Science.gov

Sample records for above-threshold ionization spectra

  1. Molecular above-threshold ionization spectra as an evidence of the three-point interference of electron wave packets

    NASA Astrophysics Data System (ADS)

    Hasović, Elvedin; Milošević, Dejan B.; Gazibegović-Busuladžić, Azra; Čerkić, Aner; Busuladžić, Mustafa

    2015-03-01

    We consider high-order above-threshold ionization (HATI) of polyatomic molecules ionized by a strong linearly polarized laser field. Improved molecular strong-field approximation by which the HATI process on polyatomic molecular species can be described is developed. Using this theory we calculate photoelectron angular-energy spectra for different triatomic molecules. Special attention is devoted to the minima that are observed in the calculated high-energy electron spectra of the ozone and carbon dioxide molecules. A key difference between these minima and minima that are observed in the corresponding spectra of diatomic molecules are presented.

  2. Above-threshold ionization of Mg by linearly and circularly polarized laser fields: Origin of the subpeaks in the photoelectron energy spectra

    SciTech Connect

    Nakajima, Takashi; Buica, Gabriela

    2006-08-15

    We theoretically investigate above-threshold ionization of Mg by linearly and circularly polarized fs laser pulses. We find that the above-threshold ionization peaks are accompanied by small subpeaks for both linearly and circularly polarized pulses. We interpret the physical origin of the subpeaks as above-threshold ionization from the low-lying bound states which are far off-resonantly excited by the spectral wing of the pulse. This interpretation is confirmed by our comparative numerical studies. Furthermore, we provide a clear explanation of why this kind of subpeak in the photoelectron energy spectra has not been reported for smaller photon energies with Mg and other commonly used atoms such as H and rare gas atoms.

  3. Above-threshold ionization by chirped laser pulses

    SciTech Connect

    Nakajima, Takashi

    2007-05-15

    We theoretically investigate above-threshold ionization by chirped laser pulses. By comparing the photoelectron energy spectra and the photoelectron angular distributions of Na for the laser pulses with different chirp rates but with the identical spectral profile, we find that the ionization processes have a clear dependence on the chirp rate. Further calculations without excited bound states during the time propagation of the wave function reveal practically no chirp dependence, which is clear evidence that the origin of the chirp dependence in above-threshold ionization is the excited bound states.

  4. Interference structure of above-threshold ionization versus above-threshold detachment

    NASA Astrophysics Data System (ADS)

    Korneev, Ph A.; Popruzhenko, S. V.; Goreslavski, S. P.; Becker, W.; Paulus, G. G.; Fetić, B.; Milošević, D. B.

    2012-05-01

    Laser-induced electron detachment or ionization of atoms and negative ions is considered. In the context of the saddle-point evaluation of the strong-field approximation (SFA), the velocity maps of the direct electrons (those that do not undergo rescattering) exhibit a characteristic structure due to the constructive and destructive interference of electrons liberated from their parent atoms/ions within certain windows of time. This structure is defined by the above-threshold ionization rings at fixed electron energy and by two sets of curves in momentum space on which destructive interference occurs. The spectra obtained with the SFA are compared with those obtained by numerical solution of the time-dependent Schrödinger equation. For detachment, the agreement is excellent. For ionization, the effect of the Coulomb field is most pronounced for electrons emitted in a direction close to laser polarization, while for near-perpendicular emission the qualitative appearance of the spectrum is unaffected.

  5. Resonant effects in above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Hertlein, Marcus P.

    2000-09-01

    The ionization of noble gases in high intensity laser fields produces an electron spectrum with characteristic peaks corresponding to atomic levels of the atom. While many of the features in the low energy part of the spectrum have been explained qualitatively, current models are incomplete and are not able to account for the recurrence of ionization probability for higher energy electrons. In particular, one of the basic questions arising is the importance of multiple ionization in these spectra. While the light intensities are in the regime where multiple ionization is known to occur, it was not clear whether the higher energy (or plateau) electrons are a result of this, and whether multiple ionization even leaves a signature in the electron spectrum. In this dissertation, we use several experimental techniques to explore this problem in argon. Our results show that although multiple ionization occurs, electrons from this process do not appear in the observed electron spectrum. Furthermore, the appearance intensities of the peaks visible in the plateau region of the electron spectrum and of the resonance peaks in the well- understood low energy part show a strong correlation, suggestion a common origin of production. Accurate computer simulations of the process, using a single- active-electron model, reproduce all essential features of the experimental spectra. Our results support the conclusion that all high energy electrons observed in our experiments can be explained with single-electron effects.

  6. Rings in above-threshold ionization: A quasiclassical analysis

    SciTech Connect

    Lewenstein, M.; Kulander, K.C.; Schafer, K.J.; Bucksbaum, P.H. Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Warszawa 02-668 Theoretical Atomic and Molecular Physics , Physics Department, Lawrence Livermore National Laboratory, Livermore, California 94550 Physics Department and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-1120 )

    1995-02-01

    A generalized strong-field approximation is formulated to describe atoms interacting with intense laser fields. We apply it to determine angular distributions of electrons in above-threshold ionization (ATI). The theory treats the effects of an electron rescattering from its parent ion core in a systematic perturbation series. Probability amplitudes for ionization are interpreted in terms of quasiclassical electron trajectories. We demonstrate that contributions from the direct tunneling processes in the absence of rescattering are not sufficient to describe the observed ATI spectra. We show that the high-energy portion of the spectrum, including recently discovered rings (i.e., complex features in the angular distributions of outgoing electrons) are due to rescattering processes. We compare our quasiclassical results with exact numerical solutions.

  7. Above-threshold ionization in two electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bardfield, Rina Shoshana

    1997-11-01

    Above-threshold ionization (ATI) is a process in which a target atom absorbs more than the minimum number of photons from an applied electromagnetic field than are required for ionization, and is characterized by several peaks in the photoelectron spectrum which are separated from each other by the energy of a single photon (Agostini et al. 1979). The experiments of interest in this work involve ATI at microwave frequencies (Gallagher 1988, Gallagher and Scholz 1989), where the frequency of the field is too low to be able to see individual peaks in the spectrum. What is seen is that, in the presence of a weak assisting field, a very large number of microwave photons are absorbed. This problem cannot be treated using standard methods, due both to the intensity of the microwave field and to the large numbers of photons absorbed. The focus of this work is on the development of new analytical techniques to examine the interaction of an atomic system with two simultaneous electromagnetic fields. Specifically, the work focuses on above-threshold ionization in combined microwave and laser fields, where the microwave field is a very strong, very low frequency field, so that standard techniques, such as perturbation theory, do not apply. The work is based on two theoretical methods especially designed for use in intense field problems. These are the Strong Field Approximation (SFA) (Reiss 1980, 1992, 1996), which describes the ionization of an atom by an intense field in which the detached electron remains free in the field after ionization occurs, and the Momentum Translation Approximation (MTA) (Reiss 1970a, 1970b, 1989), which describes the dressing of a bound atomic state by a strong field in which the field can alter the state of the electron without necessarily causing transitions. The laser field, which is much weaker, is treated by traditional techniques. The theory is developed in general terms using S-matrix methods, with particular cases being modeled using

  8. Above-threshold ionization through Rydberg state population

    NASA Astrophysics Data System (ADS)

    Xin, Pei Pei; Yuan, Ming Hu; Wang, Han Mu; Yang, Hai Feng; Liu, Hong Ping

    2017-04-01

    We present a theoretical scenario for the atomic above-threshold ionization (ATI) in an intense laser field by investigating the Rydberg state population in real time. Rather than merely viewing the final distribution of photoelectron yield directly, we monitor the Rydberg state population by projecting the time-dependent wave function onto the bound eigen-states. The calculation shows that the population of resonant Rydberg states is closely related to the peaks in photoelectron kinetic energy spectrum (PKES). For a hydrogen atom, the highest populated Rydberg states are degenerated, exactly corresponding to the first ATI peak if one additional photon is absorbed. While for non-hydrogen atoms, e.g., Ar, the highest Rydberg states are mainly populated on specific states, e.g., 3 d (5 s) and 4f in our case, also giving exact peak positions in PKES, where the state identification is obtained by the angular momentum resolved distribution of excited Rydberg states. This method provides an easy to understand picture for the resonance-enhanced effects in ATI as well as the role of atomic core potential in strong-field ionization.

  9. Intensity-resolved above-threshold ionization of xenon with short laser pulses

    NASA Astrophysics Data System (ADS)

    Hart, N. A.; Strohaber, J.; Kaya, G.; Kaya, N.; Kolomenskii, A. A.; Schuessler, H. A.

    2014-05-01

    We present intensity-resolved above-threshold ionization (ATI) spectra of xenon using an intensity scanning and deconvolution technique. Experimental data were obtained with laser pulses of 58 fs and a central wavelength of 800 nm from a chirped-pulse amplifier. Applying a deconvolution algorithm, we obtained spectra that have higher contrast and are in excellent agreement with characteristic two and ten Up cutoff energies contrary to that found for raw data. The retrieved electron-ionization probability is consistent with the presence of a second electron from double ionization. This recovered ionization probability is confirmed with a calculation based on the Perelomov, Popov, and Terent'ev tunneling ionization model [Sov. Phys. JETP 23, 924 (1966)]. Thus, the measurements of the photoelectron yields and the developed deconvolution technique allowed retrieval of more accurate spectroscopic information from the ATI spectra and ionization probability features that usually are concealed by volume averaging.

  10. Charge-distribution effect of imaging molecular structure by high-order above-threshold ionization

    SciTech Connect

    Wang Bingbing; Fu Panming; Guo Yingchun; Zhang Bin; Zhao Zengxiu; Yan Zongchao

    2010-10-15

    Using a triatomic molecular model, we show that the interference pattern in the high-order above-threshold ionization (HATI) spectrum depends dramatically on the charge distribution of the molecular ion. Therefore the charge distribution can be considered a crucial factor for imaging a molecular geometric structure. Based on this study, a general destructive interference formula for each above-threshold ionization channel is obtained for a polyatomic molecule concerning the positions and charge values of each nuclei. Comparisons are made for the HATI spectra of CO{sub 2}, O{sub 2}, NO{sub 2}, and N{sub 2}. These results may shed light on imaging complex molecular structure by the HATI spectrum.

  11. Molecular above-threshold-ionization angular distributions with attosecond bichromatic intense XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-01-01

    Angular distributions of molecular above-threshold ionization (MATI) in bichromatic attosecond extreme ultraviolet (XUV) linear polarization laser pulses have been theoretically investigated. Multiphoton ionization in a prealigned molecular ion H2+ produces clear MATI spectra which show a forward-backward asymmetry in angular and momentum distributions which is critically sensitive to the carrier envelope phase (CEP) φ, the time delay Δτ between the two laser pulses, and the photoelectron kinetic energies Ee. The features of the asymmetry in MATI angular distributions are described well by multiphoton perturbative ionization models. Phase differences of continuum electron wave functions can be extracted from the CEP φ and time delay Δτ dependent ionization asymmetry ratio created by interfering multiphoton ionization pathways. At large internuclear distances MATI angular distributions exhibit more complex features due to laser-induced electron diffraction where continuum electron wavelengths are less than the internuclear distance.

  12. Quantum path analysis of high-order above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Kopold, R.; Becker, W.; Kleber, M.

    2000-05-01

    High-order above-threshold ionization spectra are calculated via an improved Keldysh approximation that takes rescattering into account. An approximate method of evaluating the crucial multidimensional integral proceeds via the saddle point method. The saddle points define complex orbits in position space that depart from the ion and return to it to rescatter. The real parts of these orbits are very closely related to the trajectories of the simple-man model. The spectra are analyzed in terms of these quantum orbits whose constructive and destructive interferences generate the spectrum's intricate structures. In most spectral regions, the six trajectories having the shortest travel times between start and return already provide an excellent approximation to the exact calculation. In exceptional cases, more orbits are required. The quantum orbits provide an illuminating illustration of the quantum mechanical path integral.

  13. Interference substructure of above-threshold ionization peaks in the stabilization regime

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2008-09-01

    The photoelectron spectra produced in the photodetachment of H- (treated in the single-active-electron approximation) by strong high-frequency laser pulses with adequately chosen laser parameters in the stabilization regime are theoretically studied for elliptic polarization over an extended parameter range. An oscillating substructure in the above-threshold ionization peaks is observed, which confirms similar findings in the one-dimensional (1D) [K. Toyota , Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. The mechanism is an interference between the photoelectron wave packets created in the rising and falling parts of the pulse which is specific to the stabilization regime. We thus conclude that this interference substructure is robust for any polarization and over a wide range of the laser parameters, and hence should be observable experimentally.

  14. Nonconstant ponderomotive energy in above-threshold ionization by intense short laser pulses

    NASA Astrophysics Data System (ADS)

    Della Picca, R.; Gramajo, A. A.; Garibotti, C. R.; López, S. D.; Arbó, D. G.

    2016-02-01

    We analyze the contribution of the quiver kinetic energy acquired by an electron in an oscillating electric field of a short laser pulse to the energy balance in atomic ionization processes. Due to the time dependence of this additional kinetic energy, a temporal average is assumed to preserve a stationary energy conservation rule, which is used to predict the position of the energy peaks observed in the photoelectron (PE) spectra. For a plane wave and a flattop pulse, the mean value of the quiver energy over the whole pulse leads to the concept of ponderomotive energy Up. However, for a short pulse with a fast changing intensity, the stationary approximation loses its validity. We check these concepts by studying first the PE spectrum within the semiclassical model (SCM) for multiple-step pulses. The SCM offers the possibility to establish a connection between emission times and the PE spectrum in the energy domain. We show that PE substructures stem from ionization at different times mapping the pulse envelope. We also analyze the PE spectrum for a realistic sine-squared envelope within the Coulomb-Volkov and ab initio calculations solving the time-dependent Schrödinger equation. We found that the electron emission amplitudes produced at different times interfere with each other producing, in this way, a new additional pattern that modulates the above-threshold ionization (ATI) peaks.

  15. Electron-nuclear energy sharing in above-threshold multiphoton dissociative ionization of H2.

    PubMed

    Wu, J; Kunitski, M; Pitzer, M; Trinter, F; Schmidt, L Ph H; Jahnke, T; Magrakvelidze, M; Madsen, C B; Madsen, L B; Thumm, U; Dörner, R

    2013-07-12

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles.

  16. Diffraction at a time grating in above-threshold ionization: The influence of the Coulomb potential

    SciTech Connect

    Arbo, Diego G.; Ishikawa, Kenichi L.; Schiessl, Klaus; Persson, Emil; Burgdoerfer, Joachim

    2010-10-15

    We analyze the photoelectron emission spectrum in atomic above-threshold ionization by a linearly polarized short-laser pulse. Direct electrons can be characterized by both intracycle and intercycle interferences. The former results from the coherent superposition of two different electron trajectories released in the same optical cycle, whereas the latter is the consequence of the superposition of multiple trajectories released in different cycles. In the present article, a semiclassical analytical expression for the complete (both intracycle and intercycle) interference pattern is derived. We show that the recently proposed semiclassical description in terms of a diffraction process at a time grating remains qualitatively unchanged in the presence of the long-range Coulomb potential. The latter causes only a phase shift of the intracycle interference pattern. We verify the predictions of the semiclassical model by comparison with full three-dimensional (3D) time-dependent Schroedinger equation (TDSE) solutions. One key finding is that the subcycle interference structures originating from trajectories launched within a time interval of less than 1 femtosecond should be experimentally observable also in low-resolution spectra for longer multicycle pulses.

  17. Resonancelike enhancement in high-order above-threshold ionization of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Wang, C.; Okunishi, M.; Hao, X.; Ito, Y.; Chen, J.; Yang, Y.; Lucchese, R. R.; Zhang, M.; Yan, B.; Li, W. D.; Ding, D.; Ueda, K.

    2016-04-01

    We investigate the resonance-like enhancement (RLE) in high-order above-threshold ionization (ATI) spectra of the polyatomic molecules C2H4 and C2H6 . In the spectrum-intensity maps, strong and weak RLE areas emerge alternatively for both C2H4 and C2H6 but in different sequences. Theoretical calculations using the strong-field approximation reproduce the experimental observation and analysis shows that the different characteristics of the two molecules can be attributed to interference effects of molecular orbitals with different symmetries. For C2H4 , the RLE structures are attributed to C-C centers of the highest occupied molecular orbital (HOMO) orbital. For C2H6 , in contrast, the C-C centers of the HOMO and HOMO-1 orbitals do not contribute to the RLE due to destructive interference but the hydrogen centers of the bonding HOMO-1 orbital give rise to the multiple RLE regions. In addition, clear experimental evidence of the existence of two types of the RLE and their dependence on the parity of ground state is shown. Our result, which strongly supports the channel-closing mechanism of the RLE, for the first time reveals the important role of low-lying orbitals and the differing roles of different atomic centers in the high-order ATI spectrum of molecules.

  18. Influence of multi-photon excitation on the atomic above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Tian, Yuan-Ye; Wang, Chun-Cheng; Li, Su-Yu; Guo, Fu-Ming; Ding, Da-Jun; Wim-G, Roeterdink; Chen, Ji-Gen; Zeng, Si-Liang; Liu, Xue-Shen; Yang, Yu-Jun

    2015-04-01

    Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrödinger equation of a hydrogen-like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in above-threshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the above-threshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grants Nos. 11274141, 11034003, 11304116, 11274001, and 11247024), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20140101168JC).

  19. Dynamical medium depletion in high-order above-threshold ionization with few-cycle laser pulses

    SciTech Connect

    Altucci, C.; Velotta, R.; Tosa, V.; Nam, C.H.

    2004-12-01

    The influence of dynamical medium depletion in high-order above-threshold ionization (ATI) in left/right asymmetry of photoelectron energy spectra is analyzed. Based on a classical analysis of high-order ATI electrons produced by few-cycle laser pulses, calculated asymmetry maps of electron spectra reproduce very well the experimental results reported in Lindner et al. [Phys. Rev. Lett. 92, 113001 (2004)], utilized for determining the Guoy phase shift of few-cycle laser pulses. The anomalous behavior of the high-energy part of the ATI electron spectra is, then, fully understood in terms of earlier medium depletion occurring in the leading edge of the laser pulse. In order to correctly reproduce the experimental findings a physical temporal envelope of the laser pulse, which only vanishes at the infinity, plays a crucial role.

  20. Phase space path-integral formulation of the above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.

    2013-04-01

    Atoms and molecules submitted to a strong laser field can emit electrons of high energies in the above-threshold ionization (ATI) process. This process finds a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits [P. Salières et al., Science 292, 902 (2001)], 10.1126/science.108836. However, the connection with the Feynman path-integral formalism is explained only by intuition and analogy and within the so-called strong-field approximation (SFA). Using the phase space path-integral formalism we have obtained an exact result for the momentum-space matrix element of the total time-evolution operator. Applying this result to the ATI we show that the SFA and the so-called improved SFA are, respectively, the zeroth- and the first-order terms of the expansion in powers of the laser-free effective interaction of the electron with the rest of the atom (molecule). We have also presented the second-order term of this expansion which is responsible for the ATI with double scattering of the ionized electron.

  1. Angle-dependent molecular above-threshold ionization with ultrashort intense linearly and circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2011-07-01

    We present molecular above-threshold ionization (MATI) spectra generated by ultrashort intense linearly and circularly polarized laser pulses from nonperturbative numerical solutions of the corresponding time-dependent Schrödinger equation in the molecular-ion H2+. It is found that high-order MATI spectra with maximum kinetic energy 32Up, where Up=I0/4meω02 is the ponderomotive energy at intensity I0 and frequency ω0, can be obtained in H2+ at great internuclear distances R for both linear and circular polarizations. Quasiclassical laser-induced collision models confirm that such high-order MATIs mainly result from a collision with neighboring ions of the ionized electron. Interference patterns in the high-order MATI spectra are critically sensitive to both the internuclear distance R of the molecules and the polarizations of the driving laser pulses. Moreover, with few-cycle laser pulses, the carrier-envelope phase sensitivity of MATI angular distributions is also investigated for varying internuclear distances R. At critical internuclear distances for charge-resonance-enhanced ionization, we also find that enhanced interference patterns occur.

  2. Angle-dependent molecular above-threshold ionization with ultrashort intense linearly and circularly polarized laser pulses

    SciTech Connect

    Yuan, Kai-Jun; Bandrauk, Andre D.

    2011-07-15

    We present molecular above-threshold ionization (MATI) spectra generated by ultrashort intense linearly and circularly polarized laser pulses from nonperturbative numerical solutions of the corresponding time-dependent Schroedinger equation in the molecular-ion H{sub 2}{sup +}. It is found that high-order MATI spectra with maximum kinetic energy 32U{sub p}, where U{sub p}=I{sub 0}/4m{sub e}{omega}{sub 0}{sup 2} is the ponderomotive energy at intensity I{sub 0} and frequency {omega}{sub 0}, can be obtained in H{sub 2}{sup +} at great internuclear distances R for both linear and circular polarizations. Quasiclassical laser-induced collision models confirm that such high-order MATIs mainly result from a collision with neighboring ions of the ionized electron. Interference patterns in the high-order MATI spectra are critically sensitive to both the internuclear distance R of the molecules and the polarizations of the driving laser pulses. Moreover, with few-cycle laser pulses, the carrier-envelope phase sensitivity of MATI angular distributions is also investigated for varying internuclear distances R. At critical internuclear distances for charge-resonance-enhanced ionization, we also find that enhanced interference patterns occur.

  3. Strong-field approximation for above-threshold ionization of polyatomic molecules. II. The role of electron rescattering off the molecular centers

    NASA Astrophysics Data System (ADS)

    Hasović, E.; Milošević, D. B.

    2014-05-01

    We consider high-order above-threshold ionization of polyatomic molecules by a strong laser field. An improved molecular strong-field approximation which takes into account the electron rescattering off the molecular centers is developed. The presented theory is applied to calculate the photoelectron energy and angular distributions for the ozone molecule. The obtained spectra exhibit pronounced minima, and this is explained as a three-point destructive interference of the rescattered electron wave packets.

  4. Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light

    NASA Astrophysics Data System (ADS)

    Seipt, D.; Müller, R. A.; Surzhykov, A.; Fritzsche, S.

    2016-11-01

    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultraviolet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target atoms with regard to the beam axis. In addition, analog to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of the atoms relative to the beam. For macroscopically extended targets, in contrast, three of these dichroism signals tend to zero, while the other four just coincide with the standard circular dichroism, similar as for Bessel beams with a small opening angle. Detailed computations of the dichroism are performed and discussed for the 4 s valence-shell photoionization of Ca+ ions.

  5. Above-threshold ionization in neon produced by combining optical and bichromatic XUV femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Douguet, Nicolas; Grum-Grzhimailo, Alexei N.; Bartschat, Klaus

    2017-01-01

    We consider the ionization of neon induced by a femtosecond laser pulse composed of overlapping, linearly polarized bichromatic extreme ultraviolet and infrared fields. In particular, we study the effects of infrared light on a two-pathway ionization scheme for which Ne 2 s22 p53 s 1P is used as the intermediate state. Using time-dependent calculations, supported by a theoretical approach based on the strong-field approximation, we analyze the ionization probability and the photoelectron angular distributions associated with the different sidebands of the ionization spectrum. Complex oscillations of the angular distribution anisotropy parameters as a function of the infrared light intensity are revealed. Finally, we demonstrate that coherent control of the asymmetry is achievable by tuning the infrared frequency to a nearby electronic transition.

  6. Above-threshold ionization with highly charged ions in superstrong laser fields. I. Coulomb-corrected strong-field approximation

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.

    2013-02-01

    Aiming at the investigation of above-threshold ionization in superstrong laser fields with highly charged ions, we develop a Coulomb-corrected strong-field approximation (SFA). The influence of the Coulomb potential of the atomic core on the ionized electron dynamics in the continuum is taken into account via the eikonal approximation, treating the Coulomb potential perturbatively in the phase of the quasiclassical wave function of the continuum electron. In this paper the formalism of the Coulomb-corrected SFA for the nonrelativistic regime is discussed, employing velocity and length gauge. Direct ionization of a hydrogenlike system in a strong linearly polarized laser field is considered. The relation of the results in the different gauges to the Perelomov-Popov-Terent'ev imaginary-time method is discussed.

  7. Electron-nuclear correlation in above-threshold double ionization of molecules

    NASA Astrophysics Data System (ADS)

    Lu, Peifen; Zhang, Wenbin; Gong, Xiaochun; Song, Qiying; Lin, Kang; Ji, Qinying; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2017-03-01

    We report on the experimental observation of photon energy sharing among two electrons and two ions ejected from a doubly ionized molecule exposed to an intense ultraviolet femtosecond laser pulse. Although two electrons are successively released one after the other, bridged by the nuclear motion via their interactions, photon energy sharing among four particles is observed as multiple energy conservation lines in their joint energy spectrum. For sequential double ionization of H2, the electron-nuclear joint energy spectrum allows us to identify three pathways towards the charge-resonance enhanced ionization of the stretching H2+ in strong laser fields. By counting the photon number absorbed by the molecule, we trace the accessibility, enhancement, and suppression of various pathways. The correlated electron-nuclear motion provides profound insights of the complicated strong-field dynamics of molecules.

  8. Photoelectron angular distributions in molecular above threshold ionization by two colour circularly polarized ultrashort UV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2013-10-01

    Photoionization of an aligned molecular ion H? has been investigated with two colour circularly polarized ultrashort UV laser pulses by numerically solving the corresponding time dependent Schrödinger equation. Photoelectron angular distributions (PADs) in molecular above threshold ionization (MATI) exhibit: (i) asymmetry resulting from interference of coherent electron wave packets from multiple pathway ionization, which depends critically on the relative carrier envelope phase (CEP) ? between the two colour laser pulses and photoelectron kinetic energies; (ii) rotation with respect to the molecular symmetry axes due to effects of the nonspherical two center Coulomb potential. Such features are described by multi-photon perturbative theoretical ionization models. The ionization probability is functions of both the CEP ? and the angle ? between the electron emission and the molecular axis. The influence of pulse intensity and ellipticity on PADs in MATI is also investigated. It is found that the asymmetry depends on the pulse intensity whereas the rotation angle is shown to be sensitive to the pulse ellipticity, both reflecting the orientation dependence of molecular ionization probabilities.

  9. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule.

    PubMed

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-20

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH(2+) by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH(2+) reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  10. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-01

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  11. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule

    PubMed Central

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-01-01

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules. PMID:28218294

  12. Above-threshold ionization and laser-induced electron diffraction in diatomic molecules

    NASA Astrophysics Data System (ADS)

    Suárez, Noslen; Chacón, Alexis; Ciappina, Marcelo F.; Wolter, Benjamin; Biegert, Jens; Lewenstein, Maciej

    2016-10-01

    Strong-field photoemission and electron recollision provide a viable route to extract electronic and nuclear dynamics from molecular targets with attosecond temporal resolution. However, since an ab initio treatment of even the simplest diatomic systems is beyond today's capabilities, approximate qualitative descriptions are warranted. In this paper, we develop such a theoretical approach to model the photoelectrons resulting from intense laser-molecule interaction. We present a general theory for symmetric diatomic molecules in the single active electron approximation that, amongst other capabilities, allows adjusting both the internuclear separation and molecular potential in a direct and simple way. More importantly, we derive an analytic approximate solution of the time-dependent Schrödinger equation (TDSE), based on a generalized strong-field approximation (SFA) version. Using that approach, we obtain expressions for electron emitted transition amplitudes from two different molecular centers, and accelerated then in the strong laser field. In addition, our approach directly underpins different underlying physical processes that correspond to (i) direct tunneling ionization; (ii) electron rescattering on the center of origin; and, finally, (iii) electron rescattering on a different center. One innovative aspect of our theory is the fact that the dipole matrix elements are free from nonphysical gauge and coordinate system-dependent terms: this is achieved by adapting the coordinate system, in which SFA is performed, to the center from which the corresponding part of the time-dependent wave function originates. Our analytic results agree very well with the numerical solution of the full three-dimensional TDSE for the H2 + molecule. Moreover, the theoretical model was applied to describe laser-induced electron diffraction measurements of O2 + molecules, obtained at ICFO, and reproduces the main features of the experiment very well. Our approach can be extended in

  13. Strong-field above-threshold ionization in laser-irradiated C60: The signatures of orbital symmetry and intramolecular interference

    NASA Astrophysics Data System (ADS)

    Usachenko, Vladimir; Kim, Vyacheslav; Pyak, Pavel

    2015-05-01

    We report about the results of our theoretical study of strong-field (multiphoton) above-threshold ionization (ATI) in laser-irradiated carbon fullerene molecule C60 under condition of relevant experiment. The problem is addressed within the velocity-gauge (VG) formulation of molecular strong-field approximation (SFA) essentially exploiting the density-functional-theory (DFT) method for numerical composition of initial (laser-free) molecular state using the routines of GAUSSIAN-03 code. The results of our present VG-SFA calculation for C60 photoelectron energy spectra (PES) demonstrate two distinct (well-separated) and pronounced local interference minima - in the low-energy and the high-energy domains of produced PES - both arising due to destructive intramolecular (multislit) quantum interference of strong-field ionization corresponding to photoelectron emission from multiple separate atomic centers.

  14. Effect of rescattering potential on the high-energy above-threshold ionization of a model-H atom

    NASA Astrophysics Data System (ADS)

    Chen, J.-H.; Wang, G.-L.; Zhang, Z.-R.; Zhao, S.-F.

    2017-01-01

    The high-energy above-threshold ionization of a model-H atom (with 1s state and the same binding energy as H atom) in a few-cycle laser pulse is investigated by using the improved strong-field approximation (ISFA), where the spherical shell potential is used as the rescattering potential. The results obtained from numerically solving time-dependent Schrödinger equation(TDSE) are regarded as the benchmark results. Our results show that the energy distributions in high-energy region obtained from ISFA calculations using the spherical shell potential may either match or be better than those from ISFA using Yukawa potential and zero-range potential in the laser with wavelengths of 800 and 1200 nm. In addition, the influence of the rescattering potential on the density of probability at different ejection angles is also discussed in this paper.

  15. Controlling high-order harmonic generation and above-threshold ionization with an attosecond-pulse train

    SciTech Connect

    Figueira de Morisson Faria, C.; Salieres, P.; Villain, P.; Lewenstein, M.

    2006-11-15

    We perform a detailed analysis of how high-order harmonic generation (HHG) and above-threshold ionization (ATI) can be controlled by a time-delayed attosecond-pulse train superposed to a strong, near-infrared laser field. In particular we show that the high-order harmonic and photoelectron intensities, the high-order harmonic plateau structure and cutoff energies, and the ATI angular distributions can be manipulated by changing this delay. This is a direct consequence of the fact that the attosecond pulse train can be employed as a tool for constraining the instant an electronic wave packet is ejected in the continuum. A change in such initial conditions strongly affects its subsequent motion in the laser field, and thus HHG and ATI. In our studies, we employ the strong-field approximation and explain the features observed in terms of interference effects between various electron quantum orbits. Our results are in agreement with recent experimental findings and theoretical studies employing purely numerical methods.

  16. High-order harmonic generation and above-threshold ionization in H: Calculations using expansions over field-free state-specific wave functions

    NASA Astrophysics Data System (ADS)

    Dionissopoulou, S.; Mercouris, Th.; Lyras, A.; Komninos, Y.; Nicolaides, C. A.

    1995-04-01

    We have computed the above-threshold ionization and the emitted harmonic spectra of H interacting with short laser pulses, with photon energies ranging from 1.16 to 5.44 eV and with peak intensities ranging from 6×1013 to 7×1014 W/cm2, by solving the time-dependent Schrödinger equation (TDSE). The method of solution involves the expansion of the time-dependent wave function Ψ(r-->,t) over the exact wave functions of the discrete and the continuous spectrum, computed numerically, and the subsequent integration of the resulting coupled first-order differential equations by a Taylor series expansion technique. This state-specific approach (SSA) to the solution of the TDSE allows systematic understanding of convergence as a function of the number and type of the field-free states for each value of the laser frequency (ω) and peak intensity (I0). For example, the method allows practical numerical study of the degree of participation of high (n,l) (l=0,1,...,n-1) Rydberg, as well as of high-energy scattering states for each partial wave. For the harmonic spectra, comparisons are made between the results obtained by the SSA and those obtained in recent years by a number of researchers from the application of finite-difference grid methods. As regards economy, a general observation is that in the SSA the necessary number of partial waves is smaller than that required in the grid methods. Predictions are made for the case of ħω=2 eV, I0=2×1014 W/cm2, in the context of a study of the effect of the pulse shape on the harmonic-generation spectrum. It is shown that the number of harmonics and the appearance of the plateau depend on the duration of the peak intensity.

  17. Above-threshold ionization with highly charged ions in superstrong laser fields. II. Relativistic Coulomb-corrected strong-field approximation

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.

    2013-02-01

    We develop a relativistic Coulomb-corrected strong-field approximation (SFA) for the investigation of spin effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogenlike ions. The Coulomb-corrected SFA is based on the relativistic eikonal-Volkov wave function describing the ionized electron laser-driven continuum dynamics disturbed by the Coulomb field of the ionic core. The SFA in different partitions of the total Hamiltonian is considered. The formalism is applied for direct ionization of a hydrogenlike system in a strong linearly polarized laser field. The differential and total ionization rates are calculated analytically. The relativistic analog of the Perelomov-Popov-Terent'ev ionization rate is retrieved within the SFA technique. The physical relevance of the SFA in different partitions is discussed.

  18. Measurement of intensity-dependent rates of above-threshold ionization (ATI) of atomic hydrogen at 248 nm

    SciTech Connect

    Nichols, T.D.

    1991-04-01

    Measured rates of multiphoton ionization (MPI) from the ground state of atomic hydrogen by a linearly polarized, subpicosecond KrF laser pulse at 248 nm wavelength are compared to predictions of lowest-order perturbation theory, Floquet theory, and Keldysh-Faisal-Reiss (KFR) theory with and without Coulomb correction for peak irradiance of 3 {times} 10{sup 12}W/cm{sup 2} to 2 {times} 10{sup 14}W/cm{sup 2}. The Coulomb-corrected Keldysh model falls closest to the measured rates, the others being much higher or much lower. At 5 {times} 10{sup 13}W/cm{sup 2}, the number of ATI electrons decreased by a factor of approximately 40 with each additional photon absorbed. ATI of the molecular hydrogen background and of atoms from photodissociation of the molecules were also observed. The experiment employed a crossed-beam technique at ultrahigh vacuum with an rf-discharge atomic hydrogen source and a magnetic-bottle type electron time-of-flight spectrometer to count the electrons in the different ATI channels separately. The apparatus was calibrated to allow comparison of absolute as well as relative ionization rates to the theoretical predictions. This calibration involved measuring the distribution of irradiance in a focal volume that moved randomly and changed its size from time to time. A data collection system under computer control divided the time-of-flight spectra into bins according to the energy of each laser pulse. This is the first measurement of absolute rates of ATI in atomic hydrogen, and the first measurement of absolute test of MPI in atomic hydrogen without a large factor to account for multiple modes in the laser field. As such, the results of this work are important to the development of ATI theories, which presently differ by orders of magnitude in their prediction of the ionization rates. They are also important to recent calculations of temperatures in laser-heated plasmas, many of which incorporate KFR theory.

  19. Rotations of molecular photoelectron angular distributions in above threshold ionization of H2+ by intense circularly polarized attosecond UV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Chelkowski, Szczepan; Bandrauk, André D.

    2014-10-01

    We present molecular photoelectron angular distributions (MPADs) in multi-photon ionization processes by circularly polarized attosecond UV laser pulses. Simulations are performed on the single electron aligned molecular ion H_2^+ by solving corresponding 3D time-dependent Schrödinger equations. Numerical results of molecular above threshold ionization (MATI) show that rotations of MPADs with respect to the molecular and polarization axes depend on pulse intensities and photoelectron kinetic energies. We attribute the rotation to Γ, the difference between parallel and perpendicular ionization probabilities. It is found that in a resonant ionization process, the rotation angle is also a function of the symmetry of intermediate electronic states. The coherent population transfer between the initial and the resonant electronic states is controlled by pulse intensities. Such dependence of rotations on the pulse intensity is absent in Rydberg resonant ionizations as well as in MATI at large energy photons ℏω > Ip, where ω is angular frequency of photons and Ip is the molecular ionization potential. We describe these processes by a multi-photon perturbation theory model. Effects of molecular alignment and pulse ellipticities on rotations are investigated, confirming the essence of the ionization parameter Γ in rotations of MPADs.

  20. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4 , C2H3F , and 1 ,1 -C2H2F2 ) near and above threshold

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Gatton, A.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzhak, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-01

    We investigate bond-rearrangement driven by photo-double-ionization (PDI) near and above the double-ionization threshold in a sequence of carbon-carbon double-bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy method to resolve all photo-double-ionization events leading to two-ion fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of no, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing, as evident by the reordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molecules and drives bond rearrangement during the dissociation process. The energy sharing and the relative angle between the three-dimensional momentum vectors of the two electrons enable us to distinguish between knockout and other ionization mechanisms of the PDI processes.

  1. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  2. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    SciTech Connect

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzahk, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.

  3. Time-dependent dynamics of intense laser-induced above threshold Coulomb explosion

    NASA Astrophysics Data System (ADS)

    Esry, B. D.; Ben-Itzhak, I.

    2007-06-01

    We use our recently proposed model [1] to extract information about the nuclear dynamics from the recent Coulomb explosion data of Staudte et al. taken with 40 fs pulses [2]. That data, taken at multiple intensities near the ionization appearance intensity for both H2 and D2 in linearly and circularly polarized light, shows remarkable structure and regularity not easily explained by conventional models. Because our model does fit the spectra well, we can infer the qualitative time-dependent evolution of the system. In addition, we speculate about the possibility of rescattering leading to above threshold Coulomb explosion. [1] B.D. Esry, A.M. Sayler, P.Q. Wang, K.D. Carnes, and I. Ben-Itzhak, Phys. Rev. Lett. 97, 013003 (2006). [2] A. Staudte, D. Pavici'c, S. Chelkowski, D. Zeidler, M. Meckel, H. Niikura, M. Sch"offler, S. Sch"ossler, B. Ulrich, P. P. Rajeev, Th. Weber, T. Jahnke, D.M. Villeneuve, A.D. Bandrauk, C.L. Cocke, P.B. Corkum, and R. D"orner, Phys. Rev. Lett. (accepted).

  4. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles

  5. Above threshold dissociation in HD+ using frequency chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Liu, Zheng-Tang; Cong, Shu-Lin

    2011-06-01

    We have theoretically studied the dynamics of above threshold dissociation (ATD) in molecular ions HD+ using frequency chirped femtosecond laser pulses from numerical solutions of the time-dependent Schrödinger equation by using the three-dimensional time-dependent quantum wave packet method. Energy-dependent distributions of ATD fragments are analyzed by an asymptotic-flow expression in momentum space. Linearly positive and negative frequency chirped laser pulses are adopted. It is found that varying frequency chirped parameters can change branching ratios of the 1sσ g and 2pσ u dissociations channels. The concept of a light-induced potential is used to interpret the ATD process. The angular resolved energy distributions of the photofragments are also illustrated.

  6. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip

    NASA Astrophysics Data System (ADS)

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-01

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  7. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip.

    PubMed

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-18

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  8. Theoretical IR spectra of ionized naphthalene

    NASA Technical Reports Server (NTRS)

    Pauzat, F.; Talbi, D.; Miller, M. D.; DeFrees, D. J.; Ellinger, Y.

    1992-01-01

    We report the results of a theoretical study of the effect of ionization on the IR spectrum of naphthalene, using ab initio molecular orbital theory. For that purpose we determined the structures, band frequencies, and intensities of neutral and positively ionized naphthalene. The calculated frequencies and intensities allowed an assignment of the most important bands appearing in the newly reported experimental spectrum of the positive ion. Agreement with the experimental spectrum is satisfactory enough to take into consideration the unexpected and important result that ionization significantly affects the intensities of most vibrations. A possible consequence on the interpretation of the IR interstellar emission, generally supposed to originate from polycyclic aromatic hydrocarbons (PAHs), is briefly presented.

  9. Extreme ultraviolet spectra of highly ionized oxygen and fluorine

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Griffin, P. M.; Haselton, H. H.; Laubert, R.; Mowat, J. R.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.

    1974-01-01

    The foil-excitation method has been used to study the extreme ultraviolet spectra of highly ionized oxygen and fluorine. Several previously unreported lines in heliumlike fluorine are reported and other newly reported lines in heliumlike oxygen have been measured to higher accuracy. Included in the measurements are certain heliumlike oxygen transitions of significance in interpretation of solar-flare spectral observations. The wavelength determinations are usually in good agreement with calculated results which includes relativistic corrections, but discrepancies arise when nonrelativistic calculations are used. A comparison of the present results and those recently obtained by theta-pinch and laser-induced plasma sources is made for both heliumlike and lithiumlike ions; a few discrepancies occur, with results in most cases in better agreement with relativistically corrected calculations. Certain unidentified lines in the spectra may be attributable to radiative transitions between quartet states of lithiumlike ions.

  10. Above-threshold numerical modeling of high-index-contrast photonic-crystal quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Elkin, N. N.; Vysotsky, D. V.; Kirch, J.; Sigler, C.; Botez, D.; Mawst, L. J.; Belyanin, A.

    2015-03-01

    Three-dimensional above-threshold analyses of high-index-contrast (HC) photonic-crystal (PC) quantum-cascade-laser arrays (QCLA) structures, for operation at watt-range CW powers in a single spatial mode, have been performed. Threeelement HC-PC structures are formed by alternating active- antiguided and passive-guided regions along with respective metal-electrode spatial profiling. The 3-D numerical code takes into account absorption and edge-radiation losses. Rigrod's approximation is used for the gain. The specific feature of QCLA is that only the transverse component of the magnetic field sees the gain. Results of above-threshold laser modeling in various approximate versions of laser-cavity description are compared with the results of linear, full-vectorial modeling by using the COMSOL package. Additionally, modal gains for several higher-order optical modes, on a `frozen gain background' produced by the fundamental-mode, are computed by the Arnoldi algorithm. The gain spatial-hole burning effect results in growth of the competing modes' gain with drive current. Approaching the lasing threshold for a competing higher-order mode sets a limit on the single-mode operation range. The modal structure and stability are studied over a wide range in the variation of the inter-element widths. Numerical analyses predict that the proper choice of construction parameters ensures stable single-mode operation at high drive levels above threshold. The output power from a single- mode operated QCLA at a wavelength of 4.7 μm is predicted to be available at multi-watt levels, although this power may be restricted by thermal effects.

