ionization drop at different rates. The experimental features can be reproduced by a theoretical simulation based on quantum-orbit theory, revealing that increasing ellipticity favors the contributions of the long quantum orbits in the high-order above-threshold ionization process. PMID:25166161

  7. Above-threshold ionization of diatomic molecules by few-cycle laser pulses

    SciTech Connect

    Gazibegovic-Busuladzic, A.; Hasovic, E.; Busuladzic, M.; Milosevic, D. B.; Kelkensberg, F.; Siu, W. K.; Vrakking, M. J. J.; Lepine, F.; Sansone, G.; Nisoli, M.; Znakovskaya, I.; Kling, M. F.

    2011-10-15

    Above-threshold ionization of diatomic molecules by infrared carrier-envelope phase (CEP) stable few-cycle laser pulses is analyzed both experimentally and theoretically. The theoretical approach is based on the recently developed molecular improved strong-field approximation (ISFA), generalized to few-cycle pulses. Instead of using the first Born approximation, the rescattering matrix element in the ISFA is now calculated exactly. This modification leads to the appearance of characteristic minima in the differential cross section as a function of the scattering angle. Experimental angle-resolved photoelectron spectra of N{sub 2} and O{sub 2} molecules are obtained using the velocity map imaging technique. A relatively good agreement of experimental and simulated angle-resolved spectra, CEP-dependent asymmetry maps, and extracted electron-molecular ion elastic scattering differential cross sections is obtained.

  8. Above-threshold ionization of diatomic molecules by few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Gazibegović-Busuladžić, A.; Hasović, E.; Busuladžić, M.; Milošević, D. B.; Kelkensberg, F.; Siu, W. K.; Vrakking, M. J. J.; Lépine, F.; Sansone, G.; Nisoli, M.; Znakovskaya, I.; Kling, M. F.

    2011-10-01

    Above-threshold ionization of diatomic molecules by infrared carrier-envelope phase (CEP) stable few-cycle laser pulses is analyzed both experimentally and theoretically. The theoretical approach is based on the recently developed molecular improved strong-field approximation (ISFA), generalized to few-cycle pulses. Instead of using the first Born approximation, the rescattering matrix element in the ISFA is now calculated exactly. This modification leads to the appearance of characteristic minima in the differential cross section as a function of the scattering angle. Experimental angle-resolved photoelectron spectra of N2 and O2 molecules are obtained using the velocity map imaging technique. A relatively good agreement of experimental and simulated angle-resolved spectra, CEP-dependent asymmetry maps, and extracted electron-molecular ion elastic scattering differential cross sections is obtained.

  9. Role of elastic scattering in high-order above threshold ionization

    NASA Astrophysics Data System (ADS)

    Chen, Zhang-Jin; Ye, Jian-Mian; Xu, Yang-Bing

    2015-10-01

    We investigate the target and intensity dependence of plateau in high-order above threshold ionization (HATI) by simulating the two-dimensional (2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section (DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra. Project supported by the National Natural Science Foundation of China (Grant No. 11274219), the STU Scientific Research Foundation for Talents, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

  10. Intensity-dependent enhancements in high-order above-threshold ionization

    SciTech Connect

    Milosevic, D. B.; Hasovic, E.; Gazibegovic-Busuladzic, A.; Busuladzic, M.; Becker, W.

    2007-11-15

    The very pronounced intensity-dependent enhancements of groups of peaks of high-order above-threshold-ionization spectra of rare-gas atoms are investigated using an improved version of the strong-field approximation, which realistically models the respective atom. Two types of enhancements are found and explained in terms of constructive interference of the contributions of a large number of long quantum orbits. The first type is observed for intensities slightly below channel closings. Its intensity dependence is comparatively smooth and it is generated by comparatively few (of the order of 20) orbits. The second type occurs precisely at channel closings and exhibits an extremely sharp intensity dependence. It requires constructive interference of a very large number of long orbits (several hundreds) and generates cusps in the electron spectrum at integer multiples of the laser-photon energy. An interpretation of these enhancements as a threshold phenomenon is also given. An interplay of different types of the threshold anomalies is observed. The position of both types of enhancements, in the photoelectron-energy--laser-intensity plane, shifts to the next channel closing intensity with the change of the ground-state parity. The enhancements gradually disappear with decreasing laser pulse duration. This confirms the interpretation of enhancements as a consequence of the interference of long strong-laser-field-induced quantum orbits.

  11. Dressed-bound-state molecular strong-field approximation: Application to above-threshold ionization of heteronuclear diatomic molecules

    SciTech Connect

    Hasovic, E.; Busuladzic, M.; Becker, W.; Milosevic, D. B.

    2011-12-15

    The molecular strong-field approximation (MSFA), which includes dressing of the molecular bound state, is introduced and applied to above-threshold ionization of heteronuclear diatomic molecules. Expressions for the laser-induced molecular dipole and polarizability as functions of the laser parameters (intensity and frequency) and molecular parameters [molecular orientation, dipole, and parallel and perpendicular polarizabilities of the highest occupied molecular orbital (HOMO)] are presented. Our previous MSFA theory, which incorporates the rescattering effects, is generalized from homonuclear to heteronuclear diatomic molecules. Angle- and energy-resolved high-order above-threshold ionization spectra of oriented heteronuclear diatomic molecules, exemplified by the carbon monoxide (CO) molecule, exhibit pronounced minima, which can be related to the shape of their HOMO-electron-density distribution. For the CO molecule we have found an analytical condition for the positions of these minima. We have also shown that the effect of the dressing of the HOMO is twofold: (i) the laser-induced Stark shift decreases the ionization yield and (ii) the laser-induced time-dependent dipole and polarizability change the oscillatory structure of the spectra.

  12. Above-Threshold Ionization of Quasiperiodic Structures by Low-Frequency Laser Fields

    NASA Astrophysics Data System (ADS)

    Catoire, F.; Bachau, H.

    2015-10-01

    We investigate the theoretical problem of the photoelectron cutoff change in periodical structures induced by an infrared laser field. We use a one-dimensional Kronig-Penney potential including a finite number of wells, and the analysis is fulfilled by resolving the time-dependent Schrödinger equation. The electron spectra, calculated for an increasing number of wells, clearly show that a plateau quickly appears as the periodic nature of the potential builds up, even at a moderate intensity (10 TW /cm2 ). Varying the intensity from 10 to 30 TW /cm2 we observe a net increase of both the yield and accessible energy range of the ionization spectrum. In order to gain insight into the dynamics of the system at these intensities, we use an analytical approach, based on exact solutions of the full Hamiltonian in a periodic potential. We show that the population transfers efficiently from lower to upper bands when the Bloch and laser frequencies become comparable. The model leads to a quantitative prediction of the intensity range where ionization enters the nonperturbative regime. Moreover, it reveals the physics underlying the increase of the photoelectron energy cutoff at moderate intensities, as observed experimentally.

  13. Discerning the direct and indirect ionization processes in the photo-double-ionization of 1, 1-C2H2F2 near and above threshold

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Bocharova, I.; Sturm, F. P.; Gehrken, N.; Rist, J.; Belkacem, A.; Weber, Th.; Berry, B.; Zohrabi, M.; Ben-Itzhak, I.; Keiling, M.; Moradmand, A.; Landers, A.; Jahnke, T.; Schoeffler, M.; Sann, H.; Kunitski, M.; Doerner, R.

    2014-05-01

    We have studied the photo-double-ionization of 1, 1-C2H2F2 near and above threshold using linearly polarized single photons (40 to 70eV). Kinematically complete experiments were achieved for the nondissociative ionization (NDI) and all ionic two body break up channels by measuring the electrons and recoil ions in coincidence with the COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS) method. Using electron-ion and electron-electron energy correlation maps as well as asymmetry parameters and relative angles between the emitted electrons, we were able to trace the electronic states involved and distinguish between the direct and indirect ionization mechanisms of the NDI and the fragmentation processes. Supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231.

  14. Imaging the geometrical structure of the H{sub 2}{sup +} molecular ion by high-order above-threshold ionization in an intense laser field

    SciTech Connect

    Guo Yingchun; Fu Panming; Wang Bingbing; Yan Zongchao; Gong Jiangbin

    2009-12-15

    Using a frequency-domain theory, we demonstrate that an angle-resolved high-order above-threshold ionization (HATI) spectrum carries three pieces of important information: the fingerprint of the molecular wave function in the direct above-threshold-ionization amplitude, the geometrical structure of the molecule in the potential scattering between two plane waves, and the interaction between the ionized electron and the laser field, manifested in a phase factor associated with laser-assisted collisions. As a result all main interference features in the HATI spectrum can be physically explained. As an application it is pointed out that the skeleton structure of a molecule can be better imaged using lasers of higher frequencies.

  15. Two-Source Double-Slit Interference in Angle-Resolved High-Energy Above-Threshold Ionization Spectra of Diatoms

    SciTech Connect

    Okunishi, M.; Itaya, R.; Shimada, K.; Pruemper, G.; Ueda, K.; Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.

    2009-07-24

    When an electron from a diatomic molecule undergoes tunneling-rescattering ionization, a novel form of destructive interference can be realized that involves all four geometric orbits that are available to the electron when it is freed, because both ionization and rescattering may take place at the same or at different centers. We find experimentally and confirm theoretically that in orientation-averaged angle-resolved high-order above-threshold ionization spectra the corresponding destructive interference is visible for O{sub 2} but not for N{sub 2}. This effect is different from the suppression of ionization that is well known to occur for O{sub 2}.

  16. Strong-field approximation for ionization of a diatomic molecule by a strong laser field. III. High-order above-threshold ionization by an elliptically polarized field

    SciTech Connect

    Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.

    2009-07-15

    We investigate high-order above-threshold ionization (HATI) of diatomic molecules having different symmetries by an elliptically polarized laser field using the modified molecular strong-field approximation. The yields of high-energy electrons contributing to the plateau region of the photoelectron spectra strongly depend on the employed ellipticity. This is more pronounced if the major axis of the polarization ellipse is parallel or perpendicular to the molecular axis and at the end of the high-energy plateau. For the O{sub 2} molecule (characterized by {pi}{sub g} symmetry) the maximum yield is observed for some value of the ellipticity {epsilon} different from zero. On the other hand, in the same circumstances, the N{sub 2} molecule ({sigma}{sub g}) behaves as an atom, i.e., the yield is maximum for {epsilon}=0. These characteristics of the photoelectron spectra remain valid in a wide region of the molecular orientations and laser peak intensities. The symmetry properties of the molecular HATI spectra are considered in detail: by changing the molecular orientation one or other type of the symmetry emerges or disappears. Presenting differential ionization spectra in the ionized electron energy-emission angle plane we have observed similar interference effects as in the HATI spectra governed by a linearly polarized field.

  17. Strong-field approximation for ionization of a diatomic molecule by a strong laser field. III. High-order above-threshold ionization by an elliptically polarized field

    NASA Astrophysics Data System (ADS)

    Busuladžić, M.; Gazibegović-Busuladžić, A.; Milošević, D. B.

    2009-07-01

    We investigate high-order above-threshold ionization (HATI) of diatomic molecules having different symmetries by an elliptically polarized laser field using the modified molecular strong-field approximation. The yields of high-energy electrons contributing to the plateau region of the photoelectron spectra strongly depend on the employed ellipticity. This is more pronounced if the major axis of the polarization ellipse is parallel or perpendicular to the molecular axis and at the end of the high-energy plateau. For the O2 molecule (characterized by πg symmetry) the maximum yield is observed for some value of the ellipticity ɛ different from zero. On the other hand, in the same circumstances, the N2 molecule (σg) behaves as an atom, i.e., the yield is maximum for ɛ=0 . These characteristics of the photoelectron spectra remain valid in a wide region of the molecular orientations and laser peak intensities. The symmetry properties of the molecular HATI spectra are considered in detail: by changing the molecular orientation one or other type of the symmetry emerges or disappears. Presenting differential ionization spectra in the ionized electron energy-emission angle plane we have observed similar interference effects as in the HATI spectra governed by a linearly polarized field.

  18. Angle-Resolved High-Order Above-Threshold Ionization of a Molecule: Sensitive Tool for Molecular Characterization

    SciTech Connect

    Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.

    2008-05-23

    The strong-field approximation for ionization of diatomic molecules by an intense laser field is generalized to include rescattering of the ionized electron off the various centers of its molecular parent ion. The resulting spectrum and its interference structure strongly depend on the symmetry of the ground state molecular orbital. For N{sub 2}, if the laser polarization is perpendicular to the molecular axis, we observe a distinct minimum in the emission spectrum, which survives focal averaging and allows determination of, e.g., the internuclear separation. In contrast, for O{sub 2}, rescattering is absent in the same situation.

  19. Rotations of molecular photoelectron angular distributions in above threshold ionization of H2+ by intense circularly polarized attosecond UV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Chelkowski, Szczepan; Bandrauk, André D.

    2014-10-01

    We present molecular photoelectron angular distributions (MPADs) in multi-photon ionization processes by circularly polarized attosecond UV laser pulses. Simulations are performed on the single electron aligned molecular ion H_2^+ by solving corresponding 3D time-dependent Schrödinger equations. Numerical results of molecular above threshold ionization (MATI) show that rotations of MPADs with respect to the molecular and polarization axes depend on pulse intensities and photoelectron kinetic energies. We attribute the rotation to Γ, the difference between parallel and perpendicular ionization probabilities. It is found that in a resonant ionization process, the rotation angle is also a function of the symmetry of intermediate electronic states. The coherent population transfer between the initial and the resonant electronic states is controlled by pulse intensities. Such dependence of rotations on the pulse intensity is absent in Rydberg resonant ionizations as well as in MATI at large energy photons ℏω > Ip, where ω is angular frequency of photons and Ip is the molecular ionization potential. We describe these processes by a multi-photon perturbation theory model. Effects of molecular alignment and pulse ellipticities on rotations are investigated, confirming the essence of the ionization parameter Γ in rotations of MPADs.

  20. Simulation of the above-threshold-ionization experiment using the molecular strong-field approximation: The choice of gauge

    SciTech Connect

    Busuladzic, M.; Milosevic, D. B.

    2010-07-15

    We investigate how various versions of the molecular strong-field approximation (MSFA) agree with the experiment by Grasbon et al. [Phys. Rev. A 63, 041402(R) (2001)], in which the suppression of the ionization yield in the low-energy spectrum of the O{sub 2} molecule, compared to the spectrum of its companion atom Xe, was observed. In this experiment, it was also found that the spectrum of the N{sub 2} molecule is comparable to the corresponding spectrum of its companion atom Ar. We show that the length-gauge version of the MSFA with the initial state dressed by the laser field gives the best agreement with the experimental data for both O{sub 2} and N{sub 2} molecules.

  1. Effective ATI channels in high harmonic generation

    NASA Astrophysics Data System (ADS)

    Kuchiev, M. Yu; Ostrovsky, V. N.

    2001-02-01

    Harmonic generation by an atom in a laser field is described by the three-step mechanism as proceeding via above-threshold ionization (ATI) followed by electron propagation in the laser-dressed continuum and subsequent laser-assisted recombination (LAR). The amplitude of the harmonic production is given by the coherent sum of contributions from different intermediate ATI channels labelled by the number, m, of absorbed laser photons. The range of m-values that give a substantial contribution is explored and found to be rather broad for high harmonic generation. The coherence effects are of crucial importance as they are responsible for the characteristic pattern of harmonic intensities with a plateau domain followed by a cut-off region. Due to the multiphoton nature of the process, an efficient summation of m-contributions can be carried out within the framework of the saddle-point method. The saddle points correspond to some complex-valued labels m = mc associated with the intermediate effective ATI channels in the three-step harmonic generation process. The advantage of this approach stems from the fact that summation over a large number of conventional ATI m-channels is replaced by summation over a small number of effective mc-channels. The equation governing mc has a transparent physical meaning: the electron ejected from the atom on the first (ATI) stage should return to the core to make LAR possible. The effective channel labels m move along characteristic trajectories in the complex plane as the system parameters vary. In the cut-off region of the harmonic spectrum a single effective channel contributes. For lower harmonics, in the plateau domain, two effective ATI channels become essential. The interference of their contributions leads to an oscillatory pattern in the harmonic generation rates. The calculated rates are in good agreement with the results obtained by other approaches.

  2. Accurate determination of absolute carrier-envelope phase dependence using photo-ionization.

    PubMed

    Sayler, A M; Arbeiter, M; Fasold, S; Adolph, D; Möller, M; Hoff, D; Rathje, T; Fetić, B; Milošević, D B; Fennel, T; Paulus, G G

    2015-07-01

    The carrier-envelope phase (CEP) dependence of few-cycle above-threshold ionization (ATI) of Xe is calibrated for use as a reference measurement for determining and controlling the absolute CEP in other interactions. This is achieved by referencing the CEP-dependent ATI measurements of Xe to measurements of atomic H, which are in turn referenced to ab initio calculations for atomic H. This allows for the accurate determination of the absolute CEP dependence of Xe ATI, which enables relatively easy determination of the offset between the relative CEP measured and/or controlled by typical devices and the absolute CEP in the interaction. PMID:26125386

  3. Atomic tunneling ionization in a photon picture

    NASA Astrophysics Data System (ADS)

    Wang, Yujun; Esry, B. D.

    2015-05-01

    Above-threshold ionization (ATI) and high-harmonic generation (HHG) are studied by the photon-phase formalism in the tunneling regime. Different from the commonly used three-step model for understanding such strong-field phenomena, we show that each order of the ATI or HHG peaks is strongly associated with a single ``photon channel'' in the photon-phase picture. This simplicity allows an identification of pathways for each of the orders. This picture not only provides a convenient means to understand the electron dynamics in the strong field, but also gives insights that may help engineer laser pulses to manipulate the output of the ATI or HHG. We apply this method to quantify the strong-field-induced ionization threshold shift and study the carrier-envelope phase dependence of the HHG. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy

  4. Electron Rescattering in Above-Threshold Photodetachment of Negative Ions

    SciTech Connect

    Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.; Bergues, B.; Hultgren, H.; Kiyan, I. Yu.

    2010-03-12

    We present experimental and theoretical results on photodetachment of Br{sup -} and F{sup -} in a strong infrared laser field. The observed photoelectron spectra of Br{sup -} exhibit a high-energy plateau along the laser polarization direction, which is identified as being due to the rescattering effect. The shape and the extension of the plateau is found to be influenced by the depletion of negative ions during the interaction with the laser pulse. Our findings represent the first observation of electron rescattering in above-threshold photodetachment of an atomic system with a short-range potential.

  5. Vibrationally resolved electron-nuclear energy sharing in above-threshold multiphoton dissociation of CO

    NASA Astrophysics Data System (ADS)

    Sun, Xufei; Li, Min; Shao, Yun; Liu, Ming-Ming; Xie, Xiguo; Deng, Yongkai; Wu, Chengyin; Gong, Qihuang; Liu, Yunquan

    2016-07-01

    We study the photon energy sharing between the photoelectron and the nuclei in the process of above-threshold multiphoton dissociative ionization of CO molecules by measuring the joint energy spectra. The experimental observation shows that the electron-nuclear energy sharing strongly depends on the vibrational state. The experimental observation shows that both the energy deposited to the nuclei of C O+ and the emitted photoelectron decrease with increasing the vibrational level. Through studying the vibrationally resolved nuclear kinetic energy release and photoelectron energy spectra at different laser intensities, for each vibrational level of C O+ , the nuclei always tend to take the same amount of energy in every vibrational level regardless of the laser intensity, while the energy deposited to the photoelectron varies with respect to the laser intensity because of the ponderomotive shifted energy and the distinct dissociative ionization mechanisms.

  6. High-energy above-threshold detachment from negative ions

    SciTech Connect

    Gazibegovic-Busuladzic, A.; Milosevic, D.B.; Becker, W.

    2004-11-01

    Above-threshold detachment of electrons from negative ions by an elliptically polarized laser field is analyzed within the strong-field approximation. The low-energy part of the spectrum, that is, its structure and its apparent cutoff, strongly depends on the orbital quantum number l of the initial ground state. The high-energy part is characterized by the usual extended plateau caused by rescattering, which is essentially independent of the ground state. The potential that the returning electron experiences during rescattering is modeled by the sum of a polarization potential and a static potential. This rescattering potential does not have much effect on the shape of the plateau, but it does on its height. For H{sup -} (l=0), the yield of rescattered electrons is five orders of magnitude below the direct electrons, while for I{sup -} (l=1) the yields only differ by a factor of 40. We also analyze the dependence of the angle-resolved energy spectrum on the ellipticity of the laser field and confirm general symmetry properties. An angle-integrated elliptic dichroism parameter is introduced and analyzed.

  7. Above threshold dissociation of LiNa +: monitoring an avoided crossing with femtosecond spectroscopy

    NASA Astrophysics Data System (ADS)

    Magnier, S.; Toniolo, A.

    2001-04-01

    Computer simulations of one- and two-color experiments in above threshold dissociation (ATD) are reported for the first heteronuclear alkali ion LiNa +. We focus on the 1 2Σ +→1 2Π→4,5 2Σ + process, with dissociation to Li ++Na(3p) or Li(3s)+Na +. The product yields are determined by the presence of an avoided crossing between the 4 and 5 2Σ + potential curves, according to the frequency and delay of the second laser pulse.

  8. Empirically Based Myths: Astrology, Biorhythms, and ATIs.

    ERIC Educational Resources Information Center

    Ragsdale, Ronald G.

    1980-01-01

    A myth may have an empirical basis through chance occurrence; perhaps Aptitude Treatment Interactions (ATIs) are in this category. While ATIs have great utility in describing, planning, and implementing instruction, few disordinal interactions have been found. Article suggests narrowing of ATI research with replications and estimates of effect…

  9. Suppression of the contribution of short trajectories into above-threshold ionisation spectra by a two-colour laser field

    NASA Astrophysics Data System (ADS)

    Vvedenskii, N. V.; Zheltukhin, A. N.; Silaev, A. A.; Knyazeva, D. V.; Manakov, N. L.; Flegel', A. V.; Frolov, M. V.

    2016-04-01

    We have studied spectra of above-threshold ionisation of atoms by a two-colour laser field with collinear linearly polarised components. We have found a sharp (gap-like) dependence of the length of the high-energy plateau in above-threshold ionisation spectra on the relative phase of the two-colour field at comparable intensities of the field components. Using the quasi-classical analysis we have shown that this effect results from the suppression of partial above-threshold ionisation amplitudes, associated with closed classical trajectories of an electron in the laser field, within a certain range of relative phase values.

  10. Wigner representation of ionization and scattering in strong laser fields

    NASA Astrophysics Data System (ADS)

    Baumann, C.; Kull, H.-J.; Fraiman, G. M.

    2015-12-01

    The interaction of single-electron atoms with a strong laser field is studied in the Wigner representation. The Wigner function is a quasiprobability function in phase space that allows one to study position-momentum correlations. These correlations give a physical interpretation of the emergence of the above-threshold-ionization (ATI) energy spectrum. Conversely, the quantum-mechanical interference between electrons from neighboring photon orders can explain the spatial bunching of the electron density by the laser field. Furthermore, the Wigner function offers one a rather accurate and relatively efficient quasiclassical estimate of the bound-state population. This method is applied to laser-induced electron-ion scattering and the stationary regime of the bound-state population can be determined. The present calculations are performed for a one-dimensional Rosen-Morse potential. Extensions to general spherically symmetric atomic potentials are indicated.

  11. Electrodynamic model of the field effect transistor application for THz/subTHz radiation detection: Subthreshold and above threshold operation

    SciTech Connect

    Dobrovolsky, V.

    2014-10-21

    Developed in this work is an electrodynamic model of field effect transistor (FET) application for THz/subTHz radiation detection. It is based on solution of the Maxwell equations in the gate dielectric, expression for current in the channel, which takes into account both the drift and diffusion current components, and the equation of current continuity. For the regimes under and above threshold at the strong inversion the response voltage, responsivity, wave impedance, power of ohmic loss in the gate and channel have been found, and the electrical noise equivalent power (ENEP) has been estimated. The responsivity is orders of magnitude higher and ENEP under threshold is orders of magnitude less than these values above threshold. Under the threshold, the electromagnetic field in the gate oxide is identical to field of the plane waves in free-space. At the same time, for strong inversion the charging of the gate capacitance through the resistance of channel determines the electric field in oxide.

  12. An energy efficient sub-threshold to above-threshold level shifter using a modified Wilson current mirror

    NASA Astrophysics Data System (ADS)

    Maroof, Naeem; Sohail, Muhammad; Shin, Hyunchul

    2016-07-01

    In this article, a new energy efficient level shifter circuit is described for robust sub-threshold to above-threshold voltage conversion. The design is based on a modification of the Wilson current mirror that minimizes the static current and improves the energy efficiency. The proposed level shifter is capable of converting a 200 mV signal into a 1 V signal and operates correctly across process corners. At the design target (? 200 mV, input signal frequency = 1 MHz), the proposed level shifter exhibits a propagation delay of 20.17 ns, a static power dissipation of 11.07 nW, and the total energy per transition of 113.2 fJ. We compare our results with the design proposed by Lutkemeier and Ruckert (2010). At the design target, the energy delay product of our design is 81.53% that of the reference design and, over all the voltage range of ? from 160 mV to 1 V, the proposed circuit shows an average energy reduction of 14.71% compared to the reference design. Thorough variability analysis was performed using HSPICE Monte Carlo simulations for different values of ?, which reveals the robustness of the proposed design.

  13. Converged cross-section results for double photoionization of helium atoms in hyperspherical partial wave theory at 6 eV above threshold

    SciTech Connect

    Das, J.N.; Paul, S.; Chakrabarti, K.

    2004-04-01

    Here we report a set of converged cross-section results for double photoionization of helium atoms obtained in the hyperspherical partial wave theory for equal energy sharing kinematics at 6 eV energy above threshold. The calculated cross section results are generally in excellent agreement with the absolute measured results of Doerner et al. [Phys. Rev. 57, 1074 (1998)].

  14. Theory of Light Emission from Quantum Noise in Plasmonic Contacts: Above-Threshold Emission from Higher-Order Electron-Plasmon Scattering

    NASA Astrophysics Data System (ADS)

    Kaasbjerg, Kristen; Nitzan, Abraham

    2015-03-01

    We develop a theoretical framework for the description of light emission from plasmonic contacts based on the nonequilibrium Green function formalism. Our theory establishes a fundamental link between the finite-frequency quantum noise and ac conductance of the contact and the light emission. Calculating the quantum noise to higher orders in the electron-plasmon interaction, we identify a plasmon-induced electron-electron interaction as the source of experimentally observed above-threshold light emission from biased STM contacts. Our findings provide important insight into the effect of interactions on the light emission from atomic-scale contacts.

  15. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  16. The Higgs portal above threshold

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; Thalapillil, Arun

    2016-02-01

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. We systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14 TeV LHC and a prospective 100 TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an off-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. We forecast the sensitivity of searches in these channels at √{s}=14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  17. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Automatic Transmitter Identification System... Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall be identified through the use of an automatic transmitter identification system as specified below....

  18. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Automatic Transmitter Identification System... Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall be identified through the use of an automatic transmitter identification system as specified below....

  19. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Automatic Transmitter Identification System... Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall be identified through the use of an automatic transmitter identification system as specified below....

  20. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Automatic Transmitter Identification System... Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall be identified through the use of an automatic transmitter identification system as specified below....

  1. ANOVA Versus Regression Analysis of ATI Designs: An Empirical Investigation.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    1986-01-01

    This paper reports a Monte Carlo study of differences induced by different analysis choices over selected types of aptitude treatment interaction (ATI) data (nine combinations of three sample sizes and three population parameter effect sizes). Generally, ANOVA methods tended to overestimate smaller effect sizes and to underestimate larger effect…

  2. Equal energy sharing double photoionization of the helium atom at 20 eV and 40 eV above threshold

    NASA Astrophysics Data System (ADS)

    Das, J. N.; Chakrabarti, K.; Paul, S.

    2003-10-01

    In this Letter we present triple differential cross sections for equal energy sharing kinematics for double photoionization of the helium atom at 20 and 40 eV above threshold in the framework of the hyperspherical partial wave theory. This supplements our earlier work [J. Phys. B: At. Mol. Opt. Phys. 36 (2003) 2707] in which we were successful in showing fully, gauge independence of the results in our formalism. Also in this Letter we treat cases in which the Stokes parameter S1<1 so that partial polarization of the photon source is also taken into account. Agreement in shape with the convergent close coupling [A.S. Kheifets, 2003, private communication; H. Bräuning, et al., J. Phys. B: At. Mol. Opt. Phys. 31 (1998) 5149] calculation and the experiments appears to be excellent.

  3. Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-03-01

    The dynamical behavior of Kerr optical frequency combs is very well understood today from the perspective of the semiclassical approximation. These combs are obtained by pumping an ultrahigh-Q whispering-gallery mode resonator with a continuous-wave laser. The long-lifetime photons are trapped within the toruslike eigenmodes of the resonator, where they interact nonlinearly via the Kerr effect. In this article, we use quantum Langevin equations to provide a theoretical understanding of the nonclassical behavior of these combs when pumped below and above threshold. In the configuration where the system is under threshold, the pump field is the unique oscillating mode inside the resonator, and it triggers the phenomenon of spontaneous four-wave mixing, where two photons from the pump are symmetrically up- and down-converted in the Fourier domain. This phenomenon, also referred to as parametric fluorescence, can only be understood and analyzed from a fully quantum perspective as a consequence of the coupling between the field of the central (pumped) mode and the vacuum fluctuations of the various side modes. We analytically calculate the power spectra of the spontaneous emission noise, and we show that these spectra can be either single- or double-peaked depending on the value of the laser frequency, chromatic dispersion, pump power, and spectral distance between the central mode and the side mode of interest. We also calculate as well the overall spontaneous noise power per side mode and propose simplified analytical expressions for some particular cases. In the configuration where the system is pumped above threshold, we investigate the phenomena of quantum correlations and multimode squeezed states of light that can occur in the Kerr frequency combs originating from stimulated four-wave mixing. We show that for all stationary spatiotemporal patterns, the side modes that are symmetrical relative to the pumped mode in the frequency domain display quantum correlations

  4. Simultaneous SAR and GMTI using ATI/DPCA

    NASA Astrophysics Data System (ADS)

    Deming, Ross; Best, Matthew; Farrell, Sean

    2014-06-01

    In previous work, we presented GMTI detection and geo-location results from the AFRL Gotcha challenge data set, which was collected using a 3-channel, X-band, circular SAR system. These results were compared against GPS truth for a scripted vehicle target. The algorithm used for this analysis is known as ATI/DPCA, which is a hybrid of along-track interferometry (ATI) and the displaced phase center antenna (DPCA) technique. In the present paper the use of ATI/DPCA is extended in order to detect and geo-locate all observable moving targets in the Gotcha challenge data, including both the scripted movers and targets of opportunity. In addition, a computationally efficient SAR imaging technique is presented, appropriate for short integration times, which is used for computing an image of the scene of interest using the same pulses of data used for the GMTI processing. The GMTI detections are then overlaid on the SAR image to produce a simultaneous SAR/GMTI map.

  5. Aeromonas salmonicida Ati2 is an effector protein of the type three secretion system.

    PubMed

    Dallaire-Dufresne, Stéphanie; Barbeau, Xavier; Sarty, Darren; Tanaka, Katherine H; Denoncourt, Alix M; Lagüe, Patrick; Reith, Michael E; Charette, Steve J

    2013-09-01

    The bacterium Aeromonas salmonicida, a fish pathogen, uses the type three secretion system (TTSS) to inject effector proteins into host cells to promote the infection. The study of the genome of A. salmonicida has revealed the existence of Ati2, a potential TTSS effector protein. In the present study, a structure-function analysis of Ati2 has been done to determine its role in the virulence of A. salmonicida. Biochemical assays revealed that Ati2 is secreted into the medium in a TTSS-dependent manner. Protein sequence analyses, molecular modelling and biochemical assays demonstrated that Ati2 is an inositol polyphosphate 5-phosphatase, which hydrolyses PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in a way similar to VPA0450, a protein from Vibrio parahaemolyticus having high sequence similarity with Ati2. Mutants of Ati2 with altered amino acids at two different locations in the catalytic site displayed no phosphatase activity. Wild-type and mutant forms of Ati2 were cloned into expression systems for Dictyostelium discoideum, a soil amoeba used as an alternative host to study A. salmonicida virulence. Expression tests allowed us to demonstrate that Ati2 is toxic for the host cell in a catalytic-dependent manner. Finally, this study demonstrated the existence of a new TTSS effector protein in A. salmonicida. PMID:23832001

  6. Positive Reinforcement Training to Enhance the Voluntary Movement of Group-Housed Sooty Mangabeys (Cercocebus atys atys)

    PubMed Central

    Veeder, Christin L; Bloomsmith, Mollie A; McMillan, Jennifer L; Perlman, Jaine E; Martin, Allison L

    2009-01-01

    Positive reinforcement training (PRT) has successfully been used to train diverse species to execute behaviors helpful in the everyday care and wellbeing of the animals. Because little information is available about training sooty mangabeys (Cercocebus atys atys), we analyzed PRT with a group of 30 adult males as they were trained to shift from 1 side of their enclosure to the other. Over a 4-mo period we conducted 57 training sessions totaling 26.5 h of training and recorded compliance information. During training, compliance increased from 76% of the animals during the first 5 training sessions to 86% of the animals shifting during the last 5 sessions. This result indicated progress but fell short of our goal of 90% compliance. After 25 training sessions, problem-solving techniques were applied to help the consistently noncompliant animals become more proficient. The techniques included reducing social stress by shifting animals so that noncompliant monkeys could shift into an unoccupied space, using more highly preferred foods, and ‘jackpot’-sized reinforcement. To determine whether social rank affected training success, animals were categorized into high, medium, and low dominance groups, based on 7 h of behavioral observations. A Kruskal–Wallis test result indicated a significant difference in compliance according to the category of dominance. Although training a group this large proved challenging, the mangabeys cooperated more than 90% of the time during follow-up sessions. The training program improved efficiency in caring for the mangabeys. PMID:19383217

  7. SC DHS InGaAsP/InP lasers (λ = 1.5-1.6 μm) with above-threshold internal quantum efficiency ηist about 100%

    NASA Astrophysics Data System (ADS)

    Tarasov, Ilya S.; Zegrya, Georgy G.; Skrynnikov, G. V.; Pikhtin, Nikita A.; Slipchenko, S. O.

    2003-06-01

    InGaAsP/InP SC DHS lasers with different waveguide design were fabricated and studied. Extremely high values of internal quantum efficiency of stimulated emission ηist about 97% was demonstrated experimentally in structures with step-like waveguide design which is related to lowest leakage currents above threshold and reduced threshold carriers concentration. Theoretically was shown, that it is possible to create lasers emitting at λ = 1.5 μm, with an internal quantum efficiency of stimulated emission close to 100%. ηist for structure with different waveguide design was calculated and prove to be in good agreement with experimental data.

  8. SC DHS InGaAsP/InP lasers (λ = 1.5-1.6 μm) with above-threshold internal quantum efficiency ηist about 100%

    NASA Astrophysics Data System (ADS)

    Tarasov, Ilya S.; Zegrya, Georgy G.; Skrynnikov, G. V.; Pikhtin, Nikita A.; Slipchenko, S. O.

    2002-06-01

    InGaAsP/InP SC DHS lasers with different waveguide design were fabricated and studied. Extremely high values of internal quantum efficiency of stimulated emission ηist about 97% was demonstrated experimentally in structures with step-like waveguide design which is related to lowest leakage currents above threshold and reduced threshold carriers concentration. Theoretically was shown, that it is possible to create lasers emitting at λ = 1.5 μm, with an internal quantum efficiency of stimulated emission close to 100%. ηist for structure with different waveguide design was calculated and prove to be in good agreement with experimental data.

  9. Ionization by few-cycle pulses: Tracing the electron orbits

    SciTech Connect

    Milosevic, D.B.; Paulus, G.G.; Becker, W.

    2005-06-15

    High-order above-threshold ionization by few-cycle laser pulses is analyzed in terms of quantum orbits. For a given carrier-envelope phase, the number of contributing orbits and their ionization and rescattering times determine the shape of the angle-resolved spectrum in all detail. Conversely, analysis of a given spectrum reveals the carrier-envelope phase and the various interfering pathways from which the electron could choose.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM REPORT: PAINT OVERSPRAY ARRESTOR, ATI A-3000 5P BAG

    EPA Science Inventory

    The report gives results of March 24-25, 1999, tests of ATI's A-3000 5P Bag paint overspray arrestor (POA) as part of an evaluation of POAs by EPA's Air Pollution Control Technology (APCT) Environmental Technology Verification (ETV) Program. The basic performance factor being ver...

  11. Performance modeling of an integral, self-regulating cesium reservoir for the ATI-TFE

    SciTech Connect

    Thayer, K.L.; Ramalingam, M.L. ); Young, T.J. )

    1993-01-20

    This work covers the performance modeling of an integral metal-matrix cesium-graphite reservoir for operation in the Advanced Thermionic Initiative-Thermionic Fuel Element (ATI-TFE) converter configuration. The objectives of this task were to incorporate an intercalated cesium-graphite reservoir for the 3C[sub 24]Cs[r arrow]2C[sub 36]Cs+Cs[sub (g)] two phase equilibrium reaction into the emitter lead region of the ATI-TFE. A semi two-dimensional, cylindrical TFE computer model was used to obtain thermal and electrical converter output characteristics for various reservoir locations. The results of this study are distributions for the interelectrode voltage, output current density, and output power density as a function of axial position along the TFE emitter. This analysis was accomplished by identifying an optimum cesium pressure for three representative pins in the ATI driverless'' reactor core and determining the corresponding position of the graphite reservoir in the ATI-TFE lead region. The position for placement of the graphite reservoir was determined by performing a first-order heat transfer analysis of the TFE lead region to determine its temperature distribution. The results of this analysis indicate that for the graphite reservoirs investigated the 3C[sub 24]Cs[r arrow]2C[sub 36]Cs+Cs[sub (g)] equilibrium reaction reservoir is ideal for placement in the TFE emitter lead region. This reservoir can be directly coupled to the emitter, through conduction, to provide the desired cesium pressure for optimum performance. The cesium pressure corresponding to the optimum converter output performance was found to be 2.18 torr for the ATI core least power TFE, 2.92 torr for the average power TFE, and 4.93 torr for the maximum power TFE.

