Science.gov

Sample records for aboveground biomass allocation

  1. Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient

    PubMed Central

    Kumordzi, Bright B.; Gundale, Michael J.; Nilsson, Marie-Charlotte; Wardle, David A.

    2016-01-01

    Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems. PMID:27270445

  2. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides

    PubMed Central

    Sánchez-Vilas, Julia; Bermúdez, Raimundo; Retuerto, Rubén

    2012-01-01

    Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the

  3. Aboveground biomass allocation of ponderosa pine along an elevational gradient: An analog for response to climate change

    SciTech Connect

    Callaway, R.M.; DeLucia, E.H.; Schlesinger, W.H. Duke Univ., Durham, NC )

    1993-06-01

    Predictions of CO[sub 2]-enhanced growth for adult trees are primarily based on leaf-level assimilation responses and improved growth rates of seedlings and saplings. Plant growth may be more dependent on biomass allocation than on rates of assimilation, but predictions have not incorporated the effects of temperature on biomass reallocation among autotrophic and heterotrophic tissues and whole-plant carbon balance. We measured biomass allocation of Pinus ponderosa on hydrothermally altered andesite in montane and desert climates, thus substrate was held constant while climate varied. Trees from montane climates supported higher leaf mass per cross-sectional sapwood area (functional conducting xylem) than trees from desert climates, suggesting that a functional response to climate had occurred. Our results also indicate that sapwood mass:leaf mass ratios of P. ponderosa may increase [approx] 50% with a 5[degrees]C change. in mean growing season temperature, approximately the difference between our montane and desert sites. Such an increase in sapwood:leaf ratio may partially offset predicted CO[sub 2]-enhancement effects and substantially reduce whole-plant carbon balance. Biomass allocation responses must be incorporated into growth-response models used to predict fluctuations in forest productivity with changes in climate and atmospheric CO[sub 2] concentration.

  4. [Aboveground architecture and biomass distribution of Quercus variabilis].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou

    2015-08-01

    The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline

  5. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  6. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    PubMed

    Raich, James W; Clark, Deborah A; Schwendenmann, Luitgard; Wood, Tana E

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  7. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  8. MODIS Based Estimation of Forest Aboveground Biomass in China

    PubMed Central

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  9. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    USGS Publications Warehouse

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton haa??1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  10. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  11. Evaluating lidar point densities for effective estimation of aboveground biomass

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  12. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  13. Biomass Resource Allocation among Competing End Uses

    SciTech Connect

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  14. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River Basin of Southeastern Colorado, USA

    USGS Publications Warehouse

    Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.

    2007-01-01

    Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.

  15. Forest classification and impact of BIOMASS resolution on forest area and aboveground biomass estimation

    NASA Astrophysics Data System (ADS)

    Schlund, Michael; Scipal, Klaus; Davidson, Malcolm W. J.

    2017-04-01

    The European Space Agency (ESA) is currently implementing the BIOMASS mission as 7th Earth Explorer satellite. BIOMASS will provide for the first time global forest aboveground biomass estimates based on P-band synthetic aperture radar (SAR) imagery. This paper addresses an often overlooked element of the data processing chain required to ensure reliable and accurate forest biomass estimates: accurate identification of forest areas ahead of the inversion of radar data into forest biomass estimates. The use of the P-band data from BIOMASS itself for the classification into forest and non-forest land cover types is assessed in this paper. For airborne data in tropical, hemi-boreal and boreal forests we demonstrate that classification accuracies from 90 up to 97% can be achieved using radar backscatter and phase information. However, spaceborne data will have a lower resolution and higher noise level compared to airborne data and a higher probability of mixed pixels containing multiple land cover types. Therefore, airborne data was reduced to 50 m, 100 m and 200 m resolution. The analysis revealed that about 50-60% of the area within the resolution level must be covered by forest to classify a pixel with higher probability as forest compared to non-forest. This results in forest omission and commission leading to similar forest area estimation over all resolutions. However, the forest omission resulted in a biased underestimated biomass, which was not equaled by the forest commission. The results underline the necessity of a highly accurate pre-classification of SAR data for an accurate unbiased aboveground biomass estimation.

  16. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    PubMed Central

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  17. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis.

    PubMed

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants.

  18. Biomass allocation and long-term growth patterns of temperate lianas in comparison with trees.

    PubMed

    Ichihashi, Ryuji; Tateno, Masaki

    2015-08-01

    The host-dependent support habit of lianas is generally interpreted as a strategy designed to reduce resource investment in mechanical tissues; this allows preferential allocation to leaf and stem extension, thereby enhancing productivity and competitive abilities. However, this hypothesis has not been rigorously tested. We examined the aboveground allometries regarding biomass allocation (leaf mass and current-year stem mass (approximated as biomass allocated to extension growth) vs total aboveground mass) and long-term apparent growth patterns (height and aboveground mass vs age, i.e. numbers of growth rings) for nine deciduous liana species in Japan. Lianas had, on average, three- and five-fold greater leaf and current-year stem mass, respectively, than trees for a given aboveground mass, whereas the time course to reach the forest canopy was comparable and biomass accumulation during that period was only one-tenth that of co-occurring canopy trees. The balance between the lengths of yearly stem extension and existing older stems indicated that lianas lost c. 75% of stem length during growth to the canopy, which is probably a consequence of the host-dependent growth. Our observations suggest that, although lianas rely on hosts mechanically, allowing for short-term vigorous growth, this habit requires a large cost and could limit plant growth over protracted periods.

  19. [Effects of shading on the aboveground biomass and stiochiometry characteristics of Medicago sativa].

    PubMed

    Ma, Zhi-Liang; Yang, Wan-Qin; Wu, Fu-Zhong; Gao, Shun

    2014-11-01

    In order to provide scientific basis for inter-planting alfalfa in abandoned farmland, a shading experiment was conducted to simulate the effects of different light intensities on the aboveground biomass, the contents of carbon, nitrogen, phosphorus and potassium, and the stoichiometric characteristics of alfalfa under the plantation. The results showed that the aboveground biomass of alfalfa correlated significantly with the light intensity, and shading treatment reduced the aboveground biomass of alfalfa significantly. The aboveground alfalfa tissues under the 62% shading treatment had the highest contents of carbon, nitrogen and phosphorus, which was 373.73, 34.38 and 5.47 g · kg(-1), respectively, and significantly higher than those of the control. However, shading treatments had no significant effect on the potassium content of aboveground part. The C/N ratio in aboveground tissues under the 72% shading treatment was significantly higher than that of the control, but no significant differences among other treatments were found. The ratios of N/P and C/P in aboveground tissues showed a tendency that decreased firstly and then increased with the increase of light intensity.

  20. A study on estimation of aboveground wet biomass based on the microwave vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation biomass is an important parameter in the carbon cycle study. In this paper, a new technique to estimate aboveground vegetation wet biomass based on the Microwave Vegetation Indices (MVIs), which are computed through the observed brightness temperature of AMSR-E/Aqua under two adjacent fre...

  1. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau.

    PubMed

    Nie, Xiuqing; Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011-2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level.

  2. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    PubMed Central

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level. PMID:27119379

  3. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from -20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass-temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  4. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  5. ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS

    EPA Science Inventory

    Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...

  6. Aboveground tree biomass on productive forest land in Alaska. Forest Service research paper

    SciTech Connect

    Yarie, J.; Mead, D.R.

    1982-08-01

    Total aboveground woody biomass of trees on forest land that can produce 1.4 cubic meters per hectare per year of industrial wood in Alaska is 1.33 billion metric tons green weight. The estimated energy value of the standing woody biomass is 11.9 x 10 Btu's. Statewide tables of biomass and energy values for softwoods, hardwoods, and species group are presented.

  7. Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments.

    PubMed

    King, D A

    1997-04-01

    Aboveground biomass allocation, and height and branch growth were studied in saplings of the shade-tolerant conifer, Abies amabilis Dougl. ex Forbes growing in large openings and in the understory of an old-growth forest in western Oregon. The presence of annual overwintering budscale scars was used to infer extension growth histories; annual growth rings in branches and stems were used in combination with extension histories to compute partitioning of new biomass among leaves, branches and stems. Saplings growing in large gaps had conical crowns, whereas understory saplings had umbrella shaped crowns as a result of much greater rates of branch extension than stem extension. Understory saplings grew slowly in height because of low rates of biomass production and low allocation of biomass to stem extension. About 40% of new biomass was allocated to foliage in both groups, but understory saplings allocated more of the remaining growth increment to branches and less to stem than did saplings growing in large gaps. These results differ from the patterns observed in shade-tolerant saplings of tropical forests, where allocation to foliage increases with shading and branch allocation is much lower than observed here. This difference in allocation may reflect mechanical constraints imposed by snow loads on the evergreen A. amabilis crowns, particularly on flat-crowned understory saplings.

  8. Biomass allocation of montane and desert Pondersoa Pine: An analog for response to climate change

    SciTech Connect

    Callaway, R.M.; DeLucia, E.H. ); Schlesinger, W.H. )

    1994-07-01

    Aboveground biomass allocation of Pinus ponderosa on hydrothermally altered andesite in montane and desert climates was measured. Trees from montane climates had higher leaf mass per unit cross-sectional area of sapwood than trees from desert climates, suggesting a function response to differences in climate. Results also indicate that sapwood mass:leaf mass ratios of P. ponderosa may increase [approx]50% with a 5[degrees]C change in mean growing-season temperature. High proportional allocation of biomass to sapwood may improve water relations of P. ponderosa, but because sapwood contains living parenchyma, respiratory costs may be high. Simulated montane trees were 46-52% taller than desert trees, and montane trees 10 cm in dbh had twice the total aboveground mass of desert counterparts. Simulated 50-cm montane and desert trees were almost identical in total mass, even though the montane tree was 46% taller. The predicted proportion of biomass allocated to bole sapwood increased with size for both montane and desert models; however, the 50-cm desert model contained 8% more total sapwood mass than the taller montane model. Biomass of primary and secondary branches differed considerably. The 50-cm desert model had twice as much biomass in primary branches, whereas the montane model had 3 times more biomass in secondary branches than the desert model. For 10-cm trees of the desert and montane models 29 and 33% of the biomass were leaves, respectively. In larger trees, leaf allocation decreased to 5 and 7% for desert and montane models, respectively. The effects of climate on biomass allocation such as reported here, and corresponding changes in whole-plant assimilation rates must be incorporated into growth-response models used to predict future fluctuations in forest productivity due to global climate change. 35 refs., 3 figs., 3 tabs.

  9. Demographic controls of aboveground forest biomass across North America.

    PubMed

    Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W

    2016-04-01

    Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea).

  10. Carbon dynamics in aboveground biomass of co-dominant plant species in a temperate grassland ecosystem: same or different?

    PubMed

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A; Schnyder, Hans

    2016-04-01

    Understanding the role of individual organisms in whole-ecosystem carbon (C) fluxes is probably the biggest current challenge in C cycle research. Thus, it is unknown whether different plant community members share the same or different residence times in metabolic (τmetab ) and nonmetabolic (i.e. structural) (τnonmetab ) C pools of aboveground biomass and the fraction of fixed C allocated to aboveground nonmetabolic biomass (Anonmetab ). We assessed τmetab , τnonmetab and Anonmetab of co-dominant species from different functional groups (two bunchgrasses, a stoloniferous legume and a rosette dicot) in a temperate grassland community. Continuous, 14-16-d-long (13) C-labeling experiments were performed in September 2006, May 2007 and September 2007. A two-pool compartmental system, with a well-mixed metabolic and a nonmixed nonmetabolic pool, was the simplest biologically meaningful model that fitted the (13) C tracer kinetics in the whole-shoot biomass of all species. In all experimental periods, the species had similar τmetab (5-8 d), whereas τnonmetab ranged from 20 to 58 d (except for one outlier) and Anonmetab from 7 to 45%. Variations in τnonmetab and Anonmetab were not systematically associated with species or experimental periods, but exhibited relationships with leaf life span, particularly in the grasses. Similar pool kinetics of species suggested similar kinetics at the community level.

  11. Improved allometric models to estimate the aboveground biomass of tropical trees.

    PubMed

    Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto; Chidumayo, Emmanuel; Colgan, Matthew S; Delitti, Welington B C; Duque, Alvaro; Eid, Tron; Fearnside, Philip M; Goodman, Rosa C; Henry, Matieu; Martínez-Yrízar, Angelina; Mugasha, Wilson A; Muller-Landau, Helene C; Mencuccini, Maurizio; Nelson, Bruce W; Ngomanda, Alfred; Nogueira, Euler M; Ortiz-Malavassi, Edgar; Pélissier, Raphaël; Ploton, Pierre; Ryan, Casey M; Saldarriaga, Juan G; Vieilledent, Ghislain

    2014-10-01

    Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

  12. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution of many dryland vegetation species are expected to shift based on predictions of future increases in global temperatures. Quantifying aboveground biomass in dryland systems is important for assessing global carbon storage and monitoring the presence and distribution of these rapidl...

  13. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam

    PubMed Central

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P. R.

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam. PMID:27309718

  14. Carbon dynamics in aboveground biomass of co-dominant plant species: related rather to leaf life span than to species

    NASA Astrophysics Data System (ADS)

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A.; Schnyder, Hans

    2016-04-01

    This study investigates the role of individual organisms in whole ecosystem carbon (C) fluxes. It is currently unknown if different plant community members share the same or different kinetics of C pools in aboveground biomass, thereby adding (or not) variability to the first steps in ecosystem C cycling. We assessed the residence times in metabolic and non-metabolic (or structural) C pools and the allocation pattern of assimilated C in aboveground plant parts of four co-existing, co-dominant species from different functional groups in a temperate grassland community. For this purpose continuous, 14-16 day long 13CO2/12CO2-labeling experiments were performed in Sept. 2006, May 2007 and Sept. 2007, and the tracer kinetics were analysed with compartmental modeling. In all experimental periods, the species shared vastly similar residence times in metabolic C (5-8 d). In contrast, the residence times in non-metabolic C ranged from 20 to 58 d (except one outlier) and the fraction of fixed C allocated to the non-metabolic pool from 7 to 45%. These variations in non-metabolic C kinetics were not systematically associated with species or experimental periods, but exhibited close relationships with (independent estimates of) leaf life span, particularly in the grasses. This adds new meaning to leaf life span as a functional trait in the leaf and plant economics spectrum and its implication for C cycle studies in grassland and also forest systems. As the four co-dominant species accounted for ~80% of total community shoot biomass, we should also expect that the observed similarities in pool kinetics and allocation will scale up to similar relationships at the community level.

  15. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China.

    PubMed

    Lin, Dunmei; Lai, Jiangshan; Muller-Landau, Helene C; Mi, Xiangcheng; Ma, Keping

    2012-01-01

    The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha(-1) (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha(-1) (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha(-1) (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.

  16. Topographic Variation in Aboveground Biomass in a Subtropical Evergreen Broad-Leaved Forest in China

    PubMed Central

    Lin, Dunmei; Lai, Jiangshan; Muller-Landau, Helene C.; Mi, Xiangcheng; Ma, Keping

    2012-01-01

    The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha−1 (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha−1 (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha−1 (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage. PMID:23118961

  17. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    USGS Publications Warehouse

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  18. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California, forests

    USGS Publications Warehouse

    McGinnis, T.W.; Shook, C.D.; Keeley, J.E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  19. [Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China].

    PubMed

    Yan, Tao; Zhu, Jiao-Jun; Yang, Kai; Yu, Li-Zhong

    2014-10-01

    Larch is the main timber species of forest plantations in North China. Imbalance in nutrient cycling in soil emerged due to single species composition and mono system structure of plantation. Thus it is necessary to grasp its biomass and nutrients allocation for scientific management and nutrient cycling studies of larch plantation. We measured aboveground biomass (stem, branch, bark and leaf) and nutrient concentrations (C, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn), and analyzed the patterns of accumulation and distribution of 19-year-old larch plantation with diameter at breast height of 12. 8 cm, tree height of 15. 3 m, and density of 2308 trees · hm(-2), in a montane region of eastern Liaoning Province, China. The results showed that aboveground biomass values were 70.26 kg and 162.16 t · hm(-2) for the individual tree of larch and the stand, respectively. There was a significant difference between biomass of the organs, and decreased in the order of stem > branch > bark > leaf. Nutrient accumulation was 749.94 g and 1730.86 kg · hm(-2) for the individual tree of larch and the stand, respectively. Nutrient accumulation of stem was significantly higher than that of branch, bark and leaf, whether it was macro-nutrient or micro-nutrient. Averagely, 749.94 g nutrient elements would be removed from the system when a 19-year-old larch tree was harvested. If only the stem part was removed from the system, the removal of nutrient elements could be reduced by 40.7%.

  20. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka.

    PubMed

    Ali, Arshad; Mattsson, Eskil

    2017-01-01

    Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry

  1. Biomass for biorefining: Resources, allocation, utilization, and policies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...

  2. Topographically mediated controls on aboveground biomass across a mediterranean-type landscape

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2009-12-01

    Aboveground biomass accumulation is a useful metric for evaluating habitat restoration and ecosystem services projects, in addition to being a robust measure of carbon sequestration. However, at the landscape scale non-anthropogenic controls on biomass accumulation are poorly understood. In this study we combined field measurements, high resolution data from the NASA JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Carnegie Airborne Observatory (CAO) airborne light detection and ranging (lidar) system to create a comprehensive map of aboveground biomass across a patchy mediterranean-type landscape (Jasper Ridge Biological Preserve, Stanford, CA). Candidate explanatory variables (e.g. slope, elevation, incident solar radiation) were developed using a geologic map and a digital elevation model derived from the lidar data. Finally, candidate variables were tested, and a model was produced to predict aboveground biomass from environmental data. Though many of the explanatory variables have only indirect effects on plant growth, the model permits inferences to be made about the relative importance of light, water, temperature, and edaphic characteristics on carbon accumulation in mediterranean-type systems.

  3. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar

    PubMed Central

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-01

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE) = 81.89 g·m−2, and relative error of 14.1%). The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns. PMID:28106819

  4. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.

    PubMed

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-19

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R² = 0.340, root-mean-square error (RMSE) = 81.89 g·m(-2), and relative error of 14.1%). The improvement of multiple regressions to the R² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns.

  5. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    PubMed

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  6. Do plants modulate biomass allocation in response to petroleum pollution?

    PubMed

    Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2010-12-23

    Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a ¹³CO₂ pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root-shoot ratio for both plant biomass and ¹³C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated ¹³C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution.

  7. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, Wenge; Lee, Shihyan; Strahler, Alan H.; Woodcock, Curtis E.; Schaaf, Crystal; Yao, Tian; Ranson, K. Jon; Sun, Guoqing; Blair, J. Bryan

    2010-06-01

    Lidar-based aboveground biomass is derived based on the empirical relationship between lidar-measured vegetation height and aboveground biomass, often leading to large uncertainties of aboveground biomass estimates at large scales. This study investigates whether the use of any additional lidar-derived vegetation structure parameters besides height improves aboveground biomass estimation. The analysis uses data collected in the field and with the Laser Vegetation Imaging Sensor (LVIS), and the Echidna® validation instrument (EVI), a ground-based hemispherical-scanning lidar data in New England in 2003 and 2007. Our field data analysis shows that using wood volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve aboveground biomass estimates at large scales. This result is comparable to previous individual-tree based analyses. Our LVIS data analysis indicates that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, are closely related to wood volume and thus biomass particularly for conifer forests. RH100*cover and RH50*cover perform similarly or even better than RH50, a good biomass predictor found in previous study. This study shows that the use of structure parameters that combine height and gap fraction (rather than height alone) improves the aboveground biomass estimate, and that the fusion of lidar and optical remote sensing (to provide vegetation type) will provide better aboveground biomass estimates than using lidar alone. Our ground lidar analysis shows that EVI provides good estimates of wood volume, and thus accurate estimates of aboveground biomass particularly at the stand level.

  8. Remote sensing of aboveground biomass and annual net aerial primary productivity in tidal wetlands

    SciTech Connect

    Hardisky, M.A.

    1983-01-01

    A technique was investigated for estimating biomass and net aerial primary productivity (NAPP) in Delaware tidal marshes from spectral data, describing marsh vegetation canopies. Spectral radiance data were collected with hand-held radiometers from the ground and from low altitude aircraft. Spectral wavebands corresponding to Landsat 4 thematic mapper bands 3, 4 and 5 and multispectral scanner bands 5 and 7 were employed. Spectral data, expressed as index values, were substituted into simple regression models to nondestructively compute total aboveground biomass. Dead biomass, salt crystals on plant leaves and soil background reflectance, all attenuated the spectral radiance index values. A large spectral contribution from any one of these canopy components caused an underestimate of live biomass. Biomass and annual NAPP of a S. alterniflora dominated salt marsh was estimated by traditional harvesting techniques and from ground-gathered spectral radiance data. The live and dead standing crop biomass estimates computed from spectral data were usually not significantly different from harvest biomass estimates. Spectral estimates of NAPP were usually within 10% of NAPP estimates calculated from harvest data. August live standing crop biomass estimates computed from ground-gathered spectral data for a tidal brackish marsh were generally within 10% of harvest estimates. Live biomass estimates computed from spectral data gathered from a low altitude aircraft were equally similar to harvest biomass estimates. The remote sensing technique holds much promise for rapid and accurate estimates of biomass and NAPP in tidal marshes.

  9. [Aboveground biomass of Tamarix on piedmont plain of Tianshan Mountains south slope].

    PubMed

    Zhao, Zhenyong; Wang, Ranghui; Zhang, Huizhi; Wang, Lei

    2006-09-01

    Based on the geo-morphological and hydro-geological characteristics, the piedmont plain of Tianshan Mountains south slope was classified into 4 geo-morphological belts, i.e., flood erosion belt, groundwater spill belt, delta belt, and the joining belt of piedmont plain and Tarim floodplain. A field investigation on the Tamarix shrub in this region showed that there was a significant difference in its aboveground biomass among the four belts, ranged from 1428.53 kg x hm(-2) at groundwater spill belt to 111.18 kg x hm(-2) at the joining belt of piedmont plain and Tarim floodplain. The main reason for such a big difference might be the different density of Tamarix shrub on different belts. Both the Tamarix aboveground biomass and the topsoil's salinity were decreased with increasing groundwater level. Groundwater level was the main factor limiting Tamarix growth, while soil salinity was not.

  10. Tibetan alpine tundra responses to simulated changes in climate: Aboveground biomass and community responses

    SciTech Connect

    Yanqing Zhang; Welker, J.M.

    1996-05-01

    High-elevation ecosystems are predicted to be some of the terrestrial habitats most sensitive to changing climates. The ecological consequences of changes in alpine tundra environmental conditions are still unclear especially for habitats in Asia. In this study we report findings from a field experiment where an alpine tundra grassland on the Tibetan plateau (37{degrees}N, 101{degrees}E) was exposed to experimental warming, irradiance was lowered, and wind speed reduced to simulate a suite of potential changes in environmental conditions. Our warming treatment increased air temperatures by 5{degrees}C on average and soil temperatures were elevated by 3{degrees}C at 5 cm depth. Aboveground biomass of grasses responded rapidly to the warmer conditions whereby biomass was 25% greater than that of controls after only 5 wk of experimental warming. This increase was accompanied by a simultaneous decrease in forb biomass, resulting in almost no net change in community biomass after 5 wk. Lower irradiance reduced grass biomass during the same period. Under ambient conditions total aboveground community biomass increased seasonally from 161 g m{sup -2} in July to a maximum of 351 g m{sup -2} in September, declining to 285 g m{sup -2} in October. However, under warmed conditions, peak community biomass was extended into October due in part to continued growth of grasses and the postponement of senescence. Our finding indicate that while alpine grasses respond favorably to altered conditions, others may not. And, while peak community biomass may actually change very little under warmer summers, the duration of peak biomass may be extended having feedback effects on net ecosystem CO{sub 2} balances, nutrient cycling, and forage availability. 47 refs., 3 figs., 3 tabs.

  11. Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Koptur, S.; Snyder, J.R.

    2004-01-01

    Species-specific allometric equations that provide estimates of biomass from measured plant attributes are currently unavailable for shrubs common to South Florida pine rocklands, where fire plays an important part in shaping the structure and function of ecosystems. We developed equations to estimate total aboveground biomass and fine fuel of 10 common hardwood species in the shrub layer of pine forests of the lower Florida Keys. Many equations that related biomass categories to crown area and height were significant (p < 0.05), but the form and variables comprising the best model varied among species. We applied the best-fit regression models to structural information from the shrub stratum in 18 plots on Big Pine Key, the most extensive pine forest in the Keys. Estimates based on species-specific equations indicated clearly that total aboveground shrub biomass and shrub fine fuel increased with time since last fire, but the relationships were non-linear. The relative proportion of biomass constituted by the major species also varied with stand age. Estimates based on mixed-species regressions differed slightly from estimates based on species-specific models, but the former could provide useful approximations in similar forests where species-specific regressions are not yet available. ?? 2004 Elsevier B.V. All rights reserved.

  12. Mapping Aboveground Biomass in the Amazon Basin: Exploring Sensors, Scales, and Strategies for Optimal Data Linkage

    NASA Astrophysics Data System (ADS)

    Walker, W. S.; Baccini, A.