  11. Momentum spectra for single and double electron ionization of He in relativistic collisions

    NASA Astrophysics Data System (ADS)

    Wood, C. J.; Olson, R. E.; Schmitt, W.; Moshammer, R.; Ullrich, J.

    1997-11-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons.

  12. OXAF: Ionizing spectra of Seyfert galaxies for photoionization modeling

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Groves, Brent A.; Sutherland, Ralph S.; Dopita, Michael A.; Jin, Chichuan; Kewley, Lisa J.

    2016-11-01

    OXAF provides a simplified model of Seyfert Active Galactic Nucleus (AGN) continuum emission designed for photoionization modeling. It removes degeneracies in the effects of AGN parameters on model spectral shapes and reproduces the diversity of spectral shapes that arise in physically-based models. OXAF accepts three parameters which directly describe the shape of the output ionizing spectrum: the energy of the peak of the accretion disk emission Epeak, the photon power-law index of the non-thermal X-ray emission Γ, and the proportion of the total flux which is emitted in the non-thermal component pNT. OXAF accounts for opacity effects where the accretion disk is ionized because it inherits the ‘color correction’ of OPTXAGNF, the physical model upon which OXAF is based.

  13. Extreme ultraviolet ionization of pure He nanodroplets: Mass-correlated photoelectron imaging, Penning ionization, and electron energy-loss spectra

    SciTech Connect

    Buchta, D.; Stienkemeier, F.; Mudrich, M.; Krishnan, S. R.; Moshammer, R.; Brauer, N. B.; Drabbels, M.; O’Keeffe, P.; Coreno, M.; Devetta, M.; Di Fraia, M.; Callegari, C.; Richter, R.; Prince, K. C.; Ullrich, J.

    2013-08-28

    The ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He{sup +}, He{sub 2}{sup +}, and He{sub 3}{sup +}. Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we observe inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.

  14. Double-photoionization of CO few eV above threshold

    NASA Astrophysics Data System (ADS)

    Belkacem, A.; Osipov, T.; Hertlein, M.; Prior, M.; Adaniya, H.; Feinberg, B.; Weber, Th.; Jahnke, T.; Dorner, R.; Schmidt, L.; Schoffler, M.; Jagutzki, O.; Cocke, C. L.; Landers, A.

    2006-05-01

    We measured double photoionization of CO molecules at 48 eV photon energy. The double ionization of CO produces mostly C^+ + O^+ fragments with non-measurable amounts of CO^2+. The formation of C^+ + O^+ can proceed through two possible channels: a) Direct ionization of two electron into the continuum -- similar to the H2 double ionization -- direct channel. b) Ionization of one electron into the continuum followed by autoionization of a second electron -- Indirect channel. The electron distribution measured with a COLTRIMS shows a very clear distinction of the direct and indirect channels. The kinetic energy release spectrum shows a series of peaks corresponding to the transient vibrational states of the various electronic states of (CO^2+)*. These states are similar to previous measurements at higher energies (K-shell photoionization). (CO^2+)* is found to predissociate through a ^3σ^- and ^1δ dissociative states leading to considerably faster dissociation times than natural lifetimes of the electronic bound states.

  15. Laser-plasma spectra of highly ionized fluorine

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Nagel, D. J.; Behring, W. E.; Cowan, R. D.

    1974-01-01

    Lines between 11.3 and 17.2 A of lithium-like, helium-like, and hydrogen-like fluorine have been observed in spectra of laser-produced plasmas. These lines include nine members of the Lyman series of F IX; eight members of the principal series of F VIII; and satellite lines arising from doubly excited configurations of F VII and F VIII. Similar satellite lines of the abundant solar elements have been identified in soft X-ray spectra of solar flares. A wavelength list of fluorine lines is given, and physical conditions in the plasma are discussed.

  16. Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons - Effect of ionization

    NASA Technical Reports Server (NTRS)

    De Frees, D. J.; Miller, M. D.; Talbi, D.; Pauzat, F.; Ellinger, Y.

    1993-01-01

    In order to test the hypothesis of ionized PAHs as possible carriers of the UIR bands, we realized a computational exploration on selected PAHs of small dimension in order to identify which changes ionization would induce on their IR spectra. In this study we performed ab initio calculations of the spectra of neutral and positively ionized naphthalene, anthracene, and pyrene. The results are significantly important. The frequencies in the cations are slightly shifted with respect to the neutral species, but no general conclusion can be reached from the three molecules considered. By contrast, the relative intensities of most vibrations are strongly affected by ionization, leading to a much better agreement between the calculated CH/CC vibration intensity ratios and those deduced from observations.

  17. New Measurements of Doubly Ionized Iron Group Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smillie, D. G.; Pickering, J. C.; Blackwell-Whitehead, R. J.; Smith, Peter L.; Nave, G.

    2006-01-01

    We report new measurements of doubly ionized iron group element spectra, important in the analysis of B-type (hot) stars whose spectra they dominate. These measurements include Co III and Cr III taken with the Imperial College VUV Fourier transform (FT) spectrometer and measurements of Co III taken with the normal incidence vacuum spectrograph at NIST, below 135 nm. We report new Fe III grating spectra measurements to complement our FT spectra. Work towards transition wavelengths, energy levels and branching ratios (which, combined with lifetimes, produce oscillator strengths) for these ions is underway.

  18. Use of thin ionization calorimeters for measurements of cosmic ray energy spectra

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Ormes, J. S.; Schmidt, W. K. H.

    1976-01-01

    The reliability of performing measurements of cosmic ray energy spectra with a thin ionization calorimeter was investigated. Monte Carlo simulations were used to determine whether energy response fluctuations would cause measured spectra to be different from the primary spectra. First, Gaussian distributions were assumed for the calorimeter energy resolutions. The second method employed a detailed Monte Carlo simulation of cascades from an isotropic flux of protons. The results show that as long as the energy resolution does not change significantly with energy, the spectral indices can be reliably determined even for sigma sub e/e = 50%. However, if the energy resolution is strongly energy dependent, the measured spectra do not reproduce the true spectra. Energy resolutions greatly improving with energy result in measured spectra that are too steep, while resolutions getting much worse with energy cause the measured spectra to be too flat.

  19. Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-03-01

    The dynamical behavior of Kerr optical frequency combs is very well understood today from the perspective of the semiclassical approximation. These combs are obtained by pumping an ultrahigh-Q whispering-gallery mode resonator with a continuous-wave laser. The long-lifetime photons are trapped within the toruslike eigenmodes of the resonator, where they interact nonlinearly via the Kerr effect. In this article, we use quantum Langevin equations to provide a theoretical understanding of the nonclassical behavior of these combs when pumped below and above threshold. In the configuration where the system is under threshold, the pump field is the unique oscillating mode inside the resonator, and it triggers the phenomenon of spontaneous four-wave mixing, where two photons from the pump are symmetrically up- and down-converted in the Fourier domain. This phenomenon, also referred to as parametric fluorescence, can only be understood and analyzed from a fully quantum perspective as a consequence of the coupling between the field of the central (pumped) mode and the vacuum fluctuations of the various side modes. We analytically calculate the power spectra of the spontaneous emission noise, and we show that these spectra can be either single- or double-peaked depending on the value of the laser frequency, chromatic dispersion, pump power, and spectral distance between the central mode and the side mode of interest. We also calculate as well the overall spontaneous noise power per side mode and propose simplified analytical expressions for some particular cases. In the configuration where the system is pumped above threshold, we investigate the phenomena of quantum correlations and multimode squeezed states of light that can occur in the Kerr frequency combs originating from stimulated four-wave mixing. We show that for all stationary spatiotemporal patterns, the side modes that are symmetrical relative to the pumped mode in the frequency domain display quantum correlations

  20. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  1. Electrodynamic model of the field effect transistor application for THz/subTHz radiation detection: Subthreshold and above threshold operation

    SciTech Connect

    Dobrovolsky, V.

    2014-10-21

    Developed in this work is an electrodynamic model of field effect transistor (FET) application for THz/subTHz radiation detection. It is based on solution of the Maxwell equations in the gate dielectric, expression for current in the channel, which takes into account both the drift and diffusion current components, and the equation of current continuity. For the regimes under and above threshold at the strong inversion the response voltage, responsivity, wave impedance, power of ohmic loss in the gate and channel have been found, and the electrical noise equivalent power (ENEP) has been estimated. The responsivity is orders of magnitude higher and ENEP under threshold is orders of magnitude less than these values above threshold. Under the threshold, the electromagnetic field in the gate oxide is identical to field of the plane waves in free-space. At the same time, for strong inversion the charging of the gate capacitance through the resistance of channel determines the electric field in oxide.

  2. Theoretical and Experimental Study of Valence-Shell Ionization Spectra of Guanine

    NASA Astrophysics Data System (ADS)

    Zaytseva, Irina L.; Trofimov, Alexander B.; Schirmer, Jochen; Plekan, Oksana; Feyer, Vitaliy; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-10-01

    The full valence-shell ionization spectra of the four most stable guanine tautomers were studied theoretically. The third-order algebraic-diagrammatic construction (ADC(3)) method for the one-particle Green's function was used to calculate the energies and relative intensities of the vertical ionization transitions. For low-lying transitions, the influence of planar and nonplanar guanine configurations on the ionization energies, as well as the convergence of the results with respect to basis set was studied at the level of the outer-valence Green's function (OVGF) approximation scheme. The results of the calculations were used to interpret recent synchrotron radiation valence-shell photoionization spectra of guanine in the gas phase under thermal equilibrium conditions. The photoelectron spectrum was modeled by summing individual tautomer spectra weighted by Boltzmann population ratios (BPR) of tautomers from our previous high-level ab initio thermochemical calculations. The theoretical spectra are in good agreement with the experimental results, providing assignments of most observed structures and offering insight into tautomerism of guanine in the gas phase. The first six molecular orbitals give rise to single-hole states with a binding energy of about 7-12 eV. At higher binding energy the spectral features are mainly due to satellite states.

  3. Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7.

    PubMed

    Borges, Itamar

    2014-03-01

    Singlet, triplet and ionized states of the energetic molecule 1,1-diamino-2,2-dinitroethylene, known as FOX-7 or DADNE, were investigated using the symmetry-adapted-cluster configuration interaction (SAC-CI) ab initio wave function. The 20 computed singlet transitions, with 2 exceptions, were bright. The most intense singlet transitions were of the n₀→π type-typical of molecules having nitro groups. Fast intersystem crossing (ISC) from the 1¹A, 2¹A and 8¹A bright singlet transitions is possible. Other feasible ISC processes are discussed. The computed singlet and ionization spectra have similar features when compared to nitramide and N,N-dimethylnitramine molecules, which have only a nitro group. The ionization energies of the first 20 states have differences in comparison with Koopmans' energy values that can reach 3 eV. Moreover, the character of the first ionized states, dominated by single ionizations, is not the same when compared with the character resulting from application of Koopmans' theorem.

  4. A theoretical analysis on the vibronic spectra with mass analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Chao, Sheng D.; Peng, Hsin Y.

    2008-01-01

    We have theoretically studied the absorption vibronic spectra with the resonance two-photon (R2P) and non-resonance two-photon (NR2P) mass analyzed threshold ionization (MATI) spectroscopy. The theory uses the inverse Born-Oppenheimer approximation (IBOA) to establish a proper basis set. To analyze the MATI vibronic spectra, we have calculated the Franck-Condon factors involved in the vibronic transitions. Several experimental spectra are analyzed using this theory with emphasis on the importance of the resonance intermediate states. The long vibrational progression in a MATI spectrum can be partly attributed to the result of including the anharmonic correction in the calculated Franck-Condon factors. The experimentally observed isotope effect is also analyzed.

  5. The effect of ionization on the infrared absorption spectra of PAHs: A preliminary report

    NASA Technical Reports Server (NTRS)

    Defrees, Doug J.; Miller, M. D.

    1989-01-01

    The emission lines observed in many interstellar IR sources at 3.28, 6.2, 7.7, 8.7, and 11.3 microns are theorized to originate from polycyclic aromatic hydrocarbons (PAHs). These assignments are based on analyses of lab IR spectra of neutral PAHs. However, it is likely that in the interstellar medium that PAHs are ionized, i.e., are positively charged. Besides, as pointed out by Allamandola et al., although the IR emission band spectrum resembles what one might expect from a mixture of PAHs, it does not match in details such as frequency, band profile, or relative intensities predicted from the absorption spectra of any known PAH molecule. One source of more information to test the PAH theory is ab initio molecular orbital theory. It can be used to compute, from first principles, the geometries, vibrational frequencies, and vibrational intensities for model PAH compounds which are difficult to study in the lab. The Gaussian 86 computer program was used to determine the effect of ionization on the infrared absorption spectra of several small PAHs: naphthalene and anthracene. A preliminary report is presented of the results of these calculations.

  6. Efficient Methods to Generate Reproducible Mass Spectra in Matrix-Assisted Laser Desorption Ionization of Peptides

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Bae, Yong Jin; Kim, Myung Soo

    2013-06-01

    In our previous matrix-assisted laser desorption ionization (MALDI) studies of peptides, we found that their mass spectra were virtually determined by the effective temperature in the early matrix plume, Tearly, when samples were rather homogeneous. This empirical rule allowed acquisition of quantitatively reproducible spectra. A difficulty in utilizing this rule was the complicated spectral treatment needed to get Tearly. In this work, we found another empirical rule that the total number of particles hitting the detector, or TIC, was a good measure of the spectral temperature and, hence, selection of spectra with the same TIC resulted in reproducible spectra. We also succeeded in obtaining reproducible spectra throughout a measurement by controlling TIC near a preset value through feedback adjustment of laser pulse energy. Both TIC selection and TIC control substantially reduced the shot-to-shot spectral variation in a spot, spot-to-spot variation in a sample, and even sample-to-sample variation in MALDI using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid as matrix. Based on the utilization of acquired data, TIC control was more efficient than TIC selection by an order of magnitude. Both techniques produced calibration curves with excellent linearity, suggesting their utility in quantification of peptides.

  7. Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers.

    PubMed

    Kim, Jimyung; Delfyett, Peter J

    2009-12-07

    The spectral dependence of the linewidth enhancement factor above threshold is experimentally observed from a quantum dot Fabry-Pérot semiconductor laser. The linewidth enhancement factor is found to be reduced when the quantum dot laser operates approximately 10 nm offset to either side of the gain peak. It becomes significantly reduced on the anti-Stokes side as compared to the Stokes side. It is also found that the temporal duration of the optical pulses generated from quantum dot mode-locked lasers is shorter when the laser operates away from the gain peak. In addition, less linear chirp is impressed on the pulse train generated from the anti-Stokes side whereas the pulses generated from the gain peak and Stokes side possess a large linear chirp. These experimental results imply that enhanced performance characteristics of quantum dot lasers can be achieved by operating on the anti-Stokes side, approximately 10 nm away from the gain peak.

  8. Hyperfine structure constants of singly ionized manganese obtained from analysis of Fourier Transform spectra

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Imperial College London

    2016-01-01

    There is an on-going project in the Atomic Spectroscopy Group at NIST to obtain comprehensive spectral data for all of the singly ionized iron group elements and acquire more accurate energy levels, wavelengths and hyperfine structure (HFS) constants. The heavy abundance of the iron group elements and their contributions to a wide range of stellar spectra makes them of interest for astrophysical observations.Existing spectroscopic data for Mn are insufficient to model spectra obtained from HgMn stars such as HD 175640. Since manganese has an odd number of nucleons, its spectral lines generally exhibit HFS, a relativistic effect due to interaction between the magnetic moment of the nucleus and the orbiting electrons. If proper treatment of line broadening effects such as HFS is not taken, there is a poor fit of the lines in stellar spectra, leading to an overestimate of the abundance of Mn. The abnormally high abundance of manganese in HgMn stars means both weak and strong transitions are important. Weak lines may not be observed in the laboratory, but HFS constants for them can be derived from stronger transitions that combine with the two levels involved in the weak transition.Holt et al. (1999) measured HFS constants for 56 energy levels using laser spectroscopy. We have analyzed Fourier Transform spectra of a high current Mn/Ni hollow cathode lamp to obtain magnetic dipole A constants levels of Mn II. The A constants of Holt et al. (1999, MNRAS 306, 1007) for the z5P, z7P2, a5P and z5F levels were the starting point for our analysis, from which we derived A constants for 71 energy levels, including 51 previously unstudied levels. Our A constant for the a7S3 ground level differs by 5x10-4 cm-1 from that of Blackwell-Whitehead et al. (2005, ApJS 157, 402) and has a factor of 6 lower uncertainty.

  9. HIGHLY IONIZED POTASSIUM LINES IN SOLAR X-RAY SPECTRA AND THE ABUNDANCE OF POTASSIUM

    SciTech Connect

    Sylwester, J.; Sylwester, B.; Phillips, K. J. H.; Kuznetsov, V. D. E-mail: kjhp@mssl.ucl.ac.u

    2010-02-10

    The abundance of potassium is derived from X-ray lines observed during flares by the RESIK instrument on the solar mission CORONAS-F between 3.53 A and 3.57 A. The lines include those emitted by He-like K and Li-like K dielectronic satellites, which have been synthesized using the CHIANTI atomic code and newly calculated atomic data. There is good agreement between observed and synthesized spectra, and the theoretical behavior of the spectra with varying temperature estimated from the ratio of the two GOES channels is correctly predicted. The observed fluxes of the He-like K resonance line per unit emission measure give log A(K) = 5.86 (on a scale log A(H) = 12), with a total range of a factor 2.9. This is higher than photospheric abundance estimates by a factor 5.5, a slightly greater enhancement than for other elements with first ionization potential (FIP) less than {approx}10 eV. There is, then, the possibility that enrichment of low-FIP elements in coronal plasmas depends weakly on the value of the FIP which for K is extremely low (4.34 eV). Our work also suggests that fractionation of elements to form the FIP effect occurs in the low chromosphere rather than higher up, as in some models.

  10. Converged cross-section results for double photoionization of helium atoms in hyperspherical partial wave theory at 6 eV above threshold

    SciTech Connect

    Das, J.N.; Paul, S.; Chakrabarti, K.

    2004-04-01

    Here we report a set of converged cross-section results for double photoionization of helium atoms obtained in the hyperspherical partial wave theory for equal energy sharing kinematics at 6 eV energy above threshold. The calculated cross section results are generally in excellent agreement with the absolute measured results of Doerner et al. [Phys. Rev. 57, 1074 (1998)].

  11. The effects of ionization potential depression on the spectra emitted by hot dense aluminium plasmas

    NASA Astrophysics Data System (ADS)

    Preston, Thomas R.; Vinko, Sam M.; Ciricosta, Orlando; Chung, Hyun-Kyung; Lee, Richard W.; Wark, Justin S.

    2013-06-01

    Recent experiments at the Linac Coherent Light Source (LCLS) X-ray Free-Electron-Laser (FEL) have demonstrated that the standard model used for simulating ionization potential depression (IPD) in a plasma (the Stewart-Pyatt (SP) model, J.C. Stewart and K.D. Pyatt Jr., Astrophysical Journal 144 (1966) 1203) considerably underestimates the degree of IPD in a solid density aluminium plasma at temperatures up to 200 eV. In contrast, good agreement with the experimental data was found by use of a modified Ecker-Kröll (mEK) model (G. Ecker and W. Kröll, Physics of Fluids 6 (1963) 62-69). We present here detailed simulations, using the FLYCHK code, of the predicted spectra from hot dense, hydrogenic and helium-like aluminium plasmas ranging in densities from 0.1 to 4 times solid density, and at temperatures up to 1000 eV. Importantly, we find that the greater IPDs predicted by the mEK model result in the loss of the n = 3 states for the hydrogenic ions for all densities above ≈0.8 times solid density, and for the helium-like ions above ≈0.65 solid density. Therefore, we posit that if the mEK model holds at these higher temperatures, the temperature of solid density highly-charged aluminium plasmas cannot be determined by using spectral features associated with the n = 3 principal quantum number, and propose a re-evaluation of previous experimental data where high densities have been inferred from the spectra, and the SP model has been used.

  12. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    observational study produce line width correlations only if the width is defined by a parameter that is more sensitive to extended profile wings than is the FWHM. Our sample of six objects is in effect augmented by incorporating the larger sample (16 objects) of Veilleux into some of our discussion. This paper focuses on new interpretations of NLR emission-line spectra and line profiles that stem directly from the observations. Paper 2 focuses on modeling and complements this paper by illustrating explicitly the effects that spatial variations in electron density, ionization parameter, and column density have on model profiles. By comparing model profiles with the observed profiles presented here, as well as with those presented by Veilleux, Paper 2 yields insight into how the electron density, ionization parameter, and column density likely vary throughout the NLR.

  13. Two-photon above-threshold ionization of hydrogen over the photon energy range from 15 eV to 50 keV

    SciTech Connect

    Florescu, Viorica; Budriga, Olimpia; Bachau, Henri

    2011-09-15

    We investigate the absorption of two identical photons from the ground state of hydrogen-like atoms over an energy range that extends beyond that explored up to now. Our approach is based on a hybrid formula, valid in second-order perturbation theory, in which the A{sup 2} contribution from the nonrelativistic Hamiltonian is treated exactly, while the A{center_dot}P contribution is calculated in dipole approximation. We find that, at least up to 50 keV, the nonrelativistic dipole approximation, based only on the A{center_dot}P contribution, determines the values of the total cross section. Our numerical results, covering photon energies from 90 nm (13.7 eV) to 0.0248 nm (50 keV) are in very good agreement with most previous theoretical works. Differences with recent results are discussed.

  14. Experimental study of the p+{sup 6}Li{yields}{eta}+{sup 7}Be reaction 11.3 MeV above threshold

    SciTech Connect

    Budzanowski, A.; Kliczewski, S.; Siudak, R.; Chatterjee, A.; Jha, V.; Roy, B. J.; Hawranek, P.; Magiera, A.; Jahn, R.; Kilian, K.; Maier, R.; Protic, D.; Ritman, J.; Rossen, P. von; Kirillov, Da.; Machner, H.; Kirillov, Di.; Piskunov, N.; Sitnik, I.; Kolev, D.

    2010-10-15

    The cross section for the reaction p+{sup 6}Li{yields}{eta}+{sup 7}Be was measured at an excess energy of 11.28 MeV above threshold by detecting the recoiling {sup 7}Be nuclei. A dedicated set of focal plane detectors was built for the magnetic spectrograph Big Karl and was used for identification and four-momentum measurement of {sup 7}Be. A differential cross section of nb/(d{sigma}/d{Omega})=[0.69{+-}0.20(stat.){+-}0.20(syst.)] sr for the ground state plus 1/2{sup -} was measured. The result is compared to model calculations.

  15. A detailed analysis of the high-resolution X-ray spectra of NGC 3516: variability of the ionized absorbers

    SciTech Connect

    Huerta, E. M.; Krongold, Y.; Jimenez-Bailon, E.; Nicastro, F.; Mathur, S.; Longinotti, A. L.

    2014-09-20

    The 1.5 Seyfert galaxy NGC 3516 presents a strong time variability in X-rays. We re-analyzed the nine observations performed in 2006 October by XMM-Newton and Chandra in the 0.3 to 10 keV energy band. An acceptable model was found for the XMM-Newton data fitting the EPIC-PN and RGS spectra simultaneously; later, this model was successfully applied to the contemporary Chandra high-resolution data. The model consists of a continuum emission component (power law + blackbody) absorbed by four ionized components (warm absorbers), and 10 narrow emission lines. Three absorbing components are warm, producing features only in the soft X-ray band. The fourth ionization component produces Fe XXV and Fe XXVI in the hard-energy band. We study the time response of the absorbing components to the well-detected changes in the X-ray luminosity of this source and find that the two components with the lower ionization state show clear opacity changes consistent with gas close to photoionization equilibrium. These changes are supported by the models and by differences in the spectral features among the nine observations. On the other hand, the two components with higher ionization state do not seem to respond to continuum variations. The response time of the ionized absorbers allows us to constrain their electron density and location. We find that one component (with intermediate ionization) must be located within the obscuring torus at a distance 2.7 × 10{sup 17} cm from the central engine. This outflowing component likely originated in the accretion disk. The three remaining components are at distances larger than 10{sup 16}-10{sup 17} cm. Two of the absorbing components in the soft X-rays have similar outflow velocities and locations. These components may be in pressure equilibrium, forming a multi-phase medium, if the gas has metallicity larger than the solar one (≳ 5 Z {sub ☉}). We also search for variations in the covering factor of the ionized absorbers (although partial

  16. Photoelectron momentum spectra for multiphoton ionization of Hydrogen atoms by intense laser pulses

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Serge; Macek, Joseph

    2007-06-01

    Full three-dimensional electron momentum distribution for multiphoton ionization of Hydrogen atoms by intense laser pulses are calculated by solving the time-dependent solutions of Schr"odinger equation on a three-dimensional lattice in a scaled coordinate representation (CSLTDSE). This approach allows one to circumvent many difficulties related to the propagation of wave function to macroscopic distances.

  17. Automatic Preocessing of Impact Ionization Mass Spectra Obtained by Cassini CDA

    NASA Astrophysics Data System (ADS)

    Villeneuve, M.

    2015-12-01

    Since Cassini's arrival at Saturn in 2004, the Comic Dust Analyzer (CDA) has recorded nearly 200,000 mass spectra of dust particles. A majority of this data has been collected in Saturn's diffuse E ring where sodium salts embedded in water ice particles indicate that many particles are in fact frozen droplets from Enceladus' subsurface ocean that have been expelled from cracks in the icy crust. So far only a small fraction of the obtained spectra have been processed because the steps in processing the spectra require human manipulation. We developed an automatic processing pipeline for CDA mass spectra which will consistently analyze this data. The preprocessing steps are to de-noise the spectra, determine and remove the baseline, calculate the correct stretch parameter, and finally to identify elements and compounds in the spectra. With the E ring constantly evolving due to embedded active moons, this data will provide valuable information about the source of the E ring, the subsurface of Saturn's ice moon Enceladus, as well as about the dynamics of the ring itself.

  18. Nonsequential Double Ionization of Atoms in Strong Laser Field: Identifying the Mechanisms behind the Correlated-Electron Momentum Spectra

    NASA Astrophysics Data System (ADS)

    Ye, Difa; Fu, Libin; Liu, Jie

    Within the strong-field physics community, there has been increasing interest on nonsequential double ionization (NSDI) induced by electron-electron (e-e) correlation. A large variety of novel phenomena has been revealed in experiments during the past decades. However, the theoretical understanding and interpretation of this process is still far from being complete. The most accurate simulation, i.e. the exact solution of the time-dependent Schrödinger equation (TDSE) for two electrons in a laser field is computationally expensive. In order to overcome the difficulty, we proposed a feasible semiclassical model, in which we treat the tunneling ionization of the outmost electron quantum mechanically according to the ADK theory, sample the inner electron from microcanonical distribution and then evolve the two electrons with Newton's equations. With this model, we have successfully explained various NSDI phenomena, including the excessive DI yield, the energy spectra and angular distribution of photoelectrons. Very recently, it is adopted to reveal the physical mechanisms behind the fingerlike structure in the correlated electron momentum spectra, the unexpected correlation-anticorrelation transition close to the recollision threshold, and the anomalous NSDI of alkaline-earth-metal atoms in circularly polarized field. The obvious advantage of our model is that it gives time-resolved insights into the complex dynamics of NSDI, from the turn-on of the laser field to the final escape of the electrons, thus allowing us to disentangle and thoroughly analyze the underlying physical mechanisms.

  19. Measurement of the photoionization spectra and ionization thresholds of the H sub 2 CN and D sub 2 CN radicals

    SciTech Connect

    Nesbitt, F.L.; Marston, G.; Stief, L.J. ); Wickramaaratchi, M.A.; Tao, W.; Klemm, R.B. )

    1991-10-03

    The photoionization spectra of the H{sub 2}CN and D{sub 2}CN radicals were obtained by photoionization mass spectroscopy (PIMS) using synchrotron radiation. The radicals were generated by the reaction of N with CH{sub 3} and CD{sub 3}, respectively. For both H{sub 2}CN and D{sub 2}CN a prominent feature was observed near 118.6 nm (10.5 eV) and the ionization threshold was determined to be 9.4 {plus minus} 0.1 eV; both features provide additional signatures for identifying H{sub 2}CN in complex systems. By use of a corrected value for {Delta}H{sub f} (H{sub 2}CN) derived from a recent electron affinity measurement and other available measured or calculated thermochemical quantities for H{sub 2}CN and HCNH radicals and radical ions, a value of 10.8 {plus minus} 0.6 eV for the ionization energy of H{sub 2}CN was derived. The much lower value derived for the ionization energy of HCNH (6.8 and 7.0 eV for the cis and trans isomers, respectively) is consistent with the product of the N + CH{sub 3} reaction being the H{sub 2}CN isomer and not HCNH. The ionization threshold observed at 9.4 eV is attributed to autoionization arising from high Rydberg states of H{sub 2}CN which couple into vibrationally excited states of the linear HCNH{sup +} ground state of the ion. Also discussed are the roles of the H{sub 2}CN radical and HCNH{sup +} radical ion in the chemistry of the atmosphere of Titan and in interstellar clouds.

  20. The Higgs portal above threshold

    DOE PAGES

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; ...

    2016-02-18

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. In this study, we systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14TeV LHC and a prospective 100TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an o ff-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy inmore » association with vector boson fusion, monojets, and top pairs. In addition, we forecast the sensitivity of searches in these channels at √s = 14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.« less

  1. The Higgs portal above threshold

    SciTech Connect

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; Thalapillil, Arun

    2016-02-18

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. In this study, we systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14TeV LHC and a prospective 100TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an o ff-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. In addition, we forecast the sensitivity of searches in these channels at √s = 14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  2. Internal energy distribution of peptides in electrospray ionization : ESI and collision-induced dissociation spectra calculation.

    PubMed

    Pak, Alireza; Lesage, Denis; Gimbert, Yves; Vékey, Károly; Tabet, Jean-Claude

    2008-04-01

    The internal energy of ions and the timescale play fundamental roles in mass spectrometry. The main objective of this study is to estimate and compare the internal energy distributions of different ions (different nature, degree of freedom 'DOF' and fragmentations) produced in an electrospray source (ESI) of a triple-quadrupole instrument (Quattro I Micromass). These measurements were performed using both the Survival Yield method (as proposed by De Pauw) and the MassKinetics software (kinetic model introduced by Vékey). The internal energy calibration is the preliminary step for ESI and collision-induced dissociation (CID) spectra calculation. meta-Methyl-benzylpyridinium ion and four protonated peptides (YGGFL, LDIFSDF, LDIFSDFR and RLDIFSDF) were produced using an electrospray source. These ions were used as thermometer probe compounds. Cone voltages (V(c)) were linearly correlated with the mean internal energy values () carried by desolvated ions. These mean internal energy values seem to be slightly dependent on the size of the studied ion. ESI mass spectra and CID spectra were then simulated using the MassKinetics software to propose an empirical equation for the mean internal energy () versus cone voltage (V(c)) for different source temperatures (T): < E(int) > = [405 x 10(-6) - 480 x 10(-9) (DOF)] V(c)T + E(therm)(T). In this equation, the E(therm)(T) parameter is the mean internal energy due to the source temperature at 0 V(c).

  3. High-resolution autoionizing line spectra of Mg II and Al III in the 160--260-A range emitted from a Penning ionization discharge plasma

    SciTech Connect

    Finkenthal, M.; Litman, A.; Mandelbaum, P.; Stutman, D.; Schwob, J.L.

    1988-08-01

    Spectra of aluminum and magnesium emitted from a Penning ionization discharge have been recorded in the XUV range by 2-m grazing-incidence spectrometer. Autoionizing satellite lines, originating from transitions between core excited levels lying in the continuum and ground or lowest excited states of the Na I-like Al III and Mg II, have been classified. Their implication for ionization cross-section estimates and XUV laser research is discussed.

  4. Effect of relativity on the ionization spectra of the xenon fluorides XeFn (n=2, 4, 6).

    PubMed

    Pernpointner, Markus; Cederbaum, Lorenz S

    2005-06-01

    Noble gas compounds exhibit special chemical bonding situations and have been investigated by various spectroscopic and theoretical techniques. In this work we calculate the ionization spectra of the xenon fluorides (XeF2,XeF4, and XeF6) in the valence and subvalence (down to Xe 4d) areas by application of the recently developed Dirac-Hartree-Fock one-particle propagator technique. In this technique, the relativistic (four-component) and electron correlation effects are computed simultaneously. The xenon compounds show considerable spin-orbit splitting strongly influencing the photoelectron spectrum not reproducible in prior calculations. Comparison to one-component methods is made and the occurring satellite structures are interpreted. The satellite structures can be attributed either to the breakdown of the one-particle picture or to a reflection of intra-atomic and interatomic Auger decay processes within the molecule.

  5. Strong-field ionization of homonuclear diatomic molecules by a bicircular laser field: Rotational and reflection symmetries

    NASA Astrophysics Data System (ADS)

    Busuladžić, M.; Gazibegović-Busuladžić, A.; Milošević, D. B.

    2017-03-01

    We investigate above-threshold ionization (ATI) of homonuclear diatomic molecules by the so-called bicircular field using the improved molecular strong-field approximation. Bicircular field is a two-color laser field having coplanar circularly polarized counter-rotating components of frequencies r ω and s ω , with r and s integers. Our analysis includes the high-energy part of the corresponding spectra, i.e., high-order ATI (HATI). The obtained molecular (H)ATI spectra are more complicated than the corresponding atomic spectra. We have identified four symmetries which are satisfied in (H)ATI of homonuclear diatomic molecules. Two of these symmetries are general rotational symmetries valid both for direct and rescattered HATI electrons. The remaining two symmetries are reflection symmetries valid only for the direct ATI electrons. Analytical proof of these symmetries is also given. These symmetries are illustrated using numerical examples of HATI spectra of the N2 molecule for various molecular orientations.

  6. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  7. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. III. A COMPLETE GRID OF IONIZED REFLECTION CALCULATIONS

    SciTech Connect

    Garcia, J.; McClintock, J. E.; Dauser, T.; Wilms, J.; Eikmann, W.; Reynolds, C. S.; Kallman, T. R. E-mail: jem@cfa.harvard.edu E-mail: thomas.dauser@sternwarte.uni-erlangen.de E-mail: wiebke.eikmann@sternwarte.uni-erlangen.de

    2013-05-10

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index {Gamma} of the illuminating radiation, the ionization parameter {xi} at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A{sub Fe} relative to the solar value. The ranges of the parameters covered are 1.2 {<=} {Gamma} {<=} 3.4, 1 {<=} {xi} {<=} 10{sup 4}, and 0.5 {<=} A{sub Fe} {<=} 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file (http://hea-www.cfa.harvard.edu/{approx}javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.

  8. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  9. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  10. New Measurement of Singly Ionized Selenium Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hala, Noman; Nave, G.; Kramida, A.; Ahmad, T.; Nahar, S.; Pradhan, A.

    2015-05-01

    We report new measurements of singly ionised selenium, an element of the iron group detected in nearly twice as many planetary nebulae as any other trans-iron element. We use the NIST 2 m UV/Vis/IR and FT700 UV/Vis Fourier transform spectrometers over the wavelength range of 2000 Å-2.5 μm, supplemented in the lower wavelength region 300-2400 Å with grating spectra taken on a 3-m normal incidence vacuum spectrograph. The analysis of Se II is being extended, covering the wide spectral region from UV to IR. From our investigation, we found serious inconsistency and incompleteness in the previously published results, where several levels were reported without any designation. The analysis is being revised and extended with the help of semiempirical quasi-relativistic Hartree-Fock calculations, starting with the 4s24p3- [4s24p2(4d +5d +5s +6s) +4s4p4] transition array. Out of fifty-two previously reported levels, we rejected thirteen and found several new level values. With the new measurements, we expect to observe transitions between 4s24p2(4d +5s) and 4s24p2(5p +4f), lying in the visible and IR region. A complete interpretation of the level system of both parities will be assisted by least squares fitted parametric calculations. In all, we have already classified about 450 observed lines involving 89 energy levels.

  11. Thomson scattering and collisional ionization in the X-ray grating spectra of the recurrent nova U Scorpii

    NASA Astrophysics Data System (ADS)

    Orio, M.; Behar, E.; Gallagher, J.; Bianchini, A.; Chiosi, E.; Luna, G. J. M.; Nelson, T.; Rauch, T.; Schaefer, B. E.; Tofflemire, B.

    2013-02-01

    We present a Chandra observation of the recurrent nova U Scorpii, done with the High Resolution camera-S (HRC-S) detector and the Low Energy Transmission Grating (LETG) on day 18 after the observed visual maximum of 2010, and compare it with XMM-Newton observations obtained on days 23 and 35 after maximum. The total absorbed flux was in the range 2.2-2.6 × 10-11 erg cm-2 s-1, corresponding to unabsorbed luminosity 7-8.5 × 1036 ×(d/12 kpc)2 for N(H) = 2-2.7 × 1021 cm-2. On day 18, 70 per cent of the soft X-tray flux was in a continuum typical of a very hot white dwarf (WD) atmosphere, which accounted for about 80 per cent of the flux on days 23 and 35. In addition, all spectra display very broad emission lines, due to higher ionization stages at later times. With Chandra we observed apparent P Cygni profiles. We find that these peculiar profiles are not due to blueshifted absorption and redshifted emission in photoionized ejecta, like the optical P Cyg of novae, but they are rather a superposition of WD atmospheric absorption features reflected by the already discovered Thomson scattering corona, and emission lines due to collisional ionization in condensations in the ejecta. On days 23 and 35, the absorption components were no longer measurable, having lost the initial large blueshift that displaced them from the core of the broad emission lines. We interpret this as an indication that mass-loss ceased between day 18 and day 23. On day 35, the emission line spectrum became very complex, with several different components. Model atmospheres indicate that the WD atmospheric temperature was about 730 000 K on day 18 and reached 900 000-1000 000 K on day 35. This peak temperature is consistent with a WD mass of at least 1.3 M⊙.

  12. Rotationally resolved photoelectron spectra in resonance enhanced multiphoton ionization of HCl via the F 1Δ2 Rydberg state

    NASA Astrophysics Data System (ADS)

    Wang, Kwanghsi; McKoy, V.

    1991-12-01

    Results of studies of rotational ion distributions in the X 2Π3/2 and X 2Π1/2 spin-orbit states of HCl+ resulting from (2+1') resonance enhanced multiphoton ionization (REMPI) via the S(0) branch of the F 1Δ2 Rydberg state are reported and compared with measured threshold-field-ionization zero-kinetic-energy spectra reported recently [K. S. Haber, Y. Jiang, G. Bryant, H. Lefebvre-Brion, and E. R. Grant, Phys. Rev. A (in press)]. These results show comparable intensities for J+=3/2 of the X 2Π3/2 ion and J+=1/2 of the X 2Π1/2 ion. Both transitions require an angular momentum change of ΔN=-1 upon photoionization. To provide further insight into the near-threshold dynamics of this process, we also show rotationally resolved photoelectron angular distributions, alignment of the ion rotational levels, and rotational distributions for the parity components of the ion rotational levels. About 18% population is predicted to occur in the (+) parity component, which would arise from odd partial-wave contributions to the photoelectron matrix element. This behavior is similar to that in (2+1) REMPI via the S(2) branch of the F 1Δ2 state of HBr and was shown to arise from significant l mixing in the electronic continuum due to the nonspherical molecular ion potential. Rotational ion distributions resulting from (2+1) REMPI via the S(10) branch of the F 1Δ2 state are also shown.

  13. Statistical analysis of fragmentation patterns of electron ionization mass spectra of enolized-trimethylsilylated anabolic androgenic steroids

    NASA Astrophysics Data System (ADS)

    Fragkaki, A. G.; Angelis, Y. S.; Tsantili-Kakoulidou, A.; Koupparis, M.; Georgakopoulos, C.

    2009-08-01

    Anabolic androgenic steroids (AAS) are included in the List of prohibited substances of the World Anti-Doping Agency (WADA) as substances abused to enhance athletic performance. Gas chromatography coupled to mass spectrometry (GC-MS) plays an important role in doping control analyses identifying AAS as their enolized-trimethylsilyl (TMS)-derivatives using the electron ionization (EI) mode. This paper explores the suitability of complementary GC-MS mass spectra and statistical analysis (principal component analysis, PCA and partial least squares-discriminant analysis, PLS-DA) to differentiate AAS as a function of their structural and conformational features expressed by their fragment ions. The results obtained showed that the application of PCA yielded a classification among the AAS molecules which became more apparent after applying PLS-DA to the dataset. The application of PLS-DA yielded a clear separation among the AAS molecules which were, thus, classified as: 1-ene-3-keto, 3-hydroxyl with saturated A-ring, 1-ene-3-hydroxyl, 4-ene-3-keto, 1,4-diene-3-keto and 3-keto with saturated A-ring anabolic steroids. The study of this paper also presents structurally diagnostic fragment ions and dissociation routes providing evidence for the presence of unknown AAS or chemically modified molecules known as designer steroids.

  14. Identification of isobaric product ions in electrospray ionization mass spectra of fentanyl using multistage mass spectrometry and deuterium labeling.

    PubMed

    Wichitnithad, Wisut; McManus, Terence J; Callery, Patrick S

    2010-09-15

    Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N-phenylpropanamide. 1-(2-Phenylethyl)-1,2,3,6-tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS(3)) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium-labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions.

  15. Matrix-assisted ultraviolet laser desorption/ionization time-of-flight (UV-MALDI-TOF) mass spectra of N-acylated and N,O-acylated glycosylamines.

    PubMed

    Sato, Yasuto; Fukuyama, Yuko; Nonami, Hiroshi; Erra-Balsells, Rosa; Stortz, Carlos A; Cerezo, Alberto S; Matulewicz, María C

    2007-12-10

    Matrix-assisted ultraviolet laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOF-MS) has shown to be a very useful technique for the study of the non-volatile and thermally non-stable N-acylated glycopyranosyl- and glycofuranosyl-amines. Of the several matrices tested, 2,5-dihydroxybenzoic acid (DHB) was the most effective giving good spectra in the positive-ion mode. In the linear and reflectron modes, the [M+Na](+) ions appeared with high intensity. Their fragmentation patterns were investigated by post-source decay (PSD) UV-MALDI-TOF-MS showing mainly cross-ring cleavages. In addition, N,O-acylated glycopyranosyl- and glycofuranosyl-amines were also analyzed by this technique. PSD UV-MALDI-TOF-MS gave significant signals for several primary fragment ions, which were proposed but not detected, or observed with very low abundance, in electron ionization mass spectrometry (EI-MS) experiments.