  12. A preliminary assessment of the effects of ATI-2042 in subjects with paroxysmal atrial fibrillation using implanted pacemaker methodology

    PubMed Central

    Arya, Anita; Silberbauer, John; Teichman, Sam L.; Milner, Peter; Sulke, Neil; Camm, A. John

    2009-01-01

    Aims ATI-2042 (budiodarone) is a chemical analogue of amiodarone with a half life of 7 h. It is electrophysiologically similar to amiodarone, but may not have metabolic and interaction side effects. The sophisticated electrocardiograph logs of advanced DDDRP pacemakers were used to monitor the efficacy of ATI-2042. The aim of this study was to determine the preliminary efficacy and safety of ATI-2042 in patients with paroxsymal atrial fibrillation (PAF) and pacemakers. Methods and results Six women with AF burden (AFB) between 1 and 50% underwent six sequential 2-week study periods. Patients received 200 mg bid of ATI-2042 during Period 2 (p2), 400 mg bid during p3, 600 mg bid during p4, 800 mg bid during p5, and no drug during baseline and washout (p1 and p6). Pacemaker data for the primary outcome measure AFB were downloaded during each period. Mean AFB decreased between baseline and all doses: AFB at baseline (SD) was 20.3 ± 14.6% and mean AFB at 200 mg bid was 5.2 ± 4.2%, at 400 mg bid 5.2 ± 5.2%, at 600 mg bid 2.8 ± 3.4%, and at 800 mg bid 1.5 ± 0.5%. The mean reductions in AFB at all doses of ATI-2042 were statistically significant (P < 0.005). Atrial fibrillation burden increased in washout. Atrial fibrillation episodes tended to increase with ATI-2042, but this was offset by substantial decreases in episode duration. ATI-2042 was generally well tolerated. Conclusion ATI-2042 effectively reduced AFB over all doses studied by reducing mean episode duration. A large-scale study will be required to confirm this effect. PMID:19174378

  13. Hard-object feeding in sooty mangabeys (Cercocebus atys) and interpretation of early hominin feeding ecology.

    PubMed

    Daegling, David J; McGraw, W Scott; Ungar, Peter S; Pampush, James D; Vick, Anna E; Bitty, E Anderson

    2011-01-01

    Morphology of the dentofacial complex of early hominins has figured prominently in the inference of their dietary adaptations. Recent theoretical analysis of craniofacial morphology of Australopithecus africanus proposes that skull form in this taxon represents adaptation to feeding on large, hard objects. A modern analog for this specific dietary specialization is provided by the West African sooty mangabey, Cercocebus atys. This species habitually feeds on the large, exceptionally hard nuts of Sacoglottis gabonensis, stereotypically crushing the seed casings using their premolars and molars. This type of behavior has been inferred for A. africanus based on mathematical stress analysis and aspects of dental wear and morphology. While postcanine megadontia, premolar enlargement and thick molar enamel characterize both A. africanus and C. atys, these features are not universally associated with durophagy among living anthropoids. Occlusal microwear analysis reveals complex microwear textures in C. atys unlike those observed in A. africanus, but more closely resembling textures observed in Paranthropus robustus. Since sooty mangabeys process hard objects in a manner similar to that proposed for A. africanus, yet do so without the craniofacial buttressing characteristic of this hominin, it follows that derived features of the australopith skull are sufficient but not necessary for the consumption of large, hard objects. The adaptive significance of australopith craniofacial morphology may instead be related to the toughness, rather than the hardness, of ingested foods. PMID:21887229

  14. Hard-Object Feeding in Sooty Mangabeys (Cercocebus atys) and Interpretation of Early Hominin Feeding Ecology

    PubMed Central

    Daegling, David J.; McGraw, W. Scott; Ungar, Peter S.; Pampush, James D.; Vick, Anna E.; Bitty, E. Anderson

    2011-01-01

    Morphology of the dentofacial complex of early hominins has figured prominently in the inference of their dietary adaptations. Recent theoretical analysis of craniofacial morphology of Australopithecus africanus proposes that skull form in this taxon represents adaptation to feeding on large, hard objects. A modern analog for this specific dietary specialization is provided by the West African sooty mangabey, Cercocebus atys. This species habitually feeds on the large, exceptionally hard nuts of Sacoglottis gabonensis, stereotypically crushing the seed casings using their premolars and molars. This type of behavior has been inferred for A. africanus based on mathematical stress analysis and aspects of dental wear and morphology. While postcanine megadontia, premolar enlargement and thick molar enamel characterize both A. africanus and C. atys, these features are not universally associated with durophagy among living anthropoids. Occlusal microwear analysis reveals complex microwear textures in C. atys unlike those observed in A. africanus, but more closely resembling textures observed in Paranthropus robustus. Since sooty mangabeys process hard objects in a manner similar to that proposed for A. africanus, yet do so without the craniofacial buttressing characteristic of this hominin, it follows that derived features of the australopith skull are sufficient but not necessary for the consumption of large, hard objects. The adaptive significance of australopith craniofacial morphology may instead be related to the toughness, rather than the hardness, of ingested foods. PMID:21887229

  15. An Examination of Public Opinion in Austria Towards Inclusion. Development of the "Attitudes Towards Inclusion Scale"--ATIS

    ERIC Educational Resources Information Center

    Schwab, Susanne; Gebhardt, Markus; Ederer-Fick, Elfriede M.; Gasteiger Klicpera, Barbara

    2012-01-01

    The "Attitudes Towards Integration Scale" (ATIS) assesses the attitude of the general public towards the school integration of children with disabilities. The scale was empirically created in a pilot study (n=351) and later used to survey 2158 people. The data from both surveys are analysed in the present paper; the results show that the scale…

  16. Epitaxial thin films of ATiO(3-x)H(x) (A = Ba, Sr, Ca) with metallic conductivity.

    PubMed

    Yajima, Takeshi; Kitada, Atsushi; Kobayashi, Yoji; Sakaguchi, Tatsunori; Bouilly, Guillaume; Kasahara, Shigeru; Terashima, Takahito; Takano, Mikio; Kageyama, Hiroshi

    2012-05-30

    Epitaxial thin films of titanium perovskite oxyhydride ATiO(3-x)H(x) (A = Ba, Sr, Ca) were prepared by CaH(2) reduction of epitaxial ATiO(3) thin films deposited on a (LaAlO(3))(0.3)(SrAl(0.5)Ta(0.5)O(3))(0.7) substrate. Secondary ion mass spectroscopy detected a substantial amount and uniform distribution of hydride within the film. SrTiO(3)/LSAT thin film hydridized at 530 °C for 1 day had hydride concentration of 4.0 × 10(21) atoms/cm(3) (i.e., SrTiO(2.75)H(0.25)). The electric resistivity of all the ATiO(3-x)H(x) films exhibited metallic (positive) temperature dependence, as opposed to negative as in BaTiO(3-x)H(x) powder, revealing that ATiO(3-x)H(x) are intrinsically metallic, with high conductivity of 10(2)-10(4) S/cm. Treatment with D(2) gas results in hydride/deuteride exchange of the films; these films should be valuable in further studies on hydride diffusion kinetics. Combined with the materials' inherent high electronic conductivity, new mixed electron/hydride ion conductors may also be possible. PMID:22563869

  17. The 3ATI instrument: the first of a new breed of common display systems

    NASA Astrophysics Data System (ADS)

    Wright, J.; Thomas, J.; James, M. R.; Tumilty, T.; Nguyen, K.

    2006-05-01

    This paper outlines how the convergence of: high resolution rugged AM-LCD; high reliability solid-state backlighting; low-power, high-performance microcircuits; and robust, reconfigurable software can be combined in a modular architecture, to provide a truly "one size fits all" multi-function instrument. The 3ATI form-factor has been selected for this demonstration, as it both represents a very significant population of legacy applications, and because of its compact nature, providing a significant technical challenge. The authors outline how these challenges were addressed and present one application example as applied to the Threat Warning Instrument (TWI), for the Canadian Forces CH-148 (derived from the Sikorsky H-92 platform) "Cyclone" Defensive Aids Suite.

  18. Effect of doxorubicin on (at-I-131) heptadecanoic acid myocardial scintigraphy and echocardiography in dogs

    SciTech Connect

    Styles, C.B.; Noujaim, A.A.; Jugdutt, B.I.; Sykes, T.R.; Bain, G.O.; Shnitka, T.L.; Hooper, H.R.

    1983-11-01

    The effects of serial treatment with doxorubicin on dynamic myocardidal scintigraphy with (at-I-131) heptadecanoic acid (I-131 HA), and on global left-ventricular function determined echocardiographically, were studied in a group of nine mongrel dogs. Total extractable myocaridal lipid was compared postmortem between a group of control dogs and doxorubicin-treated dogs. A significant and then progressive fall in global LV function was observed at a cumulative doxorubicin dose of 4 mg/kg. A significant increase in the myocaridal t/sub 1/2/ of the I-131 HA was observed only at a higher cumulative dose, 10 mg/kg. No significant alteration in total extractable myocardial lipids was observed between control dogs and those treated with doxorubicin. The findings suggest that the changes leading to an alteration of myocardial dynamic imaging with I-131 HA are not the initiating factor in doxorubicin cardiotoxicity.

  19. Low-Energy Peak Structure in Strong-Field Ionization by Mid-Infrared Laser Pulses

    NASA Astrophysics Data System (ADS)

    Lemell, C.; Dimitriou, K. I.; Arbó, D. G.; Tong, X.-M.; Kartashov, D.; Burgdörfer, J.; Gräfe, S.

    2013-03-01

    Using a quasiclassical approach, we demonstrate that the formation of the low-energy structure in above-threshold ionization spectra by intense, midinfrared laser pulses originates from a two-dimensional focusing of the strong-field dynamics in the energy-angular-momentum plane. We show that the low-energy structure is very sensitive to the carrier-envelope phase of the laser field.

  20. Clinicopathologic Characteristics, Prevalence, and Risk Factors of Spontaneous Diabetes in Sooty Mangabeys (Cercocebus atys)

    PubMed Central

    Jones, Amelia C; Herndon, James G; Courtney, Cynthia L; Collura, Lynn; Cohen, Joyce K

    2014-01-01

    In 2008, clinical observations in our colony of sooty mangabeys (Cercocebus atys) suggested a high frequency of type 2 diabetes. Postmortem studies of diabetic animals revealed dense amyloid deposits in pancreatic islets. To investigate these findings, we screened our colony (97 male mangabeys; 99 female mangabeys) for the disease from 2008 to 2012. The overall prevalence of diabetes was 11% and of prediabetes was 7%, which is nearly double that reported for other primate species (less than 6%). Fructosamine and triglyceride levels were the best indicators of diabetes; total cholesterol and glycated hemoglobin were not associated with disease. Increasing age was a significant risk factor: prevalence increased from 0% in infants, juveniles, and young adults to 11% in adults and 19% in geriatric mangabeys. Sex, medroxyprogesterone acetate exposure, and SIV status were unrelated to disease. Weight was marginally higher in prediabetics, but body condition did not indicate obesity. Of the 49 mangabeys that were necropsied after clinical euthanasia or death from natural causes, 22 were diabetic; all 22 animals demonstrated pancreatic amyloid, and most had more than 75% of islets replaced with amyloid. We conclude that type 2 diabetes is more common in mangabeys than in other primate species. Diabetes in mangabeys has some unusual pathologic characteristics, including the absence of altered cholesterol levels and glycated hemoglobin but a robust association of pancreatic insular amyloidosis with clinical diabetes. Future research will examine the genetic basis of mangabey diabetes and evaluate additional diagnostic tools using imaging and serum markers. PMID:24956212

  1. Microstructural Effects on the Mechanical Properties of ATI 718Plus® Alloy

    NASA Astrophysics Data System (ADS)

    Kearsey, R. M.; Tsang, J.; Oppenheimer, S.; McDevitt, E.

    2012-02-01

    Four microstructural variants of ATI 718Plus® alloy (718Plus) have been investigated to elucidate the effects of grain size, precipitate size, morphology, and phase fraction (δ and γ') on mechanical properties such as low cycle fatigue (LCF) life, fatigue crack growth rate (FCGR) properties, and dwell FCGR behavior at both 649°C and 704°C under 100 s dwell and nondwell conditions. Similar tests have also been performed on Waspaloy in two comparative microstructural conditions. LCF test results demonstrate that all four microstructural conditions of 718Plus have superior life compared with Waspaloy under all investigated test conditions. FCGR results show that, at both test temperatures, all microstructural conditions of 718Plus and Waspaloy exhibit identical behavior in the steady-state regime, except that 718Plus exhibits a much higher threshold stress intensity (Δ K TH). However, the dwell FCGR results show that Waspaloy displays better steady-state crack growth resistance under dwell conditions. However, with a thermal exposed precipitate microstructure, 718Plus shows considerable improvement in this response.

  2. Detection of Ground Moving Targets for Two-Channel Spaceborne SAR-ATI

    NASA Astrophysics Data System (ADS)

    Dong, Zhen; Cai, Bin; Liang, Diannong

    2010-12-01

    Many present spaceborne synthetic aperture radar (SAR) systems are constrained to only two channels for ground moving target indication (GMTI). Along-track interferometry (ATI) technique is currently exploited to detect slowly moving targets and measure their radial velocity and azimuth real position. In this paper, based on the joint probability density function (PDF) of interferogram's phase and amplitude and the two hypotheses "clutter" and "clutter plus signal", several constant false alarm rate (CFAR) detection criteria are analyzed for their capabilities and limitations under low signal-to-clutter ratio (SCR) and low clutter-to-noise ratio (CNR) conditions. The CFAR detectors include one-step CFAR detector with interferometric phase, two-step CFAR detectors, and two-dimensional (2D) CFAR detector. The likelihood ratio test (LRT) based on the Neyman-Pearson (NP) criterion is exploited as an upper bound for the performance of the other CFAR detectors. Performance analyses demonstrate the superiority of the 2D CFAR techniques to detect dim slowly moving targets for spaceborne system.

  3. Insulin-like growth factor-I stimulates differentiation of ATII cells to ATI-like cells through activation of Wnt5a

    PubMed Central

    Ghosh, Manik C.; Gorantla, Vijay; Makena, Patrudu S.; Luellen, Charlean; Sinclair, Scott E.; Schwingshackl, Andreas

    2013-01-01

    Alveolar type II (ATII) epithelial cells play a crucial role in the repair and remodeling of the lung following injury. ATII cells have the capability to proliferate and differentiate into alveolar type I (ATI) cells in vivo and into an ATI-like phenotype in vitro. While previous reports indicate that the differentiation of ATII cells into ATI cells is a complex biological process, the underlying mechanism responsible for differentiation is not fully understood. To investigate factors involved in this differentiation in culture, we used a PCR array and identified several genes that were either up- or downregulated in ATI-like cells (day 6 in culture) compared with day 2 ATII cells. Insulin-like growth factor-I (IGF-I) mRNA was increased nearly eightfold. We found that IGF-I was increased in the culture media of ATI-like cells and demonstrated a significant role in the differentiation process. Treatment of ATII cells with recombinant IGF-I accelerated the differentiation process, and this effect was abrogated by the IGF-I receptor blocker PQ401. We found that Wnt5a, a member of the Wnt-Frizzled pathway, was activated during IGF-I-mediated differentiation. Both protein kinase C and β-catenin were transiently activated during transdifferentiation. Knocking down Wnt5a using small-interfering RNA abrogated the differentiation process as indicated by changes in the expression of an ATII cell marker (prosurfactant protein-C). Treatment of wounded cells with either IGF-I or Wnt5a stimulated wound closure. These results suggest that IGF-I promotes differentiation of ATII to ATI cells through the activation of a noncanonical Wnt pathway. PMID:23709620

  4. A fast Fourier transform (FFT)-based along track interferometry (ATI) approach to SAR-based ground moving target indication (GMTI)

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel D.; Zhang, Yuhong

    2014-06-01

    Along-track interferometry (ATI) is used to detect ground moving targets against a stationary background in synthetic aperture radar (SAR) imagery. In this paper, we present a novel approach to multi-channel ATI wherein clutter cancellation is applied to each pixel of the multiple SAR images, followed by a Fourier transform to estimate range rate (Doppler). Range rate estimates allow us to compensate for the cross-range offset of the target, thus geo-locating the targets. We then present a number of benefits to this approach.

  5. Wind-wave-induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign

    NASA Astrophysics Data System (ADS)

    Martin, Adrien C. H.; Gommenginger, Christine; Marquez, Jose; Doody, Sam; Navarro, Victor; Buck, Christopher

    2016-03-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) senses the motion of the ocean surface by measuring the Doppler shift of reflected signals. Measurements are affected by a Wind-wave-induced Artifact Surface Velocity (WASV) which was modeled theoretically in past studies and has been estimated empirically only once before with Envisat ASAR by Mouche et al. (2012). An airborne campaign in the tidally dominated Irish Sea served to evaluate this effect and the current retrieval capabilities of a dual-beam SAR interferometer known as Wavemill. A comprehensive collection of Wavemill airborne data acquired in a star pattern over a well-instrumented validation site made it possible for the first time to estimate the magnitude of the WASV, and its dependence on azimuth and incidence angle from data alone. In light wind (5.5 m/s) and moderate current (0.7 m/s) conditions, the wind-wave-induced contribution to the measured ocean surface motion reaches up to 1.6 m/s upwind, with a well-defined second-order harmonic dependence on direction to the wind. The magnitude of the WASV is found to be larger at lower incidence angles. The airborne WASV results show excellent consistency with the empirical WASV estimated from Envisat ASAR. These results confirm that SAR and ATI surface velocity estimates are strongly affected by WASV and that the WASV can be well characterized with knowledge of the wind knowledge and of the geometry. These airborne results provide the first independent validation of Mouche et al. (2012) and confirm that the empirical model they propose provides the means to correct airborne and spaceborne SAR and ATI SAR data for WASV to obtain accurate ocean surface current measurements. After removing the WASV, the airborne Wavemill-retrieved currents show very good agreement against ADCP measurements with a root-mean-square error (RMSE) typically around 0.1 m/s in velocity and 10° in direction.

  6. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  7. Locus of Control & Motivation Strategies for Learning Questionnaire: Predictors of Student Success on the ATI Comprehensive Predictor Exam & NCLEX-RN Examination

    ERIC Educational Resources Information Center

    Carpenter, Jane H.

    2011-01-01

    The two purposes of this study were to determine whether locus of control (LOC) was predictive of how a student would perform on the ATI Comprehensive Predictor Exam and the NCLEX-RN, and if the Motivated Strategies for Learning Questionnaire (MSLQ) provided information that would help determine predictors of success on these two exams. The study…

  8. Dietary variation and food hardness in sooty mangabeys (Cercocebus atys): implications for fallback foods and dental adaptation.

    PubMed

    McGraw, W Scott; Vick, Anna E; Daegling, David J

    2014-07-01

    We present information on food hardness and monthly dietary changes in female sooty mangabeys (Cercocebus atys) in Tai Forest, Ivory Coast to reassess the hypothesis that thick molar enamel is parsimoniously interpreted as a response to consumption of hard foods during fallback periods. We demonstrate that the diet of sooty mangabeys varies seasonally, but that one food--Sacoglottis gabonensis--is the most frequently consumed food every month and year round. This food is the hardest item in the sooty diet. Given that this species has among the thickest enamel within the primate order, a plausible conclusion is that thick enamel in this taxon evolved not in response to seasonally critical function or fallback foods, but rather to the habitual, year round processing of a mechanically protected foodstuff. These data serve as a caution against de rigueur interpretations that reliance on fallback foods during lean periods primarily explains the evolution of thick enamel in primates. PMID:24810136

  9. Nanocluster ionization energies and work function of aluminum, and their temperature dependence.

    PubMed

    Halder, Avik; Kresin, Vitaly V

    2015-10-28

    Ionization threshold energies of Al(n) (n = 32-95) nanoclusters are determined by laser ionization of free neutral metal clusters thermalized to several temperatures in the range from 65 K to 230 K. The photoion yield curves of cold clusters follow a quadratic energy dependence above threshold, in agreement with the Fowler law of surface photoemission. Accurate data collection and analysis procedures make it possible to resolve very small (few parts in a thousand) temperature-induced shifts in the ionization energies. Extrapolation of the data to the bulk limit enables a determination of the thermal shift of the polycrystalline metal work function, found to be in excellent agreement with theoretical prediction based on the influence of thermal expansion. Small clusters display somewhat larger thermal shifts, reflecting their greater susceptibility to thermal expansion. Ionization studies of free size-resolved nanoclusters facilitate understanding of the interplay of surface, electronic, and lattice properties under contamination-free conditions. PMID:26520519

  10. Nanocluster ionization energies and work function of aluminum, and their temperature dependence

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Kresin, Vitaly V.

    2015-10-01

    Ionization threshold energies of Aln (n = 32-95) nanoclusters are determined by laser ionization of free neutral metal clusters thermalized to several temperatures in the range from 65 K to 230 K. The photoion yield curves of cold clusters follow a quadratic energy dependence above threshold, in agreement with the Fowler law of surface photoemission. Accurate data collection and analysis procedures make it possible to resolve very small (few parts in a thousand) temperature-induced shifts in the ionization energies. Extrapolation of the data to the bulk limit enables a determination of the thermal shift of the polycrystalline metal work function, found to be in excellent agreement with theoretical prediction based on the influence of thermal expansion. Small clusters display somewhat larger thermal shifts, reflecting their greater susceptibility to thermal expansion. Ionization studies of free size-resolved nanoclusters facilitate understanding of the interplay of surface, electronic, and lattice properties under contamination-free conditions.

  11. Nanocluster ionization energies and work function of aluminum, and their temperature dependence

    SciTech Connect

    Halder, Avik; Kresin, Vitaly V.

    2015-10-28

    Ionization threshold energies of Al{sub n} (n = 32-95) nanoclusters are determined by laser ionization of free neutral metal clusters thermalized to several temperatures in the range from 65 K to 230 K. The photoion yield curves of cold clusters follow a quadratic energy dependence above threshold, in agreement with the Fowler law of surface photoemission. Accurate data collection and analysis procedures make it possible to resolve very small (few parts in a thousand) temperature-induced shifts in the ionization energies. Extrapolation of the data to the bulk limit enables a determination of the thermal shift of the polycrystalline metal work function, found to be in excellent agreement with theoretical prediction based on the influence of thermal expansion. Small clusters display somewhat larger thermal shifts, reflecting their greater susceptibility to thermal expansion. Ionization studies of free size-resolved nanoclusters facilitate understanding of the interplay of surface, electronic, and lattice properties under contamination-free conditions.

  12. Steplike Intensity Threshold Behavior of Extreme Ionization in Laser-Driven Xenon Clusters

    SciTech Connect

    Doeppner, T.; Mueller, J. P.; Przystawik, A.; Goede, S.; Tiggesbaeumker, J.; Meiwes-Broer, K.-H.; Varin, C.; Ramunno, L.; Brabec, T.; Fennel, T.

    2010-07-30

    The generation of highly charged Xe{sup q+} ions up to q=24 is observed in Xe clusters embedded in helium nanodroplets and exposed to intense femtosecond laser pulses ({lambda}=800 nm). Laser intensity resolved measurements show that the high-q ion generation starts at an unexpectedly low threshold intensity of about 10{sup 14} W/cm{sup 2}. Above threshold, the Xe ion charge spectrum saturates quickly and changes only weakly for higher laser intensities. Good agreement between these observations and a molecular dynamics analysis allows us to identify the mechanisms responsible for the highly charged ion production and the surprising intensity threshold behavior of the ionization process.

  13. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  14. Herbal Therapies and Social-Health Policies: Indigenous Ati Negrito Women's Dilemma and Reproductive Healthcare Transitions in the Philippines.

    PubMed

    Ong, Homervergel G; Kim, Young-Dong

    2015-01-01

    The high maternal mortality in the Philippines in the past decades prompted intervention strategies to curb unwanted deaths of mothers and improve health and social conditions of women. Such introductions however have begun to challenge traditional reproductive health practices creating confusion among practitioners and incipient transitions in healthcare. Our aim in this study was to document the herbal therapies practiced by indigenous Ati Negrito women and discuss the implications of social and conventional healthcare intervention programs on reproductive healthcare traditions by conducting semistructured interviews. Fidelity Level index was used to determine culturally important plants (i.e., the most preferred). Review of related studies on most preferred plants and therapies was further carried out to provide information regarding their safety/efficacy (or otherwise). Determination of informants' traditional medicinal knowledge was done using Mann-Whitney U and Kruskal-Wallis tests. A total of 49 medicinal plants used in treating female reproductive health-related syndromes across four categories were recorded. Significant differences in traditional medicinal knowledge were recorded when informants were grouped according to age, education, and number of children. Issues discussed in this research could hopefully raise awareness on changes in healthcare practices in indigenous cultures and on medical safety especially when traditional and conventional medications interact. PMID:26345471

  15. Synthesis of disordered pyrochlores, ATi 2O 7 ( A=Y, Gd and Dy), by mechanical milling of constituent oxides

    NASA Astrophysics Data System (ADS)

    Fuentes, Antonio F.; Boulahya, Khalid; Maczka, Miroslaw; Hanuza, Jerzy; Amador, Ulises

    2005-04-01

    This paper reports the mechanochemical synthesis and the structural and microstructural characterization of three titanates, ATi 2O 7 ( A=Y, Gd and Dy), with a pyrochlore-like structure. Starting from stoichiometric mixtures of elemental oxides TiO 2 and AO 3, single-phase samples of highly disordered pyrochlores were obtained after milling. Differential thermal analysis of the as prepared powders showed in every case the presence of a single exothermic event at temperatures close to 800 °C. The evolution of the structure and microstructure of these highly-disordered pyrochlores with temperature was studied by combining XRD and IR and Raman spectroscopies. On heating, both the cation and anion arrays in Y 2Ti 2O 7 and Dy 2Ti 2O 7, order by two independent processes. The exothermic events observed in DTA have their origin in the ordering of the anion sublattice, whereas cation ordering progress smoothly with temperature. Gadolinium titanate, Gd 2Ti 2O 7, behaves differently to the other two compounds studied concerning the cation sublattice: no evidence of cation disorder is observed, even in the just-milled sample.

  16. Herbal Therapies and Social-Health Policies: Indigenous Ati Negrito Women's Dilemma and Reproductive Healthcare Transitions in the Philippines

    PubMed Central

    Ong, Homervergel G.; Kim, Young-Dong

    2015-01-01

    The high maternal mortality in the Philippines in the past decades prompted intervention strategies to curb unwanted deaths of mothers and improve health and social conditions of women. Such introductions however have begun to challenge traditional reproductive health practices creating confusion among practitioners and incipient transitions in healthcare. Our aim in this study was to document the herbal therapies practiced by indigenous Ati Negrito women and discuss the implications of social and conventional healthcare intervention programs on reproductive healthcare traditions by conducting semistructured interviews. Fidelity Level index was used to determine culturally important plants (i.e., the most preferred). Review of related studies on most preferred plants and therapies was further carried out to provide information regarding their safety/efficacy (or otherwise). Determination of informants' traditional medicinal knowledge was done using Mann-Whitney U and Kruskal-Wallis tests. A total of 49 medicinal plants used in treating female reproductive health-related syndromes across four categories were recorded. Significant differences in traditional medicinal knowledge were recorded when informants were grouped according to age, education, and number of children. Issues discussed in this research could hopefully raise awareness on changes in healthcare practices in indigenous cultures and on medical safety especially when traditional and conventional medications interact. PMID:26345471

  17. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Müller, Carsten; Bauke, Heiko; Paulus, Gerhard G.; Hatsagortsyan, Karen Z.

    2014-03-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility.

  18. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  19. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  20. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  1. Photoelectron angular distributions in infrared one-photon and two-photon ionization of FEL-pumped Rydberg states of helium

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Fukuzawa, H.; Motomura, K.; Tachibana, T.; Nagaya, K.; Sakai, T.; Matsunami, K.; Yase, S.; Yao, M.; Wada, S.; Hayashita, H.; Saito, N.; Callegari, C.; Prince, K. C.; O'Keeffe, P.; Bolognesi, P.; Avaldi, L.; Miron, C.; Nagasono, M.; Togashi, T.; Yabashi, M.; Ishikawa, K. L.; Sazhina, I. P.; Kazansky, A. K.; Kabachnik, N. M.; Ueda, K.

    2013-10-01

    The photoelectron angular distributions (PADs) have been investigated for infrared (IR) ionization of He atoms excited to Rydberg states by extreme ultraviolet free-electron laser pulses. The experiment was carried out with two pulses which do not overlap in time. Depending on the intensity of the IR pulses, one IR photon ionization or additionally two-photon above-threshold ionization is observed. For low IR intensity, the PAD is well described by a contribution of s and d partial waves in accordance with early experiments. At high IR intensity, the PAD for two IR photon ionization clearly shows the contribution of higher partial waves. The experimental data are compared with the results of theoretical calculations based on solving the time-dependent Schrödinger equation.

  2. Double Ionization of Hydrogen Molecule by Intense Attosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Lee, Teck-Ghee; Pindzola, M. S.; Robicheaux, F.

    2010-03-01

    Time-dependent close-coupling calculations within the fixed nuclei approximation are carried out for the double ionization of H2 induced by an intense attosecond laser pulse at a photon energy of 40 eV. We consider here the two-photon absorption processes and examine the response of the ejected electrons, particularly the single- and the double-electron energy distributions, to linearly and circularly polarized pulse at laser intensities between 10^15 W/cm^2 and 10^16 W/cm^2. We find that, for both the linearly and circularly polarized pulses, sequential peaks and non-sequential wells appear in both the single- and double-electron energy distributions that are generally akin to the analogous two electrons photoemission processes in He atom driven by a linearly polarized intense attosecond pulse [1,2]. Furthermore, a clear signature of the sequential double-electron above threshold ionization process can be seen in the single- and double-electron energy distributions when a linearly polarized pulse is being used.[4pt] [1] I. F. Barna, J. Wang, and J. Burgdorfer, Phys. Rev. A. 73, 023402 (2006) [0pt] [2] T-G Lee, M. S. Pindzola and F. Robicheaux, Phys. Rev. A. 79, 053420 (2009)

  3. Improved strong-field approximation and quantum-orbit theory: Application to ionization by a bicircular laser field

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.

    2016-06-01

    A theory of above-threshold ionization of atoms by a strong laser field is formulated. Two versions of the strong-field approximation (SFA) are considered, the direct SFA and the improved SFA, which do not and do, respectively, take into account rescattering of the freed electron off the parent ion. The atomic bound state is included in two different ways: as an expansion in terms of Slater-type orbitals or as an asymptotic wave function. Even though we are using the single-active-electron approximation, multielectron effects are taken into account in two ways: by a proper choice of the ground state and by an adequate definition of the ionization rate. For the case of the asymptotic bound-state wave functions, using the saddle-point method, a simple expression for the T -matrix element is derived for both the direct and the improved SFA. The theory is applied to ionization by a bicircular field, which consists of two coplanar counterrotating circularly polarized components with frequencies that are integer multiples of a fundamental frequency ω . Special emphasis is on the ω -2 ω case. In this case, the threefold rotational symmetry of the field carries over to the velocity map of the liberated electrons, for both the direct and the improved SFA. The results obtained are analyzed in detail using the quantum-orbit formalism, which gives good physical insight into the above-threshold ionization process. For this purpose, a specific classification of the saddle-point solutions is introduced for both the backward-scattered and the forward-scattered electrons. The high-energy backward-scattering quantum orbits are similar to those discovered for high-order harmonic generation. The short forward-scattering quantum orbits for a bicircular field are similar to those of a linearly polarized field. The conclusion is that these orbits are universal, i.e., they do not depend much on the shape of the laser field.

  4. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  5. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  6. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  7. Multicomponent dynamics of coupled quantum subspaces and field-induced molecular ionizations.

    PubMed

    Nguyen-Dang, Thanh-Tung; Viau-Trudel, Jérémy

    2013-12-28

    To describe successive ionization steps of a many-electron atom or molecule driven by an ultrashort, intense laser pulse, we introduce a hierarchy of successive two-subspace Feshbach partitions of the N-electron Hilbert space, and solve the partitioned time-dependent Schrödinger equation by a short-time unitary algorithm. The partitioning scheme allows one to use different level of theory to treat the many-electron dynamics in different subspaces. We illustrate the procedure on a simple two-active-electron model molecular system subjected to a few-cycle extreme Ultra-Violet (XUV) pulse to study channel-resolved photoelectron spectra as a function of the pulse's central frequency and duration. We observe how the momentum and kinetic-energy distributions of photoelectrons accompanying the formation of the molecular cation in a given electronic state (channel) change as the XUV few-cycle pulse's width is varied, from a form characteristic of an impulsive ionization regime, corresponding to the limit of a delta-function pulse, to a form characteristic of multiphoton above-threshold ionization, often associated with continuous-wave infinitely long pulse. PMID:24387352

  8. Differential study on molecular suppressed ionization in intense linearly and circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Deng, Yongkai; Liu, Yunquan; Liu, Xianrong; Liu, Hong; Yang, Yudong; Wu, Chengyin; Gong, Qihuang

    2011-12-01

    We present a differential study on above-threshold ionization of the O2 (N2) molecule as well as the companion atom Xe (Ar) (with close ionization potential) produced by linearly and circularly polarized laser fields (25 fs, 795 nm). The photoelectron angular distributions of the companion target are similar at the same laser condition. In both linearly and circularly polarized fields, we observe that the photoelectron yields of O2 are suppressed in the entire energy spectral range as compared with Xe with fully differential measurements, but not for the N2-Ar pair. This is different from the prediction of photoelectron energy spectra by the model including the interference terms [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.85.2280 85, 2280 (2000)], from which the low-energy photoelectrons of O2 were expected to be strongly suppressed in both linearly and circularly polarized laser fields. Resorting to the basic strong-field ionization picture, we believe that the lower orbital-dependent multiphoton excitation or tunneling possibility of O2 as compared with Xe is responsible for this effect. High-resolution fully differential data pose a stringent test on the current strong-field calculations on molecules.

  9. Multicomponent dynamics of coupled quantum subspaces and field-induced molecular ionizations

    NASA Astrophysics Data System (ADS)

    Nguyen-Dang, Thanh-Tung; Viau-Trudel, Jérémy

    2013-12-01

    To describe successive ionization steps of a many-electron atom or molecule driven by an ultrashort, intense laser pulse, we introduce a hierarchy of successive two-subspace Feshbach partitions of the N-electron Hilbert space, and solve the partitioned time-dependent Schrödinger equation by a short-time unitary algorithm. The partitioning scheme allows one to use different level of theory to treat the many-electron dynamics in different subspaces. We illustrate the procedure on a simple two-active-electron model molecular system subjected to a few-cycle extreme Ultra-Violet (XUV) pulse to study channel-resolved photoelectron spectra as a function of the pulse's central frequency and duration. We observe how the momentum and kinetic-energy distributions of photoelectrons accompanying the formation of the molecular cation in a given electronic state (channel) change as the XUV few-cycle pulse's width is varied, from a form characteristic of an impulsive ionization regime, corresponding to the limit of a delta-function pulse, to a form characteristic of multiphoton above-threshold ionization, often associated with continuous-wave infinitely long pulse.

  10. Multicomponent dynamics of coupled quantum subspaces and field-induced molecular ionizations

    SciTech Connect

    Nguyen-Dang, Thanh-Tung; Viau-Trudel, Jérémy

    2013-12-28

    To describe successive ionization steps of a many-electron atom or molecule driven by an ultrashort, intense laser pulse, we introduce a hierarchy of successive two-subspace Feshbach partitions of the N-electron Hilbert space, and solve the partitioned time-dependent Schrödinger equation by a short-time unitary algorithm. The partitioning scheme allows one to use different level of theory to treat the many-electron dynamics in different subspaces. We illustrate the procedure on a simple two-active-electron model molecular system subjected to a few-cycle extreme Ultra-Violet (XUV) pulse to study channel-resolved photoelectron spectra as a function of the pulse's central frequency and duration. We observe how the momentum and kinetic-energy distributions of photoelectrons accompanying the formation of the molecular cation in a given electronic state (channel) change as the XUV few-cycle pulse's width is varied, from a form characteristic of an impulsive ionization regime, corresponding to the limit of a delta-function pulse, to a form characteristic of multiphoton above-threshold ionization, often associated with continuous-wave infinitely long pulse.

  11. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  12. Physics of Partially Ionized Plasmas

    NASA Astrophysics Data System (ADS)

    Krishan, Vinod

    2016-05-01

    Figures; Preface; 1. Partially ionized plasmas here and everywhere; 2. Multifluid description of partially ionized plasmas; 3. Equilibrium of partially ionized plasmas; 4. Waves in partially ionized plasmas; 5. Advanced topics in partially ionized plasmas; 6. Research problems in partially ionized plasmas; Supplementary matter; Index.

  13. Accuracy of Human and Veterinary Point-of-Care Glucometers for Use in Rhesus Macaques (Macaca mulatta), Sooty Mangabeys (Cercocebus atys), and Chimpanzees (Pan troglodytes).

    PubMed

    Clemmons, Elizabeth A; Stovall, Melissa I; Owens, Devon C; Scott, Jessica A; Jones-Wilkes, Amelia C; Kempf, Doty J; Ethun, Kelly F

    2016-01-01

    Handheld, point-of-care glucometers are commonly used in NHP for clinical and research purposes, but whether these devices are appropriate for use in NHP is unknown. Other animal studies indicate that glucometers should be species-specific, given differences in glucose distribution between RBC and plasma; in addition, Hct and sampling site (venous compared with capillary) influence glucometer readings. Therefore, we compared the accuracy of 2 human and 2 veterinary glucometers at various Hct ranges in rhesus macaques (Macaca mulatta), sooty mangabeys (Cercocebus atys), and chimpanzees (Pan troglodytes) with that of standard laboratory glucose analysis. Subsequent analyses assessed the effect of hypoglycemia, hyperglycemia, and sampling site on glucometer accuracy. The veterinary glucometers overestimated blood glucose (BG) values in all species by 26 to 75 mg/dL. The mean difference between the human glucometers and the laboratory analyzer was 7 mg/dL or less in all species. The human glucometers overestimated BG in hypoglycemic mangabeys by 4 mg/dL and underestimated BG in hyperglycemic mangabeys by 11 mg/dL; similar patterns occurred in rhesus macaques. Hct did not affect glucometer accuracy, but all samples were within the range at which glucometers generally are accurate in humans. BG values were significantly lower in venous than capillary samples. The current findings show that veterinary glucometers intended for companion-animal species are inappropriate for use in the studied NHP species, whereas the human glucometers showed clinically acceptable accuracy in all 3 species. Finally, potential differences between venous and capillary BG values should be considered when comparing and evaluating results. PMID:27177571

  14. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  15. Characterization of ATI, TK and IFN-alpha/betaR genes in the genome of the BeAn 58058 virus, a naturally attenuated wild Orthopoxvirus.