    2013-05-01

    Information on the distribution and density of carbon in tropical forests is critical to decision-making on a host of globally significant issues ranging from climate stabilization and biodiversity conservation to poverty reduction and human health. Encouraged by recent progress at both the international and jurisdictional levels on the design of incentive-based policy mechanisms to compensate tropical nations for maintaining their forests intact, governments throughout the tropics are moving with urgency to implement robust national and sub-national forest monitoring systems for operationally tracking and reporting on changes in forest cover and associated carbon stocks. Monitoring systems will be required to produce results that are accurate, consistent, complete, transparent, and comparable at sub-national to pantropical scales, and satellite-based remote sensing supported by field observations is widely-accepted as the most objective and cost-effective solution. The effectiveness of any system for large-area forest monitoring will necessarily depend on the capacity of current and near-future Earth observation satellites to provide information that meets the requirements of developing monitoring protocols. However, important questions remain regarding the role that spatially explicit maps of aboveground biomass and carbon can play in IPCC-compliant forest monitoring systems, with the majority of these questions stemming from doubts about the inherit sensitivity of satellite data to aboveground forest biomass, confusion about the relationship between accuracy and resolution, and a general lack of guidance on optimal strategies for linking field reference and remote sensing data sources. Here we demonstrate the ability of a state-of-the-art satellite radar sensor, the Japanese ALOS/PALSAR, and a venerable optical platform, Landsat 5, to support large-area mapping of aboveground tropical woody biomass across a 153,000-km2 region in the southwestern Amazon

  13. Pantropical trends in mangrove above-ground biomass and annual litterfall.

    PubMed

    Saenger, Peter; Snedaker, Samuel C

    1993-12-01

    A major paradigm in biosphere ecology is that organic production, carbon turnover and, perhaps, species diversity are highest at tropical latitudes, and decrease toward higher latitudes. To examine these trends in the pantropical mangrove forest vegetation type, we collated and analysed data on above-ground biomass and annual litterfall for these communities. Regressions of biomass and litterfall data show significant relationships with height of the vegetation and latitude. It is suggested that height and latitude are causally related to biomass, while the relationship with litterfall reflects the specific growing conditions at the respective study sites. Comparison of mangrove and upland forest litterfall data shows similar trends with latitude but indicates that mangrove litterfall is higher than upland forest litterfall. The regression equations allow the litterfall/biomass ratio to be simulated, and this suggests that the patterns of organic matter partitioning differ according to latitude.

  14. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland.

    PubMed

    Zhang, Qing; Buyantuev, Alexander; Li, Frank Yonghong; Jiang, Lin; Niu, Jianming; Ding, Yong; Kang, Sarula; Ma, Wenjing

    2017-03-01

    The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

  15. Assessing General Relationships Between Above-Ground Biomass and Vegetation Structure Parameters for Improved Carbon Estimate from Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, W.; Lee, S.; Strahler, A. H.; Woodcock, C. E.; Schaaf, C.; Yao, T.; Ranson, J.; Sun, G.; Blair, J. B.

    2009-12-01

    Lidar remote sensing uses vegetation height to estimate large-scale above-ground biomass. However, lidar height and biomass relationships are empirical and thus often lead to large uncertainties in above-ground biomass estimates. This study uses vegetation structure measurements from field: an airborne lidar (Laser Vegetation Imaging Sensor, LVIS)) and a full wave form ground-based lidar (Echidna® validation instrument, EVI) collected in the New England region in 2003 and 2007, to investigate using additional vegetation structure parameters besides height for improved above-ground biomass estimation from lidar. Our field data analysis shows that using woody volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve above-ground biomass estimates at large scale. This result is comparable to previous work by Chave et al. (2005), which focused on individual trees. However this study uses a slightly different approach, and our woody volume is estimated differently from Chave et al. (2005). Previous studies found that RH50 is a good predictor of above-ground biomass (Drake et al., 2002; 2003). Our LVIS data analysis shows that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, perform similarly or even better than RH50. We also found that the close relationship of RH100*cover and RH50*cover with woody volume explains why they are good predictors of above-ground biomass. RH50 is highly related to RH100*cover, and this explains why RH50 is a better predictor of biomass than RH100. This study shows that using structure parameters combining height and gap fraction improve above-ground biomass estimate compared to height alone, and fusion of lidar and optical remote sensing (to provide vegetation type) will provide better above-ground biomass estimates than lidar alone. Ground lidar analysis

  16. The relationship between aboveground biomass and radar backscatter as observed on airborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Bourgeau-Chavez, Laura L.; Christensen, Norman L., Jr.; Dobson, M. Craig

    1991-01-01

    The initial results of an experiment to examine the dependence of radar image intensity on total above-ground biomass in a southern US pine forest ecosystem are presented. Two sets of data are discussed. First, we examine two L-band (VV-polarization) data sets which were collected 5 years apart. These data sets clearly illustrate the change in backscatter resulting from the growth of a young pine stand. Second, we examine the dependence between radar backscatter and biomass as a function of radar frequency using data from the JPL Airborne Synthetic Aperture Radar (AIRSAR) and ERIM/NADC P-3 SAR systems. These results show that there is a positive correlation between above-ground biomass and radar backscatter and at C-, L-, and P-bands, but very little correlation at C-band. The biomass level for which this positive correlation holds decreases as radar frequency increases. This positive correlation is stronger at HH and HV polarizations that VV polarization at L- and P-bands, but strongest at VV polarization for C-band.

  17. Forest Aboveground Biomass Estimation in the Greater Mekong, Subregion and Russian Siberia

    NASA Astrophysics Data System (ADS)

    Pang, Yong; Li, Zengyuan; Sun, Gouqing; Zhang, Zhiyu; Schmullius, Christiane; Meng, Shili; Ma, Zhenyu; Lu, Hao; Li, Shiming; Liu, Qingwang; Bai, Lina; Tian, Xin

    2016-08-01

    Forests play a vital role in sustainable development and provide a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. We summarized works in forest aboveground biomass estimation in Greater Mekong Subregion (GMS) and Russian Siberia (RuS). Both regions are rich in forest resources. These mapping and estimation works were based on multiple-source remote sensing data and some field measurements. Biomass maps were generated at 500 m and 30 m pixel size for RuS and GMS respectively. With the available of the 2015 PALSAR-2 mosaic at 25 m spacing, Sentinel-2 data at 20 m, we will work on the biomass mapping and dynamic study at higher spatial resolution.

  18. Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data

    SciTech Connect

    Harrell, P.A.; Haney, E.M.; Christensen, N.L. Jr.; Kasischke, E.S.; Bourgeau-Chavez, L.L.

    1997-02-01

    Estimation of forest biomass on a global basis is a key issue in studies of ecology and biogeochemical cycling. Forests are a terrestrial sink of atmospheric carbon dioxide and play a central role in regulating the exchange of this important greenhouse gas between the atmosphere and the biosphere. A study was performed to evaluate various techniques for estimating aboveground, woody plant biomass in pine stands found in the southeastern United States, using C- and L- band multiple polarization radar imagery collected by the Shuttle Imaging Radar-C (SIR-C) system. The biomass levels present in the test stands ranged between 0.0 and 44.5 kg m{sup {minus}2}. Two SIR-C data sets were used one collected in April, 1994, when the soil conditions were very wet and the canopy was slightly wet from dew and a second collected in October, 1994, when the soils and canopy were dry. During the October mission, pine needles were completely flushed and the foliar biomass was twice as great in the forest stands as in April. Four methods were evaluated to estimate total biomass: one including a straight multiple linear correlation between total biomass and the various SIR-C channels, another including a ratio of the L-band HV/C-band HV channels; and two others requiring multiple steps, where linear regression equations for different stand components were used as the basis for estimating total biomass.

  19. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Olsoy, Peter J.; Glenn, Nancy F.; Clark, Patrick E.; Derryberry, DeWayne R.

    2014-02-01

    Sagebrush (Artemisia tridentata), a dominant shrub species in the sagebrush-steppe ecosystem of the western US, is declining from its historical distribution due to feedbacks between climate and land use change, fire, and invasive species. Quantifying aboveground biomass of sagebrush is important for assessing carbon storage and monitoring the presence and distribution of this rapidly changing dryland ecosystem. Models of shrub canopy volume, derived from terrestrial laser scanning (TLS) point clouds, were used to accurately estimate aboveground sagebrush biomass. Ninety-one sagebrush plants were scanned and sampled across three study sites in the Great Basin, USA. Half of the plants were scanned and destructively sampled in the spring (n = 46), while the other half were scanned again in the fall before destructive sampling (n = 45). The latter set of sagebrush plants was scanned during both spring and fall to further test the ability of the TLS to quantify seasonal changes in green biomass. Sagebrush biomass was estimated using both a voxel and a 3-D convex hull approach applied to TLS point cloud data. The 3-D convex hull model estimated total and green biomass more accurately (R2 = 0.92 and R2 = 0.83, respectively) than the voxel-based method (R2 = 0.86 and R2 = 0.73, respectively). Seasonal differences in TLS-predicted green biomass were detected at two of the sites (p < 0.001 and p = 0.029), elucidating the amount of ephemeral leaf loss in the face of summer drought. The methods presented herein are directly transferable to other dryland shrubs, and implementation of the convex hull model with similar sagebrush species is straightforward.

  20. [Vegetation above-ground biomass and its affecting factors in water/wind erosion crisscross region on Loess Plateau].

    PubMed

    Wang, Jian-guo; Fan, Jun; Wang, Quan-jiu; Wang, Li

    2011-03-01

    Field investigations were conducted in Liudaogou small watershed in late September 2009 to study the differences of vegetation above-ground biomass, soil moisture content, and soil nutrient contents under different land use patterns, aimed to approach the vegetation above-ground biomass level and related affecting factors in typical small watershed in water/wind erosion crisscross region on Loess Plateau. The above-ground dry biomass of the main vegetations in Liudaogou was 177-2207 g x m(-2), and that in corn field, millet field, abandoned farmland, artificial grassland, natural grassland, and shrub land was 2097-2207, 518-775, 248-578, 280-545, 177-396, and 372-680 g x m(-2), respectively. The mean soil moisture content in 0-100 layer was the highest (14.2%) in farmlands and the lowest (10.9%) in shrub land. The coefficient of variation of soil moisture content was the greatest (26. 7% ) in abandoned farmland, indicating the strong spatial heterogeneity of soil moisture in this kind of farmland. The mean soil water storage was in the order of farmland > artificial grassland > natural grassland > shrub land. Soil dry layer was observed in alfalfa and caragana lands. There was a significant positive correlation (r = 0.639, P < 0.05) between above-ground dry biomass and 0-100 cm soil water storage, and also, a very significant positive correlation between above-ground fresh biomass and vegetation height. The above-ground biomass of the higher vegetations could potentially better control the wind and water erosion in the water/wind erosion crisscross region. Vegetation above-ground biomass was highly correlated with soil moisture and nutrient contents, but had no significant correlations with elevation, slope gradient, slope aspect, and soil bulk density.

  1. Decreasing precipitation variability does not elicit major aboveground biomass or plant diversity responses in a mesic rangeland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an emergent need to understand how altered precipitation regimes will affect aboveground biomass, stability of this biomass, and diversity in grassland ecosystems. We used replicated 9X10 m rainout shelters to experimentally remove inherent intra- and inter-annual variability of precipitati...

  2. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    PubMed Central

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping; Li, Dejun; Qin, Yujia; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Tiedje, James M.

    2016-01-01

    ABSTRACT Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. PMID:27677789

  3. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming.

    PubMed

    Xue, Kai; Yuan, Mengting M; Xie, Jianping; Li, Dejun; Qin, Yujia; Hale, Lauren E; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong

    2016-09-27

    Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  4. Mapping aboveground forest biomass combining dendrometric data and spectral signature of forest species

    NASA Astrophysics Data System (ADS)

    Avocat, H.; Tourneux, F.

    2013-12-01

    Accurate measures and explicit spatial representations of forest biomass compose an important aspect to model the forest productivity and crops, and to implement sustainable forest management. Several methods have been developed to estimate and to map forest biomass, combining point-sources measurements of biophysical variables such as diameter-at-breast height (DBH), tree height, crown size, crown length, crown volume and remote sensing data (spectral vegetation index values). In this study, we propose a new method for aboveground biomass (AGB) mapping of forests and isolated trees. This method is tested on a 1100 km2 area located in the eastern France. In contrast to most of studies, our model is not calibrated using field plot measurements or point-source inventory data. The primary goal of this model is to propose an accessible and reproducible method for AGB mapping of temperate forests, by combining standard biomass values coming from bibliography and remotely sensed data. This method relies on three steps. (1) The first step consists of produce a map of wooded areas including small woods and isolated trees, and to identify the major forest stands. To do this, we use an unsupervised classification of a Landsat 7 ETM+ image. Results are compared and improved with various land cover data. (2) The second step consists of extract the normalized difference vegetation index (NDVI) values of main forest stands. (3) Finally, these values are combined with standard AGB values provided by bibliography, to calibrate four AGB estimation models of different forest types (broadleaves, coniferous, coppices, and mixed stands). This method provides a map of aboveground biomass for forests and isolated trees with a 30 meters spatial resolution. Results demonstrate that 71 % of AGB values for hardwoods vary between 143 and 363 t.ha-1, i.e. × 1 standard deviation around the average. For coniferous stands, most of values of AGB range from 167 to 256 t.ha-1.

  5. Remotely-sensed indicators of N-related biomass allocation in Schoenoplectus acutus

    USGS Publications Warehouse

    O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi

    2014-01-01

    Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring.

  6. Remotely-Sensed Indicators of N-Related Biomass Allocation in Schoenoplectus acutus

    PubMed Central

    O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi

    2014-01-01

    Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring. PMID:24614037

  7. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery

    NASA Astrophysics Data System (ADS)

    Wu, Chaofan; Shen, Huanhuan; Shen, Aihua; Deng, Jinsong; Gan, Muye; Zhu, Jinxia; Xu, Hongwei; Wang, Ke

    2016-07-01

    Biomass is one significant biophysical parameter of a forest ecosystem, and accurate biomass estimation on the regional scale provides important information for carbon-cycle investigation and sustainable forest management. In this study, Landsat satellite imagery data combined with field-based measurements were integrated through comparisons of five regression approaches [stepwise linear regression, K-nearest neighbor, support vector regression, random forest (RF), and stochastic gradient boosting] with two different candidate variable strategies to implement the optimal spatial above-ground biomass (AGB) estimation. The results suggested that RF algorithm exhibited the best performance by 10-fold cross-validation with respect to R2 (0.63) and root-mean-square error (26.44 ton/ha). Consequently, the map of estimated AGB was generated with a mean value of 89.34 ton/ha in northwestern Zhejiang Province, China, with a similar pattern to the distribution mode of local forest species. This research indicates that machine-learning approaches associated with Landsat imagery provide an economical way for biomass estimation. Moreover, ensemble methods using all candidate variables, especially for Landsat images, provide an alternative for regional biomass simulation.

  8. [Spatial distribution of Tamarix ramosissima aboveground biomass and water consumption in the lower reaches of Heihe River, Northwest China].

    PubMed

    Peng, Shou-Zhang; Zhao, Chuan-Yan; Peng, Huan-Hua; Zheng, Xiang-Lin; Xu, Zhong-Lin

    2010-08-01

    Based on the field observation on the Tamarix ramosissima populations in the lower reaches of Heihe River, the relationship models between the aboveground biomass of T. ramosissima and its morphological features (basal diameter, height, and canopy perimeter) were built. In the mean time, the land use/cover of the study area was classified by the decision tree classification with high resolution image (QuickBird), the distribution of T. ramosissima was extracted from classification map, and the morphological feature (canopy perimeter) of T. ramosissima was calculated with ArcGIS 9.2. On the bases of these, the spatial distribution of T. ramosissima aboveground biomass in the study area was estimated. Finally, the spatial distribution of the water consumption of T. ramosissima in the study area was calculated by the transpiration coefficient (300) and the aboveground biomass. The results showed that the aboveground biomass of T. ramosissima was 69644.7 t, and the biomass per unit area was 0.78 kg x m(-2). Spatially, the habitats along the banks of Heihe River were suitable for T. ramosissima, and thus, this tree species had a high biomass. The total amount of water consumption of T. ramosissima in the study area was 2.1 x 10(7) m3, and the annual mean water consumption of T. ramosissima ranged from 30 mm to 386 mm.

  9. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies.

    PubMed

    Eyles, Alieta; Pinkard, Elizabeth A; Mohammed, Caroline

    2009-06-01

    In woody species, potential mechanisms to compensate for tissue loss to herbivory and diseases have been related to post-event shifts in growth, biomass and internal resource allocation patterns, as modulated by external resource limitations. We examined the interactive effects of belowground resource limitations by varying nutrient and water availability, and aboveground carbon limitation imposed by a single defoliation event (40% leaf removal) on stem growth, whole-tree and within-tree resource allocation patterns (total non-structural carbohydrate and nitrogen) and below- and aboveground biomass allocation patterns in 8-month-old, field-grown Eucalyptus globulus Labill. saplings. Two months after treatments were imposed, the direction of the stem growth response to defoliation depended on the abiotic treatment. Five months after defoliation, however, we found little evidence that resource availability constrained the expression of tolerance to defoliation. With the exception of the combined low-nutrient and low-water supply treatment, saplings grown with (1) adequate water and nutrient supplies and even with (2) low-water supply or (3) low-nutrient supply were able to compensate for the 40% foliage loss. The observed compensatory responses were attributed to the activation of several short- and longer-term physiological mechanisms including reduced biomass allocation to coarse roots, mobilization of carbohydrate reserves, robust internal N dynamics and increased ratio of foliage to wood dry mass.

  10. Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar

    NASA Astrophysics Data System (ADS)

    Chen, Qi

    2015-08-01

    Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.

  11. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    PubMed Central

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. PMID:26339128

  12. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation.

    PubMed

    Cunniff, Jennifer; Purdy, Sarah J; Barraclough, Tim J P; Castle, March; Maddison, Anne L; Jones, Laurence E; Shield, Ian F; Gregory, Andrew S; Karp, Angela

    2015-09-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation.

  13. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns

    NASA Astrophysics Data System (ADS)

    Riihimäki, Henri; Heiskanen, Janne; Luoto, Miska

    2017-04-01

    Topography is a key factor affecting numerous environmental phenomena, including Arctic and alpine aboveground biomass (AGB) distribution. Digital Elevation Model (DEM) is a source of topographic information which can be linked to local growing conditions. Here, we investigated the effect of DEM derived variables, namely elevation, topographic position, radiation and wetness on AGB and Normalized Difference Vegetation Index (NDVI) in a Fennoscandian forest-alpine tundra ecotone. Boosted regression trees were used to derive non-parametric response curves and relative influences of the explanatory variables. Elevation and potential incoming solar radiation were the most important explanatory variables for both AGB and NDVI. In the NDVI models, the response curves were smooth compared with AGB models. This might be caused by large contribution of field and shrub layer to NDVI, especially at the treeline. Furthermore, radiation and elevation had a significant interaction, showing that the highest NDVI and biomass values are found from low-elevation, high-radiation sites, typically on the south-southwest facing valley slopes. Topographic wetness had minor influence on AGB and NDVI. Topographic position had generally weak effects on AGB and NDVI, although protected topographic position seemed to be more favorable below the treeline. The explanatory power of the topographic variables, particularly elevation and radiation demonstrates that DEM-derived land surface parameters can be used for exploring biomass distribution resulting from landform control on local growing conditions.

  14. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Nossov, Dana R.; Peterson, Birgit E.; Waldrop, Mark P.; McFarland, Jack W.; Rover, Jennifer R.; Hollingsworth, Teresa N.

    2012-01-01

    Terrestrial plant biomass is a key biophysical parameter required for understanding ecological systems in Alaska. An accurate estimation of biomass at a regional scale provides an important data input for ecological modeling in this region. In this study, we created an aboveground biomass (AGB) map at 30-m resolution for the Yukon Flats ecoregion of interior Alaska using Landsat data and field measurements. Tree, shrub, and herbaceous AGB data in both live and dead forms were collected in summers and autumns of 2009 and 2010. Using the Landsat-derived spectral variables and the field AGB data, we generated a regression model and applied this model to map AGB for the ecoregion. A 3-fold cross-validation indicated that the AGB estimates had a mean absolute error of 21.8 Mg/ha and a mean bias error of 5.2 Mg/ha. Additionally, we validated the mapping results using an airborne lidar dataset acquired for a portion of the ecoregion. We found a significant relationship between the lidar-derived canopy height and the Landsat-derived AGB (R2 = 0.40). The AGB map showed that 90% of the ecoregion had AGB values ranging from 10 Mg/ha to 134 Mg/ha. Vegetation types and fires were the primary factors controlling the spatial AGB patterns in this ecoregion.

  15. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  16. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Longo, Marcos; Keller, Michael; dos-Santos, Maiza N.; Leitold, Veronika; Pinagé, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.

    2016-11-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n = 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained 70% of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 ± 2.5 and 31.9 ± 10.8 kg C m-2. Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 ± 0.7 kg C m-2 (94%) of ACD. Forests that burned nearly 15 years ago had between 4.1 ± 0.5 and 6.8 ± 0.3 kg C m-2 (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 ± 0.3 and 4.4 ± 0.4 kg C m-2 (4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pantropical products consistently overestimated ACD in degraded forests, underestimated ACD in intact forests, and showed little sensitivity to fires and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation (REDD+).

  17. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    NASA Astrophysics Data System (ADS)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since

  18. How do plants respond to nutrient shortage by biomass allocation?

    PubMed

    Hermans, Christian; Hammond, John P; White, Philip J; Verbruggen, Nathalie

    2006-12-01

    Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long been known that deficiencies of essential macronutrients (nitrogen, phosphorus, potassium and magnesium) result in an accumulation of carbohydrates in leaves and roots, and modify the shoot-to-root biomass ratio. Here, we present an update on the effects of mineral deficiencies on the expression of genes involved in primary metabolism in the shoot, the evidence for increased carbohydrate concentrations and altered biomass allocation between shoot and root, and the consequences of these changes on the growth and morphology of the plant root system.

  19. Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina

    NASA Astrophysics Data System (ADS)

    Pucheta, Eduardo; Cabido, Marcelo; Díaz, Sandra; Funes, Guillermo

    1998-04-01

    Changes in plant community composition, diversity, aboveground biomass, and aboveground net primary production (ANPP) of different plant growth-forms were assessed in sites protected from livestock grazing for 2, 4, and 15 years, and in a heavily-grazed site. Species richness was maximum at the grazed site and decreased significantly after 4 years of protection. Diversity decreased significantly only after 15 years of protection. No alien or weedy species were found at grazed or protected sites. Grazing exclusion produced a shift from grazing-tolerant or grazing-avoiding species with a graminoid or prostrate growth-form to taller species with a tall tussock growth-form. Grazing produced a 33% decrease in standing biomass but little change in ANPP when compared to the site protected from grazing for 2 years, but important changes in both biomass and ANPP respect to the sites protected for 4 and 15 years. Consumption was near 35% of ANPP.

  20. Estimating above-ground biomass on mountain meadows and pastures through remote sensing

    NASA Astrophysics Data System (ADS)

    Barrachina, M.; Cristóbal, J.; Tulla, A. F.

    2015-06-01

    Extensive stock-breeding systems developed in mountain areas like the Pyrenees are crucial for local farming economies and depend largely on above-ground biomass (AGB) in the form of grass produced on meadows and pastureland. In this study, a multiple linear regression analysis technique based on in-situ biomass collection and vegetation and wetness indices derived from Landsat-5 TM data is successfully applied in a mountainous Pyrenees area to model AGB. Temporal thoroughness of the data is ensured by using a large series of images. Results of on-site AGB collection show the importance for AGB models to capture the high interannual and intraseasonal variability that results from both meteorological conditions and farming practices. AGB models yield best results at midsummer and end of summer before mowing operations by farmers, with a mean R2, RMSE and PE for 2008 and 2009 midsummer of 0.76, 95 g m-2 and 27%, respectively; and with a mean R2, RMSE and PE for 2008 and 2009 end of summer of 0.74, 128 g m-2 and 36%, respectively. Although vegetation indices are a priori more related with biomass production, wetness indices play an important role in modeling AGB, being statistically selected more frequently (more than 50%) than other traditional vegetation indexes (around 27%) such as NDVI. This suggests that middle infrared bands are crucial descriptors of AGB. The methodology applied in this work compares favorably with other works in the literature, yielding better results than those works in mountain areas, owing to the ability of the proposed methodology to capture natural and anthropogenic variations in AGB which are the key to increasing AGB modeling accuracy.

  1. C3 and C4 biomass allocation responses to elevated CO2 and nitrogen: contrasting resource capture strategies

    USGS Publications Warehouse

    White, K.P.; Langley, J.A.; Cahoon, D.R.; Megonigal, J.P.

    2012-01-01

    Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient + 340 ppm) and soil N (ambient and ambient + 25 g m-2 year-1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3-C4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P 2 alone. C3 fine root production decreased with added N (P 2 (P = 0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.

  2. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands.

    PubMed

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-09-26

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity-ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao's quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands.