  16. Correlated Two-Electron Momentum Spectra for Strong-Field Nonsequential Double Ionization of He at 800 nm

    SciTech Connect

    Rudenko, A.; Ergler, Th.; Zrost, K.; Feuerstein, B.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Jesus, V. L. B. de

    2007-12-31

    We report on a kinematically complete experiment on nonsequential double ionization of He by 25 fs 800 nm laser pulses at 1.5 PW/cm{sup 2}. The suppression of the recollision-induced excitation at this high intensity allows us to address in a clean way direct (e,2e) ionization by the recolliding electron. In contrast with earlier experimental results, but in agreement with various theoretical predictions, the two-electron momentum distributions along the laser polarization axis exhibit a pronounced V-shaped structure, which can be explained by the role of Coulomb repulsion and typical (e,2e) kinematics.

  17. Ionospheric ionization calculated from combined SolACES-SDO/EVE solar EUV spectra and comparison with global TEC at different time scales

    NASA Astrophysics Data System (ADS)

    Jacobi, Christoph; Unglaub, Claudia; Schmidtke, Gerhard; Schäfer, Robert; Brunner, Raimund; Woods, Tom; Jakowski, Norbert

    2015-04-01

    Ionospheric response to solar EUV variability during 2012 - 2014 is shown by the EUV-TEC proxy based on primary ionization calculations using combined solar spectra from SDO/EVE and SolACES on board the ISS. The in flight calibrated SolACES spectra have been used to calibrate the continuous SDO/EVE measurements. The results are compared with global TEC analyses. We found that EUV describes TEC variability better than conventional indices, especially during periods of strong solar flare activity. At time scales of the solar rotation, there is a time lag between EUV and TEC variability of about one day, indicating dynamical processes in the ionosphere. This lag is not seen at shorter time scales.

  18. Non-linearity issues and multiple ionization satellites in the PIXE portion of spectra from the Mars alpha particle X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Campbell, John L.; Heirwegh, Christopher M.; Ganly, Brianna

    2016-09-01

    Spectra from the laboratory and flight versions of the Curiosity rover's alpha particle X-ray spectrometer were fitted with an in-house version of GUPIX, revealing departures from linear behavior of the energy-channel relationships in the low X-ray energy region where alpha particle PIXE is the dominant excitation mechanism. The apparent energy shifts for the lightest elements present were attributed in part to multiple ionization satellites and in part to issues within the detector and/or the pulse processing chain. No specific issue was identified, but the second of these options was considered to be the more probable. Approximate corrections were derived and then applied within the GUAPX code which is designed specifically for quantitative evaluation of APXS spectra. The quality of fit was significantly improved. The peak areas of the light elements Na, Mg, Al and Si were changed by only a few percent in most spectra. The changes for elements with higher atomic number were generally smaller, with a few exceptions. Overall, the percentage peak area changes are much smaller than the overall uncertainties in derived concentrations, which are largely attributable to the effects of rock heterogeneity. The magnitude of the satellite contributions suggests the need to incorporate these routinely in accelerator-based PIXE using helium beams.

  19. High-resolution measurements of the K-alpha spectra of low-ionizationm species of iron: A new spectral signature of nonequilibrium ionization conditions in young supernova remnants

    NASA Technical Reports Server (NTRS)

    Decaux, V.; Beiersdorfer, P.; Osterheld, A.; Chen, M.; Kahn, S. M.

    1995-01-01

    We present the first systematic laboratory measurements of high-resolution K-alpha spectra of intermediate ions of iron, Fe X-XVII. These lines are not produced in collisional equilibrium plasmas because of the relevant charge states cannot exist at the high electron temperatures required for appreciable excitation of the K-alpha transitions. However, they can provide excellent spectral diagnostics for nonequilibrium ionization conditions, such the ionizing plasmas of young supernova remnants. To facilitate the line identifications, we compare our spectra with theoretical atomic calculations performed using multiconfiguration parametric potential and Dirac-Fock atomic codes. Our measurements also allow direct comparison with time-dependent ionization balance calculations for ionizing plasmas, and good agreement is found.

  20. Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P

    2013-10-01

    One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.

  1. Mass spectrometry of analytical derivatives. 2. "Ortho" and "Para" effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids.

    PubMed

    Todua, Nino G; Mikaia, Anzor I

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS(1) spectra of unlabeled compounds to their (2)H and (13)C labeled analogs, and analysis of collision-induced dissociation data from MS(2) spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.

  2. Quasi-simultaneous acquisition of hard electron ionization and soft single-photon ionization mass spectra during GC/MS analysis by rapid switching between both ionization methods: analytical concept, setup, and application on diesel fuel.

    PubMed

    Eschner, Markus S; Gröger, Thomas M; Horvath, Thomas; Gonin, Marc; Zimmermann, Ralf

    2011-05-15

    This work describes the realization of rapid switching between hard electron ionization (EI) and soft single-photon ionization (SPI) integrated in a compact orthogonal acceleration time-of-flight mass spectrometer. Vacuum-ultraviolet (VUV) photons of 9.8 eV (126 nm) emitted from the innovative electron-beam-pumped rare-gas excimer light source (EBEL) filled with argon are focused into the ion chamber by an ellipsoidal mirror optic for accomplishing of SPI. This novel orthogonal acceleration time-of-flight mass spectrometer with switching capability was hyphenated to one-dimensional gas chromatography (GC) and comprehensive two-dimensional (2D) gas chromatography (GC × GC) for the first time. Within this demonstration study, a maximum switching frequency of 80 Hz was applied for investigation of a mineral-oil-type diesel sample. This approach allows the quasi-simultaneous acquisition of complementary information about the fragmentation pattern (EI) as well as the molecular mass (SPI) of compounds within a single analysis. Furthermore, by application of a polar GC column for separation, the SPI data can be displayed in a 2D contour plot, leading to a comprehensive 2D characterization (GC × MS), whereas the typical group-type assignment for diesel is also met.

  3. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  4. Dissociation and Ionization of Quasi-Periodically Vibrating H2+ in Intense Few-Cycle Mid-Infrared Laser Fields

    PubMed Central

    Jiang, Shicheng; Yu, Chao; Yuan, Guanglu; Wu, Tong; Lu, Ruifeng

    2017-01-01

    Using quantum mechanics calculations, we theoretically study the dissociation and ionization dynamics of the hydrogen-molecule ion in strong laser fields. Having prepared the nuclear wave packet of H2+ in a specific vibrational state, a pump laser is used to produce a vibrational excitation, leading to quasi-periodical vibration without ionization. Then, a time-delayed few-cycle laser is applied to trigger the dissociation or ionization of H2+. Both the time delay and the intensity of the probe laser alter the competition between dissociation and ionization. We also explore the dependence of kinetic-energy release spectra of fragments on the time delay, showing that the channels of above-threshold dissociation and below-threshold dissociation are opened and closed periodically. Also, dissociation from different channels is influenced by nuclear motion. The dissociation mechanism has been described in detail using the Floquet picture. This work provides a useful method for steering the electronic and nuclear dynamics of diatomic molecules in intense laser fields. PMID:28165034

  5. Dissociation and Ionization of Quasi-Periodically Vibrating H2+ in Intense Few-Cycle Mid-Infrared Laser Fields

    NASA Astrophysics Data System (ADS)

    Jiang, Shicheng; Yu, Chao; Yuan, Guanglu; Wu, Tong; Lu, Ruifeng

    2017-02-01

    Using quantum mechanics calculations, we theoretically study the dissociation and ionization dynamics of the hydrogen-molecule ion in strong laser fields. Having prepared the nuclear wave packet of H2+ in a specific vibrational state, a pump laser is used to produce a vibrational excitation, leading to quasi-periodical vibration without ionization. Then, a time-delayed few-cycle laser is applied to trigger the dissociation or ionization of H2+. Both the time delay and the intensity of the probe laser alter the competition between dissociation and ionization. We also explore the dependence of kinetic-energy release spectra of fragments on the time delay, showing that the channels of above-threshold dissociation and below-threshold dissociation are opened and closed periodically. Also, dissociation from different channels is influenced by nuclear motion. The dissociation mechanism has been described in detail using the Floquet picture. This work provides a useful method for steering the electronic and nuclear dynamics of diatomic molecules in intense laser fields.

  6. Zero kinetic energy spectroscopy: mass-analyzed threshold ionization spectra of chromium sandwich complexes with alkylbenzenes, (η(6)-RPh)(2)Cr (R = Me, Et, i-Pr, t-Bu).

    PubMed

    Ketkov, Sergey Y; Selzle, Heinrich L; Cloke, F Geoffrey N; Markin, Gennady V; Shevelev, Yury A; Domrachev, Georgy A; Schlag, Edward W

    2010-10-28

    For over 25 years zero kinetic energy (ZEKE) spectroscopy has yielded a rich foundation of high-resolution results of molecular ions. This was based on the discovery in the late 60's of long-lived ion states throughout the ionization continuum of molecular ions. Here, an example is chosen from another fundamental system pioneered at this university. The mass-analyzed threshold ionization (MATI) spectra of jet-cooled chromium bisarene complexes (η(6)-RPh)(2)Cr (R = Me (1), Et (2), i-Pr (3), and t-Bu (4)) have been measured and interpreted on the basis of DFT calculations. The MATI spectra of complexes 1 and 2 appear to reveal features arising from ionizations of the isomers formed by the rotation of one arene ring relative to the other. The 1 and 2 MATI spectra show two intense peaks corresponding to the 0(0)(0) ionizations with inverse intensity ratios. As indicated by the DFT calculations, the intensity ratio change on going from 1 to 2 results from different isomers contributing to each MATI peak. The ionization energies corresponding to the 0(0)(0) peaks are 42746 ± 5 and 42809 ± 5 cm(-1) for compound 1 and 42379 ± 5 and 42463 ± 5 cm(-1) for complex 2. The 1 and 2 spectra show also the weaker features representing transitions to the vibrationally excited cationic levels, the signals of individual rotamers being detected and assigned on the basis of calculated vibrational frequencies. The MATI spectra of compounds 3 and 4 reveal only one strong peak because of close ionization potentials of the isomers contributing to the MATI signal. The 3 and 4 ionization energies are 42104 ± 5 and 41917 ± 5 cm(-1), respectively. The precise values of ionization energies obtained from the MATI spectra reveal a nonlinear dependence of the IE on the number of Me groups in the alkyl substituents of (η(6)-RPh)(2)Cr. This can be explained by an increase in the molecular zero point energies on methylation of the substituents.

  7. Ab initio investigation of structure, stability, thermal behavior, bonding, and infrared spectra of ionized water cluster (H2O)6+

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Hu, Cui-E.; Tang, Mei; Chen, Xiang-Rong; Cai, Ling-Cang

    2016-10-01

    The low-lying isomers of cationic water cluster (H2O)6+ have been globally explored by using particle swarm optimization algorithm in conjunction with quantum chemical calculations. Compared with previous results, our searching method covers a wide range of structural isomers of (H2O)6+ and therefore turns out to be more effective. With these local minima, geometry optimization and vibrational analysis are performed for the most interesting clusters at second-order Møller-Plesset (MP2)/aug-cc-pVDZ level, and their energies are further refined at MP2/aug-cc-pVTZ and coupled-cluster theory with single, double, and perturbative triple excitations/aug-cc-pVDZ level. The interaction energies using the complete basis set limits at MP2 level are also reported. The relationships between their structure arrangement and their energies are discussed. Based on the results of thermal simulation, structural change from a four-numbered ring to a tree-like structure occurs at T ≈ 45 K, and the relative population of six lowest-free-energy isomers is found to exceed 4% at some point within the studied temperature range. Studies reveal that, among these six isomers, two new-found isomers constitute 10% of isomer population at 180 K, and the experimental spectra can be better explained with inclusions of the two isomers. The molecular orbitals for six representative cationic water clusters are also studied. Through topological and reduced density gradient analysis, we investigated the structural characteristics and the bonding strengths of these water cluster radical cations.

  8. Ab initio investigation of structure, stability, thermal behavior, bonding, and infrared spectra of ionized water cluster (H2O)6().

    PubMed

    Liu, Lei; Hu, Cui-E; Tang, Mei; Chen, Xiang-Rong; Cai, Ling-Cang

    2016-10-21

    The low-lying isomers of cationic water cluster (H2O)6(+) have been globally explored by using particle swarm optimization algorithm in conjunction with quantum chemical calculations. Compared with previous results, our searching method covers a wide range of structural isomers of (H2O)6(+) and therefore turns out to be more effective. With these local minima, geometry optimization and vibrational analysis are performed for the most interesting clusters at second-order Møller-Plesset (MP2)/aug-cc-pVDZ level, and their energies are further refined at MP2/aug-cc-pVTZ and coupled-cluster theory with single, double, and perturbative triple excitations/aug-cc-pVDZ level. The interaction energies using the complete basis set limits at MP2 level are also reported. The relationships between their structure arrangement and their energies are discussed. Based on the results of thermal simulation, structural change from a four-numbered ring to a tree-like structure occurs at T ≈ 45 K, and the relative population of six lowest-free-energy isomers is found to exceed 4% at some point within the studied temperature range. Studies reveal that, among these six isomers, two new-found isomers constitute 10% of isomer population at 180 K, and the experimental spectra can be better explained with inclusions of the two isomers. The molecular orbitals for six representative cationic water clusters are also studied. Through topological and reduced density gradient analysis, we investigated the structural characteristics and the bonding strengths of these water cluster radical cations.

  9. Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectra of poly(butylene adipate).

    PubMed

    Rizzarelli, Paola; Puglisi, Concetto; Montaudo, Giorgio

    2006-01-01

    Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS/MS) was employed to analyze four poly(butylene adipate) (PBAd) oligomers and to investigate their fragmentation pathways as a continuation of our work on the MALDI-TOF/TOF-MS/MS study of synthetic polymers. MALDI-TOF/TOF-MS/MS analysis was performed on oligomers terminated by carboxyl and hydroxyl groups, methyl adipate and hydroxyl groups, dihydroxyl groups, and dicarboxyl groups. The sodium adducts of these oligomers were selected as precursor ions. Different end groups do not influence the fragmentation of sodiated polyester oligomers and similar series of product ions were observed in all the MALDI-TOF/TOF-MS/MS spectra. According to the structures of the most abundant product ions identified in the present work, three fragmentation pathways have been proposed to occur most frequently in PBAd: beta-hydrogen-transfer rearrangement, leading to the selective cleavage of the --O--CH(2)-- bonds; --CH(2)--CH(2)-- (beta--beta) bond cleavage in the adipate moiety; and ester bond scission.

  10. Comparison of the resonance-enhanced multiphoton ionization spectra of pyrrole and 2,5-dimethylpyrrole: Building toward an understanding of the electronic structure and photochemistry of porphyrins

    NASA Astrophysics Data System (ADS)

    Beames, Joseph M.; Nix, Michael G. D.; Hudson, Andrew J.

    2009-11-01

    The photophysical properties of porphyrins have relevance for their use as light-activated drugs in cancer treatment and sensitizers in solid-state solar cells. However, the appearance of their UV-visible spectra is usually explained inadequately by qualitative molecular-orbital theories. We intend to gain a better insight into the intense absorption bands, and excited-state dynamics, that make porphyrins appropriate for both of these applications by gradually building toward an understanding of the macrocyclic structure, starting with studies of smaller pyrrolic subunits. We have recorded the (1+1) and (2+1) resonance-enhanced multiphoton ionization (REMPI) spectra of pyrrole and 2,5-dimethylpyrrole between 25 600 cm-1 (390 nm) and 48 500 cm-1 (206 nm). We did not observe a (1+1) REMPI signal through the optically bright B12 (ππ ∗) and A11 (ππ ∗) states in pyrrole due to ultrafast deactivation via conical intersections with the dissociative A12 (πσ ∗) and B11 (πσ ∗) states. However, we did observe (2+1) REMPI through Rydberg states with a dominant feature at 27 432 cm-1 (two-photon energy, 54 864 cm-1) assigned to a 3d←π transition. In contrast, 2,5-dimethylpyrrole has a broad and structured (1+1) REMPI spectrum between 36 000 and 42 500 cm-1 as a result of vibronic transitions to the B12 (ππ ∗) state, and it does not show the 3d←π Rydberg transition via (2+1) REMPI. We have complemented the experimental studies by a theoretical treatment of the excited states of both molecules using time-dependent density functional theory (TD-DFT) and accounted for the contrasting features in the spectra. TD-DFT modeled the photochemical activity of both the optically dark π1σ∗ states (dissociative) and optically bright π1π∗ states well, predicting the barrierless deactivation of the B12 (ππ ∗) state of pyrrole and the bound minimum of the B12 (ππ ∗) state in 2,5-dimethylpyrrole. However, the quantitative agreement between vibronic

  11. Comparison of the resonance-enhanced multiphoton ionization spectra of pyrrole and 2,5-dimethylpyrrole: Building toward an understanding of the electronic structure and photochemistry of porphyrins.

    PubMed

    Beames, Joseph M; Nix, Michael G D; Hudson, Andrew J

    2009-11-07

    The photophysical properties of porphyrins have relevance for their use as light-activated drugs in cancer treatment and sensitizers in solid-state solar cells. However, the appearance of their UV-visible spectra is usually explained inadequately by qualitative molecular-orbital theories. We intend to gain a better insight into the intense absorption bands, and excited-state dynamics, that make porphyrins appropriate for both of these applications by gradually building toward an understanding of the macrocyclic structure, starting with studies of smaller pyrrolic subunits. We have recorded the (1+1) and (2+1) resonance-enhanced multiphoton ionization (REMPI) spectra of pyrrole and 2,5-dimethylpyrrole between 25 600 cm(-1) (390 nm) and 48 500 cm(-1) (206 nm). We did not observe a (1+1) REMPI signal through the optically bright (1)B(2) (pipi( *)) and (1)A(1) (pipi( *)) states in pyrrole due to ultrafast deactivation via conical intersections with the dissociative (1)A(2) (pisigma( *)) and (1)B(1) (pisigma( *)) states. However, we did observe (2+1) REMPI through Rydberg states with a dominant feature at 27 432 cm(-1) (two-photon energy, 54 864 cm(-1)) assigned to a 3d<--pi transition. In contrast, 2,5-dimethylpyrrole has a broad and structured (1+1) REMPI spectrum between 36 000 and 42 500 cm(-1) as a result of vibronic transitions to the (1)B(2) (pipi( *)) state, and it does not show the 3d<--pi Rydberg transition via (2+1) REMPI. We have complemented the experimental studies by a theoretical treatment of the excited states of both molecules using time-dependent density functional theory (TD-DFT) and accounted for the contrasting features in the spectra. TD-DFT modeled the photochemical activity of both the optically dark (1)pisigma( *) states (dissociative) and optically bright (1)pipi( *) states well, predicting the barrierless deactivation of the (1)B(2) (pipi( *)) state of pyrrole and the bound minimum of the (1)B(2) (pipi( *)) state in 2,5-dimethylpyrrole

  12. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    NASA Astrophysics Data System (ADS)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O ii]λλ3726, 3729, [O iii]λ5007, [N ii]λλ6549, 6584, and [S ii]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, i.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O ii] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H ii regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H ii regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N ii]/Hα and [O ii]/Hα ratios between the disk and the halo. SDSS IV.

  13. Photoelectron angular distributions of H ionization in low energy regime: Comparison between different potentials

    NASA Astrophysics Data System (ADS)

    Song, Shu-Na; Liang, Hao; Peng, Liang-You; Jiang, Hong-Bing

    2016-09-01

    We theoretically investigate the low energy part of the photoelectron spectra in the tunneling ionization regime by numerically solving the time-dependent Schrdinger equation for different atomic potentials at various wavelengths. We find that the shift of the first above-threshold ionization (ATI) peak is closely related to the interferences between electron wave packets, which are controlled by the laser field and largely independent of the potential. By gradually changing the short-range potential to the long-range Coulomb potential, we show that the long-range potential’s effect is mainly to focus the electrons along the laser’s polarization and to generate the spider structure by enhancing the rescattering process with the parent ion. In addition, we find that the intermediate transitions and the Rydberg states have important influences on the number and the shape of the lobes near the threshold. Project supported by the National Natural Science Foundation of China (Grant Nos. 11322437 and 11574010) and the National Basic Research Program of China (Grant No. 2013CB922402).

  14. Vibronic spectra of jet-cooled 2-aminopurine·H2O clusters studied by UV resonant two-photon ionization spectroscopy and quantum chemical calculations.

    PubMed

    Sinha, Rajeev K; Lobsiger, Simon; Trachsel, Maria; Leutwyler, Samuel

    2011-06-16

    For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine·H(2)O monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift δν of the S(1) ← S(0) transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (δν = -889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H(2)O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D(e) = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)ππ* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S(0) state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)ππ* state to the lower-lying (1)nπ* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)ππ* state of B is planar and decoupled from the (1)nπ* state. These observations agree with the calculations, which predict the (1)nπ* above the (1)ππ* state for isomer B but below the (1)ππ* for both 9H-2AP and isomer A.

  15. Theoretical investigation of the origin of the multipeak structure of kinetic-energy-release spectra from charge-resonance-enhanced ionization of H{sub 2}{sup +} in intense laser fields

    SciTech Connect

    He Haixiang; Guo Yahui; Lu Ruifeng; Zhang Peiyu; Han Keli; He Guozhong

    2011-09-15

    The dynamics of hydrogen molecular ions in intense laser pulses (100 fs, I = 0.77 x 10{sup 14} W/cm{sup 2} to 2.5 x 10{sup 14} W/cm{sup 2}) has been studied, and the kinetic-energy-release spectra of Coulomb explosion channel have been calculated by numerically solving the time-dependent Schroedinger equation. In a recent experiment, a multipeak structure from charge-resonance-enhanced ionization is interpreted by a vibrational 'comb' at a critical nuclear distance. We found that the peaks could not be attributed to a single vibrational level but a collective contribution of some typical vibrational states in our calculated Coulomb explosion spectra, and the main peak shifts toward the low-energy region with increasing vibrational level, which is also different from the explanation in that experiment. We have also discussed the proton's kinetic-energy-release spectra for different durations with the same laser intensity.

  16. Projectile and Target Contributions to the Continuous Electron Spectra from 150 keV/u C+ + He, Ne Collisions; Multiple Ionization and Multiple Scattering

    NASA Astrophysics Data System (ADS)

    Sulik, B.; Kövér, Á.; Ricz, S.; Koncz, Cs.; Tökesi, K.; Víkor, Gy.; Chesnel, J.-Y.; Stolterfoht, N.; Berényi, D.

    Double differential cross sections in the 20-550 eV energy range and in the full angular range of 0°-180° for electron emission were measured by the impact of 150 keV/u C+ ions on He and Ne atoms. An unexpected, broad structure around 300 eV electron energy has been observed at backward emission angles relative to the beam direction. Our CTMC calculations support the hypothesis that the new structure is due to double scattering of the target electrons on the screened fields of the projectile and the target. According to the present impact-parameter Born calculations, the average degree of ionization is about 50% for C++ Ne collisions, i.e., a multiple ionized system is created in the collision.

  17. SYNTHESIZED SPECTRA OF OPTICALLY THIN EMISSION LINES PRODUCED BY THE BIFROST STELLAR ATMOSPHERE CODE, INCLUDING NONEQUILIBRIUM IONIZATION EFFECTS: A STUDY OF THE INTENSITY, NONTHERMAL LINE WIDTHS, AND DOPPLER SHIFTS

    SciTech Connect

    Olluri, K.; Gudiksen, B. V.; Hansteen, V. H.; Pontieu, B. De

    2015-03-20

    In recent years realistic 3D numerical models of the solar atmosphere have become available. The models attempt to recreate the solar atmosphere and mimic observations in the best way, in order to make it possible to couple complicated observations with physical properties such as the temperatures, densities, velocities, and magnetic fields. We here present a study of synthetic spectra created using the Bifrost code in order to assess how well they fit with previously taken solar data. A study of the synthetic intensity, nonthermal line widths, Doppler shifts, and correlations between any two of these three components of the spectra first assuming statistical equilibrium is made, followed by a report on some of the effects nonequilibrium ionization will have on the synthesized spectra. We find that the synthetic intensities compare well with the observations. The synthetic observations depend on the assumed resolution and point-spread function (PSF) of the instrument, and we find a large effect on the results, especially for intensity and nonthermal line width. The Doppler shifts produce the reported persistent redshifts for the transition region (TR) lines and blueshifts for the upper TR and corona lines. The nonthermal line widths reproduce the well-known turnoff point around (2–3) × 10{sup 5} K, but with much lower values than those observed. The nonthermal line widths tend to increase with decreasing assumed instrumental resolution, also when nonequilibrium ionization is included. Correlations between the nonthermal line width of any two TR line studies as reported by Chae et al. are reproduced, while the correlations of intensity to line width are reproduced only after applying a PSF to the data. Doppler shift correlations reported by Doschek for the TR lines and correlations of Doppler shift to nonthermal line width of the Fe xii{sub 19.5} line reported by Doschek et al. are reproduced.

  18. Photoionization of hydroxymethyl (CD[sub 2]OH and CD[sub 2]OD) and methoxy (CD[sub 3]O) radicals. Photoion efficiency spectra, ionization energies, and thermochemistry

    SciTech Connect

    Kuo, S.C.; Zhang, Z.; Klemm, R.B. ); Liebman, J.F. ); Stief, L.J. ); Nesbitt, F.L. Coppin State College, Baltimore, MD )

    1994-04-14

    Photoion efficiency (PIE) spectra were obtained for CD[sub 2]OH, CD[sub 2]OD, and CD[sub 3]O radicals using the discharge flow-photoionization mass spectrometry technique. The radicals were generated in a flow tube via reaction of F atoms with the appropriate methanol isotopomers (CD[sub 3]OH [yields] CD[sub 2]OH, CD[sub 3]OD [yields] CD[sub 2]OD, and CD[sub 3]OH [yields] CD[sub 3]O), which were in large excess. Deuterated methoxy radicals, CD[sub 3]O, were also generated via the reaction of CD[sub 3] with NO[sub 2]. Photoionization of the radicals was achieved using high intensity, dispersed synchrotron radiation, and ionization energies (IE) of these radicals were derived from the thresholds of the PIE spectra: IE(CD[sub 2]OH) = 7.54 [+-] 0.02 eV, IE(CD[sub 2]OD) = 7.53 [+-] 0.02 eV, and IE(CD[sub 3]O) = 10.74 [+-] 0.02 eV. The PIE spectra for CD[sub 2]OH and CD[sub 3]O are compared to those of a previous photoionization study, and differences are discussed. Integration of previously published photoelectron spectroscopy data for CD[sub 2]OH yields a curve quite similar to our PIE spectrum. Empirical estimates of IE(CH[sub 2]OH) and IE(CH[sub 3]O) are given to corroborate our assignments. The measured ionization energies and the derived thermodynamic quantities are compared with previously reported results. 67 refs., 7 figs., 2 tabs.

  19. The 3d9-3d84p Transitions in the Spectra of Highly-Ionized Elements Yttrium to Silver (Y XIII-Ag XXI)

    NASA Astrophysics Data System (ADS)

    Wyart, Jean-François; Klapisch, Marcel; Schwob, Jean-Louis; Schweitzer, Naftaly

    1982-09-01

    Two hundred and ninety-five lines of the spectra of cobalt-like ions Y XII, Zr XIV, Nb XV, Mo XVI, Ru XVIII, Rh XIX, Pd XX and Ag XXI have been classified as 3d9-3d84p transitions. They involve 250 energy levels which are described by 21 parameters with a root-mean-square deviation of 290 cm-1. The scaling factors of radial integrals calculated by the Hartree-Fock method have been fitted as well as effective electrostatic parameters. The validity of the results is based on isoelectronic regularities and has been checked by extrapolations to the known spectra of Br IX and Sn XXIV. Predictions are given for Kr X, Rb XI, Sr XII, Cd XXII and In XXIII.

  20. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Stenson, Alexandra C; Marshall, Alan G; Cooper, William T

    2003-03-15

    Molecular formulas have been assigned for 4626 individual Suwannee River fulvic acids based on accurate mass measurements from ions generated by electrospray ionization and observed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Formula assignments were possible because of the mass accuracy of FTICR MS at high field (9.4 T) and the regular mass spacing patterns found in fulvic acid mixtures. Sorting the 4626 individually observed ions according to Kendrick mass defect and nominal mass series (z* score) revealed that all could be assigned to 1 of 266 distinct homologous series that differ in oxygen content and double bond equivalence. Tandem mass spectrometry based on infrared multiphoton dissociation identified labile fragments of fulvic acid molecules, whose chemical formulas led to plausible structures consistent with degraded lignin as a source of Suwannee River fulvic acids.

  1. Interference oscillations in the angular distribution of laser-ionized electrons near ionization threshold.

    PubMed

    Arbó, D G; Yoshida, S; Persson, E; Dimitriou, K I; Burgdörfer, J

    2006-04-14

    We analyze the two-dimensional momentum distribution of electrons ionized by few-cycle laser pulses in the transition regime from multiphoton absorption to tunneling by solving the time-dependent Schrödinger equation and by a classical-trajectory Monte-Carlo simulation with tunneling (CTMC-T). We find a complex two-dimensional interference pattern that resembles above threshold ionization (ATI) rings at higher energies and displays Ramsauer-Townsend-type diffraction oscillations in the angular distribution near threshold. CTMC-T calculations provide a semiclassical explanation for the dominance of selected partial waves. While the present calculation pertains to hydrogen, we find surprising qualitative agreement with recent experimental data for rare gases [A. Rudenko, J. Phys. B 37, L407 (2004)].

  2. Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system.

    PubMed

    Harrington, Peter B; Laurent, Claudine; Levinson, Douglas F; Levitt, Pat; Markey, Sanford P

    2007-09-19

    A bootstrap method for point-based detection of candidate biomarker peaks has been developed from pattern classifiers. Point-based detection methods are advantageous in comparison to peak-based methods. Peak determination and selection are problematic when spectral peaks are not baseline resolved or on a varying baseline. The benefit of point-based detection is that peaks can be globally determined from the characteristic features of the entire data set (i.e., subsets of candidate points) as opposed to the traditional method of selecting peaks from individual spectra and then combining the peak list into a data set. The point-based method is demonstrated to be more effective and efficient using a synthetic data set when compared to using Mahalanobis distance for feature selection. In addition, probabilities that characterize the uniqueness of the peaks are determined. This method was applied for detecting peaks that characterize age-specific patterns of protein expression of developing and adult mouse cerebella from matrix assisted laser desorption/ionization (MALDI) mass spectrometry (MS) data. The mice comprised three age groups: 42 adults, 19 14-day-old pups, and 16 7-day-old pups. Three sequential spectra were obtained from each tissue section to yield 126, 57 and 48 spectra for adult, 14-day-old pup, and 7-day-old pup spectra, respectively. Each spectrum comprised 71,879 mass measurements in a range of 3.5-50 kDa. A previous study revealed that 846 unique peaks were detected that were consistent for 50% of the mice in each age group (C. Laurent, D.F. Levinson, S.A. Schwartz, P.B. Harrington, S.P. Markey, R.M. Caprioli, P. Levitt, Direct profiling of the cerebellum by MALDI MS: a methodological study in postnatal and adult mouse, J. Neurosci. Res. 81 (2005) 613-621.). A fuzzy rule-building expert system (FuRES) was applied to investigate the correlation of age with features in the MS data. FuRES detected two outlier pup-14 spectra. Prediction was evaluated

  3. Low-energy electron rescattering in laser-induced ionization

    NASA Astrophysics Data System (ADS)

    Becker, W.; Goreslavski, S. P.; Milošević, D. B.; Paulus, G. G.

    2014-10-01

    The low-energy structure (LES) in the energy spectrum of above-threshold ionization of rare-gas atoms is reinvestigated from three different points of view. First, the role of forward rescattering in the completely classical simple-man model (SMM) is considered. Then, the corresponding classical electronic trajectories are retrieved in the quantum-mechanical ionization amplitude derived in the strong-field approximation augmented to allow for rescattering. Third, classical trajectories in the presence of both the laser field and the Coulomb field are scrutinized in order to see how they are related to the LES. It is concluded that the LES is already rooted in the SMM. The Coulomb field enhances the structure so that it can successfully compete with other contributions and become visible in the total spectrum.

  4. Nanocluster ionization energies and work function of aluminum, and their temperature dependence

    SciTech Connect

    Halder, Avik; Kresin, Vitaly V.

    2015-10-28

    Ionization threshold energies of Al{sub n} (n = 32-95) nanoclusters are determined by laser ionization of free neutral metal clusters thermalized to several temperatures in the range from 65 K to 230 K. The photoion yield curves of cold clusters follow a quadratic energy dependence above threshold, in agreement with the Fowler law of surface photoemission. Accurate data collection and analysis procedures make it possible to resolve very small (few parts in a thousand) temperature-induced shifts in the ionization energies. Extrapolation of the data to the bulk limit enables a determination of the thermal shift of the polycrystalline metal work function, found to be in excellent agreement with theoretical prediction based on the influence of thermal expansion. Small clusters display somewhat larger thermal shifts, reflecting their greater susceptibility to thermal expansion. Ionization studies of free size-resolved nanoclusters facilitate understanding of the interplay of surface, electronic, and lattice properties under contamination-free conditions.

  5. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  6. Delineation of Stenotrophomonas maltophilia isolates from cystic fibrosis patients by fatty acid methyl ester profiles and matrix-assisted laser desorption/ionization time-of-flight mass spectra using hierarchical cluster analysis and principal component analysis.

    PubMed

    Vidigal, Pedrina Gonçalves; Mosel, Frank; Koehling, Hedda Luise; Mueller, Karl Dieter; Buer, Jan; Rath, Peter Michael; Steinmann, Joerg

    2014-12-01

    Stenotrophomonas maltophilia is an opportunist multidrug-resistant pathogen that causes a wide range of nosocomial infections. Various cystic fibrosis (CF) centres have reported an increasing prevalence of S. maltophilia colonization/infection among patients with this disease. The purpose of this study was to assess specific fingerprints of S. maltophilia isolates from CF patients (n = 71) by investigating fatty acid methyl esters (FAMEs) through gas chromatography (GC) and highly abundant proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to compare them with isolates obtained from intensive care unit (ICU) patients (n = 20) and the environment (n = 11). Principal component analysis (PCA) of GC-FAME patterns did not reveal a clustering corresponding to distinct CF, ICU or environmental types. Based on the peak area index, it was observed that S. maltophilia isolates from CF patients produced significantly higher amounts of fatty acids in comparison with ICU patients and the environmental isolates. Hierarchical cluster analysis (HCA) based on the MALDI-TOF MS peak profiles of S. maltophilia revealed the presence of five large clusters, suggesting a high phenotypic diversity. Although HCA of MALDI-TOF mass spectra did not result in distinct clusters predominantly composed of CF isolates, PCA revealed the presence of a distinct cluster composed of S. maltophilia isolates from CF patients. Our data suggest that S. maltophilia colonizing CF patients tend to modify not only their fatty acid patterns but also their protein patterns as a response to adaptation in the unfavourable environment of the CF lung.

  7. Laser intensity determination using nonadiabatic tunneling ionization of atoms in close-to-circularly polarized laser fields.

    PubMed

    Quan, Wei; Yuan, MingHu; Yu, ShaoGang; Xu, SongPo; Chen, YongJu; Wang, YanLan; Sun, RenPing; Xiao, ZhiLei; Gong, Cheng; Hua, LinQiang; Lai, XuanYang; Liu, XiaoJun; Chen, Jing

    2016-10-03

    We conceive an improved procedure to determine the laser intensity with the momentum distributions from nonadiabatic tunneling ionization of atoms in the close-to-circularly polarized laser fields. The measurements for several noble gas atoms are in accordance with the semiclassical calculations, where the nonadiabatic effect and the influence of Coulomb potential are included. Furthermore, the high-order above-threshold ionization spectrum in linearly polarized laser fields for Ar is measured and compared with the numerical calculation of the time-dependent Schrödinger equation in the single-active-electron approximation to test the accuracy of the calibrated laser intensity.

  8. Central 300 PC of the Galaxy Probed by the Infrared Spectra of H_3^+ and Co: I. Predominance of Warm and Diffuse Gas and High H_2 Ionization Rate

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Geballe, Thomas R.; Goto, Miwa; Usuda, Tomonori; Indriolo, Nick

    2016-06-01

    A low-resolution 2.0-2.5 μm survey of ˜500 very red point-like objects in the Central Molecular Zone (CMZ) of our Galaxy, initiated in 2008, has revealed many new bright objects with featureless spectra that are suitable for high resolution absorption spectroscopy of H_3^+ and CO. We now have altogether 48 objects mostly close to the Galactic plane located from 142 pc to the west of Sgr A* to 120 pc east allowing us to probe dense and diffuse gas by H_3^+ and dense gas by CO. Our observations demonstrate that the warm (˜250 K) and diffuse (≤100 cm-3) gas with a large column length (≥30 pc) initially observed toward the brightest star in the CMZ, GCS3-2 of the Quintuplet Cluster, exists throughout the CMZ with the surface filling factor of ˜ 100% dominating the region. The column densities of CO in the CMZ are found to be much less than those in the three foreground spiral arms except in the directions of Sgr B and Sgr E complexes and indicate that the volume filling factor of dense clouds of 10% previously estimated is a gross overestimate for the front half of the CMZ. Nevertheless the predominance of the newly found diffuse molecular gas makes the term "Central Molecular Zone" even more appropriate. The ultra-hot X-rays emitting plasma which some thought to dominate the region must be non existent except near the stars and SNRs. Recently the H_2 fraction f(H_2) in diffuse gas of the CMZ has been reported to be ˜0.6. If we use this value, the cosmic ray H_2 ionization rate ζ of a few times 10-15 s-1 reported earlier^b on the assumption of f(H_2)=1 needs to be increased by a factor of ˜3 since the value is approximately inversely proportional to f(H_2)^2. Geballe, T. R., Oka, T., Lambridges, E., Yeh, S. C. C., Schlegelmilch, B., Goto, M., Westrick, C. W., WI07 at the 70th ISMS, Urbana, IL, USA,2015 Oka, T., Geballe, T. R., Goto, M., Usuda, T., McCall, B. J. 2005, ApJ, 632, 882 Le Petit, F., Ruaud, M., Bron, E., Godard, B., Roueff, E., Languignon, D., Le

  9. Steplike Intensity Threshold Behavior of Extreme Ionization in Laser-Driven Xenon Clusters

    SciTech Connect

    Doeppner, T.; Mueller, J. P.; Przystawik, A.; Goede, S.; Tiggesbaeumker, J.; Meiwes-Broer, K.-H.; Varin, C.; Ramunno, L.; Brabec, T.; Fennel, T.

    2010-07-30

    The generation of highly charged Xe{sup q+} ions up to q=24 is observed in Xe clusters embedded in helium nanodroplets and exposed to intense femtosecond laser pulses ({lambda}=800 nm). Laser intensity resolved measurements show that the high-q ion generation starts at an unexpectedly low threshold intensity of about 10{sup 14} W/cm{sup 2}. Above threshold, the Xe ion charge spectrum saturates quickly and changes only weakly for higher laser intensities. Good agreement between these observations and a molecular dynamics analysis allows us to identify the mechanisms responsible for the highly charged ion production and the surprising intensity threshold behavior of the ionization process.

  10. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules.

    PubMed

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-02

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

  11. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  12. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  13. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  14. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  15. Correspondence of electron spectra from photoionization and nuclear internal conversion

    SciTech Connect

    Wark, D.L.; Bartlett, R.; Bowles, T.J.; Robertson, R.G.H.; Sivia, D.S.; Trela, W.; Wilkerson, J.F. ); Brown, G.S. ); Crasemann, B.; Sorensen, S.L.; Schaphorst, S.J. ); Knapp, D.A.; Henderson, J. ); Tulkki, J.; Aberg, T. )

    1991-10-21

    Electron energy spectra have been measured that result from {ital K}-shell ionization of Kr by two different mechanisms: (1) photoionization and (2) internal conversion in the decay of the isomeric state of {sup 83}Kr. It is demonstrated experimentally that these spectra, including satellites on the low-energy side of the primary 1{ital s}-electron peak, are identical. A theoretical interpretation of the identity of the spectra is given. The spectra agree well with a relativistic many-electron calculation in which the satellites are attributed to excitation and ionization of {ital M} and {ital N} electrons during the {ital K}-ionization process.

  16. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  17. Inequality spectra

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-03-01

    Inequality indices are widely applied in economics and in the social sciences as quantitative measures of the socioeconomic inequality of human societies. The application of inequality indices extends to size-distributions at large, where these indices can be used as general gauges of statistical heterogeneity. Moreover, as inequality indices are plentiful, arrays of such indices facilitate high-detail quantification of statistical heterogeneity. In this paper we elevate from arrays of inequality indices to inequality spectra: continuums of inequality indices that are parameterized by a single control parameter. We present a general methodology of constructing Lorenz-based inequality spectra, apply the general methodology to establish four sets of inequality spectra, investigate the properties of these sets, and show how these sets generalize known inequality gauges such as: the Gini index, the extended Gini index, the Rényi index, and hill curves.

  18. Theory of dissociative tunneling ionization

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2016-05-01

    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.

  19. The ionization rate inversion of H? induced by the single and double UV photon(s)

    NASA Astrophysics Data System (ADS)

    He, Pei-Lun; He, Feng

    2013-11-01

    The ionization of H? in the strong UV laser pulse is studied by numerically solving the time-dependent Schrödinger equation. In analogy to Young's double-slit interference, the ionized electron originating from two nuclei will constructively, or destructively interfere, depending on the UV frequencies. The fluctuation of the ionization rate as a function of the laser frequency is observed. The destructive interference suppresses the single-photon ionization rate, so that the double-photon ionization rate can be larger than the single-photon ionization rate. When such an ionization-rate inversion happens, the electron momentum spectra splits into several peaks.

  20. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gottwald, T.; Mattolat, C.; Wendt, K.