    PubMed

    Marques, J T; Trindade, G D; Da Fonseca, F G; Dos Santos, J R; Bonjardim, C A; Ferreira, P C; Kroon, E G

    2001-12-01

    The lack of knowledge about the natural host of Vaccinia virus (VV) along with the description of human infections caused by poxviruses after smallpox eradication has increased the need to characterize poxviruses isolated from the wild. Moreover, in the past years poxviruses have been widely studied as potential vaccination tools, with the discovery of several genes implicated in the evasion of the host immune response involved in virus pathogenesis. Among them, an Interferon (IFN)-binding protein was identified in the supernatant of VV strain WR infected cells coded by the B18R gene. It was shown that many other Orthopoxviruses also encode and express this soluble receptor although some VV strains such as Lister and modified Ankara, which were less reactogenic vaccines, do not. The BeAn 58058 virus (BAV) has been recently characterized and proposed to be an Orthopoxvirus. BAV was also shown to be less virulent in animal models than VV Lister. Here we report the identification of an IFN-alpha/betaR gene in the BAV genome with 99% of sequence identity with the VVWR B18R gene. The identified gene encodes a B18R-like IFN binding protein as demonstrated by its capacity to inhibit the IFN-mediated protection of VERO cells against EMC virus. In order to better characterize the virus we have searched for the A type inclusion body (ATI) gene currently used in the classification of Orthopoxviruses but did not detect it in the BAV genome. We have also sequenced the BAV thymidine kinase (TK) gene, a poxvirus-conserved gene, which, as expected, showed high homology with the TK gene of other poxviruses. Phylogenetic trees were constructed based on sequences of the IFN-alpha/betaR and TK genes from several poxviruses and in both cases BAV was placed in the same cluster as other VV strains. These observations strengthened the hypothesis that this virus is a variant of the VV vaccine used in Brazil. However the explanation for the BAV lack of virulence remains to be discovered

  16. In-depth analysis of Coulomb Volkov approaches to ionization and excitation by laser pulses

    NASA Astrophysics Data System (ADS)

    R, Guichard; H, Bachau; E, Cormier; R, Gayet; D, Rodriguez V.

    2007-10-01

    In perturbation conditions, above-threshold ionization spectra produced in the interaction of atoms with femtosecond short-wavelength laser pulses are well predicted by a theoretical approach called CV2-, which is based on Coulomb-Volkov-type states. However, when resonant intermediate states play a significant role in a multiphoton transition, the CV2- transition amplitude does not take their influence into account. In a previous paper, this influence has been introduced separately as a series of additional sequential processes interfering with the direct process. To give more credit to this procedure, called modified CV2- (MCV2-), a perturbation expansion of the standard CV2- transition amplitude is compared here to the standard time-dependent perturbation series and the strong field approximation. It is shown that the CV2- transition amplitude consists merely in a simultaneous absorption of all photons involved in the transition, thus avoiding all intermediate resonant state influence. The present analysis supports the MCV2- procedure that consists in introducing explicitly the other quantum paths, which contribute significantly to ionization, such as passing through intermediate resonances. Further, this analysis permits to show that multiphoton excitation may be addressed by a Coulomb-Volkov approach akin to MCV2-.

  17. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  18. Electron-momentum distributions and photoelectron spectra of atoms driven by an intense spatially inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Pérez-Hernández, J. A.; Shaaran, T.; Roso, L.; Lewenstein, M.

    2013-06-01

    We use the three-dimensional time-dependent Schrödinger equation (3 D-TDSE) to calculate angular electron momentum distributions and photoelectron spectra of atoms driven by spatially inhomogeneous fields. An example for such inhomogeneous fields is the locally enhanced field induced by resonant plasmons, appearing at surfaces of metallic nanoparticles, nanotips, and gold bow-tie shaped nanostructures. Our studies show that the inhomogeneity of the laser electric field plays an important role on the above-threshold ionization process in the tunneling regime, causing significant modifications on the electron momentum distributions and photoelectron spectra, while its effects in the multiphoton regime appear to be negligible. Indeed, through the tunneling above-threshold ionization (ATI) process, one can obtain higher energy electrons as well as a high degree of asymmetry in the momentum space map. In this study we consider near infrared laser fields with intensities in the mid- 1014 W/cm2 range and we use a linear approximation to describe their spatial dependence. We show that in this case it is possible to drive electrons with energies in the near-keV regime. Furthermore, we study how the carrier envelope phase influences the emission of ATI photoelectrons for few-cycle pulses. Our quantum mechanical calculations are fully supported by their classical counterparts.

  19. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  20. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  1. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  2. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  3. Surface ionization of terpene hydrocarbons

    SciTech Connect

    Zandberg, E.Y.; Nezdyurov, A.L.; Paleev, V.I.; Ponomarev, D.A.

    1986-09-01

    By means of a surface ionization indicator for traces of materials in the atmosphere it has been established that many natural materials containing terpenes and their derivatives are ionized on the surface of heated molybdenum oxide at atmospheric air pressure. A mass-spectrometer method has been used to explain the mechanism of ionization of individual terpene hydrocarbons and to establish its principles. The ionization of ..cap alpha..-pinene, alloocimene, camphene, and also adamantane on oxidized tungsten under vacuum conditions has been investigated. The ..cap alpha..-pinene and alloocimene are ionized by surface ionization but camphene and adamantane are not ionized under vacuum conditions. The surface ionization mass spectra of ..cap alpha..-pinene and alloocimene are of low line brightness in comparison with electron ionization mass spectra and differ between themselves. The temperature relations for currents of the same compositions of ions during ionization of ..cap alpha..-pinene and alloocimene are also different, which leads to the possibility of surface ionization analysis of mixtures of terpenes being ionized. The ionization coefficients of alloocimene and ..cap alpha..-pinene on oxidized tungsten under temperatures optimum for ionization and the ionization potentials of alloocimene molecules and of radicals (M-H) of both compounds have been evaluated.

  4. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  5. Angular Correlation of Electrons Emitted by Double Auger Decay of K-Shell Ionized Neon

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Philip

    2011-12-01

    We have investigated in detail the 4-body continuum state produced when core-ionized neon undergoes Double-Auger (DA) decay, using COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS ). We conducted the experiment at the Lawrence Berkeley National Laboratory's Advanced Light Source (LBNL-ALS) beamline 11.0.2. The synchrotron operated in 2-bunch mode and outputted an elliptically polarized, pulsed photon beam (hn=872.9eV), sufficient to K-shell ionize neon just above threshold. Our analysis supports research showing that Auger electrons tend to share energy asymmetrically. We qualitatively compared this result to Photo-Double Ionization (PDI) of helium. Further, we confirm research that shows how Auger electrons that share energy symmetrically can be modeled by the elastic-like knock-out process plus Post-Collision Interaction ( PCI) effects. New observations include the angular correlation between the photo-electron and each respective Auger electron, for specific ranges of energy sharing. We identify a broad feature in the asymmetric case that shows a level of interaction between electrons that until recently, has disagreed with theory. Additionally, we consider the angular correlation between the photo-electron and the momentum sum of the Auger electrons. We observe that the angular correlation between this sum and the photo-electron in the highly asymmetric case is nearly identical to the correlation between just the fast-Auger and the photo-electron - as expected. In the case of symmetric energy sharing, the sum momentum vector appears to be isotropic, particularly for small angles of interaction. Finally, we acknowledge two novel methods of calibration. The first, uses well known line-energies to calibrate the spectrometer. These lines correspond to the decay channels of core-excited neon, Ne(1 s-13p). The second, describes a method to statistically weight list-mode data in order to calibrate it to well known physical features (e.g., isotropic distributions).

  6. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  7. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  8. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  9. Ultrahigh vacuum measuring ionization gauge

    NASA Technical Reports Server (NTRS)

    Brock, F. J. (Inventor)

    1968-01-01

    The ionization gage described consists of separate ionization and collector regions connected at an exit area with a modulator electrode. In addition to the standard modulation function, the modulator in this location yields a suprising increase in collector current, apparently due to improved focussing and extraction of ions from the ionization region.

  10. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  11. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  12. Ionization of polarized hydrogen atoms

    SciTech Connect

    Alessi, J.G.

    1983-01-01

    Methods are discussed for the production of polarized H/sup -/ ions from polarized atoms produced in ground state atomic beam sources. Present day sources use ionizers of two basic types - electron ionizers for H/sup +/ Vector production followed by double charge exchange in a vapor, or direct H/sup -/ Vector production by charge exchange of H/sup 0/ with Cs/sup 0/. Both methods have ionization efficiencies of less than 0.5%. Ionization efficiencies in excess of 10% may be obtained in the future by the use of a plasma ionizer plus charge exchange in Cs or Sr vapor, or ionization by resonant charge exchange with a self-extracted D/sup -/ beam from a ring magnetron or HCD source. 36 references, 4 figures.

  13. Plasma Production via Field Ionization

    SciTech Connect

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Zhou, M.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  14. How big, and how long-lasting, will an extreme burst above threshold be ? Lessons from self-organised criticality

    NASA Astrophysics Data System (ADS)

    Watkins, N. W.; Chapman, S. C.; Hnat, B.

    2011-12-01

    The idea that there might not be a typical scale for energy release in some space physics systems is a relatively new one [see e.g. mini-review of early work in Freeman and Watkins, Science, 2002; & Aschwanden, Self Organized Criticality (SOC) in Astrophysics, Springer, 2011]. In part it resulted from the widespread approximate fractality seen elsewhere in nature. SOC was introduced by Bak et al [PRL, 1987] as a physical explanation of such widespread space-time fractality. SOC inspired the introduction into magnetospheric physics of "burst" diagnostics by Takalo [1993] & Consolini [1996]. These quantified events in a time series by "size" (integrated area above a fixed threshold) and "duration", and revealed a long tailed population of events across a broad range of sizes, subsequently also seen in solar wind drivers like Akasofu's epsilon function [Freeman et al, PRE & GRL, 2000]. Spatiotemporal bursts have an interest beyond SOC, however. Estimating the probability of a burst of a given size and duration bears directly on the problem of correlated extreme events, or "bunched black swans" [e.g. Watkins et al, EGU, 2011 presentation at the URL below]. With a view both to space physics and this wider context we here consider an interesting development of the burst idea made by Uritsky et al [GRL, 2001]. These authors adapted the spatiotemporal spreading exponent [e.g. Marro & Dickman, Nonequilibrium phase transitions in lattice models, 1999], calculating a superposed epoch average of surviving activity in bursts after their first excursion above a threshold. In a 1D time series, the 1-minute AL auroral index (averaged over 5 minutes), they found scaling behaviour up to ~ 2 hours. We investigate the relationships between exponents found by this method and other, more widely known exponents governing a fractal (or multifractal) time series such as the self-similarity exponent H and long-range dependence exponent d. We conclude by discussing the applications of these techniques to problems such as the forecasting the probability of a single short-lived large burst versus that of a long correlated sequence of more moderate exceedences above a threshold.

  15. Elastic properties of perovskite ATiO{sub 3} (A = Be, Mg, Ca, Sr, and Ba) and PbBO{sub 3} (B = Ti, Zr, and Hf): First principles calculations

    SciTech Connect

    Pandech, Narasak; Limpijumnong, Sukit; Sarasamak, Kanoknan

    2015-05-07

    The mechanical properties of perovskite oxides depend on two metal oxide lattices that are intercalated. This provides an opportunity for separate tuning of hardness, Poisson's ratio (transverse expansion in response to the compression), and shear strength. The elastic constants of series of perovskite oxides were studied by first principles approach. Both A-site and B-site cations were systematically varied in order to see their effects on the elastic parameters. To study the effects of A-site cations, we studied the elastic properties of perovskite ATiO{sub 3} for A being Be, Mg, Ca, Sr, or Ba, one at a time. Similarly, for B-site cations, we studied the elastic properties of PbBO{sub 3} for B being Ti, Zr, or Hf, one at a time. The density functional first principles calculations with local density approximation (LDA) and generalized gradient approximation (GGA) were employed. It is found that the maximum C{sub 11} elastic constant is achieved when the atomic size of the cations at A-site and B-site are comparable. We also found that C{sub 12} elastic constant is sensitive to B-site cations while C{sub 44} elastic constant is more sensitive to A-site cations. Details and explanations for such dependencies are discussed.

  16. Nonsequential double ionization of molecules

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2005-03-01

    Double ionization of diatomic molecules by short linearly polarized laser pulses is analyzed. We consider the final stage of the ionization process, that is the decay of a highly excited two electron molecule, which is formed after rescattering. The saddles of the effective adiabatic potential energy close to which simultaneous escape of electrons takes place are identified. Numerical simulations of the ionization of molecules show that the process can be dominated by either sequential or nonsequential events. In order to increase the ratio of nonsequential to sequential ionizations very short laser pulses should be applied.

  17. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  18. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  19. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  20. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  1. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  2. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  3. IEHI: Ionization Equilibrium for Heavy Ions

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2015-07-01

    IEHI, written in Fortran, outputs a simple "coronal" ionization equilibrium (i.e., collisional ionization and auto-ionization balanced by radiative and dielectronic recombination) for a plasma at a given electron temperature.

  4. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  5. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  6. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  7. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  8. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  9. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  10. Martian Meteor Ionization Layers

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Pesnell, W. D.

    1999-01-01

    Small interplanetary grains bombard Mars, like all the solar system planets, and, like all the planets with atmospheres, meteoric ion and atom layers form in the upper atmosphere. We have developed a comprehensive one-dimensional model of the Martian meteoric ionization layer including a full chemical scheme. A persistent layer of magnesium ions should exist around an altitude of 70 km. Unlike the terrestrial case, where the metallic ions are formed via charge-exchange with the ambient ions, Mg(+) in the Martian atmosphere is produced by photoionization. Nevertheless, the predicted metal layer peak densities for Earth and Mars are similar. Diffusion solutions, such as those presented here, should be a good approximation of the metallic ions in regions where the magnetic field is negligible and may provide a significant contribution to the nightside ionosphere. The low ultraviolet absorption of the Martian atmosphere may make Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  11. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  12. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  13. Ionizing radiation promotes protozoan reproduction

    SciTech Connect

    Luckey, T.D.

    1986-11-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism.

  14. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. PMID:25757823

  15. Measuring Ionization at Extreme Densities

    NASA Astrophysics Data System (ADS)

    Kraus, Dominik; Doeppner, Tilo; Kritcher, Andrea; Bachmann, Benjamin; Fletcher, Luke; Falcone, Roger; Gericke, Dirk; Glenzer, Siegfried; Masters, Nathan; Nora, Ryan; Boehm, Kurt; Divol, Laurent; Landen, Otto; Yi, Austin; Kline, John; Redmer, Ronald; Neumayer, Paul

    2015-11-01

    A precise knowledge of ionization at given temperature and density is crucial in order to properly model compressibility and heat capacity of ICF ablator materials for efficient implosions producing energy gain. Here, we present a new experimental platform to perform spectrally resolved x-ray scattering measurements of ionization, density and temperature in imploding CH or beryllium capsules on the National Ignition Facility. Recording scattered x-rays at 9 keV from a zinc He-alpha plasma source at a scattering angle of 120 degrees, first experiments show strong sensitivity to k-shell ionization, while at the same time constraining density and temperature. This platform will allow for x-ray Thomson scattering studies of dense plasmas with free electron densities up to 1025 cm-3, giving the possibility to investigate effects of continuum lowering and Pauli blocking on the ablator ionization state right before stagnation of the implosion.

  16. Double ionization of atomic cadmium

    SciTech Connect

    Linusson, P.; Fritzsche, S.; Eland, J. H. D.; Hedin, L.; Karlsson, L.; Feifel, R.

    2011-02-15

    We have recorded the double photoionization spectrum of atomic Cd at four different photon energies in the range 40-200 eV. The main channel is single ionization and subsequent decay of excited Cd{sup +} states, some involving Coster-Kronig processes, whereas direct double ionization is found to be weak. The decay of the excited Cd{sup +} states shows a strong selectivity, related to the configuration of the final state. Double ionization leading to the Cd{sup 2+} ground state is investigated in some detail and is found to proceed mainly through ionization and decay of 4d correlation satellites. The most prominent autoionization peaks have been identified with the aid of quantum-mechanical calculations.

  17. Salts Are Mostly NOT Ionized.

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    1996-01-01

    Discusses the misconception that salts are completely ionizing in solution, the presence of this error in textbooks, probable origins of the error, covalent bonding and ion pairs, and how to tell students the truth. (MKR)

  18. Calculation of multiphoton ionization processes

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Poe, R. T.

    1976-01-01

    We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.

  19. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  20. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  1. Laser ionization mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Bernardez, Luis J., III; Siekhaus, W. J.

    1989-10-01

    Laser Ionization Mass Spectroscopy (LIMS) is a simple technique with several advantages and disadvantages over standard mass spectroscopy techniques. The LIMS technique uses a laser to vaporize a small portion of a sample. The vapor from the sample consists of a mixture of charged and neutral atoms or fragments. Using electrostatic grids, the ions (positive or negative) are given a known amount of kinetic energy and sent down a time-of-flight tube. The time it takes the ions to travel down the flight tube is recorded. Knowing the ions' energy, the length of the flight tube, and the time it takes the ions to travel that distance, the masses of the ions can be calculated. The instrument used is a LIMA 3 made by Cambridge Mass Spectrometry. It has a Quanta Ray DCR-11 Nd:YAG laser, which was frequency-quadrupled to 266 nm. The laser spot size is typically between 2 and 5 microns in diameter and the pulse width is between 5 and 10 nanoseconds. The energy of the laser is continually variable between 0.1 and 3.0 millijoules. The detector is a 17-stage venetian-blind multiplier made by Thorn EMI. The analysis is carried out under vacuum, usually between 10(exp -8) and 10(exp -9) Torr. The LIMA 3 has several useful features such as: a He-Ne pilot laser used to target the Nd:YAG laser; a microscope (which is used to view the sample through the laser optics); and a precision sample stage for accurate sample alignment.

  2. Laser ionization mass spectroscopy

    SciTech Connect

    Bernardez, L.J. III; Siekhaus, W.J. )

    1989-10-01

    Laser Ionization Mass Spectroscopy (LIMS) is a simple technique with several advantages and disadvantages over standard mass spectroscopy techniques. The LIMS technique uses a laser to vaporize a small portion of a sample. The vapor from the sample consists of a mixture of charged and neutral atoms or fragments. Using electrostatic grids, the ions (positive or negative) are given a known amount of kinetic energy and sent down a time-of-flight tube. The time it takes the ions to travel down the flight tube is recorded. Knowing the ions' energy, the length of the flight tube, and the time it takes the ions to travel that distance, the masses of the ions can be calculated. The instrument we use is a LIMA 3 made by Cambridge Mass Spectrometry. It has a Quanta Ray DCR-11 Nd:YAG laser, which we frequency-quadruple to 266 nm. The laser spot size is typically between 2 and 5 microns in diameter and the pulse width is between 5 and 10 nanoseconds. The energy of the laser is continually variable between 0.1 and 3.0 millijoules. The detector is a 17-stage venetian-blind multiplier made by Thorn EMI. The analysis is carried out under vacuum, usually between 10{sup {minus}8} and 10{sup {minus}9} Torr. The LIMA 3 has several useful features such as: a He-Ne pilot laser used to target the Nd:YAG laser; a microscope (which is used to view the sample through the laser optics); and a precision sample stage for accurate sample alignment. 6 figs., 1 tab.

  3. ATI TDA 5A aerosol generator evaluation

    SciTech Connect

    Gilles, D.A.

    1998-07-27

    Oil based aerosol ``Smoke`` commonly used for testing the efficiency and penetration of High Efficiency Particulate Air filters (HEPA) and HEPA systems can produce flammability hazards that may not have been previously considered. A combustion incident involving an aerosol generator has caused an investigation into the hazards of the aerosol used to test HEPA systems at Hanford.

  4. Microwave ionization of Rydberg atoms

    SciTech Connect

    Gallagher, T.F.

    1996-12-31

    An atom can be ionized by a static field if the field depresses the potential below the binding energy W, leading to the requirement E = W{sup 2}/4 in atomic units. The atomic units of field and energy are 5.14 {times} 10{sup 9} V/cm and 27.2 eV. The ionization field is often expressed in terms of the principal quantum number n of the state in question as E = 1/16n{sup 4}. In a microwave field with frequency far less than the separation {Delta}W = 1/n{sup 3} between adjacent n states, atoms other than H ionize at the much lower microwave field amplitude of E = 1/3n{sup 5}. This field corresponds to the Inglis-Teller limit, where it is impossible to resolve spectrally adjacent n states due to Stark broadening in a plasma. In H ionization occurs as it does in a static field. The difference exists because the finite sized ionic core of a non hydrogenic atom breaks one of the symmetries found in H. In non hydrogenic atoms the microwave field drives a series of transitions through successively higher n states culminating in ionization. These transitions can be understood in terms of a Landau-Zener picture based on the variation of the energies of the atoms produced by the time varying field or as the resonant multiphoton absorption of the microwave photons. In either case, the atoms make transitions through real intermediate states en route to ionization. With short, four cycle, microwave pulses complete ionization does not occur with fields of E = 1/3n{sup 5}, and population is left in intermediate states. The transition from ionization at fields near E = 1/3n{sup 5} to fields of E = 1/16n{sup 4} occurs when the frequency becomes low enough that the energies of the states vary adiabatically in the temporally varying field.

  5. Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization.

    PubMed

    Albert, Anastasia; Engelhard, Carsten

    2012-12-18

    Ambient desorption/ionization mass spectrometry (ADI-MS) is an attractive method for direct analysis with applications in homeland security, forensics, and human health. For example, low-temperature plasma probe (LTP) ionization was successfully used to detect, e.g., explosives, drugs, and pesticides directly on the target. Despite the fact that the field is gaining significant attention, few attempts have been made to classify ambient ionization techniques based on their ionization characteristics and performance compared to conventional ionization sources used in mass spectrometry. In the present study, relative ionization efficiencies (RIEs) for a large group of compound families were determined with LTP-Orbitrap-MS and compared to those obtained with electrospray ionization mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). RIEs were normalized against one reference compound used across all methods to ensure comparability of the results. Typically, LTP analyte ionization through protonation/deprotonation (e.g., 4-acetamidophenol) was observed; in some cases (e.g., acenaphthene) radicals were formed. Amines, amides, and aldehydes were ionized successfully with LTP. A benefit of LTP over conventional methods is the possibility to successfully ionize PAHs and imides. Here, the studied model compounds could be detected by neither APCI nor ESI. LTP is a relatively soft ionization method because little fragmentation of model compounds was observed. It is considered to be an attractive method for the ionization of low molecular weight compounds over a relatively wide polarity range. PMID:23134531

  6. Chemical protection against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Maisin, J. R.

    Some of the problems related to chemical protection against ionizing radiation are discussed with emphasis on : definition, classification, degree of protection, mechanisms of action and toxicity. Results on the biological response modifyers (BRMs) and on the combination of nontoxic (i.e. low) doses of sulphydryl radioprotectors and BRMs are presented.

  7. Ionization Potentials for Isoelectronic Series.

    ERIC Educational Resources Information Center

    Agmon, Noam

    1988-01-01

    Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)

  8. Intense laser ionization of transiently aligned CO

    SciTech Connect

    Pinkham, D.; Jones, R.R.

    2005-08-15

    We have measured the ionization rate for CO molecules exposed to intense 30 fsec 780 nm laser pulses as a function of the angle between the molecular and laser polarization axes. Nonionizing, 70 fsec laser pulses are used to coherently prepare the molecules, preferentially aligning them for the strong-field ionization experiments. We find a 2:1 ionization-rate ratio for molecules aligned parallel or perpendicular to the ionizing field.

  9. Five-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.; Colgan, J.

    2016-03-01

    A time-dependent close-coupling method is used to calculate the five-photon double ionization of He. It is found that the generalized cross section used in the past for two-photon double ionization of He cannot be extended to five-photon double ionization of He. Therefore only five-photon double ionization probabilities that depend on specific radiation field pulses can be calculated.

  10. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  11. Microwave remote sensing of ionized air.

    SciTech Connect

    Liao, S.; Gopalsami, N.; Heifetz, A.; Elmer, T.; Fiflis, P.; Koehl, E. R.; Chien, H. T.; Raptis, A. C.

    2011-07-01

    We present observations of microwave scattering from ambient room air ionized with a negative ion generator. The frequency dependence of the radar cross section of ionized air was measured from 26.5 to 40 GHz (Ka-band) in a bistatic mode with an Agilent PNA-X series (model N5245A) vector network analyzer. A detailed calibration scheme is provided to minimize the effect of the stray background field and system frequency response on the target reflection. The feasibility of detecting the microwave reflection from ionized air portends many potential applications such as remote sensing of atmospheric ionization and remote detection of radioactive ionization of air.

  12. Ultraviolet femtosecond laser ionization mass spectrometry.

    PubMed

    Imasaka, Totaro

    2008-01-01

    For this study, multiphoton ionization/mass spectrometry using an ultraviolet (UV) femtosecond laser was employed for the trace analysis of organic compounds. Some of the molecules, such as dioxins, contain several chlorine atoms and have short excited-state lifetimes due to a "heavy atom" effect. A UV femtosecond laser is, then, useful for efficient resonance excitation and subsequent ionization. A technique of multiphoton ionization using an extremely short laser pulse (e.g., <10 fs), referred to as "impulsive ionization," may have a potential for use in fragmentation-free ionization, thus providing information on molecular weight in mass spectrometry. PMID:18302290

  13. Low-density ionization behavior

    SciTech Connect

    Baker, G.A. Jr.

    1995-04-01

    As part of a continuing study of the physics of matter under extreme conditions, I give some results on matter at extremely low density. In particular I compare a quantum mechanical calculation of the pressure for atomic hydrogen with the corresponding pressure given by Thomas-Fermi theory. (This calculation differs from the ``confined atom`` approximation in a physically significant way.) Since Thomas-Fermi theory in some sense, represents the case of infinite nuclear charge, these cases should represent extremes. Comparison is also made with Saha theory, which considers ionization from a chemical point of view, but is weak on excited-state effects. In this theory, the pressure undergoes rapid variation as electron ionization levels are passed. This effect is in contrast to the smooth behavior of the Thomas-Fermi fixed temperature, complete ionization occurs in the low density limit, I study the case where the temperature goes appropriately to zero with the density. Although considerable modification is required, Saha theory is closer to the actual results for this case than is Thomas-Fermi theory.

  14. Theory of dissociative tunneling ionization

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2016-05-01

    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.

  15. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  16. Nanotip Ambient Ionization Mass Spectrometry.

    PubMed

    Zhou, Zhenpeng; Lee, Jae Kyoo; Kim, Samuel C; Zare, Richard N

    2016-05-17

    A method called nanotip ambient ionization mass spectrometry (NAIMS) is described, which applies high voltage between a tungsten nanotip and a metal plate to generate a plasma in which ionized analytes on the surface of the metal plate are directed to the inlet and analyzed by a mass spectrometer. The dependence of signal intensity is investigated as a function of the tip-to-plate distance, the tip size, the voltage applied at the tip, and the current. These parameters are separately optimized to achieve sensitivity or high spatial resolution. A partially observable Markov decision process is used to achieve a stabilized plasma as well as high ionization efficiency. As a proof of concept, the NAIMS technique has been applied to phenanthrene and caffeine samples for which the limits of detection were determined to be 0.14 fmol for phenanthrene and 4 amol for caffeine and to a printed caffeine pattern for which a spatial resolution of 8 ± 2 μm, and the best resolution of 5 μm, was demonstrated. The limitations of NAIMS are also discussed. PMID:27087600

  17. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  18. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  19. Femtosecond Laser Ionization of Organic Amines with Very Low Ionization Potential.

    NASA Astrophysics Data System (ADS)

    Yatsuhashi, Tomoyuki; Obayashi, Takashi; Tanaka, Michinori; Murakami, Masanao; Nakashima, Nobuaki

    2006-03-01

    The interaction between high intensity femtosecond laser and molecules is one of the most attractive areas in laser chemistry and ionization is the most fundamental subject. Theoretical consideration successfully reproduced the ionization behavior of rare gases. However, the understanding of ionization mechanisms of large molecules is difficult more than those of rare gases due to their complexity. Generally speaking, molecules are harder to ionize than rare gases even if they have the same ionization potential. The suppressed ionization phenomena are one of the important features of molecular ionization. Hankin et al. examined 23 organic molecules with ionization potentials between 8.25 and 11.52 eV. We have examined ionization and/ or fragmentation of many organic molecules, including aromatic compounds, halogenated compounds, methane derivatives etc. at various wavelengths below 10^16 Wcm-2. In order to investigate the nature of molecular ionization, it is interesting to examine a variety of molecule in a wide range of ionization potential. In this study, we examined several organic amines because we can explore the uninvestigated ionization potential range down to 5.95 eV. In addition to the significant suppression of the ionization rates, stepwise ionization behavior, which was not observed in rare gases, was observed.

  20. Ionizing Radiation and Its Risks

    PubMed Central

    Goldman, Marvin

    1982-01-01

    Penetrating ionizing radiation fairly uniformly puts all exposed molecules and cells at approximately equal risk for deleterious consequences. Thus, the original deposition of radiation energy (that is, the dose) is unaltered by metabolic characteristics of cells and tissue, unlike the situation for chemical agents. Intensely ionizing radiations, such as neutrons and alpha particles, are up to ten times more damaging than sparsely ionizing sources such as x-rays or gamma rays for equivalent doses. Furthermore, repair in cells and tissues can ameliorate the consequences of radiation doses delivered at lower rates by up to a factor of ten compared with comparable doses acutely delivered, especially for somatic (carcinogenic) and genetic effects from x- and gamma-irradiation exposure. Studies on irradiated laboratory animals or on people following occupational, medical or accidental exposures point to an average lifetime fatal cancer risk of about 1 × 10-4 per rem of dose (100 per 106 person-rem). Leukemia and lung, breast and thyroid cancer seem more likely than other types of cancer to be produced by radiation. Radiation exposures from natural sources (cosmic rays and terrestrial radioactivity) of about 0.1 rem per year yield a lifetime cancer risk about 0.1 percent of the normally occurring 20 percent risk of cancer death. An increase of about 1 percent per rem in fatal cancer risk, or 200 rem to double the “background” risk rate, is compared with an estimate of about 100 rem to double the genetic risk. Newer data suggest that the risks for low-level radiation are lower than risks estimated from data from high exposures and that the present 5 rem per year limit for workers is adequate. PMID:6761969

  1. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  2. The Tevatron Ionization Profile Monitors

    SciTech Connect

    Jansson, A.; Fitzpatrick, T.; Bowie, K.; Kwarciany, R.; Lundberg, C.; Slimmer, D.; Valerio, L.; Zagel, J.; /Fermilab

    2006-05-01

    In designing an ionization profile monitor system for the Tevatron some novel approaches were taken, in particular for the readout electronics. This was motivated by the desire to resolve the individual bunches in both beams simultaneously. For this purpose, custom made electronics originally developed for Particle Physics experiments was used to provide a fast charge integration with very low noise. The various parts of the read-out electronics have been borrowed or adapted from the KTev, CMS, MINOS and BTev experiments. The detector itself also had to be modified to provide clean signals with sufficient bandwidth. The system design will be described along with the initial results.

  3. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  4. Optical Detection of Tunneling Ionization

    SciTech Connect

    Verhoef, Aart J.; Mitrofanov, Alexander V.; Kartashov, Daniil V.; Baltuska, Andrius

    2010-04-23

    We have experimentally detected optical harmonics that are generated due to a tunneling-ionization-induced modulation of the electron density. The optical signature of electron tunneling can be isolated from concomitant optical responses by using a noncollinear pump-probe setup. Whereas previously demonstrated tools for attosecond metrology of gases, plasmas, and surfaces rely on direct detection of charged particles, detection of the background-free time-resolved optical signal, which uniquely originates from electron tunneling, offers an interesting alternative that is especially suited for systems in which free electrons cannot be directly measured.

  5. CLASSSTRONG: Classical simulations of strong field processes

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Pérez-Hernández, J. A.; Lewenstein, M.

    2014-01-01

    A set of Mathematica functions is presented to model classically two of the most important processes in strong field physics, namely high-order harmonic generation (HHG) and above-threshold ionization (ATI). Our approach is based on the numerical solution of the Newton-Lorentz equation of an electron moving on an electric field and takes advantage of the symbolic languages features and graphical power of Mathematica. Like in the Strong Field Approximation (SFA), the effects of atomic potential on the motion of electron in the laser field are neglected. The SFA was proven to be an essential tool in strong field physics in the sense that it is able to predict with great precision the harmonic (in the HHG) and energy (in the ATI) limits. We have extended substantially the conventional classical simulations, where the electric field is only dependent on time, including spatial nonhomogeneous fields and spatial and temporal synthesized fields. Spatial nonhomogeneous fields appear when metal nanosystems interact with strong and short laser pulses and temporal synthesized fields are routinely generated in attosecond laboratories around the world. Temporal and spatial synthesized fields have received special attention nowadays because they would allow to exceed considerably the conventional harmonic and electron energy frontiers. Classical simulations are an invaluable tool to explore exhaustively the parameters domain at a cheap computational cost, before massive quantum mechanical calculations, absolutely indispensable for the detailed analysis, are performed.

  6. Roles of resonances and recollisions in strong-field atomic phenomena. II. High-order harmonic generation

    SciTech Connect

    Taieeb, Richard; Veniard, Valerie; Wassaf, Joseph; Maquet, Alfred

    2003-09-01

    The theoretical developments presented in a preceding companion paper by Wassaf et al. [Phys. Rev. A 67, 053405 (2003)], for simulating photoelectron spectra, are used to address several issues regarding the harmonic generation process. Both above-threshold Ionization (ATI) and high-order harmonic generation are observed when atoms are submitted to a laser field with intensity around I=10{sup 14} W cm{sup -2}. Here, we demonstrate that the resonances, together with multiple recollisions processes, which have been shown to be at the origin of enhancements of the magnitudes of ATI peaks in the high-energy range, can also play a determining role on the magnitudes of harmonic lines within the plateau. These findings have been obtained via a set of quantum and classical simulations for two classes of one-dimensional model potentials, i.e., either long range (Coulomb-like) or short range (with an exponentially decreasing tail). They are confirmed by following the time evolution of the emission rate of selected harmonics with the help of a (waveletlike) Gabor time-frequency analysis.

  7. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  8. Fluid hydrogen at high density - Pressure ionization

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1992-01-01

    The Helmholtz-free-energy model for nonideal mixtures of hydrogen atoms and molecules by Saumon and Chabrier (1991) is extended to describe dissociation and ionization in similar mixtures in chemical equilibrium. A free-energy model is given that describes partial ionization in the pressure and temperature ionization region. The plasma-phase transition predicted by the model is described for hydrogen mixtures including such components as H2, H, H(+), and e(-). The plasma-phase transition has a critical point at Tc = 15,300 K and Pc = 0.614 Mbar, and thermodynamic instability is noted in the pressure-ionization regime. The pressure dissociation and ionization of fluid hydrogen are described well with the model yielding information on the nature of the plasma-phase transition. The model is shown to be valuable for studying dissociation and ionization in astrophysical objects and in high-pressure studies where pressure and temperature effects are significant.

  9. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  10. Electron impact ionization of glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Ptasinska, Sylwia; Denifl, Stephan; Scheier, Paul; Märk, Tilmann D.

    2005-05-01

    Positive ion formation upon electron impact ionization of the monomeric and dimeric form of glycolaldehyde is studied with high electron energy resolution. In the effusive neutral beam of evaporated monomeric glycolaldehyde some ions with a mass larger than the monomer indicate the presence of weakly bound neutral dimers. The yield of all ions that originate from the electron impact ionization of these neutral dimers exhibit a strong temperature dependence that can be interpreted as being due to the formation of dimers via three body collisions and thermal decomposition of the dimeric form back into monomers at higher temperatures. Ion efficiency curves are measured and analyzed for the 10 most abundant product cations of monomeric glycolaldehyde. The appearance energies of the parent ion signals of the monomer and dimer of glycolaldehyde (10.2 and 9.51 eV, respectively) are lower than the appearance energy of the parent cation of the more complex sugar deoxyribose that was recently determined to be 10.51 eV.

  11. Ionizing radiation and orthopaedic prostheses

    NASA Astrophysics Data System (ADS)

    Rimnac, Clare M.; Kurtz, Steven M.

    2005-07-01

    Ultra high molecular weight polyethylene (UHMWPE) materials have been used successfully as one half of the bearing couple (against metallic alloys or ceramics) in total hip and total knee joint replacements for four decades. This review describes the impact of ionizing radiation (used for sterilization and for microstructural modification via crosslinking) on the performance of UHMWPE total joint replacement components. Gamma radiation sterilization in air leads to oxidative degradation of UHMWPE joint components that occurs during shelf-aging and also during in vivo use. Efforts to mitigate oxidative degradation of UHMWPE joint components include gamma radiation sterilization in inert barrier-packaging and processing treatments to reduce free radicals. Ionizing radiation (both gamma and electron-beam) has recently been used to form highly crosslinked UHMWPEs that have better adhesive and abrasive wear resistance than non-crosslinked UHMWPE, thereby potentially improving the long-term performance of total joint replacements. Along with increased wear resistance, however, there are deleterious changes to ductility and fracture resistance of UHMWPE, and an increased risk of fracture of these components remains a clinical concern.

  12. Tunneling Ionization Time Resolved by Backpropagation

    NASA Astrophysics Data System (ADS)

    Ni, Hongcheng; Saalmann, Ulf; Rost, Jan-Michael

    2016-07-01

    We determine the ionization time in tunneling ionization by an elliptically polarized light pulse relative to its maximum. This is achieved by a full quantum propagation of the electron wave function forward in time, followed by a classical backpropagation to identify tunneling parameters, in particular, the fraction of electrons that has tunneled out. We find that the ionization time is close to zero for single active electrons in helium and in hydrogen if the fraction of tunneled electrons is large. We expect our analysis to be essential to quantify ionization times for correlated electron motion.

  13. Tunneling Ionization Time Resolved by Backpropagation.

    PubMed

    Ni, Hongcheng; Saalmann, Ulf; Rost, Jan-Michael

    2016-07-01

    We determine the ionization time in tunneling ionization by an elliptically polarized light pulse relative to its maximum. This is achieved by a full quantum propagation of the electron wave function forward in time, followed by a classical backpropagation to identify tunneling parameters, in particular, the fraction of electrons that has tunneled out. We find that the ionization time is close to zero for single active electrons in helium and in hydrogen if the fraction of tunneled electrons is large. We expect our analysis to be essential to quantify ionization times for correlated electron motion. PMID:27447504

  14. Two-step single-ionization mechanisms

    SciTech Connect

    Boeyen, R. W. van; Doering, J. P.; Watanabe, N.; Cooper, J. W.; Coplan, M. A.; Moore, J. H.

    2006-03-15

    In a recent publication [Phys. Rev. Lett. 92, 233202 (2004)] two different electron impact double ionization (e,3e) mechanisms were identified and the way in which two-electron momentum distributions for atoms and molecules could be obtained by triple coincidence (e,3e) measurements was discussed. The apparatus used detected the two ejected electrons both in and out of the scattering plane at an angle of 45 deg. to the momentum transfer direction in triple coincidence with the scattered electron. Ejected electrons detected out of the scattering plane were shown to be a result of two-step double ionization processes. With the same apparatus we have made double coincidence (e,2e) measurements of electron impact single ionization cross sections for ionization of magnesium 3s (valence) and 2p and 2s (inner) shell electrons at incident energies from 400 to 3000 eV in order to obtain more information about two-step ionization. The experimental results were compared with distorted-wave and plane-wave Born approximations carried out to second order. For the experimental conditions, two-step ionization processes involving one ionizing collision and a second elastic collision with the atomic core are the dominant contribution to the measured cross sections. Calculations are in moderate agreement with the data. The angular distributions of the ionized electrons in these two-step ionizations reflect the initial momentum distributions of the target electrons, a result that is analogous with the earlier (e,3e) measurements.