  3. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    PubMed

    Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  4. Aboveground biomass and carbon stocks modelling using non-linear regression model

    NASA Astrophysics Data System (ADS)

    Ain Mohd Zaki, Nurul; Abd Latif, Zulkiflee; Nazip Suratman, Mohd; Zainee Zainal, Mohd

    2016-06-01

    Aboveground biomass (AGB) is an important source of uncertainty in the carbon estimation for the tropical forest due to the variation biodiversity of species and the complex structure of tropical rain forest. Nevertheless, the tropical rainforest holds the most extensive forest in the world with the vast diversity of tree with layered canopies. With the usage of optical sensor integrate with empirical models is a common way to assess the AGB. Using the regression, the linkage between remote sensing and a biophysical parameter of the forest may be made. Therefore, this paper exemplifies the accuracy of non-linear regression equation of quadratic function to estimate the AGB and carbon stocks for the tropical lowland Dipterocarp forest of Ayer Hitam forest reserve, Selangor. The main aim of this investigation is to obtain the relationship between biophysical parameter field plots with the remotely-sensed data using nonlinear regression model. The result showed that there is a good relationship between crown projection area (CPA) and carbon stocks (CS) with Pearson Correlation (p < 0.01), the coefficient of correlation (r) is 0.671. The study concluded that the integration of Worldview-3 imagery with the canopy height model (CHM) raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the lowland Dipterocarp forest.

  5. Impacts of Tree Height-Dbh Allometry on Lidar-Based Tree Aboveground Biomass Modeling

    NASA Astrophysics Data System (ADS)

    Fang, R.

    2016-06-01

    Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in R2 and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.

  6. Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity

    PubMed Central

    Barlow, Jos; Silveira, Juliana M.; Mestre, Luiz A. M.; Andrade, Rafael B.; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z.; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A.

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions. PMID:22428035

  7. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands

    PubMed Central

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-01-01

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity–ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands. PMID:27666532

  8. Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.

    2015-01-01

    Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.

  9. Carbon dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schöngart, J.; Arieira, J.; Felfili Fortes, C.; Cezarine de Arruda, E.; Nunes da Cunha, C.

    2008-05-01

    This is the first estimation on carbon dynamics in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in Central Southern America. In four 1-ha plots in stands characterized by the pioneer species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ≥10 cm diameter at breast height, DBH) have been performed and converted to predictions of AGWB by five different allometric models using two or three predicting parameters (DBH, tree height, wood density). Best prediction has been achieved using allometric equations with three independent variables. Carbon stocks (50% of AGWB) vary from 7.4 to 100.9 Mg C ha-1 between the four stands. Carbon sequestration differs 0.50-4.24 Mg C ha-1 yr-1 estimated by two growth models derived from tree-ring analysis describing the relationships between age and DBH for V. divergens and other tree species. We find a close correlation between estimated tree age and C-stock, C-sequestration and C-turnover (mean residence of C in AGWB).

  10. Above-ground biomass and structure of 260 African tropical forests

    PubMed Central

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  11. Above-ground biomass and structure of 260 African tropical forests.

    PubMed

    Lewis, Simon L; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M F; Phillips, Oliver L; Affum-Baffoe, Kofi; Baker, Timothy R; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E N; Fauset, Sophie; Feldpausch, Ted R; Foli, Ernest G; Gillet, Jean-François; Hamilton, Alan C; Harris, David J; Hart, Terese B; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J; Kearsley, Elizabeth; Leal, Miguel E; Lloyd, Jon; Lovett, Jon C; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R; Ojo, Lucas; Peh, Kelvin S-H; Pickavance, Georgia; Poulsen, John R; Reitsma, Jan M; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E; Talbot, Joey; Taplin, James R D; Taylor, David; Thomas, Sean C; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J T; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.

  12. Aboveground Biomass Monitoring over Siberian Boreal Forest Using Radar Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Stelmaszczuk-Gorska, M. A.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Aboveground biomass (AGB) plays an essential role in ecosystem research, global cycles, and is of vital importance in climate studies. AGB accumulated in the forests is of special monitoring interest as it contains the most of biomass comparing with other land biomes. The largest of the land biomes is boreal forest, which has a substantial carbon accumulation capability; carbon stock estimated to be 272 +/-23 Pg C (32%) [1]. Russian's forests are of particular concern, due to the largest source of uncertainty in global carbon stock calculations [1], and old inventory data that have not been updated in the last 25 years [2]. In this research new empirical models for AGB estimation are proposed. Using radar L-band data for AGB retrieval and optical data for an update of in situ data the processing scheme was developed. The approach was trained and validated in the Asian part of the boreal forest, in southern Russian Central Siberia; two Siberian Federal Districts: Krasnoyarsk Kray and Irkutsk Oblast. Together the training and testing forest territories cover an area of approximately 3,500 km2. ALOS PALSAR L-band single (HH - horizontal transmitted and received) and dual (HH and HV - horizontal transmitted, horizontal and vertical received) polarizations in Single Look Complex format (SLC) were used to calculate backscattering coefficient in gamma nought and coherence. In total more than 150 images acquired between 2006 and 2011 were available. The data were obtained through the ALOS Kyoto and Carbon Initiative Project (K&C). The data were used to calibrate a randomForest algorithm. Additionally, a simple linear and multiple-regression approach was used. The uncertainty of the AGB estimation at pixel and stand level were calculated approximately as 35% by validation against an independent dataset. The previous studies employing ALOS PALSAR data over boreal forests reported uncertainty of 39.4% using randomForest approach [2] or 42.8% using semi-empirical approach [3].

  13. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  14. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  15. Estimation of aboveground woody biomass using HJ-1 and Radarsat-2 data for deciduous forests in Daxing'anling, China

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Yang, Le; Liu, Qinhuo; Li, Jing

    2014-11-01

    Accurate estimation of forest aboveground biomass is important for global carbon budgets and ecosystem change studies. Most algorithms for regional or global aboveground biomass estimation using optical and microwave remote sensing data are based on empirical regression and non-parametric training methods, which require large amount of ground measurements for training and are lacking of explicit interaction mechanisms between electromagnetic wave and vegetation. In this study, we proposed an optical/microwave synergy method based on a coherent polarimetric SAR model to estimate woody biomass. The study area is sparse deciduous forest dominated by birch with understory of shrubs and herbs in Daxing'anling, China. HJ-1, Radarsat-2 images, and field LAI were collected during May to August in 2013, tree biophysical parameters were measured at the field campaign during August to September in 2012. The effects of understory and wet ground were evaluated by introducing the NDVI derived from HJ-1 image and rain rate. Field measured LAI was used as an input to the SAR model to define the scattering and attenuation of the green canopy to the total backscatter. Finally, an logarithmic equation between the backscatter coefficient of direct forest scattering mechanism and woody biomass was generated (R2=0.582). The retrieval results were validated with the ground biomass measurements (RMSE=29.01ton/ha). The results indicated the synergy of optical and microwave remote sensing data based on SAR model has the potential to improve the accuracy of woody biomass estimation.

  16. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    PubMed

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  17. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest.

    PubMed

    Slik, J W Ferry; Bernard, Caroline S; Van Beek, Marloes; Breman, Floris C; Eichhorn, Karl A O

    2008-12-01

    Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.

  18. Structure, Aboveground Biomass, and Soil Characterization of Avicennia marina in Eastern Mangrove Lagoon National Park, Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Alsumaiti, Tareefa Saad Sultan

    Mangrove forests are national treasures of the United Arab Emirates (UAE) and other arid countries with limited forested areas. Mangroves form a crucial part of the coastal ecosystem and provide numerous benefits to society, economy, and especially the environment. Mangrove trees, specifically Avicennia marina, are studied in their native habitat in order to characterize their population structure, aboveground biomass, and soil properties. This study focused on Eastern Mangrove Lagoon National Park in Abu Dhabi, which was the first mangrove protected area to be designated in UAE. In situ measurements were collected to estimate Avicennia marina status, mortality rate (%), height (m), crown spread (m), stem number, diameter at breast height (cm), basal area (m), and aboveground biomass (t ha-1 ). Small-footprint aerial light detection and ranging (LIDAR) data acquired by UAE were processed to characterize mangrove canopy height and aboveground biomass density. This included extraction of LIDAR-derived height percentile statistics, segmentation of the forest into structurally homogenous units, and development of regression relationships between in situ reference and remote sensing data using a machine learning approach. An in situ soil survey was conducted to examine the soils' physical and chemical properties, fertility status, and organic matter. The data of soil survey were used to create soil maps to evaluate key characteristics of soils, and their influence on Avicennia marina in Eastern Mangrove Lagoon National Park. The results of this study provide new insights into Avicennia marina canopy population, structure, aboveground biomass, and soil properties in Abu Dhabi, as data in such arid environments is lacking. This valuable information can help in managing and preserving this unique ecosystem.

  19. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    PubMed Central

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  20. Plot-level aboveground woody biomass modeling using canopy height and auxiliary remote sensing data in a heterogeneous savanna

    NASA Astrophysics Data System (ADS)

    Gwenzi, David; Lefsky, Michael Andrew

    2016-01-01

    Remote sensing studies aiming at assessing woody biomass have demonstrated a strong relationship between canopy height and plot-level aboveground biomass, but most of these studies focused on closed canopy forests. To date, a few studies have examined the strength and reliability of this relationship using large footprint lidar in savannas. Furthermore, there have been few studies of appropriate methods for the comparison of models that relate aboveground biomass to canopy height metrics without consideration of variation in species composition (generic models) to models developed for individual species composition or vegetation types. We developed generic models using the classical least-squares regression modeling approach to relate selected canopy height metrics to aboveground woody biomass in a savanna landscape. Hierarchical Bayesian analysis (HBA) was then used to explore the implications of using generic or composition-specific models. Our study used the estimates of aboveground biomass from field data, canopy height estimates from airborne discrete return lidar, and a proxy for canopy cover (the Normalized Difference Vegetation Index) from Landsat 5 Thematic Mapper data, collected from the oak savannas of Tejon Ranch Conservancy in Kern County, California. Models were developed and analyzed using estimates of canopy height and aboveground biomass calculated at the level of 50-m diameter plots, comparable with footprint diameter of existing large footprint spaceborne lidar data. The two generic models that incorporated canopy cover proxies performed better than one model that did not use canopy cover information. From the HBA, we found out that for all models both the intercept and slope had interspecific variability. The valley oak dominated plots consistently had higher slopes and intercepts, whereas the plots dominated by blue oaks had the lowest. However, the intercept and slope values of the composition-specific models did not differ much from the

  1. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images

    NASA Astrophysics Data System (ADS)

    Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.

    2014-09-01

    Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.

  2. Aboveground Biomass Modeling from Field and LiDAR Data in Brazilian Amazon Tropical Rain Forest

    NASA Astrophysics Data System (ADS)

    Silva, C. A.; Hudak, A. T.; Vierling, L. A.; Keller, M. M.; Klauberg Silva, C. K.

    2015-12-01

    Tropical forests are an important component of global carbon stocks, but tropical forest responses to climate change are not sufficiently studied or understood. Among remote sensing technologies, airborne LiDAR (Light Detection and Ranging) may be best suited for quantifying tropical forest carbon stocks. Our objective was to estimate aboveground biomass (AGB) using airborne LiDAR and field plot data in Brazilian tropical rain forest. Forest attributes such as tree density, diameter at breast height, and heights were measured at a combination of square plots and linear transects (n=82) distributed across six different geographic zones in the Amazon. Using previously published allometric equations, tree AGB was computed and then summed to calculate total AGB at each sample plot. LiDAR-derived canopy structure metrics were also computed at each sample plot, and random forest regression modelling was applied to predict AGB from selected LiDAR metrics. The LiDAR-derived AGB model was assessed using the random forest explained variation, adjusted coefficient of determination (Adj. R²), root mean square error (RMSE, both absolute and relative) and BIAS (both absolute and relative). Our findings showed that the 99th percentile of height and height skewness were the best LiDAR metrics for AGB prediction. The AGB model using these two best predictors explained 59.59% of AGB variation, with an Adj. R² of 0.92, RMSE of 33.37 Mg/ha (20.28%), and bias of -0.69 (-0.42%). This study showed that LiDAR canopy structure metrics can be used to predict AGC stocks in Tropical Forest with acceptable precision and accuracy. Therefore, we conclude that there is good potential to monitor carbon sequestration in Brazilian Tropical Rain Forest using airborne LiDAR data, large field plots, and the random forest algorithm.

  3. Toward Aboveground Biomass Estimation with RADAR, Lidar and Optical Remote Sensing Data in Southern Mexico

    NASA Astrophysics Data System (ADS)

    Urbazaev, M.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Information on the spatial distribution of aboveground biomass (AGB) over large areas is needed (1) for understanding and managing the processes involved in the carbon cycle, and (2) supporting international policies for climate change mitigation and adaption. Using remote sensing techniques it is possible to provide spatially explicit information of AGB from local to global scales. In this work we present the first results on the use of multi-sensor remote sensing data to estimate AGB over three test sites in southern Mexico. In order to develop a set of AGB retrieval algorithms, we firstly compared different SAR parameters (e.g. multi-polarized backscatter intensities and interferometric coherence) obtained from ALOS PALSAR sensor and Landsat imagery with field-based AGB estimates using empirical regressions and analyzed the relationships between them. The next steps of the work will be development of a two-stage up-scaling approach: firstly, to enlarge the cal/val data, we propose to estimate AGB along airborne LiDAR (from G-LiHT sensor) transects using field-based AGB and LiDAR height metrics. With LiDAR-based AGB we will then calibrate SAR parameters in a non-parametric model (e.g., randomForest) to create AGB maps over the study areas. An overall aim of the study is the analysis of capabilities and limitations of SAR data for AGB mapping and the investigation of the potential synergistic use of SAR, LiDAR and optical systems.The proposed monitoring tool will facilitate quantitative estimations in loss of carbon storage and support the selection of terrestrial (e.g. tropical dry forests, shrublands) sites for conservation priorities with high value for the national carbon budget.

  4. A radiative transfer model-based method for the estimation of grassland aboveground biomass

    NASA Astrophysics Data System (ADS)

    Quan, Xingwen; He, Binbin; Yebra, Marta; Yin, Changming; Liao, Zhanmang; Zhang, Xueting; Li, Xing

    2017-02-01

    This paper presents a novel method to derive grassland aboveground biomass (AGB) based on the PROSAILH (PROSPECT + SAILH) radiative transfer model (RTM). Two variables, leaf area index (LAI, m2m-2, defined as a one-side leaf area per unit of horizontal ground area) and dry matter content (DMC, gcm-2, defined as the dry matter per leaf area), were retrieved using PROSAILH and reflectance data from Landsat 8 OLI product. The result of LAI × DMC was regarded as the estimated grassland AGB according to their definitions. The well-known ill-posed inversion problem when inverting PROSAILH was alleviated using ecological criteria to constrain the simulation scenario and therefore the number of simulated spectra. A case study of the presented method was applied to a plateau grassland in China to estimate its AGB. The results were compared to those obtained using an exponential regression, a partial least squares regression (PLSR) and an artificial neural networks (ANN). The RTM-based method offered higher accuracy (R2 = 0.64 and RMSE = 42.67 gm-2) than the exponential regression (R2 = 0.48 and RMSE = 41.65 gm-2) and the ANN (R2 = 0.43 and RMSE = 46.26 gm-2). However, the proposed method offered similar performance than PLSR as presented better determination coefficient than PLSR (R2 = 0.55) but higher RMSE (RMSE = 37.79 gm-2). Although it is still necessary to test these methodologies in other areas, the RTM-based method offers greater robustness and reproducibility to estimate grassland AGB at large scale without the need to collect field measurements and therefore is considered the most promising methodology.

  5. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem.

    PubMed

    Blue, Jarrod D; Souza, Lara; Classen, Aimée T; Schweitzer, Jennifer A; Sanders, Nathan J

    2011-11-01

    Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.

  6. Management and fertility control ecosystem carbon allocation to biomass production

    NASA Astrophysics Data System (ADS)

    Campioli, Matteo; Vicca, Sara; Janssens, Ivan

    2015-04-01

    Carbon (C) allocation within the ecosystem is one of the least understood processes in plant- and geo-sciences. The proportion of the C assimilated through photosynthesis (gross primary production, GPP) that is used for biomass production (BP) is a key variable of the C allocation process and it has been termed as biomass production efficiency (BPE). We investigated the potential drivers of BPE using a global dataset of BP, GPP, BPE and ancillary ecosystem characteristics (vegetation properties, climatic and environmental variables, anthropogenic impacts) for 131 sites comprising six major ecosystem types: forests, grasslands, croplands, tundra, boreal peatlands and marshes. We obtained two major findings. First, site fertility is the key driver of BPE across forests, with nutrient-rich forests allocating 58% of their photosynthates to BP, whereas this fraction is only 42% for nutrient-poor forests. Second, by disentangling the effect of management from the effect of fertility and by integrating all ecosystem types, we observed that BPE is globally not driven by the 'natural' site fertility, but by the positive effect brought by management on the nutrient availability. This resulted in managed ecosystems having substantially larger BPE than natural ecosystems. These findings will crucially improve our elucidation of the human impact on ecosystem functioning and our predictions of the global C cycle.

  7. Mapping 2002-2012 Aboveground Biomass Carbon from LiDAR and Landsat Time Series across Northern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Hudak, A. T.; Fekety, P.; Falkowski, M. J.; Kennedy, R. E.; Crookston, N.; Smith, A. M.

    2015-12-01

    The heavy investment by public and private land management entities in commercial off-the-shelf airborne lidar provides an optimum basis for a Carbon Monitoring System due to the known sensitivity of lidar to vegetation canopy structure. The ability to accurately map aboveground carbon pools from lidar and collocated field plot data has been demonstrated in many studies. Our goal is to upscale this biomass information, mapped at 30 m resolution, to the regional level using wall-to-wall, multi-temporal Landsat imagery. We use the LandTrendr approach to transform Landsat time series into annual maps of Brightness, Greenness, and Wetness along with annual change estimates of these same tasseled cap indices. These, along with ancillary layers of canopy height (e.g., GLAS-derived), topography (e.g., insolation), and climate (e.g., mean annual precipitation) are used to predict 2002-2012 aboveground carbon annually across the northern half of Idaho, USA. Ecoregion-specific models are developed to impute aboveground biomass and forest type beneath a forest/non-forest mask. Annual maps are then summarized at the county-level and compared to publically available Forest Inventory and Analysis estimates for Monitoring, Reporting and Verification.

  8. Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.

    2013-01-01

    Annual/perennial and tall/short plant species differentially dominate early to late successional shortgrass steppe communities. Plant species can have different ratios of above-/below-ground biomass distributions and this can be modified by precipitation and grazing. We compared grazing effects on aboveground production and root biomass in early- and mid-seral fields and undisturbed shortgrass steppe. Production averaged across four years and grazed and ungrazed treatments were 246, 134, and 102 g m−2 yr−1 for the early-, mid-seral, and native sites, respectively, while root biomass averaged 358, 560, and 981 g m−2, respectively. Early- and mid-seral communities provided complimentary forage supplies but at the cost of root biomass. Grazing increased, decreased, or had no effect on aboveground production in early-, mid-seral, and native communities, and had no effect on roots in any. Grazing had some negative effects on early spring forage species, but not in the annual dominated early-seral community. Dominant species increased with grazing in native communities with a long evolutionary history of grazing by large herbivores, but had no effects on the same species in mid-seral communities. Effects of grazing in native communities in a region cannot necessarily be used to predict effects at other seral stages.

  9. Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States.

    PubMed

    Vanderwel, Mark C; Coomes, David A; Purves, Drew W

    2013-05-01

    The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1-5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on

  10. Investigating Appropriate Sampling Design for Estimating Above-Ground Biomass in Bruneian Lowland Mixed Dipterocarp Forest

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, D.; Abu Salim, K.; Yun, H. M.; Han, S.; Lee, W. K.; Davies, S. J.; Son, Y.

    2014-12-01

    Mixed tropical forest structure is highly heterogeneous unlike plantation or mixed temperate forest structure, and therefore, different sampling approaches are required. However, the appropriate sampling design for estimating the above-ground biomass (AGB) in Bruneian lowland mixed dipterocarp forest (MDF) has not yet been fully clarified. The aim of this study was to provide supportive information in sampling design for Bruneian forest carbon inventory. The study site was located at Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Six 60 m × 60 m quadrats were established, separated by a distance of approximately 100 m and each was subdivided into quadrats of 10 m × 10 m, at an elevation between 200 and 300 m above sea level. At each plot all free-standing trees with diameter at breast height (dbh) ≥ 1 cm were measured. The AGB for all trees with dbh ≥ 10 cm was estimated by allometric models. In order to analyze changes in the diameter-dependent parameters used for estimating the AGB, different quadrat areas, ranging from 10 m × 10 m to 60 m × 60 m, were used across the study area, starting at the South-West end and moving towards the North-East end. The derived result was as follows: (a) Big trees (dbh ≥ 70 cm) with sparse distribution have remarkable contribution to the total AGB in Bruneian lowland MDF, and therefore, special consideration is required when estimating the AGB of big trees. Stem number of trees with dbh ≥ 70 cm comprised only 2.7% of all trees with dbh ≥ 10 cm, but 38.5% of the total AGB. (b) For estimating the AGB of big trees at the given acceptable limit of precision (p), it is more efficient to use large quadrats than to use small quadrats, because the total sampling area decreases with the former. Our result showed that 239 20 m × 20 m quadrats (9.6 ha in total) were required, while 15 60 m × 60 m quadrats (5.4 ha in total) were required when estimating the AGB of the trees

  11. Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data

    NASA Astrophysics Data System (ADS)

    Fayad, Ibrahim; Baghdadi, Nicolas; Guitet, Stéphane; Bailly, Jean-Stéphane; Hérault, Bruno; Gond, Valéry; El Hajj, Mahmoud; Tong Minh, Dinh Ho

    2016-10-01

    Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain "wall-to-wall" AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS

  12. Exploring the possibility of estimating the aboveground biomass of Vallisneria spiralis L. using Landsat TM image in Dahuchi, Jiangxi Province, China

    NASA Astrophysics Data System (ADS)

    Wu, Guofeng; de Leeuw, Jan; Skidmore, Andrew K.; Prins, Herbert H. T.; Liu, Yaolin

    2005-10-01

    The provision of food to breeding and migrating waterfowl is one of the major functions of submerged aquatic vegetation in shallow lakes. Vallisneria spiralis L. is a submerged aquatic plant species widely distributed within Jiangxi Poyang Lake National Nature Reserve, China. More than 95% of the world population of the endangered Siberian crane as well as significant numbers of Bewick's swan and swan goose over winter in this area, while foraging on the tubers of Vallisneria. The objective of this paper was to explore the possibility of estimating the aboveground biomass of Vallisneria in Dahuchi Lake using Landsat TM image. The relations between aboveground biomass and the bands of a Landsat TM image and their derived variables were investigated using uni- and multivariate linear and non-linear regression models. The results revealed significant but very weak relations between aboveground biomass and the remotely sensed variables. Hence Landsat TM imagery offered little potential to predict aboveground biomass of Vallisneria in this particular region. Possible reasons which could have caused these results were discussed, including: 1) the possible influence of suspended matter in the water; 2) the less accurate field sampling; 3) the limitations of spatial and spectral resolutions of Landsat TM image; 4) the methods used are not appropriate; 5) the homogeneously spatial distribution of aboveground biomass. We propose considering two alternative methods to improve the estimation of aboveground biomass of Vallisneria. First of all, results might be improved while combining alternative data sources (hyperspectral or high spatial resolution images) with innovative methods and more accurate sampling data; Secondly we propose assessing aboveground biomass while using productivity simulation models of submerged aquatic vegetation integrated with geographic information system (GIS) and remote sensing.

  13. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula).

    PubMed

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees' resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem-wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (K R) to increase, while K R (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation.

  14. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula)

    PubMed Central

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees’ resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem–wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (KR) to increase, while KR (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation. PMID:26528318

  15. The response of tundra plant biomass, above-ground production, nitrogen, and CO{sub 2} flux to experimental warming

    SciTech Connect

    Hobbie, S.E.; Chapin, F.S. III

    1998-07-01

    The authors manipulated air temperature in tussock tundra near Toolik Lake, Alaska, and determined the consequences for total plant biomass, aboveground net primary production (ANPP), ecosystem nitrogen (N) pools and N uptake, and ecosystem CO{sub 2} flux. After 3.5 growing seasons, in situ plastic greenhouses that raised air temperature during the growing season had little effect on total biomass, N content, or growing-season N uptake of the major plant and soil pools. Similarly, vascular ANPP and net ecosystem CO{sub 2} exchange did not change with warming, although net primary production of mosses decreased with warming. Such general lack of response supports the hypothesis that productivity in tundra is constrained by the indirect effects of cold temperatures rather than by cold growing-season temperatures per se. Despite no effect on net ecosystem CO{sub 2} flux, air warming stimulated early-season gross photosynthesis (GP) and ecosystem respiration (ER) throughout the growing season. This increased carbon turnover was probably associated with species-level responses to increased air temperature. Warming increased the aboveground biomass of the overstory shrub, dwarf birch (Betula nana), and caused a significant net redistribution of N from the understory evergreen shrub, Vaccinium vitis-idaea, to B. nana, despite no effects on soil temperature, total plant N, or N availability.