    2017-04-01

    Multi-step resonance ionization spectroscopy of cobalt has been performed using a hot-cavity laser ion source and three Ti:Sapphire lasers. The photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F9/2, 3d 74s4d f 4G11/2, and 3d 74s4d f 4H13/2 and converge to the first four excited states of singly ionized Co. The analyses of the Rydberg series yield 63 564.689 ± 0.036 cm‑1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonance ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co. ).

  1. Improved strong-field approximation and quantum-orbit theory: Application to ionization by a bicircular laser field

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.

    2016-06-01

    A theory of above-threshold ionization of atoms by a strong laser field is formulated. Two versions of the strong-field approximation (SFA) are considered, the direct SFA and the improved SFA, which do not and do, respectively, take into account rescattering of the freed electron off the parent ion. The atomic bound state is included in two different ways: as an expansion in terms of Slater-type orbitals or as an asymptotic wave function. Even though we are using the single-active-electron approximation, multielectron effects are taken into account in two ways: by a proper choice of the ground state and by an adequate definition of the ionization rate. For the case of the asymptotic bound-state wave functions, using the saddle-point method, a simple expression for the T -matrix element is derived for both the direct and the improved SFA. The theory is applied to ionization by a bicircular field, which consists of two coplanar counterrotating circularly polarized components with frequencies that are integer multiples of a fundamental frequency ω . Special emphasis is on the ω -2 ω case. In this case, the threefold rotational symmetry of the field carries over to the velocity map of the liberated electrons, for both the direct and the improved SFA. The results obtained are analyzed in detail using the quantum-orbit formalism, which gives good physical insight into the above-threshold ionization process. For this purpose, a specific classification of the saddle-point solutions is introduced for both the backward-scattered and the forward-scattered electrons. The high-energy backward-scattering quantum orbits are similar to those discovered for high-order harmonic generation. The short forward-scattering quantum orbits for a bicircular field are similar to those of a linearly polarized field. The conclusion is that these orbits are universal, i.e., they do not depend much on the shape of the laser field.

  2. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  3. Superponderomotive regime of tunneling ionization

    NASA Astrophysics Data System (ADS)

    Gordon, D. F.; Palastro, J. P.; Hafizi, B.

    2017-03-01

    Ultrarelativistic photoelectron spectra exhibit unexpected characteristics in a paraxial laser focus. The photoelectron energy scales superponderomotively, and the usual parabolic momentum distribution is distorted into a variety of intricate patterns, depending on the location of the ion. These patterns include discrete contours, which in some cases can be easily identified with a particular subcycle burst of ionization current. An analytical formula for the maximum photoelectron energy in a paraxial radiation field is given, and high-resolution momentum distributions with narrowly peaked features are presented. These narrowly peaked features suggest application to electron injection into plasma-based accelerators.

  4. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  5. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  6. Electron impact ionization of the gas-phase sorbitol

    NASA Astrophysics Data System (ADS)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  7. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    DOE PAGES

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan; ...

    2016-06-01

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated.more » Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.« less

  8. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    SciTech Connect

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-06-01

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  9. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  10. Towards universal ambient ionization: direct elemental analysis of solid substrates using microwave plasma ionization.

    PubMed

    Evans-Nguyen, K M; Gerling, J; Brown, H; Miranda, M; Windom, A; Speer, J

    2016-06-21

    A microwave plasma was used for direct ambient ionization mass spectrometry of solid substrates, rapidly yielding atomic spectra without sample digestion or pre-treatment. Further, molecular spectra for the organic components of the substrate were obtained simultaneously, in an ambient ionization format. Initial characterization of the microwave plasma coupling to an ion trap mass spectrometer was carried out using solution standards and a microwave plasma torch (MPT) configuration. The configuration of the microwave plasma was then optimized for ambient ionization. The atomic and organic composition for samples applicable to nuclear and conventional forensic screening, including explosive/radionuclide mixtures and inorganic/organic gunshot residue component mixtures were successfully determined. The technologies employed are readily fieldable; the feasibility of a multimode ion source that could be coupled with a portable ion trap mass spectrometer for rapid, on-site, elemental, isotopic, and molecular screening of samples is demonstrated.

  11. Modeling of Ionization Physics with the PIC Code OSIRIS

    SciTech Connect

    Deng, S.; Tsung, F.; Lee, S.; Lu, W.; Mori, W.B.; Katsouleas, T.; Muggli, P.; Blue, B.E.; Clayton, C.E.; O'Connell, C.; Dodd, E.; Decker, F.J.; Huang, C.; Hogan, M.J.; Hemker, R.; Iverson, R.H.; Joshi, C.; Ren, C.; Raimondi, P.; Wang, S.; Walz, D.; /Southern California U. /UCLA /SLAC

    2005-09-27

    When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package into the 3-D, object-oriented, fully parallel PIC code OSIRIS. We apply the simulation tool to simulate the parameters of the upcoming E164 Plasma Wakefield Accelerator experiment at the Stanford Linear Accelerator Center (SLAC). We find that impact ionization is dominated by the plasma electrons moving in the wake rather than the 30 GeV drive beam electrons. Impact ionization leads to a significant number of trapped electrons accelerated from rest in the wake.

  12. Ionized gas in the Irr galaxy IC 10: The emission spectrum and ionization sources

    NASA Astrophysics Data System (ADS)

    Arkhipova, V. P.; Egorov, O. V.; Lozinskaya, T. A.; Moiseev, A. V.

    2011-02-01

    We present the observations of the Irr galaxy IC 10 at the 6-m SAO telescope with the panoramic Multi-Pupil Fiber Spectrograph (MPFS). Based on the results of these observations and our long-slit spectroscopy performed previously, we have investigated the ionized-gas emission spectrum in the region of intense star formation and refined the gas metallicity estimates. We show that the “diagnostic diagrams” constructed from our observations agree best with the new improved ionization models by Martin-Manjon et al. Using these models, we have determined the electron density and gas ionization parameter and ionizing-cluster characteristics, the age and mass, from the spectra of the investigated HII regions. The cluster ages and masses are shown to be within the ranges 2.5-5 Myr and (0.2-1) × 105 M ⊗, respectively.

  13. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  14. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  15. Rocket measurements of mesospheric ionization irregularities

    NASA Technical Reports Server (NTRS)

    Stoltzfus, R. B.; Bowhill, S. A.

    1985-01-01

    The Langmuir probe technique for measurement of electron concentration in the mesosphere is capable of excellent altitude resolution, of order 1 m. Measurements from nine daytime rocket flights carrying an electron density fine structure experiment frequently show small scale ionization structures in the altitude region 70 to 90 km. The irregularities are believed to be the result of turbulent advection of ions and electrons. The fine structure experiment flown by the University of Illinois is described and methods of analyzing the collected data is presented. Theories of homogeneous, isotropic turbulence are reviewed. Power spectra of the measured irregularities are calculated and compared to spectra predicted by turbulence theories.

  16. Ionizing laser propagation and spectral phase determination

    NASA Astrophysics Data System (ADS)

    Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H.-S.; Daniels, J.; Dale, N.; Swanson, K. K.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Ionization-induced blueshifting is investigated through INF&RNO simulations and experimental studies at the Berkeley Laboratory Laser Accelerator (BELLA) Center. The effects of spectral phase and optical compression are explored. An in-situ method for verifying the spectral phase of an intense laser pulse at focus is presented, based on the effects of optical compression on the morphology of the blueshifted laser spectra.

  17. Intensity oscillations in the carbon 1s ionization cross sections of 2-butyne

    SciTech Connect

    Carroll, Thomas X.; Zahl, Maria G.; Borve, Knut J.; Saethre, Leif J.; Decleva, Piero; Ponzi, Aurora; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Thomas, T. Darrah

    2013-06-21

    Carbon 1s photoelectron spectra for 2-butyne (CH{sub 3}C{identical_to}CCH{sub 3}) measured in the photon energy range from threshold to 150 eV above threshold show oscillations in the intensity ratio C2,3/C1,4. Similar oscillations have been seen in chloroethanes, where the effect has been attributed to EXAFS-type scattering from the substituent chlorine atoms. In 2-butyne, however, there is no high-Z atom to provide a scattering center and, hence, oscillations of the magnitude observed are surprising. The results have been analyzed in terms of two different theoretical models: a density-functional model with B-spline atom-centered functions to represent the continuum electrons and a multiple-scattering model using muffin-tin potentials to represent the scattering centers. Both methods give a reasonable description of the energy dependence of the intensity ratios.

  18. Mass analyzed threshold ionization spectroscopy of p-fluorostyrene

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Neusser, H. J.; Chakraborty, Tapas

    2004-05-01

    Adiabatic ionization energy (AIE) and two-color threshold ion vibrational spectra of p-fluorostyrene have been measured by mass analyzed threshold ionization (MATI) method via three different intermediate levels in the first excited state, vibrationless S1 origin, 421411, and 231 vibronic levels. Features of the ion vibrational spectra indicates that the geometry of the molecular ion including the conformation of the vinyl chain in the ionic ground state (D0) is almost identical to that of its neutral ground state (S0), and ionization has very little effect on the vibrational potentials of the aromatic ring modes. Comparison of the AIE with the reported value of styrene shows that fluorination at the para position of the aromatic ring has little effect on energy of the electron ejected in ionization process from the styrene chromophore.

  19. Mass analyzed threshold ionization spectroscopy of 7-azaindole cation

    NASA Astrophysics Data System (ADS)

    Lee Lin, Jung; Tzeng, Wen Bih

    2003-10-01

    The vibrationally resolved mass analyzed threshold ionization (MATI) spectra of jet-cooled 7-azaindole have been recorded by ionizing via four different intermediate levels. The adiabatic ionization energy of this molecule is determined to be 65 462±5 cm -1, which is greater than that of indole by 2871 cm -1. The vibrational spectra of 7-azaindole in the S 1 and D 0 states have been successfully assigned by comparing the measured frequencies with those of indole as well as the predicted values from the ab initio calculations. Detailed analysis on the MATI spectra shows that the structure of the cation is somewhat different from that of this species in the neutral S 1 state.

  20. Comparing Ultraviolet Spectra Against Calculations: First Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2003-01-01

    The five-year goal of this effort is to calculate high fidelity mid-UV spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this first year, the emphasis was placed on revising the list of atomic line parameters used to calculate mid-UV spectra. First, new identifications of atomic lines and measurements of their transition probabilities were obtained for lines of the first and second ionization stages of iron-peak elements. Second, observed mid-UV and optical spectra for standard stars were re-analyzed and compared to new calculations, to refine the determination of transition probabilities and to estimate the identity of lines still missing from the laboratory lists. As evidenced by the figures, a dramatic improvement has resulted in the reproduction of the spectra of standard stars by the calculations.

  1. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  2. Mass analyzed threshold ionization (MATI) with VUV radiation

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Kim, Sang Kyu; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2009-05-01

    Mass analyzed threshold ionization is a combination of threshold ionization spectroscopy with mass spectrometry. Similar to zero electron kinetic energy (ZEKE), MATI spectroscopy takes advantage of the field ionization of long lived high Rydberg states to obtain an ionization threshold and perform spectroscopy on the resulting cation. MATI at the synchrotron utilizing tunable VUV light opens up a novel way to perform spectroscopy on ions and improve the resolution in ionization energy determination in comparison with conventional photoionization efficiency curve measurements. This method is implemented at the Advanced Light Source and vibrationally-resolved MATI spectra for simple di- and polyatomic molecules (O2, N2, H2O, N2O, C2H2, and C6H6) are measured. This preliminary work allows us to test the applicability of MATI at a synchrotron and prepare for investigation of more complex systems such as mixtures of molecules, isomers and clusters.

  3. The effect of conformation on the ionization energetics of n-butylbenzene. I. A threshold ionization study

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Ford, Mark S.; Dessent, Caroline E. H.; Müller-Dethlefs, Klaus

    2003-12-01

    Conformational isomers of the aromatic hydrocarbon n-butylbenzene have been studied using two-color REMPI (resonance enhanced multiphoton ionization) and MATI (mass analyzed threshold ionization) spectroscopy to explore the effect of conformation on ionization dynamics. Gauche- and anti-cationic conformers were selectively produced by two-color excitation via the respective S1 origins. Adiabatic ionization potentials of the gauche- and anti-conformations were determined to be 70 148 and 69 955±5 cm-1, respectively. Analysis of the REMPI and MATI spectra allowed the determination of the S0 (38 cm-1), S1 (100 cm-1), and D0 (-155 cm-1) gauche- and anti-conformer energy differences. Spectral features and vibrational modes are interpreted with the aid of MP2/cc-pVDZ ab initio calculations, and ionization-induced changes in the molecular conformations discussed.

  4. The dissociation of NO-Ar(A) from around threshold to 200 cm(-1) above threshold.

    PubMed

    Holmes-Ross, Heather L; Lawrance, Warren D

    2010-07-07

    We report an investigation of the dissociation of A state NO-Ar at energies from 23 cm(-1) below the dissociation energy to 200 cm(-1) above. The NO product rotational distributions show population in states that are not accessible with the energy available for excitation from the NO ground state. This effect is observed at photon energies from below the dissociation energy up to approximately 100 cm(-1) above it. Translational energy distributions, extracted from velocity map images of individual rotational levels of the NO product, reveal contributions from excitation of high energy NO-Ar X states at all the excess energies probed, although this diminishes with increasing photon energy and is quite small at 200 cm(-1), the highest energy studied. These translational energy distributions show that there are contributions arising from population in vibrational levels up to the X state dissociation energy. We propose that the reason such sparsely populated levels contribute to the observed dissociation is a considerable increase in the transition moment, via the Franck-Condon factor associated with these highly excited states, which arises because of the quite different geometries in the NO-Ar X and A states. This effect is likely to arise in other systems with similarly large geometry changes.

  5. Low-frequency Raman scattering in model disordered solids: percolators above threshold

    NASA Astrophysics Data System (ADS)

    Pilla, O.; Viliani, G.; Dell'Anna, R.; Ruocco, G.

    1997-02-01

    The Raman coupling coefficients of site- and bond-percolators at concentration higher than percolation threshold are computed for two scattering mechanisms: bond polarizability (BPOL) and dipole-induced-dipole (DID). The results show that DID does not follow a scaling law at low frequency, while in the case of BPOL the situation is less clear. The numerically computed frequency dependence in the case of BPOL, which can be considered a good scattering mechanism for a wide class of real glasses, is in semiquantitative agreement with experimental results.

  6. Continuity of the Four-Point Function of Massive ǎrphi44-THEORY above Threshold

    NASA Astrophysics Data System (ADS)

    Kopper, Christoph

    In this paper we prove that the four-point function of massive ǎrphi44-theory is continuous as a function of its independent external momenta when posing the renormalization condition for the (physical) mass on-shell. The proof is based on integral representations derived inductively from the perturbative flow equations of the renormalization group. It closes a longstanding loophole in rigorous renormalization theory in so far as it shows the feasibility of a physical definition of the renormalized coupling.

  7. Quantum communication exploiting above threshold OPO intensity correlations and polarization encoding

    NASA Astrophysics Data System (ADS)

    Porzio, A.; D'Auria, V.; Aniello, P.; Paris, M. G. A.; Solimeno, S.

    2007-04-01

    We present a continuous variable quantum communication protocol based on bright continuous-wave twin-beams generated by a type-II OPO. Intensity correlation between the beams is used in conjunction with a binary randomization of polarization to guarantee security and reveal eavesdropping actions. The scheme presented is asymmetric. Bob (the receiver) retains one of the beams and sends the other one to Alice after a random rotation of its polarization. The cryptographic key elements are encoded through amplitude modulation by Alice, who sends back her beam to Bob after a second rotation of the polarization. Eventually, the beams are detected by Bob after a further random polarization rotation. The security of the system and the possibility of revealing the eavesdropping action in the case of an individual attack are demonstrated by evaluating the bit error rates.

  8. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  9. Mass-Analyzed Threshold Ionization Spectroscopy of 2-Phenylethanol: Probing of Conformational Changes Caused by Ionization

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Karaminkov, R.; Chervenkov, S.; Delchev, V.; Neusser, H. J.

    2009-10-01

    The vibrational structure of the ionic ground state of different conformers of the biologically relevant molecule 2-phenylethanol has been investigated by combination of two-photon two-color mass-analyzed threshold ionization spectroscopy (MATI) and quantum chemical calculations at M05, MP2, and coupled cluster (CC) levels of theory with extended basis sets. MATI spectra recorded via gauche vibronic bands are with poor structure and increasing background, whereas the ones measured via vibronic bands of the anti conformers feature well-resolved vibronic structure in the cation. Ab initio computations predict three stable conformers for the 2-phenylethanol cation out of five initial neutral structures. None of the theoretical structures in the cation features a nonclassical OH···π hydrogen bond in conjunction with the analysis of the MATI spectra. This provides clear evidence that the OH···π hydrogen bond stabilizing the lowest-energy gauche conformer in the neutral breaks upon ionization.

  10. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  11. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  12. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  13. Complex time contours in tunnel ionization and low-energy structures

    NASA Astrophysics Data System (ADS)

    Pisanty, Emilio; Ivanov, Misha

    2015-03-01

    In tunnel ionization, a strong low-frequency laser field removes an electron from an atom by setting up a slowly-varying potential energy barrier that the electron can tunnel through. During its subsequent oscillations in the laser field, the electron can revisit the neighbourhood of the remaining ion one or more times. Frequently, this is a soft recollision which affects the momentum distribution, although more substantial effects can happen. We use the Analytical R-Matrix theory to investigate the effect of these soft recollisions, focusing on low drift momenta, where the laser-induced trajectory has a turning point near the nucleus. Our framework provides a complex-valued trajectory perspective on the electron propagation, from first principles. We show that the presence of the Coulomb interaction, which is responsible for the soft recollisions, forbids certain common choices of contour within the complex time plane, and we describe an algorithm for safely circumventing the associated branch cuts. We find quantum analogues to the classical turning points near the ion, and we investigate their relation to the recently-discovered low-energy and very-low-energy structures in above-threshold ionization. We acknowledge funding from CONACYT (Mexico) and the MC-ITN CORINF network.

  14. Ionization pattern obtained in electrospray ionization or atmospheric pressure chemical ionization interfaces for authorized antidepressants in Romania

    NASA Astrophysics Data System (ADS)

    Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona

    2016-12-01

    Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.

  15. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  16. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    SciTech Connect

    Jackson, Ayanna U.; Talaty, Nari; Cooks, R G; Van Berkel, Gary J

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  17. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  18. Resonance ionization mass spectrometric study of the promethium/samarium isobaric pair

    SciTech Connect

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1988-01-01

    Samarium daughters are problematic in isotope ratio measurements of promethium because they are isobaric. Resonance ionization mass spectrometry was utilized to circumvent this problem. An ionization selectivity factor of at least 1000:1 has been measured for promethium over samarium at 584.6 nm. Resonance ionization spectra have been recorded for both elements over the 528-560 and 580-614 nm wavelength ranges.

  19. ON-LINE ANALYSIS OF AQUEOUS AEROSOLS BY LASER DESORPTION IONIZATION. (R823980)

    EPA Science Inventory

    In this work the effects of water on the laser desorption ionization mass spectra of single aerosol particles are explored. Aqueous aerosols are produced by passing dry particles through a humid environment so that they undergo deliquescent growth. Laser desorption ionization is ...

  20. Reactor Neutrino Spectra

    NASA Astrophysics Data System (ADS)

    Hayes, Anna C.; Vogel, Petr

    2016-10-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  1. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  2. Dynamics and structural changes of small water clusters on ionization.

    PubMed

    Lee, Han Myoung; Kim, Kwang S

    2013-07-05

    Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)(n = 2-6)(+)] with density functional theory (DFT), Möller-Plesset second-order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O(+)) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high-level ab initio results. To understand the ionization process of water clusters, DFT- and MP2-based Born-Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen-like form with the hydronium cation instead of a Zundel-like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5(+) (5sL4A) cluster tends to form with a detached water molecule (H2O).

  3. Degradation of cyanobacterial biosignatures by ionizing radiation.

    PubMed

    Dartnell, Lewis R; Storrie-Lombardi, Michael C; Mullineaux, Conrad W; Ruban, Alexander V; Wright, Gary; Griffiths, Andrew D; Muller, Jan-Peter; Ward, John M

    2011-12-01

    Primitive photosynthetic microorganisms, either dormant or dead, may remain today on the martian surface, akin to terrestrial cyanobacteria surviving endolithically in martian analog sites on Earth such as the Antarctic Dry Valleys and the Atacama Desert. Potential markers of martian photoautotrophs include the red edge of chlorophyll reflectance spectra or fluorescence emission from systems of light-harvesting pigments. Such biosignatures, however, would be modified and degraded by long-term exposure to ionizing radiation from the unshielded cosmic ray flux onto the martian surface. In this initial study into this issue, three analytical techniques--absorbance, reflectance, and fluorescence spectroscopy--were employed to determine the progression of the radiolytic destruction of cyanobacteria. The pattern of signal loss for chlorophyll reflection and fluorescence from several biomolecules is characterized and quantified after increasing exposures to ionizing gamma radiation. This allows estimation of the degradation rates of cyanobacterial biosignatures on the martian surface and the identification of promising detectable fluorescent break-down products.

  4. Strong-field ionization of lithium

    SciTech Connect

    Schuricke, Michael; Zhu Ganjun; Steinmann, Jochen; Simeonidis, Konstantinos; Dorn, Alexander; Ullrich, Joachim; Ivanov, Igor; Kheifets, Anatoli; Grum-Grzhimailo, Alexei N.; Bartschat, Klaus

    2011-02-15

    We report photoelectron energy spectra, momentum, and angular distributions for the strong-field single ionization of lithium by 30-fs laser pulses. For peak intensities between 10{sup 11} and 10{sup 14} W/cm{sup 2} at a central wavelength of 785 nm, the classical over-the-barrier intensity was reached well inside the multiphoton regime. The complete vector momenta of the ionization fragments were recorded by a reaction microscope with a magneto-optically trapped target (MOTREMI). On the theoretical side, the time-dependent Schroedinger equation was solved by two independent methods seeking the solution directly on a radial grid. Distinct differences between the results of both calculations and also in comparison with experiment point to a high sensitivity of this reaction with respect to small details, particularly in the description of the Li{sup +} core.

  5. LASER DESORPTION IONIZATION OF SIZE RESOLVED LIQUID MICRODROPLETS. (R823980)

    EPA Science Inventory

    Mass spectra of single micrometer-size glycerol droplets containing organic and inorganic analytes were obtained by on-line laser desorption ionization. Aerosol droplets entered the mass spectrometer through an inlet where they were detected by light scattering of a continuous la...

  6. Visible Spectra of Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Nagarajan, R.; Maier, J. P.; Zhuang, X.; Le, A.; Steimle, T. C.

    2011-05-01

    Titanium oxide (TiO) has been extensively studied spectroscopically due to its astrophysical relevance. TiO is the main opacity source in the atmospheres of cool M-type stars in the visible and near infrared. In view of the high cosmic abundance of Ti and O, titanium dioxide (TiO2) is believed to play an important role in dust formation processes from the gas-phase in circumstellar shells of oxygen-rich stars. The electronic spectra of a cold molecular beam of TiO2 have been investigated using mass-resolved resonance enhanced multi-photon ionization and laser induced fluorescence spectroscopy. TiO2 was produced by laser ablation of a pure titanium rod in the presence of a supersonic expanding mixture of approximately 5% O2 in either helium or argon. The spectra were recorded in the region 17500 cm-1 to 22500 cm-1 and the bands assigned to the A1B2 ← X1A1 transition. The origin and harmonic vibrational constants for the A1B2 state were determined to be: T000 = 17593(5) cm-1, ω1 = 876(3) cm-1, ω2 = 184(1) cm-1, and ω3 = 316(2) cm-1. Further, the dispersed fluorescence of a few bands were recorded to obtain vibrational parameters for the X1A1 state.

  7. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  8. Model calculations of the radiation dose and LET spectra on LDEF and comparisons with flight data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Benton, E. V.

    1996-01-01

    Ionizing radiation environment models, a 3-D spacecraft mass model, and radiation transport codes have been used to predict the radiation dose and linear energy transfer (LET) spectra measured at various locations on the LDEF satellite. The predictions are compared with thermoluminescent dosimeter measurements of the trapped proton and electron doses and with LET spectra measured by plastic nuclear track detectors. The predicted vs observed comparisons indicate some of the uncertainties of present ionizing radiation environment models for low Earth-orbit missions.

  9. Measuring the Sources of the Intergalactic Ionizing Flux

    NASA Astrophysics Data System (ADS)

    Cowie, L. L.; Barger, A. J.; Trouille, L.

    2009-02-01

    We use a wide-field (0.9 deg2) X-ray sample with optical and Galaxy Evolution Explorer (GALEX) ultraviolet observations to measure the contribution of active galactic nuclei (AGNs) to the ionizing flux as a function of redshift. Our analysis shows that the AGN contribution to the metagalactic ionizing background peaks at around z = 2. The measured values of the ionizing background from the AGNs are lower than previous estimates and confirm that ionization from AGNs is insufficient to maintain the observed ionization of the intergalactic medium (IGM) at z > 3. We show that only X-ray sources with broad lines in their optical spectra have detectable ionizing flux and that the ionizing flux seen in an AGN is not correlated with its X-ray color. We also use the GALEX observations of the GOODS-N region to place a 2σ upper limit of 0.008 on the average ionization fraction f ν(700 Å)/f ν(1500 Å) for 626 UV selected galaxies in the redshift range z = 0.9-1.4. We then use this limit to estimate an upper bound to the galaxy contribution in the redshift range z = 0-5. If the z ~ 1.15 ionization fraction is appropriate for higher-redshift galaxies, then contributions from the galaxy population are also too low to account for the IGM ionization at the highest redshifts (z > 4). Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Ionizing radiation and life.

    PubMed

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology.

  11. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  12. Ionizing radiation from tobacco

    SciTech Connect

    Westin, J.B.

    1987-04-24

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed.

  13. Microchip sonic spray ionization.

    PubMed

    Pól, Jaroslav; Kauppila, Tiina J; Haapala, Markus; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kotiaho, Tapio; Kostiainen, Risto

    2007-05-01

    The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.

  14. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    SciTech Connect

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie; Song, Inseok

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  15. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  16. The analysis of spectra of novae taken near maximum

    NASA Technical Reports Server (NTRS)

    Stryker, L. L.; Hestand, J.; Starrfield, S.; Wehrse, R.; Hauschildt, P.; Spies, W.; Baschek, B.; Shaviv, G.

    1988-01-01

    A project to analyze ultraviolet spectra of novae obtained at or near maximum optical light is presented. These spectra are characterized by a relatively cool continuum with superimposed permitted emission lines from ions such as Fe II, Mg II, and Si II. Spectra obtained late in the outburst show only emission lines from highly ionized species and in many cases these are forbidden lines. The ultraviolet data will be used with calculations of spherical, expanding, stellar atmospheres for novae to determine elemental abundances by spectral line synthesis. This method is extremely sensitive to the abundances and completely independent of the nebular analyses usually used to obtain novae abundances.

  17. Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.

    2010-01-01

    Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.

  18. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  19. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  20. The multiphoton ionization of uranium hexafluoride

    SciTech Connect

    Armstrong, D.P. . UEO Enrichment Technical Operations Div.)

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  1. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  2. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  3. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  4. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  5. Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting

    SciTech Connect

    Wood, W.M.; Siders, C.W.; Downer, M.C.

    1993-06-01

    A comprehensive report of time-resolved spectral blue shifts of 100-femtosecond laser pulses caused by ionization of atmospheric density N{sub 2} and noble gases subjected to high (10{sup 14} W/cm{sup 2} - 10{sup 16} W/cm{sup 2}) light intensities is presented. Included are data for two experiments: (1) self-shifting of the ionizing laser pulses for varying peak intensities, pressures (1-5 atm.), and gas species; and (2) time-resolved blueshifts of a weak copropagating probe pulse for the same range of ionization conditions. The self-shift data reveal a universal, reproducible pattern in the shape of the blueshifted spectra: as laser intensity, gas pressure, or atomic number increase, the self-blueshifted spectra develop from a near replica of the incident pulse spectrum into a complex structure consisting of two spectral peaks. The time-resolved data reveal different temporal dependence for each of these two features. A quantitative model for a simplified cylindrical focal geometry is presented which explains the presence of the two spectral features in terms of two distinct ionization mechanisms: collisionless tunneling ionization, which dominates early in the ionizing pulse profile, and electron impact ionization, which dominates during the intense maximum of the ionizing pulse. Transient resonant enhancements may also contribute to ionization near the peak of the pulse.

  6. Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting

    SciTech Connect

    Wood, W.M.; Siders, C.W.; Downer, M.C.

    1993-01-01

    A comprehensive report of time-resolved spectral blue shifts of 100-femtosecond laser pulses caused by ionization of atmospheric density N[sub 2] and noble gases subjected to high (10[sup 14] W/cm[sup 2] - 10[sup 16] W/cm[sup 2]) light intensities is presented. Included are data for two experiments: (1) self-shifting of the ionizing laser pulses for varying peak intensities, pressures (1-5 atm.), and gas species; and (2) time-resolved blueshifts of a weak copropagating probe pulse for the same range of ionization conditions. The self-shift data reveal a universal, reproducible pattern in the shape of the blueshifted spectra: as laser intensity, gas pressure, or atomic number increase, the self-blueshifted spectra develop from a near replica of the incident pulse spectrum into a complex structure consisting of two spectral peaks. The time-resolved data reveal different temporal dependence for each of these two features. A quantitative model for a simplified cylindrical focal geometry is presented which explains the presence of the two spectral features in terms of two distinct ionization mechanisms: collisionless tunneling ionization, which dominates early in the ionizing pulse profile, and electron impact ionization, which dominates during the intense maximum of the ionizing pulse. Transient resonant enhancements may also contribute to ionization near the peak of the pulse.

  7. Mass analyzed threshold ionization spectroscopy of indazole cation

    NASA Astrophysics Data System (ADS)

    Su, Huawei; Pradhan, Manik; Tzeng, Wen Bih

    2005-08-01

    We have recorded the two-color resonant two-photon mass analyzed threshold ionization (MATI) spectra of indazole via four intermediate states. The adiabatic ionization energy of this molecule is determined to be 67 534 ± 5 cm -1. The observed MATI bands include in-plane ring bending as well as out-of-plane ring twisting and bending vibrations of the indazole cation. Comparing the present data with those of indole and 7-azaindole leads to a better understanding about the influence of the nitrogen atom in the aza-aromatic bicyclic system.

  8. Highly Ionized Gas as a Diagnostic of the Inner NLR

    NASA Astrophysics Data System (ADS)

    Ward, M. J.; Mullaney, J.; Jin, C.; Davies, R.

    2010-05-01

    The spectra of AGN, from the ultraviolet to the near infrared, exhibit emission lines covering a wide range of ionization states, from neutral species such as [O i] λ 6300, up to [Fe iv] λ 5303. Here we report on some recent studies of the properties of highly ionized lines (HILs), plus two case studies of individual objects. Future IFU observations at high spatial and good spectral resolution will probe the excitation and kinematics of the gas in the zone between the extended NLR and unresolved BLR. Multi-component SED fitting can be used to link the source of photoionization with the strengths and ratios of the HILs.

  9. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1992-01-01

    Data from the ionizing radiation dosimetry aboard LDEF provide a unique opportunity for assessing the accuracy of current space radiation models and in identifying needed improvements for future mission applications. Details are given of the LDEF data available for radiation model evaluations. The status is given of model comparisons with LDEF data, along with future directions of planned modeling efforts and data comparison assessments. The methodology is outlined which is related to modeling being used to help insure that the LDEF ionizing radiation results can be used to address ionizing radiation issues for future missions. In general, the LDEF radiation modeling has emphasized quick-look predictions using simplified methods to make comparisons with absorbed dose measurements and induced radioactivity measurements of emissions. Modeling and LDEF data comparisons related to linear energy transfer spectra are of importance for several reasons which are outlined. The planned modeling and LDEF data comparisons for LET spectra is discussed, including components of the LET spectra due to different environment sources, contribution from different production mechanisms, and spectra in plastic detectors vs silicon.

  10. Model atmospheres, predicted spectra, and colors

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Theoretical models of stellar atmospheres and the process of forming a spectrum are reviewed with particular reference to the spectra of B stars. In the case of classical models the stellar atmosphere is though to consist of plane parallel layers of gas in which radiative and hydrostatic equilibrium exists. No radiative energy is lost or gained in the model atmosphere, but the detailed shape of the spectrum is changed as a result of the interactions with the ionized gas. Predicted line spectra using statistical equilibrium local thermodynamic equilibrium (LTE), and non-LTE physics are compared and the determination of abundances is discussed. The limitations of classical modeling are examined. Models developed to demonstrate what motions in the upper atmosphere will do to the spectrum and to explore the effects of using geometries different from plane parallel layer are reviewed. In particular the problem of radiative transfer is addressed.

  11. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  12. The influence of molecular pre-orientation on the resonance-enhanced multi-photon ionization dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Miao; Li, Jing-Lun; Yu, Jie; Cong, Shu-Lin

    2017-03-01

    We investigate theoretically the influence of molecular pre-orientation on the resonance-enhanced multi-photon ionization (REMPI) dynamics, taking the LiH molecule for example. The LiH molecule is first pre-oriented by a single-cycle pulse (SCP) in terahertz (THz) region, and then excited by the femtosecond pump pulse, and finally ionized by the femtosecond probe pulse. We focus on the impact of the pre-orientation on the ionization probability, energy- and angle-resolved photoelectron spectra and photoelectron angular distribution (PAD). It is found that the ionization probability and peak intensity of energy-resolved photoelectron spectra are significantly affected by molecular orientation. The angle-resolved photoelectron spectra are related to the molecular orientation. The PAD can be changed by varying the delay time between the THz SCP and pump pulse. We also investigate the effect of temperature on excitation and ionization dynamics.

  13. Ionization photophysics and spectroscopy of cyanoacetylene

    SciTech Connect

    Leach, Sydney; Champion, Norbert; Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François; Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin

    2014-05-07

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC{sub 3}N involves new aspects and new assignments of the vibrational components to excitation of the A{sup 2}Σ{sup +} and B{sup 2}Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B{sup 2}Π state of HC{sub 3}N{sup +}. A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C{sup 2}Σ{sup +} state of HC{sub 3}N{sup +} at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised.

  14. Nebular spectra of pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Smartt, S. J.; Heger, A.

    2016-01-01

    If very massive stars (M ≳ 100 M⊙) can form and avoid too strong mass-loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t ≳ 1 yr, match those of model predictions. Here, we compute theoretical spectra based on model PISN ejecta at 1-3 yr post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t ≳ 2 yr which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe, the metal core expands slowly enough to produce a forest of distinct lines, whereas high-mass PISNe expand faster and produce more featureless spectra. Line blocking is complete below ˜5000 Å for several years, and the model spectra are red. The strongest line is typically [Ca II] λλ7291, 7323, one of few lines from ionized species. We compare our models with proposed PISN candidates SN 2007bi and PTF12dam, finding discrepancies for several key observables and thus no support for a PISN interpretation. We discuss distinct spectral features predicted by the models, and the possibility of detecting pair-instability explosions among non-superluminous supernovae.

  15. Ionization of a multilevel atom by ultrashort laser pulses

    SciTech Connect

    Andreev, A. V.; Stremoukhov, S. Yu.; Shutova, O. A.

    2010-01-15

    Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths {lambda} = 800 nm (Ti:Sapphire) and {lambda} = 1.064 {mu}m (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.

  16. A combined electron-ion spectrometer for studying complete kinematics of molecular dissociation upon shell selective ionization

    SciTech Connect

    Saha, K.; Banerjee, S. B.; Bapat, B.

    2013-07-15

    A combined electron-ion spectrometer has been built to study dissociation kinematics of molecular ions upon various electronic decay processes ensuing from ionization of neutral molecules. The apparatus can be used with various ionization agents. Ion time-of-flight (ToF) spectra arising from various electronic decay processes are acquired by triggering the ToF measurement in coincidence with energy analyzed electrons. The design and the performance of the spectrometer in a photoionization experiment is presented in detail. Electron spectra and ion time of flight spectra resulting from valence and 2p{sub 1/2} ionization of Argon and those from valence ionization of CO are presented to demonstrate the capability of the instrument. The fragment ion spectra show remarkable differences (both kinematic and cross sectional) dependent on the energy of the ejected electron, corresponding to various electron loss and decay mechanisms in dissociative photoionization of molecules.

  17. Lily Pad Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.

  18. Capillary atmospheric pressure electron capture ionization (cAPECI): a highly efficient ionization method for nitroaromatic compounds.

    PubMed

    Derpmann, Valerie; Mueller, David; Bejan, Iustinian; Sonderfeld, Hannah; Wilberscheid, Sonja; Koppmann, Ralf; Brockmann, Klaus J; Benter, Thorsten

    2014-03-01

    We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.

  19. Calcium: total or ionized?

    PubMed

    Schenck, Patricia A; Chew, Dennis J

    2008-05-01

    Measurement of serum total calcium (tCa) has been relied on for assessment of calcium status, despite the fact that it is the ionized calcium (iCa) fraction that has biologic activity. Serum tCa does not accurately predict iCa status in many clinical conditions. For accurate assessment of iCa status, iCa should be directly measured. Anaerobic measurement of serum iCa under controlled conditions provides the most reliable assessment of calcium status; aerobic measurement of iCa with species-specific pH correction is highly correlated with anaerobic measurements.

  20. Dust and Ionized Gas in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    1995-05-01

    The thesis presents results of a study of the optical and far-infrared properties of dust and ionized gas in a complete, blue magnitude-limited (B_T^0 < 12) sample of 56 luminous elliptical (E) galaxies. The main aim is to investigate the origin and fate of this interstellar material and possible implications for scenarios of galaxy formation and evolution. To ensure consistency in the assignment of morphological types, the galaxy sample was drawn exclusively from the Revised Shapley-Ames Catalog of Bright Galaxies. A deep, systematic optical survey has been performed, including CCD imaging through both broad-band filters and narrow-band filters. For each galaxy we have constructed colour index (B-V, B-I) images and images of the H-alpha+ [N II]-emitting gas to derive the distributions of dust features and ionized gas. Long-slit spectra have also been obtained in two resolutions. Low-resolution spectra (covering the whole optical region) are used to study the properties of the underlying stellar populations (e.g., metallicity gradients), and to study the excitation mechanism of the ionized gas. Additional medium-resolution (~2A) spectra in the wavelength region around H-alpha have been obtained for all sample elliptical galaxies containing ionized gas to study the kinematics of the gas, and derive pure H-alpha luminosities. In this thesis, analysis of the extensive imaging data and of the medium-resolution spectra is reported. In Chapter 1 we report an early result of our survey: The galaxy IC 1459 is found to exhibit a large (15 Kpc diameter) H-alpha+[N II] emission-line region, showing spiral structure. Patchy dust absorption is also found in the inner part of the emission-line region. This galaxy was already shown to contain a massive stellar core which counter-rotates rapidly with respect to the stellar body of the galaxy. Interestingly, the sense of rotation of the spiral "arms" of the ionized gas distribution is the same as that of the rapidly rotating

  1. Ionization energy and active cation vibrations of trans-2-fluorostyrene

    NASA Astrophysics Data System (ADS)

    Wu, Pei Ying; Tzeng, Sheng Yuan; Hsu, Ya Chu; Tzeng, Wen Bih

    2017-02-01

    We applied the two-color resonant two-photon mass-analyzed threshold ionization (MATI) technique to record the cation spectra of trans-2-fluorostyrene by ionizing via six intermediate vibronic levels. The adiabatic ionization energy was determined to be 69 304 ± 5 cm-1. The distinct MATI bands at 67, 124, 242, 355, 737, 806, 833, and 993 cm-1 were assigned to the active cation vibrations related to out-of-plane substituent-sensitive bending vibrations and in-plane ring deformation and bending motions. Many combination vibrations were also observed. Our experimental results suggest that the molecular geometry and vibrational coordinates of the trans-2-fluorostyrene cation in the D0 state resemble those of the neutral species in the S1 state.

  2. Nonsequential double ionization with mid-infrared laser fields

    PubMed Central

    Li, Ying-Bin; Wang, Xu; Yu, Ben-Hai; Tang, Qing-Bin; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the final energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally. PMID:27857182

  3. Storage Ring Measurements of Electron Impact Ionization for Solar Physics

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2013-07-01

    The interpretation of astrophysical spectra requires knowledge of the charge state distribution (CSD) of the plasma. The CSD is determined by the rates of ionization and recombination. Thus, accurate electron impact ionization (EII) data are needed to calculate the CSD of the solar atmosphere as well as for other electron-ionized astrophysical objects, such as stars, supernovae, galaxies, and clusters of galaxies. We are studying EII for astrophysically important ions using the TSR storage ring located at the Max Plank Institute for Nuclear Physics in Heidelberg, Germany. Storage ring measurements are largely free of the metastable contamination found in other experimental geometries, resulting in unambiguous EII data. We have found discrepancies of about 10% - 30% between our measured cross sections and those commonly used in CSD models. Because it is impractical to perform experimental measurements for every astrophysically relevant ion, theory must provide the bulk of the necessary EII data. These experimental results provide an essential benchmark for such EII calculations.

  4. Nonsequential double ionization with mid-infrared laser fields

    NASA Astrophysics Data System (ADS)

    Li, Ying-Bin; Wang, Xu; Yu, Ben-Hai; Tang, Qing-Bin; Wang, Guang-Hou; Wan, Jian-Guo

    2016-11-01

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the final energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.

  5. Photoelectron emission as an alternative electron impact ionization source for ion trap mass spectrometry.

    PubMed

    Gamez, Gerardo; Zhu, Liang; Schmitz, Thomas A; Zenobi, Renato

    2008-09-01

    Electron impact ionization has several known advantages; however, heated filament electron sources have pressure limitations and their power consumption can be significant for certain applications, such as in field-portable instruments. Herein, we evaluate a VUV krypton lamp as an alternative source for ionization inside the ion trap of a mass spectrometer. The observed fragmentation patterns are more characteristic of electron impact ionization than photoionization. In addition, mass spectra of analytes with ionization potentials higher than the lamp's photon energy (10.6 eV) can be easily obtained. A photoelectron impact ionization mechanism is suggested by the observed data allowed by the work function of the ion trap electrodes (4.5 eV), which is well within the lamp's photon energy. In this case, the photoelectrons emitted at the surface of the ion trap end-cap electrode are accelerated by the applied rf field to the ring electrode. This allows the photoelectrons to gain sufficient energy to ionize compounds with high ionization potentials to yield mass spectra characteristic of electron impact. In this manner, electron impact ionization can be used in ion trap mass spectrometers at low powers and without the limitations imposed by elevated pressures on heated filaments.