  15. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  16. On the ionization potential of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Gardner, J. L.

    1974-01-01

    The ionization potential of O2 was measured by the technique of high resolution photoelectron spectroscopy taking into account the influence of rotational structure on the shape of the vibrational bands. A value of 12.071 + or - .001 eV (1027.1 + or - 0.1 A) was found for the ionization potential. A lowering of the ionization potential caused by a branch-head when delta N = -2 gave an appearance potential for ionization of 12.068 + or - .001 eV (1027.4 + or - 0.1 A).

  17. Development of dielectric-barrier-discharge ionization.

    PubMed

    Guo, Cheng'an; Tang, Fei; Chen, Jin; Wang, Xiaohao; Zhang, Sichun; Zhang, Xinrong

    2015-03-01

    Dielectric-barrier-discharge ionization is an ambient-ionization technique. Since its first description in 2007, it has attracted much attention in such fields as biological analysis, food safety, mass-spectrometry imaging, forensic identification, and reaction monitoring for its advantages, e.g., low energy consumption, solvent-free method, and easy miniaturization. In this review a brief introduction to dielectric barrier discharge is provided, and then a detailed introduction to the dielectric-barrier-discharge-ionization technique is given, including instrumentation, applications, and mechanistic studies. Based on the summary of reported work, possible future uses of this type of ionization source are discussed at the end. PMID:25510973

  18. Tunneling ionization time-resolved by backpropagation

    NASA Astrophysics Data System (ADS)

    Ni, Hongcheng; Saalmann, Ulf; Rost, Jan M.; Max-Planck-Institut für Physik komplexer Systeme Team

    2016-05-01

    We determine the ionization time in tunneling ionization by an elliptically polarized light pulse relative to its maximum. This is achieved by a full quantum propagation of the electron wave function forward in time, followed by a classical backpropagation to identify tunneling parameters, in particular the fraction of electrons that has tunneled out. We find, that the ionization time is close to zero for single active electrons in helium and in hydrogen if the fraction of tunneled electrons is large. We expect our analysis to be essential to quantify ionization times for correlated electron motion. This work was supported by Alexander von Humboldt Foundation.

  19. Multiple ionization of xenon by proton impact

    SciTech Connect

    Manson, S.T.; DuBois, R.D.

    1987-12-01

    An experimental and theoretical study of multiple ionization of xenon for 0.2- to 2.0-MeV proton impact was made. Absolute cross sections for producing xenon ions with charges from +1 to +3 were measured, and calculations of subshell cross sections were performed. Experiment and theory are consistent and indicate that multiple ionization of xenon by fast protons occurs via inner-shell ionization. This is in contrast to the lighter noble gases where direct multiple outer shell ionization can be predominant.

  20. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    SciTech Connect

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  1. Multiphoton ionization of uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Armstrong, D. P.; Harkins, D. A.; Compton, R. N.; Ding, D.

    1994-01-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy (TOFMS) and photoelectron spectroscopy (PES) studies of UF6 are reported using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF+x fragment ions, even at the lowest laser power densities at which signal could be detected. In general, the doubly charged uranium ion (U2+) intensity is much greater than that of the singly charged uranium ion (U+). For the case of the tunable dye laser experiments, the Un+ (n=1-4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The MPI-PES studies reveal only very slow electrons (≤0.5 eV) for all wavelengths investigated. The dominance of the U2+ ion, the absence or very small intensities of UF+x (x=1-3) fragments, the unstructured wavelength dependence, and the preponderance of slow electrons all indicate that mechanisms may exist other than ionization of bare U atoms following the stepwise photodissociation of F atoms from the parent molecule. The data also argue against stepwise photodissociation of UF+x (x=5,6) ions. Neither of the traditional MPI mechanisms (``neutral ladder'' or the ``ionic ladder'') are believed to adequately describe the ionization phenomena observed. We propose that the multiphoton excitation of UF6 under these experimental conditions results in a highly excited molecule, superexcited UF6**. The excitation of highly excited UF6** is proposed to be facilitated by the well known ``giant resonance,'' whose energy level lies in the range of 12-14 eV above that of ground state UF6. The highly excited molecule then primarily dissociates, via multiple channels, into Un+, UF+x, fluorine atoms, and ``slow'' electrons, although dissociation

  2. IONIZED NITROGEN AT HIGH REDSHIFT

    SciTech Connect

    Decarli, R.; Walter, F.; Neri, R.; Cox, P.; Bertoldi, F.; Carilli, C.; Kneib, J. P.; Lestrade, J. F.; Maiolino, R.; Omont, A.; Richard, J.; Riechers, D.; Thanjavur, K.; Weiss, A.

    2012-06-10

    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  3. Ionization in nearby interstellar gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.

    1990-01-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  4. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, Jr., Robert F.

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  5. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, R.F. Jr.

    1994-12-13

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

  6. Device for detecting ionizing radiation

    SciTech Connect

    Anatychuk, L.I.; Kharitonov, J.P.; Kusniruk, V.F.; Meir, V.A.; Melnik, A.P.; Ponomarev, V.S.; Skakodub, V.A.; Sokolov, A.D.; Subbotin, V.G.; Zhukovsky, A.N.

    1980-10-28

    The present invention relates to ionizing radiation sensors, and , more particularly, to semiconductor spectrometers with thermoelectric cooling, and can most advantageously be used in mineral raw material exploration and evaluation under field conditions. The spectrometer comprises a vacuum chamber with an entrance window for passing the radiation therethrough. The vacuum chamber accommodates a thermoelectric cooler formed by a set of peltier elements. A heat conducting plate is mounted on the cold side of the thermoelectric cooler, and its hot side is provided with a radiator. Mounted on the heat conducting plate are sets of peltier elements, integral with the thermoelectric cooler and independent of one another. The peltier elements of these sets are stacked so as to develop the minimum temperature conditions on one set carrying a semiconductor detector and to provide the maximum refrigeration capacity conditions on the other set provided with the field-effect transistor mounted thereon.

  7. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  8. Weakly ionized cerium plasma radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Koorikawa, Yoshitake; Murakami, Kazunori; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Obata, Fumiko; Takahashi, Kiyomi; Sato, Sigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-02-01

    In the plasma flash x-ray generator, high-voltage main condenser of about 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod cerium target of 3.0 mm in diameter by electric field in the x-ray tube, the weakly ionized linear plasma, which consists of cerium ions and electrons, forms by target evaporating. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, weakly ionized cerium plasma formed, and the K-series characteristic x-ray intensities increased. The x-ray pulse widths were about 500 ns, and the time-integrated x-ray intensity had a value of about 40 μC/kg at 1.0 m from x-ray source with a charging voltage of 55 kV. In the angiography, we employed a film-less computed radiography (CR) system and iodine-based microspheres. Because K-series characteristic x-rays are absorbed easily by the microspheres, high-contrast angiography has been performed.

  9. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection Against Radiation (10 CFR part 20), relating to protection against occupational radiation exposure... 29 Labor 8 2011-07-01 2011-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources...

  10. Ultrafast ionization and fragmentation of molecular silane

    SciTech Connect

    Sayres, Scott G.; Ross, Matt W.; Castleman, A. W. Jr.

    2010-09-15

    The ionization and fragmentation of molecular silane is examined here with laser intensities ranging between 7x10{sup 12} and 1x10{sup 15} W/cm{sup 2} at 624 nm. The ionization potential of silane determined using both multiphoton ionization (MPI) and tunneling ionization (TI) models agrees with the vertical ionization potential of the molecule. In addition, the application of the tunneling ionization model is extended here to the fragments of silane to determine their appearance potentials. MPI values for SiH{sub 3}{sup +}, SiH{sub 2}{sup +}, SiH{sup +}, Si{sup +}, as well as H{sub 2}{sup +} and H{sup +} are consistent with vertical potentials, whereas the TI measurements are found to be in accord with adiabatic potentials. The tunneling appearance potentials observed for the fragments H{sub 2}{sup +} and H{sup +} are lower than reported for other techniques. In fact, the appearance potential measurements for these species resulting from silane are lower than their ionization potentials. The fragmentation rate of silane is determined to be nearly 20 times larger than the ionization rate. The main precursor for producing amorphous silicon (a-Si:H) thin films, SiH{sub 3}{sup +} is the dominant fragmentation product making up roughly a third of the total ion yield, a substantial increase from other techniques.

  11. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection Against Radiation (10 CFR part 20), relating to protection against occupational radiation exposure... 29 Labor 8 2012-07-01 2012-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources...

  12. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents. PMID:19241065

  13. 29 CFR 1910.1096 - Ionizing radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Ionizing radiation. 1910.1096 Section 1910.1096 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1096 Ionizing radiation. (a)...

  14. MICE: The International Muon Ionization Cooling Experiment

    SciTech Connect

    Kaplan, Daniel M.

    2006-03-20

    Ionization cooling of a muon beam is a key technique for a Neutrino Factory or Muon Collider. An international collaboration is mounting an experiment to demonstrate muon ionization cooling at the Rutherford Appleton Laboratory. We aim to complete the experiment by 2010.

  15. Ionization Scheme Development at the ISOLDE RILIS

    NASA Astrophysics Data System (ADS)

    Fedosseev, V. N.; Marsh, B. A.; Fedorov, D. V.; Köster, U.; Tengborn, E.

    2005-04-01

    The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser step-wise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS complements the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapour lasers, ion beams of 24 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5-15%. As part of the ongoing RILIS development off-line resonance ionization spectroscopy studies carried out in 2003 and 2004 have determined the optimal three-step ionization schemes for scandium, antimony, dysprosium and yttrium.

  16. Inner-orbital ionization of iodine

    NASA Astrophysics Data System (ADS)

    Gibson, George; Smith, Dale; Tagliamonti, Vincent; Dragan, James

    2016-05-01

    Many coincidence techniques exist to study multiple ionization of molecules by strong laser fields. However, the first ionization step is critical in many experiments, although it is more difficult to obtain information about this initial step. We studied the single electron ionization of I2, as it presents interesting opportunities in that it is heavy and does not expand significantly during the laser pulse. Moreover, there are several distinct low-lying valence orbitals from which the electron may be removed. Most importantly, the kinetic energy release of the I+ + I dissociation channel can be measured and should correspond to well-known valence levels and separated atom limits. As it turns out, we must invoke deep valence orbits, built from the 5s electrons, to explain our data. Ionization from deep orbitals may be possible, as they have a smaller critical internuclear separation for enhanced ionization. We would like to acknowledge support from the NSF under Grant No. PHY-1306845.

  17. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  18. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison

    NASA Astrophysics Data System (ADS)

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-02-01

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters.

  19. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison.

    PubMed

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-02-28

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters. PMID:26931697

  20. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  1. Establishing Atmospheric Pressure Chemical Ionization Efficiency Scale.

    PubMed

    Rebane, Riin; Kruve, Anneli; Liigand, Piia; Liigand, Jaanus; Herodes, Koit; Leito, Ivo

    2016-04-01

    Recent evidence has shown that the atmospheric pressure chemical ionization (APCI) mechanism can be more complex than generally assumed. In order to better understand the processes in the APCI source, for the first time, an ionization efficiency scale for an APCI source has been created. The scale spans over 5 logIE (were IE is ionization efficiency) units and includes 40 compounds with a wide range of chemical and physical properties. The results of the experiments show that for most of the compounds the ionization efficiency order in the APCI source is surprisingly similar to that in the ESI source. Most of the compounds that are best ionized in the APCI source are not small volatile molecules. Large tetraalkylammonium cations are a prominent example. At the same time, low-polarity hydrocarbons pyrene and anthracene are ionized in the APCI source but not in the ESI source. These results strongly imply that in APCI several ionization mechanisms operate in parallel and a mechanism not relying on evaporation of neutral molecules from droplets has significantly higher influence than commonly assumed. PMID:26943482

  2. Scaled Strong Field Interactions at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Sistrunk, Emily Frances

    The strong field regime describes interactions between light and matter where the electric field of the laser is a significant fraction of the binding field of the atom. Short pulsed lasers are capable of producing local fields on the order of the atomic unit of electric field. Under the influence of such strong fields, the ionization regime and electron dynamics are highly dependent on the wavelength used to drive the interaction. Few studies have been performed in the mid-infrared (MIR) spectral range. Using MIR wavelengths, the ponderomotive energy, Up, imposed on the electrons can be a factor of 20 greater than in the visible and near-infrared. Experiments on above threshold ionization (ATI) of cesium, nonsequential ionization (NSI) of noble gases, and high harmonic generation (HHG) in condensed phase media highlight the benefits of performing strong field investigations in the MIR. The photoelectron energy spectrum from above threshold ionization (ATI) of atoms provides details about the strong field interaction. Cesium atoms driven by a 3.6 mum laser indicate that excited states can play a large role in ionization from the ground state. Previous experiments on argon in the near-infrared can be compared to cesium at 3.6 im due to their similar Keldysh-scaling. Unlike argon, the measured ionization yield in cesium saturates at a higher intensity than predicted due to the Stark shift of the ground state. Such shifts have not been detected in argon. The low-lying 6P excited states of cesium produce a strong effect on the photoelectron energy spectrum, resulting in a splitting of each ATI peak. Enhancements in the photoelectron energy spectrum similar to those found in argon are observed in cesium. These enhancements are relatively insensitive to ellipticity of the drive laser. To take advantage of the large ponderomotive energy associated with Mid-IR lasers, ionization of argon, krypton and xenon is studied at 3.6 im. The factor of 20 increase in Up between the

  3. Helium Ionization in the Diffuse Ionized Gas surrounding Ultra-compact HII regions

    NASA Astrophysics Data System (ADS)

    Anish Roshi, D.; Churchwell, Edward B.

    2016-01-01

    We observed radio recombination lines (RRLs) from regions surrounding three Ultra-compact HII (UCHII) regions at frequencies near 5 GHz. The observations were made with the Green Bank Telescope (GBT). From existing observations we know that helium in the diffuse ionized gas (DIR), located far from the ionizing source, is not fully ionized. The objectives of our observations are to determine (a) the distance from the ionizing stars where helium is under ionized for a variety of physical conditions and (b) whether the helium ionization depends on the age of the ionizing star. With these objectives, we observed RRLs towards 16 positions in the envelops of UCHII regions G10.15-0.34, G23.46-0.20 and G29.96-0.02. Helium lines were detected toward 10 of the observed positions and hydrogen RRLs were detected toward all the observed positions. The observed ratio of ionized helium to ionized hydrogen (He^+/H^+) at the positions where helium lines are detected range between 0.03 and 0.09. At positions where helium lines are not detected the upper limit on the ratio is ~ 0.05. We discuss the dependence of He^+/H^+ ratio on the distance from and age of the ionizing star clusters in the observed sources.

  4. Non-equilibrium ionized blast wave

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1974-01-01

    The structure of a cylindrical blast wave with ionization at non-LTE conditions was calculated using equations previously developed by Wu and Fu (1970). The degree of ionization was predicted by a modified Saha equation. Temperature profiles show that the temperature at non-LTE conditions is lower than at LTE near the shock front. This corresponds to a higher degree of ionization for the non-LTE limit, which indicates that the neutral gas absorption is much more efficient at non-LTE than at the LTE limit. The decaying velocity under non-LTE is approximately 15% less than under LTE.

  5. Thermochromic behaviors and ionization potentials of organopolysilanes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kenji; Yokoyama, Masaaki

    1989-04-01

    Ionization potentials of organopolysilanes with different kinds of substituents were evaluated from the low energy photo-electron emission measurements in air. An aryl-substituted organopolysilane capable of σ - π mixing between Si backbone σ and side-group π electrons gave smaller ionization potential by about 0.1˜0.15 eV compared with alkyl-substituted organopolysilanes. The value of ionization potentials in some alkyl-substituted organopolysilanes which showed thermochromic behaviors was found to vary substantially with thermally induced reversible changes in polymer backbone conformation, indicating that the effective conjugation length of σ electrons decreases above the thermochromic transition temperature.

  6. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  7. Ionizing photon budget: constraints from galaxies

    NASA Astrophysics Data System (ADS)

    Östlin, Göran

    2015-08-01

    I will discuss the the production and propagation of ionizing photons in galaxies. Multi wavelength HST imaging and spectroscopy of local starbursts, including candidate Lyman continuum leakers, from the UV to the i-band plus Halpha and Hbeta are used to investigate where ionizing protons are produced and absorbed. We add IFU data, e.g. from MUSE, to further constrain the optical depth to Lyman continuum photons. I will further discuss rest frame UV observations of galaxies at higher redshifts, and their implications for the ionizing photon budget.

  8. Re-ionization and decaying dark matter

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1991-01-01

    Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.

  9. Epicyclic Twin-Helix Ionization Cooling Simulations

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev, A. Afanaciev, R.P. Johnson

    2011-04-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.

  10. Two-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    van der Hart, Hugo W.; Feng, Liang; McKenna, Claire

    2003-12-01

    The combination of B-spline basis sets with R-matrix theory has provided a powerful tool for the description of double ionization processes. We demonstrate this first by investigating electron-impact ionization of Li2+. By applying the Floquet Ansatz, the same techniques can be employed to describe multiphoton double ionization processes through the R-matrix Floquet approach. Results for two-photon double ionization of He confirm the lower values of time-dependent close-coupling calculations compared to perturbation theory. The approach can be extended to quasi-two-electron systems through the use of model potentials. This is demonstrated by calculating photoionization cross sections near threshold for the m = 0 level of the 4s4p 1Po state of calcium.

  11. Lucky drift impact ionization in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Kasap, Safa; Rowlands, J. A.; Baranovskii, S. D.; Tanioka, Kenkichi

    2004-08-01

    The review of avalanche multiplication experiments clearly confirms the existence of the impact ionization effect in this class of semiconductors. The semilogarithmic plot of the impact ionization coefficient (α) versus the reciprocal field (1/F) for holes in a-Se and electrons in a-Se and a-Si :H places the avalanche multiplication phenomena in amorphous semiconductors at much higher fields than those typically reported for crystalline semiconductors with comparable bandgaps. Furthermore, in contrast to well established concepts for crystalline semiconductors, the impact ionization coefficient in a-Se increases with increasing temperature. The McKenzie and Burt [S. McKenzie and M. G. Burt, J. Phys. C 19, 1959 (1986)] version of Ridley's lucky drift (LD) model [B. K. Ridley, J. Phys. C 16, 3373 (1988)] has been applied to impact ionization coefficient versus field data for holes and electrons in a-Se and electrons in a-Si :H. We have extracted the electron impact ionization coefficient versus field (αe vs F) data for a-Si :H from the multiplication versus F and photocurrent versus F data recently reported by M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys.41, 2552 (2002). Provided that one accepts the basic assumption of the Ridley LD model that the momentum relaxation rate is faster than the energy relaxation rate, the model can satisfactorily account for impact ionization in amorphous semiconductors even with ionizing excitation across the bandgap, EI=Eg. If λ is the mean free path associated with momentum relaxing collisions and λE is the energy relaxation length associated with energy relaxing collisions, than the LD model requires λE>λ. The application of the LD model with energy and field independent λE to a-Se leads to ionization threshold energies EI that are quite small, less than Eg/2, and requires the possible but improbable ionization of localized states. By making λE=λE(E ,F) energy and field dependent, we were

  12. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  13. The galactic cosmic ray ionization rate

    PubMed Central

    Dalgarno, A.

    2006-01-01

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H3+ in diffuse clouds and the recognition that dissociative recombination of H3+ is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium. PMID:16894166

  14. Field ionizing elements and applications thereof

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2003-01-01

    A field ionizing element formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. The membrane includes a supporting portion, and a non supporting portion where the ions are formed. The membrane may be used as the front end for a number of different applications including a mass spectrometer, a thruster, an ion mobility element, or an electrochemical device such as a fuel cell.

  15. Fundamental studies of molecular multiphoton ionization

    SciTech Connect

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures.

  16. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  17. New plasma source based on contact ionization

    SciTech Connect

    Schrittwieser, R.; Koslover, R.; Karim, R.; Rynn, N.

    1985-07-01

    A new type of plasma source is presented: A collisionless plasma is formed by producing ions on one end and electrons on the other of a cylindrical vacuum chamber in a solenoidal magnetic field. The ions are produced by contact ionization of potassium on tungsten. The source of electrons is a LaB/sub 6/ plate. In the usual single-ended Q machine the elements rhenium, iridium, and platinum are tested as ionizing metals for potassium and barium.

  18. Two-photon ionization thresholds of matrix-assisted laser desorption/ionization matrix clusters.

    PubMed

    Lin, Q; Knochenmuss, R

    2001-01-01

    Direct two-photon ionization of the matrix has been considered a likely primary ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. This mechanism requires that the vertical ionization threshold of matrix materials be below twice the laser photon energy. Because dimers and larger aggregates may be numerous in the early stages of the MALDI plume expansion, their ionization thresholds are important as well. We have used two-color two-photon ionization to determine the ionization thresholds of jet cooled clusters of an important matrix, 2,5-dihydroxy benzoic acid (DHB), and mixed clusters with the thermal decomposition product of DHB, hydroquinone. The thresholds of the clusters were reduced by only a few tenths of an eV compared to the monomers, to an apparent limit of 7.82 eV for pure DHB clusters. None of the investigated clusters can be directly ionized by two nitrogen laser photons (7.36 eV), and the ionization efficiency at the thresholds is low. PMID:11507754

  19. New standards for ionizing radiation measurements

    SciTech Connect

    Lamperti, P.J.; Johnson, C.M.

    1995-12-31

    The Ionizing Radiation Division has developed new national standards for mammographic X rays and for brachytherapy sources, such as iodine-125. The Attix chamber, a variable volume free-air ionization chamber, has been established as the primary national standard for mammographic X rays. The Attix chamber resides in the newly developed NIST Mammography Calibration Range and will be used to perform routine calibrations. The wide-angle free-air ionization chamber utilizes a large volume and a novel electric field configuration in order to circumvent the limitations of conventional free-air chambers. Seventeen beam qualities for X rays from molybdenum (Mo) and rhodium (Rh) anodes have been parameterized for the calibration of mammographic ionization chambers. The beam qualities available include anode/filter combinations of Mo/Mo, Mo/Rh and Rh/Rh. The mammography range was developed in collaborations with the U.S. Food and Drug Administration`s (FDA) Center for Devices and Radiological Health, the implementors of the Mammography Quality Standards Act (MQSA) of 1992. The wide-angle free-air ionization chamber has been used to measure the output of two types of iodine-125 seeds, those with resin balls and those with silver wire. Both free-air chambers have been intercompared with the Ritz parallel-plate free-air ionization chamber.

  20. Excitation in the ionized diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Sivan, J.-P.; Stasińska, G.; Lequeux, J.

    1986-04-01

    Large-scale spectra have been obtained in the diffuse, ionized background of the Sagittarius-Carina arm and in the large complex of loops and filaments located in Orion and Eridanus. The intensity ratios of the emission lines of O III forbidden line, H-beta, H-alpha, N II forbidden line and S II forbidden line have been derived from these spectra, and are analyzed using models of H II regions in ionization equilibrium at very low densities, down to 0.01/cu cm. The confrontation of the observed ratios with the predictions of the models, which have been calibrated against observations of classical H II regions, shows that the S II forbidden line (6717 + 6731)/H-alpha ratio is too large to arise in a gas submitted only to a stellar flux with which it comes into ionization equilibrium, whatever the dilution of the matter. Contribution of shock excitation seems a natural explanation, as shocks are likely to occur considering the chaotic morphology of the studied regions. Some alternative explanations are also suggested. However, this medium is principally ionized by radiation, and it is shown that the forbidden line O III/H-beta ratios are well accounted for by the known population of O stars within the expected uncertainties, while ionization by white dwarfs or by B stars suggested by previous authors are excluded. The mean effective temperature for ionizing stars (less than 35,000 K) is lower than that of stars exciting classical H II regions.

  1. The ionization energy of C2.

    PubMed

    Krechkivska, O; Bacskay, G B; Welsh, B A; Nauta, K; Kable, S H; Stanton, J F; Schmidt, T W

    2016-04-14

    Resonant two-photon threshold ionization spectroscopy is employed to determine the ionization energy of C2 to 5 meV precision, about two orders of magnitude more precise than the previously accepted value. Through exploration of the ionization threshold after pumping the 0-3 band of the newly discovered 4(3)Πg←a(3)Πu band system of C2, the ionization energy of the lowest rovibronic level of the a(3)Πu state was determined to be 11.791(5) eV. Accounting for spin-orbit and rotational effects, we calculate that the ionization energy of the forbidden origin of the a(3)Πu state is 11.790(5) eV, in excellent agreement with quantum thermochemical calculations which give 11.788(10) eV. The experimentally derived ionization energy of X(1)Σg (+) state C2 is 11.866(5) eV. PMID:27083719

  2. The ionization energy of C2

    NASA Astrophysics Data System (ADS)

    Krechkivska, O.; Bacskay, G. B.; Welsh, B. A.; Nauta, K.; Kable, S. H.; Stanton, J. F.; Schmidt, T. W.

    2016-04-01

    Resonant two-photon threshold ionization spectroscopy is employed to determine the ionization energy of C2 to 5 meV precision, about two orders of magnitude more precise than the previously accepted value. Through exploration of the ionization threshold after pumping the 0-3 band of the newly discovered 43Πg←a3Πu band system of C2, the ionization energy of the lowest rovibronic level of the a3Πu state was determined to be 11.791(5) eV. Accounting for spin-orbit and rotational effects, we calculate that the ionization energy of the forbidden origin of the a3Πu state is 11.790(5) eV, in excellent agreement with quantum thermochemical calculations which give 11.788(10) eV. The experimentally derived ionization energy of X1Σg+ state C2 is 11.866(5) eV.

  3. Multiple ionization of argon by helium ions

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Miraglia, J. E.

    2016-09-01

    We apply the continuum distorted-wave eikonal initial state and the independent electron model to describe the multiple ionization of Ar by He2+ and He+ in the energy range 0.1–10 Mev amu–1. Auger-like post collisional processes are included, which enhance the high energy multiple ionization cross sections via ionization of the inner shells. All Ar electrons (K, L and M-shells) have been included in these calculations. The results agree well with the experimental data at high energies, where the post-collisional ionization is the main contribution. At intermediate impact energies the description is also good though it tends to overestimate the triple and quadruple ionization data at intermediate energies. We analyze this by comparing the present results for He+2 in Ar, with previous ones for He+2 in Ne and Kr. It was found that the theoretical description improves from Ne to Ar and Kr, with the latter being nicely described even at intermediate energies. The present formalism is also tested for Ar inner shell and total ionization cross sections. In all the cases the results above 0.1 MeV amu–1 are quite reasonable, as compared with the experimental data available and with the ECPSSR values.

  4. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    SciTech Connect

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-10-10

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10{sup –7}) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10{sup –6}-1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H{sub 2}, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks.

  5. Ionization in Atmospheres of Brown Dwarfs and Extrasolar Planets. V. Alfvén Ionization

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Helling, Ch.; Diver, D. A.; Rimmer, P. B.

    2013-10-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (>=10-7) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10-6-1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H2, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks.

  6. Ionization of cluster atoms in a strong laser field

    SciTech Connect

    Smirnov, M.B.; Krainov, V.P.

    2004-04-01

    Inner and outer multiple ionization of clusters by a superintense ultrashort laser pulse is studied. The barrier-suppression mechanism governs inner field ionization in this case, while impact ionization can be neglected. Outer ionization produces a static Coulomb field inside the ionized cluster. This field increases the charge multiplicity of the atomic ions produced inside the cluster approximately by a factor of 1.5. Various models are suggested for the charge distribution inside the cluster.

  7. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  8. Ionization Time and Exit Momentum in Strong-Field Tunnel Ionization.

    PubMed

    Teeny, Nicolas; Yakaboylu, Enderalp; Bauke, Heiko; Keitel, Christoph H

    2016-02-12

    Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at the electric field maximum and classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schrödinger equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron's initial momentum in the direction of the external electric field. PMID:26918986

  9. Distinction between sequential and direct ionization in two-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Selstø, Sølve; Raynaud, Xavier; Simonsen, Aleksander Skjerlie; Førre, Morten

    2014-11-01

    This paper aims to shed some light on the role of the direct, or nonsequential, ionization channel in the regime in which the sequential channel is open in two-photon double ionization (TPDI) of helium. In this regime the sequential channel dominates any direct contribution unless the laser pulse is of very short duration, in which case their distinction is hard to draw. Based on both a simple model and full solutions of the time-dependent Schrödinger equation, we aim to provide evidence of direct double ionization by identifying a term proportional to the pulse duration in the double ionization yield. Indeed, such a term is identified in the energy-differential yield. When it comes to the total double ionization probability, however, it turns out that the net first-order contribution is negative. The nature of the negative first-order contribution is discussed, and we argue that it is of correlated origin.

  10. Ionization Time and Exit Momentum in Strong-Field Tunnel Ionization

    NASA Astrophysics Data System (ADS)

    Teeny, Nicolas; Yakaboylu, Enderalp; Bauke, Heiko; Keitel, Christoph H.

    2016-02-01

    Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at the electric field maximum and classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schrödinger equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron's initial momentum in the direction of the external electric field.

  11. Conceptual basis of resonance ionization spectroscopy

    SciTech Connect

    Payne, M.G.

    1984-04-01

    Resonance Ionization Spectroscopy (RIS) can b defined as a state-selective detection process in which tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species. Counting of individual atoms has special meaning for detection of rare events. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. We view RIS as a specific type of multi-photon ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. 16 references.

  12. The primordial abundance of deuterium: ionization correction

    NASA Astrophysics Data System (ADS)

    Cooke, Ryan; Pettini, Max

    2016-01-01

    We determine the relative ionization of deuterium and hydrogen in low metallicity damped Lyman α (DLA) and sub-DLA systems using a detailed suite of photoionization simulations. We model metal-poor DLAs as clouds of gas in pressure equilibrium with a host dark matter halo, exposed to the Haardt & Madau background radiation of galaxies and quasars at redshift z ≃ 3. Our results indicate that the deuterium ionization correction correlates with the H I column density and the ratio of successive ion stages of the most commonly observed metals. The N(N II)/N(N I) column density ratio provides the most reliable correction factor, being essentially independent of the gas geometry, H I column density, and the radiation field. We provide a series of convenient fitting formulae to calculate the deuterium ionization correction based on observable quantities. The ionization correction typically does not exceed 0.1 per cent for metal-poor DLAs, which is comfortably below the current measurement precision (2 per cent). However, the deuterium ionization correction may need to be applied when a larger sample of D/H measurements becomes available.

  13. Low latitude middle atmosphere ionization studies

    NASA Technical Reports Server (NTRS)

    Bassi, J. P.

    1976-01-01

    Low latitude middle atmosphere ionization was studied with data obtained from three blunt conductivity probes and one Gerdien condenser. An investigation was conducted into the effects of various ionization sources in the 40 to 65 Km altitude range. An observed enhancement of positive ion conductivity taking place during the night can be explained by an atmsopheric effect, with cosmic rays being the only source of ionization only if the ion-ion recombination coefficient (alpha sub i) is small(10 to the -7 power cu cm/s) and varies greatly with altitude. More generally accepted values of alpha sub i ( approximately equal to 3x10 to the -7 power cu cm/s) require an additional source of ionization peaking at about 65 Km, and corresponding approximately to the integrated effect of an X-ray flux measured on a rocket flown in conjunction with the ionization measurements. The reasonable assumption of an alpha sub i which does not vary with altitude in the 50-70 Km range implies an even greater value alpha sub i and a more intense and harder X-ray spectrum.

  14. Generating Electrospray Ionization on Ballpoint Tips.

    PubMed

    Ji, Baocheng; Xia, Bing; Gao, Yuanji; Ma, Fengwei; Ding, Lisheng; Zhou, Yan

    2016-05-17

    In this study, we report a simple and economical ballpoint electrospray ionization mass spectrometry (BP-ESI-MS) technique. This combines a small ballpoint tip with a syringe pump for the direct loading and ionization of various samples in different phases (including solution, semisolid, and solid) and allows for additional applications in surface analysis. The tiny metal ball on the ballpoint tip exhibits a larger surface for ionization than that of a conventional sharp tip end, resulting in higher ionization efficiency and less sample consumption. The adamant properties of the ballpoint tip allow sampling by simply penetrating or scraping various surfaces, such as a fruit peel, paper, or fabric. Complex samples, such as fine herbal powders and small solid samples, could be stored in the hollow space in the ballpoint socket and subsequently extracted online, which greatly facilitated MS analysis with little to no sample preparation. Positive ion mode was attempted, and various compounds, including amino acids, carbohydrates, flavonoids, and alkaloids, were detected from different types of samples. The results demonstrated that the special and excellent physical characteristics of ballpoint tips allowed for fast and convenient sampling and ionization for mass spectrometry analysis by the BP-ESI-MS method. PMID:27111601

  15. Interferometric measurement of ionization in a grassfire

    NASA Astrophysics Data System (ADS)

    Mphale, Kgakgamatso Marvel; Heron, M.; Ketlhwaafetse, R.; Letsholathebe, D.; Casey, R.

    2010-03-01

    Grassfire plumes are weakly ionized gas. The ionization in the fire plume is due to thermal and chemi-ionization of incumbent species, which may include graphitic carbon, alkalis and thermally excited radicals, e.g., methyl. The presence of alkalis (e.g., potassium and sodium) in the fires makes thermal ionization a predominant electron producing mechanism in the combustion zone. Alkalis have low dissociation and ionization potentials and therefore require little energy to thermally decompose and give electrons. Assuming a Maxwellian velocity distribution of flame particles and electron-neutral collision frequency much higher than plasma frequency, the propagation of radio waves through a grassfire is predicted to have attenuation and phase shift. Radio wave propagation measurements were performed in a moderate intensity (554 kW m-1) controlled grassfire at 30- and 151-MHz frequencies on a 44 m path using a radio wave interferometer. The maximum temperature measured in the controlled burn was 1071 K and the observed fire depth was 0.9 m. The radio wave interferometer measured attenuation coefficients of 0.033 and 0.054 dB m-1 for 30- and 151-MHz, respectively. At collision frequency of 1.0 × 1011 s-1, maximum electron density was determined to be 5.061 × 1015 m-3.

  16. Multiphoton ionization of large water clusters

    SciTech Connect

    Apicella, B.; Li, X.; Passaro, M.; Spinelli, N.; Wang, X.

    2014-05-28

    Water clusters are multimers of water molecules held together by hydrogen bonds. In the present work, multiphoton ionization in the UV range coupled with time of flight mass spectrometry has been applied to water clusters with up to 160 molecules in order to obtain information on the electronic states of clusters of different sizes up to dimensions that can approximate the bulk phase. The dependence of ion intensities of water clusters and their metastable fragments produced by laser ionization at 355 nm on laser power density indicates a (3+1)-photon resonance-enhanced multiphoton ionization process. It also explains the large increase of ionization efficiency at 355 nm compared to that at 266 nm. Indeed, it was found, by applying both nanosecond and picosecond laser ionization with the two different UV wavelengths, that no water cluster sequences after n = 9 could be observed at 266 nm, whereas water clusters up to m/z 2000 Th in reflectron mode and m/z 3000 Th in linear mode were detected at 355 nm. The agreement between our findings on clusters of water, especially true in the range with n > 10, and reported data for liquid water supports the hypothesis that clusters above a critical dimension can approximate the liquid phase. It should thus be possible to study clusters just above 10 water molecules, for getting information on the bulk phase structure.

  17. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  18. Ionized interstellar froth in irregular galaxies

    NASA Technical Reports Server (NTRS)

    Hunter, Deidre A.; Gallagher, John S., III

    1990-01-01

    The warm interstellar medium of galaxies is a complicated place. It is often full of holes, neutral and ionized loops and shells, and diffuse ionized gas. Deep H alpha images of Magellanic-type irregular galaxies also reveal complex spatial structures consisting of loops and filaments in the interstellar gas outside of the boundaries of traditional HII regions. Researchers refer to these ionized structures as froth. Such structures could mark paths over which newly produced heavy elements are dispersed in irregular galaxies, and they could be the signatures of a feedback process related to star formation. In order to investigate the physical nature of the froth, researchers obtained narrow-band images and high and low dispersion spectra from Kitt Peak National Observatory (KPNO) and deep blue-passband plates from the Canada-France-Hawaii Observatory (CFHO).

  19. Theoretical determinations of ionization potentials of dopamine

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Yu, Z. Y.

    2013-04-01

    Adiabatic and vertical ionization potentials (IPs) of nine conformers of dopamine in the gas phase are determined using density functional theory (DFT) B3LYP, B3P86, B3PW91 methods and high level ab initio HF method with 6-311++G** basis set, respectively. And the nine stable cationic states have been found in the ionization process of dopamine. Vertical ionization potentials of nine conformers of dopamine are calculated using the older outer-valence Green's function (OVGF) calculations at 6-311++G** basis set. Vibrational frequencies and infrared spectrum intensities of G1b and G1b+ at B3LYP/6-311++G** level are discussed.

  20. Capillary electrophoresis electrospray ionization mass spectrometry interface

    SciTech Connect

    Smith, R.D.; Severs, J.C.

    1999-11-30

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an analyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  1. Dielectric Barrier Discharge Ionization of Perfluorinated Compounds.

    PubMed

    Schütz, Alexander; Brandt, Sebastian; Liedtke, Sascha; Foest, Daniel; Marggraf, Ulrich; Franzke, Joachim

    2015-11-17

    The soft ionization ability based on plasma-jet protonation of molecules initiated by a dielectric barrier discharge ionization source (DBDI) is certainly an interesting application for analytical chemistry. Since the change of an applied sinusoidal voltage may lead to different discharge modes the applied discharge was powered by a square wave generator in order to get a homogeneous plasma. It is known that besides the protonation [M+H](+) of unpolar as well as some polar molecules the homogeneous DBDI can be used to ionize molecules directly [M](+). Here we prove that the DBDI can be applied to exchange fluorine by oxygen of perfluorinated compounds (PFC). PFC are organofluorine compounds with carbon-fluorine and carbon-carbon bonds only but no carbon-hydrogen bonds. While the position of the introduction into the plasma-jet is essential, PFC can be measured in the negative mass spectrometer (MS) mode. PMID:26496892

  2. Theoretical IR spectra of ionized naphthalene

    NASA Technical Reports Server (NTRS)

    Pauzat, F.; Talbi, D.; Miller, M. D.; DeFrees, D. J.; Ellinger, Y.