  16. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    PubMed

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  17. Simulation results of aboveground woody biomass and leaf litterfall for African tropical forest with a global terrestrial model

    NASA Astrophysics Data System (ADS)

    De Weirdt, Marjolein; Maignan, Fabienne; Peylin, Philippe; Poulter, Benjamin; Moreau, Inès; Ciais, Philippe; Defourny, Pierre; Steppe, Kathy; Verbeeck, Hans

    2014-05-01

    The response of tropical forest vegetation to global climate change could be central to predictions of future levels of atmospheric carbon dioxide. Tropical forests are believed to annually process approximately six times as much carbon via photosynthesis and respiration as humans emit from fossil fuel use. Of all tropical forests worldwide, the role of African tropical forest is not very well known and both the quantity as well as the dynamics of tropical forest carbon stocks and fluxes are very poorly quantified components of the global carbon cycle. Furthermore, African tropical forest spatial carbon stocks patterns as measured in the field are not as well represented by the global biogeochemical models as they are for temperate forests. In this study, a first simulation for the African tropical forest with the process based global terrestrial ecosystem model ORCHIDEE was done. In this work, ORCHIDEE included deep soils, seasonal leaf litterfall and phosphorus availability mechanisms for tropical evergreen forests included. The ORCHIDEE model run outputs are evaluated against reported field inventories, investigating seasonal variations in leaf litterfall and spatial variation in aboveground woody biomass. A comparison between modeled and measured leaf litterfall was made at a semi-deciduous Equatorial rainforest site in the Republic of Congo at the Biosphere reserve Dimonika south of Gabon. Also, simulated woody aboveground biomass was compared against site-level field inventories and satellite-based estimates based on a combination of MODIS imagery with field inventory data from Uganda, DRC and Cameroon. First comparison results seem promising and show that the radiation driven leaf litterfall model results correspond well with the field inventories and that the mean of the modelled aboveground woody biomass matches the available field inventory observations but there is still a need for more ground data to evaluate the model outcome over a large region like

  18. Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau

    PubMed Central

    Zeng, Chaoxu; Wu, Jianshuang; Zhang, Xianzhou

    2015-01-01

    Biomass allocation is an essential concept for understanding above- vs. below-ground functions and for predicting the dynamics of community structure and ecosystem service under ongoing climate change. There is rare available knowledge of grazing effects on biomass allocation in multiple zonal alpine grassland types along climatic gradients across the Northern Tibetan Plateau. We collected the peak above- and below-ground biomass (AGB and BGB) values at 106 pairs of well-matched grazed vs. fenced sites during summers of 2010–2013, of which 33 pairs were subject to meadow, 52 to steppe and 21 to desert-steppe. The aboveground net primary productivity (ANPP) was represented by the peak AGB while the belowground net primary productivity (BNPP) was estimated from ANPP, the ratio of living vs. dead BGB, and the root turnover rate. Two-ways analyses of variance (ANOVA) and paired samples comparisons with t-test were applied to examine the effects of pasture managements (PMS, i.e., grazed vs. fenced) and zonal grassland types on both ANPP and BNPP. Allometric and isometric allocation hypotheses were also tested between logarithmically transformed ANPP and BNPP using standardized major axis (SMA) analyses across grazed, fenced and overall sites. In our study, a high community-dependency was observed to support the allometric biomass allocation hypothesis, in association with decreased ANPP and a decreasing-to-increasing BNPP proportions with increasing aridity across the Northern Tibetan Plateau. Grazing vs. fencing seemed to have a trivial effect on ANPP compared to the overwhelming influence of different zonal grassland types. Vegetation links above- and below-ground ecological functions through integrated meta-population adaptive strategies to the increasing severity of habitat conditions. Therefore, more detailed studies on functional diversity are essentially to achieve conservation and sustainability goals under ongoing climatic warming and intensifying human

  19. Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau.

    PubMed

    Zeng, Chaoxu; Wu, Jianshuang; Zhang, Xianzhou

    2015-01-01

    Biomass allocation is an essential concept for understanding above- vs. below-ground functions and for predicting the dynamics of community structure and ecosystem service under ongoing climate change. There is rare available knowledge of grazing effects on biomass allocation in multiple zonal alpine grassland types along climatic gradients across the Northern Tibetan Plateau. We collected the peak above- and below-ground biomass (AGB and BGB) values at 106 pairs of well-matched grazed vs. fenced sites during summers of 2010-2013, of which 33 pairs were subject to meadow, 52 to steppe and 21 to desert-steppe. The aboveground net primary productivity (ANPP) was represented by the peak AGB while the belowground net primary productivity (BNPP) was estimated from ANPP, the ratio of living vs. dead BGB, and the root turnover rate. Two-ways analyses of variance (ANOVA) and paired samples comparisons with t-test were applied to examine the effects of pasture managements (PMS, i.e., grazed vs. fenced) and zonal grassland types on both ANPP and BNPP. Allometric and isometric allocation hypotheses were also tested between logarithmically transformed ANPP and BNPP using standardized major axis (SMA) analyses across grazed, fenced and overall sites. In our study, a high community-dependency was observed to support the allometric biomass allocation hypothesis, in association with decreased ANPP and a decreasing-to-increasing BNPP proportions with increasing aridity across the Northern Tibetan Plateau. Grazing vs. fencing seemed to have a trivial effect on ANPP compared to the overwhelming influence of different zonal grassland types. Vegetation links above- and below-ground ecological functions through integrated meta-population adaptive strategies to the increasing severity of habitat conditions. Therefore, more detailed studies on functional diversity are essentially to achieve conservation and sustainability goals under ongoing climatic warming and intensifying human

  20. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, Yuxiang; Lee, Gilzae; Lee, Pilzae; Oikawa, Takehisa

    2007-01-01

    In this study, we have analyzed the productivity of a grassland ecosystem in Kherlenbayan-Ulaan (KBU), Mongolia under non-grazing and grazing conditions using a new simulation model, Sim-CYCLE grazing. The model was obtained by integrating the Sim-CYCLE [Ito, A., Oikawa, T., 2002. A simulation model of carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecological Modeling, 151, pp. 143-176] and a defoliation formulation [Seligman, N.G., Cavagnaro, J.B., Horno, M.E., 1992. Simulation of defoliation effects on primary production of warm-season, semiarid perennial- species grassland. Ecological Modelling, 60, pp. 45-61]. The results from the model have been validated against a set of field data obtained at KBU showing that both above-ground biomass (AB) and above-ground net primary production ( Np,a) decrease with increasing grazing intensity. The simulated maximum AB for a year maintains a nearly constant value of 1.15 Mg DM ha -1 under non-grazing conditions. The AB decreases and then reaches equilibrium under a stocking rate ( Sr) of 0.4 sheep ha -1 and 0.7 sheep ha -1. The AB decreases all the time if Sr is greater than 0.7 sheep ha -1. These results suggest that the maximum sustainable Sr is 0.7 sheep ha -1. A similar trend is also observed for the simulated Np,a. The annual Np,a is about 1.25 Mg DM ha -1 year -1 and this value is also constant under non-grazing conditions. The annual Np,a decreases and then reaches equilibrium under an Sr of 0.4 sheep ha -1 and 0.7 sheep ha -1, but the Np,a decreases all the time when Sr is greater than 0.7 sheep ha -1. It also indicates that the maximum sustainable Sr is 0.7 sheep ha -1. Transpiration ( ET) and evaporation ( EE) rates were determined by the Penman-Monteith method. Simulated results show that ET decreases with increasing Sr, while EE increases with increasing Sr. At equilibrium, the annual mean evapotranspiration ( E) is 189.11 mm year -1

  1. Above-ground biomass estimation of tuberous bulrush ( Bolboschoenus planiculmis) in mudflats using remotely sensed multispectral image

    NASA Astrophysics Data System (ADS)

    Kim, Ji Yoon; Im, Ran-Young; Do, Yuno; Kim, Gu-Yeon; Joo, Gea-Jae

    2016-03-01

    We present a multivariate regression approach for mapping the spatial distribution of above-ground biomass (AGB) of B. planiculmis using field data and coincident moderate spatial resolution satellite imagery. A total of 232 ground sample plots were used to estimate the biomass distribution in the Nakdong River estuary. Field data were overlain and correlated with digital values from an atmospherically corrected multispectral image (Landsat 8). The AGB distribution was derived using empirical models trained with field-measured AGB data. The final regression model for AGB estimation was composed using the OLI3, OLI4, and OLI7 spectral bands. The Pearson correlation between the observed and predicted biomass was significant (R = 0.84, p < 0.0001). OLI3 made the largest contribution to the final model (relative coefficient value: 53.4%) and revealed a negative relationship with the AGB biomass. The total distribution area of B. planiculmis was 1,922,979 m2. Based on the model estimation, the total AGB had a dry weight (DW) of approximately 298.2 tons. The distribution of high biomass stands (> 200 kg DW/900 m2) constituted approximately 23.91% of the total vegetated area. Our findings suggest the expandability of remotely sensed products to understand the distribution pattern of estuarine plant productivity at the landscape level.

  2. Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression

    PubMed Central

    Marabel, Miguel; Alvarez-Taboada, Flor

    2013-01-01

    Aboveground biomass (AGB) is one of the strategic biophysical variables of interest in vegetation studies. The main objective of this study was to evaluate the Support Vector Machine (SVM) and Partial Least Squares Regression (PLSR) for estimating the AGB of grasslands from field spectrometer data and to find out which data pre-processing approach was the most suitable. The most accurate model to predict the total AGB involved PLSR and the Maximum Band Depth index derived from the continuum removed reflectance in the absorption features between 916–1,120 nm and 1,079–1,297 nm (R2 = 0.939, RMSE = 7.120 g/m2). Regarding the green fraction of the AGB, the Area Over the Minimum index derived from the continuum removed spectra provided the most accurate model overall (R2 = 0.939, RMSE = 3.172 g/m2). Identifying the appropriate absorption features was proved to be crucial to improve the performance of PLSR to estimate the total and green aboveground biomass, by using the indices derived from those spectral regions. Ordinary Least Square Regression could be used as a surrogate for the PLSR approach with the Area Over the Minimum index as the independent variable, although the resulting model would not be as accurate. PMID:23925082

  3. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    NASA Astrophysics Data System (ADS)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  4. Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture.

    PubMed

    Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan

    2012-01-01

    In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64-70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients.

  5. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    SciTech Connect

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density

  6. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  7. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    PubMed

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.

  8. Spatial effects of aboveground biomass on soil ecological parameters and trace gas fluxes in a savannah ecosystem of Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2015-04-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation in this area consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. Canopy structure is known to affect microclimate, throughfall and evapotranspiration and thereby controls soil moisture conditions. Consequently, the canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine trends and changes of soil parameters and relate their spatial variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. Distances were calculated in relation to the crown radius. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass carbon C and N, soil respiration as well as root biomass and -density, soil temperature and soil water content. Each tree was characterized by crown spread, leaf area index and basal area. Preliminary results show that C and N stocks decreased about 50% with depth independently of distance to the tree. Soil water content under the tree crown increased with depth while it decreased under grass cover. Microbial

  9. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.

    PubMed

    Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai

    2016-09-01

    Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients.

  10. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing

    NASA Astrophysics Data System (ADS)

    Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil

    2014-01-01

    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.

  11. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China

    PubMed Central

    Shao, Zhenfeng; Zhang, Linjing

    2016-01-01

    Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378

  12. Aboveground Biomass and Dynamics of Forest Attributes using LiDAR Data and Vegetation Model

    NASA Astrophysics Data System (ADS)

    V V L, P. A.

    2015-12-01

    In recent years, biomass estimation for tropical forests has received much attention because of the fact that regional biomass is considered to be a critical input to climate change. Biomass almost determines the potential carbon emission that could be released to the atmosphere due to deforestation or conservation to non-forest land use. Thus, accurate biomass estimation is necessary for better understating of deforestation impacts on global warming and environmental degradation. In this context, forest stand height inclusion in biomass estimation plays a major role in reducing the uncertainty in the estimation of biomass. The improvement in the accuracy in biomass shall also help in meeting the MRV objectives of REDD+. Along with the precise estimate of biomass, it is also important to emphasize the role of vegetation models that will most likely become an important tool for assessing the effects of climate change on potential vegetation dynamics and terrestrial carbon storage and for managing terrestrial ecosystem sustainability. Remote sensing is an efficient way to estimate forest parameters in large area, especially at regional scale where field data is limited. LIDAR (Light Detection And Ranging) provides accurate information on the vertical structure of forests. We estimated average tree canopy heights and AGB from GLAS waveform parameters by using a multi-regression linear model in forested area of Madhya Pradesh (area-3,08,245 km2), India. The derived heights from ICESat-GLAS were correlated with field measured tree canopy heights for 60 plots. Results have shown a significant correlation of R2= 74% for top canopy heights and R2= 57% for stand biomass. The total biomass estimation 320.17 Mt and canopy heights are generated by using random forest algorithm. These canopy heights and biomass maps were used in vegetation models to predict the changes biophysical/physiological characteristics of forest according to the changing climate. In our study we have

  13. A RAPID NON-DESTRUCTIVE METHOD FOR ESTIMATING ABOVEGROUND BIOMASS OF SALT MARSH GRASSES

    EPA Science Inventory

    Understanding the primary productivity of salt marshes requires accurate estimates of biomass. Unfortunately, these estimates vary enough within and among salt marshes to require large numbers of replicates if the averages are to be statistically meaningful. Large numbers of repl...

  14. [Vegetation biomass allocation and its spatial distribution after 20 years ecological restoration in a dry-hot valley in Yuanmou, Yunnan Province of Southwest China].

    PubMed

    Li, Bin; Tang, Guo-Yong; Li, Kun; Gao, Cheng-Jie; Liu, Fang-Yan; Wang, Xiao-Fei

    2013-06-01

    By using layering harvest method, a comparative study was conducted on the biomass allocation and its spatial distribution of 20-year-old Eucalyptus camaldulensis plantation, Leucaena leucocephala plantation, and E. camaldulensis-L. leucocephala plantation in Yuanmou dry-hot valley of Yunnan Province, Southwest China. The stand biomass in the mixed E. camaldulensis-L. leucocephala plantation (82.99 t x hm(-2)) was between that of monoculture E. camaldulensis plantation (60.64 t x hm(-2)) and L. leucocephala plantation (127.79 t x hm(-2)). The individual tree biomass of E. camaldulensis in the mixed plantation (44.32 kg) was 49.8% higher than that in monoculture plantation (29.58 kg). The branch and leaf biomass of L. leucocephala (25.4%) in monoculture plantation was larger than that of E. camaldulensis (8.9%) in monoculture plantation, and the aboveground biomass distribution ratio (78.0%) of L. leucocephala (25.4%) was also higher than that of E. camaldulensis (73.4%). The roots of L. leucocephala in both monoculture and mixed plantations were mainly distributed in 0-40 cm soil layer, while those of E. camaldulensis in monoculture and mixed plantations were mainly found in 0-80 cm and 0-60 cm, respectively. The proportion of biomass allocated to roots including medium roots, small roots, and fine roots of L. leucocephala in mixed plantation was higher than that in monoculture plantation, but it was contrary for E. camaldulensis. It was suggested that introducing L. leucocephala in E. camaldulensis plantation promoted the growth of E. camaldulensis, especially for its aboveground biomass, and increased the amount of lateral roots in 0-20 cm soil layer, which had significance in soil and water conservation in the study area.

  15. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  16. [Aboveground biomass input of Myristicaceae tree species in the Amazonian Forest in Peru].

    PubMed

    Ureta Adrianzén, Marisabel

    2015-03-01

    Amazonian forests are a vast storehouse of biodiversity and function as carbon sinks from biomass that accumulates in various tree species. In these forests, the taxa with the greatest contribution of biomass cannot be precisely defined, and the representative distribution of Myristicaceae in the Peruvian Amazon was the starting point for designing the present study, which aimed to quantify the biomass contribution of this family. For this, I analyzed the databases that corresponded to 38 sample units that were previously collected and that were provided by the TeamNetwork and RAINFOR organizations. The analysis consisted in the estimation of biomass using pre-established allometric equations, Kruskal-Wallis sample comparisons, interpolation-analysis maps, and nonparametric multidimensional scaling (NMDS). The results showed that Myristicaceae is the fourth most important biomass contributor with 376.97 Mg/ha (9.92 Mg/ha in average), mainly due to its abundance. Additionally, the family shows a noticeable habitat preference for certain soil conditions in the physiographic units, such is the case of Virola pavonis in "varillales", within "floodplain", or Iryanthera tessmannii and Virola loretensis in sewage flooded areas or "igapo" specifically, and the preference of Virola elongata and irola surinamensis for white water flooded areas or "varzea" edaphic conditions of the physiographic units taken in the study.

  17. Effects of soil C:N:P stoichiometry on biomass allocation in the alpine and arid steppe systems.

    PubMed

    Wang, Xiaodan; Ma, Xingxing; Yan, Yan

    2017-03-01

    Soil nutrients strongly influence biomass allocation. However, few studies have examined patterns induced by soil C:N:P stoichiometry in alpine and arid ecosystems. Samples were collected from 44 sites with similar elevation along the 220-km transect at spatial intervals of 5 km along the northern Tibetan Plateau. Aboveground biomass (AGB) levels were measured by cutting a sward in each plot. Belowground biomass (BGB) levels were collected from soil pits in a block of 1 m × 1 m in actual root depth. We observed significant decreases in AGB and BGB levels but increases in the BGB:AGB ratio with increases in latitude. Although soil is characterized by structural complexity and spatial heterogeneity, we observed remarkably consistent C:N:P ratios within the cryic aridisols. We observed significant nonlinear relationships between the soil N:P and BGB:AGB ratios. The critical N:P ratio in soils was measured at approximately 2.0, above which the probability of BGB:AGB response to nutrient availability is small. These findings serve as interesting contributions to the global data pool on arid plant stoichiometry, given the previously limited knowledge regarding high-altitude regions.

  18. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes

    NASA Astrophysics Data System (ADS)

    Mitchard, E. T. A.; Saatchi, S. S.; Woodhouse, I. H.; Nangendo, G.; Ribeiro, N. S.; Williams, M.; Ryan, C. M.; Lewis, S. L.; Feldpausch, T. R.; Meir, P.

    2009-12-01

    Regional-scale above-ground biomass (AGB) estimates of tropical savannas and woodlands are highly uncertain, despite their global importance for ecosystems services and as carbon stores. In response, we collated field inventory data from 253 plots at four study sites in Cameroon, Uganda and Mozambique, and examined the relationships between field-measured AGB and cross-polarized radar backscatter values derived from ALOS PALSAR, an L-band satellite sensor. The relationships were highly significant, similar among sites, and displayed high prediction accuracies up to 150 Mg ha-1 (±˜20%). AGB predictions for any given site obtained using equations derived from data from only the other three sites generated only small increases in error. The results suggest that a widely applicable general relationship exists between AGB and L-band backscatter for lower-biomass tropical woody vegetation. This relationship allows regional-scale AGB estimation, required for example by planned REDD (Reducing Emissions from Deforestation and Degradation) schemes.

  19. Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China

    PubMed Central

    Xu, Xiaotian; Liu, Hongyan; Song, Zhaoliang; Wang, Wei; Hu, Guozheng; Qi, Zhaohuan

    2015-01-01

    Although nitrogen addition and recovery from degradation can both promote production of grassland biomass, these two factors have rarely been investigated in combination. In this study, we established a field experiment with six N-treatment (CK, 10, 20, 30, 40, 50 g N m−2 yr−1) on five fields with different degradation levels in the Inner Mongolian steppe of China from 2011–2013. Our observations showed that while the external nitrogen increased the aboveground biomass in all five grasslands, the magnitude of the effects differed with the severity of degradation. Fields with a higher level of degradation tended to have a higher saturation value (20 g N m−2 yr−1) than those with a lower degradation level ( < 10 g N m−2 yr−1). After three years of experimentation, species richness showed little change across degradation levels. Among the four functional groups of grasses, sedges, forbs and legumes, grasses shared the most similar response patterns with those of the whole community, demonstrating the predominant role that they play in the restoration of grassland under a stimulus of nitrogen addition. PMID:26194184

  20. Integration method to estimate above-ground biomass in arid prairie regions using active and passive remote sensing data

    NASA Astrophysics Data System (ADS)

    Xing, Minfeng; He, Binbin; Li, Xiaowen

    2014-01-01

    The use of microwave remote sensing for estimating vegetation biomass is limited in arid grassland regions because of the heterogeneous distribution of vegetation, sparse vegetation cover, and the strong influence from soil. To minimize the problem, a synergistic method of active and passive remote sensing data for retrieval of above-ground biomass (AGB) was developed in this paper. Vegetation coverage, which can be easily estimated from optical data, was combined in the scattering model. The total backscattering was divided into the amount attributed to areas covered with vegetation and that attributed to areas of bare soil. Backscattering coefficients were simulated using the established scattering model. A look-up table was established using the relationship between the vegetation water content and the backscattering coefficient for water content retrieval. Then, AGB was estimated using the relationship between the vegetation water content and the AGB. The method was applied to estimate the AGB of the Wutumeiren prairie. Finally, the accuracy and sources of error in this innovative AGB retrieval method were evaluated. The results showed that the predicted AGB correlated with the measured AGB (R2=0.8414, RMSE=0.1953 kg/m2). Thus, the method has operational potential for the estimation of the AGB of herbaceous vegetation in arid regions.

  1. Biotic and abiotic controls on the distribution of tropical forest aboveground biomass

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Schimel, D.; Keller, M. M.; Chambers, J. Q.; Dubayah, R.; Duffy, P.; Yu, Y.; Robinson, C. M.; Chowdhury, D.; Yang, Y.

    2013-12-01

    AUTHOR: Sassan Saatchi1,2, Yan Yang2, Diya Chowdhury2, Yifan Yu2, Chelsea Robinson2, David Schimel1, Paul Duffy3, Michael Keller4, Ralph Dubayah5, Jeffery Chambers6 1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA 2. Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA 3. Neptune and Company, Inc. Denver, CO, USA 4. International Institute of Tropical Forestry & International Programs, USDA Forest Service, Campinas, Brazil 5. Department of Geography, University of Maryland, College Park, MD, USA 6. Department of Geography, University of California, Berkeley, CA, USA ABSTRACT BODY: In recent years, climate change policies and scientific research created a widespread interest in quantify the carbon stock and changes of global tropical forests extending from forest patches to national and regional scales. Using a combination of inventory data from field plots and forest structure from spaceborne Lidar data, we examine the main controls on the distribution of tropical forest biomass. Here, we concentrate on environmental and landscape variables (precipitation, temperature, topography, and soil), and biotic variables such as functional traits (density of large trees, and wood specific gravity). The analysis is performed using global bioclimatic variables for precipitation and temperature, SRTM data for topographical variables (elevation and ruggedness), and global harmonized soil data for soil type and texture. For biotic variables, we use the GLAS Lidar data to quantify the distribution of large trees, a combined field and remote sensing data for distribution of tree wood specific gravity. The results show that climate variables such as precipitation of dry season can explain the heterogeneity of forest biomass over the landscape but cannot predict the biomass variability significantly and particularly for high biomass forests. Topography such as elevation and ruggedness along with temperature can

  2. Aboveground Biomass Estimation in a Tidal Brackish Marsh Using Simulated Thematic Mapper Spectral Data

    NASA Technical Reports Server (NTRS)

    Hardisky, M.; Klemas, V.

    1984-01-01

    Spectral radiance data were collected from the ground and from a low altitude aircraft in an attempt to gain some insight into the potential utility of actual Thematic Mapper data for biomass estimation in wetland plant communities. No attempt was made to distinguish individual plant species within brackish marsh plant associations. Rather, it was decided to lump plant species with similar canopy morphologies and then estimate from spectral radiance data the biomass of the group. The rationale for such an approach is that plants with a similar morphology will produce a similar reflecting or absorping surface (i.e., canopy) for incoming electromagnetic radiation. Variations in observed reflectance from different plant communities with a similar canopy morphology are more likely to be a result of biomass differences than a result of differences in canopy architecture. If the hypothesis that plants with a similar morphology exhibit similar reflectance characteristics is true, then biomass can be estimated based on a model for the dominant plant morphology within a plant association and the need for species discrimination has effectively been eliminated.

  3. Estimating terrestrial aboveground biomass estimation using lidar remote sensing: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zolkos, S. G.; Goetz, S. J.; Dubayah, R.

    2012-12-01

    Estimating biomass of terrestrial vegetation is a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD). The accuracy of biomass estimates is important in the context carbon markets emerging under REDD, since areas with more accurate estimates command higher prices, but also for characterizing uncertainty in estimates of carbon cycling and the global carbon budget. There is particular interest in mapping biomass so that carbon stocks and stock changes can be monitored consistently across a range of scales - from relatively small projects (tens of hectares) to national or continental scales - but also so that other benefits of forest conservation can be factored into decision making (e.g. biodiversity and habitat corridors). We conducted an analysis of reported biomass accuracy estimates from more than 60 refereed articles using different remote sensing platforms (aircraft and satellite) and sensor types (optical, radar, lidar), with a particular focus on lidar since those papers reported the greatest efficacy (lowest errors) when used in the a synergistic manner with other coincident multi-sensor measurements. We show systematic differences in accuracy between different types of lidar systems flown on different platforms but, perhaps more importantly, differences between forest types (biomes) and plot sizes used for field calibration and assessment. We discuss these findings in relation to monitoring, reporting and verification under REDD, and also in the context of more systematic assessment of factors that influence accuracy and error estimation.