  6. Electronic absorption spectra from first principles

    NASA Astrophysics Data System (ADS)

    Hazra, Anirban

    Methods for simulating electronic absorption spectra of molecules from first principles (i.e., without any experimental input, using quantum mechanics) are developed and compared. The electronic excitation and photoelectron spectra of ethylene are simulated, using the EOM-CCSD method for the electronic structure calculations. The different approaches for simulating spectra are broadly of two types---Frank-Condon (FC) approaches and vibronic coupling approaches. For treating the vibrational motion, the former use the Born-Oppenheimer or single surface approximation while the latter do not. Moreover, in our FC approaches the vibrational Hamiltonian is additively separable along normal mode coordinates, while in vibronic approaches a model Hamiltonian (obtained from ab initio electronic structure theory) provides an intricate coupling between both normal modes and electronic states. A method called vertical FC is proposed, where in accord with the short-time picture of molecular spectroscopy, the approximate excited-state potential energy surface that is used to calculate the electronic spectrum is taken to reproduce the ab initio potential at the ground-state equilibrium geometry. The potential energy surface along normal modes may be treated either in the harmonic approximation or using the full one-dimensional potential. Systems with highly anharmonic potential surfaces can be treated and expensive geometry optimizations are not required, unlike the traditional FC approach. The ultraviolet spectrum of ethylene between 6.2 and 8.7 eV is simulated using vertical FC. While FC approaches for simulation are computationally very efficient, they are not accurate when the underlying approximations are unreasonable. Then, vibronic coupling model Hamiltonians are necessary. Since these Hamiltonians have an analytic form, they are used to map the potential energy surfaces and understand their topology. Spectra are obtained by numerical diagonalization of the Hamiltonians. The

  7. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization

    NASA Astrophysics Data System (ADS)

    Neustetter, M.; Jabbour Al Maalouf, E.; Limão-Vieira, P.; Denifl, S.

    2016-08-01

    Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n+ (0 ≤ n ≤ 6) and W2(CO)n+ (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n+ (0 ≤ n ≤ 3) and W2C(CO)n+ (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

  8. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    SciTech Connect

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  9. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  10. Ionization Phenomena in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Deveney, Edward Francis

    from the quasimolecule or from the separated ion. Low energy electron spectra of the ionized electrons were measured to see if Auger electron peaks could be resolved.

  11. Ionizing Photon Production and Escape in Extreme Starbursts: the Case of the Green Peas

    NASA Astrophysics Data System (ADS)

    Jaskot, Anne; Oey, Sally

    2015-08-01

    With similarities to high-redshift galaxies and potential Lyman continuum (LyC) escape, the low-redshift "Green Pea" (GP) galaxies represent an important test of ionizing photon production and feedback in young massive clusters. Using optical spectra and HST ACS emission-line imaging, we evaluate the ionizing sources, optical depths, and spatial variation of ionization in these unusual starbursts. The GPs’ spectra imply young starburst ages and possible low LyC optical depths. However, CLOUDY photoionization and Starburst99 models have difficulty reproducing all of the observed line ratios and suggest a need for additional hard ionizing sources. New ACS observations of four GPs highlight the extreme, compact nature of these bursts and reveal regions of low optical depth that are the likely sites of LyC escape.

  12. Synthesized Spectra of Optically Thin Emission Lines

    NASA Astrophysics Data System (ADS)

    Olluri, K.; Gudiksen, B. V.; Hansteen, V. H.; De Pontieu, B.

    2015-03-01

    In recent years realistic 3D numerical models of the solar atmosphere have become available. The models attempt to recreate the solar atmosphere and mimic observations in the best way, in order to make it possible to couple complicated observations with physical properties such as the temperatures, densities, velocities, and magnetic fields. We here present a study of synthetic spectra created using the Bifrost code in order to assess how well they fit with previously taken solar data. A study of the synthetic intensity, nonthermal line widths, Doppler shifts, and correlations between any two of these three components of the spectra first assuming statistical equilibrium is made, followed by a report on some of the effects nonequilibrium ionization will have on the synthesized spectra. We find that the synthetic intensities compare well with the observations. The synthetic observations depend on the assumed resolution and point-spread function (PSF) of the instrument, and we find a large effect on the results, especially for intensity and nonthermal line width. The Doppler shifts produce the reported persistent redshifts for the transition region (TR) lines and blueshifts for the upper TR and corona lines. The nonthermal line widths reproduce the well-known turnoff point around (2-3) × 105 K, but with much lower values than those observed. The nonthermal line widths tend to increase with decreasing assumed instrumental resolution, also when nonequilibrium ionization is included. Correlations between the nonthermal line width of any two TR line studies as reported by Chae et al. are reproduced, while the correlations of intensity to line width are reproduced only after applying a PSF to the data. Doppler shift correlations reported by Doschek for the TR lines and correlations of Doppler shift to nonthermal line width of the Fe xii 19.5 line reported by Doschek et al. are reproduced.

  13. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  14. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  15. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  16. Spectra of Surface Waves

    DTIC Science & Technology

    1989-03-22

    with a wave follower during Marsen. J. Gophysical Res. 88, 9844-9849. 11. Hughes, B.A., 1978. The effects on internal waves on surface waves : 2...Spectra of Surface Waves K. Watson March 1989 JSR-88-130 Approved for public release; distribution unlimited. DTIC SELECTE JUN0 11989 0 JASONE The...Arlington, VA 22209 8503Z 11. TITLE (hlde Secvfty Cof.kaftn) SPECTRA OF SURFACE WAVES (U) 12. PERSONAL AUTHOfRS) K. Watson 13a. TYPE OF REPORT 13b. TIME

  17. Ionization processes in collisions of open-shell atoms. III - The autoionizing states of nitrogen

    NASA Technical Reports Server (NTRS)

    Boumsellek, S.; Esaulov, V. A.

    1990-01-01

    Results of a study of the energy spectra of electrons produced in collisions of N atoms with inert gases at low keV energies are reported. Ionization here is partly due to production of the (1Dnl) autoionizing states of nitrogen and partly due to another mechanism, which is presumably quasi molecular Auger ionization. A discussion of the assignments of the autoionizing states is presented.

  18. Ionization of glycerin molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Zavilopulo, A. N.; Shpenik, O. B.; Markush, P. P.; Kontrosh, E. E.

    2015-07-01

    The methods and results of studying the yield of positive ions produced due to direct and dissociative electron impact ionization of the glycerin molecule are described. The experiment is carried out using two independent setups, namely, a setup with a monopole mass spectrometer employing the method of crossing electron and molecular beams and a setup with a hypocycloidal electron spectrometer with the gas-filled cell. The mass spectra of the glycerin molecule are studied in the range of mass numbers of 10-95 amu at various temperatures. The energy dependences of the effective cross sections of the glycerin molecular ions produced by a monoenergetic electron beam are obtained and analyzed; using these dependences, the appearance energies of fragment ions are determined. The dynamics of the glycerin molecule fragment ions formation is investigated in the temperature range of 300-340 K.

  19. Structure and bonding in ionized water clusters.

    PubMed

    Do, Hainam; Besley, Nicholas A

    2013-06-27

    The structure and bonding in ionized water clusters, (H2O)(n)(+) (n = 3–9), has been studied using the basin hopping search algorithm in combination with quantum chemical calculations. Initially candidate low energy isomers were generated using basin hopping in conjunction with density functional theory. Subsequently, the structures and energies were refined using second order Møller–Plesset perturbation theory and coupled cluster theory, respectively. The lowest energy isomers are found to involve proton transfer to give H(3)O(+) and a OH radical, which are more stable than isomers containing the hemibonded hydrazine-like fragment (H(2)O–OH(2)), with the calculated infrared spectra consistent with experimental data. For (H(2)O)(9)(+) the observation of a new structural motif comprising proton transfer to form H(3)O(+) and OH, but with the OH radical involved in hemibonding to another water molecule is discussed.

  20. Resonance ionization of rubidium in an ion trap mass spectrometer

    SciTech Connect

    Whitten, W.B.; Ramsey, J.M.; Goeringer, D.E.; Buckley, B.T.

    1990-01-01

    We have recently initiated a study of resonance ionization processes in a quadrupole ion storage trap. The trap is a commercially available Ion Trap Detector that uses the voltage dependence of ion mass instability to obtain a mass spectrum of the trapped ions. We have modified the trap to permit laser excitation of atomic and molecular species within the quadrupole electrodes. Mass resolved resonance ionization spectra have been obtained for NO and Rb, described below. Rb was selected for this study for a number of reasons. We want to explore the potential of the ion trap for high resolution (Doppler free) resonance ionization spectroscopy with CW laser excitation. Rb can be excited to upper Rydberg levels with a series of transitions that can be induced with commercially available semiconductor diode lasers. In addition, levels in the same energy range can be reached through two-photon processes with visible wavelength tunable dye lasers or with single-photon processes after the laser is frequency doubled. The upper Rydberg levels can be ionized by photons, electric field, or collisions. Collisional ionization of a reservoir of Rydberg atoms may be a sensitive scheme for detecting electronegative species. RB has two stable isotopes with nonzero nuclear spin so that isotopic and hyperfine splittings can be used to assess the spectral resolution that is attained.

  1. Fast Ionized X-ray Absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2015-07-01

    We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.

  2. Ionization Front Instabilities in Primordial H II Regions

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel; Norman, Michael L.

    2008-02-01

    Radiative cooling by metals in shocked gas mediates the formation of ionization front instabilities in the galaxy today that are responsible for a variety of phenomena in the interstellar medium, from the morphologies of nebulae to triggered star formation in molecular clouds. An important question in early reionization and chemical enrichment of the intergalactic medium is whether such instabilities arose in the H II regions of the first stars and primeval galaxies, which were devoid of metals. We present three-dimensional numerical simulations that reveal both shadow and thin-shell instabilities readily formed in primordial gas. We find that the hard UV spectra of Population III stars broadened primordial ionization fronts, causing H2 formation capable of inciting violent thin-shell instabilities in D-type fronts, even in the presence of intense Lyman-Werner flux. The high postfront gas temperatures associated with He ionization sustained and exacerbated shadow instabilities, unaided by molecular hydrogen cooling. Our models indicate that metals eclipsed H2 cooling in I-front instabilities at modest concentrations, from 1 × 10-3 to 1 × 10-2 Z⊙. We conclude that ionization front instabilities were prominent in the H II regions of the first stars and galaxies, influencing the escape of ionizing radiation and metals into the early universe.

  3. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  4. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B.

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) -• radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H• and H+, it can be termed oxidative ionization. The superoxide radical-anion (O2 -•), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2 -• adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) - ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2 -• present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained.

  5. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions.

    PubMed

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) (-•) radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H(•) and H(+), it can be termed oxidative ionization. The superoxide radical-anion (O2(-•)), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2(-•) adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) (-) ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2(-•) present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained. Graphical Abstract ᅟ.

  6. IONIZED OUTFLOWS FROM COMPACT STEEP SPECTRUM SOURCES

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan; Kewley, Lisa E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Massive outflows are known to exist, in the form of extended emission-line regions (EELRs), around about one-third of powerful FR II radio sources. We investigate the origin of these EELRs by studying the emission-line regions around compact-steep-spectrum (CSS) radio galaxies that are younger (10{sup 3}-10{sup 5} yr old) versions of the FR II radio galaxies. We have searched for and analyzed the emission-line regions around 11 CSS sources by taking integral field spectra using Gemini Multi-Object Spectrograph on Gemini North. We fit the [O III] {lambda}5007 line and present the velocity maps for each detected emission-line region. We find, in most cases, that the emission-line regions have multi-component velocity structures with different velocity dispersions and/or flux distributions for each component. The velocity gradients of the emission-line gas are mostly well aligned with the radio axis, suggesting a direct causal link between the outflowing gas and the radio jets. The complex velocity structure may be a result of different driving mechanisms related to the onset of the radio jets. We also present the results from the line-ratio diagnostics we used to analyze the ionization mechanism of the extended gas, which supports the scenario where the emission-line regions are ionized by a combination of active galactic nucleus radiation and shock excitation.

  7. Quantum spectra and dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (1) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems. This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential-energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (2) Explicit time-dependent formulation of photoabsorption processes -- Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  8. Quantum Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    1992-01-01

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  9. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  10. Optical Spectra of Jet-Gas Interactions in CSS Quasars

    NASA Astrophysics Data System (ADS)

    Gelderman, Richard

    We present recent results from optical spectroscopic studies of luminous Compact Steep-Spectrum (CSS) quasars. Spatially resolved optical spectra have been obtained with HST/STIS and CFHT/MOS-ARGUS. The forbidden emission lines exhibit broad line profiles with comples substructure which is consistent with multiple velocity components. Evidence is presented which suggests that the observed kinematic and ionization properties may be explained by the expansion of a relatively young radio jet through a dense interstellar medium.

  11. Helium shells and faint emission lines from slitless flash spectra

    PubMed Central

    Bazin, Cyril; Koutchmy, Serge

    2013-01-01

    At the time of the two last solar total eclipses of August 1st, 2008 in Siberia and July 11th, 2010 in French Polynesia, high frame rate CCD flash spectra were obtained. These eclipses occurred in quiet Sun period and after. The slitless flash spectra show two helium shells, in the weak Paschen α 4686 Å line of the ionized helium HeII and in the neutral helium HeI line at 4713 Å. The extensions of these helium shells are typically 3 Mm. In prominences, the extension of the interface with the corona is much more extended. The observations and analysis of these lines can properly be done only in eclipse conditions, when the intensity threshold reaches the coronal level, and the parasitic scattered light is virtually zero. Under the layers of 1 Mm above the limb, many faint low FIP lines were also seen in emission. These emission lines are superposed on the continuum containing absorption lines. The solar limb can be defined using the weak continuum appearing between the emission lines at the time of the second and third contact. The variations of the singly ionized iron line, the HeI and HeII lines and the continuum intensity are analyzed. The intensity ratio of ionized to neutral helium is studied for evaluating the ionization rate in low layers up to 2 Mm and also around a prominence. PMID:25685435

  12. Helium shells and faint emission lines from slitless flash spectra.

    PubMed

    Bazin, Cyril; Koutchmy, Serge

    2013-05-01

    At the time of the two last solar total eclipses of August 1st, 2008 in Siberia and July 11th, 2010 in French Polynesia, high frame rate CCD flash spectra were obtained. These eclipses occurred in quiet Sun period and after. The slitless flash spectra show two helium shells, in the weak Paschen α 4686 Å line of the ionized helium HeII and in the neutral helium HeI line at 4713 Å. The extensions of these helium shells are typically 3 Mm. In prominences, the extension of the interface with the corona is much more extended. The observations and analysis of these lines can properly be done only in eclipse conditions, when the intensity threshold reaches the coronal level, and the parasitic scattered light is virtually zero. Under the layers of 1 Mm above the limb, many faint low FIP lines were also seen in emission. These emission lines are superposed on the continuum containing absorption lines. The solar limb can be defined using the weak continuum appearing between the emission lines at the time of the second and third contact. The variations of the singly ionized iron line, the HeI and HeII lines and the continuum intensity are analyzed. The intensity ratio of ionized to neutral helium is studied for evaluating the ionization rate in low layers up to 2 Mm and also around a prominence.

  13. Characteristics of light reflected from a dense ionization wave with a tunable velocity.

    PubMed

    Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-11-20

    An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  14. Determination of Energy-Transfer Distributions in Ionizing Ion-Molecule Collisions.

    PubMed

    Maclot, S; Delaunay, R; Piekarski, D G; Domaracka, A; Huber, B A; Adoui, L; Martín, F; Alcamí, M; Avaldi, L; Bolognesi, P; Díaz-Tendero, S; Rousseau, P

    2016-08-12

    The ionization and fragmentation of the nucleoside thymidine in the gas phase has been investigated by combining ion collision with state-selected photoionization experiments and quantum chemistry calculations. The comparison between the mass spectra measured in both types of experiments allows us to accurately determine the distribution of the energy deposited in the ionized molecule as a result of the collision. The relation of two experimental techniques and theory shows a strong correlation between the excited states of the ionized molecule with the computed dissociation pathways, as well as with charge localization or delocalization.

  15. Mass analyzed threshold ionization spectroscopy of p-cyanophenol cation and the CN substitution effect

    NASA Astrophysics Data System (ADS)

    Li, Changyong; Pradhan, Manik; Tzeng, Wen Bih

    2005-08-01

    The adiabatic ionization energy of p-cyanophenol has been determined to be 72 698 ± 5 cm -1 (9.0134 ± 0.0006 eV) on the basis of mass analyzed threshold ionization (MATI) spectrscopy. Analysis of the newly obtained MATI spectra gives the respective frequencies of 399, 517 and 820 cm -1 for the ring deformation 6a, C-CN bending, and breathing vibrations of the p-cyanophenol cation. Comparing these experimental data with those of phenol leads to a better understanding about the influence of the CN substituent on the ionization energy and molecular vibration.

  16. Ionization processes in small quasimolecules: He{sub 2}{sup 2+} (He{sup 2+}+ He)

    SciTech Connect

    Ogurtsov, G. N.; Mikoushkin, V. M.; Ovchinnikov, S. Yu.; Macek, J. H.

    2011-09-15

    The energy spectra of electrons ejected in He{sup 2+}-He collisions were measured in the ion energy range 6-30 keV. Theoretical analysis of the ionization mechanisms has been performed on the basis of the advanced adiabatic approximation for one-electron processes and perturbation theory for two-electron processes. The ionization channel 2p{sigma}{sup 2}{yields} 1s{sigma}nd{sigma}{yields} 1s{sigma}{epsilon}d{sigma} has been revealed, which makes a considerable contribution to the ionization cross section in the keV ion energy range.

  17. Non-sequential double ionization of Ne in intense laser pulses: a coincidence experiment.

    PubMed

    Moshammer, R; Feuerstein, B; Fischer, D; Dorn, A; Schroter, C; Deipenwisch, J; Lopez-Urrutia, J R; Hohr, C; Neumayer, P; Ullrich, J; Rottke, H; Trump, C; Wittmann, M; Korn, G; Sandner, W

    2001-03-26

    The dynamics of Neon double ionization by 25 fs, 1.0 PW/cm 2 laser pulses at 795 nm has been studied in a many particle coincidence experiment. The momentum vectors of all ejected atomic fragments (electrons and ions) have been measured using combined electron and recoil-ion momentum spectroscopy. Electron emission spectra for double and single ionization will be discussed. In both processes the mean electron energies differ considerably and high energetic electrons with energies of more than 120 eV have been observed for double ionization. The experimental results are in qualitative agreement with the rescattering model.

  18. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  19. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  20. Quantum Theory of Recollisional (e, 2e) Process in Strong Field Nonsequential Double Ionization of Helium

    SciTech Connect

    Chen Zhangjin; Lin, C. D.; Liang Yaqiu

    2010-06-25

    Based on the full quantal recollision model and field-free electron impact ionization theory, we calculate the correlated momentum spectra of the two outgoing electrons in strong field nonsequential double ionization (NSDI) of helium to compare with recent experiments. By analyzing the relative strength of binary versus recoil collisions exhibited in the photoelectron spectra, we confirm that the observed fingerlike structure in the experiment is a consequence of the Coulomb interaction between the two emitted electrons. Our result supports the recollision mechanism of strong field NSDI at the most fundamental level.

  1. Active vibrations of 1-cyanonaphthalene cation studied by mass-analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Shivatare, Vidya; Tzeng, Sheng Yuan; Tzeng, Wen Bih

    2013-02-01

    We apply the two-color resonant two-photon mass-analyzed threshold ionization (MATI) spectroscopic technique to record the cation spectra of 1-cyanonaphthalene via four intermediate vibronic levels. The adiabatic ionization energy is determined to be 69 466 ± 5 cm-1. The distinct bands at 416, 472, 516, 669, and 852 cm-1 result from in-plane ring deformation vibrations of the cation. Analysis of these MATI spectra suggests that the molecular geometry and vibrational coordinates of the observed vibrations of the cation in the ground D0 state resemble those of the neutral in the electronically excited S1 state.

  2. Rydberg-resolved resonant inelastic soft x-ray scattering: dynamics at core ionization thresholds.

    PubMed

    Rubensson, J-E; Söderström, J; Binggeli, C; Gråsjö, J; Andersson, J; Såthe, C; Hennies, F; Bisogni, V; Huang, Y; Olalde, P; Schmitt, T; Strocov, V N; Föhlisch, A; Kennedy, B; Pietzsch, A

    2015-04-03

    Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.

  3. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE PAGES

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; ...

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-more » $$\\alpha$$ emission. Density profiles were measured from K-$$\\alpha$$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$$\\alpha$$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.« less

  4. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    SciTech Connect

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J. -E.; Wan, W. C.; Drake, R. P.

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-$\\alpha$ emission. Density profiles were measured from K-$\\alpha$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$\\alpha$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  5. Quantum theory of recollisional (e, 2e) process in strong field nonsequential double ionization of helium.

    PubMed

    Chen, Zhangjin; Liang, Yaqiu; Lin, C D

    2010-06-25

    Based on the full quantal recollision model and field-free electron impact ionization theory, we calculate the correlated momentum spectra of the two outgoing electrons in strong field nonsequential double ionization (NSDI) of helium to compare with recent experiments. By analyzing the relative strength of binary versus recoil collisions exhibited in the photoelectron spectra, we confirm that the observed fingerlike structure in the experiment is a consequence of the Coulomb interaction between the two emitted electrons. Our result supports the recollision mechanism of strong field NSDI at the most fundamental level.

  6. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  7. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  8. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  9. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  10. Ionizing radiation promotes protozoan reproduction

    SciTech Connect

    Luckey, T.D.

    1986-11-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism.

  11. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  12. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  13. A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk components of complex gas mixtures: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser-induced electron impact ionization.

    PubMed

    Mühlberger, F; Zimmermann, R; Kettrup, A

    2001-08-01

    A newly developed compact and mobile time-of-flight mass spectrometer (TOFMS) for on-line analysis and monitoring of complex gas mixtures is presented. The instrument is designed for a (quasi-)simultaneous application of three ionization techniques that exhibit different ionization selectivities. The highly selective resonance-enhanced multiphoton ionization (REMPI) technique, using 266-nm UV laser pulses, is applied for selective and fragmentationless ionization of aromatic compounds at trace levels (parts-per-billion volume range). Mass spectra obtained using this technique show the chemical signature solely of monocyclic (benzene, phenols, etc.) and polycyclic (naphthalene, phenathrene, indol, etc.) aromatic species. Furthermore, the less selective but still fragmentationless single photon ionization (SPI) technique with 118-nm VUV laser pulses allows the ionization of compounds with an ionization potential below 10.5 eV. Mass spectra obtained using this technique show the profile of most organic compounds (aliphatic and aromatic species, like nonane, acetaldehyde, or pyrrol) and some inorganic compounds (e.g., ammonia, nitrogen monoxide). Finally, the nonselective ionization technique laser-induced electron-impact ionization (LEI) is applied. However, the sensitivity of the LEI technique is adjusted to be fairly low. Thus, the LEI signal in the mass spectra gives information on the inorganic bulk constituents of the sample (i.e., compounds such as water, oxygen, nitrogen, and carbon dioxide). Because the three ionization methods (REMPI, SPI, LEI) exhibit largely different ionization selectivities, the isolated application of each method alone solely provides specific mass spectrometric information about the sample composition. Special techniques have been developed and applied which allow the quasi-parallel use of all three ionization techniques for on-line monitoring purposes. Thus, a comprehensive characterization of complex samples is feasible jointly using

  14. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report.

  15. Warm Absorbers in the ROSAT Spectra of Quasars

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio

    1998-01-01

    We present two ROSAT PSPC observations of the radio-loud, lobe-dominated quasar 3C 351, which shows an 'ionized absorber' in its X-ray spectrum. The factor 1.7 change in flux in the approx. 2 years between the observations allows a test of of models for this ionized absorber. The absorption feature at approx. 0.7 keV (quasar frame) is present in both spectra but with a lower optical depth when the source intensity - and hence the ionizing flux at the absorber - is higher, in accordance with a simple, single-zone, equilibrium photoionization model. Detailed modeling confirms this agreement quantitatively. The maximum response time of 2 years allows us to limit the gas density: n(sub e) greater than 2 x 10(exp 4)cm(exp -3); and the distance of the ionized gas from the central source R less than 19 pc. This produces a strong test for a photoionized absorber in 3C 351: a factor 2 flux change in approx. 1 week in this source must show non-equilibrium effects in the ionized absorber.

  16. Rock Outcrop Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left shows a rock outcrop at Meridiani Planum, Mars. This image was taken by the panoramic camera on the Mars Exploration Rover Opportunity, looking north, and was acquired on the 4th sol, or martian day, of the rover's mission (Jan. 27, 2004). The yellow box outlines an area detailed in the top left image, which is a monochrome (single filter) image from the rover's panoramic camera. The top image uses solid colors to show several regions on or near the rock outcrop from which spectra were extracted: the dark soil above the outcrop (yellow), the distant horizon surface (aqua), a bright rock in the outcrop (green), a darker rock in the outcrop (red), and a small dark cobblestone (blue). Spectra from these regions are shown in the plot to the right.

  17. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  18. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  19. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  20. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    NASA Astrophysics Data System (ADS)

    Malloy, Matthew; Lidz, Adam

    2013-04-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the volume of the universe is neutral at z ~ 7, we find that a 500-tile MWA may directly identify as many as ~150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.

  1. Zero-Net-Charge Air Ionizer

    NASA Technical Reports Server (NTRS)

    Woods, W. R., Jr.

    1985-01-01

    Instrument monitors air supplied by air ionizer and regulates ionizer to ensure net charge neutral. High-impedance electrometer and nulling control amplifier regulate output of air ionizer. Primarily intended to furnish ionized air having no net charge, instrument adaptable to generating air with positive or negative net charge is so desired. Useful where integrated circuit chips are manufactured, inspected, tested or assembled.

  2. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    SciTech Connect

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to compare internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.

  3. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; ...

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less

  4. [Real-time analysis of polyvinyl chloride thermal decomposition/combustion products with single photon ionization/photoelectron ionization online mass spectrometer].

    PubMed

    Chen, Wen-Dong; Hou, Ke-Yong; Chen, Ping; Li, Fang-Long; Zhao, Wu-Duo; Cui, Hua-Peng; Hua, Lei; Xie, Yuan-Yuan; Li, Hai-Yang

    2013-01-01

    With the features of a broad range of ionizable compounds, reduced fragments and simple mass spectrum, a homemade magnetic field enhanced photoelectron ionization (MEPEI) source combined with single photon ionization (SPI) for time-of-flight mass spectrometer was built and applied to analyze thermal decomposition/combustion products of polyvinyl chloride (PVC). The combined ion source can be switched very fast between SPI mode and SPI-MEPEI mode for detecting different targeted compounds, and only adjusting the voltage of the electrode in the ionization region to trigger the switch. Among the PVC thermal decomposition/combustion products, HCl and CO2, which ionization energies (12.74 eV, 13.77 eV respectively) were higher than the energy of photon (10.60 eV), were ionized by MEPEI, while alkenes, dichloroethylene, benzene and its homologs, monochlorobenzene, styrene, indane, naphthalene and its homologs were ionized by SPI and MEPEI simultaneously. Spectra of interested products as a function of temperatures indicated that products are formed via two main mechanisms: (1) dechlorination and intramolecular cyclization can lead to the formation of HCl, benzene and naphthalene at 250-370 degrees C; (2) intermolecular crosslinking leads to the formation of alkyl aromatics such as toluene and xylene/ethylbenzene at 380-510 degrees C. The experimental results show that the combined ion source of SPI/ SPI-MEPEI for TOF-MS has broad application prospects in the online analysis field.

  5. Line Identification of Atomic and Ionic Spectra of Holmium in the Near-UV. II. Spectra of Ho II and Ho III

    NASA Astrophysics Data System (ADS)

    Başar, Gö.; Al-Labady, N.; Özdalgiç, B.; Güzelçimen, F.; Er, A.; Öztürk, I. K.; Ak, T.; Bİlİr, S.; Tamanis, M.; Ferber, R.; Kröger, S.

    2017-02-01

    Fourier Transform spectra of holmium (Ho) in the UV spectral range from 31,530 to 25,000 cm‑1 (317 to 400 nm) have been investigated, particularly focusing on the ionic lines. The distinction between the different degrees of ionization (I, II, and III) is based on differences in signal-to-noise ratios from two Ho spectra, which have been measured with different buffer gases, i.e., neon and argon. Based on 106 known Ho ii and 126 known Ho iii energy levels, 97 lines could be classified as transitions of singly ionized Ho and 9 lines could be classified as transitions of doubly ionized Ho. Of the 97 Ho ii lines, 6 have not been listed in the extant literature. Another 215 lines have been assigned to Ho ii, though they could not be classified on the basis of the known energy levels.

  6. Compton spectra of atoms at high x-ray intensity

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL–matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  7. SPECTRA. September 2011

    DTIC Science & Technology

    2011-09-01

    Transportation Services program with the Dragon capsule. (Credit: SpaceX /Chris Thompson) S p a c e c r a f t e n g in e e r in g spectra NRL...secondary payloads on board a Space Exploration Technologies ( SpaceX ), Inc., Falcon 9 launch vehicle. NRL’s nanosatellites are part of the CubeSat...Maryland. The primary payload launched aboard the SpaceX Falcon 9 was the Dragon capsule. Developed by SpaceX and sponsored by NASA’s Commercial Orbital

  8. Determinations of Photon Spectra

    DTIC Science & Technology

    1989-01-01

    COVERED O14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT THESIS/ftFROW*W FROM TO 1989 1 54 16. SUPPLEMENTARY NOTATION A ?RQVk;U kOR 3UB LIC RELEASE...IAW AFR 190- 1 ERNEST A. HAYGOOD, 1st Lt, USAF Executive Officer, Civilian Institution ProQrams 17. COSATI CODES 18. SUBJECT TERMS (Continue on...spectra from measurements obtained with a sodium iodide counting system. A response matrix is computed by combining photon cross sections with

  9. Zero Volt Paper Spray Ionization and Its Mechanism.

    PubMed

    Wleklinski, Michael; Li, Yafeng; Bag, Soumabha; Sarkar, Depanjan; Narayanan, Rahul; Pradeep, T; Cooks, R Graham

    2015-07-07

    The analytical performance and a suggested mechanism for zero volt paper spray using chromatography paper are presented. A spray is generated by the action of the pneumatic force of the mass spectrometer (MS) vacuum at the inlet. Positive and negative ion signals are observed, and comparisons are made with standard kV paper spray (PS) ionization and nanoelectrospray ionization (nESI). While the range of analytes to which zero volt PS is applicable is very similar to kV PS and nESI, differences in the mass spectra of mixtures are interpreted in terms of the more significant effects of analyte surface activity in the gentler zero volt experiment than in the other methods due to the significantly lower charge. The signal intensity of zero volt PS is also lower than in the other methods. A Monte Carlo simulation based on statistical fluctuation of positive and negative ions in solution has been implemented to explain the production of ions from initially uncharged droplets. Uncharged droplets first break up due to aerodynamics forces until they are in the 2-4 μm size range and then undergo Coulombic fission. A model involving statistical charge fluctuations in both phases predicts detection limits similar to those observed experimentally and explains the effects of binary mixture components on relative ionization efficiencies. The proposed mechanism may also play a role in ionization by other voltage-free methods.

  10. Infrared laser-assisted desorption electrospray ionization mass spectrometry.

    PubMed

    Rezenom, Yohannes H; Dong, Jianan; Murray, Kermit K

    2008-02-01

    We have used an infrared laser for desorption of material and ionization by interaction with electrosprayed solvent. Infrared laser-assisted desorption electrospray ionization (IR LADESI) mass spectrometry was used for the direct analysis of water-containing samples under ambient conditions. An ion trap mass spectrometer was modified to include a pulsed Er:YAG laser at 2.94 microm wavelength coupled into a germanium oxide optical fiber for desorption at atmospheric pressure and a nanoelectrospray source for ionization. Analytes in aqueous solution were placed on a stainless steel target and irradiated with the pulsed IR laser. Material desorbed and ablated from the target was ionized by a continuous stream of charged droplets from the electrosprayed solvent. Peptide and protein samples analyzed using this method yield mass spectra similar to those obtained by conventional electrospray. Blood and urine were analyzed without sample pretreatment to demonstrate the capability of IR LADESI for direct analysis of biological fluids. Pharmaceutical products were also directly analyzed. Finally, the role of water as a matrix in the IR LADESI process is discussed.

  11. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  12. Low-Frequency Observations of Galactic Supernova Remnants and the Distribution of Low-Density Ionized Gas in the Interstellar Medium

    DTIC Science & Technology

    1989-12-15

    New long-wavelength observations of Galactic supernova remnants ( SNRs ) at 30.9 and 57.5 MHz are used to derive detailed low-frequency radio spectra...for 32 SNRs . Of these, approximately two-thirds show turnovers at low frequencies, implying the presence of a widespread, but inhomogeneous, ionized... SNRs and to constrain the physical properties of the ionized gas responsible for the absorption. Three generally accepted ionized components of the

  13. Nonlinear effects in photoionization over a broad photon-energy range within the TDCIS scheme

    NASA Astrophysics Data System (ADS)

    Karamatskou, Antonia

    2017-01-01

    The present tutorial provides an overview of the time-dependent configuration interaction singles scheme applied to nonlinear ionization over a broad photon-energy range. The efficient propagation of the wave function and the calculation of photoelectron spectra within this approach are described and demonstrated in various applications. Above-threshold ionization of argon and xenon in the extreme ultraviolet energy range is investigated as an example. A particular focus is put on the xenon 4d giant dipole resonance and the information that nonlinear ionization can provide about resonance substructure. Furthermore, above-threshold ionization is studied in the x-ray regime and the intensity regime, at which multiphoton ionization starts to play a role at hard x-ray photon energies, is identified.

  14. Predicted emission lines from giant HII regions ionized by aging star clusters.

    NASA Astrophysics Data System (ADS)

    Garcia-Vargas, M. L.; Bressan, A.; Diaz, A. I.

    1995-07-01

    We have computed theoretical models of the emission line spectra of giant extragalactic HII regions (GEHR) in which a single star cluster is assumed to be responsible for the ionization. Ionizing clusters, of different masses and metallicities, were constructed assuming that they formed in a single burst and with a Salpeter Initial Mass Function. Their evolution was then followed in detail up to an age of 5.4Myr after which they lack the high energy photons needed to keep the regions ionized. The integrated spectral energy distribution of every cluster has been computed for a set of discrete ages representative of relevant phases of their evolution and have been processed by the photoionization code CLOUDY, in order to obtain the corresponding emission line spectra of the ionized gas at optical and infrared wavelengths. A wide range of initial compositions, spanning from about 1/20 (Z=0.001) to 2.5 solar (Z=0.05), and total masses, between about 1-6x10^4^Msun_ has been considered. Gas and stars are assumed to have the same metallicity and this has been taken into account both in the stellar evolution and atmosphere models and in the nebular gas producing a consistent set of models. In this paper we present the synthetic emission line spectra of the ionized regions which are discussed in detail in Garcia-Vargas et al. (1995).

  15. Surface ionization mass spectrometry of drugs in the thermal and hyperthermal energy range -- a comparative study

    NASA Astrophysics Data System (ADS)

    Dagan, Shai; Amirav, Aviv; Fujü, Toshihiro

    1995-12-01

    Thermal and hyperthermal surface ionization (SI) mass spectra of nicotine, caffeine and lidocaine were obtained using a rhenium oxide surface. Thermal surface ionization was studied on an oxidized surface positioned inside an electron impact ion source, while hyperthermal surface ionization (HSI) was obtained upon seeding the compounds into a hydrogen or helium supersonic molecular beam that scattered from the rhenium oxide surface. Both HSI and SI provide rich, informative and complementary mass spectral information. The results indicate that SI follows thermal dissociation processes on the surface prior to the desorption of the ion, while in HSI no thermal equilibrium is established and the ionization process is impulsive, followed by mostly unimolecular ion dissociation. HSI mass spectra are similar to electron impact mass spectra in the fragment ion masses, but the observed relative intensities are different. HSI is a softer ionization method compared to SI, and enables the degree of ion fragmentation to be tuned so that it can be minimized to a low level at low molecular kinetic energy. In SI, limited control over the degree of fragmentation is possible through the surface temperature. The analytical mass spectrometric applications of SI and HSI are briefly mentioned.

  16. Impact of electron ionization on the generation of high-order harmonics from molecules

    SciTech Connect

    Brener, S.; Moiseyev, N.; Ivanov, M. V.

    2003-08-01

    When the laser frequency is tuned to be equal to the molecular electronic excitation, high-order harmonics are generated due to the electronic dipole transitions between the corresponding two potential-energy surfaces (PES). A natural, often taken, choice is the PES of the field-free molecular system. In this special choice the ionization phenomenon is not considered. Only the effect of the dissociation is considered. The method we developed enables one to remain within the framework of the 2-PES approximation and yet to include also the ionization effect in the calculations of molecular high-order harmonic generation spectra. In this approach the coupling between the electronic and nuclear motions is taken into consideration by using coupled complex adiabatic PES. As an illustrative numerical example, we calculated the high harmonic generation (HHG) spectra of H{sub 2}{sup +} in a 730-nm laser with the intensity of 8.77x10{sup 13} W/cm{sup 2}. The inclusion of the ionization in our approach not only enables the electrons to tunnel through the effective static potential barrier, but also apply an asymmetric force which accelerates the electron before ionization takes place. Therefore, indirectly the inclusion of the ionization by the laser field may lead eventually to an enhanced HHG spectra in comparison with the calculated one when the ''natural'' choice of the field-free 2PES is taken.

  17. Control spectra for Quito

    NASA Astrophysics Data System (ADS)

    Aguiar, Roberto; Rivas-Medina, Alicia; Caiza, Pablo; Quizanga, Diego

    2017-03-01

    The Metropolitan District of Quito is located on or very close to segments of reverse blind faults, Puengasí, Ilumbisí-La Bota, Carcelen-El Inca, Bellavista-Catequilla and Tangahuilla, making it one of the most seismically dangerous cities in the world. The city is divided into five areas: south, south-central, central, north-central and north. For each of the urban areas, elastic response spectra are presented in this paper, which are determined by utilizing some of the new models of the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 program. These spectra are calculated considering the maximum magnitude that could be generated by the rupture of each fault segment, and taking into account the soil type that exists at different points of the city according to the Norma Ecuatoriana de la Construcción (2015). Subsequently, the recurrence period of earthquakes of high magnitude in each fault segment is determined from the physical parameters of the fault segments (size of the fault plane and slip rate) and the pattern of recurrence of type Gutenberg-Richter earthquakes with double truncation magnitude (Mmin and Mmax) is used.

  18. Theoretical Studies of Molecular Spectra

    NASA Technical Reports Server (NTRS)

    McKay, Christopher (Technical Monitor); Freedman, Richard S.

    2002-01-01

    This summary describes the research activities of the principal investigator during the reporting period. The research includes spectroscopy, management of molecular databases, and generation of spectral line profiles and opacity data. The spectroscopy research includes oxygen broadening of nitric oxide (NO), analysis of CO2 spectra, analysis of HNO3 spectra, and analysis of CO spectra.

  19. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  20. Single ionization of molecular iodine

    NASA Astrophysics Data System (ADS)

    Smith, Dale L.; Tagliamonti, Vincent; Dragan, James; Gibson, George N.

    2017-01-01

    We performed a study of the single ionization of iodine, I2 over a range of wavelengths. Single ionization of I2 is unexpectedly found to have a contribution from inner molecular orbitals involving the 5 s electrons. The I+I+ dissociation channel was recorded through velocity map imaging, and the kinetic-energy release of each channel was determined with two-dimensional fitting of the images. Most of the measured kinetic-energy data were inconsistent with ionization to the X , A , and B states of I2 + , implying ionization from deeper orbitals. A pump-probe Fourier transform technique was used to look for modulation at the X - and A -state vibrational frequencies to see if they were intermediate states in a two-step process. X - and A -state modulation was seen only for kinetic-energy releases below 0.2 eV, consistent with dissociation through the B state. From these results and intensity-, polarization-, and wavelength-dependent experiments we found no evidence of bond softening, electron rescattering, or photon mediation through the X or A states to higher-energy single-ionization channels.

  1. Ionization thresholds of small carbon clusters: tunable VUV experiments and theory.

    PubMed

    Belau, Leonid; Wheeler, Steven E; Ticknor, Brian W; Ahmed, Musahid; Leone, Stephen R; Allen, Wesley D; Schaefer, Henry F; Duncan, Michael A

    2007-08-22

    Small carbon clusters (Cn, n = 2-15) are produced in a molecular beam by pulsed laser vaporization and studied with vacuum ultraviolet (VUV) photoionization mass spectrometry. The required VUV radiation in the 8-12 eV range is provided by the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory. Mass spectra at various ionization energies reveal the qualitative relative abundances of the neutral carbon clusters produced. By far the most abundant species is C3. Using the tunability of the ALS, ionization threshold spectra are recorded for the clusters up to 15 atoms in size. The ionization thresholds are compared to those measured previously with charge-transfer bracketing methods. To interpret the ionization thresholds for different cluster sizes, new ab initio calculations are carried out on the clusters for n = 4-10. Geometric structures are optimized at the CCSD(T) level with cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations are applied to both neutral and cation species to determine adiabatic and vertical ionization potentials. The comparison of computed and measured ionization potentials makes it possible to investigate the isomeric structures of the neutral clusters produced in this experiment. The measurements are inconclusive for the n = 4-6 species because of unquenched excited electronic states. However, the data provide evidence for the prominence of linear structures for the n = 7, 9, 11, 13 species and the presence of cyclic C10.

  2. A study of spectra of Cyg X-3 observed by BeppoSAX

    NASA Astrophysics Data System (ADS)

    Szostek, A.; Zdziarski, A. A.

    2005-06-01

    We model the ~1-200 keV spectra of Cygnus X-3 observed by BeppoSAX. The continuum, modeled by Comptonization in a hybrid plasma, is modified by the strongly ionized plasma of the stellar wind of the Wolf-Rayet companion star. Discrete absorption and emission spectral features are modeled with XSTAR. The model has been applied to phase-resolved spectra in the hard and soft spectral states.