    1992-01-01

    We report the results of a theoretical study of the effect of ionization on the IR spectrum of naphthalene, using ab initio molecular orbital theory. For that purpose we determined the structures, band frequencies, and intensities of neutral and positively ionized naphthalene. The calculated frequencies and intensities allowed an assignment of the most important bands appearing in the newly reported experimental spectrum of the positive ion. Agreement with the experimental spectrum is satisfactory enough to take into consideration the unexpected and important result that ionization significantly affects the intensities of most vibrations. A possible consequence on the interpretation of the IR interstellar emission, generally supposed to originate from polycyclic aromatic hydrocarbons (PAHs), is briefly presented.

  3. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  4. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  5. Nuclear Fission Investigation with Twin Ionization Chamber

    SciTech Connect

    Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.

    2011-11-29

    The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.

  6. Ionization transition in low-density plasma

    SciTech Connect

    Triger, S. A.; Khomkin, A. L.; Shumikhin, A. S.

    2011-09-15

    Ionization equilibrium in low-density low-temperature plasma is considered. It is demonstrated using hydrogen and cesium as examples that the Saha equation predicts an almost jump-like change in the electron density on isochors in a narrow temperature range. Thus, in contrast to a smooth rise in the degree of ionization with increasing temperature at high plasma densities, an increase in the temperature in low-density plasma should result in a sharp transition from a neutral state to a fully ionized plasma. This transition is accompanied by a jump-like increase in the electric conductivity. The relation of these effects to the recombination transition in the model of the early Universe is discussed. The possibility of observing such a transition experimentally and the problems concerning the time of plasma relaxation into an equilibrium state at long free path lengths of plasma particles are considered.

  7. Fragmentation pathways of ethylene after core ionization

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Bocharova, I.; Sturm, F. P.; Gehrken, N.; Haxton, D. J.; Belkacem, A.; Weber, Th.; Zohrabi, M.; Ben-Itzhak, I.; Gatton, A.; Williams, J.; Reedy, D.; Nook, C.; Landers, A.; Gassert, H.; Zeller, S.; Voigtsberger, J.; Jahnke, T.; Doerner, R.

    2014-05-01

    We have measured the Auger electrons in coincidence with the recoil ions, resulting from the core ionization of ethylene molecules, by employing the COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS) method. The Auger-electron and recoil-ion energy maps are used to identify the fragmentation pathways and they are compared to the valence photo-double-ionization of ethylene. The dicationic electronic states favored by the propensity rules are identified and their role on the fragmentation pathways is discussed. The molecular-frame Auger electron angular distribution provides further insight into the breakup of this molecule after core ionization. Supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231.

  8. Massive cluster impact ionization of saccharides

    SciTech Connect

    Dookeran, N.N.; Todd, P.J.

    1995-12-31

    The authors studied the utility of ionizing saccharides by massive cluster impact (MCI), a form of secondary ionization wherein the primary ions are high molecular weight clusters. For a number of compounds and classes, MCI yields copious secondary ions without prior derivitization or the need to find a suitable matrix. In fact, MCI can be used for in situ ionization of some analytes directly from biologic tissue. For the simple sugars and disaccharides that were studied, the authors found that persistent ( e.g. > 2 h) positive and negative secondary ion emission could almost always be detected from pure samples. The authors characterized the secondary anions from a variety of saccharides by tandem mass spectrometry (MS/MS), and found the behavior of the MS/MS spectra to be consistent, sensible, diagnostic and invariant with the dose suffered by the sample.

  9. Ionized cluster beam technology for material science

    NASA Astrophysics Data System (ADS)

    Takagi, Toshinori

    1997-06-01

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized.

  10. Electrospray ionization of volatiles in breath

    NASA Astrophysics Data System (ADS)

    Martínez-Lozano, P.; de La Mora, J. Fernández

    2007-08-01

    Recent work by Zenobi and colleagues [H. Chen, A. Wortmann, W. Zhang, R. Zenobi, Angew. Chem. Int. Ed. 46 (2007) 580] reports that human breath charged by contact with an electrospray (ES) cloud yields many mass peaks of species such as urea, glucose, and other ions, some with molecular weights above 1000 Da. All these species are presumed to be involatile, and to originate from breath aerosols by so-called extractive electrospray ionization EESI [H. Chen, A. Venter, R.G. Cooks, Chem. Commun. (2006) 2042]. However, prior work by Fenn and colleagues [C.M. Whitehouse, F. Levin, C.K. Meng, J.B. Fenn, Proceedings of the 34th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, 1986 p. 507; S. Fuerstenau, P. Kiselev, J.B. Fenn, Proceedings of the 47th ASMS Conference on Mass Spectrometry, 1999, Dallas, TX, 1999] and by Hill and colleagues [C. Wu, W.F. Siems, H.H. Hill Jr., Anal. Chem. 72 (2000) 396] have reported the ability of electrospray drops to ionize a variety of low vapor pressure substances directly from the gas phase, without an apparent need for the vapor to be brought into the charging ES in aerosol form. The Ph.D. Thesis of Martínez-Lozano [P. Martínez-Lozano Sinués, Ph.D. Thesis, Department of Thermal and Fluid Engineering, University Carlos III of Madrid; April 5, 2006 (in Spanish); http://hdl.handle.net/10016/655] had also previously argued that the numerous human breath species observed via a similar ES ionization approach were in fact ionized directly from the vapor. Here, we observe that passage of the breath stream through a submicron filter does not eliminate the majority of the breath vapors seen in the absence of the filter. We conclude that direct vapor charging is the leading mechanism in breath ionization by electrospray drops, though aerosol ionization may also play a role.

  11. Accreditation of ionizing radiation protection programs

    SciTech Connect

    McDonald, J.C.; Swinth, K.L.; Selby, J.M.

    1991-10-01

    There are over one million workers in the United States who have the potential to be exposed to ionizing radiation. Therefore, it is necessary to determine accurately the quantity of radiation to which they may have been exposed. This quantity if measured by personnel dosimeters that are carried by individuals requiring radiation monitoring. Accreditation of the organizations which evaluate this quantity provides official recognition of the competence of these organizations. Accreditation programs in the field of ionizing radiation protection have been in operation for a number of years, and their experience has demonstrated that such programs can help to improve performance.

  12. A prototype ionization profile monitor for RHIC

    SciTech Connect

    Connolly, R.; Cameron, P.; Ryan, W.

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  13. Dissociative Ionization of Pyridine by Electron Impact

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In order to understand the damage of biomolecules by electrons, a process important in radiation damage, we undertake a study of the dissociative ionization (DI) of pyridine (C5H5N) from the low-lying ionization channels. The methodology used is the same as in the benzene study. While no experimental DI data are available, we compare the dissociation products from our calculations with the dissociative photoionization measurements of Tixier et al. using dipole (e, e(+) ion) coincidence spectroscopy. Comparisons with the DI of benzene is also made so as to understand the difference in DI between a heterocyclic and an aromatic molecule.

  14. Mechanism of branching in negative ionization fronts.

    PubMed

    Arrayás, Manuel; Fontelos, Marco A; Trueba, José L

    2005-10-14

    When a strong electric field is applied to nonconducting matter, narrow channels of plasma called streamers may form. Branchlike patterns of streamers have been observed in anode directed discharges. We explain a mechanism for branching as the result of a balance between the destabilizing effect of impact ionization and the stabilizing effect of electron diffusion on ionization fronts. The dispersion relation for transversal perturbation of a planar negative front is obtained analytically when the ratio D between the electron diffusion coefficient and the intensity of the externally imposed electric field is small. We estimate the spacing lambda between streamers and deduce a scaling law lambda approximately D(1/3). PMID:16241810

  15. Effect of surface ionization on wetting layers

    NASA Technical Reports Server (NTRS)

    Kayser, R. F.

    1986-01-01

    A surface ionization model due to Langmuir is generalized to liquid mixtures of polar and nonpolar components in contact with ionizable substrates. When a predominantly nonpolar mixture is near a miscibility gap, thick wetting layers of the conjugate polar phase form on the substrate. Such charged layers can be much thicker than similar wetting layers stabilized by dispersion forces. This model may explain the 0.4- to 0.6-micron-thick wetting layers formed in stirred mixtures of nitromethane and carbon disulfide in contact with glass.

  16. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  17. Hazards to space workers from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Lyman, J. T.

    1980-01-01

    A compilation of background information and a preliminary assessment of the potential risks to workers from the ionizing radiation encountered in space is provided. The report: (1) summarizes the current knowledge of the space radiation environment to which space workers will be exposed; (2) reviews the biological effects of ionizing radiation considered of major importance to a SPS project; and (3) discusses the health implications of exposure of populations of space workers to the radiations likely to penetrate through the shielding provided by the SPS work stations and habitat shelters of the SPS Reference System.

  18. The ionization sources of the diffuse ionized gas in nearby disk galaxies

    NASA Astrophysics Data System (ADS)

    Voges, Erica Susan

    Diffuse ionized gas (DIG) has been shown to be an important component of the interstellar medium (ISM), with its large filling factor (>= 20%) and a mass that makes it the most massive component of the Galactic ionized ISM. Given that it has been found to be ubiquitous in both the Galaxy and external disk galaxies, the energy source to create and maintain the DIG must necessarily be large. Massive OB stars are the only known sources with enough energy to power the DIG, and DIG is also linked morphologically to OB stars as it is brightest near bright star forming regions. However, the details of the location and spectral types of the ionizing stars, as well as the relevance of other ionizing mechanisms, are still not clear. I present the results of three different studies aimed at exploring the ionization sources of the DIG. Optical spectroscopy of DIG in M33 and NGC 891 using the Gemini-North telescope has been obtained to compare diagnostic emission line ratios with photoionization models. The first detection of (O I] l6300 was made in the DIG of M33. In M33, models in which ionizing photons leaking from H II regions are responsible for the ionization of the DIG best fit our observed line ratios. In NGC 891, we found evidence that shock ionization may need to be included along with photoionization in order to explain our observed emission line ratios. The diffuse Ha fraction in eight nearby galaxies was studied as a function of radius and star formation rate per unit area. We found no correlation with radius, but we did find that regions with higher star formation rates have lower diffuse fractions. Neither of these results had any dependence on galaxy type. These results have implications regarding the circumstances under which H II regions may be leaking ionizing photons and thus ionizing DIG. We also compared observed and predicted ionizing photon emission rates for 39 H II regions in the Large Magellanic Cloud. Our results indicate that five of the H II

  19. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  20. Detection of singly ionized oxygen around Jupiter

    NASA Technical Reports Server (NTRS)

    Pilcher, C. B.; Morgan, J. S.

    1979-01-01

    Forbidden emission from singly ionized oxygen at wavelengths of 3726 and 3729 angstroms has been detected in the inner Jovian magnetosphere. The emission is present between approximately 4 and 7 to 8 Jovian radii from the planet and appears concentrated in the magnetic equator. The line intensity ratio indicates the same plasma characteristics as those derived from observations of forbidden sulfur emission.

  1. The GODDESS ionization chamber: developing robust windows

    NASA Astrophysics Data System (ADS)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration

    2015-10-01

    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  2. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1974-01-01

    Electron transport is considered in high-density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere-correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  3. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    SciTech Connect

    Jackson, Ayanna U.; Talaty, Nari; Cooks, R G; Van Berkel, Gary J

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  4. Historical survey of resonance ionization spectroscopy

    SciTech Connect

    Hurst, G.S.

    1984-04-01

    We have recently celebrated the 10th birthday of Resonance Ionization Spectroscopy (RIS), and this seems an appropriate time to review the history of its development. Basically, RIS is a photophysics process in which tunable light sources are used to remove a valence electron from an atom of selected atomic number, Z. If appropriate lasers are used as the light source, one electron can be removed from each atom of the selected Z in the laser pulse. This implies that RIS can be a very efficient, as well as selective, ionization process. In what we normally call RIS, laser schemes are employed which preserve both of these features. In contrast, multiphoton ionization (MPI) is more general, although not necessarily Z selective or very efficient because resonances are often not used. Early research completed in the USSR and described as selective two-step photoionization, employed resonances to ionize the rubidium atom and served to guide work on laser isotope separation. 29 references, 8 figures.

  5. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1973-01-01

    Electron transport is considered in high density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  6. Roles of ionizing radiation in cell transformation

    SciTech Connect

    Tobias, C.A.; Albright, N.W.; Yang, T.C.

    1983-07-01

    Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures.

  7. WARPED IONIZED HYDROGEN IN THE GALAXY

    SciTech Connect

    Cersosimo, J. C.; Figueroa, N. Santiago; Velez, S. Figueroa; Soto, C. Lozada; Mader, S.; Azcarate, D.

    2009-07-01

    We report observations of the H166{alpha} ({nu} = 1424.734 MHz) radio recombination line (RRL) emission from the Galactic plane in the longitude range l = 267 deg. - 302 deg. and latitude range b = -3.{sup 0}0 to +1.{sup 0}5. The line emission observed describes the Carina arm in the Galactic azimuth range from {theta} = 260 deg. to 190 deg. The structure is located at negative latitudes with respect to the formal Galactic plane. The observations are combined with RRL data from the first Galactic quadrant. Both quadrants show the signature of the warp for the ionized gas, but an asymmetry of the distribution is noted. In the fourth quadrant, the gas is located between Galactic radii R {approx} 7 and 10 kpc, and the amplitude of the warp is seen from the midplane to z {approx} -150 pc. In the first quadrant, the gas is found between R {approx} 8 and 13-16 kpc, and flares to z {approx} +350 pc. We confirm the warp of the ionized gas near the solar circle. The distribution of the ionized gas is compared with the maximum intensity H I emission (0.30 < n{sub HI} < 0.45 cm{sup -3}) at intervals of the Galactic ring. The ionized material is correlated with the H I maximum intensity in both quadrants, and both components show the same tilted behavior with respect to the mid-Galactic plane.

  8. Composite scintillators for detection of ionizing radiation

    DOEpatents

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  9. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  10. Ionization Energy: Implications of Preservice Teachers' Conceptions

    ERIC Educational Resources Information Center

    Tan, Kim Chwee Daniel; Taber, Keith S.

    2009-01-01

    The results from a study to explore pre-service teachers' understanding of ionization energy, a topic that features in A-level (grade 11 and 12) chemistry courses. in Singapore , is described. A previous study using a two-tier multiple choice diagnostic test has shown that Singapore A-level students have considerable difficulty understanding the…

  11. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  12. Ionization degree for strong evaporation of metals

    SciTech Connect

    Gusarov, Andrey V.; Aoki, Kazuo

    2005-08-15

    Kinetic equations for ions and neutrals are numerically solved in the plasma sheath formed at a condensed phase when strong evaporation is taking place. The Boltzmann distribution is assumed for electrons. A weakly ionized vapor with the Debye length much shorter than the mean free path is considered. This is typical for laser evaporation of metals. Under these conditions, the sheath consists of a Knudsen layer and a thin charge separation layer between the Knudsen layer and the condensed phase. The self-consistent electrostatic field in the Knudsen layer is obtained from the quasineutrality condition. The potential barrier in the charge separation layer is determined by the charge balance. Kinetic boundary conditions for neutrals and charges are estimated by the detailed balance principle from the parameters of the saturated vapor. The transport of charges in the sheath is controlled by ions and depends on ion-neutral collisions and the self-consistent electrostatic field. Ionization degree in the vapor formed by strong evaporation increases with the Mach number and can attain values about 30% higher than the ionization degree in the saturated vapor. Two factors contribute to this increase. The first is the drop of the potential barrier in the charge separation layer and the second is the strengthening of the field in the Knudsen layer. The ionization equilibrium may be disturbed by a considerable excess of charges.

  13. Limits to Sensitivity in Laser Enhanced Ionization.

    ERIC Educational Resources Information Center

    Travis, J. C.

    1982-01-01

    Laser enhanced ionization (LEI) occurs when a tunable dye laser is used to excite a specific atomic population in a flame. Explores the origin of LEI's high sensitivity and identifies possible avenues to higher sensitivity by describing instrument used and experimental procedures and discussing ion formation/detection. (Author/JN)

  14. Applying the helium ionization detector in chromatography

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Andrawes, F. F.; Brazell, R. S.

    1981-01-01

    High noise levels and oversensitivity of helium detector make flame-ionization and thermal-conductivity detectors more suitable for chromotography. Deficiencies are eliminated by modifying helium device to operate in saturation rather than multiplication mode. Result is low background current, low noise, high stability, and high sensitivity. Detector analyzes halocarbons, hydrocarbons, hydrogen cyanide, ammonia, and inorganics without requiring expensive research-grade helium.

  15. ALTERNATIVE IONIZATION METHODS FOR PARTICLE MASS SPECTROMETRY

    EPA Science Inventory

    The objective of this project is to enhance the capabilities of a real-time airborne particle mass spectrometer by implementing matrix-independent methods for sample ionization. The enhancements should result in improved sensitivity for trace substances and, more importantly, per...

  16. Two-Photon Ionization of Metastable Helium

    NASA Astrophysics Data System (ADS)

    Czechanski, James Poremba

    There have been relatively few investigations of multiphoton ionization from metastable helium. Of particular interest has been the work of Haberland et al. 1987 and Haberland and Oschwald 1988. In both the 1987 and 1988 papers they have described the two photon ionization of metastable helium. In each of these studies they have reported the occurrence of unexplained structure along the wings of their resonance profiles. Upon the performance of similar measurements by this study, the unexplained structure is not seen and the agreement of the experiment's measurements with the theoretical shape of the resonance curves has been good. To experimentally verify these resonance effects, we have used a tunable dye laser in conjunction with a time of flight mass spectrometer to create and detect ions from metastable helium by two-photon absorption. The use of a metastable state instead of the ground state is advantageous because of its proximity to the ionization continuum and its extended lifetime. Using a metastable state as a starting point for multiphoton absorption requires fewer photons to reach the ionization threshold. The extended lifetime of the state also makes it easy to access experimentally. For helium the singlet metastable state 2^1 S lies at 20.61 eV above the ground level with a natural lifetime of close to a millisecond. Two photons of 501.7 nm and 504.35 nm are required for the ionization processes in resonance with the 3^1P and the 3^1D states. This thesis is the accounting of the experimental process involved in the measurement of the dipole and quadrupole resonances of two photon ionization from singlet metastable helium. The study includes the description of the laser, electron gun assembly for metastable helium creation, and the time of flight mass spectrometer. A discussion of the theory of multiphoton processes is included along with the discussion of the data, its reduction and analysis, and a comparison with theoretical prediction. This study

  17. The MICE Demonstration of Ionization Cooling

    SciTech Connect

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  18. First successful ionization of Lr (Z = 103) by a surface-ionization technique

    NASA Astrophysics Data System (ADS)

    Sato, Tetsuya K.; Sato, Nozomi; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Ooe, Kazuhiro; Miyashita, Sunao; Schädel, Matthias; Kaneya, Yusuke; Nagame, Yuichiro; Osa, Akihiko; Ichikawa, Shin-ichi; Stora, Thierry; Kratz, Jens Volker

    2013-02-01

    We have developed a surface ionization ion-source as part of the JAEA-ISOL (Isotope Separator On-Line) setup, which is coupled to a He/CdI2 gas-jet transport system to determine the first ionization potential of the heaviest actinide lawrencium (Lr, Z = 103). The new ion-source is an improved version of the previous source that provided good ionization efficiencies for lanthanides. An additional filament was newly installed to give better control over its operation. We report, here, on the development of the new gas-jet coupled surface ion-source and on the first successful ionization and mass separation of 27-s 256Lr produced in the 249Cf + 11B reaction.

  19. Ionization of xenon by electrons: Partial cross sections for single, double, and triple ionization

    SciTech Connect

    Mathur, D.; Badrinathan, C.

    1987-02-01

    High-sensitivity measurements of relative partial cross sections for single, double, and triple ionization of Xe by electron impact have been carried out in the energy region from threshold to 100 eV using a crossed-beam apparatus incorporating a quadrupole mass spectrometer. The weighted sum of the relative partial cross sections at 50 eV are normalized to the total ionization cross section of Rapp and Englander-Golden to yield absolute cross-section functions. Shapes of the partial cross sections for single and double ionization are difficult to account for within a single-particle picture. Comparison of the Xe/sup +/ data with 4d partial photoionization cross-section measurements indicates the important role played by many-body effects in describing electron-impact ionization of high-Z atoms.

  20. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; de Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; van den Bergh, P.; van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-05-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

  1. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    PubMed Central

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  2. Measurement of the first ionization potential of astatine by laser ionization spectroscopy.

    PubMed

    Rothe, S; Andreyev, A N; Antalic, S; Borschevsky, A; Capponi, L; Cocolios, T E; De Witte, H; Eliav, E; Fedorov, D V; Fedosseev, V N; Fink, D A; Fritzsche, S; Ghys, L; Huyse, M; Imai, N; Kaldor, U; Kudryavtsev, Yuri; Köster, U; Lane, J F W; Lassen, J; Liberati, V; Lynch, K M; Marsh, B A; Nishio, K; Pauwels, D; Pershina, V; Popescu, L; Procter, T J; Radulov, D; Raeder, S; Rajabali, M M; Rapisarda, E; Rossel, R E; Sandhu, K; Seliverstov, M D; Sjödin, A M; Van den Bergh, P; Van Duppen, P; Venhart, M; Wakabayashi, Y; Wendt, K D A

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  3. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  4. Classical cutoffs for laser-induced nonsequential double ionization

    SciTech Connect

    Milosevic, D.B.; Becker, W.

    2003-12-01

    Classical cutoffs for the momenta of electrons ejected in laser-induced nonsequential double ionization are derived for the recollision-impact-ionization scenario. Such simple cutoff laws can aid in the interpretation of the observed electron spectra.

  5. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. II. DUST-INDUCED COLLISIONAL IONIZATION

    SciTech Connect

    Helling, Ch.; Jardine, M.; Mokler, F.

    2011-08-10

    Observations have shown that continuous radio emission and also sporadic H{alpha} and X-ray emission are prominent in singular, low-mass objects later than spectral class M. These activity signatures are interpreted as being caused by coupling of an ionized atmosphere to the stellar magnetic field. What remains a puzzle, however, is the mechanism by which such a cool atmosphere can produce the necessary level of ionization. At these low temperatures, thermal gas processes are insufficient, but the formation of clouds sets in. Cloud particles can act as seeds for electron avalanches in streamers that ionize the ambient gas, and can lead to lightning and indirectly to magnetic field coupling, a combination of processes also expected for protoplanetary disks. However, the precondition is that the cloud particles are charged. We use results from DRIFT-PHOENIX model atmospheres to investigate collisional processes that can lead to the ionization of dust grains inside clouds. We show that ionization by turbulence-induced dust-dust collisions is the most efficient kinetic process. The efficiency is highest in the inner cloud where particles grow quickly and, hence, the dust-to-gas ratio is high. Dust-dust collisions alone are not sufficient to improve the magnetic coupling of the atmosphere inside the cloud layers, but the charges supplied either on grains or within the gas phase as separated electrons can trigger secondary nonlinear processes. Cosmic rays are likely to increase the global level of ionization, but their influence decreases if a strong, large-scale magnetic field is present as on brown dwarfs. We suggest that although thermal gas ionization declines in objects across the fully convective boundary, dust charging by collisional processes can play an important role in the lowest mass objects. The onset of atmospheric dust may therefore correlate with the anomalous X-ray and radio emission in atmospheres that are cool, but charged more than expected by pure

  6. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  7. Quantum Theory for Cold Avalanche Ionization in Solids

    SciTech Connect

    Deng, H. X.; Zu, X. T.; Xiang, X.; Sun, K.

    2010-09-10

    A theory of photon-assisted impact ionization in solids is presented. Our theory makes a quantum description of the new impact ionization--cold avalanche ionization recently reported by P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner [Phys. Rev. Lett. 102, 083001 (2009)]. The present theory agrees with the experiments and can be reduced to the traditional impact ionization expression in the absence of a laser.

  8. High-efficiency electron ionizer for a mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Darrach, Murray R. (Inventor); Orient, Otto J. (Inventor)

    2001-01-01

    The present invention provides an improved electron ionizer for use in a quadrupole mass spectrometer. The improved electron ionizer includes a repeller plate that ejects sample atoms or molecules, an ionizer chamber, a cathode that emits an electron beam into the ionizer chamber, an exit opening for excess electrons to escape, at least one shim plate to collimate said electron beam, extraction apertures, and a plurality of lens elements for focusing the extracted ions onto entrance apertures.

  9. Method and apparatus to monitor a beam of ionizing radiation

    SciTech Connect

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  10. Single and Double Ionization in F9+ + He Collisions

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Lee, T. G.; Colgan, J.

    2015-05-01

    Time-dependent close-coupling methods are used to calculate differential cross sections for the single and double ionization in F9+ + He collisions. Single ionization energy differential cross sections are compared with recent experimental results. Double ionization energy differential cross sections are presented to guide future experiments. Work supported in part by grants from NSF and DOE.

  11. The Diffuse Ionized Gas in the large telescopes era

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.

    2005-12-01

    In this workshop we summarize the ``state of the art'' of the Diffuse Ionized Gas. We present all the possible situations which can produce ionization outside an H II region, as well as some of the observations that can be performed with the GTC instrumentation and how relevant they can be in the undestanding of the ionization mechanisms of the DIG.

  12. A numerical scheme for ionizing shock waves

    SciTech Connect

    Aslan, Necdet . E-mail: naslan@yeditepe.edu.tr; Mond, Michael

    2005-12-10

    A two-dimensional (2D) visual computer code to solve the steady state (SS) or transient shock problems including partially ionizing plasma is presented. Since the flows considered are hypersonic and the resulting temperatures are high, the plasma is partially ionized. Hence the plasma constituents are electrons, ions and neutral atoms. It is assumed that all the above species are in thermal equilibrium, namely, that they all have the same temperature. The ionization degree is calculated from Saha equation as a function of electron density and pressure by means of a nonlinear Newton type root finding algorithms. The code utilizes a wave model and numerical fluctuation distribution (FD) scheme that runs on structured or unstructured triangular meshes. This scheme is based on evaluating the mesh averaged fluctuations arising from a number of waves and distributing them to the nodes of these meshes in an upwind manner. The physical properties (directions, strengths, etc.) of these wave patterns are obtained by a new wave model: ION-A developed from the eigen-system of the flux Jacobian matrices. Since the equation of state (EOS) which is used to close up the conservation laws includes electronic effects, it is a nonlinear function and it must be inverted by iterations to determine the ionization degree as a function of density and temperature. For the time advancement, the scheme utilizes a multi-stage Runge-Kutta (RK) algorithm with time steps carefully evaluated from the maximum possible propagation speed in the solution domain. The code runs interactively with the user and allows to create different meshes to use different initial and boundary conditions and to see changes of desired physical quantities in the form of color and vector graphics. The details of the visual properties of the code has been published before (see [N. Aslan, A visual fluctuation splitting scheme for magneto-hydrodynamics with a new sonic fix and Euler limit, J. Comput. Phys. 197 (2004) 1

  13. Phase metrology with multi-cycle two-colour pulses

    NASA Astrophysics Data System (ADS)

    Petersson, C. L. M.; Carlström, S.; Schafer, K. J.; Mauritsson, J.

    2016-05-01

    Strong-field phenomena driven by an intense infrared (IR) laser depend on during what part of the field cycle they are initiated. By changing the sub-cycle character of the laser electric field it is possible to control such phenomena. For long pulses, sub-cycle shaping of the field can be done by adding a relatively weak, second harmonic of the driving field to the pulse. Through constructive and destructive interference, the combination of strong and weak fields can be used to change the probability of a strong-field process being initiated at any given part of the cycle. In order to control sub-cycle phenomena with optimal accuracy, it is necessary to know the phase difference of the strong and the weak fields precisely. If the weaker field is an even harmonic of the driving field, electrons ionized by the field will be asymmetrically distributed between the positive and negative directions of the combined fields. Information about the asymmetry can yield information about the phase difference. A technique to measure asymmetry for few-cycle pulses, called stereo-ATI (above threshold ionization), has been developed by Paulus et al (2003 Phys. Rev. Lett. 91 253004). This paper outlines an extension of this method to measure the phase difference between a strong IR and its second harmonic.

  14. Theoretical studies of highly ionized species

    NASA Astrophysics Data System (ADS)

    Dalgarno, A.; Victor, G. A.

    1980-10-01

    The calculations of the charge transfer recombination and ionization rate coefficients for a wide range of ionic systems in collision with hydrogen and helium at thermal energies were completed. For the carbon ions in hydrogen, the calculations were extended to energies of 100 ev. The importance of the processes in ionized plasmas was demonstrated by studies of the solar corona and of shock waves. Preliminary results were obtained on cross sections for the excitation of fine structure transitions by proton impacts. The mechanisms leading to the photodissociation of alkali metal dimers were identified and quantitative predictions were made for Li2. Calculations using the model potential method of properties of the Cu and Zn sequences were brought to a conclusion. Applications of the relativistic random phase approximation were made to the calculation of photoionization cross sections of magnesium-like and zinc-like ions and of oscillator strengths of mercury.

  15. Communication: Electron ionization of DNA bases.

    PubMed

    Rahman, M A; Krishnakumar, E

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space. PMID:27131520

  16. Nonequilibrium ionization phenomena behind shock waves

    SciTech Connect

    Panesi, Marco; Magin, Thierry; Huo, Winifred

    2011-05-20

    An accurate investigation of the behavior of electronically excited states of atoms and molecules in the post shock relaxation zone of a trajectory point of the FIRE II flight experiment is carried out by means of a one-dimensional flow solver coupled to a collisional-radiative model. In the rapidly ionizing regime behind a strong shock wave, the high lying bound electronic states of atoms are depleted. This leads the electronic energy level populations of atoms to depart from Boltzmann distributions which strongly affects the non-equilibrium ionization process as well as the radiative signature. The importance of correct modeling of the interaction of radiation and matter is discussed showing a strong influence on the physico-chemical properties of the gas. The paper clearly puts forward the shortcomings of the simplified approach often used in literature which strongly relies on the escape factors to characterize the optical thickness of the gas.

  17. Upper Hybrid Effects in Artificial Ionization

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B. E.

    2014-12-01

    A most fascinating result of recent ionospheric experiments has been the discovery of artificial ionization by Pedersen et al. (GRL, 37, L02106, 2010). The Artificial Ionospheric Layers (AIL) were the result of F-region O-mode HF irradiation using the HAARP ionospheric heater operating at 3.6 MW power. As demonstrated by Eliasson et al. (JGR, 117, A10321, 2012) the physics controlling the observed phenomenon and its threshold can be summarized as: " Collisional ionization due to high energy (~ 20 eV) electron tails generated by the interaction of strong Langmuir turbulence with plasma heated at the upper hybrid resonance and transported at the reflection height". The objective of the current presentation is to explore the role of the upper hybrid heating in the formation of AIL and its implications to future experiments involving HF heaters operating in middle and equatorial latitudes.

  18. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  19. Observation of impact ionization in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Holleman, Joshua; Bishop, Michael; Garcia, Carlos; Beekman, Christianne; Lee, Shinbuhm; Lee, Ho Nyung; Manousakis, Efstratios; McGill, Stephen

    Pump-probe optical spectroscopy was used to investigate the possibility of charge carrier multiplication by impact ionization in a 100 nm film of VO2 in the M1 insulating phase. The film was excited by pump pulses with energies above and below twice the band gap energy and observed with two different probe wavelengths. The transient reflectivities of the film were then compared. We observed an enhancement of the reflectivity for the higher energy pump pulses near zero delay compared to the reflectivity for the lower energy pump pulses for both probe wavelengths. Additionally, we identified and described multiple timescales within the charge dynamics. This experiment demonstrated that impact ionization acts as a carrier multiplication process in this prototypical strongly-correlated system. This work was supported by NSF DMR-1229217.

  20. HCO(+) ionization from SGR1806-20

    NASA Technical Reports Server (NTRS)

    Hannikainen, D.; Durouchoux, P.; Vilhu, O.; Huovelin, J.; Corbel, S.; Wallyn, P.

    1997-01-01

    The region surrounding the soft gamma ray repeater SGR 1806-20 in the HCO(+) (J = 1-0) transition was observed. Previous observations of compact Galactic objects suggest that a link exists between these objects and molecular clouds in which they are possibly embedded. Such a link would help explain some of the phenomena observed from these objects. A measure of the ionization rate as a function of distance from the source implies that the cloud is associated with the source. The abundance of HCO(+), which varies with increasing or decreasing ionization rates, is considered to be an ideal tool for this measurement. The observations acquired in the direction of the nebula surrounding SGR 1806-20 are presented, and the resulting 7 x 12 arcmin map derived from the HCO(+) data is shown.

  1. Electron-impact double ionization of magnesium

    SciTech Connect

    Ford, M.J.; El-Marji, B.; Doering, J.P.; Moore, J.H.; Coplan, M.A.; Cooper, J.W.

    1998-01-01

    Electron-impact double-ionization cross sections differential in the angles of the two ejected electrons have been measured at impact energies of 422 and 1052 eV. The energies of the ejected electrons were fixed at 100 eV each. The cross sections are very different at the two incident energies. At 1052 eV the ejected electrons are preferentially found in the forward direction with respect to the incident beam. At 422 eV they are found in the forward and backward directions with approximately equal probability. The 422-eV cross sections are largest when the incident-electron and ejected-electron momentum vectors lie in a common plane. The observations are discussed in the context of several models for double ionization. {copyright} {ital 1998} {ital The American Physical Society}

  2. Communication: Electron ionization of DNA bases

    NASA Astrophysics Data System (ADS)

    Rahman, M. A.; Krishnakumar, E.

    2016-04-01

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  3. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  4. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  5. Multiphoton Microwave Ionization of Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Gurian, Joshua Houston

    This thesis describes a series of multiphoton microwave experiments on Rydberg atoms when the microwave frequency is much greater than the classical Kepler frequency of the excited atoms. A new kHz pulse repetition frequency dye laser system was constructed for Rydberg lithium excitation with a linewidth as narrow as 3 GHz. This new laser system is used for first experiments of multiphoton microwave ionization of Rydberg lithium approaching the photoionization limit using 17 and 36 GHz microwave pulses. A multi-channel quantum defect model is presented that well describes the experimental results, indicating that these results are due to the coherent coupling of many atomic levels both above and below the classical ionization limit. Finally, preliminary results of measuring the final-state distributions of high lying Rydberg states after 17 GHz microwave pulses are presented.

  6. Electrostatic-spray ionization mass spectrometry.

    PubMed

    Qiao, Liang; Sartor, Romain; Gasilova, Natalia; Lu, Yu; Tobolkina, Elena; Liu, Baohong; Girault, Hubert H

    2012-09-01

    An electrostatic-spray ionization (ESTASI) method has been used for mass spectrometry (MS) analysis of samples deposited in or on an insulating substrate. The ionization is induced by a capacitive coupling between an electrode and the sample. In practice, a metallic electrode is placed close to but not in direct contact with the sample. Upon application of a high voltage pulse to the electrode, an electrostatic charging of the sample occurs leading to a bipolar spray pulse. When the voltage is positive, the bipolar spray pulse consists first of cations and then of anions. This method has been applied to a wide range of geometries to emit ions from samples in a silica capillary, in a disposable pipet tip, in a polymer microchannel, or from samples deposited as droplets on a polymer plate. Fractions from capillary electrophoresis were collected on a polymer plate for ESTASI MS analysis. PMID:22876737

  7. New constraints on the escape of ionizing photons from starburst galaxies using ionization-parameter mapping

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-12-10

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (≳3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (≲5 Myr) that the ionizing stars are still present.

  8. New Constraints on the Escape of Ionizing Photons from Starburst Galaxies Using Ionization-parameter Mapping

    NASA Astrophysics Data System (ADS)

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-12-01

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (gsim3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (lsim5 Myr) that the ionizing stars are still present.

  9. Tuning Soft Ionization Strength for Organic Mass Spectrometry.

    PubMed

    Schütz, Alexander; Klute, Felix David; Brandt, Sebastian; Liedtke, Sascha; Jestel, Günter; Franzke, Joachim

    2016-05-17

    Besides the progress of new mass spectrometer technologies, the investigation and development of soft ionization sources play an important key role for analytical sciences. Since the dielectric barrier discharge ionization (DBDI) is identified as two temporally separated events, a selective prevention of the coincident plasma can lead to improved ionization strength. Although a DBDI is known as a soft ionization source, a modulation of the high-voltage amplitude and duty cycle can lead to optimized ionization strength. This is an advantage to cover different types of analytes. PMID:27121975

  10. Multiphoton ionization of ions, neutrals, and clusters. Progress report

    SciTech Connect

    Wessel, J.

    1991-06-28

    Scientific results are summarized from a three year research program on multiphoton ionization in aromatic molecules, clusters, and their ions. As originally proposed, the studies elucidated a new cluster ionization mechanism, characterized properties of long range intermolecular interactions, and investigated electronic transitions of aromatic cations cooled in a supersonic beam. The studies indicate that the new cluster ionization mechanism is highly efficient and dominates conventional 1 + 1 resonant ionization. In the case of the dimer of the large aromatic molecule fluorene, the results suggest that excimer formation competes with a direct ionization process. Highly selective excitonic spectra have been identified for several cluster species.

  11. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1989-01-01

    The very reactive superoxide anion O[sub 2] is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20[sub 2][sup [minus

  12. Secondary ionization in a flat universe

    NASA Technical Reports Server (NTRS)

    Atrio-Barandela, F.; Doroshkevich, A. G.

    1994-01-01

    We analyze the effect of a secondary ionization on the evolution of temperature fluctuations in cosmic background radiation. The main results presented in this paper are appropriate analytic expressions of the transfer function relating temperature fluctuations to matter density perturbations at recombination for all possible recombination histories. Furthermore, we particularize our calculation to the standard cold dark matter model, where we study the erasure of primordial temperature fluctuations and calculate the magnitude and angular scale of the damping induced by a late recombination.

  13. Dosimetry and Biological Effects of Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Kanyár, B.; Köteles, G. J.

    The extension of the use of ionizing radiation and the new biological information on the effects of radiation exposure that is now becoming available, present new challenges to the development of concepts and methodology in determination of doses and assessment of hazards for the protection of living systems. Concise information is given on the deterministic and stochastic effects, on the debate concerning the effects of low doses, the detection of injuries by biological assays, and the radiation sickness.

  14. The lowest ionization potentials of Al2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Barnes, Leslie A.; Taylor, Peter R.