  4. Rapid assessment of above-ground biomass of Giant Reed using visibility estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid estimation of biomass and density of giant reed (Arundo donax L.) was developed using estimates of visibility as a predictive tool. Visibility estimates were derived by capturing digital images of a 0.25 m2 polystyrene whiteboard placed a set distance (1m) from the edge of gia...

  5. Aboveground Herbivory Shapes the Biomass Distribution and Flux of Soil Invertebrates

    PubMed Central

    Mulder, Christian; Den Hollander, Henri A.; Hendriks, A. Jan

    2008-01-01

    Background Living soil invertebrates provide a universal currency for quality that integrates physical and chemical variables with biogeography as the invertebrates reflect their habitat and most ecological changes occurring therein. The specific goal was the identification of “reference” states for soil sustainability and ecosystem functioning in grazed vs. ungrazed sites. Methodology/Principal Findings Bacterial cells were counted by fluorescent staining and combined direct microscopy and automatic image analysis; invertebrates (nematodes, mites, insects, oligochaetes) were sampled and their body size measured individually to allow allometric scaling. Numerical allometry analyses food webs by a direct comparison of weight averages of components and thus might characterize the detrital soil food webs of our 135 sites regardless of taxonomy. Sharp differences in the frequency distributions are shown. Overall higher biomasses of invertebrates occur in grasslands, and all larger soil organisms differed remarkably. Conclusions/Significance Strong statistical evidence supports a hypothesis explaining from an allometric perspective how the faunal biomass distribution and the energetic flux are affected by livestock, nutrient availability and land use. Our aim is to propose faunal biomass flux and biomass distribution as quantitative descriptors of soil community composition and function, and to illustrate the application of these allometric indicators to soil systems. PMID:18974874

  6. Temporal changes in allocation and partitioning of new carbon as (11)C elicited by simulated herbivory suggest that roots shape aboveground responses in Arabidopsis.

    PubMed

    Ferrieri, Abigail P; Agtuca, Beverly; Appel, Heidi M; Ferrieri, Richard A; Schultz, Jack C

    2013-02-01

    Using the short-lived isotope (11)C (t(1/2) = 20.4 min) as (11)CO(2), we captured temporal changes in whole-plant carbon movement and partitioning of recently fixed carbon into primary and secondary metabolites in a time course (2, 6, and 24 h) following simulated herbivory with the well-known defense elicitor methyl jasmonate (MeJA) to young leaves of Arabidopsis (Arabidopsis thaliana). Both (11)CO(2) fixation and (11)C-photosynthate export from the labeled source leaf increased rapidly (2 h) following MeJA treatment relative to controls, with preferential allocation of radiolabeled resources belowground. At the same time, (11)C-photosynthate remaining in the aboveground sink tissues showed preferential allocation to MeJA-treated, young leaves, where it was incorporated into (11)C-cinnamic acid. By 24 h, resource allocation toward roots returned to control levels, while allocation to the young leaves increased. This corresponded to an increase in invertase activity and the accumulation of phenolic compounds, particularly anthocyanins, in young leaves. Induction of phenolics was suppressed in sucrose transporter mutant plants (suc2-1), indicating that this phenomenon may be controlled, in part, by phloem loading at source leaves. However, when plant roots were chilled to 5°C to disrupt carbon flow between above- and belowground tissues, source leaves failed to allocate resources belowground or toward damaged leaves following wounding and MeJA treatment to young leaves, suggesting that roots may play an integral role in controlling how plants respond defensively aboveground.

  7. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  8. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.

    PubMed

    Zwicke, Marine; Alessio, Giorgio A; Thiery, Lionel; Falcimagne, Robert; Baumont, René; Rossignol, Nicolas; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-11-01

    Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more

  9. Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.

    PubMed

    Schnabel, William; Munk, Jens; Byrd, Amanda

    2015-01-01

    Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.

  10. Linking Carbon Fluxes with Remotely-Sensed Vegetation Indices for Leaf Area and Aboveground Biomass Through Footprint Climatology

    NASA Astrophysics Data System (ADS)

    Wayson, C.; Clark, K.; Hollinger, D. Y.; Skowronski, N.; Schmid, H. E.

    2010-12-01

    A major challenge of bottom-up scaling is that in-situ flux observations are spatially limited. Thus, to achieve valid regional exchange rates, models are used to interpolate and extrapolate to the vegetational/spatial domain covered by these observations. To parameterize these models from flux data, efforts must be made to select data that best represents the region being modeled as well as linking the fluxes to remotely-sensed data products that can be produced from site to regional scales. Because most long-term flux stations are not in spatially extensive, homogeneous locations, this requirement is often a challenge. However, this requirement can be met by selecting observation periods whose flux footprints are statistically representative of the type of ecosystem identified in the model. The flux footprint function indicates the time-varying surface “field-of-view” (or spatial sampling window) of an eddy-flux sensor, oriented mostly in upwind direction. For each observation period, the modeled flux footprint window is overlain with a high-resolution vegetation index map to determine a footprint-weighted vegetation index for which the observation is representative. Using flux-footprint analysis to link fluxes to models using just an enhanced vegetation index (EVI) map shows a positive trend between EVI and eddy covariance measured fluxes, but the link is not strong. Leaf area is linked with carbon (C) uptake, but forests tend to maximize leaf area, as determined through remote sensing, early on with forests having similar leaf areas across a wide range of ages. Adding another remotely-sensed dataset, aboveground biomass map (AGB), helps capture the processes of lower productivity rates (as biomass increases per unit of leaf area there is a decline, due to the forest ageing) and the C losses due to respiration, both heterotrophic and autotrophic (linked to live and detrital biomass pools). Adding biomass from LIDAR and a combined EVI-biomass layer to examine

  11. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    NASA Astrophysics Data System (ADS)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-03-01

    In mountainous areas of southwestern China, especially Guizhou Province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass, and land degradation reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five degraded (successional) stages: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou Province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats, are mostly distributed in the topsoil layers (89% on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26±0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  12. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    NASA Astrophysics Data System (ADS)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-07-01

    In mountainous areas of southwestern China, especially Guizhou province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass and land degradation that reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five land cover types: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats are mostly distributed in the topsoil layers (89 % on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26 ± 0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  13. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    PubMed

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  14. Diversity and Above-Ground Biomass Patterns of Vascular Flora Induced by Flooding in the Drawdown Area of China's Three Gorges Reservoir

    PubMed Central

    Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  15. Progress in the remote sensing of C3 and C4 grass species aboveground biomass over time and space

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Mutanga, Onisimo; Dube, Timothy

    2016-10-01

    The remote sensing of grass aboveground biomass (AGB) has gained considerable attention, with substantial research being conducted in the past decades. Of significant importance is their photosynthetic pathways (C3 and C4), which epitomizes a fundamental eco-physiological distinction of grasses functional types. With advances in technology and the availability of remotely sensed data at different spatial, spectral, radiometric and temporal resolutions, coupled with the need for detailed information on vegetation condition, the monitoring of C3 and C4 grasses AGB has received renewed attention, especially in the light of global climate change, biodiversity and, most importantly, food security. This paper provides a detailed survey on the progress of remote sensing application in determining C3 and C4 grass species AGB. Importantly, the importance of species functional type is highlighted in conjunction with the availability and applicability of different remote sensing datasets, with refined resolutions, which provide an opportunity to monitor C3 and C4 grasses AGB. While some progress has been made, this review has revealed the need for further remote sensing studies to model the seasonal (cyclical) variability, as well as long-term AGB changes in C3 and C4 grasses, in the face of climate change and food security. Moreover, the findings of this study have shown the significance of shifting towards the application of advanced statistical models, to further improve C3 and C4 grasses AGB estimation accuracy.

  16. Impacts of Sample Design on Estimation of Aboveground Biomass: Implications for the Assimilation of Lidar and Forest Inventory Data

    NASA Astrophysics Data System (ADS)

    Duffy, P.; Keller, M. M.; Morton, D. C.; Schimel, D.

    2015-12-01

    The availability of lidar data that can be used to characterize forest structure and estimate aboveground biomass (AGB) is rapidly increasing. When lidar data are considered in conjunction with forest inventory data to estimate AGB, the order of acquisition for these data products may impact the quality of the resulting estimates. In this work, we address this question in the context of uncertainty reduction with respect to estimation of AGB in a degraded forest in Paragominas, Brazil. We have developed a simulation framework that quantitatively assesses the uncertainty associated with estimation of AGB for different sampling strategies that combine forest inventory and lidar data. We utilize a Bayesian hierarchical modeling (BHM) data assimilation framework to combine information from the forest inventory and lidar data products into a higher order data product of AGB. Spatially explicit realizations of AGB are generated under different sampling strategies. Sampling strategies are assessed using the distributional properties of the assimilated higher order data product in the context of uncertainty reduction. We consider both spatially explicit maps of uncertainty as well as the standard deviation of the posterior predictive distributions of AGB as endpoints for the quantification of uncertainty. This framework allows for the explicit characterization of important sources of uncertainty. Our results show that a significant reduction in the uncertainty associated with estimation of AGB can be realized when design optimization is utilized in this context.

  17. Using LiDAR to Estimate Total Aboveground Biomass of Redwood Stands in the Jackson Demonstration State Forest, Mendocino, California

    NASA Astrophysics Data System (ADS)

    Rao, M.; Vuong, H.

    2013-12-01

    The overall objective of this study is to develop a method for estimating total aboveground biomass of redwood stands in Jackson Demonstration State Forest, Mendocino, California using airborne LiDAR data. LiDAR data owing to its vertical and horizontal accuracy are increasingly being used to characterize landscape features including ground surface elevation and canopy height. These LiDAR-derived metrics involving structural signatures at higher precision and accuracy can help better understand ecological processes at various spatial scales. Our study is focused on two major species of the forest: redwood (Sequoia semperirens [D.Don] Engl.) and Douglas-fir (Pseudotsuga mensiezii [Mirb.] Franco). Specifically, the objectives included linear regression models fitting tree diameter at breast height (dbh) to LiDAR derived height for each species. From 23 random points on the study area, field measurement (dbh and tree coordinate) were collected for more than 500 trees of Redwood and Douglas-fir over 0.2 ha- plots. The USFS-FUSION application software along with its LiDAR Data Viewer (LDV) were used to to extract Canopy Height Model (CHM) from which tree heights would be derived. Based on the LiDAR derived height and ground based dbh, a linear regression model was developed to predict dbh. The predicted dbh was used to estimate the biomass at the single tree level using Jenkin's formula (Jenkin et al 2003). The linear regression models were able to explain 65% of the variability associated with Redwood's dbh and 80% of that associated with Douglas-fir's dbh.

  18. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.

    PubMed

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-11-03

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.

  19. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests

    PubMed Central

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-01-01

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117

  20. Reproductive Allocation of Biomass and Nitrogen in Annual and Perennial Lesquerella Crops

    PubMed Central

    PLOSCHUK, E. L.; SLAFER, G. A.; RAVETTA, D. A.

    2005-01-01

    • Background and Aims The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. • Methods Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. • Key Results Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. • Conclusions It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy. PMID:15863469

  1. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    SciTech Connect

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer to true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.

  2. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    DOE PAGES

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; ...

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore » true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less

  3. Characterizing the environmental conditions and estimating aboveground biomass productivity for switchgrass in the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wylie, B. K.; Howard, D. M.

    2013-12-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to investigate the relationship between site environmental conditions and switchgrass productivity and identify the optimal conditions for productive switchgrass in the Great Plains (GP). Environmental and climate variables such as elevation, soil organic carbon, available water capacity, climate, and seasonal weather were used in this study. Satellite-derived growing season averaged Normalized Difference Vegetation Index was used as a proxy for switchgrass productivity. The environmental conditions for switchgrass sites of variable productivity were summarized and a data-driven multiple regression switchgrass productivity model was developed. Results show that spring precipitation has the strongest correlation with switchgrass productivity (r = 0.92, 176 samples) and spring minimum temperature has the weakest correlation with switchgrass productivity (r = 0.16). An estimated switchgrass productivity map for the entire GP based on site environmental and climate conditions was generated. The estimated switchgrass biomass productivity map indicates that highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study provide useful information for assessing economic feasibility or optimal land use decisions regarding switchgrass development in the GP.

  4. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    NASA Astrophysics Data System (ADS)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  5. China Forest Aboveground Biomass Estimation by Fusion of Inventory and Remote Sensing Data: 1st results from Heilongjiang Province and Yunnan Province

    NASA Astrophysics Data System (ADS)

    Pang, Y.; Li, Z.; Huang, G.; Sun, G.; Cheng, Z.; Zhang, Z.; Zhang, G.

    2013-12-01

    Forests play an irreplaceable role in maintaining regional ecological environment, global carbon balance and mitigating global climate change. Forest aboveground biomass (AGB) is an important indicator of forest carbon stocks. Estimating forest aboveground biomass accurately could significantly reduce the uncertainties in terrestrial ecosystem carbon cycle. LIDAR provides accurate information on the vertical structure of forests (Lefsky et al., 2007; Naesset et al., 2004; Pang et al., 2008). Combining airborne LiDAR and spaceborne LiDAR for regional forest biomass retrieval could provide a more reliable and accurate quantitative information in regional forest biomass estimate (Boudreau et al., 2008; Nelson et al., 2009; Pang et al., 2011; Saatchi et al., 2011). The Heilongjiang Province and Yunnan Province are rich in forest resources and suffers intensive forest management activities for timber products. The Heilongjiang Province is typical in temperate forest and the Yunnan Province contains multiple forest types including tropical forest. These two provinces also have good ground inventory system with thousands of permanent field plots. Two campaign consists of in-situ measurement, airborne Lidar data and spaceborne data fusion were designed and implemented. First results show that i). Both spaceborne lidar and forest inventory data are useful for AGB mapping at province level. ii). The combination of spaceborne lidar and forest inventory data gave better biomass estimation with less bias. iii). A pixel level bias mapping was also proposed and gave spatial explicit map of estimation uncertainties. This method will be investigated further with more reference data and tested in other area.

  6. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  7. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  8. Reducing Uncertainties in Satellite-derived Forest Aboveground Biomass Estimates using a High Resolution Forest Cover Map

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Ganguly, S.; Nemani, R. R.; Milesi, C.; Basu, S.; Kumar, U.

    2014-12-01

    Several studies to date have provided an extensive knowledge base for estimating forest aboveground biomass (AGB) and recent advances in space-based modeling of the 3-D canopy structure, combined with canopy reflectance measured by passive optical sensors and radar backscatter, are providing improved satellite-derived AGB density mapping for large scale carbon monitoring applications. A key limitation in forest AGB estimation from remote sensing, however, is the large uncertainty in forest cover estimates from the coarse-to-medium resolution satellite-derived land cover maps (present resolution is limited to 30-m of the USGS NLCD Program). The uncertainties in forest cover estimates at the Landsat scale result in high uncertainties for AGB estimation, predominantly in heterogeneous forest and urban landscapes. We have successfully developed an approach using a machine learning algorithm and High-Performance-Computing with NAIP air-borne imagery data for mapping tree cover at 1-m over California and Maryland. In a comparison with high resolution LiDAR data available over selected regions in the two states, we found our results to be promising both in terms of accuracy as well as our ability to scale nationally. The generated 1-m forest cover map will be aggregated to the Landsat spatial grid to demonstrate differences in AGB estimates (pixel-level AGB density, total AGB at aggregated scales like ecoregions and counties) when using a native 30-m forest cover map versus a 30-m map derived from a higher resolution dataset. The process will also be complemented with a LiDAR derived AGB estimate at the 30-m scale to aid in true validation.

  9. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data

    NASA Astrophysics Data System (ADS)

    Zhao, Panpan; Lu, Dengsheng; Wang, Guangxing; Liu, Lijuan; Li, Dengqiu; Zhu, Jinru; Yu, Shuquan

    2016-12-01

    In remote sensing-based forest aboveground biomass (AGB) estimation research, data saturation in Landsat and radar data is well known, but how to reduce this problem for improving AGB estimation has not been fully examined. Different vegetation types have their own species composition and stand structure, thus they have different data saturation values in Landsat or radar data. Optical and radar data also have different characteristics in representing forest stand structures, thus effective use of their features may improve AGB estimation. This research examines the effects of Landsat Thematic Mapper (TM) and ALOS PALSAR L-band data and their integrations in forest AGB estimation of Zhejiang Province, China, and the roles of textural images from both datasets. The linear regression models of AGB were conducted by using (1) Landsat TM alone, (2) ALOS PALSAR data alone, (3) their combination as extra bands, and (4) their data fusion, based on non-stratification and stratification of vegetation types, respectively. The results show that (1) overall, Landsat TM data perform better than PALSAR data, but the latter can produce more accurate estimates for bamboo and shrub, and for forests with AGB values less than 60 Mg/ha; (2) the combination of TM and PALSAR data as extra bands can greatly improve AGB estimation performance, but their fusion using the modified high-pass filter resolution-merging technique cannot; (3) textures are indeed valuable in AGB estimation, especially for forests with complex stand structures such as mixed forests and pine forests with understories of broadleaf species; (4) stratification of vegetation types can improve AGB estimation performance; and (5) the results from the linear regression models are characterized by overestimation and underestimation for the smaller and larger AGB values, respectively, and thus, selecting non-linear models or non-parametric algorithms may be needed in future research.

  10. Spatial distributions of forest aboveground biomass and landscape dynamics associated with conservation status and ownership in New England, USA

    NASA Astrophysics Data System (ADS)

    Zheng, D.; Heath, L. S.; Ducey, M. J.

    2009-05-01

    We combined remote sensing derived forest aboveground biomass (AGB) estimation and the Conservation Biology Institute/World Wildlife Fund Protected Area Database using GIS techniques and spatial pattern analysis to illustrate how different conservation status and ownership could affect the landscape dynamics and spatial distributions of AGB in New England states, USA. The AGB means between all pairs of protection status and ownership categories were significantly different (P < 0.05). The highest mean AGB was observed in the protected public lands (156 Mg/ha), 44% higher than the lowest AGB mean (108 Mg/ha) observed in private regulated lands (privately owned but under the regulatory control by a state agency), or 30% higher than that in privately owned lands on average (120 Mg/ha). Seventy-seven percent of the regional forests with AGB > 200 Mg/ha, totaling about 9,300 km2, were located outside protected areas and were concentrated in western MA, southern VT, southwestern NH, and northwestern CT. The fragmentation rate in protected public lands between 1992 and 2001 was the least with greater rates were observed in privately regulated and non-regulated lands. Changing rates for the 4 representative fragmentation indices (patch density (PD), edge density (ED), landscape shape index (LSI), and mean patch size (MPS)) ranged from 1% in MPS to 6% in PD in protected public lands during the 9-year period whereas the mean changing rates ranged from 21% in LSI to 32% in PD in private lands. Thus, ownership and conservation status appears to have a strong impact on the dynamic changes of landscape structures in the region. These results indicate that if maintenance and enhancement of relatively unfragmented, high-AGB forest is a goal, expansion of protected areas appears to be an important management strategy.

  11. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands

    PubMed Central

    Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857

  12. Non-Parametric Responses of Aboveground Biomass and NDVI to Land Surface Parameters in Arctic-Alpine Environments

    NASA Astrophysics Data System (ADS)

    Riihimäki, H. K.; Heiskanen, J.; Luoto, M.

    2015-12-01

    Aboveground biomass (AGB) is an important carbon pool and it affects various phenomena in Arctic and alpine areas, e.g. biodiversity, surface albedo and soil conditions. The growing availability of high-resolution digital elevation models (DEM) makes it possible to utilize topographical information for modeling local ground surface conditions globally. We investigated the effect of topography on field measured AGB (n = 359) and its commonly used proxy, the Normalized Difference Vegetation Index (NDVI) calculated from SPOT 5 imagery. The study area located in an Arctic-alpine treeline environment (69 °N, 21 °E). We performed the analyses with boosted regression trees method by using elevation and four land surface parameters (LSPs), derived from 10 m DEM, as predictors. The LSPs were namely Potential Incoming Solar Radiation (PISR, MJ m-2 a-1), Topographic Position Index (TPI, r = 300 m), Slope (angle in degrees) and Topographic Wetness Index (TWI). AGB varied from 0 to 5647 g m-2, while median AGB of the data was 449 g m-2. The explained deviance of the AGB and NDVI models were 53 % and 65 %, respectively. Elevation and PISR were the most important predictors. Their interaction was also significant in both cases as the highest AGB were at low-elevation, high-radiation sites, which implicates that PISR significantly improves the modelling of temperature related growing conditions. TWI had no clear effect to AGB nor to NDVI. TPI and Slope had a minor effect on AGB, but no effect to NDVI. Areas lower than their surroundings (negative TPI) had relatively high AGB. Furthermore, steeper slopes had higher AGB compared to flat sites. This is probably caused by the presence of mountain birch (Betula pubescens ssp. czerepanovii), which favors protected and steeper topography. Local topography is an important driver of the fine scale AGB patterns. Thus, DEM derived LSPs should be taken into account when modelling current and future biomass distributions in Arctic and alpine

  13. Pitfalls and Possibilities in the Analysis of Biomass Allocation Patterns in Plants

    PubMed Central

    Poorter, Hendrik; Sack, Lawren

    2012-01-01

    Plants can differentially allocate biomass to leaves, stems, roots, and reproduction, and follow ontogenetic trajectories that interact with the prevailing climate. Various methodological tools exist to analyze the resulting allocation patterns, based either on the calculation of biomass ratios or fractions of different organs at a given point in time, or on a so-called allometric analysis of biomass data sampled across species or over an experimental growth period. We discuss the weak and strong points of each of these methods. Although both approaches have useful features, we suggest that often a plot of biomass fractions against total plant size, either across species or in the comparison of treatment effects, combines the best of both worlds. PMID:23227027

  14. A cross-scale remote sensing approach to estimate tree cover and aboveground biomass in pinyon-juniper woodlands of the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Huang, C.; Asner, G.; Martin, R.; Barger, N.; Neff, J.

    2007-12-01

    Vegetation dominated by pinyon pines and junipers (pinyon-juniper [P-J] woodlands) is one of the largest vegetation types in the North America. P-J woodlands maintain the highest level of woody biomass compared to other major dryland ecosystems. However, distributions of tree cover and biomass in the P-J woodlands of the Colorado Plateau have not been well studied. Here we developed a synoptic remote sensing approach to scale up pinyon pine and juniper cover and biomass field observations from plot to regional levels using fractional photosynthetic vegetation cover (PV) derived from airborne imaging spectroscopy and Landsat satellite data. Our results demonstrated strong correlations (p < 0.001) between field and airborne tree canopy cover estimates (r2 = 0.92), and between airborne and satellite canopy cover estimates (r2 = 0.61). Field data also indicated that P-J aboveground biomass can be estimated from canopy cover using a unified allometric equation (r2 = 0.69, p < 0.001). Using these multi-scale, cover-biomass relationships, we developed high-resolution, regional-scale maps of P-J cover and biomass for the western Colorado Plateau. The mean (± standard deviation) P-J cover was 27.4 (± 9.9)%, and the mean aboveground woody carbon (C) converted from biomass was 5.2 (± 2.0)MgC/ha. Combining our data with the southwest Regional Gap Analysis Program vegetation map, we estimated that total contemporary woody C storage for the entire Colorado Plateau P-J woodlands (113,600 km2) is 59 TgC. Our results facilitate further investigation of the processes controlling carbon stocks and fluxes across this large region, which forms a key component of the North American Carbon Program (NACP).

  15. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China.

    PubMed

    Dai, Erfu; Wu, Zhuo; Ge, Quansheng; Xi, Weimin; Wang, Xiaofan

    2016-11-01

    In the past three decades, our global climate has been experiencing unprecedented warming. This warming has and will continue to significantly influence the structure and function of forest ecosystems. While studies have been conducted to explore the possible responses of forest landscapes to future climate change, the representative concentration pathways (RCPs) scenarios under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) have not been widely used in quantitative modeling research of forest landscapes. We used LANDIS-II, a forest dynamic landscape model, coupled with a forest ecosystem process model (PnET-II), to simulate spatial interactions and ecological succession processes under RCP scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively. We also modeled a control scenario of extrapolating current climate conditions to examine changes in distribution and aboveground biomass (AGB) among five different forest types for the period of 2010-2100 in Taihe County in southern China, where subtropical coniferous plantations dominate. The results of the simulation show that climate change will significantly influence forest distribution and AGB. (i) Evergreen broad-leaved forests will expand into Chinese fir and Chinese weeping cypress forests. The area percentages of evergreen broad-leaved forests under RCP2.6, RCP4.5, RCP8.5 and the control scenarios account for 18.25%, 18.71%, 18.85% and 17.46% of total forest area, respectively. (ii) The total AGB under RCP4.5 will reach its highest level by the year 2100. Compared with the control scenarios, the total AGB under RCP2.6, RCP4.5 and RCP8.5 increases by 24.1%, 64.2% and 29.8%, respectively. (iii) The forest total AGB increases rapidly at first and then decreases slowly on the temporal dimension. (iv) Even though the fluctuation patterns of total AGB will remain consistent under various future climatic scenarios, there will be certain responsive differences among various forest types.