  3. Resonance Enhanced Multiphoton Ionization (rempi) Spectroscopy of Weakly Bound Complexes

    NASA Astrophysics Data System (ADS)

    Muzangwa, Lloyd; Nyambo, Silver; Uhler, Brandon; Reid, Scott A.

    2012-06-01

    We have recently implemented Resonance Enhanced Multiphoton Ionization (REMPI) spectroscopy in our laboratory as a spectroscopic probe of transient species. We will report on initial gas-phase studies of the spectra of weakly bound van der Waals and halogen bonded complexes involving aromatic organic donors. The complexes are formed in the rarified environment of a supersonic molecular beam, which is skimmed prior to passing into the differentially pumped flight tube of a linear time-of-flight mass spectrometer. Ionization is initiated both by 1+1 and 1+1' REMPI schemes; the latter is used to minimize fragmentation. Our initial studies have examined van der Waals and halogen bonded complexes involving the phenol and toluene chromophores. Progress in the coupling of a discharge source into this apparatus will also be discussed.

  4. Hemoglobin A1C above threshold levels are associated with decreased β-cell function in overweight Latino youth

    PubMed Central

    Toledo-Corral, Claudia M.; Vargas, Lisa G.; Goran, Michael I.; Weigensberg, Marc J.

    2011-01-01

    Objective To determine, in an overweight pediatric population, if an A1C-determined high risk, pre-diabetic state (A1C ≥6.0–6.4%) is associated with decreased insulin sensitivity and β-cell dysfunction, known factors in the pathogenesis of type 2 diabetes. Study design We divided 206 healthy overweight Latino adolescents (124 male/82 female; age 13.1±2.0 yrs), into 2 groups: Lower Risk (LR, n=179) had A1C <6.0%; and High Risk (HR, n=27) had A1C 6.0–6.4%. Measures included A1C; OGTT fasting & 2-hr glucose and insulin; insulin sensitivity (SI), acute insulin response (AIR), and disposition index (DI, an index of β-cell function) by frequently sampled FSIVGTT with minimal modeling. Body fat was determined by DEXA. Results Compared with the LR group, the HR group had 21% lower SI (1.21±0.06 vs. 1.54±0.13, p<0.05), 30% lower AIR (928±102 vs. 1342±56, p<0.01), and 31% lower DI (1390±146 vs. 2023±83, p=0.001) after adjusting for age and total percent body fat. Conclusion These data provide clear evidence of greater impairment of β-cell function in those overweight Latino children with A1C 6.0–6.4%, and would thereby support the adoption of the International Expert Committee A1C-determined definition of high risk state for overweight children at risk for type 2 diabetes. PMID:22137671

  5. Modeling of current gain compression in common emitter mode of a transistor laser above threshold base current

    NASA Astrophysics Data System (ADS)

    Basu, Rikmantra; Mukhopadhyay, Bratati; Basu, P. K.

    2012-04-01

    We have obtained the expressions for the terminal currents in a heterojunction bipolar transistor laser the base of which contains a quantum well (QW). The emitter-base junction is assumed to be abrupt, leading to abrupt discontinuity in quasi-Fermi level at the interface. The expressions for the terminal currents as a function of collector-emitter and base-emitter voltages are obtained from the solution of the continuity equation. The current density in the QW located at an arbitrary position in the base is related to the virtual state current density. The threshold current density in the QW is calculated by using the expression for gain obtained from Fermi golden rule. The plot of collector current (IC) versus collector-emitter voltage (VCE) for different values of base current shows the usual transistor characteristics, i.e., a rising portion after a cut-in VCE, and then a saturation behavior. The dc current gain remains constant. However, as the base current exceeds the threshold, a stimulated recombination rate is added to the spontaneous recombination rate and the plots of collector currents become closer for the same increase in base current. This current gain compression is in agreement with the experimental observation. Our calculated values qualitatively agree with other experimental findings; however some features like Early effect do not show up in the calculation.

  6. A Partial Wave Analysis of Proton-Antiproton Annihilation Above Threshold for ΦΦ Production in the JETSET Experiment

    SciTech Connect

    Marie, James John

    2006-05-01

    The JETSET experiment (PS202) conducted at CERN was designed to search for gluonic resonances in the mass range between 2.14 and 2.43 GeV/c2 using the channel, p$\\bar{p}$→ΦΦ→4K+/-. This channel is OZI suppressed, thus any observed enhancement of the cross section above a level consistent with the OZI rule could indicate possible resonating gluonic degrees of freedom. In fact, the measured cross section is two orders of magnitude larger than the OZI prediction and shows an enhancement centered near 2.2 GeV/c2 of width 50-100 MeV/c2. A partial wave analysis (PWA) has been conducted in order to search for the dominant partial waves. The formalism and methods of this PWA will be fully developed. This analysis has revealed the dominance of Jpc = 2++ together with a significant Jpc = 4++ component. Because the Φ resonance is only 4 MeV wide, the PWA is relatively insensitive to the presence of competing channels coupling to the 4K± final state. The partial wave analysis was

  7. Determination of the ionization energy of vanadium levels in zinc selenide

    SciTech Connect

    Makhniy, V. P.; Kinzerskaya, O. V.

    2012-02-15

    By comparing the experimental spectra of optical absorption and photoconductivity with those calculated using the Lucovsky formulas, it is established that the V impurity in ZnSe forms acceptor levels with the ionization energy 0.62 eV.

  8. Novel lutetium spectroscopic interactions via cw RIMS (Resonance Ionization Mass Spectrometry)

    SciTech Connect

    Fearey, B.L.; Miller, C.M.

    1989-01-01

    Novel spectroscopic interactions of argon-ion laser enhanced resonance ionization of lutetium are observed and discussed; these include line-narrowing, non-linear power dependences and anomalous optical pumping effects of the hyperfine transitions. In addition, isotopically saturation dip spectra are observed and presented, allowing for precise determination of hyperfine constants of rare isotopes. 12 refs., 2 figs.

  9. Continuum Fitting HST QSO Spectra

    NASA Technical Reports Server (NTRS)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  10. Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Guzik, T. Gregory

    2001-01-01

    During grant NAG5-5064, Louisiana State University (LSU) led the ATIC team in the development, construction, testing, accelerator validation, pre-deployment integration and flight operations of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment. This involved interfacing among the ATIC collaborators (UMD, NRL/MSFC, SU, MSU, WI, SNU) to develop a new balloon payload based upon a fully active calorimeter, a carbon target, a scintillator strip hodoscope and a pixilated silicon solid state detector for a detailed investigation of the very high energy cosmic rays to energies beyond 10(exp 14) eV/nucleus. It is in this very high energy region that theory predicts changes in composition and energy spectra related to the Supernova Remnant Acceleration model for cosmic rays below the "knee" in the all-particle spectrum. This report provides a documentation list, details the anticipated ATIC science return, describes the particle detection principles on which the experiment is based, summarizes the simulation results for the system, describes the validation work at the CERN SPS accelerator and details the balloon flight configuration. The ATIC experiment had a very successful LDB flight from McMurdo, Antarctica in 12/00 - 1/01. The instrument performed well for the entire 15 days. Preliminary data analysis shows acceptable charge resolution and an all-particle power law energy deposition distribution not inconsistent with previous measurements. Detailed analysis is underway and will result in new data on the cosmic ray charge and energy spectra in the GeV - TeV energy range. ATIC is currently being refurbished in anticipation of another LDB flight in the 2002-03 period.

  11. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations.

    PubMed

    Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel

    2009-05-13

    Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.

  12. Electroencephalographic responses to ionizing radiation.

    PubMed

    GARCIA, J; BUCHWALD, N A; BACH-Y-RITA, G; FEDER, B H; KOELLING, R A

    1963-04-19

    Electroencephalographic recordings made from chronically implanted cortical electrodes indicate that ionizing radiation has an immediate effect upon brain wave patterns. X-rays delivered at the rate of 0.2 roentgen per second produce an arousal effect resembling that which occurs as a result of stimulation through peripheral receptor systems.

  13. Ionization Cooling for Muon Experiments

    SciTech Connect

    Alexahin, Y.; Neuffer, D.; Prebys, E.

    2014-09-18

    Possible application for muon experiments such as mu2e is discussed of the initial part of the ionization cooling channel originally developed for muon collider. It is shown that with the FNAL Booster as the proton driver the mu2e sensitivity can be increased by two orders of magnitude compared to the presently considered experiment.

  14. Ionization Potentials for Isoelectronic Series.

    ERIC Educational Resources Information Center

    Agmon, Noam

    1988-01-01

    Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)

  15. Far-ultraviolet absorption spectra of quasars: How to find missing hot gas and metals

    NASA Technical Reports Server (NTRS)

    Verner, D. A.; Tytler, David; Barthel, P. D.

    1994-01-01

    We show that some high-redshift QSO absorption systems that reveal only the H I Lyman series lines at wavelengths visible from the ground maybe a new class of ultra-high-ionization metal line systems, with metal lines in the far-UV region which is now being explored with satellites. At high temperatures or in intense radiation fields metal systems will not show the usual C IV absorption, and O VI will become the most prominent metal absorber. At still higher ionization, O IV also becomes weak and the strongest metal lines are from Ne VIII, Mg X and Si XII, which have doublets in the rangs 500-800 A. Hence very high ionization metal systems will not show metal lines in existing spectra. Recent X-ray observations show that galaxy halos contain hot gas, so we predict that far-UV spectra of QSOs will also show this gas.

  16. Spatially Resolved Spectra of 3C Galaxy Nuclei

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Baum, S. A.; Weistrop, D.; Nelson, C.; Kaiser, M. E.; Gelderman, R. F.

    1998-01-01

    We present and discuss visible-wavelength long-slit spectra of four low-redshift 3C galaxies obtained with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope (HST). The slit was aligned with near-nuclear jet-like structure seen in HST images of the galaxies, to give unprecedented spatial resolution of their inner regions. In 3C 135 and 3C 171, the spectra reveal clumpy emission-line structures that indicate outward motions of a few hundred kilometers per second within a centrally illuminated and ionized biconical region. There may also be some low-ionization, high-velocity material associated with 3C 135. In 3C 264 and 3C 78, the jets have blue featureless spectra consistent with their proposed synchrotron origin. There is weak associated line emission in the innermost part of the jets with mild outflow velocity. These jets are bright and highly collimated only within a circumnuclear region of lower galaxy luminosity, which is not dusty. We discuss the origins of these central regions and their connection with relativistic jets.

  17. COMPOSITE SPECTRA IN MERGING U/LIRGs CAUSED BY SHOCKS

    SciTech Connect

    Rich, J. A.; Kewley, L. J.; Dopita, M. A.

    2014-01-20

    We present a key result from our optical integral field spectroscopic survey of 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-Sky LIRG Survey. Using spatially resolved multi-component emission line fitting to trace the emission line ratios and velocity dispersion of the ionized gas, we quantify for the first time the widespread shock ionization in gas-rich merging U/LIRGs. Our results show a fractional contribution to the total observed Hα flux from radiative shocks increasing from a few percent during early merger stages to upward of 60% of the observed optical emission line flux in late-stage mergers. We compare our resolved spectroscopy to nuclear spectra and find that 3/4 of the galaxies in our sample that would be classified as ''composite'' based on optical spectroscopy are primarily characterized by a combination of star formation and merger-driven shocks. Our results have important implications for the interpretation of ''composite'' rest-frame optical spectra of U/LIRGs as starburst+active galactic nucleus (AGN), as the shock emission combined with star formation can mimic ''composite'' optical spectra in the absence of any contribution from an AGN.

  18. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    NASA Astrophysics Data System (ADS)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  19. Sequencing BPS spectra

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d {N}=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  20. Sequencing BPS spectra

    SciTech Connect

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-02

    In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  1. Sequencing BPS spectra

    DOE PAGES

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; ...

    2016-03-02

    In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explainmore » from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.« less

  2. Laboratory simulation of dust spectra

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1988-01-01

    Laboratory studies of the IR spectra of interstellar dust are reviewed. Studies of the absorption spectra of dense molecular clouds are discussed, including methods to produce interstellar ice analogues, simulations of astronomical spectra, and IR absorption features caused by ices. Comparisons are made between observational and experimental results of interstellar dust studies. Also, the interstellar emission features associated with dusty regions exposed to UV radiation are examined, including bands related to PAHs and PAH-related materials. It is shown that interstellar spectra are more consistant with emission from free PAHs than with emission from particles.

  3. Some thoughts on electrospray ionization mechanisms.

    PubMed

    Crotti, Sara; Seraglia, Roberta; Traldi, Pietro

    2011-01-01

    Electrospray ionization (ESI) mechanisms are highly complex, due to a series of physical and chemical phenomena taking place on a complex system, as a solution is. In fact, even if the solution of an analyte in a protic medium can be considered at first sight to be a two-component system, the presence of solvent dissociation equilibria and the possible interactions solvent-solvent dissociation products, solvent dissociation products-analyte make this system highly complex, also for the presence of possible ionic compounds (for example, Na(+), K(+)) which strongly affect the above equilibria. A high number of research articles have been published, mainly devoted to charged droplet production and to gas-phase ion generation. They all show the high complexity of the processes affecting electrospray measurements related to either the chemical equilibria present in the condensed phase and to electrolysis processes at the emitter tip or to the processes occurring in the sprayed droplets. As a result, the chemical composition inside the small droplets from which the analyte ions are generated can be significantly different from those in sprayed solution. In this review, after a short survey of the proposed ESI mechanisms, some experiments are described. They were performed to examine if ion mobility in solution, before the formation of the sprayed charged droplets, can affect the ESI results. The data, obtained by studying both inorganic and organic analytes, indicate that the ESI spectra are dependent on the analyte dimension and charge state which, as a consequence, affect their ion mobility in solution.

  4. Clinical Application of Ambient Ionization Mass Spectrometry

    PubMed Central

    Li, Li-Hua; Hsieh, Hua-Yi; Hsu, Cheng-Chih

    2017-01-01

    Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study. PMID:28337399

  5. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  6. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  7. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  8. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  9. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  10. Investigation of hydrogen bonding in 3-methylindole · H 2O cluster by mass analyzed threshold ionization

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Neusser, H. J.

    2004-05-01

    The adiabatic ionization energies and the threshold ion vibrational spectra of 3-methylindole and the 3-methylindole · H 2O cluster and the hydrogen bonding energy of the latter have been measured with mass analyzed threshold ionization (MATI) technique. Dissociation of the cluster has been detected as a breakdown of the threshold ion signal at the parent mass channel and the simultaneous increase of the signal at the fragment mass channel. Comparison with our previous work on indole · H 2O shows that there is only a small influence of the methyl group on the ionization energy and the hydrogen bonding strength.

  11. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  12. AN ATLAS OF FAR-ULTRAVIOLET SPECTRA OF THE ZETA AURIGAE BINARY 31 CYGNI WITH LINE IDENTIFICATIONS

    SciTech Connect

    Bauer, Wendy Hagen; Bennett, Philip D.

    2014-04-01

    The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe III and Cr III) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe II and O I) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ∼80 km s{sup –1}. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.

  13. Penning ionization electron spectroscopy of hydrogen sulfide by metastable helium and neon atoms.

    PubMed

    Falcinelli, Stefano; Candori, Pietro; Bettoni, Marta; Pirani, Fernando; Vecchiocattivi, Franco

    2014-08-21

    The dynamics of the Penning ionization of hydrogen sulfide molecules by collision with helium and metastable neon atoms, occurring in the thermal energy range, has been studied by analyzing the energy spectra of the emitted electrons obtained in our laboratory in a crossed beam experiment. These spectra are compared with the photoelectron spectra measured by using He(I) and Ne(I) photons under the same experimental conditions. In this way we obtained the negative energy shifts for the formation of H2S(+) ions in the first three accessible electronic states by He*(2(3,1)S1,0) and Ne*((3)P2,0) Penning ionization collisions: the 2b1 (X̃(2)B1) fundamental one, the first 5a1 (Ã(2)A1), and the second 2b2 (B̃(2)B2) excited states, respectively. The recorded energy shifts indicate that in the case of He* and Ne*-H2S the autoionization dynamics depends on the features of the collision complex and is mainly driven by an effective global attraction that comes from a balance among several non covalent intermolecular interaction components. This suggests that the Penning ionization should take place, in a specific range of intermolecular distances, as we have already observed in the case of Penning ionization of water molecules [Brunetti, B. G.; Candori, P.; Falcinelli, S.; Pirani, F.; Vecchiocattivi, F. J. Chem. Phys. 2013, 139, 164305-1-164305-8].

  14. Effect of helium nanoclusters on the spectroscopic properties of embedded SF6: Ionization, excitation and vibration

    NASA Astrophysics Data System (ADS)

    Dehdashti-Jahromi, M.; Farrokhpour, H.

    2017-02-01

    Ionization and excitation energies, IR and Raman spectra of sulfur hexafluoride (SF6), located inside helium (He) nanoclusters with different sizes (SF6@Hen; n = 20, 40, 60), were calculated. The effect of the cluster size on the spectroscopic properties of the SF6 was investigated and found that the Hen-SF6 interaction in the He clusters with large number of atoms is small so that the ionization and absorption energies of SF6 are not affected while for small He nanoclusters the Hen-SF6 interaction is more important. The effect of Hen-SF6 interaction and deformation of the fragments on the photoelectron and absorption spectra of SF6@Hen were separated theoretically and discussed in details. It was deduced that the effect of the cluster size on the IR and Raman vibrational frequencies of the SF6 is negligible for the cluster size range considered in this work. Density functional theory (DFT) employing M06-2X functional and 6-31 + G(df) basis set were used for optimizing the structures of SF6@Hen. Symmetry adapted cluster-configuration interaction (SAC-CI) methodology, with the same basis set, were used to calculate the ionization and excitation energies of the SF6@Hen structures. Using the calculated ionization and absorption energies and their intensities, the photoelectron and absorption spectra of the considered SF6@Hen structures were simulated and compared with the experiment.

  15. On the intermolecular Coulombic decay of singly and doubly ionized states of water dimer.

    PubMed

    Stoychev, Spas D; Kuleff, Alexander I; Cederbaum, Lorenz S

    2010-10-21

    A semiquantitative study of the intermolecular Coulombic decay (ICD) of singly and doubly ionized water dimer has been carried out with the help of ab initio computed ionization spectra and potential energy curves (PECs). These PECs are particular cuts through the (H(2)O)(2), (H(2)O)(2) (+), and (H(2)O)(2) (++) hypersurfaces along the distance between the two oxygen atoms. A comparison with the recently published experimental data for the ICD in singly ionized water dimers [T. Jahnke, H. Sann, T. Havermeier et al., Nat. Phys. 6, 139 (2010)] and in large water clusters [M. Mucke, M. Braune, S. Barth et al., Nat. Phys. 6, 143 (2010)] shows that such a simplified description in which the internal degrees of freedom of the water molecules are frozen gives surprisingly useful results. Other possible decay channels of the singly ionized water dimer are also investigated and the influence of the H-atom participating in the hydrogen bond on the spectra of the proton-donor and proton-acceptor molecules in the dimer is discussed. Importantly, the decay processes of one-site dicationic states of water dimer are discussed and an estimate of the ICD-electron spectra is made. More than 33% of the dications produced by Auger decay are found to undergo ICD. The qualitative results show that the ICD following Auger decay in water is also expected to be an additional source of low-energy electrons proven to be extremely important for causing damages to living tissues.

  16. Auger spectrum of a water molecule after single and double core ionization.

    PubMed

    Inhester, L; Burmeister, C F; Groenhof, G; Grubmüller, H

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schrödinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  17. Precursor ion scan profiles of acylcarnitines by atmospheric pressure thermal desorption chemical ionization tandem mass spectrometry.

    PubMed

    Paglia, Giuseppe; D'Apolito, Oceania; Corso, Gaetano

    2008-12-01

    The fatty acyl esters of L-carnitine (acylcarnitines) are useful biomarkers for the diagnosis of some inborn errors of metabolism analyzed by liquid chromatography/tandem mass spectrometry. In this study the acylcarnitines were analyzed by atmospheric pressure thermal desorption chemical ionization using a commercial tandem mass spectrometer (APTDCI-MS/MS). The method is based on the precursor ion scan mode determination of underivatized acylcarnitines desorbed from samples by a hot desolvation gas flow and ionized by a corona pin discharge. During desorption/ionization step the temperature induces the degradation of acylcarnitines; nevertheless, the common fragment to all acylcarnitines [MH-59](+) is useful for analyzing their profile. APTDCI parameters, including angle of collection and incidence, gas flows and temperatures, were optimized for acylcarnitines. The experiments were performed drying 2 microL of an equimolar mixture of acylcarnitine standards on a glass slide. The specificity was evaluated by comparing product ion spectra and the precursor ion spectra of 85 m/z of acylcarnitines obtained by the APTDCI method and by electrospray ionization flow injection analysis (ESI-FIA). The method was also employed to analyze acylcarnitines extracted from a pathological dried blood spot and a control. The method enables analysis of biological samples and recognition of some acylcarnitines that are diagnostic markers of inherited metabolic diseases. The intrinsic high-throughput analysis of the ambient desorption ionization methods offers a new opportunity either for its potential application in clinical chemistry and for the expanded screening of some inborn errors of metabolism.

  18. Auger spectrum of a water molecule after single and double core ionization

    SciTech Connect

    Inhester, L.; Burmeister, C. F.; Groenhof, G.; Grubmueller, H.

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schroedinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  19. Spectroscopic Study of ThCl+ by Two-Photon Ionization

    NASA Astrophysics Data System (ADS)

    Bartlett, Joshua; VanGundy, Robert A.; Heaven, Michael; Peterson, Kirk

    2016-06-01

    Despite the irreplaceable role experimental data plays for evaluating the performance of computational predictions, diatomic actinide species have not received much spectroscopic attention. As an early actinide element, thorium-containing species are ideal candidates for these types of studies. The electronic structure is expected to be relatively simple compared to later actinides, and therefore allows straightforward assessment of calculations. Here, we have studied ThCl+ for the first time via resonant two-photon ionization of jet-cooled ThCl produced by laser ablation of the metal reacted with dilute Cl2. Laser-induced Fluorescence (LIF) spectra have been recorded for the neutral molecule from 16000 - 23500 cm-1 in search of a suitable intermediate state for subsequent two-photon ionization experiments. Monochromator dispersion of the fluorescence has recovered the ground state vibration and anharmonic constants of ThCl. Resonant Two-Photon Ionization (R2PI) within a time-of-flight mass spectrometer was used to confirm ThCl production, and Pulsed Field Ionization Zero Kinetic Energy photoelectron spectroscopy (PFI-ZEKE) has been performed to identify the ionization energy as well as several of the low-lying states of the ThCl+ molecule. These constants have been predicted at the CASPT2 and CCSD(T) levels of theory, and a discussion of the calculations' performance will be presented alongside the recorded spectra.

  20. Transition from SAMO to Rydberg State Ionization in C60 in Femtosecond Laser Fields

    PubMed Central

    2016-01-01

    The transition between two distinct ionization mechanisms in femtosecond laser fields at 785 nm is observed for C60 molecules. The transition occurs in the investigated intensity range from 3 to 20 TW/cm2 and is visualized in electron kinetic energy spectra below the one-photon energy (1.5 eV) obtained via velocity map imaging. Assignment of several observed broad spectral peaks to ionization from superatom molecular orbitals (SAMOs) and Rydberg states is based on time-dependent density functional theory simulations. We find that ionization from SAMOs dominates the spectra for intensities below 5 TW/cm2. As the intensity increases, Rydberg state ionization exceeds the prominence of SAMOs. Using short laser pulses (20 fs) allowed uncovering of distinct six-lobe photoelectron angular distributions with kinetic energies just above the threshold (below 0.2 eV), which we interpret as over-the-barrier ionization of shallow f-Rydberg states in C60. PMID:27934203

  1. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  2. Projecting Spectra for Classroom Investigations.

    ERIC Educational Resources Information Center

    Sadler, Philip

    1991-01-01

    Describes an inexpensive spectrum projector that makes high-dispersion, high-efficiency diffraction gratings using a holographic process. Discusses classroom applications such as transmission spectra, absorption spectra, reflection characteristics of materials, color mixing, florescence and phosphorescence, and break up spectral colors. (MDH)

  3. Semiclassical two-step model for strong-field ionization

    NASA Astrophysics Data System (ADS)

    Shvetsov-Shilovski, N. I.; Lein, M.; Madsen, L. B.; Räsänen, E.; Lemell, C.; Burgdörfer, J.; Arbó, D. G.; Tőkési, K.

    2016-07-01

    We present a semiclassical two-step model for strong-field ionization that accounts for path interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a classical trajectory Monte Carlo representation of the phase-space dynamics, the model employs the semiclassical approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact numerical solution of the time-dependent Schrödinger equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum distribution after the first tunneling step, the model yields good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy spectra, and the angular distributions are found to be in good agreement with the corresponding quantum results. Specifically, the model quantitatively reproduces the fanlike interference patterns in the low-energy part of the two-dimensional momentum distributions, as well as the modulations in the photoelectron angular distributions.

  4. The multiphoton ionization of uranium hexafluoride. Revision 1

    SciTech Connect

    Armstrong, D.P.

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  5. Fast ionized X-ray absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  6. Ionizing radiation and cancer prevention.

    PubMed Central

    Hoel, D G

    1995-01-01

    Ionizing radiation long has been recognized as a cause of cancer. Among environmental cancer risks, radiation is unique in the variety of organs and tissues that it can affect. Numerous epidemiological studies with good dosimetry provide the basis for cancer risk estimation, including quantitative information derived from observed dose-response relationships. The amount of cancer attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to naturally occurring exposures, such as cosmic and terrestrial radiation, are not preventable. The major natural radiation exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure; because of the importance of its benefits to one's health, the appropriate prevention strategy is to simply work to minimize exposures. PMID:8741791

  7. Low-density ionization behavior

    SciTech Connect

    Baker, G.A. Jr.

    1995-04-01

    As part of a continuing study of the physics of matter under extreme conditions, I give some results on matter at extremely low density. In particular I compare a quantum mechanical calculation of the pressure for atomic hydrogen with the corresponding pressure given by Thomas-Fermi theory. (This calculation differs from the ``confined atom`` approximation in a physically significant way.) Since Thomas-Fermi theory in some sense, represents the case of infinite nuclear charge, these cases should represent extremes. Comparison is also made with Saha theory, which considers ionization from a chemical point of view, but is weak on excited-state effects. In this theory, the pressure undergoes rapid variation as electron ionization levels are passed. This effect is in contrast to the smooth behavior of the Thomas-Fermi fixed temperature, complete ionization occurs in the low density limit, I study the case where the temperature goes appropriately to zero with the density. Although considerable modification is required, Saha theory is closer to the actual results for this case than is Thomas-Fermi theory.

  8. 20-150-keV proton-impact-induced ionization of uracil: Fragmentation ratios and branching ratios for electron capture and direct ionization

    SciTech Connect

    Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2010-01-15

    Fragmentation ratios and branching ratios are measured for ionization and dissociative ionization for 20-150 keV (0.9-2.4v{sub 0}) proton collisions with gas-phase uracil molecules. Through event-by-event determination of the postcollision projectile charge, it is possible for such a key biomolecule to distinguish between electron capture (EC) by the incident proton and direct ionization (DI) without projectile neutralization. While the same fragment ion groups are observed in the mass spectra for both processes, EC induces dissociation with greater efficiency than DI in the impact energy range of 35-150 keV (1.2-2.4v{sub 0}). In this range EC is also less abundant than DI with a branching ratio for EC/total ionization of <50%. Moreover, whereas fragmentation ratios do not change with energy in the case of EC, DI mass spectra show a tendency for increased fragmentation at lower impact energies.

  9. Deconvolution of Energy Spectra in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Batkov, K. E.; Panov, A. D.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Fazley, A. R.; Ganel, O.; Gunasigha, R. M.; Guzik, T. G.

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic- ray elemental spectra measurements from below 100 GeV up to tens TeV for nuclei from hydrogen to iron. The instrument is composed of a silicon matrix detector followed by a carbon target, interleaved with scintillator tracking layers, and a segmented BGO calorimeter composed of 320 individual crystals totalling 18 radiation lengths, used to determine the particle energy. The technique for deconvolution of the energy spectra measured in the thin calorimeter is based on detailed simulations of the response of the ATIC instrument to different cosmic ray nuclei over a wide energy range. The method of deconvolution is described and energy spectrum of carbon obtained by this technique is presented.

  10. Polarization phenomena in multiphoton ionization of atoms.

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photo-electron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  11. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  12. Theoretical Calculation for the Ionization of Molecules by Short Strong Laser Pulses

    SciTech Connect

    Nagy, L.; Borbely, S.

    2011-10-03

    We have developed several calculation methods for the ionization of atoms and molecules by strong and ultrashort laser pulses, based on the numerical solution of the time dependent Schroedinger equation (TDSE) in the momentum space. We have performed calculations within the strong field approximation (Volkov) and using iterative and direct methods for solving the TDSE. The investigated molecules are H{sub 2}{sup +} and H{sub 2}O. In case of the ionization of diatomic molecules the interference effects in the ejected electron spectra due to the coherent addition of the waves associated to the electrons ejected from the vicinity of different nuclei were also analysed.

  13. Ionization energies of argon clusters: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Echt, O.; Fiegele, T.; Rümmele, M.; Probst, M.; Matt-Leubner, S.; Urban, J.; Mach, P.; Leszczynski, J.; Scheier, P.; Märk, T. D.

    2005-08-01

    We have measured appearance energies of Arn+,n⩽30, by electron impact of gas phase clusters. Quantum-chemical calculations have been performed to determine the adiabatic and vertical ionization energies of argon clusters up to n =4 and 6, respectively. The experimental appearance energy of the dimer ion approaches, under suitable cluster source conditions, the adiabatic ionization energy. The agreement with values obtained by photoionization and threshold photoelectron-photoion coincidence (TPEPICO) spectra demonstrates that autoionizing Rydberg states are accessible by electron impact. Appearance energies of larger clusters, though, exceed the TPEPICO values by about 0.5 eV.

  14. An evaluation of the spectral properties of nerve agents for laser ionization mass spectrometry.

    PubMed

    Imasaka, Tomoko; Imasaka, Totaro

    2014-01-01

    Excitation energies, oscillator strengths, and vacuum-ultraviolet/deep-ultraviolet absorption spectra were calculated for nerve agents, such as sarin, soman, VX, tabun, mustard gas, and analogs. We used time-dependent density functional theory (TD-DFT) methods that included B3LYP combined with basis sets of cc-pVDZ and cc-pVTZ, and ωB97XD with cc-pVTZ. The vertical ionization energies were also calculated for these compounds, in order to collect additional information relative to the optimal pathways for multiphoton ionization in mass spectrometry.

  15. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yanqi; Tzeng, Sheng Yuan; Shivatare, Vidya; Takahashi, Kaito; Zhang, Bing; Tzeng, Wen Bih

    2015-03-01

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm-1, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm-1 for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.

  16. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    SciTech Connect

    Xu, Yanqi; Tzeng, Sheng Yuan; Takahashi, Kaito; Shivatare, Vidya; Zhang, Bing; Tzeng, Wen Bih

    2015-03-28

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S{sub 1}← S{sub 0} electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm{sup −1}, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm{sup −1} for these isomeric species. Most of the observed active vibrations in the electronically excited S{sub 1} and cationic ground D{sub 0} states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S{sub 1} and D{sub 0} states.

  17. Mass-Analyzed Threshold Ionization and Structures of M_3C_2(M=Sc, La)

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Mourad, Roudjane; Yang, D. S.

    2011-06-01

    M_3C_2 (M=Sc, La) clusters are produced by laser vaporization in a pulsed metal-cluster source and identified by photoionization mass spectrometry. Vibrationally resolved ion spectra are obtained with mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectra of M_3C_2 (M=Sc, La) exhibit a weak 0-0 transition, indicating a significant geometry difference between the neutral and ionized clusters. The ionization energies of Sc_2C_2 and La_3C_2 are measured to be 36398 (5) and 30051(5) Cm-1, respectively. In addition, the spectra of the two clusters display a number of vibrational intervals that are associated with M_3 deformations. Preliminary data analysis shows that both clusters have a C2v bi-pyramid structure in the neutral state and a D3h bi-pyramid structure in the ion state, and the spectra may be assigned to the ^1A'_1 (D3h)← ^2B_2 (C2v) transitions.

  18. The Highly Ionized Circumgalactic Medium is Kinematically Uniform around Galaxies

    NASA Astrophysics Data System (ADS)

    Nielsen, Nikole M.; Kacprzak, Glenn G.; Muzahid, Sowgat; Churchill, Christopher W.; Murphy, Michael T.; Charlton, Jane C.

    2017-01-01

    The circumgalactic medium (CGM) traced by O vi λ λ 1031,1037 doublet absorption has been found to concentrate along the projected major and minor axes of the host galaxies. This suggests that O vi traces accreting and outflowing gas, respectively, which are key components of the baryon cycle of galaxies. We investigate this further by examining the kinematics of 29 O vi absorbers associated with galaxies at 0.13< {z}{gal}< 0.66 as a function of galaxy color, inclination, and azimuthal angle. Each galaxy was imaged with the Hubble Space Telescope (HST), and the absorption was detected in COS/HST spectra of nearby (D< 200 kpc) background quasars. We use the pixel-velocity two-point correlation function to characterize the velocity spread of the absorbers, which is a method used previously for a sample of Mg ii absorber–galaxy pairs. The absorption velocity spread for O vi is more extended than Mg ii, which suggests that the two ions trace differing components of the CGM. Again, in contrast to Mg ii, the O vi absorption velocity spreads are similar regardless of galaxy color, inclination, and azimuthal angle. This indicates that the kinematics of the high-ionization gas is not strongly influenced by the current star formation activity in the galaxy. The kinematic homogeneity of O vi absorption and its tendency to be observed mainly along the projected galaxy major and minor axes is likely due to varying ionization conditions and gas densities about the galaxy. Gas in intermediate azimuthal angles may be ionized out of the O vi phase, possibly resulting in an azimuthal angle dependence of the distribution of gas in higher ionization states.

  19. The Diagnostic Potential of Transition Region Lines Undergoing Transient Ionization in Dynamic Events

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Giunta, A.; Singh, A.; Madjarska, M. S.; Summers, H.; Kellett, B. J.; O'Mullane, M.

    2012-09-01

    We discuss the diagnostic potential of high cadence UV spectral data when transient ionization is considered. For this we use high cadence UV spectra taken during the impulsive phase of a solar flare (observed with instruments on-board the Solar Maximum Mission) which showed excellent correspondence with hard X-ray pulses. The ionization fraction of the transition region ion O v and, in particular, the contribution function for the O v 1371 Å line are computed within the Atomic Data and Analysis Structure, which is a collection of fundamental and derived atomic data and codes to manipulate them. Due to transient ionization, the O v 1371 Å line is enhanced in the first fraction of a second with the peak in the line contribution function occurring initially at a higher electron temperature than in ionization equilibrium. The rise time and enhancement factor depend mostly on the electron density. The fractional increase in the O v 1371 Å emissivity due to transient ionization can reach a factor of two-four and can explain the fast response in the line flux of transition regions ions during the impulsive phase of flares solely as a result of transient ionization. This technique can be used to diagnose the electron temperature and density of solar flares observed with the forthcoming Interface Region Imaging Spectrograph.

  20. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  1. Phonon spectra of alkali metals

    NASA Astrophysics Data System (ADS)

    Zeković, S.; Vukajlović, F.; Veljković, V.

    1982-10-01

    In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.

  2. Ionizing Radiation and Its Risks

    PubMed Central

    Goldman, Marvin

    1982-01-01

    Penetrating ionizing radiation fairly uniformly puts all exposed molecules and cells at approximately equal risk for deleterious consequences. Thus, the original deposition of radiation energy (that is, the dose) is unaltered by metabolic characteristics of cells and tissue, unlike the situation for chemical agents. Intensely ionizing radiations, such as neutrons and alpha particles, are up to ten times more damaging than sparsely ionizing sources such as x-rays or gamma rays for equivalent doses. Furthermore, repair in cells and tissues can ameliorate the consequences of radiation doses delivered at lower rates by up to a factor of ten compared with comparable doses acutely delivered, especially for somatic (carcinogenic) and genetic effects from x- and gamma-irradiation exposure. Studies on irradiated laboratory animals or on people following occupational, medical or accidental exposures point to an average lifetime fatal cancer risk of about 1 × 10-4 per rem of dose (100 per 106 person-rem). Leukemia and lung, breast and thyroid cancer seem more likely than other types of cancer to be produced by radiation. Radiation exposures from natural sources (cosmic rays and terrestrial radioactivity) of about 0.1 rem per year yield a lifetime cancer risk about 0.1 percent of the normally occurring 20 percent risk of cancer death. An increase of about 1 percent per rem in fatal cancer risk, or 200 rem to double the “background” risk rate, is compared with an estimate of about 100 rem to double the genetic risk. Newer data suggest that the risks for low-level radiation are lower than risks estimated from data from high exposures and that the present 5 rem per year limit for workers is adequate. PMID:6761969

  3. Spectra ID of recent SN

    NASA Astrophysics Data System (ADS)

    Challis, Peter

    2013-12-01

    P. Challis, Harvard-Smithsonian Center for Astrophysics (CfA), on behalf of the CfA Supernova Group, report spectra (range 320-860 nm) of various SN obtained during Dec. 24-27 UT by P. Challis, S. Gottilla (MMTO.org), and E. Marin (MMTO.org) with the MMT 6.5-m telescope (+ Blue Channel). Cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  4. APM Z >=4 QSO Survey: Spectra and Intervening Absorption Systems

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, L. J.; McMahon, R. G.; Irwin, M. J.; Hazard, C.

    1996-09-01

    The APM multicolor survey for bright z > 4 objects, covering 2500 deg^2^ of sky to m_r_ ~ 19, resulted in the discovery of 31 quasars with z ~> 4. High signal-to-noise optical spectrophotometry at 5 A resolution has been obtained for the 28 quasars easily accessible from the northern hemisphere. These spectra have been surveyed to create new samples of high-redshift Lyman-limit systems, damped Lyα absorbers, and metal absorption systems (e.g., C IV and Mg II). In this paper we present the spectra, together with line lists of the detected absorption systems. The QSOs display a wide variety of emission- and absorption-line characteristics, with five exhibiting broad absorption lines and one with extremely strong emission lines (BR 2248 - 1242). Eleven candidate damped Lyα absorption systems have been identified covering the redshift range 2.8 <= z <= 4.4 (eight with z > 3.5). An analysis of the measured redshifts of the high-ionization emission lines with the low-ionization lines shows them to be blueshifted by 430 +/- 60 km s^-1^. In a previous paper (by Storrie-Lombardi et al.) we discussed the redshift evolution of the Lyman limit systems cataloged here. In subsequent papers we will discuss the properties of the Lyα forest absorbers and the redshift and column density evolution of the damped Lyα absorbers.

  5. Complex structure of spatially resolved high-order-harmonic spectra

    NASA Astrophysics Data System (ADS)

    Catoire, F.; Ferré, A.; Hort, O.; Dubrouil, A.; Quintard, L.; Descamps, D.; Petit, S.; Burgy, F.; Mével, E.; Mairesse, Y.; Constant, E.

    2016-12-01

    We investigate the spatiospectral coupling appearing in the spatially resolved high-order-harmonic spectra generated in gases. When ionization is weak, harmonic generation in the far field often exhibits rings surrounding a central spot centered on each odd harmonics in the spatiospectral domain. The nature of these structures is debated. They could stem from interferences between the emission of short and long trajectories, or could be the signature of the temporal and spatial dependence of the longitudinal phase matching of long trajectories (Maker fringes). We conducted spectrally and spatially resolved measurements of the harmonic spectra as a function of pressure, intensity, and ellipticity. In addition, we performed calculations where only a single emission plane is included (i.e., omitting deliberately the longitudinal phase matching), reproducing the features experimentally observed. This study has been completed by the spatiospectral coupling when strong ionization occurs leading to complex patterns which have been compared to calculations using the same model and also show good agreement. We conclude that many spatiospectral structures of the harmonic spectrum can be interpreted in terms of spatial and temporal transverse coherence of the emitting medium without resorting to longitudinal phase matching or quantum phase interference between short and long trajectories.

  6. The Tevatron Ionization Profile Monitors

    SciTech Connect

    Jansson, A.; Fitzpatrick, T.; Bowie, K.; Kwarciany, R.; Lundberg, C.; Slimmer, D.; Valerio, L.; Zagel, J.; /Fermilab

    2006-05-01

    In designing an ionization profile monitor system for the Tevatron some novel approaches were taken, in particular for the readout electronics. This was motivated by the desire to resolve the individual bunches in both beams simultaneously. For this purpose, custom made electronics originally developed for Particle Physics experiments was used to provide a fast charge integration with very low noise. The various parts of the read-out electronics have been borrowed or adapted from the KTev, CMS, MINOS and BTev experiments. The detector itself also had to be modified to provide clean signals with sufficient bandwidth. The system design will be described along with the initial results.

  7. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  8. Electron ionization of H2O

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2008-11-01

    Relative partial ionization cross-sections and precursor-specific relative partial ionization cross-sections for fragment ions formed by electron ionization of H2O have been measured using time-of-flight mass spectrometry coupled with a 2D ion coincidence technique. We report data for the formation of H+, H2+, O2+, O+ and OH+ relative to the formation of H2O+, as a function of ionizing electron energy from 30 to 200 eV. This data includes, for the first time, measurements on the formation all positive ion pairs and ion triples by dissociative multiple electron ionization of H2O. Through determinations of the kinetic energy release involved in ion pair formation we provide further evidence that indirect processes contribute significantly to the yield of H+ + OH+ ion pairs below the vertical double ionization threshold.

  9. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  10. Lyman-alpha emission from the Lyman-alpha forest. [in high red shift quasar spectra due to molecular clouds

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Weymann, Ray J.

    1987-01-01

    It is suggested that high-dispersion long-slit spectra or very narrow-band etalon images of 'blank' sky could reveal patches of Ly-alpha line emission from the population of clouds whose absorption produces the 'Ly-alpha forest' in QSO spectra. A nonobservation can put limits on the ionizing background at high redshift which are better than those obtainable by direct measurements of background light.

  11. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra. ?? 2004 Elsevier B.V. All rights reserved.