    1988-01-01

    Potential curves for the lowest two electronic states (X 2 sigma g + and A 2 pi u) of Al2(+) were computed using complete active space SCF/multireference CI wave functions and large Gaussian basis sets. The lowest observable vertical ionization potential (to Al2(+) X 2 sigma g +) of the Al2 X 3 pi u ground state is calculated to occur around 6.1 eV, in excellent agreement with the experimental range of 6.0 to 6.42 eV obtained in recent cluster ionization studies by Cox and co-workers. The second vertical ionization potential (to Al2(+) A 2 pi u) occurs near 6.4 eV, also within the experimental range. The adiabatic IP of 5.90 eV is in good agreement with the value of 5.8 to 6.1 eV deduced by Hanley and co-workers from the difference in thresholds between collision induced dissociation processes of Al3(+). The computed IP values are somewhat larger than those deduced from branching ratios in cluster fragmentation experiments by Jarrold and co-workers. The observation of an ionization threshold below 6.42 eV is shown to be incompatible with an Al2 ground electronic state assignment of 3 sigma g -, but the separation between the two lowest states of Al2 is so small that it is likely that both are populated in the experiments, so that this does not provide unambiguous support for the recent theoretical assignment of the ground state as 3 pi u.

  15. Ionization photophysics and spectroscopy of cyanoacetylene.

    PubMed

    Leach, Sydney; Garcia, Gustavo A; Mahjoub, Ahmed; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Gaie-Levrel, François; Champion, Norbert; Schwell, Martin

    2014-05-01

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11-15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC3N involves new aspects and new assignments of the vibrational components to excitation of the A(2)Σ(+) and B(2)Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B(2)Π state of HC3N(+). A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C(2)Σ(+) state of HC3N(+) at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6-15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C-H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised. PMID:24811639

  16. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1991-06-24

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD null'' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele.

  17. Cataracts induced by microwave and ionizing radiation

    SciTech Connect

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-11-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references.

  18. Structure parameters in molecular tunneling ionization theory

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Li, Wei; Zhao, Song-Feng

    2014-04-01

    We extracted the accurate structure parameters in molecular tunneling ionization theory (so called MO-ADK theory) for 22 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model.

  19. High-temperature Ionization in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Desch, Steven J.; Turner, Neal J.

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  20. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  1. 2.2.1 Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Kasch, K.-U.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.2.1 Ionizing Radiation' of the Section '2.2 Kinds of Radiation' of the Chapter '2 Radiation and Biological Effects' with the contents:

  2. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  3. Ionization photophysics and spectroscopy of cyanoacetylene

    SciTech Connect

    Leach, Sydney; Champion, Norbert; Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François; Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin

    2014-05-07

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC{sub 3}N involves new aspects and new assignments of the vibrational components to excitation of the A{sup 2}Σ{sup +} and B{sup 2}Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B{sup 2}Π state of HC{sub 3}N{sup +}. A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C{sup 2}Σ{sup +} state of HC{sub 3}N{sup +} at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised.

  4. Alloy nanoparticle synthesis using ionizing radiation

    DOEpatents

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  5. Electron-impact ionization of W27 +

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Loch, S. D.

    2016-06-01

    Electron-impact ionization cross sections for W27 + are calculated using a semirelativistic configuration-average distorted-wave (CADW) method. Calculations for direct ionization, excitation autoionization, and branching ratios are compared with recent calculations by Jonauskas et al. [Phys. Rev. A 91, 012715 (2015), 10.1103/PhysRevA.91.012715], who used fully relativistic subconfiguration-average distorted-wave (SCADW) and level-to-level distorted-wave (LLDW) methods. Reasonable agreement is found between the CADW and the recent LLDW calculations for direct ionization of the 4 l (l =0 -1 ,3 ) subshells, but not the 4 d subshell, and between the CADW and recent SCADW-LLDW calculations for excitation autoionization of the 4 l (l =0 -2 ) subshells. Reasonable agreement is also found between the CADW and the recent SCADW calculations, including branching ratios, but both differ from the recent LLDW calculations. Additional CADW calculations are made for excitation autoionization, including branching ratios involving the important 3 l (l =1 -2 ) subshells, not examined by Jonauskas et al. [Phys. Rev. A 91, 012715 (2015), 10.1103/PhysRevA.91.012715].

  6. Ionization induced damage in crystalline silicon

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.

    1977-01-01

    Close examination of the interaction of the energetic knock-on atoms with the local lattice environment reveals a damage mechanism which does satisfy the experimental data on proton irradiation of silicon. A proton-atom interaction with high energy transfer is considered where the proton path is delineated by a trail of ionization, and the silicon ion path is characterized by much heavier ionization terminating in a dense displacement cluster. At collision, many of the silicon electrons are stripped off, and the resulting energetic ion subsequently loses energy rapidly by Coulomb interaction with bound electrons. The rate of energy loss depends on the charge state and velocity of the knock-on ion. For ion energies in excess of 1 MeV, the intensity of ionization is sufficient to permit lattice atoms, stripped of their binding electrons, to reorient randomly before having an opportunity to recombine with electrons and re-establish the lattice. The path of a knock-on ion thus becomes a thin cylinder of amorphous material within the crystal. Amorphous silicon has a Fermi level closer to mid-band than does single crystal silicon, and a strong field therefore, results around this damaged region. The field produces a large depletion region, representing a very large capture cross section for minority carriers.

  7. The multiphoton ionization of uranium hexafluoride

    SciTech Connect

    Armstrong, D.P. . UEO Enrichment Technical Operations Div.)

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  8. Fundamental study of impact ionization plasma detector

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Muranaga, K.; Sasaki, S.; Nogami, K.; Shibata, H.

    Impact ionization plasma detectors are commonly used for cosmic dust research on board spacecraft. There seems to be no scientific background on their shape, area, and applied high voltage; they are determined empirically. To design a dust detector having large aperture and lightweight to collect dust effectively for the future mission, we are to study fundamental physics of dust impact ionization phenomena. To determine parameters of impact ionization, a simple detector is designed; metal target, two grids, with/without sidewall. Distance from target to grid, grid to grid, applied voltages are variable. Each electrode is connected to charge sensitive preamplifiers, signals are observed with a digital oscilloscope. Experiments using micro-particle accelerators are made at HIT, Univ. Tokyo in Japan, and at MPI-K in Germany. Time difference of two grid signals (plasma expansion velocity), and target signal rise time are determined from observed signals. Preliminary study shows, plasma expansion velocity is dependent on applied high voltage, not dependent on dust velocity. There is a clear correlation between dust particle velocity and target signal rise time. Sidewall effect is to be studied in the near future experiment.

  9. Electron-Impact Ionization of Methane

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We report a study of the total ionization of CH_4 by electron impact and its dissociative ionization from the ^2T_2 channel. The calculation of the total ionization cross section uses the improved Binary-Encounter-Dipole model (iBED).(W. A Huo, Phys. Rev. A (submitted for publication).) The dipole Born cross section in the model is expressed in terms of a three-term representation and the optical oscillator strengths are taken from Backx and Van der Wiel.(C. Backx and M. J. Van der Wiel, I Phys. B 18) 3020 (1975). The nuclear dynamics for the dissociation of the ^2T_2 channel is studied using the statistical model. A search of the potential energy surface of the ^2T_2 state of CH_4^+ shows two minima, of C_2v and C_3v symmetries, in agreement with earlier calculations. ((a) K. Takeshita, J. Chem. Phys. 86), 329 (1987). (b) R. F. Frey and E. R. Davidson, J. Chem. Phys. 88, 1775 (1988). The dissociation of the CH_4^+ to CH_3^+ + H goes through a saddle point. Comparison with recent experimental data will be presented and the role of Jahn-Teller effect discussed.

  10. The Ionization History of The Intergalactic Medium:

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    2003-01-01

    The funded project seeked a unified description of the ionization, physical structure, and evolution of the intergalactic medium (IGM) and quasar intervening absorption systems. We proposed to conduct theoretical studies of the IGM and QSO absorbers in the context of current theories of galaxy formation, developing and using numerical and analytical techniques aimed at a detailed modeling of cosmological radiative transfer, gas dynamics, and thermal and ionization evolution. The ionization history of the IGM has important implications for the metagalactic UV background, intergalactic helium absorption 21-cm tomography, metal absorption systems, fluctuations in the microwave background, and the cosmic rate of structure and star formation. All the original objectives of our program have been achieved, and the results widely used and quoted by the community. Indeed, they remain relevant as the level and complexity of research in this area has increased substantially since our proposal was submitted, due to new discoveries on galaxy formation and evolution, a flood of high-quality data on the distant universe, new theoretical ideas and direct numerical simulations of structure formation in hierarchical clustering theories.

  11. The Phobos neutral and ionized torus

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.; Curry, S. M.; Fatemi, S.

    2016-05-01

    Charged particle sputtering, micrometeoroid impact vaporization, and photon-stimulated desorption are fundamental processes operating at airless surfaces throughout the solar system. At larger bodies, such as Earth's Moon and several of the outer planet moons, these processes generate tenuous surface-bound exospheres that have been observed by a variety of methods. Phobos and Deimos, in contrast, are too gravitationally weak to keep ejected neutrals bound and, thus, are suspected to generate neutral tori in orbit around Mars. While these tori have not yet been detected, the distribution and density of both the neutral and ionized components are of fundamental interest. We combine a neutral Monte Carlo model and a hybrid plasma model to investigate both the neutral and ionized components of the Phobos torus. We show that the spatial distribution of the neutral torus is highly dependent on each individual species (due to ionization rates that span nearly 4 orders of magnitude) and on the location of Phobos with respect to Mars. Additionally, we present the flux distribution of torus pickup ions throughout the Martian system and estimate typical pickup ion fluxes. We find that the predicted pickup ion fluxes are too low to perturb the ambient plasma, consistent with previous null detections by spacecraft around Mars.

  12. Diffuse ionizing radiation within HH jets

    SciTech Connect

    Esquivel, A.; Raga, A. C. E-mail: raga@nucleares.unam.mx

    2013-12-20

    We present numerical hydrodynamical simulations of a time-dependent ejection velocity precessing jet. The parameters used in our models correspond to a high excitation Herbig-Haro object, such as HH 80/81. We have included the transfer of ionizing radiation produced within the shocked regions of the jet. The radiative transfer is computed with a ray-tracing scheme from all the cells with an emissivity above a certain threshold. We show the development of a radiative precursor, and compare the morphology with a model without the diffuse radiation. Our simulations show that the morphology of the Hα emission is affected considerably if the diffuse ionizing radiation is accounted for. The predicted Hα position-velocity diagram (i.e., spatially resolved emission line profiles) from a model with the transfer of ionizing radiation has a relatively strong component at zero velocity, corresponding to the radiative precursor. Qualitatively similar 'zero velocity components' are observed in HH 80/81 and in the jet from Sanduleak's star in the Large Magellanic Cloud.

  13. Atmospheric-pressure Penning ionization mass spectrometry.

    PubMed

    Hiraoka, Kenzo; Fujimaki, Susumu; Kambara, Shizuka; Furuya, Hiroko; Okazaki, Shigemitsu

    2004-01-01

    A preliminary study on the atmospheric-pressure Penning ionization (APP(e)I) of gaseous organic compounds with Ar* has been made. The metastable argon atoms (Ar*: 11.55 eV for (3)P(2) and 11.72 eV for (3)P(0)) were generated by the negative-mode corona discharge of atmospheric-pressure argon gas. By applying a high positive voltage (+500 to +1000 V) to the stainless steel capillary for the sample introduction (0.1 mm i.d., 0.3 mm o.d.), strong ion signals could be obtained. The ions formed were sampled through an orifice into the vacuum and mass-analyzed by an orthogonal time-of-flight mass spectrometer. The major ions formed by APP(e)I are found to be molecular-related ions for alkanes, aromatics, and oxygen-containing compounds. Because only the molecules with ionization energies less than the internal energy of Ar* are ionized, the present method will be a selective and highly sensitive interface for gas chromatography/mass spectrometry. PMID:15384154

  14. IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS

    SciTech Connect

    Smith, Randall K.; Hughes, John P. E-mail: jph@physics.rutgers.ed

    2010-07-20

    Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai and Hughes and Helfand. In general, the ionization evolution of an element Z in a constant electron temperature plasma is given by a coupled set of Z + 1 first-order differential equations. However, they can be recast as Z uncoupled first-order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of the slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily long time.

  15. The flatness and sudden evolution of the intergalactic ionizing background

    NASA Astrophysics Data System (ADS)

    Muñoz, Joseph A.; Oh, S. Peng; Davies, Frederick B.; Furlanetto, Steven R.

    2016-01-01

    The ionizing background of cosmic hydrogen is an important probe of the sources and absorbers of ionizing radiation in the post-reionization universe. Previous studies show that the ionization rate should be very sensitive to changes in the source population: as the emissivity rises, absorbers shrink in size, increasing the ionizing mean free path and, hence, the ionizing background. By contrast, observations of the ionizing background find a very flat evolution from z ˜ 2-5, before falling precipitously at z ˜ 6. We resolve this puzzling discrepancy by pointing out that, at z ˜ 2-5, optically thick absorbers are associated with the same collapsed haloes that host ionizing sources. Thus, an increasing abundance of galaxies is compensated for by a corresponding increase in the absorber population, which moderates the instability in the ionizing background. However, by z ˜ 5-6, gas outside of haloes dominates the absorption, the coupling between sources and absorbers is lost, and the ionizing background evolves rapidly. Our halo-based model reproduces observations of the ionizing background, its flatness and sudden decline, as well as the redshift evolution of the ionizing mean free path. Our work suggests that, through much of their history, both star formation and photoelectric opacity in the universe track halo growth.

  16. Electron-impact ionization of Se2+ and Se3+

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Loch, S. D.

    2016-06-01

    Electron-impact ionization cross sections for Se2+ and Se3+ are calculated using a semi-relativistic configuration-average distorted-wave (CADW) method. Good agreement between the CADW calculations and recent experimental measurements are found for the single ionization of Se2+ from threshold to 500 eV and for the double ionization of Se2+ from threshold to 225 eV. Good agreement between the CADW calculations and recent experimental measurements are also found for the single ionization of Se3+ from threshold to 200 eV and for the double ionization of Se3+ near the peak of the cross section at 350 eV. Disagreements at other incident electron energies may be due to the complexity of the ionization pathways for low charged Se atomic ions, the various theoretical approximations, and the difficulty in measuring relatively small double ionization events.

  17. The effect of recombination radiation on the temperature and ionization state of partially ionized gas

    NASA Astrophysics Data System (ADS)

    Raičević, Milan; Pawlik, Andreas H.; Schaye, Joop; Rahmati, Alireza

    2014-01-01

    A substantial fraction of all ionizing photons originate from radiative recombinations. However, in radiative transfer calculations this recombination radiation is often assumed to be absorbed `on-the-spot' because for most methods the computational cost associated with the inclusion of gas elements as sources is prohibitive. We present a new, CPU and memory efficient implementation for the transport of ionizing recombination radiation in the TRAPHIC radiative transfer scheme. TRAPHIC solves the radiative transfer equation by tracing photon packets at the speed of light and in a photon-conserving manner in spatially adaptive smoothed particle hydrodynamics simulations. Our new implementation uses existing features of the TRAPHIC scheme to add recombination radiation at no additional cost in the limit in which the fraction of the simulation box filled with radiation approaches 1. We test the implementation by simulating an H II region in photoionization equilibrium and comparing to reference solutions presented in the literature, finding excellent agreement. We apply our implementation to discuss the evolution of the H II region to equilibrium. We show that the widely used case A and B approximations yield accurate ionization profiles only near the source and near the ionization front, respectively. We also discuss the impact of recombination radiation on the geometry of shadows behind optically thick absorbers. We demonstrate that the shadow region may be completely ionized by the diffuse recombination radiation field and discuss the important role of heating by recombination radiation in the shadow region.

  18. Calculating Relative Ionization Probabilities of Plutonium for Resonance Ionization Mass Spectrometry to Support Nuclear Forensic Investigations

    NASA Astrophysics Data System (ADS)

    Lensegrav, Craig; Smith, Craig; Isselhardt, Brett

    2015-03-01

    Ongoing work seeks to apply the technology of Resonance Ionization Mass Spectrometry (RIMS) to problems related to nuclear forensics and, in particular, to the analysis and quantification of debris from nuclear detonations. As part of this effort, modeling and simulation methods are being applied to analyze and predict the potential for ionization by laser excitation of isotopes of both uranium and plutonium. Early work focused on the ionization potential of isotopes of uranium, and the present effort has expanded and extended the previous work by identifying and integrating new data for plutonium isotopes. In addition to extending the effort to this important new element, we have implemented more accurate descriptions of the spatial distribution of the laser beams to improve the accuracy of model predictions compared with experiment results as well as an ability to readily incorporate new experimental data as they become available. The model is used to estimate ionization cross sections and to compare relative excitation on two isotopes as a function of wavelength. This allows the study of sensitivity of these measurements to fluctuations in laser wavelength, irradiance, and bandwidth. We also report on initial efforts to include predictions of americium ionization probabilities into our modeling package. I would like to thank my co-authors, Gamani Karunasiri and Fabio Alves. My success is a product of their support and guidance.

  19. Laser-Induced Ionization Efficiency Enhancement On A Filament For Thermal Ionization Mass Spectrometry

    SciTech Connect

    Siegfried, M.

    2015-10-14

    The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For this study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.

  20. Ionization Phenomena in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Deveney, Edward Francis

    Two many-electron ion-atom collision systems are used to investigate atomic and molecular structure and collisional interactions. Electrons emitted from MeV/u C^{3+} projectile target -atom collisions were measured with a high-resolution position -sensitive electron spectrometer at Oak Ridge National Laboratory. The electrons are predominantly ionized by direct projectile -target interactions or autoionizing (AI) from doubly excited AI levels of the ion which were excited in the collision. The energy dependence of directly scattered target electrons, binary-encounter electrons (BEE), is investigated and compared with theory. AI levels of the projectile 1s to nl single electron excited series, (1s2snl) n = 2,3,4,....infty, including the series limit are identified uniquely using energy level calculations. Original Auger yield calculations using a code by Cowan were used to discover a 1/{n^3} scaling in intensities of Auger peaks in the aforementioned series. This is explained using scattering theory. A nonstatistical population of the terms in the (1s2s2l) configuration was identified and investigated as a function of the beam energy and for four different target atoms. Two electron excited configurations are identified and investigated. The angular distribution of a correlated transfer and excitation AI state is measured and compared to theory. The final scattered charge state distributions of Kr^ {n+}, n = 1, 2, 3, 4, 5, projectiles are measured following collisions with Kr targets in the Van de Graaff Laboratory here at The University of Connecticut. Average scattered charge states as high as 12 are observed. It appears that these electrons are ionized during the lifetime of the quasimolecular state but a complete picture of the ionization mechanism(s) is not known. Calculations using a statistical model of ionization, modified in several ways, are compared with the experimental results to see if it is possible to isolate whether or not the electrons originate

  1. Geometry- and diffraction-independent ionization probabilities in intense laser fields: Probing atomic ionization mechanisms with effective intensity matching

    SciTech Connect

    Bryan, W. A.; Stebbings, S. L.; English, E. M. L.; Goodworth, T. R. J.; Newell, W. R.; McKenna, J.; Suresh, M.; Srigengan, B.; Williams, I. D.; Turcu, I. C. E.; Smith, J. M.; Divall, E. J.; Hooker, C. J.; Langley, A. J.

    2006-01-15

    We report an experimental technique for the comparison of ionization processes in ultrafast laser pulses irrespective of pulse ellipticity. Multiple ionization of xenon by 50 fs 790 nm, linearly and circularly polarized laser pulses is observed over the intensity range 10 TW/cm{sup 2} to 10 PW/cm{sup 2} using effective intensity matching (EIM), which is coupled with intensity selective scanning (ISS) to recover the geometry-independent probability of ionization. Such measurements, made possible by quantifying diffraction effects in the laser focus, are compared directly to theoretical predictions of multiphoton, tunnel and field ionization, and a remarkable agreement demonstrated. EIM-ISS allows the straightforward quantification of the probability of recollision ionization in a linearly polarized laser pulse. Furthermore, the probability of ionization is discussed in terms of the Keldysh adiabaticity parameter {gamma}, and the influence of the precursor ionic states present in recollision ionization is observed.

  2. Towards universal ambient ionization: direct elemental analysis of solid substrates using microwave plasma ionization.

    PubMed

    Evans-Nguyen, K M; Gerling, J; Brown, H; Miranda, M; Windom, A; Speer, J

    2016-06-21

    A microwave plasma was used for direct ambient ionization mass spectrometry of solid substrates, rapidly yielding atomic spectra without sample digestion or pre-treatment. Further, molecular spectra for the organic components of the substrate were obtained simultaneously, in an ambient ionization format. Initial characterization of the microwave plasma coupling to an ion trap mass spectrometer was carried out using solution standards and a microwave plasma torch (MPT) configuration. The configuration of the microwave plasma was then optimized for ambient ionization. The atomic and organic composition for samples applicable to nuclear and conventional forensic screening, including explosive/radionuclide mixtures and inorganic/organic gunshot residue component mixtures were successfully determined. The technologies employed are readily fieldable; the feasibility of a multimode ion source that could be coupled with a portable ion trap mass spectrometer for rapid, on-site, elemental, isotopic, and molecular screening of samples is demonstrated. PMID:26979768

  3. Prompt ionization in the CRIT II barium releases. [Critical Ionization Tests

    NASA Technical Reports Server (NTRS)

    Torbert, R. B.; Kletzing, C. A.; Liou, K.; Rau, D.

    1992-01-01

    Observations of electron and ion distributions inside a fast neutral barium jet in the ionosphere show significant fluxes within 4 km of release, presumably related to beam plasma instability processes involved in the Critical Ionization Velocity (CIV) effect. Electron fluxes exceeding 5 x 10 exp 12/sq cm-str-sec-keV were responsible for ionizing both the streaming barium and ambient oxygen. Resulting ion fluxes seem to be consistent with 1-2 percent ionization of the fast barium, as reported by optical observations, although the extended spatial distribution of the optically observed ions is difficult to reconcile with the in situ observations. When the perpendicular velocity of the neutrals falls below critical values, these processes shut off. Although these observations resemble the earlier Porcupine experimental results (Haerendel, 1982), theoretical understanding of the differences between these data and that of earlier negative experiments is still lacking.

  4. Ionization Driven Chemistry in Protoplanetary Disks and Observational Signatures of Ionization Suppression

    NASA Astrophysics Data System (ADS)

    Cleeves, Lauren Ilsedore; Bergin, Edwin A.

    2015-01-01

    Circumstellar disks around young stars set the stage for the formation of planetary systems. The ionization fraction of the disk fundamentally regulates turbulence, which drives accretion onto the star and plays a role in the formation of planetesimals. Ionization is also central to the chemistry of the coldest disk gas, where comets and other icy bodies are assembled. During my PhD I studied the expected levels --- including possible severe suppression --- of the primary ionizing agents in disks, including cosmic rays, X-rays and the decay of short-lived radionuclides. Within this framework, I examined how each of these sources impacts turbulence-free "dead zones," and I identified submillimeter molecular emission tracers that can be used to spatially map-out ionization in disks with ALMA. I applied these theoretical results to SMA and ALMA observations of the extensively studied TW Hya protoplanetary disk, and I measured a disk-averaged upper limit to the cosmic ray ionization rate ~100 times below the canonical rate of 10-17 s-1 per H2. These results point to extensive CR deflection by either natal winds or twisted magnetic fields from the background environment or within the disk itself. One of the important implications of this work is that cold disk chemistry is inefficient without sufficient ionization, and as a direct result, deuterated water (HDO) is not significantly produced in disks. Given the elevated levels of HDO/H2O present throughout Solar System bodies, these results point to a substantial interstellar inheritance of deuterium-enriched ices during the formation of our own planetary system.

  5. Ruptured Mycotic Aortic Aneurysm in a Sooty Mangabey (Cercocebus atys)

    PubMed Central

    Sharma, Prachi; Cohen, Joyce K; Lockhart, Shawn R; Hurst, Steven F; Drew, Clifton P

    2011-01-01

    Mycotic aortic aneurysm is a local, irreversible dilatation of the aorta associated with destruction of the vessel wall by infection and is a grave clinical condition associated with high morbidity and mortality in humans. Rupture of aortic aneurysms can be spontaneous, idiopathic, or due to severe trauma, and the condition has been associated with bacterial and, rarely, fungal infections in humans and animals. Here, we describe a case of ruptured spontaneous aortic aneurysm associated with zygomycetic infection in a 21-y-old female sooty mangabey. The animal did not present with any significant clinical signs before being found dead. At necropsy, she was in good body condition, and the thoracic cavity had a large amount of clotted blood filling the left pleural space and surrounding the lung lobes. Near the aortic arch, the descending thoracic aorta was focally perforated (diameter, approximately 0.15 cm), and clotted blood adhered to the tunica adventitia. The aortic intima had multiple, firm, pale-yellow nodules (diameter, 0.25 to 0.5 cm). Histopathologically, these nodules consisted of severe multifocal pyogranulomatous inflammation intermixed with necrosis, fibrin, and broad, infrequently septate, thin-walled fungal hyphae. Immunohistochemistry revealed fungal hyphae characteristic of Mucormycetes (formerly Zygomycetes), and PCR analysis identified the organism as Basidiobolus spp. Dissemination of the fungus beyond the aorta was not noted. Spontaneous aortic aneurysms have been described in nonhuman primates, but this is the first reported case of a ruptured spontaneous aortic aneurysm associated with entomophthoromycetic infection in a sooty mangabey. PMID:22330581

  6. Determination of Ionization Potential of Calcium by High-Resolution Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyabe, Masabumi; Geppert, Christopher; Kato, Masaaki; Oba, Masaki; Wakaida, Ikuo; Watanabe, Kazuo; Wendt, Klaus D. A.

    2006-03-01

    High-resolution resonance ionization spectroscopy has been utilized to determine a precise ionization potential of Ca. Three-step resonance excitation with single-mode extended-cavity diode lasers populates long and unperturbed Rydberg series of 4snp (1P1) and 4snf (1F3) states in the range of n=20--150. Using an extended Ritz formula for quantum defects, the series convergence limit has been determined to be 49305.9240(20) cm-1 with the accuracy improved one order of magnitude higher than previously reported ones.

  7. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-01-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  8. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Machida, S.; Goertz, C. K.; Lu, G.

    1988-01-01

    The simulation of the critical ionization velocity for a neutral gas cloud moving across the static magnetic field is presented. A low-beta plasma is studied, using a two and a half-dimensional electrostatic code linked with the Plasma and Neutral Interaction Code (Goertz and Machida, 1987). The physics of the ionizing front and the instabilities which occur there are discussed. Results are presented from four numerical runs designed so that the effects of the charge separation field can be distinguished from the wave heating.

  9. Whole blood versus serum ionized calcium concentrations in dialysis patients

    PubMed Central

    Kang, Seok Hui; Cho, Kyu Hyang; Park, Jong Won; Yoon, Kyung Woo

    2014-01-01

    Background/Aims The aim of this study is to measure the difference of ionized calcium between heparinized whole blood and serum. Methods We recruited 107 maintenance hemodialysis (HD) patients from our hospital HD unit. The clinical and laboratory data included ionized calcium in serum and in whole blood (reference, 4.07 to 5.17 mg/dL). Results The level of ionized calcium in serum was higher than that in whole blood (p < 0.001). Bland-Altman analysis showed that difference for ionized calcium was 0.5027. For the difference, the nonstandardized β was -0.4389 (p < 0.001) and the intercept was 2.2418 (p < 0.001). There was a significant difference in the distribution of categories of ionized calcium level between two methods (κ, 0.279; p < 0.001). Conclusions This study demonstrates that whole blood ionized calcium is underestimated compared with serum ionized calcium. Positive difference increases as whole blood ionized calcium decreases. Therefore, significant hypocalcemia in whole blood ionized calcium should be verified by serum ionized calcium. PMID:24648806

  10. Enhancement of ionization efficiency of mass spectrometric analysis from non-electrospray ionization friendly solvents with conventional and novel ionization techniques.

    PubMed

    Jiang, Ping; Lucy, Charles A

    2015-10-15

    Electrospray ionization mass spectrometry (ESI-MS) has significantly impacted the analysis of complex biological and petroleum samples. However ESI-MS has limited ionization efficiency for samples in low dielectric and low polarity solvents. Addition of a make-up solvent through a T union or electrospray solvent through continuous flow extractive desorption electrospray ionization (CF-EDESI) enable ionization of analytes in non-ESI friendly solvents. A conventional make-up solvent addition setup was used and a CF-EDESI source was built for ionization of nitrogen-containing standards in hexane or hexane/isopropanol. Factors affecting the performance of both sources have been investigated and optimized. Both the make-up solvent addition and CF-EDESI improve the ionization efficiency for heteroatom compounds in non-ESI friendly solvents. Make-up solvent addition provides higher ionization efficiency than CF-EDESI. Neither the make-up solvent addition nor the CF-EDESI eliminates ionization suppression of nitrogen-containing compounds caused by compounds of the same chemical class. PMID:26515004

  11. Magnetic reconnection in a weakly ionized plasma

    SciTech Connect

    Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.

    2013-06-15

    Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.

  12. Ionization photophysics and spectroscopy of dicyanoacetylene

    SciTech Connect

    Leach, Sydney E-mail: Martin.Schwell@lisa.u-pec.fr; Champion, Norbert; Schwell, Martin E-mail: Martin.Schwell@lisa.u-pec.fr; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Garcia, Gustavo A.; Gaie-Levrel, François; Guillemin, Jean-Claude

    2013-11-14

    Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8–25 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and detailed spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of dicyanoacetylene was measured as 11.80 ± 0.01 eV. A detailed analysis of the cation spectroscopy involves new aspects and new assignments of the vibrational components to excitation of the quasi-degenerate A{sup 2}Π{sub g}, B{sup 2}Σ{sub g}{sup +} states as well as the C{sup 2}Σ{sub u}{sup +} and D{sup 2}Π{sub u} states of the cation. Some of the structured autoionization features observed in the 12.4–15 eV region of the total ion yield spectrum were assigned to vibrational components of valence shell transitions and to two previously unknown Rydberg series converging to the D{sup 2}Π{sub u} state of C{sub 4}N{sub 2}{sup +}. The appearance energies of the fragment ions C{sub 4}N{sup +}, C{sub 3}N{sup +}, C{sub 4}{sup +}, C{sub 2}N{sup +}, and C{sub 2}{sup +} were measured and their heats of formation were determined and compared with existing literature values. Thermochemical calculations of the appearance potentials of these and other weaker ions were used to infer aspects of dissociative ionization pathways.

  13. Manufacture of ionizers intended for electric propulsion

    NASA Technical Reports Server (NTRS)

    Hivert, A.; Labbe, J.

    1978-01-01

    An electric propulsion system which relies on the formation of cesium ions in contact with a porous wall made of a metal with a high work function when the wall is heated to 1500 K was described. The manufacture of porous walls on the mountings was considered. Erosion of the electrodes by slow ions was examined, and the life times of the ionizers was estimated by means of experimental studies. The purpose of the electric propulsion system was to bring about minor corrections in the orbits of geostationary satellites; the main advantage of this system was that it weighs less than currently used hydrazine systems.

  14. Thermal conductivity of partially ionized gas mixtures

    NASA Astrophysics Data System (ADS)

    Armaly, B. F.; Sutton, K.

    1981-06-01

    A method is proposed for predicting the translational component of the thermal conductivity of partially ionized gas mixtures. It is approximate but simple in form and offers a significant improvement over commonly utilized approximations. It does not require large computer run times nor storage, thus it is suitable for use with complex flow fields and heat transfer calculations. Results for gas mixtures which are representative of the atmosphere of Jupiter, Earth, and Venus are presented and they compare favorably with results from detailed kinetic theory analyses.

  15. Viscosity of multicomponent partially ionized gas mixtures

    NASA Astrophysics Data System (ADS)

    Armaly, B. F.; Sutton, K.

    1980-07-01

    An approximate method is proposed for predicting the viscosity of partially ionized gas mixtures. This technique expresses the viscosity of a mixture in terms of the viscosities of the individual pure components, is simple in form, and does not require large computer run times or storage. Thus, the technique is suitable for use with complex flowfields and heat-transfer calculations. Results for gas mixtures which are representative of the atmospheres of Jupiter, Earth, and Venus, are presented and it is shown that the results compare favorably with detailed kinetic-theory analyses.

  16. Laser-induced air ionization microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, N.; Yang, J.; Zhu, X.

    2006-06-01

    A nonlinear scanning imaging method is introduced that uses the highly localized air ionization initiated by photoelectrons from the sample surface under irradiation of femtosecond laser pulses as the microprobe. This type of microscopy with realizable subdiffraction spatial resolution has the unique advantages of being highly sensitive to both elemental and topographical properties of the samples of interest. Microscopic images of a femtosecond laser ablated micropattern, the cross section and the side view profile of an optical fiber, and a fresh mulberry leaf are obtained with this imaging technique, which demonstrate this technique's broad applicability in microscopic studies of different materials.

  17. Rocket measurements of mesospheric ionization irregularities

    NASA Technical Reports Server (NTRS)

    Stoltzfus, R. B.; Bowhill, S. A.

    1985-01-01

    The Langmuir probe technique for measurement of electron concentration in the mesosphere is capable of excellent altitude resolution, of order 1 m. Measurements from nine daytime rocket flights carrying an electron density fine structure experiment frequently show small scale ionization structures in the altitude region 70 to 90 km. The irregularities are believed to be the result of turbulent advection of ions and electrons. The fine structure experiment flown by the University of Illinois is described and methods of analyzing the collected data is presented. Theories of homogeneous, isotropic turbulence are reviewed. Power spectra of the measured irregularities are calculated and compared to spectra predicted by turbulence theories.

  18. Stochastic processes in muon ionization cooling

    NASA Astrophysics Data System (ADS)

    Errede, D.; Makino, K.; Berz, M.; Johnstone, C. J.; Van Ginneken, A.

    2004-02-01

    A muon ionization cooling channel consists of three major components: the magnet optics, an acceleration cavity, and an energy absorber. The absorber of liquid hydrogen contained by thin aluminum windows is the only component which introduces stochastic processes into the otherwise deterministic acceleration system. The scattering dynamics of the transverse coordinates is described by Gaussian distributions. The asymmetric energy loss function is represented by the Vavilov distribution characterized by the minimum number of collisions necessary for a particle undergoing loss of the energy distribution average resulting from the Bethe-Bloch formula. Examples of the interplay between stochastic processes and deterministic beam dynamics are given.

  19. Waveshifters and Scintillators for Ionizing Radiation Detection

    SciTech Connect

    B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

    2007-12-11

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

  20. Multiple Scattering Effects in Ionization Processes

    NASA Astrophysics Data System (ADS)

    Barrachina, R. O.

    2011-10-01

    The momentum distributions of electrons emitted in the ionization of atoms and molecules by the impact of photons or massive particles usually present interference patterns similar to those of the demonstrations with light proposed by Thomas Young more than two centuries ago. Furthermore, these cross sections also display richer structures due to the same multiple-scattering effects that are at the origin of different techniques to probe atomic aggregates and solid samples. In this talk, I will review these effects and discuss some of their most important characteristics, showing that they lead to distortions that are not fully replicated by non-scattering or even single-scattering approximations.

  1. Enhanced ionized impurity scattering in nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  2. Dissociative Ionization of Aromatic and Heterocyclic Molecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    2003-01-01

    Space radiation poses a major health hazard to humans in space flight. The high-energy charged particles in space radiation ranging from protons to high atomic number, high-energy (HZE) particles, and the secondary species they produce, attack DNA, cells, and tissues. Of the potential hazards, long-term health effects such as carcinogenesis are likely linked to the DNA lesions caused by secondary electrons in the 1 - 30 eV range. Dissociative ionization (DI) is one of the electron collision processes that can damage the DNA, either directly by causing a DNA lesion, or indirectly by producing radicals and cations that attack the DNA. To understand this process, we have developed a theoretical model for DI. Our model makes use of the fact that electron motion is much faster than nuclear motion and assumes DI proceeds through a two-step process. The first step is electron-impact ionization resulting in a particular state of the molecular ion in the geometry of the neutral molecule. In the second step the ion undergoes unimolecular dissociation. Thus the DI cross section sigma(sup DI)(sub a) for channel a is given by sigma(sup DI)(sub a) = sigma(sup I)(sub a) P(sub D) with sigma(sup I)(sub a) the ionization cross section of channel a and P(sub D) the dissociation probability. This model has been applied to study the DI of H2O, NH3, and CH4, with results in good agreement with experiment. The ionization cross section sigma(sup I)(sub a) was calculated using the improved binary encounter-dipole model and the unimolecular dissociation probability P(sub D) obtained by following the minimum energy path determined by the gradients and Hessians of the electronic energy with respect to the nuclear coordinates of the ion. This model is used to study the DI from the low-lying channels of benzene and pyridine to understand the different product formation in aromatic and heterocyclic molecules. DI study of the DNA base thymine is underway. Solvent effects will also be discussed.

  3. Resonant 2-photon-ionization of Xe

    SciTech Connect

    Meyer, M.; Lacoursiere, J.; Nahon, L.; Gisselbrecht, M.; Morin, P.; Larzilliere, M.

    1997-01-15

    The combination of laser and synchrotron radiation has been used to investigate in a pump-probe arrangement the ionization of Xe atoms via the resonant state Xe*5p{sup 5}5d[3/2]{sub 1}. In a first type of experiments the synchronization between the pulses of a mode-locked Ar{sup +} laser and the synchrotron radiation has been demonstrated by measuring the lifetime of the intermediate, resonantly excited states. In addition, a tuneable dye laser has been used to excite the Xe*5p{sup 5}4f[5/2]{sub 2} autoionization resonance.

  4. Resonance ionization detection of combustion radicals

    SciTech Connect

    Cool, T.A.

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  5. Positron impact ionization of atomic hydrogen

    SciTech Connect

    Acacia, P.; Campeanu, R.I.; Horbatsch, M.

    1993-05-01

    We will present integrated cross sections for ionization of atomic hydrogen by positrons. These have been calculated in a distorted-wave approximation using energy-dependent effective charges in the final channel as well as static and polarization potentials in the initial channel. We present two models for calculating the energy-dependent effective charges both of which produce results in good agreement with the recent experimental measurements of Spicher et al. This is in contrast to previous distorted-wave calculations which used fixed effective charges as well as classical trajectory calculations. Both of these latter methods produced results which were substantially below ours and the experimental data.

  6. (Resonance ionization spectroscopy and its applications)

    SciTech Connect

    Payne, M.G.

    1990-10-05

    The field of Resonance Ionization Spectroscopy grew out of work done in the Photophysics Group at Oak Ridge National Laboratory. As one of the original developers of this field the traveler has continued to attend this meeting on a regular basis. The traveler was originally asked to present an invited talk and to present part of a short course offered to graduate students attending the conference. Subsequently, the traveler was also asked to chair a session and to be a judge of the students papers entered in a contest for a $1000 first prize.