  16. Estimation of Regional Forest Aboveground Biomass Combining Icesat-Glas Waveforms and HJ-1A/HSI Hyperspectral Imageries

    NASA Astrophysics Data System (ADS)

    Xing, Yanqiu; Qiu, Sai; Ding, Jianhua; Tian, Jing

    2016-06-01

    Estimation of forest aboveground biomass (AGB) is a critical challenge for understanding the global carbon cycle because it dominates the dynamics of the terrestrial carbon cycle. Light Detection and Ranging (LiDAR) system has a unique capability for estimating accurately forest canopy height, which has a direct relationship and can provide better understanding to the forest AGB. The Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) is the first polarorbiting LiDAR instrument for global observations of Earth, and it has been widely used for extracting forest AGB with footprints of nominally 70 m in diameter on the earth's surface. However, the GLAS footprints are discrete geographically, and thus it has been restricted to produce the regional full coverage of forest AGB. To overcome the limit of discontinuity, the Hyper Spectral Imager (HSI) of HJ-1A with 115 bands was combined with GLAS waveforms to predict the regional forest AGB in the study. Corresponding with the field investigation in Wangqing of Changbai Mountain, China, the GLAS waveform metrics were derived and employed to establish the AGB model, which was used further for estimating the AGB within GLAS footprints. For HSI imagery, the Minimum Noise Fraction (MNF) method was used to decrease noise and reduce the dimensionality of spectral bands, and consequently the first three of MNF were able to offer almost 98% spectral information and qualified to regress with the GLAS estimated AGB. Afterwards, the support vector regression (SVR) method was employed in the study to establish the relationship between GLAS estimated AGB and three of HSI MNF (i.e. MNF1, MNF2 and MNF3), and accordingly the full covered regional forest AGB map was produced. The results showed that the adj.R2 and RMSE of SVR-AGB models were 0.75 and 4.68 t hm-2 for broadleaf forests, 0.73 and 5.39 t hm-2 for coniferous forests and 0.71 and 6.15 t hm-2 for mixed forests respectively. The

  17. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    PubMed

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  18. [Biomass- and energy allocation in Eucalyptus urophylla x Eucalyptus tereticornis plantations at different stand ages].

    PubMed

    Zhou, Qun-Ying; Chen, Shao-Xiong; Han, Fei-Yang; Chen, Wen-Ping; Wu, Zhi-Hua

    2010-01-01

    An investigation was made on the biomass- and energy allocation in 1-4-year-old Eucalyptus urophylla x Eucalyptus tereticornis plantations at Beipo Forest Farm of Suixi County in Guangdong Province. Stand age had significant effects on the retained biomass of the plantations (P < 0.01). The biomass was in the range of 10.61-147.28 t x hm(-2). Both the total biomass and the biomass of above- and belowground components increased with increasing stand age. The proportions of leaf-, branch- and bark biomass to total biomass decreased with year, while that of stem biomass was in reverse. The biomass allocation of the components in 1- and 2-year-old plantations decreased in order of stem > branch > bark > root > leaf, and that in 3- and 4 -year-old plantations was in order of stem > root > branch > bark > leaf. The mean ash content (AC) of the five components at different stand ages ranged from 0.47% to 5.91%, being the highest in bark and the lowest in stem. The mean gross caloric value (GCV) and ash free caloric value (AFCV) of different components ranged from 17.33 to 20. 60 kJ x g(-1) and from 18.42 to 21.59 kJ x g(-1) respectively. Of all the components, leaf had the highest GVC and AFCV, while bark had the lowest ones. Stand age had significant effects on the GVC of branch, stem, and bark, and on the AFCV of leaf, stem, and bark (P < 0.05), but the effects on the GVC of leaf and root, the AFCV of branch and root, and the GVC and AFCV of individual trees were not significant (P > 0.05). The retained energy of 1-4-year-old plantations ranged from 199.98 to 2837.20 GJ x hm(-2), with significant differences among the stand ages (P < 0.01). The retained energy of various components and plantations increased with stand age, and the energy allocation of various components had the same trend as biomass allocation.

  19. Biogeographical patterns of forest biomass allocation vary by climate, soil and forest characteristics in China

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Song, Tongqing; Wang, Kelin; Wang, Genxuan; Liao, Jianxiong; Xu, Guanghua; Zeng, Fuping

    2015-04-01

    To explore whether the large-scale patterns of biomass allocation vary by climate, soil, and forest characteristics in terrestrial ecosystems, on the basis of the national forest inventory data (2004-2008) and our previous field measurements (2011-2012), we investigated the variation of four biomass allocation fractions (BAFs), and their relationship with environmental factors (e.g. climate and soil chemistry) and forest characteristics (e.g. stand age and stand density) across 11 of China’s forest types. Our results revealed that BAFs have significant latitudinal, longitudinal and altitudinal trends. Stepwise multiple regression models that involve the climate, soil and forest stand properties account for a part of the biogeographical variation in BAFs, and the stand age, stand density and mean growing season temperature mainly explain these variations. Reduced major axis regression models showed that BAFs differ in their sensitivity (slope of their response to environmental gradients) to climate, soil and forest characteristics among different forest types. The results of the current study do not support the isometric allocation hypothesis, which suggests that component biomass scales equivalently as total biomass across different plant species along environmental gradients.

  20. [Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kintze (Arecaceae) at a palm shrub community on the Marambaia beach ridge, Rio de Janeiro, Brazil].

    PubMed

    de Menezes, L F; de Araujo, D S

    2000-02-01

    Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kuntze (Arecaceae) along five topographic profiles perpendicular to the ocean was examined in a palm scrub community on Marambaia beach ridge, Rio de Janeiro State, Brazil. Aerial biomass was positively correlated with distance from the sea (F = 39.57; R2 = 0.69; P < 0.01) as was detritus cover (F = 525.92; R2 = 0.92; P < 0.01). A. arenaria growth is closely related to the topography of the beach area. Dense populations of this palm enrich the soil by increasing organic matter under the plants through dead leaf material. This promotes the accumulation of nutrients and the creation of micro-climates that favor the establishment of other species.

  1. [Effects of aboveground and belowground competition between grass and tree on elm seedlings growth in Horqin Sandy Land].

    PubMed

    Tang, Yi; Jiang, De-ming; Chen, Zhuo; Toshio, Oshida

    2011-08-01

    Elm sparse woodland steppe plays an important role in vegetation restoration and landscape protection in Horqin Sandy Land. In this paper, a two-factor and two-level field experiment was conducted to explore the effects of aboveground and belowground competition between grass and tree on the growth of elm seedlings in the Sandy Land. Five aspects were considered, i.e., seedling biomass, belowground biomass/aboveground biomass, stem height, ratio of root to stem, and leaf number. For the one-year-old elm seedlings, their biomass showed a trend of no competition > aboveground competition > full competition > belowground competition, belowground biomass / aboveground biomass showed a trend of belowground competition > full competition > no competition > aboveground competition, stem height showed a trend of aboveground competition > no competition > full competition > belowground competition, root/stem ratio showed a trend of belowground competition > full competition > no competition > aboveground competition, and leaf number showed a trend of aboveground competition > no competition > belowground competition > full competition. Belowground competition had significant effects on the growth of one-year-old elm seedlings, while aboveground competition did not have. Neither belowground competition nor aboveground competition had significant effects on the growth of two-year-old elm seedlings. It was suggested that in Horqin Sandy Land, grass affected the growth of elm seedlings mainly via below-ground competition, but the belowground competition didn' t affect the resource allocation of elm seedlings. With the age increase of elm seedlings, the effects of grass competition on the growth of elm seedlings became weaker.

  2. Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data

    NASA Astrophysics Data System (ADS)

    Behera, M. D.; Tripathi, P.; Mishra, B.; Kumar, Shashi; Chitale, V. S.; Behera, Soumit K.

    2016-01-01

    Mechanisms to mitigate climate change in tropical countries such as India require information on forest structural components i.e., biomass and carbon for conservation steps to be implemented successfully. The present study focuses on investigating the potential use of a one time, QuadPOL ALOS PALSAR L-band 25 m data to estimate above-ground biomass (AGB) using a water cloud model (WCM) in a wildlife sanctuary in India. A significant correlation was obtained between the SAR-derived backscatter coefficient (σ°) and the field measured AGB, with the maximum coefficient of determination for cross-polarized (HV) σ° for Shorea robusta, and the weakest correlation was observed with co-polarized (HH) σ° for Tectona grandis forests. The biomass of S. robusta and that of T. grandis were estimated on the basis of field-measured data at 444.7 ± 170.4 Mg/ha and 451 ± 179.4 Mg/ha respectively. The mean biomass values estimated using the WCM varied between 562 and 660 Mg/ha for S. robusta; between 590 and 710 Mg/ha for T. grandis using various polarized data. Our results highlighted the efficacy of one time, fully polarized PALSAR data for biomass and carbon estimate in a dense forest.

  3. Experimental sand burial affects seedling survivorship, morphological traits, and biomass allocation of Ulmus pumila var. sabulosa in the Horqin Sandy Land, China

    NASA Astrophysics Data System (ADS)

    Tang, Jiao; Busso, Carlos Alberto; Jiang, Deming; Musa, Ala; Wu, Dafu; Wang, Yongcui; Miao, Chunping

    2016-07-01

    As a native tree species, Ulmus pumila var. sabulosa (sandy elm) is widely distributed in the Horqin Sandy Land, China. However, seedlings of this species have to withstand various depths of sand burial after emergence because of increasing soil degradation, which is mainly caused by overgrazing, climate change, and wind erosion. An experiment was conducted to evaluate the changes in its survivorship, morphological traits, and biomass allocation when seedlings were buried at different burial depths: unburied controls and seedlings buried vertically up to 33, 67, 100, or 133 % of their initial mean seedling height. The results showed that partial sand burial treatments (i.e., less than 67 % burial) did not reduce seedling survivorship, which still reached 100 %. However, seedling mortality increased when sand burial was equal to or greater than 100 %. In comparison with the control treatment, seedling height and stem diameter increased at least by 6 and 14 % with partial burial, respectively. In the meantime, seedling taproot length, total biomass, and relative mass growth rates were at least enhanced by 10, 15.6, and 27.6 %, respectively, with the partial sand burial treatment. Furthermore, sand burial decreased total leaf area and changed biomass allocation in seedlings, partitioning more biomass to aboveground organs (e.g., leaves) and less to belowground parts (roots). Complete sand burial after seedling emergence inhibited its re-emergence and growth, even leading to death. Our findings indicated that seedlings of sandy elm showed some resistance to partial sand burial and were adapted to sandy environments from an evolutionary perspective. The negative effect of excessive sand burial after seedling emergence might help in understanding failures in recruitments of sparse elm in the study region.

  4. Water-use efficiency of willow: Variation with season, humidity and biomass allocation

    NASA Astrophysics Data System (ADS)

    Lindroth, Anders; Verwijst, Theo; Halldin, Sven

    1994-04-01

    Information on the water-use efficiency (WUE) of a vegetation cover improves understanding of the interrelationship between the water and carbon cycles, and enables hydrological practices to be related to agricultural and silvicultural planning and management. This study determined seasonal and climatic variations of the WUE of a fertilized and irrigated short-rotation stand of Salix viminalis L. on a clay soil. The WUE was determined as the ratio of above-ground production to transpiration or, alternatively, to transpiration divided by the saturation vapour pressure deficit. Growth was estimated from a combination of destructive and non-destructive measurements for 10 day periods during the growing seasons of 1986 and 1988. Daily transpiration was estimated using a physically based evaporation model, tuned against energy-balance/Bowen-ratio measurements of total stand evaporation. Nutrients were adequate and climate conditions were similar in both years. In spite of irrigation soil-water deficits developed during midsummer and affected growth rates in different ways: in 1986, both stem and leaf growth decreased, while in 1988 only stem growth decreased. Exceptionally high stem growth rates, twice the total potential growth rates, were recorded after the drought of 1988. They were probably caused by root-allocated assimilates that were sent above-ground after the drought. In both years, stem growth ceased 2-3 weeks after the leaf area had reached its maximum. Since light and temperature were still sufficient to maintain assimilation, all growth presumably took place below ground towards the end of the season. Changes in root-shoot allocation caused large variations in the WUE in 1988. The WUE, weighted by the saturation vapour pressure deficit, was fairly constant in 1986. In both years, the WUE was correlated with the vapour pressure deficit. Towards the end of both growing seasons, when all assimilates were sent below ground, the WUE decreased rapidly to zero

  5. Comparing the above-ground component biomass estimates of western junipers using airborne and full-waveform terrestrial laser scanning data

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Glenn, N. F.; Spaete, L.; Hardegree, S. P.

    2012-12-01

    With the rapid expansion into shrub steppe and grassland ecosystems over the last century, western juniper (Juniperus occidentalis var. occidentalis Hook) is becoming a major component of the regional carbon pool in the Intermountain West. Understanding how biomass is allocated across individual tree components is necessary to understand the uncertainties in biomass estimates and more accurately quantify biomass and carbon dynamics in these ecosystems. Estimates of component biomass are also important for canopy fuel load assessment and predicting rangeland fire behavior. Airborne LiDAR can capture vegetation structure over larger scales, but the high crown penetration and sampling density of terrestrial laser scanner (TLS) instruments can better capture tree components. In this study, we assessed the ability of airborne LiDAR to estimate biomass of tree components of western juniper with validation data from field measured tees and a full-waveform TLS. Sixteen juniper trees (height range 1.5-10 m) were randomly selected using a double sampling strategy from different height classes in the Reynolds Creek Experimental Watershed in the Owyhee Mountains, southwestern Idaho, USA. Each tree was scanned with a full-waveform TLS, and the dry biomass of each component (foliage, branches and main stem) were measured by destructive harvesting of the trees. We compare the allometric relationships of biomass estimates of the tree components obtained from field-measured trees and TLS-based estimates with the estimates from discrete-return airborne-LiDAR based estimates.

  6. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control.

    PubMed

    Poorter, Hendrik; Niklas, Karl J; Reich, Peter B; Oleksyn, Jacek; Poot, Pieter; Mommer, Liesje

    2012-01-01

    We quantified the biomass allocation patterns to leaves, stems and roots in vegetative plants, and how this is influenced by the growth environment, plant size, evolutionary history and competition. Dose-response curves of allocation were constructed by means of a meta-analysis from a wide array of experimental data. They show that the fraction of whole-plant mass represented by leaves (LMF) increases most strongly with nutrients and decreases most strongly with light. Correction for size-induced allocation patterns diminishes the LMF-response to light, but makes the effect of temperature on LMF more apparent. There is a clear phylogenetic effect on allocation, as eudicots invest relatively more than monocots in leaves, as do gymnosperms compared with woody angiosperms. Plants grown at high densities show a clear increase in the stem fraction. However, in most comparisons across species groups or environmental factors, the variation in LMF is smaller than the variation in one of the other components of the growth analysis equation: the leaf area : leaf mass ratio (SLA). In competitive situations, the stem mass fraction increases to a smaller extent than the specific stem length (stem length : stem mass). Thus, we conclude that plants generally are less able to adjust allocation than to alter organ morphology.

  7. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants

    PubMed Central

    Herrera, Javier

    2009-01-01

    Background and Aims While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. Methods The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Key Results Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200–400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Conclusions Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed. PMID:19258340

  8. Characterizing uncertainties of the national-scale forest gross aboveground biomass (AGB) loss estimate: a case study of the Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Tyukavina, A.; Stehman, S.; Potapov, P.; Turubanova, S.; Baccini, A.; Goetz, S. J.; Laporte, N. T.; Houghton, R. A.; Hansen, M.

    2013-12-01

    Modern remote sensing techniques enable the mapping and monitoring of aboveground biomass (AGB) carbon stocks without relying on extensive in situ measurements. The Democratic Republic of the Congo (DRC) is among the countries where a national forest inventory (NFI) has yet to be established due to a lack of infrastructure and political instability. We demonstrate a method for producing national-scale gross AGB loss estimates and quantifying uncertainty of the estimates using remotely sensed-derived forest cover loss and biomass carbon density data. Forest cover type and loss were characterized using published Landsat-based data sets and related to LIDAR-derived biomass data from the Geoscience Laser Altimeter System (GLAS). We produced two gross AGB loss estimates for the DRC for the last decade (2000-2010): a conservative estimate accounting for classification errors in the 60-m resolution FACET forest cover change product, and a maximal estimate that also took into consideration omitted change at the 30m spatial resolution. Omitted disturbances were largely related to smallholder agriculture, the detection of which is scale-dependent. The use of LIDAR data as a substitute for NFI data to estimate AGB loss based on Landsat-derived activity data was demonstrated. Comparisons of our forest cover loss and AGB estimates with published studies raise the issue of scale in forest cover change mapping and its impact on carbon stock change estimation using remotely sensed data.

  9. Effects of Aspect on Clonal Reproduction and Biomass Allocation of Layering Modules of Nitraria tangutorum in Nebkha Dunes

    PubMed Central

    Li, Qinghe; Xu, Jun; Li, Huiqing; Wang, Saixiao; Yan, Xiu; Xin, Zhiming; Jiang, Zeping; Wang, Linlong; Jia, Zhiqing

    2013-01-01

    The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha. PMID:24205391

  10. Evaluating Post-fire Ecosystem Effects in Tussock Tundra of the Seward Peninsula: Characterizing Above-ground Biomass Accumulation, Soil Nutrient Pools, and Foliar Nitrogen.

    NASA Astrophysics Data System (ADS)

    Hollingsworth, T. N.; Mack, M. C.; Breen, A. L.

    2014-12-01

    Over the last century in the circumpolar north, changes in vegetation include shrub cover expansion and shifts in tree line. Invasion of tundra by trees and shrubs may be further facilitated by wildfire disturbance, which creates opportunities for establishment where recruitment is otherwise rare. Even moderate increases in warm-season temperatures are predicted to increase the likelihood of tundra fires. Understanding the consequences of a change in fire regime are complicated by the fact that there are relatively few large recent fires to study. However, the Seward Peninsula is a region that currently experiences more frequent and large fires than other tundra regions in Arctic Alaska. In this tundra region, there are areas of overlapping burns dating back to the 1970s. Using a chronosequence approach, we looked at post-fire biomass accumulation as well as foliar and soil C and N. Our experimental design incorporated sites that showed no evidence of recent burning, sites that burned in 1971, 1997, 2002, and 2011 as well as sites that burned multiple times over the last 30 years. We found that fire had a significant effect on total biomass and shrub basal area in tussock tundra. Our site that burned in 2011 had the lowest total biomass, about half of the biomass of our unburned site. However, our results indicated the site that burned in 1971 had over double the aboveground biomass and more soil N than the unburned site. We found that sites that repeatedly burned since 1971 were very similar in biomass to unburned tundra. This suggests that repeat fires keep a post-fire site at unburned levels of biomass. However, in these repeat fire sites, foliar C/N was ~25% greater and soil C and N was ~50% less than in unburned tundra. These results indicate that repeat fires are potentially causing nitrogen loss that not likely to be replenished into the system. As tundra fires become more frequent prediction of post-fire ecosystem effects is critical due to impacts on

  11. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production.

    PubMed

    Evangelou, Michael W H; Robinson, Brett H; Günthardt-Goerg, Madeleine S; Schulin, Rainer

    2013-01-01

    Phytostabilization aims to reduce environmental and health risks arising from contaminated soil. To be economically attractive, plants used for phytostabilization should produce valuable biomass. This study investigated the biomass production and metal allocation to foliage and wood of willow (Salix viminalis L.), poplar (Populus monviso), birch (Betula pendula), and oak (Quercus robur) on five different soils contaminated with trace elements (TE), with varying high concentrations of Cu, Zn, Cd, and Pb as well as an uncontaminated control soil. In the treatment soils, the biomass was reduced in all species except oak. There was a significant negative correlation between biomass and foliar Cd and Zn concentrations, reaching up to 15 mg Cd kg(-1) and 2000 mg Zn kg(-1) in willow leaves. Lead was the only TE with higher wood than foliage concentrations. The highest Pb accumulation occurred in birch with up to 135 mg kg(-1) in wood and 78 mg kg(-1) in foliage. Birch could be suitable for phytostabilization of soils with high Cd and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cd concentrations.

  12. Estimation of Aboveground Biomass in Alpine Forests: A Semi-Empirical Approach Considering Canopy Transparency Derived from Airborne LiDAR Data

    PubMed Central

    Jochem, Andreas; Hollaus, Markus; Rutzinger, Martin; Höfle, Bernhard

    2011-01-01

    In this study, a semi-empirical model that was originally developed for stem volume estimation is used for aboveground biomass (AGB) estimation of a spruce dominated alpine forest. The reference AGB of the available sample plots is calculated from forest inventory data by means of biomass expansion factors. Furthermore, the semi-empirical model is extended by three different canopy transparency parameters derived from airborne LiDAR data. These parameters have not been considered for stem volume estimation until now and are introduced in order to investigate the behavior of the model concerning AGB estimation. The developed additional input parameters are based on the assumption that transparency of vegetation can bemeasured by determining the penetration of the laser beams through the canopy. These parameters are calculated for every single point within the 3D point cloud in order to consider the varying properties of the vegetation in an appropriate way. Exploratory Data Analysis (EDA) is performed to evaluate the influence of the additional LiDAR derived canopy transparency parameters for AGB estimation. The study is carried out in a 560 km2 alpine area in Austria, where reference forest inventory data and LiDAR data are available. The investigations show that the introduction of the canopy transparency parameters does not change the results significantly according to R2 (R2 = 0.70 to R2 = 0.71) in comparison to the results derived from, the semi-empirical model, which was originally developed for stem volume estimation. PMID:22346577

  13. Estimation of aboveground biomass in alpine forests: a semi-empirical approach considering canopy transparency derived from airborne LiDAR data.

    PubMed

    Jochem, Andreas; Hollaus, Markus; Rutzinger, Martin; Höfle, Bernhard

    2011-01-01

    In this study, a semi-empirical model that was originally developed for stem volume estimation is used for aboveground biomass (AGB) estimation of a spruce dominated alpine forest. The reference AGB of the available sample plots is calculated from forest inventory data by means of biomass expansion factors. Furthermore, the semi-empirical model is extended by three different canopy transparency parameters derived from airborne LiDAR data. These parameters have not been considered for stem volume estimation until now and are introduced in order to investigate the behavior of the model concerning AGB estimation. The developed additional input parameters are based on the assumption that transparency of vegetation can be measured by determining the penetration of the laser beams through the canopy. These parameters are calculated for every single point within the 3D point cloud in order to consider the varying properties of the vegetation in an appropriate way. Exploratory Data Analysis (EDA) is performed to evaluate the influence of the additional LiDAR derived canopy transparency parameters for AGB estimation. The study is carried out in a 560 km(2) alpine area in Austria, where reference forest inventory data and LiDAR data are available. The investigations show that the introduction of the canopy transparency parameters does not change the results significantly according to R(2) (R(2) = 0.70 to R(2) = 0.71) in comparison to the results derived from, the semi-empirical model, which was originally developed for stem volume estimation.

  14. Effect of seven years of experimental drought on the aboveground biomass storage of an eastern Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    da Costa, Antonio Carlos Lola; Galbraith, David; Almeida, Samuel; Fisher, Rosie; Phillips, Oliver; Metcalfe, Daniel; Levy, Peter; Portela, Bruno; da Costa, Mauricio; Meir, Patrick

    2010-05-01

    At least one climate model predicts severe reductions of rainfall over Amazonia during this century. Long-term throughfall exclusion (TFE) experiments represent the best available means to investigate the resilience of the Amazon rainforest to such droughts. Results are presented from a 7-year TFE study at Caxiuanã National Forest, eastern Amazonia. We focus on the impacts of the drought on tree mortality, wood production and aboveground carbon storage. Tree mortality in the TFE plot over the experimental period was 2.5% yr-1, compared to 1.25% yr-1 in a nearby Control plot experiencing normal rainfall. Differences in stem mortality between plots were greatest in the largest (> 40 cm dbh) size class (4.1% yr-1 in the TFE and 1.4% yr-1 in the Control). Wood production in the TFE plot was approximately 30% lower than in the Control plot. Together, these changes resulted in a loss of 37.8 ± 2.0 Mg C ha-1 (~ 20%) in the TFE plot (2002-2008), whereas the Control plot was essentially carbon neutral(change of - 0.2 ± 1.0 Mg C ha-1). These results are remarkably consistent with those from another TFE (at Tapajós National Forest), suggesting that Amazonian forests may respond to prolonged drought in a predictable manner.

  15. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; Kauffman, Jobriath; Prisley, Stephen

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  16. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species.