  12. Observations of extended and counterrotating disks of ionized gas in S0 galaxies

    NASA Technical Reports Server (NTRS)

    Dettmar, Ralf-Juergen; Jullien-Dettmar, Marlies; Barteldrees, Andreas

    1990-01-01

    While many E/S0 galaxies have been found to show emission line spectra in their nuclear regions, the question of the presence and nature of extended disks of ionized gas in these galaxies has been addressed only in recent years. Typically the ionized gas is detected in the inner region on a scale of approx. 1 kpc (e.g., Phillips et al. 1986, Caldwell 1984). Here researchers present evidence that the disks of ionized gas of at least some S0 galaxies are much more extended than previously believed. In addition, with the detection of the counterrotation of gas and stars in NGC 7007 they strengthen the basis for arguments that the source of gas in S0 galaxies is external

  13. Detection of chlorobenzene derivatives using vacuum ultraviolet ionization time-of-flight mass spectrometry.

    PubMed

    Tonokura, Kenichi; Nakamura, Tomohisa; Koshi, Mitsuo

    2003-08-01

    Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) has been applied for the detection of chlorobenzene, o-dichlorobenzene, and o-chlorophenol as surrogates for polychlorinated dibenzo-p-dioxine/furans (PCDD/F). The photoionization mass spectra of these compounds appear to be fragmentation free in the ionization processes by the VUV-SPI at 10.2 eV (121.6 nm). Quantum chemical calculations support no fragmentation in the photoionization of chlorobenzene derivatives at around 10 eV. The absolute photoionization cross-sections of chlorobenzene, o-dichlorobenzene, and o-chlorophenol were estimated at 10.2 eV. The photoionization cross-section is an important parameter in the detection of chlorobenzene derivatives by the single-photon ionization technique. The detection limit for chlorobenzene is on the order of tenth parts-per-billion volume (ppbv) in the present experimental setup.

  14. Mass analyzed threshold ionization spectroscopy of p -aminophenol cation and the substitution effect

    NASA Astrophysics Data System (ADS)

    Xie, Yan; Lin, Jung Lee; Tzeng, Wen Bih

    2004-10-01

    The mass analyzed threshold ionization (MATI) spectra of p-aminophenol have been recorded by ionizing via the vibrationless 0 0 and vibrational 6a 1, 12 1, and 1 1 levels in the S 1 state. The adiabatic ionization energy (IE) of this molecule is determined to be 58,822 ± 5 cm -1. The frequencies of ring vibrational modes 6a, 12, 1, and 18b of the cation are measured to be 458, 768, 835, and 1181 cm -1, respectively. Comparing these new data of p-aminophenol with those of several p-substituted anilines and p-substituted phenols leads to a better understanding about the substitution effects on the IE as well as the cation vibration.

  15. Impact of Dielectronic Recombination on Ionization Dynamics and Spectroscopy of Z-pinch Stainless Steel Plasma

    SciTech Connect

    Dasgupta, A.; Davis, J.; Thornhill, J. W.; Giuliani, J. L.; Chong, Y. K.; Clark, R. W.; Whitney, K. G.

    2009-01-21

    The implosion dynamics of an array of stainless steel (SS) wires on the Z and/or ZR accelerator produces an abundance of radiation from the K- and L-shell ionization stages. As the plasma assembles on axis, a number of time resolved snapshots provide temperature and density profiles and size of the emitting region. The non-LTE populations will be obtained by using detailed atomic models that include all important excitation, ionization, and recombination processes. In particular, we will investigate the effects of dielectronic recombination (DR) which is the most important recombination process for moderate to high Z plasma such as iron at moderate densities. We will analyze the ionization dynamics and generate K- and L-shell spectra using the temperature and density conditions generated in the Z and/or ZR accelerator describing the implosion with a 1-D non-LTE radiation hydrodynamics model.

  16. Cosmic ray studies with a gas Cherenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Yodh, G. B.; Simon, M.; Spiegelhauer, H.

    1980-01-01

    The results from a balloon-borne gas Cherenkov counter (threshold 16.5 GeV/nucleon) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy distribution for the response of the calorimeter for 5 or = Z 26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height was obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi squared between Monte Carlo simulted data and flight data. Best fit power laws, dN/dE = AE-gamma, were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E (-2.7) are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter and the gas Cherenkov are thus completely self-consistent.

  17. Sequential binary collision ionization mechanisms

    NASA Astrophysics Data System (ADS)

    van Boeyen, R. W.; Watanabe, N.; Doering, J. P.; Moore, J. H.; Coplan, M. A.; Cooper, J. W.

    2004-03-01

    Fully differential cross sections for the electron-impact ionization of the magnesium 3s orbital have been measured in a high-momentum-transfer regime wherein the ionization mechanisms can be accurately described by simple binary collision models. Measurements where performed at incident-electron energies from 400 to 3000 eV, ejected-electron energies of 62 eV, scattering angle of 20 °, and momentum transfers of 2 to 5 a.u. In the out-of-plane geometry of the experiment the cross section is observed far off the Bethe ridge. Both first- and second-order processes can be clearly distinguished as previously observed by Murray et al [Ref. 1] and Schulz et al [Ref. 2]. Owing to the relatively large momentum of the ejected electron, the second order processes can be modeled as sequential binary collisions involving a binary elastic collision between the incident electron and ionic core and a binary knock-out collision between the incident electron and target electron. At low incident-electron energies the cross section for both first and second order processes are comparable, while at high incident energies second-order processes dominate. *Supported by NSF under grant PHY-99-87870. [1] A. J. Murray, M. B. J. Woolf, and F. H. Read J. Phys. B 25, 3021 (1992). [2] M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D. H. Madison. S. Jones and J. Ullrich, Nature 422, 48 (2003).

  18. Ionizing radiation and orthopaedic prostheses

    NASA Astrophysics Data System (ADS)

    Rimnac, Clare M.; Kurtz, Steven M.

    2005-07-01

    Ultra high molecular weight polyethylene (UHMWPE) materials have been used successfully as one half of the bearing couple (against metallic alloys or ceramics) in total hip and total knee joint replacements for four decades. This review describes the impact of ionizing radiation (used for sterilization and for microstructural modification via crosslinking) on the performance of UHMWPE total joint replacement components. Gamma radiation sterilization in air leads to oxidative degradation of UHMWPE joint components that occurs during shelf-aging and also during in vivo use. Efforts to mitigate oxidative degradation of UHMWPE joint components include gamma radiation sterilization in inert barrier-packaging and processing treatments to reduce free radicals. Ionizing radiation (both gamma and electron-beam) has recently been used to form highly crosslinked UHMWPEs that have better adhesive and abrasive wear resistance than non-crosslinked UHMWPE, thereby potentially improving the long-term performance of total joint replacements. Along with increased wear resistance, however, there are deleterious changes to ductility and fracture resistance of UHMWPE, and an increased risk of fracture of these components remains a clinical concern.

  19. Toward the understanding of the environmental effects on core ionizations.

    PubMed

    Laurent, Adèle D; Glushkov, Vitaly N; Very, Thibaut; Assfeld, Xavier

    2014-06-05

    Experimental X-ray absorption spectra are extensively used to determine electronic structure of small molecules but remain difficult to exploit for proteins due to the large number of peaks within their spectra. For such complex systems, theoretical tools like quantum mechanics/molecular mechanics methodology can greatly ease the assignment of the spectra. This study presents a systematic methodology to evaluate core-ionization energies (E(ion)) in proteins with the help of the asymptotic projection approach (Glushkov and Tsaune, Z. Vichislit. Matem. Mat. Fiz. 1985, 25, 298; Glushkov, Chem. Phys. Lett. 1997, 273, 122; Glushkov, Chem. Phys. Lett. 1998, 287, 189; Glushkov, J. Math. Chem. 2002, 31, 91; Glushkov, Opt. Spectrosc. 2002, 93, 15). An in-depth inspection of E(ion) of systems of increasing complexity is considered, going from amino acids to polyglycine and to glycine in human serum albumin (HSA). Computational analysis can help to better understand experimental data and to discriminate environmental effects by tracing them back to individual and collective electrostatic contributions. In the present work, it was found that E(ion) of alpha carbon of glycine residues in HSA ranges from 285 to 295 eV depending on their surroundings.

  20. Mass-analyzed Threshold Ionization Spectroscopy of Rotamers of p-ethoxyphenol Cations and Configuration Effect

    NASA Astrophysics Data System (ADS)

    Zheng, Qiu-sha; Fang, Teng I.; Zhang, Bing; Bih Tzeng, Wen

    2009-12-01

    Two-color resonant two-photon mass-analyzed threshold ionization (MATI) spectroscopy was used to record the vibrationally resolved cation spectra of the selected rotamers of p-ethoxyphenol. The adiabatic ionization energies of the trans and cis rotamers are determined to be 61565 ± 5 and 61670 ± 5 cm-1, which are less than that of p-methoxyphenol by 645 and 643 cm-1, respectively. Analysis on the MATI spectra of the selected rotamers of p-ethoxyphenol cation shows that the relative orientation of the ethoxy group has little effect on the in-plane ring vibrations. The low-frequency OC2H5 bending vibrations appear to be active for both forms of the cation.

  1. Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant ionization.

    PubMed

    Callahan, Michael P; Abo-Riziq, Ali; Crews, Bridgit; Grace, Louis; de Vries, Mattanjah S

    2008-12-15

    We have used two-color resonant two-photon ionization (2C-R2PI) mass spectrometry to discriminate between isomers of polycyclic aromatic hydrocarbons in the Murchison meteorite. We measured the 2C-R2PI spectra of chrysene and triphenylene seeded in a supersonic jet by laser desorption. Since each isomer differs in its R2PI spectrum, we can distinguish between isomers using wavelength dependent ionization and mass spectrometry. We found both chrysene and triphenylene in sublimates from carbonaceous residue obtained by acid demineralization of the Murchison meteorite. Their R2PI mass spectra show only the molecular ion, even though these samples contain a complex inventory of organic molecules.

  2. New design of high performance ionizing bar

    NASA Astrophysics Data System (ADS)

    Wang, Ronggang; Sun, Yurong

    2013-03-01

    This paper introduces a new design of DC-pulse ionizing bar to solve the problem of imbalance offset voltage for the AC ionizing bar, which is easily affected by the environment, as well as indicate the final tests. The new design mainly includes five parts: power supply circuit, main control unit, logic circuit, high frequency transformer unit, and feedback unit. The ionizing bar can automatically adjust the discharge voltage, pulse frequency and pulse width to balance the positive and negative ions. The final test results indicate that the DC ionizing bar owns good effect in electrostatic elimination.

  3. Initial results of positron ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Donohue, D. L.; Hulett, L. D., Jr.; Mcluckey, S. A.; Glish, G. L.; Eckenrode, B. A.

    1990-01-01

    The use of monoenergetic positrons for the ionization of organic molecules in the gas phase is described. The ionic products are analyzed with a time-of-flight mass spectrometer and detected to produce a mass spectrum. The ionization mechanisms which can be studied in this way include positron impact at energies above the ionization limit of the target molecules, positronium formation in the Ore gap energy range, and positron attachment at energies less than 1eV. The technique of positron ionization mass spectrometry (PIMS) may have analytical utility in that chemical selectivity is observed for one or more of these processes.

  4. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES

    SciTech Connect

    Jaskot, A. E.; Oey, M. S.

    2013-04-01

    Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with the highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.

  5. Nitrogen optical emission during nanosecond laser ablation of metals: prompt electrons or photo-ionization?

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Dilecce, G.; Tolias, P.

    2014-10-01

    Experiments on the interaction of metal targets with a Nd:YAG laser beam ( = 1,064 nm, intensity -) are carried out in a finite Nitrogen pressure environment. The observed spectra are unambiguous evidence of the existence of an ionization and excitation source, arriving at the observation volume prior to the plume. Such a source can be either prompt electrons or VUV radiation. The analysis reveals that the prompt electron interpretation requires energies in excess of 1 keV, incompatible with any acceleration mechanisms relevant for such laser intensities. On the other hand, VUV radiation is sufficiently strong to explain the observed spectra.

  6. Application of Pattern Recognition to Metal Ion Chemical Ionization Mass Spectra.

    DTIC Science & Technology

    1985-10-01

    experiments. ORGANICS FOR RECOGNITION OF SIX CLASSES ALJAJE AL-KE KETONE butane 1 - butene butanone pentane 1 -pentene 2-pentanone hexane 1 -hezene 2... butene cyclopentanone 1 -methyl cyclopentane cyclopentene methyl cyclopropyl k etone cyclobexane cyclohexene 3-methyl cyclopentanone * 1 -methyl...cyclobeiane vinyl cyclohexane cyclohexanone * ALDEH YDE ETHER ALCOHOL propanal ethyl ether ethanol butanal methyl butyl ether 1 -propanol pentanal ethyl

  7. Analysis of the Spectra of Triply Ionized Iron in Rare-Earth Aluminum Garnets.

    DTIC Science & Technology

    1987-07-01

    NUMBERS %- PROGRAM PROJECT TASK WORK UNIT Ft Belvoir, VA 22060 ELEMENT NO. NO. NO. ACCESSION NO. 611 02A % 11. TITLE (Include Security Classification...by using *+ or * are degenerate. The matrix for H in the states IJMaLS> for M = 1/2 + 3q is 84 x 84, and for the * is 42 x 42. 3.1 Cubic Approximation... Tb3 A15012 (Energy levels were calculated with F(2 ) - 52465, -F ) 43188, - 370, B20 - 4043.5, and 840 - -22668 (Dq - 1557.62, B - 581.05, and C

  8. The Electrospray Ionization - Mass Spectra of Erythromycin A Obtained from a Marine Streptomyces sp. Mutant

    PubMed Central

    El-Bondkly, A. M.; Abd-Alla, Howaida I.; Shaaban, M.; Shaaban, K. A.

    2008-01-01

    In our ongoing search for production improvements of bioactive secondary metabolites from marine Streptomyces through the induction of mutations using UV light, out of 145 isolates, mutant 10/14 was able to produce potent antibacterial metabolites other than the parent strain as established by chromatographic analysis. Up-scaling fermentation of mutant 10/14, followed by working up and isolation delivered five metabolites, phenazine, 1-acetyl-β -carboline, perlolyrin and erythromycin A, along with an oily substance. The latter two compounds were responsible for the antibacterial activity of the strain. In this article, we discuss with the mutation of the marine Streptomyces sp. AH2, bioactivity evaluation, fermentation and isolation of the microbial metabolites. Moreover, we study to first time in detail the 1D and 2D NMR and ESI MS data including ESI MS2 and MS3 patterns combined with HRESI MS of erythromycin A. PMID:20046738

  9. Observation of mass analyzed threshold ionization using synchrotron radiation on a new-style time of flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Wang, Yanmei; Cao, Zhenzhou; Zhang, Bing; Wang, Sisheng; Kong, Ruihong; Zhao, Yujie; Shan, Xiaobing; Sheng, Liusi

    2007-04-01

    We have developed an efficient and applicable apparatus that combines mass-analyzed threshold ionization (MATI) with continuous molecular-beam mass spectrometry using tunable vacuum ultraviolet synchrotron radiation at National Synchrotron Radiation Laboratory. The new design, in which the spoiling field and the pulsed ionization field are perpendicular to each other, can obtain efficiently the ionic spectra of molecule. The MATI spectra of Ar and N2 have been recorded in the energy region between 15.5 and 17.5eV to illustrate the feasibility of this scheme. With its unique features, the important experiment considerations are potentially a powerful tool for study of information of ionization energies and ionic states of complex organic compounds.

  10. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    SciTech Connect

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  11. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations

    SciTech Connect

    Kostko, Oleg; Bravaya, Ksenia; Krylov, Anna; Ahmed, Musahid

    2009-12-14

    We report a combined theoretical and experimental study of ionization of cytosine monomers and dimers. Gas-phase molecules are generated by thermal vaporization of cytosine followed by expansion of the vapor in a continuous supersonic jet seeded in Ar. The resulting species are investigated by single photon ionization with tunable vacuum-ultraviolet (VUV) synchrotron radiation and mass analyzed using reflectron mass spectrometry. Energy onsets for the measured photoionization efficiency (PIE) spectra are 8.60+-0.05 eV and 7.6+-0.1 eV for the monomer and the dimer, respectively, and provide an estimate for the adiabatic ionization energies (AIE). The first AIE and the ten lowest vertical ionization energies (VIEs) for selected isomers of cytosine dimer computed using equation-of-motion coupled-cluster (EOM-IP-CCSD) method are reported. The comparison of the computed VIEs with the derivative of the PIE spectra, suggests that multiple isomers of the cytosine dimer are present in the molecular beam. The calculations reveal that the large red shift (0.7 eV) of the first IE of the lowest-energy cytosine dimer is due to strong inter-fragment electrostatic interactions, i.e., the hole localized on one of the fragments is stabilized by the dipole moment of the other. A sharp rise in the CH+ signal at 9.20+-0.05 eV is ascribed to the formation of protonated cytosine by dissociation of the ionized dimers. The dominant role of this channel is supported by the computed energy thresholds for the CH+ appearance and the barrierless or nearly barrierless ionization-induced proton transfer observed for five isomers of the dimer.

  12. Hybrid Gaussian-B-spline basis for the electronic continuum: Photoionization of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Marante, Carlos; Argenti, Luca; Martín, Fernando

    2014-07-01

    As a first step towards meeting the recent demand for new computational tools capable of reproducing molecular-ionization continua in a wide energy range, we introduce a hybrid Gaussian-B-spline basis (GABS) that combines short-range Gaussian functions, compatible with standard quantum-chemistry computational codes, with B splines, a basis appropriate to represent electronic continua. We illustrate the performance of the GABS hybrid basis for the hydrogen atom by solving both the time-independent and the time-dependent Schrödinger equation for a few representative cases. The results are in excellent agreement with those obtained with a purely B-spline basis, with analytical results, when available, and with recent above-threshold ionization spectra from the literature. In the latter case, we report fully differential photoelectron distributions which offer further insight into the process of above-threshold ionization at different wavelengths.

  13. Spectroscopy of Jet-Cooled Neutral and Ionized PAHs: Implications for Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Salama, F.; Tan, X.; Biennier, L.; Cami, J.

    2005-01-01

    We present the gas-phase spectroscopy of neutral and ionized polycyclic aromatic hydrocarbons (PAHs) measured in the W-Visible-NIR range in an astrophysically relevant environment. These measurements provide data on PAHs and nanometer sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong VUV radiation fields - are simulated in the laborat'ory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature ($\\sim lOO$-K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS) and multiplex integrated cavity output spectroscopy (MICOS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase. The electronic bands measured for ionized PAH are found to be intrinsically broad ($\\geq$20 cm$^{-l}$) while the bands associated with the neutral precursors are narrower (of the order of 2 - 10 cm$^{-l}$). The laboratory data are discussed and compared with recent astronomical spectra of large and narrow DIBs and with the spectra of circumstellar environments of selected carbon stars (see contribution of Cami et al.) and the implications for the interstellar PAH population are derived. Preliminary results also show that carbon nanoparticles are formed during the short residence time of the precursors in the plasma. This finding holds great potential for understanding the formation process of interstellar grains.

  14. Radical electronic transformation of strongly coupled plasma at megabar pressure ionization, dielectrization and phase transitions

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir

    2007-06-01

    The work presents new results of investigation of pressure and temperature ionization of coupled nonideal plasmas generated as a result of multiple shock compression of metals, H2, He, noble gases, S, I, fullerene C60, H2O in the megabar pressure range. The highly time-resolved diagnostics permit us to measure thermodynamical, radiative and mechanical properties of high pressure condensed matter in a broad region of the phase diagram. This data in combination with exploding wire conductivity measurements demonstrate an ionization rate increase up to ten orders of magnitude as a result of compression of degenerate plasmas at p 104-107 bars. Shock compression of H2, Ar, He, Kr, Ne, Xe in initially gaseous and cryogenic liquid state allows measuring the electrical conductivity, Hall effect parameters, equation of state, and emission spectra of strongly nonideal plasma. Thermal and pressure ionization of strongly coupled states of matter is the most prominent effects under the experimental conditions. It was shown that plasma compression strongly deforms the ionization potentials, emission spectra and scattering cross-sections of the neutrals and ions in the strongly coupled plasmas. In contrast to the plasma compression the multiple shock compression of solid Li, Na, Ca shows ``dielectrization'' of the elements. Phase transitions in strongly nonideal plasmas are discussed.

  15. Auger spectrum of a water molecule after single and double core ionization

    NASA Astrophysics Data System (ADS)

    Inhester, Ludger; Burmeister, Carl F.; Groenhof, Gerrit; Grubmueller, Helmut

    2012-06-01

    The high intensity of Free Electron Lasers (FEL) opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules radiation damage induced by absorption of intense x-ray radiation is not yet fully understood. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From MD trajectories photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schr"odinger equations. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were accumulated according to the obtained time-dependent populations. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint on the electron emission spectra. In addition, the lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  16. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    NASA Astrophysics Data System (ADS)

    Stoyanov, D. G.

    2007-08-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  17. Vibrational Spectra of Selected Monohalogenated Monocarboxylic Acids.

    DTIC Science & Technology

    HALOGENATED HYDROCARBONS, INFRARED SPECTRA), (*CARBOXYLIC ACIDS, *INFRARED SPECTRA), IODINE COMPOUNDS, CHLORINE COMPOUNDS, BROMINE COMPOUNDS, ACETIC ACID , ACETATES, MOLECULAR STRUCTURE, MOLECULAR ASSOCIATION

  18. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization

    NASA Astrophysics Data System (ADS)

    Piskur, J.; Borg, L.; Stupnik, A.; Leisch, M.; Ernst, W. E.; Holst, B.

    2008-05-01

    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  19. Ionized gas at the edge of the central molecular zone

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.; Requena-Torres, M. A.; Wiesemeyer, H.

    2015-04-01

    Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims: We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods: We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C ii] 158 μm and [N ii] 205 μm fine structure lines at six positions with the GREAT instrument on SOFIA and in [C ii] using Herschel HIFI on-the-fly strip maps. We use the [N ii] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C ii] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. Results: We detect two [C ii] and [N ii] velocity components, one along the line of sight to a CO molecular cloud at - 207 km s-1 associated with Sgr E and the other at -174 km s-1 outside the edge of another CO cloud. From the [N ii] emission we find that the average electron density is in the range of ~5 to 21 cm-3 for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse H ii nebula. The column density of the CO-dark H2 layer in the -207 km s-1 cloud is ~1-2 × 1021 cm-2 in agreement with theoretical models. The CMZ extends further out in Galactic radius by ~7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions: The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 106 to 107 photons cm-2 s-1, and/or efficient proton charge exchange with

  20. Photon spectra from WIMP annihilation

    SciTech Connect

    Cembranos, J. A. R.; Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L.; Lineros, R. A.

    2011-04-15

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation into standard model particle-antiparticle pairs obtained by extensive Monte Carlo simulations. We present results for each individual annihilation channel and provide analytical fitting formulas for the different spectra for a wide range of WIMP masses.

  1. Variation of the energy spectra of cosmic rays and their propagation in the Galaxy

    NASA Astrophysics Data System (ADS)

    Aitmukhambetov, A. A.

    A homogeneous model is used to investigate the propagation of cosmic rays in the Galaxy. Source particle spectra are determined and conclusions as to relative chemical composition are drawn on the basis of a comparison with particle spectra outside the modulation region, determined at energies above 100 MeV/nucleon. It is shown that, compared with the mean chemical composition of the universe, cosmic rays in sources are impoverished in hydrogen and helium, and are enriched in heavy elements. It is also found that source energy spectra are of power type according to the total energy per nucleon, and that their shape variation in the low-energy region observed in unmodulated spectra is explained wholly by nuclear interactions during the passage through 4.5 g/sq cm matter and by ionization losses of particles.

  2. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    SciTech Connect

    Sanchez Almeida, J.; Morales-Luis, A. B.; Terlevich, R.; Terlevich, E.; Cid Fernandes, R. E-mail: abml@iac.es E-mail: eterlevi@inaoep.mx

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  3. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  4. Ionization in nearby interstellar gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.

    1990-01-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  5. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, R.F. Jr.

    1994-12-13

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

  6. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, Jr., Robert F.

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  7. The structure of BPS spectra

    NASA Astrophysics Data System (ADS)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  8. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents.

  9. First-principles calculation of principal Hugoniot and K-shell X-ray absorption spectra for warm dense KCl

    SciTech Connect

    Zhao, Shijun; Zhang, Shen; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-06-15

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics (FPMD) method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. It is shown that approximate description of ionization in FPMD has small influence on Hugoniot pressure due to mutual compensation of electronic kinetic pressure and virial pressure. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the 3p electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  10. Ghost peaks observed after AP-MALDI experiment may disclose new ionization mechanism of matrix assisted hypersonic velocity impact ionization

    PubMed Central

    Moskovets, Eugene

    2015-01-01

    RATIONALE Understanding the mechanisms of MALDI promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample has been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laserless matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser was turned off and MALDI sample was removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly- and doubly-charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of

  11. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine.

    PubMed

    Grimme, Stefan; Bauer, Christopher Alexander

    2015-01-01

    The gas-phase decomposition pathways of electron ionization (EI)-induced radical cations of the nucleobases uracil, thymine, cytosine, and guanine are investigated by means of mixed quantum-classical molecular dynamics. No preconceived fragmentation channels are used in the calculations. The results compare well to a plethora of experimental and theoretical data for these important biomolecules. With our combined stochastic and dynamic approach, one can access in an unbiased way the energetically available decomposition mechanisms. Additionally, we are able to separate the EI mass spectra of different tautomers of cytosine and guanine. Our method (previously termed quantum chemistry electron ionization mass spectra) reproduces free nucleobase experimental mass spectra well and provides detailed mechanistic in-sight into high-energy unimolecular decomposition processes.

  12. The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross

    NASA Astrophysics Data System (ADS)

    Braibant, L.; Hutsemékers, D.; Sluse, D.; Anguita, T.

    2016-07-01

    We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations. Based on observations made with the ESO-VLT, Paranal, Chile; Proposals 076.B-0197 and 076.B-0607 (PI: Courbin).

  13. Electronic and vibrational spectra of matrix isolated anthracene radical cations - Experimental and theoretical aspects

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin; Talbi, Dahbia; Parisel, Olivier; Ellinger, Yves

    1993-01-01

    The IR vibrational and visible/UV electronic absorption spectra of the anthracene cation, An(+), were studied experimentally, in argon matrices at 12 K, as well as theoretically, using ab initio calculations for the vibrational modes and enhanced semiempirical methods with configuration interaction for the electronic spectra. It was found that both approaches predicted well the observed photoelectron spectrum. The theoretical IR intensities showed some remarkable differences between neutral and ionized species (for example, the CH in-plane bending modes and CC in-plane stretching vibrations were predicted to increase by several orders of magnitude upon ionization). Likewise, estimated experimental IR intensities showed a significant increase in the cation band intensities over the neutrals. The implication of these findings for the hypothesis that polycyclic aromatic hydrocarbon cations are responsible for the unidentified IR emission bands from interstellar space is discussed.

  14. γ-Ray spectra and enhancement factors for positron annihilation with core electrons.

    PubMed

    Green, D G; Gribakin, G F

    2015-03-06

    Many-body theory is developed to calculate the γ spectra for positron annihilation in noble-gas atoms. Inclusion of electron-positron correlation effects and core annihilation gives spectra in excellent agreement with experiment [K. Iwata et al., Phys. Rev. Lett. 79, 39 (1997)]. The calculated correlation enhancement factors γ_{nl} for individual electron orbitals nl are found to scale with the ionization energy I_{nl} (in eV), as γ_{nl}=1+sqrt[A/I_{nl}]+(B/I_{nl})^{β}, where A≈40  eV, B≈24  eV, and β≈2.3.

  15. Microplume model of spatial-yield spectra. [applying to electron gas degradation in molecular nitrogen gas

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Singhal, R. P.

    1979-01-01

    An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.

  16. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  17. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline

    NASA Astrophysics Data System (ADS)

    Lin, Jung Lee; Huang, Chen-Jso; Lin, Cheng-Huang; Tzeng, Wen Bih

    2007-07-01

    We report the resonant two-photon ionization and mass-analyzed threshold ionization (MATI) spectra of m-methoxyaniline and o-methoxyaniline. The vibronic features of m-methoxyaniline are built on 34308 ± 2 and 34495 ± 2 cm -1 corresponding to the origins of the S 1 ← S 0 electronic transition ( E1's) of the cis and trans rotamers. Analysis of the MATI spectra gives the adiabatic ionization energies (IEs) of 59983 ± 5 and 60879 ± 5 cm -1 for these two species. o-Methoxyaniline is found to have only one stable structure whose E1 and IE are 33875 ± 2 and 58678 ± 5 cm -1, respectively. Most of the active vibrations of m- and o-methoxyaniline in the electronically excited S 1 and cationic ground D 0 states result from the in-plane ring vibrations. Comparing these data with those of p-methoxyaniline allows us to learn about the vicinal substitution effects resulting from the relative locations of the NH 2 and OCH 3 substituents.

  18. The ionizing radiation environment of LDEF prerecovery predictions

    NASA Technical Reports Server (NTRS)

    Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang

    1991-01-01

    The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.

  19. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  20. Comparative Analysis of Ionization Effect during Major Gles Due to Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Mishev, Alexander; Velinov, Peter

    2016-07-01

    Several major ground level enhancements (GLEs) occurred during previous solar cycle 23. During the solar cycle 23, sixteen GLE events were observed with intensities ranging ~ 3 - 269% at the sea level. The first event occurred on 6 November 1997 (GLE 55) and the last event occurred on 13 December 2006 (GLE 70). Here we focus on major GLEs, namely on their ionization effect due to cosmic rays of galactic and solar origin and provide a comparative analysis. The solar energetic particles protons of MeV and greater energies cause an excess of ionization in the atmosphere. The ionization effect in the Earth atmosphere is obtained for various latitudes and altitudes in the atmosphere using solar proton energy spectra derived from ground based measurements with neutron monitors. The ion production is obtained using a numerical model for cosmic ray induced ionization, based on Monte Carlo simulations of atmospheric cascade ion the atmosphere of the Earth. Her we consider the GLE 70 on December of 13, 2006, which is among is among the strongest recorded events during solar cycle 23, even it occurred at quit solar activity conditions. We compare the ionization effect this event with Bastille day event (GLE 59). A quantitative comparison with the sequence of Halloween events (GLE 65-67) and the major event of 20 January 2005 (GLE 69) is carried out. We briefly discussed the results.

  1. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with a parametrization model

    NASA Astrophysics Data System (ADS)

    Artamonov, A. A.; Mishev, A. L.; Usoskin, I. G.

    2016-11-01

    Results of a comparison of a new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) with a commonly used parametric model of atmospheric ionization is presented. The CRAC:EPII is based on a Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth's atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. Propagation of precipitating electrons and their interactions with air is simulated with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE-00 atmospheric model. Ionization yields are computed and compared with a parametrization model for different energies of incident precipitating energetic electrons, using simulated fluxes of mono-energetic particles. A good agreement between the two models is achieved in the mesosphere but the contribution of Bremsstrahlung in the stratosphere, which is not accounted for in the parametric models, is found significant. As an example, we calculated profiles of the ion production rates in the middle and upper atmosphere (below 100 km) on the basis of balloon-born measured spectra of precipitating electrons for 30-October-2002 and 07-January-2004.

  2. Reproducibility of SELDI Spectra Across Time and Laboratories

    PubMed Central

    Diao, Lixia; Clarke, Charlotte H.; Coombes, Kevin R.; Hamilton, Stanley R.; Roth, Jack; Mao, Li; Czerniak, Bogdan; Baggerly, Keith A.; Morris, Jeffrey S.; Fung, Eric T.; Bast, Robert C.

    2011-01-01

    This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited. The reproducibility of mass spectrometry (MS) data collected using surface enhanced laser desorption/ionization-time of flight (SELDI-TOF) has been questioned. This investigation was designed to test the reproducibility of SELDI data collected over time by multiple users and instruments. Five laboratories prepared arrays once every week for six weeks. Spectra were collected on separate instruments in the individual laboratories. Additionally, all of the arrays produced each week were rescanned on a single instrument in one laboratory. Lab-to-lab and array-to-array variability in alignment parameters were larger than the variability attributable to running samples during different weeks. The coefficient of variance (CV) in spectrum intensity ranged from 25% at baseline, to 80% in the matrix noise region, to about 50% during the exponential drop from the maximum matrix noise. Before normalization, the median CV of the peak heights was 72% and reduced to about 20% after normalization. Additionally, for the spectra from a common instrument, the CV ranged from 5% at baseline, to 50% in the matrix noise region, to 20% during the drop from the maximum matrix noise. Normalization reduced the variability in peak heights to about 18%. With proper processing methods, SELDI instruments produce spectra containing large numbers of reproducibly located peaks, with consistent heights. PMID:21552492

  3. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison.

    PubMed

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-02-28

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters.

  4. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison

    PubMed Central

    2016-01-01

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters. PMID:26931697

  5. Computer Simulation of NMR Spectra.

    ERIC Educational Resources Information Center

    Ellison, A.

    1983-01-01

    Describes a PASCAL computer program which provides interactive analysis and display of high-resolution nuclear magnetic resonance (NMR) spectra from spin one-half nuclei using a hard-copy or monitor. Includes general and theoretical program descriptions, program capability, and examples of its use. (Source for program/documentation is included.)…

  6. Classical Trajectories and Quantum Spectra

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  7. Discrimination of petroleum fluorescence spectra.

    PubMed

    Stelmaszewski, Adam

    2007-01-01

    This paper presents studies of the total spectra (fluorescence-excitation matrix) of petroleum with regard to the utilization of fluorescence for determining petroleum pollutants. Thorough testing of one group, comprising almost forty lubricating oils in the form of their hexane solutions, points out their discrimination.

  8. The fingerprints of photoionization and shock-ionization in two CSS sources

    NASA Astrophysics Data System (ADS)

    Reynaldi, Victoria; Feinstein, Carlos

    2016-01-01

    We investigate the ionization state of the extended emission-line regions (EELRs) around two compact steep-spectrum (CSS) radio galaxies, 3C 268.3 and 3C 303.1, in order to identify the contribution of photoionization and shock-ionization. We perform a new spectroscopical (long-slit) analysis with GMOS/Gemini with the slit oriented in the radio-jet direction, where outflows are known to exist. The [Ne V] λ3426 emission is the most interesting feature of the spectra and the one key to breaking the degeneracy between the models: since this emission-line is more extended than He II, it challenges the ionization structure proposed by any photoionization model, also its intensity relative to H β does not behave as expected with respect to the ionization parameter U in the same scenario. On the contrary, when it is compared to the intensity of [O II] λ3727/H β and all these results are joined, the whole scenario is plausible to be explained as emission coming from the hot, compressed, shocked gas in shock-ionization models. Although the model fitting is strongly sensitive to the chosen line ratios, it argues for the presence of external and strong ionizing fields, such as the precursor field created by the shock or/and the AGN radiation field. In this paper, we show how AGN photoionization and shock-ionization triggered by jet-cloud interaction work together in these EELRs in order to explain the observed trends and line-ratio behaviours in a kinematically acceptable way.

  9. Shape effects on asteroid spectra

    NASA Astrophysics Data System (ADS)

    Davalos, J.; Carvano, J.

    2014-07-01

    The objective of this work is to probe how the shape of a body like an asteroid could be modifying its observed spectra and the derived mineralogical interfaces based on spectral modeling. To model this effect, we construct an oblate ellipsoid with triangular facets, where each facet contributes to the overall reflectance. The synthetic spectra is generated by the isotropic multiple-scattering approximation (IMSA) reflectance model of Hapke (1993). First, we obtained optical constants by inverting the spectra of meteorites, obtained from the RELAB spectral database. These optical constants were found inverting the reflectance bidirectional equation of Hapke; this is made in two steps: (i) The first inversion is to find the single-scattering albedo π (ii) in the model of Hapke, this albedo is found under the regime of the geometric optics, where the particle size is much larger than the wavelength of the incident radiation. Here we assumed a constant value for the real part of the optical constant n=1.5. With these optical constants, we can construct synthetic spectra for any particle size. The phase function used is the double Henyey-Greenstein phase function and an accurate expression for the H-functions. We started with the ellipsoidal shape a=1.0, b=c=0.5 for two particle size 50 and 250 μ m, in this part, we found good differences in the BAR parameter between the two geometric models, this was done for 100 Eucrite meteorites spectra. In this first study, we found that the BAR parameter between the two models is bigger when the particle size increases. In the second part, we started with different ellipsoidal shapes and produced synthetic spectra for material with eucrite and diogenite composition with a phase angle of 20 degrees, incidence and emission angles of 10 degrees, and particle size at 250 μ m. All spectra was generated for four parameters of phase angle b=[0.2,0.4,0.6,0.8] taking the empirical relation between the phase constants of Hapke (2012

  10. An Investigation of Fe xv Emission Lines in Solar Flare Spectra

    DTIC Science & Technology

    2008-02-05

    321.8 Å)/I(417.3 Å) ratio at 3 electron temperatures, namely that of maximum fractional abundance for Fe  in ionization equilibrium , Te = 106.3 K...spectra 5 pare with the observations. However, Huang et al. (1988) have detected the 2p2 3P–2p3s 3P lines in a tokamak spectrum, and found their

  11. Ionizing radiation exposure of LDEF (pre-recovery estimates)

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Heinrich, W.; Parnell, T. A.; Armstrong, T. W.; Derrickson, J. H.; Fishman, G. J.; Frank, A. L.; Watts, J. W. Jr; Wiegel, B.

    1992-01-01

    The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed.

  12. Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols

    SciTech Connect

    Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-04-20

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N–]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca–]), are generated by vaporizing ionic liquid submicrometer aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Also, hotoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~0.3 eV), attributed to reduced internal energy of the isolated ion pairs. Lastly, the method of ionic liquid submicrometer aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally “cooler” source of isolated intact ion pairs in the gas phase compared to effusive sources.

  13. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  14. XUV Transient Absorption of Strong-Field Ionized Ferrocene

    NASA Astrophysics Data System (ADS)

    Chatterley, Adam S.; Lackner, Florian; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2015-05-01

    Femtosecond extreme ultraviolet (XUV) transient absorption experiments are underway to study the dynamics of ferrocene following strong field ionization. Ferrocene is a textbook organometallic compound, composed of an iron atom sandwiched between two aromatic organic rings. An intense infrared (IR, 790 nm) pump pulse is used to ionize the ferrocene molecules. Femtosecond XUV pulses, created by high harmonic generation (HHG) are used to probe the induced dynamics. Iron 3p inner-shell to valence transitions (M edge, 50 eV spectra will probe the strong-field induced molecular dynamics from the perspective of the metal center. We will induce dissociation dynamics at high field intensities and use lower IR intensities to study dynamics of electronically and/or vibrationally excited ferrocene cations. Preliminary results will be presented, demonstrating current progress of XUV transient absorption experiments on moderately large molecular systems.

  15. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R.

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson & Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H-band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  16. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  17. Tracing direct and sequential two-photon double ionization of D{sub 2} in femtosecond extreme-ultraviolet laser pulses

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Ergler, Th.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Plesiat, E.; Perez-Torres, J. F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Titze, J.; Jahnke, T.; Doerner, R.; Sanz-Vicario, J. L.; Schoeffler, M.; Tilborg, J. van

    2010-02-15

    Two-photon double ionization (TPDI) of D{sub 2} is studied for 38-eV photons at the Free Electron Laser in Hamburg (FLASH). Based on model calculations, instantaneous and sequential absorption pathways are identified as separated peaks in the measured D{sup +}+D{sup +} fragment kinetic energy release (KER) spectra. The instantaneous process appears at high KER, corresponding to ionization at the molecule's equilibrium distance, in contrast to sequential ionization mainly leading to low-KER contributions. Measured fragment angular distributions are in good agreement with theory.

  18. Laser resonance ionization spectroscopy of antimony

    NASA Astrophysics Data System (ADS)

    Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.

    2017-02-01

    The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.

  19. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  20. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  1. Sub-cycle dynamics of multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Nasiri Avanaki, K.; Chu, Shih-I.

    2014-05-01

    Sub-cycle oscillatory structures are revealed in calculated time-dependent multiphoton ionization rates. Both atomic and molecular targets manifest multiple ionization bursts per one optical cycle of the laser field. Using the accurate and efficient time-dependent generalized pseudospectral method to solve the time-dependent Schrödinger equation, we have performed calculations on H, He+, H2+,and HHe2+, for the laser fields with several intensities and wavelengths in the near-infrared range (750 nm to 1064 nm). The sub-cycle structures appear a universal feature of multiphoton ionization and become well pronounced for sufficiently strong laser fields depending on the target atom or molecule. Analysis of the electron density distributions on the sub-femtosecond time scale shows several time moments per optical cycle (not necessarily corresponding to the peak values of the laser field) when significant portions of the electron density move away from the nucleus giving rise to the bursts in the ionization rate. The nature of the phenomenon can be related to ionization through different pathways, including direct ionization as well as population of the excited states by the laser field with subsequent ionization at later times. This work is partially supported by DOE.

  2. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    PubMed

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  3. In situ analysis of soybeans and nuts by probe electrospray ionization mass spectrometry.

    PubMed

    Petroselli, Gabriela; Mandal, Mridul K; Chen, Lee C; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2015-04-01

    The probe electrospray ionization (PESI) is an ESI-based ionization technique that generates electrospray from the tip of a solid metal needle. In the present work, we describe the PESI mass spectra obtained by in situ measurement of soybeans and several nuts (peanuts, walnuts, cashew nuts, macadamia nuts and almonds) using different solid needles as sampling probes. It was found that PESI-MS is a valuable approach for in situ lipid analysis of these seeds. The phospholipid and triacylglycerol PESI spectra of different nuts and soybean were compared by principal component analysis (PCA). PCA shows significant differences among the data of each family of seeds. Methanolic extracts of nuts and soybean were exposed to air and sunlight for several days. PESI mass spectra were recorded before and after the treatment. Along the aging of the oil (rancidification), the formation of oxidated species with variable number of hydroperoxide groups could be observed in the PESI spectra. The relative intensity of oxidated triacylglycerols signals increased with days of exposition. Monitoring sensitivity of PESI-MS was high. This method provides a fast, simple and sensitive technique for the analysis (detection and characterization) of lipids in seed tissue and degree of oxidation of the oil samples.