  7. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  8. The ionization structure of helium in H II region complexes

    NASA Astrophysics Data System (ADS)

    Pena, Miriam

    1986-10-01

    Ionization structure models of H II regions are constructed to analyze the behavior of the helium ionization correction factor, icf, for combinations of different stellar radiation fields as well as for mixtures of individual H II regions of different degrees of ionization. It is found that the amount of neutral He is less than 3 percent and that icf is between 0.98 and 1.00, for H II region coomplexes ionized by OB associations where the hottest stars are earlier than O6, if the ionizing stars are distributed according to a normal IMF. This result applies for a single H II region or for a mixture of unconnected H II regions. This result implies that the He(+)/H(+) ratio observed in extragalactic H II regions of high degree of ionization corresponds to the true He/H abundance ratios.

  9. Modeling of Ionization Physics with the PIC Code OSIRIS

    SciTech Connect

    Deng, S.; Tsung, F.; Lee, S.; Lu, W.; Mori, W.B.; Katsouleas, T.; Muggli, P.; Blue, B.E.; Clayton, C.E.; O'Connell, C.; Dodd, E.; Decker, F.J.; Huang, C.; Hogan, M.J.; Hemker, R.; Iverson, R.H.; Joshi, C.; Ren, C.; Raimondi, P.; Wang, S.; Walz, D.; /Southern California U. /UCLA /SLAC

    2005-09-27

    When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package into the 3-D, object-oriented, fully parallel PIC code OSIRIS. We apply the simulation tool to simulate the parameters of the upcoming E164 Plasma Wakefield Accelerator experiment at the Stanford Linear Accelerator Center (SLAC). We find that impact ionization is dominated by the plasma electrons moving in the wake rather than the 30 GeV drive beam electrons. Impact ionization leads to a significant number of trapped electrons accelerated from rest in the wake.

  10. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    PubMed Central

    Huang, Yunguang; Li, Jinxu; Tang, Bin; Zhu, Liping; Hou, Keyong; Li, Haiyang

    2015-01-01

    A vacuum ultraviolet lamp based single photon ionization- (SPI-) photoelectron ionization (PEI) portable reflecting time-of-flight mass spectrometer (TOFMS) was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE) below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX), SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1) with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear. PMID:26587023

  11. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer.

    PubMed

    Huang, Yunguang; Li, Jinxu; Tang, Bin; Zhu, Liping; Hou, Keyong; Li, Haiyang

    2015-01-01

    A vacuum ultraviolet lamp based single photon ionization- (SPI-) photoelectron ionization (PEI) portable reflecting time-of-flight mass spectrometer (TOFMS) was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE) below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX), SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1) with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear. PMID:26587023

  12. Comparison Study of Atomic and Molecular Single Ionization in the Multiphoton Ionization Regime

    SciTech Connect

    Wu Jian; Zeng Heping; Guo Chunlei

    2006-06-23

    In this Letter, we report, for the first time in the multiphoton ionization regime, a comparison study of single-electron ionization of diatomic molecules versus rare gas atoms with virtually the same ionization potentials. In comparing N{sub 2}{sup +} to Ar{sup +}, a higher ion signal is seen in N{sub 2}{sup +} compared to Ar{sup +} for linear polarization but the difference vanishes in circularly polarized light. In comparing O{sub 2}{sup +} to Xe{sup +}, we observe a suppression in O{sub 2}{sup +} compared to Xe{sup +} for both linear and circular polarization but this suppression exhibits an intensity dependence; i.e., there is little suppression for O{sub 2}{sup +} at the lowest intensity range, but the suppression becomes increasingly stronger as the laser intensity increases. The multielectron screening model is used to discuss possible mechanisms of this intensity dependent suppression in O{sub 2}{sup +} in the multiphoton ionization regime.

  13. Exploration of the Dissociative Recombination following DNA ionization to DNA+ due to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Strom, Richard A.; Zimmerly, Andrew T.; Andrianarijaona, Vola M.

    2014-05-01

    It is known that ionizing radiation generates low-energy secondary electrons, which may interact with the surrounding area, including biomolecules, such as triggering DNA single strand and double strand breaks as demonstrated by Sanche and coworkers (Radiat. Res. 157, 227(2002)). The bio-effects of low-energy electrons are currently a topic of high interest. Most of the studies are dedicated to dissociative electron attachments; however, the area is still mostly unexplored and still not well understood. We are computationally investigating the effect of ionizing radiation on DNA, such as its ionization to DNA+. More specifically, we are exploring the possibility of the dissociative recombination of the temporary DNA+ with one of the low-energy secondary electrons, produced by the ionizing radiation, to be another process of DNA strand breaks. Our preliminary results, which are performed with the binaries of ORCA, will be presented. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  14. Method and an apparatus for detecting ionizable substance

    NASA Technical Reports Server (NTRS)

    McElroy, James F. (Inventor); Smith, William (Inventor)

    1992-01-01

    The amount of ionizable substance within a stream can be continuously monitored through the use of an ionizable substance detector. The substance is ionized at an electrode producing ions and free electrons. The ions are transported across an ion exchange membrane, while the free electrons flow through a power source. The current, produced by the electrons, is proportional to the amount of substance in the stream. Continuous monitoring can be useful in early detection of problems, or system fluctuations.

  15. Ionization equilibrium in a cluster plasma with strong interparticle interaction

    SciTech Connect

    Likal'ter, A.A.

    1987-07-01

    An expansion, accurate up to the Madelung term, is derived for the drop in the ionization potential (and pressure) due to the strong Coulomb interaction. The ionization limit, separating the free and bound electron states, is determined with the help of the percolation theory. The principle of no explicit dependence of the total thermodynamic functions of the plasma on the ionization limit is employed. This has the consequence that the region of thermodynamic stability is greatly expanded compared with other models.

  16. LOW IONIZATION STATE PLASMA IN CORONAL MASS EJECTIONS

    SciTech Connect

    Lee, Jin-Yi; Raymond, John C.

    2012-10-20

    The Ultraviolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory often observes low ionization state coronal mass ejection (CME) plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI (3 Multiplication-Sign 10{sup 5} K), C III (8 Multiplication-Sign 10{sup 4} K), Ly{alpha}, and Ly{beta}, with the low ionization plasma confined to bright filaments or blobs that appear in small segments of the UVCS slit. On the other hand, in situ observations by the Solar Wind Ion Composition Spectrometer on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in the magnetic clouds in interplanetary coronal mass ejection (ICME) events, while low ionization states are rarely seen. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME to be consistent with the small fraction of ACE ICMEs that show low ionization plasma, or whether the CME plasma must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show average covering factors below 10%. This indicates that the lack of low ionization state ICME plasmas observed by the ACE results from a small probability that the spacecraft passes through a region of low ionization plasma. We also find that the low ionization state plasma covering factors in faster CMEs are smaller than in slower CMEs.

  17. Hand and shoe monitor using air ionization probes

    DOEpatents

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  18. Effective ionization rate in nitrogen-oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Pancheshnyi, Sergey

    2013-04-01

    The effective Townsend ionization coefficient in nitrogen-oxygen mixtures at various pressures is determined. In addition to the commonly accepted difference of the ionization and the attachment coefficients, α and η, respectively, the electron detachment from the negative ions created by the avalanche itself is taken into account. This leads to non-zero effective ionization rate below the threshold field corresponding to α - η = 0.

  19. A Prototype Ionization Profile Monitor for RHIC.

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Cameron, P.; Ryan, W.; Shea, T.; Sikora, R.; Tsoupas, N.

    1997-05-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPMs). Each IPM will measure the integrated distribution of electrons in one plane resulting from residual gas ionization during bunch passage. The high space-charge electric field of the beam makes it necessary to image with electrons which are guided by a magnetic field. A prototype detector was tested in the injection line during the RHIC Sextant Test. It consists of a collector circuit board mounted on one side of the beam and a parallel electrode on the other to provide an electric sweep field. The collector board has 48 electrodes oriented parallel to the beam with a chevron microchannel plate amplifier mounted in front of the collection traces. The detector vacuum chamber is placed in the gap of a magnet. At each bunch passage the charge pulses are integrated, amplified, and digitized for display as a profile histogram. This paper describes the prototype detector and gives results from the beam tests.

  20. IONIZATION OF EXTRASOLAR GIANT PLANET ATMOSPHERES

    SciTech Connect

    Koskinen, Tommi T.; Cho, James Y-K.; Achilleos, Nicholas; Aylward, Alan D.

    2010-10-10

    Many extrasolar planets orbit close in and are subject to intense ionizing radiation from their host stars. Therefore, we expect them to have strong, and extended, ionospheres. Ionospheres are important because they modulate escape in the upper atmosphere and can modify circulation, as well as leave their signatures, in the lower atmosphere. In this paper, we evaluate the vertical location Z{sub I} and extent D{sub I} of the EUV ionization peak layer. We find that Z{sub I{approx}}1-10 nbar-for a wide range of orbital distances (a = 0.047-1 AU) from the host star-and D{sub I}/H{sub p{approx}}>15, where H{sub p} is the pressure scale height. At Z{sub I}, the plasma frequency is {approx}80-450 MHz, depending on a. We also study global ion transport, and its dependence on a, using a three-dimensional thermosphere-ionosphere model. On tidally synchronized planets with weak intrinsic magnetic fields, our model shows only a small, but discernible, difference in electron density from the dayside to the nightside ({approx}9 x 10{sup 13} m{sup -3} to {approx}2 x 10{sup 12} m{sup -3}, respectively) at Z{sub I}. On asynchronous planets, the distribution is essentially uniform. These results have consequences for hydrodynamic modeling of the atmospheres of close-in extrasolar giant planets.

  1. Degradation of cyanobacterial biosignatures by ionizing radiation.

    PubMed

    Dartnell, Lewis R; Storrie-Lombardi, Michael C; Mullineaux, Conrad W; Ruban, Alexander V; Wright, Gary; Griffiths, Andrew D; Muller, Jan-Peter; Ward, John M

    2011-12-01

    Primitive photosynthetic microorganisms, either dormant or dead, may remain today on the martian surface, akin to terrestrial cyanobacteria surviving endolithically in martian analog sites on Earth such as the Antarctic Dry Valleys and the Atacama Desert. Potential markers of martian photoautotrophs include the red edge of chlorophyll reflectance spectra or fluorescence emission from systems of light-harvesting pigments. Such biosignatures, however, would be modified and degraded by long-term exposure to ionizing radiation from the unshielded cosmic ray flux onto the martian surface. In this initial study into this issue, three analytical techniques--absorbance, reflectance, and fluorescence spectroscopy--were employed to determine the progression of the radiolytic destruction of cyanobacteria. The pattern of signal loss for chlorophyll reflection and fluorescence from several biomolecules is characterized and quantified after increasing exposures to ionizing gamma radiation. This allows estimation of the degradation rates of cyanobacterial biosignatures on the martian surface and the identification of promising detectable fluorescent break-down products. PMID:22149884

  2. Measuring ionizing radiation with a mobile device

    NASA Astrophysics Data System (ADS)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  3. Microliter-sized ionization device and method

    NASA Technical Reports Server (NTRS)

    Cohen, Martin J. (Inventor); Simac, Robert M. (Inventor); Wernlund, Roger F. (Inventor)

    1999-01-01

    A microliter-sized metastable ionization device with a cavity, a sample gas inlet, a corona gas inlet and a gas outlet. A first electrode has a hollow and disposed in the cavity and is in fluid communication with the sample gas inlet. A second electrode is in fluid communication with the corona gas inlet and is disposed around the first electrode adjacent the hollow end thereof. A gap forming means forms a corona gap between the first and second electrodes. A first power supply is connected to the first electrode and the second power supply is connected to the second electrode for generating a corona discharge across the corona gap. A collector has a hollow end portion disposed in the cavity which is in fluid communications with the gas outlet for the outgassing and detection of ionized gases. The first electrode can be a tubular member aligned concentrically with a cylindrical second electrode. The gap forming means can be in annular disc projecting radially inwardly from the cylindrical second electrode. The collector can have a tubular opening aligned coaxially with the first electrode and has an end face spaced a short distance from an end face of the first electrode forming a small active volume therebetween for the generation and detection of small quantities of trace analytes.

  4. On the mechanism of extractive electrospray ionization.

    PubMed

    Law, Wai Siang; Wang, Rui; Hu, Bin; Berchtold, Christian; Meier, Lukas; Chen, Huanwen; Zenobi, Renato

    2010-06-01

    Extractive electrospray ionization (EESI) is a powerful ambient ionization technique that can provide comprehensive mass spectrometric (MS) information on aerosols, complex liquids, or suspensions without any sample pretreatment. An understanding of the EESI mechanism is critical for defining its range of application, the advantages, and limitations of EESI, and for improving its repeatability, sensitivity, and selectivity. However, no systematic study of EESI mechanisms has been conducted so far. In this work, fluorescence studies in the EESI plume using rhodamine 6G and H-acid sodium salt directly demonstrate that liquid-phase interactions occur between charged ESI droplets and neutral sample droplets. Moreover, the effect of the composition of the primary ESI spray and sample spray on signals of the analyte in EESI-MS was investigated systematically. The results show that the analyte signals strongly depend on its solubility in the solvents involved, indicating that selective extraction is the dominant mechanism involved in the EESI process. This mechanistic study provides valuable insights for optimizing the performance of EESI in future applications. PMID:20443546

  5. IONIZED OUTFLOWS FROM COMPACT STEEP SPECTRUM SOURCES

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan; Kewley, Lisa E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Massive outflows are known to exist, in the form of extended emission-line regions (EELRs), around about one-third of powerful FR II radio sources. We investigate the origin of these EELRs by studying the emission-line regions around compact-steep-spectrum (CSS) radio galaxies that are younger (10{sup 3}-10{sup 5} yr old) versions of the FR II radio galaxies. We have searched for and analyzed the emission-line regions around 11 CSS sources by taking integral field spectra using Gemini Multi-Object Spectrograph on Gemini North. We fit the [O III] {lambda}5007 line and present the velocity maps for each detected emission-line region. We find, in most cases, that the emission-line regions have multi-component velocity structures with different velocity dispersions and/or flux distributions for each component. The velocity gradients of the emission-line gas are mostly well aligned with the radio axis, suggesting a direct causal link between the outflowing gas and the radio jets. The complex velocity structure may be a result of different driving mechanisms related to the onset of the radio jets. We also present the results from the line-ratio diagnostics we used to analyze the ionization mechanism of the extended gas, which supports the scenario where the emission-line regions are ionized by a combination of active galactic nucleus radiation and shock excitation.

  6. Ionized Physical Vapor Deposition and Diagnostics

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Hayden, D. B.; Juliano, D. R.

    1997-11-01

    Magnetron sputtering is a typical method of physical vapor deposition (PVD) often used in depositing metal interconnects between layers of a semiconductor substrate. However, conventional PVD places an upper limit on the aspect ratio (depth:width) of features to be filled due to the isotropic velocity distribution of the sputtered neutrals. At higher aspect ratios the sputtered particles can coat the sides of a trench before filling it, thus pinching off the trench and leaving either an open circuit or a high resistivity connection. In our system an ICP coil is introduced between the magnetron target and substrate, creating a secondary plasma that can ionize a significant fraction of the sputtered neutral atoms. A negatively biased substrate will accelerate these ions normally, giving a directional flux that can fill the trench from the bottom up. The deposition rates and metal flux ionization fractions are measured with a quartz crystal microbalance and a multi-grid analyzer. Plasma conditions are measured with a time-resolved Langmuir probe system. Both diagnostics are employed for various pressures, magnetron and RF powers, and background gas types. The ability of the system to fill higher aspect ratio features is also discussed.

  7. Ionization coefficient measurements in DC microplasmas

    NASA Astrophysics Data System (ADS)

    Stefanovic, Ilija; Kuschel, Thomas; Winter, Joerg; Maric, Dragana; Petrovic, Zoran Lj.

    2012-10-01

    While steady state Townsend discharges may provide data for ionization coefficients those are often not as accurate as those produced in dedicated pulsed current growth experiments. In this paper we show that one may be able to measure ionization coefficients in DC microdischarges that are of excellent quality. Measurements were made for argon and argon/nitrogen mixtures with different gas flow rates. The technique based measuring the spatial profile of emission a Townsend discharge. In spite of having the drift length of only 1 mm, excellent agreement has been found between our new measurements and the data for low-pressure, larger dimension (2-4cm) discharges in argon (Jelenak et al) for the E/N in the range from 300 Td to 4000 Td, where E/N is normalized electrical field strength. Below 300 Td our measured values are larger then those by Jelenak et al. This discrepancy with previous measurements will be discussed. The influence of the gas flow-rate and nitrogen concentration on the radial discharge profile in the Townsend mode will also be presented and discussed. Jelenak et al 1993 Phys. Rev. E 47 3566

  8. Extreme ionization of Xe clusters driven by ultraintense laser fields

    SciTech Connect

    Heidenreich, Andreas; Last, Isidore; Jortner, Joshua

    2007-08-21

    We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of the inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse length

  9. Soft ionization device with characterization systems and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2004-01-01

    Various configurations of characterization systems such as ion mobility spectrometers and mass spectrometers are disclosed that are coupled to an ionization device. The ionization device is formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. Small voltages across the electrodes generate large electric fields which act to ionize substantially all molecules passing therethrough without fracture. Methods to manufacture the mass spectrometer and ion mobility spectrometer systems are also described.

  10. Partially ionized plasmas, including the Third Symposium on Uranium Plasmas

    NASA Technical Reports Server (NTRS)

    Krishnan, M.

    1976-01-01

    Fundamentals of both electrically and fission generated plasmas are discussed. Research in gaseous fuel reactors using uranium hexafluoride is described and other partially ionized plasma applications are discussed.

  11. The International Muon Ionization Cooling Experiment: MICE and Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Freemire, Ben

    2010-03-01

    The Muon Ionization Cooling Experiment (MICE) is an accelerator and particle physics experiment aimed at demonstrating the technique of ionization cooling on a beam of muons. Ionization cooling is the process by which muons are sent through an absorbing material, thereby losing energy and decreasing their normalized emittance. The muons are then reaccelerated in the appropriate direction with radio frequency (RF) cavities. This produces an overall reduction in transverse emittance of the muon beam. Ionization cooling could be a key technique in the design of a high intensity Neutrino Factory.

  12. Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry.

    PubMed

    Hayen, Heiko; Michels, Antje; Franzke, Joachim

    2009-12-15

    An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry (LC/MS). For this purpose, the plasma was realized in a commercial atmospheric pressure ionization source. Dielectric barrier discharge ionization (DBDI) was compared to conventional electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) in the positive ionization mode. Therefore, a heterogeneous compound library was investigated that covered polar compounds such as amino acids, water-soluble vitamins, and nonpolar compounds like polycyclic aromatic hydrocarbons and functionalized hydrocarbons. It turned out that DBDI can be regarded as a soft ionization technique characterized by only minor fragmentation similar to APCI. Mainly protonated molecules were detected. Additionally, molecular ions were observed for polycyclic aromatic hydrocarbons and derivatives thereof. During DBDI, adduct formation with acetonitrile occurred. For aromatic compounds, addition of one to four oxygen atoms and to a smaller extend one nitrogen and oxygen was observed which delivered insight into the complexity of the ionization processes. In general, compounds covering a wider range of polarities can be ionized by DBDI than by ESI. Furthermore, limits of detection compared to APCI are in most cases equal or even better. PMID:19911793

  13. INSTRUMENTS AND METHODS OF INVESTIGATION: Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    NASA Astrophysics Data System (ADS)

    Blashenkov, Nikolai M.; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied.

  14. Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2004-03-01

    Ion mobility spectrometry (IMS) featuring different ionization techniques was used to analyze isomeric ortho-, meta- and para-dihalogenated benzenes in order to assess how structural features affect ion formation and drift behavior. The structure of the product ions formed was investigated by atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and IMS-MS coupling. Photoionization provided [M]+ ions for chlorinated and fluorinated compounds while bromine was cleaved from isomers of dibromobenzene and bromofluorobenzene. This ionization technique does not permit the different isomers to be distinguished. Comparable ions and additional clustered ions were obtained using 63Ni ionization. Depending on the chemical constitution, different clustered ions were observed in ion mobility spectra for the separate isomers of dichlorobenzene and dibromobenzene. Corona discharge ionization permits the most sensitive detection of dihalogenated compounds. Only clustered product ions were obtained. Corona discharge ionization enables the classification of different structural isomers of dichlorobenzene, dibromobenzene and bromofluorobenzene.

  15. Ionization phenomena and sources of negative ions

    SciTech Connect

    Alton, G.D.

    1983-01-01

    Negative ion source technology has rapidly advanced during the past several years as a direct consequence of the discovery of Krohn that negative ion yields can be greatly enhanced by sputtering in the presence of Group IA elements. Today, most negative ion sources use this discovery directly or the principles implied to effect negative ion formation through surface ionization. As a consequence, the more traditional direct extraction plasma and charge exchange sources are being used less frequently. However, the charge exchange generation mechanism appears to be as universal, is very competitive in terms of efficiency and has the advantage in terms of metastable ion formation. In this review, an attempt has been made to briefly describe the principal processes involved in negative ion formation and sources which are representative of a particular principle. The reader is referred to the literature for specific details concerning the operational characteristics, emittances, brightnesses, species and intensity capabilities of particular sources. 100 references.

  16. Calculations of coincident ionization plus excitation

    SciTech Connect

    Becker, R.L.

    1986-01-01

    For Li- and Be-like ions, K x-ray yields, together with detection that the ionic charge has increased, give the cross section for ionization plus excitation (IE), a process which can exhibit electron-electron correlations. Measurements of IE for /sub 14/Si/sup 11 +/ + He stimulated our coupled-channels calculations in the independent-Fermi-particle model (IFPM), which includes Pauli correlations. We discuss how the IFPM expressions, generalized here to include an open shell, differ from those for distinguishable electrons. The sensitivity of sigma/sub IE/ to correlations is shown. Recent additional measurements and future ones giving excitation functions for resolved configurations and complementary Auger data will provide even more sensitive tests of collisional correlation theory. 15 refs., 3 figs., 1 tab.

  17. Shock Wave Dynamics in Weakly Ionized Gases

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1998-01-01

    We have begun a comprehensive series of analyses and experiments to study the basic problem of shock wave dynamics in ionized media. Our objective is to isolate the mechanisms that are responsible for the decrease in the shock amplitude and also to determine the relevant plasma parameters that will be required for a drag reduction scheme in an actual high altitude hypersonic flight. Specifically, we have initiated a program of analyses and measurements with the objective of (i) fully characterizing the propagation dynamics in plasmas formed in gases of aerodynamic interest, (ii) isolating the mechanisms responsible for the decreased shock strength and increased shock velocity, (iii) extrapolating the laboratory observations to the technology of supersonic flight.

  18. An Ionization-Dependent Baldwin Effect?

    NASA Astrophysics Data System (ADS)

    Espey, B. R.; Lanzetta, K. M.; Turnshek, D. A.

    1993-12-01

    We will present results concerning the Baldwin Effect in AGN. The data used come from an optimally extracted set of IUE spectra (Lanzetta, Turnshek and Sandoval 1993, ApJS, 84, 109) and published ground-based data. The improvement in the signal-to-noise of the optimally extracted IUE data relative to previously available results enables us to study lines as far shortward in the spectrum as OVI 1034 Angstroms. Our data support the results of previous studies of the Baldwin Effect and, in addition, suggest that the strength of the effect is related to the ionization potential of the relevant ion. The OVI line shows the strongest Baldwin Effect of any previously examined emission line and the Balmer lines the weakest. The consequences of this result for AGN models are examined.

  19. Atomic ionization by neutrinos at low energies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Pang

    2016-05-01

    It is well-known that neutrino-electron scattering at low recoil energies provides sensitivity gain in constraining neutrinos’ magnetic moments and their possible milli-charges. However, in detectors with sub-keV thresholds, the binding effects of electrons become significant. In this talk, we present our recent works of applying ab initio calculations to germanium ionization by neutrinos at low energies. Compared with the conventional differential cross section formulae that were used to derive current experimental bounds, our results with less theoretical uncertainties set a more reliable bound on the neutrino magnetic moment and a more stringent bound on the neutrino milli-charge with current reactor antineutrino data taken from germanium detectors.

  20. Single ionization of helium by electron impact

    SciTech Connect

    Bray, I.; Fursa, D. V.; Kadyrov, A. S.; Stelbovics, A. T.

    2010-06-15

    We suggest that the problem of single ionization of helium by electron impact, leaving the ion in the ground state, has been solved theoretically for the full range of kinematics and collision geometries of practical interest. Following the emphasis on the study of out-of-plane geometries where the cross sections are very small [Schulz et al., Nature 422, 48 (2003)], we find that the convergent close-coupling calculations, in either a frozen- or a multicore treatment of the target, are in excellent agreement with the available measurements. Curiously, some systematic discrepancies are identified for some in-plane cases where the cross sections are an order of magnitude larger. Further measurements are required to resolve these discrepancies. If subsequent measurements confirm the present calculations, then we would have a strong case that the problem has been solved.

  1. Advanced Thin Ionization Calorimeter (ATIC) Update

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Ganel, O.; Kim, K. C.; Seo, E. S.; Sina, R.; Wang, J. Z.; Wu, J.; Case, G.; Ellison, S. B.; Gould, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range of approximately 10 GeV - 100 TeV. ATIC is comprised of an eight-layer, 18 radiation length deep Bismuth Germanate (BGO) calorimeter, downstream of a 0.75 nuclear interaction length graphite target and an approximately 1 sq m finely segmented silicon charge detector. Interleaved with the graphite layers are three scintillator strip hodoscopes for pre-triggering and tracking. ATIC flew for the first time on a Long Duration Balloon (LDB) launched from McMurdo, Antarctica in January 2001. During its 16-day flight ATIC collected more than 30 million science events, along with housekeeping, calibration, and rate data. This presentation will describe the ATIC data processing, including calibration and efficiency corrections, and show results from analysis of this dataset. The next launch is planned for December 2002.

  2. Thermal ionization of Cs Rydberg states

    NASA Astrophysics Data System (ADS)

    Glukhov, I. L.; Ovsiannikov, V. D.

    2009-01-01

    Rates Pnl of photoionization from Rydberg ns-, np-, nd-states of a valence electron in Cs, induced by black-body radiation, were calculated on the basis of the modified Fues model potential method. The numerical data were approximated with a three-term expression which reproduces in a simple analytical form the dependence of Pnl on the ambient temperature T and on the principal quantum number n. The comparison between approximate and exactly calculated values of the thermal ionization rate demonstrates the applicability of the proposed approximation for highly excited states with n from 20 to 100 in a wide temperature range of T from 100 to 10,000 K. We present coefficients of this approximation for the s-, p- and d-series of Rydberg states.

  3. Atomic polarizability, volume and ionization energy

    NASA Astrophysics Data System (ADS)

    Politzer, Peter; Jin, Ping; Murray, Jane S.

    2002-11-01

    Our primary focus in this work has been upon the relationship between atomic polarizability and volume, although we also looked at the role of ionization energy. For approximating volumes in this context, we tried ten different measures of atomic radii, based upon both empirical and theoretical criteria. Our results confirm that the polarizability can be expressed, to good accuracy, as directly proportional to the volume alone, provided that an appropriate set of radii is used. Most effective for the present purpose are (a) the distances to the outermost maxima of the orbital radial densities and (b) outermost orbital values. Our data also support an earlier prediction that the correlation would be enhanced by the inclusion of a slowly varying periodic function of the nuclear charge.

  4. Development of an optical digital ionization chamber

    SciTech Connect

    Turner, J.E.; Hunter, S.R.; Hamm, R.N.; Wright, H.A.; Hurst, G.S.; Gibson, W.A.

    1988-01-01

    We are developing a new device for optically detecting and imaging the track of a charged particle in a gas. The electrons in the particle track are made to oscillate rapidly by the application of an external, short-duration, high-voltage, RF electric field. The excited electrons produce additional ionization and electronic excitation of the gas molecules in their immediate vicinity, leading to copious light emission (fluorescence) from the selected gas, allowing the location of the electrons along the track to be determined. Two digital cameras simultaneously scan the emitted light across two perpendicular planes outside the chamber containing gas. The information thus obtained for a given track can be used to infer relevant quantities for microdosimetry and dosimetry, e.g., energy deposited, LET, and track structure in the gas. The design of such a device now being constructed and methods of obtaining the dosimetric data from the digital output will be described. 4 refs., 4 figs.

  5. Protection against ionizing radiation with eicosanoids

    SciTech Connect

    Steel, L.K.; Catravas, G.N.

    1988-01-01

    Prostaglandins (PGs) are extremely diverse in their pharmacological activities. They exhibit both antagonistic as well as cytoprotective properties in the pathogenesis of inflammation. Participation of PGs as chemical mediators in the regulation of immune responses and inflammation are increasingly apparent. The antagonistic properties of PGs have been implicated in a variety of symptoms resulting from exposure to ionizing radiation. Post-irradiation increases in small bowel motility, diarrhea, flatulence, abdominal pain, mucositis, and esophagitis have been attributed, in part, to excessive PG production. In contrast, exogenous PGs, particularly of the E type, have been shown to be cytoprotective against a variety of damaging agents, and a deficiency of endogeneous PG has been suggested to contribute to increase susceptibility to injury. These findings have provided much of the impetus to examine the potential cytoprotective effects of PGs in radiation injury.

  6. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. R.; Petrosky, V. E.

    1973-01-01

    The technique of photoelectron spectroscopy was used to obtain the relative continuum transition probabilities of atomic oxygen at 584 A for transitions from 3P ground state into the 4S, D2, and P2 states of the ion. Transition probability ratios for the D2 and P2 states relative to the S4 state of the ion are 1.57 + or - 0.14 and 0.82 + or - 0.07, respectively. In addition, transitions from excited O2(a 1 Delta g) state into the O2(+)(2 Phi u and 2 Delta g) were observed. The adiabatic ionization potential of O2(+)(2 Delta g) was measured as 18.803 + or - 0.006 eV.

  7. Multiphoton double ionization of the He atom

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.

    2016-05-01

    Time-dependent close-coupling (TDCC) calculations are made for the multiphoton double ionization of the He atom under the influence of a fast pulse XUV laser. One set of TDCC calculations employs l1m1l2m2 coupling on a 2D (r1 ,r2) numerical lattice, a second set of TDCC calculations employs m1m2 coupling on a 4D (r1 ,θ1 ,r2 ,θ2) numerical lattice, and a third set of TDCC calculations employs m1m2 coupling on a 4D (ρ1 ,z1 ,ρ2 ,z2) numerical lattice. Studies are made to see which TDCC method is the most efficient at explaining measurements as the number of photons absorbed is increased. Work supported in part by Grants from NASA, NSF, and DOE.

  8. [Cancer risk associated to ionizing radiation].

    PubMed

    Laurier, Dominique; Hill, Catherine

    2013-10-01

    This article presents an update of the available data on the risk of cancer associated with exposure to ionizing radiation. The epidemiological studies conducted or continued during the last 10 years have led to improved quantification of radiation induced risks at low dose levels, notably by extension of the follow-up duration. The results comfort the underlying hypotheses of the radiation protection system in use. In particular, they show the existence of an increased risk for doses below 100 mSv of for exposures protracted over time. These results highlight the relevance of measures to reduce all exposures: accidental, medical, occupational or natural, and reinforce the importance of a prudent use of medical radiation, particularly for children. PMID:24298833

  9. Effects of ionizing radiation on CCD's

    NASA Technical Reports Server (NTRS)

    Hartsell, G. A.; Robinson, D. A.; Collins, D. R.

    1975-01-01

    The effects of 1.2 MeV gamma radiation and 20 MeV electrons on the operational characteristics of CCDs are studied. The effects of ionizing radiation on the charge transfer efficiency, dark current, and input/output circuitry are described. The improved radiation hardness of buried channel CCDs is compared to surface channel results. Both ion implanted and epitaxial layer buried channel device results are included. The advantages of using a single thickness SiO2 gate dielectric are described. The threshold voltage shifts and surface state density changes of dry, steam, and HCl doped oxides are discussed. Recent results on the recovery times and total dose effects of high dose rate pulses of 20 MeV electrons are reported.

  10. Ionization of glycerin molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Zavilopulo, A. N.; Shpenik, O. B.; Markush, P. P.; Kontrosh, E. E.

    2015-07-01

    The methods and results of studying the yield of positive ions produced due to direct and dissociative electron impact ionization of the glycerin molecule are described. The experiment is carried out using two independent setups, namely, a setup with a monopole mass spectrometer employing the method of crossing electron and molecular beams and a setup with a hypocycloidal electron spectrometer with the gas-filled cell. The mass spectra of the glycerin molecule are studied in the range of mass numbers of 10-95 amu at various temperatures. The energy dependences of the effective cross sections of the glycerin molecular ions produced by a monoenergetic electron beam are obtained and analyzed; using these dependences, the appearance energies of fragment ions are determined. The dynamics of the glycerin molecule fragment ions formation is investigated in the temperature range of 300-340 K.

  11. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  12. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles

  13. Overview of Atmospheric Ionizing Radiation (AIR)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.

    2003-01-01

    The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998

  14. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  15. Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Weinecke, Andrea; Ryzhov, Victor

    2005-01-01

    Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…

  16. Analytical Estimates of the Dispersion Curve in Planar Ionization Fronts

    SciTech Connect

    Arrayas, Manuel; Trueba, Jose L.; Fontelos, Marco A.

    2009-04-27

    Fingers from ionization fronts for a hydrodynamic plasma model result from a balance between impact ionization and electron diffusion in a non-attaching gas. An analytical estimation of the size of the fingers and its dependence on both the electric field and electron diffusion coefficient can be done when the diffusion is low and the electric field is strong.

  17. Spectroscopy of triply and quadruply ionized states of mercury

    SciTech Connect

    Huttula, M.; Huttula, S.-M.; Lablanquie, P.; Palaudoux, J.; Penent, F.; Andric, L.; Eland, J. H. D.

    2011-03-15

    Multielectron coincidence spectroscopy has been used to study multiple ionization of atomic mercury. The binding energies of triply and quadruply ionized states of Hg have been determined from three- and fourfold electron coincidences. Relativistic ab initio theory has been used to calculate the state energies and predict the experimental findings.

  18. Strong-field ionization of a heteronuclear diatomic molecule

    SciTech Connect

    Ren, Xianghe; Nakajima, Takashi

    2010-12-15

    We theoretically study strong-field ionization of a heteronuclear diatomic molecule, CO, by calculating the photoelectron angular distributions (PADs) and the total ionization rates using linearly and circularly polarized laser fields. We find that, although the PADs of CO generally do not have inversion symmetry, they become more inversion symmetric as the photoelectron energy increases. Heteronuclear features of CO upon ionization are better understood by comparing the results with those of a representative of homonuclear molecules, N{sub 2}, in that, although there are some similarities between CO and N{sub 2} due to the same orbital symmetry, {sigma}{sub g}, there are some differences between them in terms of the ionization suppression and orientation dependence of the total ionization yield. Namely, CO behaves more like an atom in the low-intensity range in a sense that ionization takes place mainly from the neighborhood of the C core, while it behaves more like a double-core molecule in the high-intensity range since ionization takes place from the neighborhood of both C and O cores. This explains why ionization suppression of CO is not seen at the low intensity but it becomes more visible at the high intensity range.

  19. High efficiency ionizer using a hollow cathode discharge plasma

    SciTech Connect

    Alessi, J.G.; Prelec, K.

    1984-01-01

    A proposal for an ionizer using a hollow cathode discharge plasma is described. Ionization is via the very high current density electron beam component in the plasma, as well as from charge exchange with plasma ions. Extraction of a He/sup +/ current corresponding to approximately 50% of the incoming atomic beam flux should be possible.

  20. Phase effects in double ionization by strong short pulses

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno; Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub

    2010-05-01

    We consider double ionization induced by strong single cycle pulses within quantum calculations of a reduced dimensionality model. Changes in the phase relation between the wave and the envelope affect the total ionization yield as well as the characteristics in the distribution of the outgoing momenta.

  1. A Simple Apparatus for Determining Ionization and Solubility Product Constants.

    ERIC Educational Resources Information Center

    Gerardi, Gary

    1977-01-01

    Describes a simple conductivity apparatus for the determination of ionization and solubility product constants of various substances. The uses of the apparatus in determining the ionization constant of a weak monoprotic acid and in measuring the rate of diffusion of ions through a membrane are also presented. (HM)

  2. Selective Ultratrace Analysis of Ca41 by Laser Resonance Ionization

    SciTech Connect

    Wendt, K.; Blaum, K.; Diel, S.; Geppert, C.; Kuschnick, A.; Muller, P.; Trautmann, N.; Nortershauser, W.; Bushaw, Bruce A.

    2001-05-15

    A compact resonance ionization mass spectrometer is presented. It is presently applied for sensitive and highly selective ultratrace detemination of the long-lived radioisotope 41Ca for environmental, biological, and fundamental investigations. The development of coherent multistep resonance ionization enables the realization of experimental detection limits as low as 6 10 atoms per sample and very high isotopic selectivity above 12 10.

  3. The investigation of time dependent flame structure by ionization probes

    NASA Technical Reports Server (NTRS)

    Ventura, J. M. P.; Suzuki, T.; Yule, A. J.; Ralph, S.; Chigier, N. A.

    1980-01-01

    Ionization probes were used to measure mean ionization current and frequency spectra, auto-correlations and cross-correlations in jet flames with variation in the initial Reynolds numbers and equivalence ratios. Special attention was paid to the transitional region between the burner exit plane and the plane of onset of turbulence.

  4. Characterization of a homemade ionization chamber for radiotherapy beams.

    PubMed

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. PMID:22153889

  5. Spontaneous-Desorption Ionizer for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Schultz, J. Albert

    2006-01-01

    A time-of-flight mass spectrometer (TOF-MS) like the one mentioned in the immediately preceding article has been retrofitted with an ionizer based on a surface spontaneous-desorption process. This ionizer includes an electron multiplier in the form of a microchannel plate (MCP). Relative to an ionizer based on a hot-filament electron source, this ionizer offers advantages of less power consumption and greater mechanical ruggedness. The current density and stability characteristics of the electron emission of this ionizer are similar to those of a filament-based ionizer. In tests of various versions of this ionizer in the TOF-MS, electron currents up to 100 nA were registered. Currents of microamperes or more - great enough to satisfy requirements in most TOFMS applications - could be obtained by use of MCPs different from those used in the tests, albeit at the cost of greater bulk. One drawback of this ionizer is that the gain of the MCP decreases as a function of the charge extracted thus far; the total charge that can be extracted over the operational lifetime is about 1 coulomb. An MCP in the ion-detector portion of the TOF-MS is subject to the same limitation.