    PubMed

    Liu, Daijun; Ogaya, Romà; Barbeta, Adrià; Yang, Xiaohong; Peñuelas, Josep

    2015-11-01

    Climate change is predicted to increase the aridity in the Mediterranean Basin and severely affect forest productivity and composition. The responses of forests to different timescales of drought, however, are still poorly understood because extreme and persistent moderate droughts can produce nonlinear responses in plants. We conducted a rainfall-manipulation experiment in a Mediterranean forest dominated by Quercus ilex, Phillyrea latifolia, and Arbutus unedo in the Prades Mountains in southern Catalonia from 1999 to 2014. The experimental drought significantly decreased forest aboveground-biomass increment (ABI), tended to increase the litterfall, and decreased aboveground net primary production throughout the 15 years of the study. The responses to the experimental drought were highly species-specific. A. unedo suffered a significant reduction in ABI, Q. ilex experienced a decrease during the early experiment (1999-2003) and in the extreme droughts of 2005-2006 and 2011-2012, and P. latifolia was unaffected by the treatment. The drought treatment significantly increased branch litterfall, especially in the extremely dry year of 2011, and also increased overall leaf litterfall. The drought treatment reduced the fruit production of Q. ilex, which affected seedling recruitment. The ABIs of all species were highly correlated with SPEI in early spring, whereas the branch litterfalls were better correlated with summer SPEIs and the leaf and fruit litterfalls were better correlated with autumn SPEIs. These species-specific responses indicated that the dominant species (Q. ilex) could be partially replaced by the drought-resistant species (P. latifolia). However, the results of this long-term study also suggest that the effect of drought treatment has been dampened over time, probably due to a combination of demographic compensation, morphological and physiological acclimation, and epigenetic changes. However, the structure of community (e.g., species composition

  17. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

    PubMed

    Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R

    2016-12-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.

  18. Edaphic controls on ecosystem-level carbon allocation in two contrasting Amazon forests

    NASA Astrophysics Data System (ADS)

    Jiménez, Eliana M.; Peñuela-Mora, María. Cristina; Sierra, Carlos A.; Lloyd, Jon; Phillips, Oliver L.; Moreno, Flavio H.; Navarrete, Diego; Prieto, Adriana; Rudas, Agustín.; Álvarez, Esteban; Quesada, Carlos A.; Grande-Ortíz, Maria Angeles; García-Abril, Antonio; Patiño, Sandra

    2014-09-01

    Studies of carbon allocation in forests provide essential information for understanding spatial and temporal differences in carbon cycling that can inform models and predict possible responses to changes in climate. Amazon forests play a particularly significant role in the global carbon balance, but there are still large uncertainties regarding abiotic controls on the rates of net primary production (NPP) and the allocation of photosynthetic products to different ecosystem components. We evaluated three different aspects of stand-level carbon allocation (biomass, NPP, and its partitioning) in two amazon forests on different soils (nutrient-rich clay soils versus nutrient-poor sandy soils) but otherwise growing under similar conditions. We found differences in carbon allocation patterns between these two forests, showing that the forest on clay soil had a higher aboveground and total biomass as well as a higher aboveground NPP than the sandy forest. However, differences between the two forest types in terms of total NPP were smaller, as a consequence of different patterns in the carbon allocation of aboveground and belowground components. The proportional allocation of NPP to new foliage was relatively similar between them. Our results of aboveground biomass increments and fine-root production suggest a possible trade-off between carbon allocation to fine roots versus aboveground compartments, as opposed to the most commonly assumed trade-off between total aboveground and belowground production. Despite these differences among forests in terms of carbon allocation, the leaf area index showed only small differences, suggesting that this index is more indicative of total NPP than its aboveground or belowground components.

  19. Mechanical Stimuli Regulate the Allocation of Biomass in Trees: Demonstration with Young Prunus avium Trees

    PubMed Central

    Coutand, Catherine; Dupraz, Christian; Jaouen, Gaëlle; Ploquin, Stéphane; Adam, Boris

    2008-01-01

    Background and Aims Plastic tree-shelters are increasingly used to protect tree seedlings against browsing animals and herbicide drifts. The biomass allocation in young seedlings of deciduous trees is highly disturbed by common plastic tree-shelters, resulting in poor root systems and reduced diameter growth of the trunk. The shelters have been improved by creating chimney-effect ventilation with holes drilled at the bottom, resulting in stimulated trunk diameter growth, but the root deficit has remained unchanged. An experiment was set up to elucidate the mechanisms behind the poor root growth of sheltered Prunus avium trees. Methods Tree seedlings were grown either in natural windy conditions or in tree-shelters. Mechanical wind stimuli were suppressed in ten unsheltered trees by staking. Mechanical stimuli (bending) of the stem were applied in ten sheltered trees using an original mechanical device. Key Results Sheltered trees suffered from poor root growth, but sheltered bent trees largely recovered, showing that mechano-sensing is an important mechanism governing C allocation and the shoot–root balance. The use of a few artificial mechanical stimuli increased the biomass allocation towards the roots, as did natural wind sway. It was demonstrated that there was an acclimation of plants to the imposed strain. Conclusions This study suggests that if mechanical stimuli are used to control plant growth, they should be applied at low frequency in order to be most effective. The impact on the functional equilibrium hypothesis that is used in many tree growth models is discussed. The consequence of the lack of mechanical stimuli should be incorporated in tree growth models when applied to environments protected from the wind (e.g. greenhouses, dense forests). PMID:18448448

  20. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for

  1. Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents - how different are co-occurring savanna and forest formations?

    NASA Astrophysics Data System (ADS)

    Veenendaal, E. M.; Torello-Raventos, M.; Feldpausch, T. R.; Domingues, T. F.; Gerard, F.; Schrodt, F.; Saiz, G.; Quesada, C. A.; Djagbletey, G.; Ford, A.; Kemp, J.; Marimon, B. S.; Marimon-Junior, B. H.; Lenza, E.; Ratter, J. A.; Maracahipes, L.; Sasaki, D.; Sonke, B.; Zapfack, L.; Villarroel, D.; Schwarz, M.; Yoko Ishida, F.; Gilpin, M.; Nardoto, G. B.; Affum-Baffoe, K.; Arroyo, L.; Bloomfield, K.; Ceca, G.; Compaore, H.; Davies, K.; Diallo, A.; Fyllas, N. M.; Gignoux, J.; Hien, F.; Johnson, M.; Mougin, E.; Hiernaux, P.; Killeen, T.; Metcalfe, D.; Miranda, H. S.; Steininger, M.; Sykora, K.; Bird, M. I.; Grace, J.; Lewis, S.; Phillips, O. L.; Lloyd, J.

    2015-05-01

    Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna-forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna-forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three continents coexistence

  2. Reply to Comment on 'A first map of tropical Africa's above-ground biomass derived from satellite imagery'

    NASA Astrophysics Data System (ADS)

    Baccini, A.; Goetz, S. J.; Laporte, N.; Sun, M.; Dong, H.

    2011-10-01

    Biomass mapping using satellite imagery is a rapidly evolving field that has been greatly facilitated in recent years by the advent of LiDAR remote sensing coupled with co-located field measurements. The biomass map of Africa that we published in 2008 did not take direct advantage of coincident field and LiDAR measurements, as our more recent efforts have. The criticisms of our earlier map by Mitchard et al (2011 Environ. Res. Lett. 6 049001) are duly noted and worthwhile, although they are also limited in several respects that we describe. Most notably, they assess our map with field data sets that are only representative of a subset of conditions across the study domain, thus they not only inadequately characterize undisturbed tropical forest regions but also the diverse disturbance dynamics that are captured in satellite imagery. We point out the limitations of their assessment and focus on a way forward, moving beyond both inadequate field sampling and remote sensing to an approach the captures the full range of dynamics by directly coupling field and satellite measurements.

  3. Effect of temperature on biomass allocation in seedlings of two contrasting genotypes of the oilseed crop Ricinus communis.

    PubMed

    Ribeiro, Paulo R; Zanotti, Rafael F; Deflers, Carole; Fernandez, Luzimar G; Castro, Renato D de; Ligterink, Wilco; Hilhorst, Henk W M

    2015-08-01

    Ricinus communis is becoming an important crop for oil production, and studying the physiological and biochemical aspects of seedling development may aid in the improvement of crop quality and yield. The objective of this study was to assess the effect of temperature on biomass allocation in two R. communis genotypes. Biomass allocation was assessed by measuring dry weight of roots, stems, and cotyledons of seedlings grown at three different temperatures. Root length of each seedling was measured. Biomass allocation was strongly affected by temperature. Seedlings grown at 25°C and 35°C showed greater biomass than seedlings grown at 20°C. Cotyledon and stem dry weight increased for both genotypes with increasing temperature, whereas root biomass allocation showed a genotype-dependent behavior. Genotype MPA11 showed a continuous increase in root dry weight with increasing temperature, while genotype IAC80 was not able to sustain further root growth at higher temperatures. Based on metabolite and gene expression profiles, genotype MPA11 increases its level of osmoprotectant molecules and transcripts of genes encoding for antioxidant enzymes and heat shock proteins to a higher extent than genotype IAC80. This might be causal for the ability to maintain homeostasis and support root growth at elevated temperatures in genotype MPA11.

  4. Response of aboveground biomass and diversity to nitrogen addition – a five-year experiment in semi-arid grassland of Inner Mongolia, China

    PubMed Central

    He, Kejian; Qi, Yu; Huang, Yongmei; Chen, Huiying; Sheng, Zhilu; Xu, Xia; Duan, Lei

    2016-01-01

    Understanding the response of the plant community to increasing nitrogen (N) deposition is helpful for improving pasture management in semi-arid areas. We implemented a 5-year N addition experiment in a Stipa krylovii steppe of Inner Mongolia, northern China. The aboveground biomass (AGB) and species richness were measured annually. Along with the N addition levels, the species richness declined significantly, and the species composition changed noticeably. However, the total AGB did not exhibit a noticeable increase. We found that compensatory effects of the AGB occurred not only between the grasses and the forbs but also among Gramineae species. The plant responses to N addition, from the community to species level, lessened in dry years compared to wet or normal years. The N addition intensified the reduction of community productivity in dry years. Our study indicated that the compensatory effects of the AGB among the species sustained the stability of grassland productivity. However, biodiversity loss resulting from increasing N deposition might lead the semi-arid grassland ecosystem to be unsustainable, especially in dry years. PMID:27573360

  5. Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schöngart, J.; Arieira, J.; Felfili Fortes, C.; Cezarine de Arruda, E.; Nunes da Cunha, C.

    2011-11-01

    In this study we use allometric models combined with tree ring analysis to estimate carbon stocks and sequestration in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in central South America. In four 1-ha plots in stands characterized by the pioneer tree species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ≥10 cm diameter at breast height, D) have been performed and converted to estimates of AGWB by two allometric models using three independent parameters (D, tree height H and wood density ρ). We perform a propagation of measurement errors to estimate uncertainties in the estimates of AGWB. Carbon stocks of AGWB vary from 7.8 ± 1.5 to 97.2 ± 14.4 Mg C ha-1 between the four stands. From models relating tree ages determined by dendrochronological techniques to C-stocks in AGWB we derived estimates for C-sequestration which differs from 0.50 ± 0.03 to 3.34 ± 0.31 Mg C ha-1 yr-1. Maps based on geostatistic techniques indicate the heterogeneous spatial distribution of tree ages and C-stocks of the four studied stands. This distribution is the result of forest dynamics due to the colonizing and retreating of V. divergens and other species associated with pluriannual wet and dry episodes in the Pantanal, respectively. Such information is essential for the management of the cultural landscape of the Pantanal wetlands.

  6. Response of aboveground biomass and diversity to nitrogen addition – a five-year experiment in semi-arid grassland of Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    He, Kejian; Qi, Yu; Huang, Yongmei; Chen, Huiying; Sheng, Zhilu; Xu, Xia; Duan, Lei

    2016-08-01

    Understanding the response of the plant community to increasing nitrogen (N) deposition is helpful for improving pasture management in semi-arid areas. We implemented a 5-year N addition experiment in a Stipa krylovii steppe of Inner Mongolia, northern China. The aboveground biomass (AGB) and species richness were measured annually. Along with the N addition levels, the species richness declined significantly, and the species composition changed noticeably. However, the total AGB did not exhibit a noticeable increase. We found that compensatory effects of the AGB occurred not only between the grasses and the forbs but also among Gramineae species. The plant responses to N addition, from the community to species level, lessened in dry years compared to wet or normal years. The N addition intensified the reduction of community productivity in dry years. Our study indicated that the compensatory effects of the AGB among the species sustained the stability of grassland productivity. However, biodiversity loss resulting from increasing N deposition might lead the semi-arid grassland ecosystem to be unsustainable, especially in dry years.

  7. The evaluation of different forest structural indices to predict the stand aboveground biomass of even-aged Scotch pine (Pinus sylvestris L.) forests in Kunduz, Northern Turkey.

    PubMed

    Ercanli, İlker; Kahriman, Aydın

    2015-03-01

    We assessed the effect of stand structural diversity, including the Shannon, improved Shannon, Simpson, McIntosh, Margelef, and Berger-Parker indices, on stand aboveground biomass (AGB) and developed statistical prediction models for the stand AGB values, including stand structural diversity indices and some stand attributes. The AGB prediction model, including only stand attributes, accounted for 85 % of the total variance in AGB (R (2)) with an Akaike's information criterion (AIC) of 807.2407, Bayesian information criterion (BIC) of 809.5397, Schwarz Bayesian criterion (SBC) of 818.0426, and root mean square error (RMSE) of 38.529 Mg. After inclusion of the stand structural diversity into the model structure, considerable improvement was observed in statistical accuracy, including 97.5 % of the total variance in AGB, with an AIC of 614.1819, BIC of 617.1242, SBC of 633.0853, and RMSE of 15.8153 Mg. The predictive fitting results indicate that some indices describing the stand structural diversity can be employed as significant independent variables to predict the AGB production of the Scotch pine stand. Further, including the stand diversity indices in the AGB prediction model with the stand attributes provided important predictive contributions in estimating the total variance in AGB.

  8. Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta.

    PubMed

    DeWalt, Saara J; Denslow, Julie S; Hamrick, J L

    2004-03-01

    We tested the hypothesis that the tropical shrub Clidemia hirta appears more shade tolerant and is more abundant in its introduced than native range because of genetic differences in resource acquisition, allocation, and phenotypic plasticity between native and introduced genotypes. We examined growth, biomass allocation, and photosynthetic parameters of C. hirta grown in a greenhouse from seed collected from four populations in part of its native range (Costa Rica) and four populations in part of its introduced range (Hawaiian Islands). Six-month-old seedlings were placed in high (10.3-13.9 mol m(-2) day(-1)) or low (1.4-4.5 mol m(-2) day(-1)) light treatments and grown for an additional 6 months. Our study provided little evidence that Hawaiian genotypes of C. hirta differed genetically from Costa Rican genotypes in ways that would contribute to differences in habitat distribution or abundance. Some of the genetic differences that were apparent, such as greater allocation to stems and leaf area relative to whole plant biomass in Costa Rican genotypes and greater allocation to roots in Hawaiian genotypes, were contrary to predictions that genotypes from the introduced range would allocate more biomass to growth and less to storage than those from the native range. Hawaiian and Costa Rican genotypes displayed no significant differences in relative growth rates, maximal photosynthetic rates, or specific leaf areas in either light treatment. In the high light environment, however, Hawaiian genotypes allocated more biomass to reproductive parts than Costa Rican genotypes. Phenotypic plasticity for only 1 of 12 morphological and photosynthetic variables was greater for Hawaiian than Costa Rican genotypes. We conclude that genetic shifts in resource use, resource allocation, or plasticity do not contribute to differences in habitat distribution and abundance between the native and introduced ranges of C. hirta.

  9. Assessing the influence of return density on estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Manuri, Solichin; Andersen, Hans-Erik; McGaughey, Robert J.; Brack, Cris

    2017-04-01

    The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of

  10. Estimating aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus using data from the Forest Inventory and Analysis program, Landsat, and LANDFIRE

    USGS Publications Warehouse

    Chen, X.; Liu, S.; Zhu, Z.; Vogelmann, J.; Li, Z.; Ohlen, D.

    2011-01-01

    The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fire-induced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High

  11. Biomass allocation and C-N-P stoichiometry in C3 and C4 crops under abiotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass allocation to structural, metabolic and reproductive organs as well as their carbon, nitrogen and phosphorus (C-N-P) profiles and ratios (C:N, C:P, and N:P) were estimated in C3 and C4 crop plants subjected to multiple abiotic stresses (i.e., combination of temperature and water stress level...

  12. Phytohormonal Regulation of Biomass Allocation and Morphological and Physiological Traits of Leaves in Response to Environmental Changes in Polygonum cuspidatum

    PubMed Central

    Sugiura, Daisuke; Kojima, Mikiko; Sakakibara, Hitoshi

    2016-01-01

    Plants plastically change their morphological and physiological traits in response to environmental changes, which are accompanied by changes in endogenous levels of phytohormones. Although roles of phytohormones in various aspects of plant growth and development were elucidated, their importance in the regulation of biomass allocation was not fully investigated. This study aimed to determine causal relationships among changes in biomass allocation, morphological and physiological traits, and endogenous levels of phytohormones such as gibberellins (GAs) and cytokinins (CKs) in response to environmental changes in Polygonum cuspidatum. Seedlings of P. cuspidatum were grown under two light intensities, each at three nitrogen availabilities. The seedlings grown in high light intensity and high nitrogen availability (HH) were subjected to three additional treatments: Defoliating half of the leaves (Def), transferral to low nitrogen availability (LowN), or low light intensity (LowL). Biomass allocation at the whole-plant level, morphological and physiological traits of each leaf, and endogenous levels of phytohormones in each leaf and shoot apex were measured. Age-dependent changes in leaf traits were also investigated. After the treatments, endogenous levels of GAs in the shoot apex and leaves significantly increased in Def, decreased in LowN, and did not change in LowL compared with HH seedlings. Among all of the seedlings, the levels of GAs in the shoot apex and leaves were strongly correlated with biomass allocation ratio between leaves and roots. The levels of GAs in the youngest leaves were highest, while the levels of CKs were almost consistent in each leaf. The levels of CKs were positively correlated with leaf nitrogen content in each leaf, whereas the levels of GAs were negatively correlated with the total non-structural carbohydrate content in each leaf. These results support our hypothesis that GAs and CKs are key regulatory factors that control biomass

  13. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the

  14. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage

    PubMed Central

    Tomlinson, Kyle W.; van Langevelde, Frank; Ward, David; Bongers, Frans; da Silva, Dulce Alves; Prins, Herbert H. T.; de Bie, Steven; Sterck, Frank J.

    2013-01-01

    Background and Aims Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species. Methods Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g). Key Results Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits. Conclusions Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant

  15. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome

    PubMed Central

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID

  16. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.

  17. Optimizing the number of training areas for modeling above-ground biomass with ALS and multispectral remote sensing in subtropical Nepal

    NASA Astrophysics Data System (ADS)

    Rana, Parvez; Gautam, Basanta; Tokola, Timo

    2016-07-01

    Remote sensing-based inventories of above-ground forest biomass (AGB) require a set of training plots representative of the area to be studied, the collection of which is the most expensive part of the analysis. These are time-consuming and costly because the large variety in forest conditions requires more plots to adequately capture this variability. A field campaign in general is challenging and is hampered by the complex topographic conditions, limited accessibility, steep mountainous terrains which increase labor efforts and costs. In addition it is also depend on the ratio between size of study area and number of training plots. In this study, we evaluate the number of training areas (sample size) required to estimate AGB for an area in the southern part of Nepal using airborne laser scanning (ALS), RapidEye and Landsat data. Three experiments were conducted: (i) AGB model performance, based on all the field training plots; (ii) reduction of the sample size, based on the ALS metrics and the AGB distribution; and (iii) prediction of the optimal number of training plots, based on the correlation between the remote sensing and field data. The AGB model was fitted using the sparse Bayesian method. AGB model performance was validated using an independent validation dataset. The effect of the strategies for reducing the sample size was readily apparent for the ALS-based AGB prediction, but the RapidEye and Landsat sensor data failed to capture any such effect. The results indicate that adequate coverage of the variability in tree height and density was an important condition for selecting the training plots. In addition, the ALS-based AGB prediction required the smallest number of training plots and was also quite stable with a small number of field plots.

  18. Sensitivity of Backscatter Intensity of ALOS/PALSAR to Above-ground Biomass and Other Biophysical Parameters of Boreal Forests in Alaska and Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Hayashi, M.; Kim, Y.; Ishii, R.; Kobayashi, H.; Shoyama, K.; Adachi, M.; Takahashi, A.; Saigusa, N.; Ito, A.

    2012-12-01

    For the better understanding of the carbon cycle in the global environment, investigations on the spatio-temporal variation of the carbon stock which is stored as vegetation biomass is important. The backscatter intensity of "Phased Array type L-band Synthetic Aperture Radar (PALSAR)" onboard the satellite "Advanced Land Observing Satellite (ALOS)" provides us the information which is applicable to estimate the forest above-ground biomass (AGB). This study examines the sensitivity of the backscatter intensity of ALOS/PALSAR to the forest AGB and other biophysical parameters (tree height, tree diameter at breast height (DBH), and tree stand density) for boreal forests in two geographical regions of Alaska and Kushiro, northern Japan, and compares the sensitivities in two regions. In Alaska, a forest survey was executed in the south-north transect (about 300 km long) along a trans-Alaska pipeline which profiles the ecotone from the boreal forest to tundra in 2007. Forest AGBs and other biophysical parameters at 29 forests along the transect were measured by Bitterlich method. In Kushiro, a forest survey was carried out at 42 forests in 2011 and those parameters were similarly obtained by Bitterlich method. 20 and 2 scenes of ALOS/PALSAR FBD Level 1.5 data that cover the regions in Alaska and Kushiro, respectively, were collected and mosaicked. Backscatter intensities of ALOS/PALSAR in HH (horizontally polarized transmitted and horizontally polarized received) and HV (horizontally polarized transmitted and vertically polarized received) modes were compared with the forest AGB and other biophysical parameters. The intensity generally increased with the increase of those biophysical parameters in both HV and HH modes, but the intensity in HV mode generally had a stronger correlation to those parameters than in HH mode in both Alaska and Kushiro. The HV intensity had strong correlation to the forest AGB and DBH, while weak correlation to the tree stand density in Alaska

  19. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  20. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications

    PubMed Central

    Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    Background African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Principal Findings Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. Conclusions/Significance We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to

  1. Estimation of Aboveground Biomass Change for Tropical Deciduous Forest in Bago Yoma, Myanmar between year 2000 and 2014 using Landsat Images and Ground Measurements

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Wynn, K. Z.; Ryu, Y.

    2015-12-01

    Even with recently increased awareness of the environmental conservation, the degradation of tropical forests are still one of the major sources of global carbon emission. Especially in Myanmar, the pressure to develop natural forest is growing rapidly after the change from socialism to capitalism in 2010. As the initial step of the forest conservation, the aboveground biomass(AGB) of South Zarmani Reserved Forest in Bago Yoma region were estimated using Landsat 8 OLI after the evaluation with 100 sample plot measurements. Multiple linear regression (MLR) model of band values and their principal component analysis (PCA) model were developed to estimate the AGB using the spectral reflectance from Landsat images and elevation as the input variables. The MLR model had r2 = 0.43, RMSE = 60.2 tons/ha, relative RMSE = 70.1%, Bias = -9.1 tons/ha, Bias (%) = -10.6%, and p < 0.0001, while the PCA model showed r2 = 0.45, RMSE = 55.1 tons/ha, relative RMSE = 64.1%, Bias = -8.3 tons/ha, Bias (%) = -9.7%, and p < 0.0001. The AGB maps of the study area were generated based on both MLR and PCA models. The estimated mean AGB values were 74.74±22.3 tons/ha and 73.04±17.6 tons/ha and the total AGB of the study area are about 5.7 and 5.6 million tons from MLR and PCA, respectively. Then, Landsat 7 ETM+ image acquired on 2000 was also used to compare the changing of AGB between year 2000 and 2014. The estimated mean AGB value generated from the Landsat 7 ETM+ image was 78.9±16.9 tons/ha, which is substantially decreased about 7.5% compared to year 2014. The reduction of AGB increased with closeness to village, however AGB in distant areas showed steady increases. In conclusion, we were able to generate solid regression models from Landsat 8 OLI image after ground truth and two regression models gave us very similar AGB estimation (less than 2%) of the study area. We were also able to estimate the changing of AGB from year 2000 to 2014 of South Zarmani Reserved Forest, Bago Yoma

  2. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    SciTech Connect

    French, Sean B; Christensen, Candace; Jennings, Terry L; Jaros, Christopher L; Wykoff, David S; Crowell, Kelly J; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  3. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-10-01

    The successful launch of the 30-m Landsat-8 Operational Land Imager (OLI) pushbroom sensor offers a new primary data source necessary for aboveground biomass (AGB) estimation, especially in resource-limited environments. In this work, the strength and performance of Landsat-8 OLI image derived texture metrics (i.e. texture measures and texture ratios) in estimating plantation forest species AGB was investigated. It was hypothesized that the sensor's pushbroom design, coupled with the presence of refined spectral properties, enhanced radiometric resolution (i.e. from 8 bits to 12 bits) and improved signal-to-noise ratio have the potential to provide detailed spectral information necessary for significantly strengthening AGB estimation in medium-density forest canopies. The relationship between image texture metrics and measurements of forest attributes can be used to help characterize complex forests, and enhance fine vegetation biophysical properties, a difficult challenge when using spectral vegetation indices especially in closed canopies. This study examines the prospects of using Landsat-8 OLI sensor derived texture metrics for estimating AGB for three medium-density plantation forest species in KwaZulu Natal, South Africa. In order to achieve this objective, three unique data pre-processing techniques were tested (analysis I: Landsat-8 OLI raw spectral-bands vs. raw texture bands; analysis II: Landsat-8 OLI raw spectral-band ratios vs. texture band ratios and analysis III: Landsat-8 OLI derived vegetation indices vs. texture band ratios). The landsat-8 OLI derived texture parameters were examined for robustness in estimating AGB using linear regression, stepwise-multiple linear regression and stochastic gradient boosting regression models. The results of this study demonstrated that all texture parameters particularly band texture ratios calculated using a 3 × 3 window size, could enhance AGB estimation when compared to simple spectral reflectance, simple

  4. Effects of light acclimation on shoot morphology, structure, and biomass allocation of two Taxus species in southwestern China

    NASA Astrophysics Data System (ADS)

    Liu, Wande; Su, Jianrong

    2016-10-01

    Acclimation to changing light conditions plays a crucial role in determining the competitive capability of tree species. There is currently limited information about acclimation to natural light gradient and its effect on shoot structure and biomass in Taxus species. We examined the acclimation of the leaf and shoot axis morphology, structure and biomass allocation of Taxus yunnanensis and T. chinensis var. mairei under three different natural light environments, full daylight, 40–60% full daylight and <10% full daylight. The leaf biomass, nitrogen content per unit area, leaf carbon content per dry mass and leaf dry mass to fresh mass ratio increased with light in both species, demonstrating an enhanced investment of photosynthetic biomass and structural investment under high light. The number of leaves per unit shoot axis length and the leaf dry mass per unit shoot axis length increased with light in both species. However, the light increase did not result in the increase of the total shoot mass. T. yunnanensis produced larger leaves under low light and a higher shoot axis length per unit dry mass under high light, whereas the leaf size and biomass yield of T. chinensis var. mairei were not sensitive to light.