  4. AN ASSESSMENT OF THE ENERGY BUDGETS OF LOW-IONIZATION NUCLEAR EMISSION REGIONS

    SciTech Connect

    Eracleous, Michael; Hwang, Jason A.; Flohic, Helene M. L. G.

    2010-03-10

    Using the spectral energy distributions (SEDs) of the weak active galactic nuclei (AGNs) in 35 low-ionization nuclear emission regions (LINERs) presented in a companion paper, we assess whether photoionization by the weak AGN can power the emission-line luminosities measured through the large (few-arcsecond) apertures used in ground-based spectroscopic surveys. Spectra taken through such apertures are used to define LINERs as a class and constrain non-stellar photoionization models for LINERs. Therefore, our energy budget test is a self-consistency check of the idea that the observed emission lines are powered by an AGN. We determine the ionizing luminosities and photon rates by integrating the observed SEDs and by scaling a template SED. We find that even if all ionizing photons are absorbed by the line-emitting gas, more than half of the LINERs in this sample suffer from a deficit of ionizing photons. In 1/3 of LINERs the deficit is severe. If only 10% of the ionizing photons are absorbed by the gas, there is an ionizing photon deficit in 85% of LINERs. We disfavor the possibility that additional electromagnetic power, either obscured or emitted in the unobservable far-UV band, is available from the AGN. Therefore, we consider other power sources such as mechanical heating by compact jets from the AGN and photoionization by either young or old stars. Photoionization by young stars may be important in a small fraction of cases. Mechanical heating can provide enough power in most cases but it is not clear how this power would be transferred to the emission-line gas. Photoionization by post asymptotic giant branch stars is an important power source; it provides more ionizing photons than the AGN in more than half of the LINERs and enough ionizing photons to power the emission lines in 1/3 of the LINERs. It appears likely that the emission-line spectra of LINERs obtained from the ground include the sum of emission from different regions where different power sources

  5. Phobos surface spectra mineralogical modeling

    NASA Astrophysics Data System (ADS)

    Pajola, M.; Lazzarin, M.; Dalle Ore, C. M.; Cruikshank, D. P.; Roush, T. L.; Pendleton, Y.; Bertini, I.; Magrin, S.; Carli, C.; La Forgia, F.; Barbieri, C.

    2014-04-01

    A mineralogical model composed of a mixture of Tagish Lake meteorite (TL) and Pyroxene Glass (PM80) was presented in [1] to explain the surface reflectance of Phobos from 0.25 to 4.0 μm. The positive results we obtained, when comparing the OSIRIS data [2] extended in wavelength to include the [3,4] spectra, forced us to perform a wider comparison between our TL-PM80 model and the CRISM and OMEGA Phobos spectra presented in [5]. Such spectra cover three different regions of interest (ROIs) situated in the Phobos sub-Mars hemisphere: the interior of the Stickney crater, its eastern rim, and its proximity terrain southeast of the Reldresal crater. We decided to vary the percentage mixture of the components of our model (80% TL, 20% PM80), between pure TL and pure PM80, by means of the radiative transfer code based on the [6] formulation of the slab approximation. Once this spectral range was derived, see Fig. 1, we attempted to compare it with the [5] spectra between 0.4 and 2.6 μm, i.e. below the thermal emitted radiation, to see if any spectral match was possible. We observed that CRISM scaled spectra above 1.10 μm fall within pure Tagish Lake composition and the [1] model. The CRISM data below 1.10 μm present more discrepancies with our models, in particular for the Stickney's rim spectrum. Nevertheless the TL and PM80 components seem to be good mineralogical candidates on Phobos. We performed the same analysis with the OMEGA data and, again, we found out that the Stickney's rim spectrum lies out of our model range, while the two remaining spectra still lie between pure TL and 80% TL - 20% PM80, but indicating that a different, more complicated mixture is expected in order to explain properly both the spectral trend and the possible absorption bands located above 2.0 μm. Within this analysis, we point out that a big fraction of TL material (modeled pure or present with a minimum percentage of 80% mixed together with 20% PM80) seems to explain Phobos spectral

  6. Investigation of the photoionization properties of pharmaceutically relevant substances by resonance-enhanced multiphoton ionization spectroscopy and single-photon ionization spectroscopy using synchrotron radiation.

    PubMed

    Kleeblatt, Juliane; Ehlert, Sven; Hölzer, Jasper; Sklorz, Martin; Rittgen, Jan; Baumgärtel, Peter; Schubert, Jochen K; Zimmermann, Ralf

    2013-08-01

    The photoionization properties of the pharmaceutically relevant substances amantadine, diazepam, dimethyltryptamine, etomidate, ketamine, mescaline, methadone, and propofol were determined. At beamline U125/2-10m-NIM of the BESSY II synchrotron facility (Berlin, Germany) vacuum ultraviolet (VUV) photoionization spectra were recorded in the energy range 7.1 to 11.9 eV (174.6 to 104.2 nm), showing the hitherto unknown ionization energies and fragmentation appearance energies of the compounds under investigation. Furthermore, (1+1)-resonance-enhanced multiphoton ionization (REMPI) spectra of selected compounds (amantadine, diazepam, etomidate, ketamine, and propofol) were recorded by a continuous scan in the energy range between 3.6 and 5.7 eV (345 to 218 nm) using a tunable optical parametric oscillator (spectral resolution: 0.1 nm) laser system. The resulting REMPI wavelength spectra of these compounds are discussed and put into context with already known UV absorption data. Time-of-flight mass spectrometry was used for ion detection in both experiments. Finally, the implications of the obtained physical-chemical results for potential analytical applications are discussed. In this context, fast detection approaches for the considered compounds from breath gas using photoionization mass spectrometry and a rapid pre-concentration step (e.g., needle trap device) are of interest.

  7. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry

    SciTech Connect

    Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

    2012-02-07

    Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

  8. Ionizing radiation and hematopoietic malignancies

    PubMed Central

    Fleenor, Courtney J; Marusyk, Andriy

    2010-01-01

    Somatic evolution, which underlies tumor progression, is driven by two essential components: (1) diversification of phenotypes through heritable mutations and epigenetic changes and (2) selection for mutant clones which possess higher fitness. Exposure to ionizing radiation (IR) is highly associated with increased risk of carcinogenesis. This link is traditionally attributed to causation of oncogenic mutations through the mutagenic effects of irradiation. On the other hand, potential effects of irradiation on altering fitness and increasing selection for mutant clones are frequently ignored. Recent studies bring the effects of irradiation on fitness and selection into focus, demonstrating that IR exposure results in stable reductions in the fitness of hematopoietic stem and progenitor cell populations. These reductions of fitness are associated with alteration of the adaptive landscape, increasing the selective advantages conferred by certain oncogenic mutations. Therefore, the link between irradiation and carcinogenesis might be more complex than traditionally appreciated: while mutagenic effects of irradiation should increase the probability of occurrence of oncogenic mutations, IR can also work as a tumor promoter, increasing the selective expansion of clones bearing mutations which become advantageous in the irradiation-altered environment, such as activated mutations in Notch1 or disrupting mutations in p53. PMID:20676038

  9. Ionizing radiation and heart risks.

    PubMed

    Bhattacharya, Souparno; Asaithamby, Aroumougame

    2016-10-01

    Cardiovascular disease and cancer are the two leading causes of morbidity and mortality worldwide. As advancements in radiation therapy (RT) have significantly increased the number of cancer survivors, the risk of radiation-induced cardiovascular disease (RICD) in this group is a growing concern. Recent epidemiological data suggest that accidental or occupational exposure to low dose radiation, in addition to therapeutic ionizing radiation, can result in cardiovascular complications. The progression of radiation-induced cardiotoxicity often takes years to manifest but is also multifaceted, as the heart may be affected by a variety of pathologies. The risk of cardiovascular disease development in RT cancer survivors has been known for 40 years and several risk factors have been identified in the last two decades. However, most of the early work focused on clinical symptoms and manifestations, rather than understanding cellular processes regulating homeostatic processes of the cardiovascular system in response to radiation. Recent studies have suggested that a different approach may be needed to refute the risk of cardiovascular disease following radiation exposure. In this review, we will focus on how different radiation types and doses may induce cardiovascular complications, highlighting clinical manifestations and the mechanisms involved in the pathophysiology of radiation-induced cardiotoxicity. We will finally discuss how current and future research on heart development and homeostasis can help reduce the incidence of RICD.

  10. Ionization and Triggered Star Formation

    NASA Astrophysics Data System (ADS)

    Gritschneder, M.; Lin, D. N. C.; Murray, S. D.; Burkert, A.

    2011-12-01

    We perform a set of high resolution simulations on the impact of the UV-radiation of massive stars on the turbulent interstellar medium with the tree-SPH code iVINE. This parameter study includes different levels and driving scales of the turbulence, different ionizing flux as well as different temperatures and densities of the cold gas. We find a clear correlation between the initial state of the turbulent cloud and the final morphology and physical properties of the structures adjacent to the HII region. From the simulations we are able to derive a criterion for the formation of pillar-like structures and thus the formation of cores and stars. Gravitational collapse occurs regularly on the tips of the structures. We also derive column densities and velocity profiles of our simulations and find these to be in very good agreement with the observations of trunks and cores. In addition, we investigate the further evolution of the pillars once the massive star explodes. This leads to a supernova triggered scenario for the formation of our Solar System.

  11. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  12. Non-equilibrium ionized blast wave

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1974-01-01

    The structure of a cylindrical blast wave with ionization at non-LTE conditions was calculated using equations previously developed by Wu and Fu (1970). The degree of ionization was predicted by a modified Saha equation. Temperature profiles show that the temperature at non-LTE conditions is lower than at LTE near the shock front. This corresponds to a higher degree of ionization for the non-LTE limit, which indicates that the neutral gas absorption is much more efficient at non-LTE than at the LTE limit. The decaying velocity under non-LTE is approximately 15% less than under LTE.

  13. Epicyclic Twin-Helix Ionization Cooling Simulations

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev, A. Afanaciev, R.P. Johnson

    2011-04-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.

  14. Charged-Particle Impact Ionization of Atoms

    SciTech Connect

    Bartschat, Klaus; Guan Xiaoxu

    2008-08-08

    We have developed a hybrid method to treat charged-particle impact ionization of complex atoms and ions. The essential idea is to describe the interaction between a fast projectile and the target perturbatively, up to second order, while the initial bound state and the ejected-electron--residual-ion interaction can be handled via a convergent R-matrix with pseudo-states (close-coupling) expansion. Example results for ionization of the heavy noble gases (Ne-Xe) by positron and electron impact are presented. The general scheme for a distorted-wave treatment of ionization by heavy-particle impact is described.

  15. Ionization of excited xenon atoms by electrons

    NASA Astrophysics Data System (ADS)

    Erwin, Daniel A.; Kunc, Joseph A.

    2004-08-01

    Measured cross sections for electron-impact ionization of excited Xe atoms are not presently available. Therefore, we combine in this work the formalisms of the binary encounter approximation and Sommerfeld’s quantization of atomic orbits and derive from first-principles cross sections for ionization of excited atoms by electrons of low and moderate energies (up to a few hundred eV ). The approach of this work can be used to calculate the cross sections for electron-impact ionization of excited atoms and atomic ions other than xenon.

  16. Re-ionization and decaying dark matter

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1991-01-01

    Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.

  17. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Luo, Guanghong; Diao, Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos

    2007-04-01

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3×ω Nd:YAG laser in air, SF6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ~2 µm in SF6 gas and to ~5 µm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (~10×) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.

  18. Hierarchical analysis of molecular spectra

    SciTech Connect

    Davis, M.J.

    1996-03-01

    A novel representation of molecular spectra in terms of hierarchical trees has proven to be an important aid for the study of many significant problems in gas-phase chemical dynamics. Trees are generated from molecular spectra by monitoring the changes that occur in a spectrum as resolution is changed in a continuous manner. A tree defines a genealogy among all lines of a spectrum. This allows for a detailed understanding of the assignment of features of a spectrum that may be difficult to obtain any other way as well as an understanding of intramolecular energy transfer time scales, mechanisms, and pathways. The methodology has been applied to several problems: transition state spectroscopy, intramolecular energy transfer in highly excited molecules, high-resolution overtone spectroscopy, and the nature of the classical-quantum correspondence when there is classical chaos (``quantum chaos``).

  19. Eigenvectors of optimal color spectra.

    PubMed

    Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku

    2013-09-01

    Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.

  20. Laser-induced dissociative ionization of H2 from the near-infrared to the mid-infrared regime

    NASA Astrophysics Data System (ADS)

    Jing, Qingli; Madsen, Lars Bojer

    2016-12-01

    We apply the Monte Carlo wave packet (MCWP) approach to investigate the kinetic energy release (KER) spectra of the protons following double ionization in H2 when interacting with laser pulses with central wavelengths ranging from the near-infrared (IR) (800 nm) to the mid-IR (6400 nm) regions and with durations of 3-21 laser cycles. We uncover the physical origins of the peaks in the nuclear KER spectra and ascribe them to mechanisms such as ionization following a resonant dipole transition, charge-resonance-enhanced ionization, and ionization in the dissociative limit of large internuclear distances. For relatively large pulse durations, i.e., for 15 or more laser cycles at 3200 nm and 10 or more at 6400 nm, it is possible for the nuclear wave packet in H2+ to reach very large separations. Ionization of this part of the wave packet results in peaks in the KER spectra with very low energies. These peaks give direct information about the dissociative energy in the 2 p σu potential energy curve of H2+ at the one- and three-photon resonances between the 2 p σu and 1 s σg curves in H2+ . With the MCWP approach, we perform a trajectory analysis of the contributions to the KER peaks and identify the dominant ionization pathways. Finally, we consider a pump-probe scheme by applying two delayed pulses to track the nuclear dynamics in a time-resolved setting. Low-energy peaks appear for large delays and these are used to obtain the 2 p σu dissociative energy values at the one-photon resonance between the 2 p σu and 1 s σg curves in H2+ for different wavelengths.

  1. The nature of collision-induced dissociation processes of doubly protonated peptides: comparative study for the future use of matrix-assisted laser desorption/ionization on a hybrid quadrupole time-of-flight mass spectrometer in proteomics.

    PubMed

    Cramer, R; Corless, S

    2001-01-01

    Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.

  2. Accelerated Fitting of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-01

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15-30 labels simultaneously.

  3. Benchmark Measurements of the Ionization Balance of Non-LTE Gold

    SciTech Connect

    Heeter, R F; Hansen, S B; Fournier, K B; Foord, M E; Froula, D H; Mackinnon, A J; May, M J; Schneider, M B; Young, B F

    2007-04-20

    The authors present a series of benchmark measurements of the ionization balance of well characterized gold plasmas with and without external radiation fields at electron densities near 10{sup 21} cm{sup -3} and various electron temperatures spanning the range 0.8 to 2.4 keV. They have analyzed time- and space-resolved M-shell gold emission spectra using a sophisticated collisional-radiative model with hybrid level structure, finding average ion changes ranging from 42 to 50. At the lower temperatures, the spectra exhibit significant sensitivity to external radiation fields and include emission features from complex N-shell ions not previously studied at these densities. The measured spectra and inferred provide a stringent test for non-local thermodynamic equilibrium (non-LTE) models of complex high-Z ions.

  4. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    SciTech Connect

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  5. Experimental and simulated argon spectra in the 2.3-3.4 nm region from tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Mattioli, M.; Fournier, K. B.; Carraro, L.; Coffey, I.; Giroud, C.; Lawson, K.; Monier-Garbet, P.; O'Mullane, M.; Ongena, J.; Puiatti, M. E.; Sattin, F.; Scarin, P.; Valisa, M.

    2001-01-01

    Experimental argon spectra in the 2.3-3.4 nm region from the Jet tokamak on a single null divertor configuration have been simulated. The spectra include lines from five ionization states, namely from Ar15+ Li-like to Ar11+ N-like ions. Collisional-radiative models have been constructed for these five Ar ions, considering electron collisional excitation and radiative decay as the populating processes of the excited states. These models give photon emission coefficients for the emitted lines at electron density and temperature values corresponding to the experimental situations. Impurity modelling is performed using a one-dimensional (1D) impurity transport code, calculating the steady-state radial distribution of the Ar ions. The Ar line brightnesses are evaluated in a post-processing subroutine and simulated spectra are obtained. The parts of the spectra corresponding to a single-ionization state do not depend on the experimental conditions and show good agreement except for the amplitude of the simulated 2s-3p Ar XVI line and the shape of the simulated 2.50 nm feature (composed of Ar XVI and Ar XV lines). On the other hand, the superposition of these spectra depends on the experimental conditions, as a consequence of the fact that the ion charge distribution depends not only on the radial profiles of the electron density and temperature, but also of the impurity transport coefficients. Simulations of the Ar spectra (including transport) give confidence in the atomic physics calculations; moreover, they allow the determination of the transport coefficients in the plasma region emitting the considered ionization states, i.e. at the interior of the last closed magnetic surface (LCMS). For a correct simulation of the amplitudes of the spectral features it is necessary to include a transport barrier inside the LCMS. As far as the atomic physics is concerned, we report improved wavelengths for Ar XV transitions and we benchmark photon emission coefficients for XUV

  6. Optical Spectra of Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Walker, T. D.; Biagi, C. J.; Hill, J. D.; Jordan, D. M.; Uman, M. A.; Christian, H. J., Jr.

    2009-12-01

    In August 2009, the first optical spectra of triggered lightning flashes were acquired. Data from two triggered lightning flashes were obtained at the International Center for Lightning Research and Testing in north-central Florida. The spectrometer that was used has an average dispersion of 260 Å/mm resulting in an average resolution of 5 Å when mated to a Photron (SA1.1) high-speed camera. The spectra captured with this system had a free spectral range of 3800-8000 Å. The spectra were captured at 300,000 frames per second. The spectrometer's vertical field of view was 3 m at an altitude 50 m above the launch tower, intended to view the middle of the triggering wire. Preliminary results show that the copper spectrum dominated the earliest part of the flash and copper lines persisted during the total lifetime of the detectable spectrum. Animations over the lifetime of the stroke from the initial wire illumination to multiple return strokes show the evolution of the spectrum. In addition, coordinated high speed channel base current, electric field and imagery measurements of the exploding wire, downward leaders, and return strokes were recorded. Quantitative analysis of the spectral evolution will be discussed in the context of the overall flash development.

  7. Ultraviolet Spectra of Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Roush, Ted

    1996-07-01

    The ultraviolet reflectance spectra of the icy satellites ofUranus are largely unknown. We propose to use the HubbleSpace Telescope Faint Object Spectrograph in order to obtainthe first high S/N UV spectra of Ariel, Titania, and Oberon.Because of our innovative targeting approach, we have alsobeen able to include Umbriel in our observational plans.These satellites sample almost the full range of UV albedosand UV/VIS colors exhibited by the large Uranian satellites.The spectral resolution and range will overlap with earth-based telescopic and spacecraft observations of these objectsallowing for comparisons of the UV data with existing visualand near-infrared spectra of these objects. These comparisonswill ultimately provide greater constraints on the relativelylow albedo spectrally neutral non-ice component on the Uraniansatellites. The existance of UV spectral features due tospecies such as O_3, H_2O_2 or carbon-rich macromolecules(e.g. polycyclic aromatic hydrocarbons) can provide evidencefor modification of the surfaces via plasma or meteoriticbombardment, alteration by high-energy ultraviolet radiation,or accretion of particles from nearby sources such asplanetary rings or dust bands.

  8. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  9. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  10. Coupling the emission of ionizing radiation and Lyman alpha

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew

    2013-10-01

    The class of objects that reionized intergalactic hydrogen remains an observational and theoretical problem that is in contention for being the most prominent puzzle piece in contemporary astrophysics. The current consensus - determined almost entirely by ruling out bright active galaxies - is that the process was possibly begun and almost certainly finished by faint, lower-mass galaxies forming their early generations of stars. Recent observations of z 3 galaxies may even have identified the analog populations.However understanding how the emitted ionizing power of galaxies is causally related to their {robustly determined} physical properties is not a study that can be performed at high-z: neither the spatial information nor the standard multi-wavelength diagnostics are available. Moreover, on a case-by-case basis, the intervening IGM absorption is impossible to determine. These considerations have spawned a number of detailed studies with UV space telescopes, the synthesis of which however is that a characteristic population of Lyman continuum {LyC} emitting objects has not yet been identified. We show in this proposal that we have identified a characteristic trait in galaxy spectra that is highly indicative of LyC emission, by combining {a} high-z phenomenological studies, {b} new high-resolution UV spectra of local galaxies, and {c} sophisticated models of radiation transport. Believing that we have determined the signature, we propose to test the new hypothesis with deep spectroscopic observations with HST/COS under the Cycle 21 UV initiative.

  11. Characterization of the CDMS Ionization Readout

    NASA Astrophysics Data System (ADS)

    Phipps, Arran

    2007-10-01

    Current cosmological models predict that a large portion of the total mass of the universe, about eighty percent, consists of putative dark matter. Theory predicts this dark matter may be in the form of particles constantly passing through the Earth. A class of these particles may interact with ordinary matter, earning the name weakly-interacting massive particles (WIMPs). The Cryogenic Dark Matter Search (CDMS) aims to directly detect the existence of WIMPs. CDMS has designed ZIP (Z-dependent Ionization & Phonon) detectors which measure phonon production and ionization of an interaction, making it possible to determine the interacting particle. The low-energy threshold of the ZIP detectors is determined by the signal-to-noise ratio of the ionization readout. A characterization of the signal-to-noise ratio of the ionization readout, along with possible modifications for improved sensitivity will be presented.

  12. Ionization and positronium formation in noble gases

    SciTech Connect

    Marler, J.P.; Sullivan, J.P.; Surko, C.M.

    2005-02-01

    Absolute measurements are presented for the positron-impact cross sections for direct ionization and positronium formation of noble gas atoms in the range of energies from threshold to 90 eV. The experiment uses a cold, trap-based positron beam and the technique of studying positron scattering in a strong magnetic field. The current data show generally good, quantitative agreement with previous measurements taken using a qualitatively different method. However, significant differences in the cross sections for both direct ionization and positronium formation are also observed. An analysis is presented that yields another, independent measurement of the direct ionization and positronium formation cross sections that is in agreement with the present, direct measurements to within {+-}10% for argon, krypton, and xenon. Comparison with available theoretical predictions yields good quantitative agreement for direct ionization cross sections, and qualitative agreement in the case of positronium formation.

  13. Which Stars Are Ionizing the Orion Nebula?

    NASA Astrophysics Data System (ADS)

    O’Dell, C. R.; Kollatschny, W.; Ferland, G. J.

    2017-03-01

    The common assumption that {θ }1 {Ori} {{C}} is the dominant ionizing source for the Orion Nebula is critically examined. This assumption underlies much of the existing analysis of the nebula. In this paper we establish through comparison of the relative strengths of emission lines with expectations from Cloudy models and through the direction of the bright edges of proplyds that {θ }2 {Ori} {{A}}, which lies beyond the Bright Bar, also plays an important role. {θ }1 {Ori} {{C}} does dominate ionization in the inner part of the Orion Nebula, but outside of the Bright Bar as far as the southeast boundary of the Extended Orion Nebula, {θ }2 {Ori} {{A}} is the dominant source. In addition to identifying the ionizing star in sample regions, we were able to locate those portions of the nebula in 3D. This analysis illustrates the power of MUSE spectral imaging observations to identify sources of ionization in extended regions.

  14. The galactic cosmic ray ionization rate

    PubMed Central

    Dalgarno, A.

    2006-01-01

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H3+ in diffuse clouds and the recognition that dissociative recombination of H3+ is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium. PMID:16894166

  15. (Resonance ionization spectroscopy and its applications)

    SciTech Connect

    Ramsey, J.M.

    1990-10-11

    The Fifth International Symposium in Resonance Ionization Spectroscopy and Its Applications was attended. The Joint Research Centre of the European Communities at Ispra, Italy was also visited. The traveler presented an invited talk, chaired a meeting session and gave an impromptu presentation on how current laser technology limits the development of commercial instrumentation based upon Resonance Ionization Spectroscopy. The conference was truely international with scientists from 19 countries and less than 1/4 from the US. The meeting also provided a health mixture of experimentalists and theoreticians. Technical developments reported included the use of electric field ionization from laser prepared Rydberg states as a way to reduce background signals and commercial development of an optical parametric oscillator for replacing pulsed dye laser. A speaker from the Soviet Union suggested their willingness to market hardware they have developed based upon the resonance ionization technique.

  16. The galactic cosmic ray ionization rate.

    PubMed

    Dalgarno, A

    2006-08-15

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H(3)(+) in diffuse clouds and the recognition that dissociative recombination of H(3)(+) is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium.

  17. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  18. Ionization energy of acetone by vacuum ultraviolet mass-analyzed threshold ionization spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Jae Han; Kang, Do Won; Hong, Yong Jun; Hwang, Hyonseok; Kim, Hong Lae; Kwon, Chan Ho

    2013-04-01

    Mass-analyzed threshold ionization (MATI) time-of-flight mass spectrometer using coherent vacuum ultraviolet (VUV) laser generated by four-wave difference frequency mixing (FWDFM) in Kr has been constructed and utilized to obtain the accurate ionization energy of acetone. From the MATI onsets measured from various applied pulsed fields, the ionization energy to the ionic ground state of acetone has been determined to be 9.7074 ± 0.0019 eV.

  19. Mass-Analyzed Threshold Ionization of Lanthanum Oxide Clusters: La_2O_2 and La_3O_4

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Sergiy; Yang, Dong-Sheng

    2009-06-01

    Lanthanum oxide clusters are produced by laser vaporization in a pulsed cluster source and identified by photoionization mass spectrometry. Vibrationally resolved ion spectra are obtained with mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectra of La_2O_2 and La_3O_4 exhibit a very strong 0-0 transition, indicating similar geometries for the neutral and ionized clusters and a very weakly bonding or non-bonding electron ejected from an outmost molecular orbital. The ionization energies of La_2O_2 and La_3O_4 are measured to be 36937(5) and 28028(5) cm^{-1}, respectively. In addition, the spectra of both clusters display a number of vibrational intervals that are associated with metal-metal, metal-oxygen, and oxygen-oxygen vibrations. Preliminary data analysis shows that the La_2O_2 cluster has a D_{2h} planar structure and La_3O_4 has a C_{3v} cage-like structure, both with alternating La-O-La bonds. The spectra may be assigned to the ^2Ag←^1Ag transition in the case of La_2O_2 and ^1A_1←^2A_1 in La_3O_4 .

  20. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  1. Diagnosing transient ionization in dynamic events

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Giunta, A.; Madjarska, M. S.; Summers, H.; O'Mullane, M.; Singh, A.

    2013-09-01

    Aims: The present study aims to provide a diagnostic line ratio that will enable the observer to determine whether a plasma is in a state of transient ionization. Methods: We use the Atomic Data and Analysis Structure (ADAS) to calculate line contribution functions for two lines, Si iv 1394 Å and O iv 1401 Å, formed in the solar transition region. The generalized collisional-radiative theory is used. It includes all radiative and electron collisional processes, except for photon-induced processes. State-resolved direct ionization and recombination to and from the next ionization stage are also taken into account. Results: For dynamic bursts with a decay time of a few seconds, the Si iv 1394 Å line can be enhanced by a factor of 2-4 in the first fraction of a second with the peak in the line contribution function occurring initially at a higher electron temperature due to transient ionization compared to ionization equilibrium conditions. On the other hand, the O iv 1401 Å does not show such any enhancement. Thus the ratio of these two lines, which can be observed with the Interface Region Imaging Spectrograph, can be used as a diagnostic of transient ionization. Conclusions: We show that simultaneous high-cadence observations of two lines formed in the solar transition region may be used as a direct diagnostic of whether the observed plasma is in transient ionization. The ratio of these two lines can change by a factor of four in a few seconds owing to transient ionization alone.

  2. Multiple ionization of argon by helium ions

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Miraglia, J. E.

    2016-09-01

    We apply the continuum distorted-wave eikonal initial state and the independent electron model to describe the multiple ionization of Ar by He2+ and He+ in the energy range 0.1-10 Mev amu-1. Auger-like post collisional processes are included, which enhance the high energy multiple ionization cross sections via ionization of the inner shells. All Ar electrons (K, L and M-shells) have been included in these calculations. The results agree well with the experimental data at high energies, where the post-collisional ionization is the main contribution. At intermediate impact energies the description is also good though it tends to overestimate the triple and quadruple ionization data at intermediate energies. We analyze this by comparing the present results for He+2 in Ar, with previous ones for He+2 in Ne and Kr. It was found that the theoretical description improves from Ne to Ar and Kr, with the latter being nicely described even at intermediate energies. The present formalism is also tested for Ar inner shell and total ionization cross sections. In all the cases the results above 0.1 MeV amu-1 are quite reasonable, as compared with the experimental data available and with the ECPSSR values.

  3. Neutral depletion versus repletion due to ionization

    SciTech Connect

    Fruchtman, A.; Makrinich, G.; Raimbault, J.-L.; Liard, L.; Rax, J.-M.; Chabert, P.

    2008-05-15

    Recent theoretical analyses which predicted unexpected effects of neutral depletion in both collisional and collisionless plasmas are reviewed. We focus on the depletion of collisionless neutrals induced by strong ionization of a collisionless plasma and contrast this depletion with the effect of strong ionization on thermalized neutrals. The collisionless plasma is analyzed employing a kinetic description. The collisionless neutrals and the plasma are coupled through volume ionization and wall recombination only. The profiles of density and pressure both of the plasma and of the neutral-gas and the profile of the ionization rate are calculated. It is shown that for collisionless neutrals the ionization results in neutral depletion, while when neutrals are thermalized the ionization induces a maximal neutral-density at the discharge center, which we call neutral repletion. The difference between the two cases stems from the relation between the neutral density and pressure. The pressure of the collisionless neutral-gas turns out to be maximal where its density is minimal, in contrast to the case of a thermalized neutral gas.

  4. Tunneling ionization of vibrationally excited nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Kornev, Aleksei S.; Zon, Boris A.

    2015-09-01

    Ionization of molecular nitrogen plays an important role in the process of light-filament formation in air. In the present paper we theoretically investigated tunneling ionization of the valence 3 σg and 1 πu shells in a N2 molecule using a strong near-infrared laser field. This research is based on our previously proposed theory of anti-Stokes-enhanced tunneling ionization with quantum accounting for the vibrationally excited states of the molecules [A. S. Kornev and B. A. Zon, Phys. Rev. A 86, 043401 (2012), 10.1103/PhysRevA.86.043401]. We demonstrated that if the N2 molecule is ionized from the ground vibrational state, then the contribution of the 1 πu orbital is 0.5%. In contrast, for vibrationally excited states with a certain angle between the light polarization vector and the molecule axis, both shells can compete and even reverse their contributions due to the anti-Stokes mechanism. The structure constants of molecular orbitals are extracted from numerical solutions to the Hartree-Fock equations. This approach correctly takes into account the exchange interaction. Quantum consideration of vibrational motion results in the occurrence of the critical vibrational state, the tunneling ionization from which has the maximum rate. The numbers of the critical vibrational states are different for different valence shells. In addition, quantum description of vibrations changes the rate of ionization from the ground vibrational state by 20%-40% in comparison with the quasiclassical results.

  5. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  6. Status of LDEF ionizing radiation measurements and analysis

    NASA Technical Reports Server (NTRS)

    Parnell, Thomas A.

    1993-01-01

    At this symposium significant new data and analyses were reported in cosmic ray research, radiation dosimetry, induced radioactivity, and radiation environment modeling. Measurements of induced radioactivity and absorbed dose are nearly complete, but much analysis and modeling remains. Measurements and analyses of passive nuclear track detectors (PNTD), used to derive the cosmic ray composition and spectra, and linear energy transfer (LET) spectra, are only a few percent complete, but important results have already emerged. As one might expect at this stage of the research, some of the new information has produced questions rather than answers. Low-energy heavy nuclei detected by two experiments are not compatible with known solar or cosmic components. Various data sets on absorbed dose are not consistent, and a new trapped proton environment model does not match the absorbed dose data. A search for cosmogenic nuclei other than Be-7 on Long Duration Exposure Facility (LDEF) surfaces has produced an unexpected result, and some activation data relating to neutrons is not yet understood. Most of these issues will be resolved by the analysis of further experiment data, calibrations, or the application of the large LDEF data set that offers alternate data or analysis techniques bearing on the same problem. The scope of the papers at this symposium defy a compact technical summary. I have attempted to group the new information that I noted into the following groups: induced radioactivity; absorbed dose measurements; LET spectra and heavy ion dosimetry; environment modeling and three dimensional shielding effects; cosmogenic nuclei; and cosmic rays and other heavy ions. The papers generally are expository and have excellent illustrations, and I refer to their figures rather than reproduce them here. The general program and objectives of ionizing radiation measurements and analyses on LDEF has been described previously.

  7. Analysis of the (1)A' S1 ← (1)A' S0 and (2)A' D0 ← (1)A' S1 band systems in 1,2-dichloro-4-fluorobenzene by means of resonance-enhanced-multi-photon-ionization (REMPI) and mass-analyzed-threshold-ionization (MATI) spectroscopy.

    PubMed

    Krüger, Sascha; Grotemeyer, Jürgen

    2016-03-14

    Resonance enhanced multiphoton ionization (REMPI) and mass analyzed threshold ionization (MATI) spectroscopy have been applied in order to investigate the vibrational structure of 1,2-dichloro-4-fluorobenzene (1,2,4-DCFB) in its first excited state (S1) and the cationic ground state (D0). The selection of the state prior to ionization resulted in MATI spectra with different intensity distributions thus giving access to many vibrational levels. To support the experimental findings, geometry optimizations and frequency analyses at DFT (density functional) and TDDFT (time-dependent density functional) levels of theory have been applied. Additionally, a multidimensional Franck-Condon approach has been used to calculate the vibrational intensities from the DFT calculations. An excellent agreement between simulated and measured REMPI and MATI spectra allowed for a confident assignment of vibrational levels and mechanisms active during excitation and ionization. In order to avoid any ambiguity regarding the assignment of the vibrational bands to normal modes, Duschinsky normal mode analysis has been performed to correlate the ground state (S0) normal modes of 1,2,4-DCFB with the benzene derived Wilson nomenclature. From the REMPI spectra the electronic excitation energy (EE) of 1,2-dichloro-4-fluorobenzene could be determined to be 35 714 ± 2 cm(-1) while the MATI spectra yielded the adiabatic ionization energy (IE) of 1,2-dichloro-4-fluorobenzene which could be determined to be 73 332 ± 7 cm(-1).

  8. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg.

  9. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: cluster ion polymerization.

    PubMed

    Kočišek, J; Lengyel, J; Fárník, M

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of ≈8%, while mixed species are produced at low concentrations (≈0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C2H2)n(+). At the electron energies ≥21.5 eV above the CH+CH(+) dissociative ionization limit of acetylene the fragment ions nominally labelled as (C2H2)nCH(+), n ≥ 2, are observed. For n ≤ 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C2H2)n - k × H](+) and [(C2H2)nCH - k × H](+). The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C3H3(+) ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of ≈13.7 eV indicates that a less rigid covalently bound structure of C6H6(+) ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Arn(C2H2)(+) fragments above ≈15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Arn≥2(C2H2)m≥2(+) at ≈13.7 eV is discussed in terms of an exciton transfer mechanism.

  10. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    NASA Astrophysics Data System (ADS)

    Kočišek, J.; Lengyel, J.; Fárník, M.

    2013-03-01

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of ≈8%, while mixed species are produced at low concentrations (≈0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C_2H_2)_n^+. At the electron energies ⩾21.5 eV above the CH+CH+ dissociative ionization limit of acetylene the fragment ions nominally labelled as (C2H2)nCH+, n ⩾ 2, are observed. For n ⩽ 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C2H2)n - k × H]+ and [(C2H2)nCH - k × H]+. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C3 H_3^+ ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of ≈13.7 eV indicates that a less rigid covalently bound structure of C6 H_6^+ ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Arn(C2H2)+ fragments above ≈15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar_{n ≥ 2}(C2 H2)_{m≥ 2}^+ at ≈13.7 eV is discussed in terms of an exciton transfer mechanism.

  11. Implications of an updated ultraviolet background for the ionization mechanisms of intervening Ne VIII absorbers

    NASA Astrophysics Data System (ADS)

    Hussain, Tanvir; Khaire, Vikram; Srianand, Raghunathan; Muzahid, Sowgat; Pathak, Amit

    2017-04-01

    Ne VIII absorbers seen in QSO spectra are useful tracers of warm ionized gas, when collisional ionization is the dominant ionization process. While photoionization by the ultraviolet background (UVB) is a viable option, it tends to predict large line-of-sight thickness for the absorbing gas. Here, we study the implications of the recently updated UVB at low z to understand the ionization mechanisms of intervening Ne VIII absorbers. With the updated UVB, one typically needs higher density and metallicity to reproduce the observed ionic column densities under photoionization. Both reduce the inferred line-of-sight thicknesses of the absorbers. We find a critical density of ≥5 × 10-5 cm-3 above which the observed N({Ne VIII})/N({O VI}) can be reproduced by pure collisional processes. If the gas is of near solar metallicity (as measured for the low ions) then the cooling time-scales will be small (<108 yrs). Therefore, a continuous injection of heat is required in order to enhance the detectability of the collisionally ionized gas. Using photoionization models we find that in almost all Ne VIII systems the inferred low ion metallicity is near solar or supersolar. If we assume the Ne VIII phase to have similar metallicities then photoionization can reproduce the observed N({Ne VIII})/N({O VI}) without the line-of-sight thickness being unreasonably large and avoids cooling issues related to the collisional ionization at these metallicities. However, the indication of broad Lyα absorption in a couple of systems, if true, suggests that the Ne VIII phase is distinct from the low ion phase having much lower metallicity.

  12. Resonant two-photon mass-analyzed threshold ionization spectroscopy of 1-fluoronaphthalene and 2-fluoronaphthalene

    NASA Astrophysics Data System (ADS)

    Tzeng, Sheng Yuan; Wu, Jui Yang; Zhang, Shudong; Tzeng, Wen Bih

    2012-11-01

    We applied the resonant two-photon mass-analyzed threshold ionization (MATI) technique to record the cation spectra of 1-fluoronaphthalene (1FN) and 2-fluoronaphthalene (2FN) by ionizing via several intermediate vibronic states. The adiabatic ionization energies of 1FN and 2FN are found to be 66 194 and 66 771 ± 5 cm-1, respectively. Distinct MATI bands resulting from in-plane ring deformation are found at 437, 517, 703, and 779 cm-1 for 1FN; and 286, 455, 494, 764, and 1031 cm-1 for 2FN. Frequencies of these modes are slightly greater than the corresponding ones in the vibronic spectra. This indicates that the molecular geometry in the cationic D0 state is slightly more rigid than that in the neutral S1 state. Comparing the present experimental data with those of naphthalene suggests that the frequency difference of each mode depends on the vibrational pattern, location of the F atom, and degree of the F atom involved in the overall vibration.

  13. Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices.

    PubMed

    Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching

    2016-04-01

    In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates.

  14. Non-traditional applications of laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    McAlpin, Casey R.

    protonated free analyte molecules. Expanded applications of MOLI MS were developed following description of the ionization mechanism. A series of experiments were carried out involving treatment of metal oxide surfaces with reagent molecules to expand MOLI MS and develop enhanced MOLI MS methodologies. It was found that treatment of the metal oxide surface with a small molecule to act as a proton source expanded MOLI MS to analytes which did not form acidic adsorbed species. Proton-source pretreated MOLI MS was then used for the analysis of oils obtained from the fast, anoxic pyrolysis of biomass (py-oil). These samples are complex and produce MOLI mass spectra with many peaks. In this experiment, methods of data reduction including Kendrick mass defects and nominal mass z*-scores, which are commonly used for the study of petroleum fractions, were used to interpret these spectra and identify the major constituencies of py-oils. Through data reduction and collision induced dissociation (CID), homologous series of compounds were rapidly identified. The final chapter involves using metal oxides to catalytically cleave the ester linkage on lipids containing fatty acids in addition to ionization. The cleavage process results in the production of spectra similar to those observed with saponification/methylation. Fatty acid profiles were generated for a variety of micro-organisms to differentiate between bacterial species. (Abstract shortened by UMI.)

  15. Action spectra for photosynthetic inhibition

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S.; Camp, L. B.

    1981-01-01

    The ultraviolet action spectrum for photosynthesis inhibition was determined to fall between that of the general DNA action spectrum and the generalized plant action spectrum. The characteristics of this action spectrum suggest that a combination of pronounced increase in effectiveness with decreasing wavelength, substantial specificity for the UV-B waveband, and very diminished response in the UV-A waveband result in large radiation amplification factors when the action spectra are used as weighting functions. Attempted determination of dose/response relationships for leaf disc inhibition provided inconclusive data from which to deconvolute an action spectrum.

  16. Two slow meteors with spectra

    NASA Astrophysics Data System (ADS)

    Dubs, Martin; Sposetti, Stefano; Spinner, Roger; Booz, Beat

    2017-01-01

    On January 2, 2017 two peculiar meteors (M20170102_001216 and M20170102_015202) were observed by several stations in Switzerland. Both had a long duration, slow velocity, similar brightness and a very similar radiant. As they appeared in a time interval of 100 minutes, a satellite was suspected as a possible origin of these two observations. A closer inspection however showed that this interpretation was incorrect. The two objects were slow meteors. Spectra were taken from both objects, which were nearly identical. Together this points to a common origin of the two meteors.

  17. The Optical Spectra of Aerosols.

    DTIC Science & Technology

    1983-10-01

    espressione dell’ampiezza di diffusione in * avanti vengono fattorizzati. In questo modo la somma delle am- piezze di diftusione di "cluster" con...F1D-Ali35 687 THE OPTICAL SPECTRA OF REROSOLSOU) MESSINA UNIV (ITALY) i/i 1ST DI STRIJTTURA DELLA IIATERIA F BORIIHESE OCT 83 UNCLASSIFIED DRR78--85F...ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS * Istituto di Struttura della Materia 61102A-1T161102-BH57-01 Un iversita di Messina V~nina. Ttalv St

  18. Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions

    SciTech Connect

    Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.

    2009-01-21

    A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.

  19. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  20. Method of processing positron lifetime spectra

    SciTech Connect

    Valuev, N.P.; Klimov, A.B.; Zhikharev, A.N.

    1985-05-01

    This paper describes a method for the processing of spectra of positron annihilation which permits a much more relaible determination of the lifetime during numerical processing of spectra by computer.