  6. High Rydberg states of DABCO: Spectroscopy, ionization potential, and comparison with mass analyzed threshold ionization

    NASA Astrophysics Data System (ADS)

    Boogaarts, Maarten G. H.; Holleman, Iwan; Jongma, Rienk T.; Parker, David H.; Meijer, Gerard; Even, Uzi

    1996-03-01

    Doubly-resonant excitation/vibrational autoionization is used to accurately determine the ionization potential (IP) of the highly symmetric caged amine 1,4 diazabicyclo[2,2,2]octane (DABCO). The IP of DABCO excited with one quantum of the ν24(e') vibration lies at (59 048.62±0.03) cm-1, based on fitting 56 components of the npxy Rydberg series (δ=0.406±0.002) to the Rydberg formula. Rydberg state transition energies and linewidths are determined using standard calibration and linefitting techniques. The IP determined from Rydberg state extrapolation is compared with that determined by mass analyzed threshold ionization (MATI). Effects of static electric fields on MATI signals measured for the high Rydberg states are discussed.

  7. A corona discharge initiated electrochemical electrospray ionization technique.

    PubMed

    Lloyd, John R; Hess, Sonja

    2009-11-01

    We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust, and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity, and selectivity of ESI experiments. PMID:19747843

  8. A resonance ionization imaging detector based on cesium atomic vapor

    NASA Astrophysics Data System (ADS)

    Temirov, J. P.; Chigarev, N. V.; Matveev, O. I.; Omenetto, N.; Smith, B. W.; Winefordner, J. D.

    2004-05-01

    A novel Cs resonance ionization imaging detector (RIID) has been developed and evaluated. The detector is capable of two-dimensional imaging with high spectral resolution, which is determined by the Doppler broadened atomic linewidth of Cs at given temperature. Ionization schemes of Cs have been investigated using dye and color center tunable lasers pumped by an excimer laser and by a Nd:YAG laser. It has been experimentally shown that the most efficient ionization scheme for Cs RIID should include a three-step excitation/ionization ladder, for example, with transitions at λ1=852.11 (852.113) nm, λ2=917.22 (917.2197) nm, and λ3=1064 nm. The imaging capabilities of the detector have been evaluated using a simpler two-step ionization scheme with wavelengths λ1=852.11 nm and λ2=508 nm.

  9. Ionization effects of shock breakout in SN 1987A

    SciTech Connect

    Dopita, M.A.; Meatheringham, S.J.; Nulsen, P.; Wood, P.R.

    1987-11-01

    The epoch of shock breakout in SN 1987A was almost certainly associated with the production of a pulse of UV photons with a characteristic temperature of order 100,000 K and a duration of 2-4 hr. It is proposed that this pulse has the characteristics required to ionize the precursor stellar wind, temporarily ionize any nearby remnants of the red giant wind, and can ionize the surrounding interstellar medium out to distances of several parsecs for several thousand years. These effects could provide transitory free-free absorption of the synchrotron radio source and may offer an explanation of the ionized knot seen in speckle interferometry. A similar but more powerful outburst could also be responsible for the highly ionized halo seen around the SMC supernova remnant 1E 0102.2-7219. 28 references.

  10. Field-free molecular alignment for measuring ionization probability

    NASA Astrophysics Data System (ADS)

    Loriot, V.; Hertz, E.; Lavorel, B.; Faucher, O.

    2008-01-01

    We have shown in a recent letter (Loriot et al 2006 Opt. Lett. 31 2897) the possibility of determining the ionization probability of linear molecules by using an all-optical technique that takes advantage of post-pulse molecular alignment. To that end, we have implemented a 'cross-defocusing' technique producing a signal sensitive to both alignment and ionization. The analysis of the signal provides a quantitative measurement of the ionization probability calibrated with molecular alignment. In the present work, the method is discussed in more detail and applied to the measurement of the ionization probability of N2 as well as to the determination of the ionization ratio between (i) N2 and Ar and (ii) O2 and Xe. We demonstrate in addition a progress in the scheme in order to improve the accuracy at low intensity.

  11. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules.

    PubMed

    Wang, X; Xu, H; Atia-Tul-Noor, A; Hu, B T; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2016-08-19

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H_{2}/D_{2} gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H_{2} and D_{2}. The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation. PMID:27588855

  12. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    PubMed Central

    Greenberger, Joel; Kagan, Valerian; Bayir, Hulya; Wipf, Peter; Epperly, Michael

    2015-01-01

    Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response. PMID:26785339

  13. Antioxidant Approaches to Management of Ionizing Irradiation Injury.

    PubMed

    Greenberger, Joel; Kagan, Valerian; Bayir, Hulya; Wipf, Peter; Epperly, Michael

    2015-01-01

    Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response. PMID:26785339

  14. Resonant Ionization Laser Ion Source for Radioactive Ion Beams

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Vane, C Randy; Gottwald, T.; Wendt, K.; Mattolat, C.; Lassen, J.

    2009-01-01

    A resonant ionization laser ion source based on all-solid-state, tunable Ti:Sapphire lasers is being developed for the production of pure radioactive ion beams. It consists of a hot-cavity ion source and three pulsed Ti:Sapphire lasers operating at a 10 kHz pulse repetition rate. Spectroscopic studies are being conducted to develop ionization schemes that lead to ionizing an excited atom through an auto-ionization or a Rydberg state for numerous elements of interest. Three-photon resonant ionization of 12 elements has been recently demonstrated. The overall efficiency of the laser ion source measured for some of these elements ranges from 1 to 40%. The results indicate that Ti:Sapphire lasers could be well suited for laser ion source applications. The time structures of the ions produced by the pulsed lasers are investigated. The information may help to improve the laser ion source performance.

  15. Laser plasma formation assisted by ultraviolet pre-ionization

    SciTech Connect

    Yalin, Azer P. Dumitrache, Ciprian; Wilvert, Nick; Joshi, Sachin; Shneider, Mikhail N.

    2014-10-15

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266 nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064 nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ∼10 ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.

  16. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, H.; Atia-Tul-Noor, A.; Hu, B. T.; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2016-08-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2 . The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  17. Mutational signatures of ionizing radiation in second malignancies.

    PubMed

    Behjati, Sam; Gundem, Gunes; Wedge, David C; Roberts, Nicola D; Tarpey, Patrick S; Cooke, Susanna L; Van Loo, Peter; Alexandrov, Ludmil B; Ramakrishna, Manasa; Davies, Helen; Nik-Zainal, Serena; Hardy, Claire; Latimer, Calli; Raine, Keiran M; Stebbings, Lucy; Menzies, Andy; Jones, David; Shepherd, Rebecca; Butler, Adam P; Teague, Jon W; Jorgensen, Mette; Khatri, Bhavisha; Pillay, Nischalan; Shlien, Adam; Futreal, P Andrew; Badie, Christophe; McDermott, Ultan; Bova, G Steven; Richardson, Andrea L; Flanagan, Adrienne M; Stratton, Michael R; Campbell, Peter J

    2016-01-01

    Ionizing radiation is a potent carcinogen, inducing cancer through DNA damage. The signatures of mutations arising in human tissues following in vivo exposure to ionizing radiation have not been documented. Here, we searched for signatures of ionizing radiation in 12 radiation-associated second malignancies of different tumour types. Two signatures of somatic mutation characterize ionizing radiation exposure irrespective of tumour type. Compared with 319 radiation-naive tumours, radiation-associated tumours carry a median extra 201 deletions genome-wide, sized 1-100 base pairs often with microhomology at the junction. Unlike deletions of radiation-naive tumours, these show no variation in density across the genome or correlation with sequence context, replication timing or chromatin structure. Furthermore, we observe a significant increase in balanced inversions in radiation-associated tumours. Both small deletions and inversions generate driver mutations. Thus, ionizing radiation generates distinctive mutational signatures that explain its carcinogenic potential. PMID:27615322

  18. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    NASA Astrophysics Data System (ADS)

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Ishino, M.; Kawachi, T.

    2015-11-01

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  19. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    SciTech Connect

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Ishino, M.; Kawachi, T.

    2015-11-15

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  20. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  1. Correlation in double ionization of He by ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Feist, Johannes

    2008-05-01

    Double ionization of helium has long been of considerable interest in atomic physics since it provides insight into the role of electronic correlation in the full three-body Coulomb break-up process, which is of fundamental importance for the understanding of the dynamics in more complex atoms. The recent availability of attosecond XUV pulses allows to directly probe and possibly control the temporal structure of the ionization process. We have implemented an ab initio simulation of the interaction of ultrashort laser pulses with a helium atom. The wave function is represented in a time-dependent close- coupling (TDCC) scheme and time integration is performed utilizing the Arnoldi-Lanczos method. The spatial discretization employs an FEDVR basis, which lends itself to effective parallelization. We will present results on two-photon double ionization of He by ultrashort pulses over a wide range of photon energies. At low energies only non-sequential double ionization is possible (where both electrons share the energy of the photons, and consequently have to be ionized within a short period). For photon energies above 54.4,V (the ionization potential of the He^+ ground state), sequential double ionization is allowed. This process proceeds in two steps -- single ionization of He followed by ionization of the remaining He^+ ion. By using attosecond XUV pulses, these two separated stages of the sequential process are confined to within a short time interval of each other. We show that the angular distributions of the emitted electrons reveal the signature of a non-sequential process under the condition that sufficiently short pulses are used, while for longer pulses the sequential process completely dominates. The correlation time for double ionization can thus be directly observed using attosecond XUV pulses. This work was performed in collaboration with S. Nagele, R. Pazourek, E. Persson, B. I. Schneider, L. A. Collins, and J. Burgd"orfer.

  2. Multiple-ionization channels in proton-atom collisions

    SciTech Connect

    DuBois, R.D.; Manson, S.T.

    1987-03-01

    A detailed investigation of multiple ionization of He (ionization charge states q = 1,2), Ne (q = 1--3), and Ar and Kr (q = 1--4) is presented for proton impact energies ranging from 10 keV to a few MeV. Absolute cross sections for various ionization pathways have been obtained by combining some new measurements with previously published experimental results and, in certain cases, with existing theoretical information. It is shown how each of these pathways contribute to the various stages of target ionization that are observed after the collision and how these experimentally measured quantities are related to the cross sections for initial inner- and outer-shell vacancy production. Areas where additional data are required or where the existing data are not internally consistent are pointed out. In general, it is shown that the existing data are sufficient to describe the ionization of helium as well as the lower levels of ionization of neon, argon, and krypton. However, for the higher degrees of ionization, particularly for Kr, our understanding is hampered by substantial gaps in the available inner-shell ionization data: both in cross-section and branching-ratio information. Nevertheless, the data are sufficient to indicate the relative importance of the various pathways. For all targets, direct multiple outer-shell cross sections were extracted. Analyzing the energy dependences of these cross sections provided some hints as to how to calculate multiple-ionization cross sections, e.g., information as to where the multiple ionization is dominated by the first-order or by a higher-order term in the perturbation expansion of the proton-target interaction is obtained.

  3. Multifluid magnetohydrodynamics of weakly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond

    The process of star formation is an integral part of the new field of astrobiology, which studies the origins of life. Since the gas that collapses to form stars and their resulting protoplanetary disks is known to be weakly ionized and contain magnetic fields, star formation is governed by multifluid magnetohydrodynamics. In this thesis we consider two important problems involved in the process of star formation that may have strongly affected the origins of life, with the goal of determining the thermal effects of these flows and modeling the physical conditions of these environments. We first considered the outstanding problem of how primitive bodies, specifically asteroids, were heated in protoplanetary disks early in their lifetime. Reexamining asteroid heating due to the classic unipolar induction heating mechanism described by Sonett et al. (1970), we find that this mechanism contains a subtle conceptual error. As original conceived, heating due to this mechanism is driven by a uniform, supersonic, fully-ionized, magnetized, T Tauri solar wind, which sweeps past an asteroid and causes the asteroid to experience a motional electric field in its rest frame. We point out that this mechanism ignores the interaction between the body surface and the flow, and thus only correctly describes the electric field far away from the asteroid where the plasma streams freely. In a realistic protoplanetary disk environment, we show that the interaction due to friction between the asteroid surface and the flow causes a shear layer to form close to the body, wherein the motional electric field predicted by Sonett et al. decreases and tends to zero at the asteroid surface. We correct this error by using the equations of multifluid magnetohydrodynamics to explicitly treat the shear layer. We calculate the velocity field in the plasma, and the magnetic and electric fields everywhere for two flows over an idealized infinite asteroid with varying magnetic field orientations. We

  4. Ionizing radiation detection using microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    DeHaven, Stanton

    Ionizing radiation detecting microstructured optical fibers are fabricated, modeled and experimentally measured for X-ray detection in the 10-40 keV energy range. These fibers operate by containing a scintillator material which emits visible light when exposed to ionizing radiation. An X-ray source characterized with a CdTe spectrometer is used to quantify the X-ray detection efficiency of the fibers. The solid state CdTe detector is considered 100% efficient in this energy range. A liquid filled microstructured optical fiber (MOF) is presented where numerical analysis and experimental observation leads to a geometric theory of photon transmission using total internal reflection. The model relates the quantity and energy of absorbed X-rays to transmitted and measured visible light photons. Experimental measurement of MOF photon counts show good quantitative agreement with calculated theoretical values. This work is extended to a solid organic scintillator, anthracene, which shows improved light output due to its material properties. A detailed description of the experimental approach used to fabricate anthracene MOF is presented. The fabrication technique uses a modified Bridgman-Stockbarger crystal growth technique to grow anthracene single crystals inside MOF. The anthracene grown in the MOF is characterized using spectrophotometry, Raman spectroscopy, and X-ray diffraction. These results show the anthracene grown is a high purity crystal with a structure similar to anthracene grown from the liquid, vapor and melt techniques. The X-ray measurement technique uses the same approach as that for liquid filled MOF for efficiency comparison. A specific fiber configuration associated with the crystal growth allows an order of magnitude improvement in X-ray detection efficiency. The effect of thin film external coatings on the measured efficiency is presented and related to the fiber optics. Lastly, inorganic alkali halide scintillator materials of CsI(Tl), CsI(Na), and

  5. Shock wave dispersion in weakly ionized gas

    NASA Astrophysics Data System (ADS)

    Kessaratikoon, Prasong

    2003-10-01

    Electrodeless microwave (MW) discharge in two straight, circular cylindrical resonant cavities in TE1,1,1 and TM0,1,2 modes were introduced to perform additional experimental studies on shock wave modification in non-equilibrium weakly ionized gases and to clarify the physical mechanisms of the shock wave modification process. The discharge was generated in 99.99% Ar at a gas pressure between 20 and 100 Torr and at a discharge power density less than 10.0 Watts/cm3. Power density used for operating the discharge was rather low in the present work, which was determined by evaluating the power loss inside the resonant cavity. It was found that the shock wave deflection signal amplitude was decreased while the shock wave local velocity was increased in the presence of the discharge. However, there was no apparent evidence of the multiple shock structure or the widening of the shock wave deflection signal, as observed in the d.c. glow discharge [3,5]. The shock wave always retained a more compact structure even in the case of strong dispersion in both the TE and the TM mode. The shock wave propagated faster through the discharge in the TE mode than in the TM mode. Discharge characteristics and local parameters such as gas temperature T g, electron density Ne, local electric field E, and average power density, were determined by using the MW discharge generated from an Argon gas mixture that contains 95% Ar, 5% H2, and traces of N2. The gas temperature was evaluated by using the amplitude reduction technique and the emission spectroscopy of Nitrogen. The gas temperature distribution was flat in the central region of the cavity. By comparing the gas temperature calculated from the shock wave local velocity and from the amplitude reduction technique, the present work was sufficiently accurate to indicate that the thermal effect is dominant. The electron density was obtained from measured line shapes of hydrogen Balmer lines by using the gas temperature and the well

  6. Positive ionization of hyperthermal sodium atoms on metal surfaces

    NASA Astrophysics Data System (ADS)

    Overbosch, E. G.; Los, J.

    1981-06-01

    The efficiency for positive ionization of Na atoms, reflected from a metallic surface at room temperature, has been measured in the incident energy range Ein = 25-400 eV at an angle of incidence θi = 60°. The surface is W(110) partially covered with sodium atoms. The ionization is almost complete on clean tungsten for all incident energies, and decreases to zero as a function of coverage. Fifty per cent of a 100 eV primary beam is ionized at a surface coverage of 0.8 × 10 14{atoms}/{cm2} (˜0.1 monolayer). Faster projectiles demand larger coverages to be ionized for fifty per cent. The steepness of the ionization curves as a function of coverage decreases as a function of energy. In general it is found, that the ionization probability of backscattered atoms is larger at increasing incident energy. Comparison of the measured data with the theory of resonance ionization/neutralization confirms the model, and shows that the calculated shift of the valence level of the Na atom near the surface is in agreement with the experimental results.

  7. Ionization nebulae surrounding supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Chiang, E.; Kallman, T.; Malina, R.

    1994-01-01

    In this work we carry out a theoretical investigation of a new type of astrophysical gaseous nebula, viz., ionized regions surrounding supersoft X-ray sources. Supersoft X-ray sources, many of which have characteristic luminosities of approximately 10(exp 37)-(10(exp 38) ergs/s and effective temperatures of approximately 4 x 10(exp 5) K, were first discovered with the Einstein Observatory. These sources have now been shown to constitute a distinct class of X-ray source and are being found in substantial numbers with ROSAT. We predict that these sources should be surrounded by regions of ionized hydrogen and helium with properties that are distinct from other astrophysical gaseous nebulae. We present caluations of the ionization and temperature structure of these ionization nebulae, as well as the expected optical line fluxes. The ionization profiles for both hydrogen and helium exhibit substantially more gradual transitions from the ionized to the unionized state than is the case for conventional H II regions. The calculated optical line intensitites are presented as absolute fluxes from sources in the Large Magellanic Cloud and as fractions of the central source luminosity. We find, in particular, that (O III) lambda 5008 and He II lambda 4686 are especially prominent in these ionization nebulae as compared to other astrophysical nebulae. We propose that searches for supersoft X-rays via their characteristic optical lines may reveal sources in regions where the soft X-rays are nearly completely absorbed by the interstellar medium.

  8. Ionization by Cosmic Rays in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.; Blattnig, S.

    2011-12-01

    In-situ measurements by Cassini-Huygens have shown the importance of ionizing particles (solar photons, magnetospheric electrons and protons, cosmics rays) on the atmosphere of Titan. Ionizing particles play an important role in the atmospheric chemistry of Titan and must therefore be accurately modeled to understand the contribution of the differing sources of ionization. To model the initial galactic cosmic ray environment, the Badwar-O'Neill cosmic ray spectrum model was adapted for use at Titan. The Aeroplanets model, an electron transport model for the study of airglow and aurora, was then coupled to the Planetocosmics model, a Monte-carlo cosmic ray transport and energy deposition model, to compute ion production from cosmic rays. In addition, the NAIRAS model, a cosmic ray irradiation model adapted for fast computations, was adopted to the Titan environment and, for the first time, used to compute an ionization profile on a planet other than Earth and compared to the Planetocosmics results. For the first time, the importance of high charge cosmic rays on the ionization of the Titan atmosphere was demonstrated. High charge cosmic rays were found to be especially important below an altitude of 400 km, contributing significantly to the total ionization. Specifically, between 200 km and 400 km, alpha and higher charge cosmic rays are responsible for 40% of the ionization. The increase due to high charge cosmic rays was found for both the Planetocosmics and NAIRAS models.

  9. Plasmadynamics and ionization kinetics of thermionic energy conversion

    SciTech Connect

    Lawless, J.L. Jr.; Lam, S.H.

    1982-02-01

    To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

  10. The Extended Ionized Halos and Bridge of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Krishnarao, Dhanesh; Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Madsen, Gregory J.; Hill, Alex S.; Gaensler, Bryan M.

    2016-01-01

    The Wisconsin H-Alpha Mapper (WHAM) has revealed ubiquitous ionized emission throughout the gas complexes formed by the dynamic history of the Magellanic Clouds. We present an overview of the immediate environment around the galaxies themselves, including ionized halos of the Small and Large Magellanic Clouds (SMC & LMC) as well as the bridge of material between them. Using WHAM, Barger et al. (2013) found Hα emission extending throughout and beyond H I in the Bridge. We add these new maps of the SMC and LMC to provide the first complete view of the diffuse ionized gas near the interacting system. At R ~ 30,000, WHAM can cleanly separate diffuse emission at Magellanic velocities from the Milky Way and terrestrial sources to the limit of atmospheric line confusion (~ 10s of mR). We find that ionized gas extends at least 5° beyond the traditional boundary of the SMC when compared to recent deep-imaging surveys (e.g., MCELS; Smith et al. 2005). The diffuse ionized emission extent is similar to the neutral gas extent as traced by 21 cm emission. We compare the kinematic signatures between the neutral and ionized components throughout the region. Comprehensive multi-wavelength surveys are also underway to examine how physical parameters and ionization processes vary in these extended systems. WHAM research and operations are supported through NSF Award AST-1108911.

  11. Integrated atom detector based on field ionization near carbon nanotubes

    SciTech Connect

    Gruener, B.; Jag, M.; Stibor, A.; Visanescu, G.; Haeffner, M.; Kern, D.; Guenther, A.; Fortagh, J.

    2009-12-15

    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10{sup 9} V/m, which ionize ground-state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10{sup -10} s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.

  12. Alfvén ionization in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Helling, Ch.; Diver, D. A.; Rimmer, P. B.

    2013-09-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest such objects harbour an atmospheric, localized plasma. For lowmass objects, the degree of thermal ionization is insufficient to qualify the ionized gas as a plasma, posing the question: what ionization processes can efficiently produce the required plasma? We propose Alfvén ionization as a simple mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficiently large degrees of ionization (≥ 10^-7) that they constitute plasmas. We outline the criteria required for Alfvén ionization to occur and justify it's applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs and M-dwarfs for both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization ranging from 10^-6-1 can be obtained. Observable consequences include continuum Bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g. He, Mg, H2 or CO lines). Forbidden lines are also expected from the metastable population as a consequence of the Penning Effect. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models.

  13. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  14. Ionizing particle detection based on phononic crystals

    SciTech Connect

    Aly, Arafa H. E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-14

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  15. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1992-01-01

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  16. Io: Escape and ionization of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1982-01-01

    The model for the Io oxygen cloud was improved and is now capable of calculating the two dimensional sky plane intensity for the 6300A, 1304A and 880A lines, where volume excitation and ionization rates are determined by impact collisions with Io plasma torus electrons. These three emission lines are those for which observations were performed by ground based, rocket, Earth orbiting satellites and Voyager spacecraft nstruments. Comparison of model results with observations at 6300A suggests an isotropic oxygen flux from Io of about (1.5 to 3.0) x 10 to the 9th power atoms cm/sec or an overall source rate of (0.6 to 1.2) x 10 to the 27th power atoms/sec. A model for the expected but yet undetected Io sulfur cloud was also developed and very preliminary results are discussed. Quantitative analysis of the Io sodium cloud focused upon the initial task of acquiring and preliminary evaluation of sodium cloud and Io plasma torus data.

  17. Ionizing radiation and the developing brain

    SciTech Connect

    Schull, W.J.; Norton, S.; Jensh, R.P. )

    1990-05-01

    The unique susceptibility of the central nervous system to radiation exposure is attributable to its extensive period of development, the vulnerability of its neuronal cells, the migratory activity of many of its cells, its inability to replace mature neurons, and the complexity of the system itself. Radiation effects may be due to glial or neuronal cell death, interruption of migratory activity, impaired capacity to establish correct connections among cells, and/or alterations in dendritic development. These structural changes are often manifested as behavioral alterations later in life. Sensitivity to radiation (dose-response) is markedly similar among all mammalian species when developmental periods are compared. This review compares and contrasts human and animal behavioral data. Neonatal and postnatal adult behavioral tests have been shown to be sensitive, noninvasive measures of prenatal radiation exposure, although currently their predictive validity for humans is uncertain. Additional research is needed to determine the presence and significance of postnatal morphologic and functional alterations due to prenatal exposure to low levels of ionizing radiation.75 references.

  18. A Fast Ionization Chamber for GODDESS

    NASA Astrophysics Data System (ADS)

    Lumb, R. T.; Lipman, A. S.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Pain, S. D.; Kozub, R. L.

    2014-09-01

    Transfer reactions are among the main methods used in nuclear physics to probe the structure of nuclei. Such information is needed to constrain nuclear models and to understand various nucleosynthesis processes. In many cases, the nuclear level densities are too high to be resolved in transfer reactions via charged particle detection alone. This problem and issues arising from contaminants in radioactive beams can be addressed by using particle- γ coincidence techniques along with heavy recoil identification in inverse kinematics. A device to accomplish these tasks is Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS), currently being commissioned for the ATLAS facility at ANL. We are currently building a compact, tilted grid ionization chamber for GODDESS to detect and identify beam-like recoils near zero degrees in the lab. The tilt (30 degrees off normal to the beam) helps the ion pairs to be detected quickly, after drifting only a short distance away from the beam axis. This reduces the response time, allowing counting rates of ~500,000/s. The design and current status of the project will be presented. Research supported by the U. S. DOE.

  19. Electron Ionization Mass Spectrum of Tellurium Hexafluoride

    SciTech Connect

    Clark, Richard A.; McNamara, Bruce K.; Barinaga, Charles J.; Peterson, James M.; Govind, Niranjan; Andersen, Amity; Abrecht, David G.; Schwantes, Jon M.; Ballou, Nathan E.

    2015-05-18

    The first electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5+, TeF4+ TeF3+, TeF2+, TeF1+, and Te+, Te2+. A trend in increasing abundance was observed for the even fluoride bearing ions: TeF1+ < TeF3+ < TeF5+, and a decreasing abundance was observed for the even fragment series: Te(0)+ > TeF2+ > TeF4+ > TeF6+, with the molecular ion TeF6+ not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6+.

  20. Ionizing particle detection based on phononic crystals

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-01

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  1. An experimental investigation of mesospheric ionization

    NASA Technical Reports Server (NTRS)

    Mitchell, J. D.

    1973-01-01

    Mesospheric ionization and its variability are examined. Data were obtained primarily by the parachute-borne blunt probe technique conducted in coordinated rocket experiments at White Sands Missile Range, New Mexico and Wallops Island, Virginia. Electrical conductivity measurements and deduced charge density values from ten rocket launches are presented and discussed. Positive ion conductivity and electron density were found to be relatively invariant with height between 45 and 60 km. Variations in positive conductivity of a factor of two and enhancements in negative conductivity by as much as a factor of four were measured by the blunt probe. A simple lumped parameter ion chemistry model is shown to satisfactorily explain the charge density values for the undisturbed lower D-region. Implications of the data in terms of this model are considered. The principal loss mechanism for positive ions in the 45 to 60 km. region is concluded to be dissociative recombination. Electron densities deduced from the conductivity data are explained by detachment involving a minor neutral constituent which is mixed between 65 and 45 km. and then cuts off sharply below 45 km. A correlation study involving blunt probe measurements shows relatively good agreement between variations in positive conductivity and temperature.

  2. TURBULENCE IN WEAKLY IONIZED PROTOPLANETARY DISKS

    SciTech Connect

    Flock, M.; Henning, Th.; Klahr, H.

    2012-12-20

    We investigate the characteristic properties of self-sustained magneto-rotational instability (MRI) turbulence in low-ionized protoplanetary disks. We study the transition regime between active and dead zones, performing three-dimensional global non-ideal MHD simulations of stratified disks covering a range of magnetic Reynolds numbers between 2700 {approx}< R{sub m} {approx}< 6600. We found converged and saturated MRI turbulence for R{sub m} {approx}>5000 with a strength of {alpha}{sub SS} {approx} 0.01. Below R{sub m} {approx}< 5000, the MRI starts to decay at the midplane at first because the Elsasser number drops below 1. We find a transition regime between 3300{approx}

  3. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  4. Optical and Ionization Basic Cosmic Ray Detector

    NASA Astrophysics Data System (ADS)

    Felix, Julian; Andrade, Diego A.; Araujo, Aurora C.; Arceo, Luis; Cervantes, Carlos A.; Molina, Jorge A.; Palacios, Luz R.

    2014-03-01

    There are drift tubes, operating in the Geiger mode, to detect ionization radiation and there are Cerenkov radiation detectors based on photomultiplier tubes. Here is the design, the construction, the operation and the characterization of a hybrid detector that combines both a drift tube and a Cerenkov detector, used mainly so far to detect cosmic rays. The basic cell is a structural Aluminum 101.6 cm-long, 2.54 cm X 2.54 cm-cross section, 0.1 cm-thick tube, interiorly polished to mirror and slightly covered with TiCO2, and filed with air, and Methane-Ar at different concentrations. There is a coaxial 1 mil Tungsten wire Au-coated at +700 to +1200 Volts electronically instrumented to read out in both ends; and there is in each end of the Aluminum tube a S10362-11-100U Hamamatsu avalanche photodiode electronically instrumented to be read out simultaneously with the Tungsten wire signal. This report is about the technical operation and construction details, the characterization results and potential applications of this hybrid device as a cosmic ray detector element. CONACYT, Mexico.

  5. Decontamination of pesticide packing using ionizing radiation

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Mori, M. N.; Kodama, Yasko; Oikawa, H.; Sampa, M. H. O.

    2007-11-01

    The Brazilian agriculture activities have consumed about 288,000 tons of pesticides per year conditioned in about 107,000,000 packing with weight of approximately 23,000 tons. The discharge of empty plastic packing of pesticides can be an environmental concern causing problems to human health, animals, and plants if done without inspection and monitoring. The objective of this work is to study the ionizing radiation effect in the main pesticides used in Brazil for plastic packing decontamination. Among the commercial pesticides, chlorpyrifos has significant importance because of its wide distribution and extensive use and persistence. The radiation-induced degradation of chlorpyrifos in liquid samples and in polyethylene pack was studied by gamma radiolysis. Packing of high-density polyethylene (HDPE) three layer coextruded, named COEX, contaminated with chlorpyrifos, were irradiated using both a multipurpose Co-60 gamma irradiator and a gamma source with 5000 Ci total activity Gamma cell type. The chemical analysis of the chlorpyrifos was made using a gas chromatography associated to the Mass Spectrometry—GCMS from Shimadzu Model QP 5000. Gamma radiation was efficient for removing chlorpyrifos from the plastic packing, in all studied cases.

  6. Ionization balance in EBIT and tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Peacock, N. J.; Barnsley, R.; O'Mullane, M. G.; Tarbutt, M. R.; Crosby, D.; Silver, J. D.; Rainnie, J. A.

    2001-01-01

    The equilibrium state in tokamak core plasmas has been studied using the relative intensities of resonance x-ray lines, for example Lyα (H-like), "w" (He-like), and "q" (Li-like) from test ions such as Ar+15, Ar+16, and Ar+17. A full spatial analysis involves comparison of the line intensities with ion diffusion calculations, including relevant atomic rates. A zero-dimensional model using a global ion loss rate approximation has also been demonstrated by comparison with the data collected from a Johann configuration spectrometer with a charged coupled device (CCD) detector. Since the lines are nearly monoenergetic, their intensities are independent of the instrument sensitivity and are directly proportional to the ion abundances. This method has recently been applied to Ar in the Oxford electron beam ion trap (EBIT) with a beam energy in the range 3-10 keV. Taking into account the cross sections for monoenergetic electron collisions and polarization effects, model calculations agree with the observed line ratios at 4.1 keV beam energy. This work will be expanded to provide nomograms of ionization state versus line intensity ratios as a function of EBIT beam energy.

  7. Effects of prenatal exposure to ionizing radiation

    SciTech Connect

    Miller, R.W. )

    1990-07-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities.

  8. An ionization profile monitor for the Tevatron

    SciTech Connect

    Jansson, A.; Bowden, M.; Bowie, K.; Bross, A.; Dysert, R.; Fitzpatrick, T.; Kwarciany, R.; Lundberg, C.; Nguyen, H.; Rivetta, C.; Slimmer, D.; Valerio, L.; Zagel, J.; /Fermilab

    2005-05-01

    Primarily to study emittance blowup during injection and ramping, an ionization profile monitor has been developed for the Tevatron. It is based on a prototype installed in the Main Injector, although with extensive modifications. In particular, the electromagnetic shielding has been improved, the signal path has been cleaned up, and provisions have been made for an internal electron source. Due to the good Tevatron vacuum, a local pressure bump is introduced to increase the primary signal, which is then amplified by a microchannel plate and detected on anode strips. For the DAQ, a custom ASIC developed for the CMS experiment is used. It is a combined charge integrator and digitizer, with a sensitivity of a few fC, and a time-resolution that allows single bunch measurement. Digitization is done in the tunnel to reduce noise. Preparations for detector installation were made during the long 2004 shutdown, with the installation of magnets, vacuum chambers, vacuum pumps and cabling. The actual detector will be installed during the fall 2005 shutdown. This paper describes the design of the detector and associated electronics, and presents various bench test results.

  9. Astronomical redshifts of highly ionized regions

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2014-07-01

    Astronomical or cosmological redshifts are an observable property of extragalactic objects and have historically been wholly attributed to the recessional velocity of that object. The question of other, or intrinsic, components of the redshift has been highly controversial since it was first proposed. This paper investigates one theoretical source of intrinsic redshift that has been identified. The highly ionized regions of Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSO) are, by definition, plasmas. All plasmas have electromagnetic scattering characteristics that could contribute to the observed redshift. To investigate this possibility, one region of a generalized AGN was selected, the so called Broad Line Region (BLR). Even though unresolvable with current instrumentation, physical estimates of this region have been published for years in the astronomical literature. These data, selected and then averaged, are used to construct an overall model that is consistent with the published data to within an order of magnitude. The model is then subjected to a theoretical scattering investigation. The results suggest that intrinsic redshifts, derivable from the characteristics of the ambient plasma, may indeed contribute to the overall observed redshift of these objects.

  10. Axisymmetric model of the ionized gas in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.

  11. Ionization and scintillation of nuclear recoils in gaseous xenon

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.; Álvarez, V.; Borges, F. I. G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gil, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Moiseenko, A.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot-Guinot, M.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Seguí, L.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J.; Yahlali, N.

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  12. Laser-induced volatilization and ionization of microparticles

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.

    1984-01-01

    A method for the laser vaporization and ionization of individual micron-size particles is presented whereby a particle is ionized by a laser pulse while in flight in the beam. Ionization in the beam offers a real-time analytical capability and eliminates any possible substrate-sample interferences during an analysis. An experimental arrangement using a high-energy Nd-YAG laser is described, and results are presented for ions generated from potassium biphthalate particles (1.96 micron in diameter). The method proposed here is useful for the chemical analysis of aerosol particles by mass spectrometry and for other spectroscopic and chemical kinetic studies.

  13. Electron-Impact Total Ionization Cross Sections of Hydrocarbon Ions

    PubMed Central

    Irikura, Karl K.; Kim, Yong-Ki; Ali, M. A.

    2002-01-01

    The Binary-Encounter-Bethe (BEB) model for electron-impact total ionization cross sections has been applied to CH2+, CH3+, CH4+, C2H2+, C2H4+, C2H6+ and H3O+. The cross sections for the hydrocarbon ions are needed for modeling cool plasmas in fusion devices. No experimental data are available for direct comparison. Molecular constants to generate total ionization cross sections at arbitrary incident electron energies using the BEB formula are presented. A recent experimental result on the ionization of H3O+ is found to be almost 1/20 of the present theory at the cross section peak.

  14. Astrophysical Ionizing Radiation Sources and Life on Earth

    NASA Astrophysics Data System (ADS)

    Thomas, Brian

    2013-04-01

    Astrophysical sources of ionizing radiation have been recognized as a potential threat to life on Earth, primarily through long-term depletion of stratospheric ozone, leading to greatly increased solar ultraviolet (UV) irradiance at the surface. It has been suggested that a gamma-ray burst, in particular, may have initiated the late Ordovician mass extinction - one of the ``big five'' known extinctions. I will describe the atmospheric impacts of ionizing radiation events and discuss estimates of biological damage under a severely depleted ozone layer. In particular, I will describe new and on-going work to quantify the impact of ionizing radiation events on primary producers in Earth's oceans.

  15. Ionization sources and mass analyzers in MS imaging.

    PubMed

    Tsai, Yu-Hsuan; Menger, Robert F; Drexler, Dieter M; Yost, Richard A; Garrett, Timothy J

    2015-01-01

    Drug absorption, distribution, metabolism, excretion and toxicology study is one important step in drug discovery and development. MS imaging has become one of the popular methods in this field. Here, selected ionization methods such as matrix-assisted laser desorption/ionization, secondary ion MS and desorption electrospray ionization have been briefly discussed. To differentiate drug and drug metabolites from endogenous compounds present in the biological system, exact mass and/or tandem MS is necessary. As a result, mass analyzers such as time-of-flight, Fourier transform ion cyclotron resonance or Orbitrap are often the method of choice and are briefly introduced. PMID:26511148

  16. Laser stripping of hydrogen atoms by direct ionization

    DOE PAGESBeta

    Brunetti, E.; Becker, W.; Bryant, H. C.; Jaroszynski, D. A.; Chou, W.

    2015-05-08

    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.

  17. Signatures of bound-state-assisted nonsequential double ionization

    SciTech Connect

    Sukiasyan, Suren; McDonald, Chris; Van Vlack, Cole; Destefani, Carlos; Fennel, Thomas; Brabec, Thomas; Ivanov, Misha

    2009-07-15

    The time-dependent multiconfiguration Hartree method is optimized for intense laser dynamics and applied to nonsequential double ionization in a two-electron diatomic model molecule with two dimensions per electron. The efficiency of our method brings these calculations from the realm of large scale computation facilities to single processor machines. The resulting two-electron spectrum exhibits pronounced signatures from which the ionic bound states involved in nonsequential double ionization are retrieved with the help of a semiclassical model. A mechanism for the ionization dynamics is suggested.

  18. ONSET OF FAST MAGNETIC RECONNECTION IN PARTIALLY IONIZED GASES

    SciTech Connect

    Malyshkin, Leonid M.; Zweibel, Ellen G. E-mail: zweibel@astro.wisc.edu

    2011-10-01

    We consider quasi-stationary two-dimensional magnetic reconnection in a partially ionized incompressible plasma. We find that when the plasma is weakly ionized and the collisions between the ions and the neutral particles are significant, the transition to fast collisionless reconnection due to the Hall effect in the generalized Ohm's law is expected to occur at much lower values of the Lundquist number, as compared to a fully ionized plasma case. We estimate that these conditions for fast reconnection are satisfied in molecular clouds and in protostellar disks.

  19. Determination of the first ionization potential of actinium

    NASA Astrophysics Data System (ADS)

    Roßnagel, J.; Raeder, S.; Hakimi, A.; Ferrer, R.; Trautmann, N.; Wendt, K.

    2012-01-01

    Using resonance ionization spectroscopy the first-ionization potential of actinium has been determined by analyzing different Rydberg series in two-color resonant laser excitation. Three individual Rydberg series were investigated, converging toward the ionic ground state and toward the first- and second-excited state of the actinium ion, respectively. A combined analysis of the convergence limits leads to a consistent value for the first-ionization potential of Ac of 43394.45(19)cm-1, equivalent to 5.380226(24) eV.

  20. Lattice Boltzmann method for weakly ionized isothermal plasmas

    SciTech Connect

    Li Huayu; Ki, Hyungson

    2007-12-15

    In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values.