  5. Effects of light acclimation on shoot morphology, structure, and biomass allocation of two Taxus species in southwestern China

    PubMed Central

    Liu, Wande; Su, Jianrong

    2016-01-01

    Acclimation to changing light conditions plays a crucial role in determining the competitive capability of tree species. There is currently limited information about acclimation to natural light gradient and its effect on shoot structure and biomass in Taxus species. We examined the acclimation of the leaf and shoot axis morphology, structure and biomass allocation of Taxus yunnanensis and T. chinensis var. mairei under three different natural light environments, full daylight, 40–60% full daylight and <10% full daylight. The leaf biomass, nitrogen content per unit area, leaf carbon content per dry mass and leaf dry mass to fresh mass ratio increased with light in both species, demonstrating an enhanced investment of photosynthetic biomass and structural investment under high light. The number of leaves per unit shoot axis length and the leaf dry mass per unit shoot axis length increased with light in both species. However, the light increase did not result in the increase of the total shoot mass. T. yunnanensis produced larger leaves under low light and a higher shoot axis length per unit dry mass under high light, whereas the leaf size and biomass yield of T. chinensis var. mairei were not sensitive to light. PMID:27734944

  6. Floral bud damage compensation by branching and biomass allocation in genotypes of Brassica napus with different architecture and branching potential

    PubMed Central

    Pinet, Amélie; Mathieu, Amélie; Jullien, Alexandra

    2015-01-01

    Plant branching is a key process in the yield elaboration of winter oilseed rape (WOSR). It is also involved in plant tolerance to flower damage because it allows the setting of new fertile inflorescences. Here we characterize the changes in the branching and distribution of the number of pods between primary and secondary inflorescences in response to floral bud clippings. Then we investigate the impacts of the modifications in branching on the biomass allocation and its consequence on the crop productivity (harvest index). These issues were addressed on plants with contrasted architecture and branching potential, using three genotypes (Exocet, Pollen, and Gamin) grown under two levels of nitrogen fertilization. Clipping treatments of increasing intensities were applied to either inflorescences or flower buds. We were able to show that restoration of the number of pods after clipping is the main lever for the compensation. Genotypes presented different behaviors in branching and biomass allocation as a function of clipping treatments. The number of fertile ramifications increased for the high intensities of clipping. In particular, the growth of secondary ramifications carried by branches developed before clipping has been observed. The proportions of yield and of number of pods carried by these secondary axes increased and became almost equivalent to the proportion carried by primary inflorescences. In terms of biomass allocation, variations have also been evidenced in the relationship between pod dry mass on a given axis and the number of pods set, while the shoot/root ratio was not modified. The harvest index presented different responses: it decreased after flower buds clipping, while it was maintained after the clipping of the whole inflorescences. The results are discussed relative to their implications regarding the identification of interesting traits to be target in breeding programs in order to improve WOSR tolerance. PMID:25759703

  7. The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2016-09-01

    Reliable and accurate mapping and extraction of key forest indicators of ecosystem development and health, such as aboveground biomass (AGB) and aboveground carbon stocks (AGCS) is critical in understanding forests contribution to the local, regional and global carbon cycle. This information is critical in assessing forest contribution towards ecosystem functioning and services, as well as their conservation status. This work aimed at assessing the applicability of the high resolution 8-band WorldView-2 multispectral dataset together with environmental variables in quantifying AGB and aboveground carbon stocks for three forest plantation species i.e. Eucalyptus dunii (ED), Eucalyptus grandis (EG) and Pinus taeda (PT) in uMgeni Catchment, South Africa. Specifically, the strength of the Worldview-2 sensor in terms of its improved imaging agilities is examined as an independent dataset and in conjunction with selected environmental variables. The results have demonstrated that the integration of high resolution 8-band Worldview-2 multispectral data with environmental variables provide improved AGB and AGCS estimates, when compared to the use of spectral data as an independent dataset. The use of integrated datasets yielded a high R2 value of 0.88 and RMSEs of 10.05 t ha-1 and 5.03 t C ha-1 for E. dunii AGB and carbon stocks; whereas the use of spectral data as an independent dataset yielded slightly weaker results, producing an R2 value of 0.73 and an RMSE of 18.57 t ha-1 and 09.29 t C ha-1. Similarly, high accurate results (R2 value of 0.73 and RMSE values of 27.30 t ha-1 and 13.65 t C ha-1) were observed from the estimation of inter-species AGB and carbon stocks. Overall, the findings of this work have shown that the integration of new generation multispectral datasets with environmental variables provide a robust toolset required for the accurate and reliable retrieval of forest aboveground biomass and carbon stocks in densely forested terrestrial ecosystems.

  8. Allocation of biomass and photoassimilates in juvenile plants of six Patagonian species in response to five water supply regimes

    PubMed Central

    Cella Pizarro, Lucrecia; Bisigato, Alejandro J.

    2010-01-01

    Background and Aims The growth–differentiation balance hypothesis (GDBH) states that there is a physiological trade-off between growth and secondary metabolism and predicts a parabolic effect of resource availability (such as water or nutrients) on secondary metabolite production. To test this hypothesis, the response of six Patagonian Monte species (Jarava speciosa, Grindelia chiloensis, Prosopis alpataco, Bougainvillea spinosa, Chuquiraga erinacea and Larrea divaricata) were investigated in terms of total biomass and resource allocation patterns in response to a water gradient. Methods One-month-old seedlings were subjected to five water supply regimes (expressed as percentage dry soil weight: 13 %, 11 %, 9 %, 7 % or 5 % – field water capacity being 15 %). After 150 d, plants were harvested, oven-dried and partitioned into root, stem and leaf. Allometric analysis was used to correct for size differences in dry matter partitioning. Determinations of total phenolics (TP), condensed tannins (CT), nitrogen (N) and total non-structural carbohydrates (TNC) concentrations were done on each fraction. Based on concentrations and biomass data, contents of TP and CT were estimated for whole plants, and graphical vector analysis was applied to interpret drought effect. Key Results Four species (J. speciosa, G. chiloensis, P. alpataco and B. spinosa) showed a decrease in total biomass in the 5 % water supply regime. Differences in dry matter partitioning among treatments were mainly due to size variation. Concentrations of TP, CT, N and TNC varied little and the effect of drought on contents of TP and CT was not adequately predicted by the GDBH, except for G. chiloensis. Conclusions Water stress affected growth-related processes (i.e. reduced total biomass) rather than defence-related secondary metabolism or allocation to different organs in juvenile plants. Therefore, the results suggest that application of the GDBH to plants experiencing drought-stress should be done

  9. Heterogeneous Light Supply Affects Growth and Biomass Allocation of the Understory Fern Diplopterygium glaucum at High Patch Contrast

    PubMed Central

    Guo, Wei; Song, Yao-Bin; Yu, Fei-Hai

    2011-01-01

    Spatial heterogeneity in resource supply is common and responses to heterogeneous resource supply have been extensively documented in clonal angiosperms but not in pteridophytes. To test the hypotheses that clonal integration can modify responses of pteridophytes to heterogeneous resource supply and the integration effect is larger at higher patch contrast, we conducted a field experiment with three homogeneous and two heterogeneous light treatments on the rhizomatous, understory fern Diplopterygium glaucum in an evergreen broad-leaved forest in East China. In homogeneous treatments, all D. glaucum ramets in 1.5 m×1.5 m units were subjected to 10, 40 and 100% natural light, respectively. In the heterogeneous treatment of low patch contrast, ramets in the central 0.5 m×0.5 m plots of the units were subjected to 40% natural light and their interconnected ramets in the surrounding area of the units to 100%; in the heterogeneous treatment of high patch contrast, ramets in the central plots were subjected to 10% natural light and those in the surrounding area to 100%. In the homogeneous treatments, biomass and number of living ramets in the central plots decreased and number of dead ramets increased with decreasing light supply. At low contrast heterogeneous light supply did not affect performance or biomass allocation of D. glaucum in the central plots, but at high contrast it increased lamina biomass and number of living ramets older than annual and modified biomass allocation to lamina and rhizome. Thus, clonal integration can affect responses of understory ferns to heterogeneous light supply and ramets in low light patches can be supported by those in high light. The results also suggest that effects of clonal integration depend on the degree of patch contrast and a significant integration effect may be found only under a relatively high patch contrast. PMID:22132189

  10. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize.

    PubMed

    Voorend, Wannes; Nelissen, Hilde; Vanholme, Ruben; De Vliegher, Alex; Van Breusegem, Frank; Boerjan, Wout; Roldán-Ruiz, Isabel; Muylle, Hilde; Inzé, Dirk

    2016-03-01

    Increased biomass yield and quality are of great importance for the improvement of feedstock for the biorefinery. For the production of bioethanol, both stem biomass yield and the conversion efficiency of the polysaccharides in the cell wall to fermentable sugars are of relevance. Increasing the endogenous levels of gibberellic acid (GA) by ectopic expression of GA20-OXIDASE1 (GA20-OX1), the rate-limiting step in GA biosynthesis, is known to affect cell division and cell expansion, resulting in larger plants and organs in several plant species. In this study, we examined biomass yield and quality traits of maize plants overexpressing GA20-OX1 (GA20-OX1). GA20-OX1 plants accumulated more vegetative biomass than control plants in greenhouse experiments, but not consistently over two years of field trials. The stems of these plants were longer but also more slender. Investigation of GA20-OX1 biomass quality using biochemical analyses showed the presence of more cellulose, lignin and cell wall residue. Cell wall analysis as well as expression analysis of lignin biosynthetic genes in developing stems revealed that cellulose and lignin were deposited earlier in development. Pretreatment of GA20-OX1 biomass with NaOH resulted in a higher saccharification efficiency per unit of dry weight, in agreement with the higher cellulose content. On the other hand, the cellulose-to-glucose conversion was slower upon HCl or hot-water pretreatment, presumably due to the higher lignin content. This study showed that biomass yield and quality traits can be interconnected, which is important for the development of future breeding strategies to improve lignocellulosic feedstock for bioethanol production.

  11. High water level impedes the adaptation of Polygonum hydropiper to deep burial: responses of biomass allocation and root morphology.

    PubMed

    Pan, Ying; Xie, Yong H; Deng, Zheng M; Tang, Yue; Pan, Dong D

    2014-07-08

    Many studies have investigated the individual effects of sedimentation or inundation on the performance of wetland plants, but few have examined the combined influence of these processes. Wetland plants might show greater morphological plasticity in response to inundation than to sedimentation when these processes occur simultaneously since inundation can negate the negative effects of burial on plant growth. Here, we evaluate this hypothesis by assessing growth of the emergent macrophyte Polygonum hydropiper under flooding (0 and 40 cm) and sedimentation (0, 5, and 10 cm), separately and in combination. Deep burial and high water level each led to low oxidation-reduction potential, biomass (except for 5-cm burial), and growth of thick, short roots. These characteristics were generally more significant under high water level than under deep burial conditions. More biomass was allocated to stems in the deep burial treatments, but more to leaves in the high water level treatments. Additionally, biomass accumulation was lower and leaf mass ratio was higher in the 40-cm water level + 10-cm burial depth treatment than both separate effects. Our data indicate that inundation plays a more important role than sedimentation in determining plant morphology, suggesting hierarchical effects of environmental stressors on plant growth.

  12. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forests: results from a Dynamic Vegetation Model

    NASA Astrophysics Data System (ADS)

    Delbart, N.; Ciais, P.; Chave, J.; Viovy, N.; Malhi, Y.; Le Toan, T.

    2010-04-01

    Dynamic Vegetation Models (DVMs) simulate energy, water and carbon fluxes between the ecosystem and the atmosphere, between the vegetation and the soil, and between plant organs. They also estimate the potential biomass of a forest in equilibrium having grown under a given climate and atmospheric CO2 level. In this study, we evaluate the above ground woody biomass (AGWB) and the above ground woody Net Primary Productivity (NPPAGW) simulated by the DVM ORCHIDEE across Amazonian forests, by comparing the simulation results to a large set of ground measurements (220 sites for biomass, 104 sites for NPPAGW). We found that the NPPAGW is on average overestimated by 63%. We also found that the fraction of biomass that is lost through mortality is 85% too high. These model biases nearly compensate each other to give an average simulated AGWB close to the ground measurement average. Nevertheless, the simulated AGWB spatial distribution differs significantly from the observations. Then, we analyse the discrepancies in biomass with regards to discrepancies in NPPAGW and those in the rate of mortality. When we correct for the error in NPPAGW, the errors on the spatial variations in AGWB are exacerbated, showing clearly that a large part of the misrepresentation of biomass comes from a wrong modelling of mortality processes. Previous studies showed that Amazonian forests with high productivity have a higher mortality rate than forests with lower productivity. We introduce this relationship, which results in strongly improved modelling of biomass and of its spatial variations. We discuss the possibility of modifying the mortality modelling in ORCHIDEE, and the opportunity to improve forest productivity modelling through the integration of biomass measurements, in particular from remote sensing.

  13. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Delbart, N.; Ciais, P.; Chave, J.; Viovy, N.; Malhi, Y.; Le Toan, T.

    2010-10-01

    Dynamic Vegetation Models (DVMs) simulate energy, water and carbon fluxes between the ecosystem and the atmosphere, between the vegetation and the soil, and between plant organs. They also estimate the potential biomass of a forest in equilibrium having grown under a given climate and atmospheric CO2 level. In this study, we evaluate the Above Ground Woody Biomass (AGWB) and the above ground woody Net Primary Productivity (NPPAGW) simulated by the DVM ORCHIDEE across Amazonian forests, by comparing the simulation results to a large set of ground measurements (220 sites for biomass, 104 sites for NPPAGW). We found that the NPPAGW is on average overestimated by 63%. We also found that the fraction of biomass that is lost through mortality is 85% too high. These model biases nearly compensate each other to give an average simulated AGWB close to the ground measurement average. Nevertheless, the simulated AGWB spatial distribution differs significantly from the observations. Then, we analyse the discrepancies in biomass with regards to discrepancies in NPPAGW and those in the rate of mortality. When we correct for the error in NPPAGW, the errors on the spatial variations in AGWB are exacerbated, showing clearly that a large part of the misrepresentation of biomass comes from a wrong modelling of mortality processes. Previous studies showed that Amazonian forests with high productivity have a higher mortality rate than forests with lower productivity. We introduce this relationship, which results in strongly improved modelling of biomass and of its spatial variations. We discuss the possibility of modifying the mortality modelling in ORCHIDEE, and the opportunity to improve forest productivity modelling through the integration of biomass measurements, in particular from remote sensing.

  14. EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA

    EPA Science Inventory

    The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...

  15. Fire and the distribution and uncertainty of carbon sequestered as above-ground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks

    USGS Publications Warehouse

    Lutz, James A.; Matchett, John R.; Tarnay, Leland W.; Smith, Douglas F.; Becker, Kendall M.L.; Furniss, Tucker J.; Brooks, Matthew L.

    2017-01-01

    Fire is one of the principal agents changing forest carbon stocks and landscape level distributions of carbon, but few studies have addressed how accurate carbon accounting of fire-killed trees is or can be. We used a large number of forested plots (1646), detailed selection of species-specific and location-specific allometric equations, vegetation type maps with high levels of accuracy, and Monte Carlo simulation to model the amount and uncertainty of aboveground tree carbon present in tree species (hereafter, carbon) within Yosemite and Sequoia & Kings Canyon National Parks. We estimated aboveground carbon in trees within Yosemite National Park to be 25 Tg of carbon (C) (confidence interval (CI): 23–27 Tg C), and in Sequoia & Kings Canyon National Park to be 20 Tg C (CI: 18–21 Tg C). Low-severity and moderate-severity fire had little or no effect on the amount of carbon sequestered in trees at the landscape scale, and high-severity fire did not immediately consume much carbon. Although many of our data inputs were more accurate than those used in similar studies in other locations, the total uncertainty of carbon estimates was still greater than ±10%, mostly due to potential uncertainties in landscape-scale vegetation type mismatches and trees larger than the ranges of existing allometric equations. If carbon inventories are to be meaningfully used in policy, there is an urgent need for more accurate landscape classification methods, improvement in allometric equations for tree species, and better understanding of the uncertainties inherent in existing carbon accounting methods.

  16. A comparative analysis of extended water cloud model and backscatter modelling for above-ground biomass assessment in Corbett Tiger Reserve

    NASA Astrophysics Data System (ADS)

    Kumar, Yogesh; Singh, Sarnam; Chatterjee, R. S.; Trivedi, Mukul

    2016-04-01

    Forest biomass acts as a backbone in regulating the climate by storing carbon within itself. Thus the assessment of forest biomass is crucial in understanding the dynamics of the environment. Traditionally the destructive methods were adopted for the assessment of biomass which were further advanced to the non-destructive methods. The allometric equations developed by destructive methods were further used in non-destructive methods for the assessment, but they were mostly applied for woody/commercial timber species. However now days Remote Sensing data are primarily used for the biomass geospatial pattern assessment. The Optical Remote Sensing data (Landsat8, LISS III, etc.) are being used very successfully for the estimation of above ground biomass (AGB). However optical data is not suitable for all atmospheric/environmental conditions, because it can't penetrate through clouds and haze. Thus Radar data is one of the alternate possible ways to acquire data in all-weather conditions irrespective of weather and light. The paper examines the potential of ALOS PALSAR L-band dual polarisation data for the estimation of AGB in the Corbett Tiger Reserve (CTR) covering an area of 889 km2. The main focus of this study is to explore the accuracy of Polarimetric Scattering Model (Extended Water Cloud Model (EWCM) with respect to Backscatter model in the assessment of AGB. The parameters of the EWCM were estimated using the decomposition components (Raney Decomposition) and the plot level information. The above ground biomass in the CTR ranges from 9.6 t/ha to 322.6 t/ha.

  17. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation

    PubMed Central

    Li, Guangqi; Gerhart, Laci M.; Harrison, Sandy P.; Ward, Joy K.; Harris, John M.; Prentice, I. Colin

    2017-01-01

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today. PMID:28233772

  18. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation.

    PubMed

    Li, Guangqi; Gerhart, Laci M; Harrison, Sandy P; Ward, Joy K; Harris, John M; Prentice, I Colin

    2017-02-24

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today.

  19. Weed management, training, and irrigation practices for organic production of trailing blackberry: III. Accumulation and removal of aboveground biomass, carbon, and nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various production practices on biomass, C, and nutrient content, accumulation, and loss were assessed over 2 years in a mature organic trailing blackberry (Rubus L. subgenus Rubus, Watson) production system. Treatments included two irrigation options (no irrigation after harvest and ...

  20. Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area

    NASA Astrophysics Data System (ADS)

    Cintra, B. B. L.; Schietti, J.; Emillio, T.; Martins, D.; Moulatlet, G.; Souza, P.; Levis, C.; Quesada, C. A.; Schöngart, J.

    2013-04-01

    The ongoing demand for information on forest productivity has increased the number of permanent monitoring plots across the Amazon. Those plots, however, do not comprise the whole diversity of forest types in the Amazon. The complex effects of soil, climate and hydrology on the productivity of seasonally waterlogged interfluvial wetland forests are still poorly understood. The presented study is the first field-based estimate for tree ages and wood biomass productivity in the vast interfluvial region between the Purus and Madeira rivers. We estimate stand age and wood biomass productivity by a combination of tree-ring data and allometric equations for biomass stocks of eight plots distributed along 600 km in the Purus-Madeira interfluvial area that is crossed by the BR-319 highway. We relate stand age and wood biomass productivity to hydrological and edaphic conditions. Mean productivity and stand age were 5.6 ± 1.1 Mg ha-1 yr-1 and 102 ± 18 yr, respectively. There is a strong relationship between tree age and diameter, as well as between mean diameter increment and mean wood density within a plot. Regarding the soil hydromorphic properties we find a positive correlation with wood biomass productivity and a negative relationship with stand age. Productivity also shows a positive correlation with the superficial phosphorus concentration. In addition, superficial phosphorus concentration increases with enhanced soil hydromorphic condition. We raise three hypotheses to explain these results: (1) the reduction of iron molecules on the saturated soils with plinthite layers close to the surface releases available phosphorous for the plants; (2) the poor structure of the saturated soils creates an environmental filter selecting tree species of faster growth rates and shorter life spans and (3) plant growth on saturated soil is favored during the dry season, since there should be low restrictions for soil water availability.

  1. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (maxim.) Makino.

    PubMed

    Zhang, Luan; Pan, Yuxue; Lv, Wei; Xiong, Zhi-ting

    2014-06-01

    In the current study, we hypothesize that mine (metallicolous) populations of metallophytes form a trade-off between the roots and shoots when under copper (Cu) stress to adapt themselves to heavy metal contaminated habitats, and thus, differ from normal (non-metallicolous) populations in biomass allocation. To test the hypothesis, two populations of the metallophyte Kummerowia stipulacea, one from an ancient Cu mine (MP) and the other from a non-contaminated site (NMP), were treated with Cu(2+) in hydroponic conditions. The results showed that MP plants had higher root/shoot biomass allocation and more complicated root system architecture compared to those of the NMP plants when under Cu stress. The net photosynthetic capacity was more inhibited in the NMP plants than in the MP plants when under Cu stress. The sugar (sucrose and hexose) contents and acid invertase activities of MP plants were elevated while those in NMP plants were inhibited after Cu treatment. The neutral/alkaline invertase activities and sucrose synthase level showed no significant differences between the two populations when under Cu stress. The results showed that acid invertase played an important role in biomass allocation and that the physiological responses were beneficial for the high root/shoot biomass allocation, which were advantageous during adaptive evolution to Cu-enriched mine soils.

  2. WHOLE-SEEDLING BIOMASS ALLOCATION, LEAF AREA, AND TISSUE CHEMISTRY FOR DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE FOR 4 YEARS

    EPA Science Inventory

    Changes in the global climate may impact forests, but data are lacking for climate change effects on whole tree productivity over multiple seasons and conditions representative of the field. To address this critical need, we measured biomass allocation for whole Pseudotsuga menzi...

  3. Aboveground biomass estimation using SAR-optical (Lidar, RapidEye) and field inventory datasets in Skukuza, Kruger National Park in South Africa

    NASA Astrophysics Data System (ADS)

    Onyango Odipo, Victor; Hüttich, Christian; Luck, Wolfgang; Schmullius, Christiane

    2015-04-01

    African savanna covers approximately two-thirds of sub-saharan Africa, playing important roles as a carbon pool, habitat for mankind and wildlife, source of livelihood, an important tropical climate modifier, among other ecological roles. Sub-saharan Africa alone accounts for 25% of the tropical aboveground carbon stock (193 Gt C). Global and national level AGB estimates rely on extrapolations with regression models from few field inventories, leading in some cases, up to 100% uncertainty. Remote sensing has proven to provide reliable vegetation structural mapping, given the high spatial and temporal resolution allowing datasets to be availed in areas where ground based inventories are infeasible due to time and financial constraints. The availability of freely accessible optical remotely-sensed datasets has made this feat attainable. However, the heterogeneity of tropical savannas (co-existence of trees and grasses), coupled with erratic rainfall events and atmospheric clouds and aerosol in the tropics has made it difficult to extract biophysical properties of the savannas by solely using optical datasets. This has necessitated an assessment of synergies between active and passive remotely sensed datasets to benefit from the complementarities. In this study we assess the extent to which multi-level sub-centimeter Unmanned Aerial Vehicle (UAV) Lidar, high resolution RapidEye and microwave (ALOS PALSAR L-band and Sentinel-1 C-band) remotely sensed datasets can be used together with tree census datasets to estimate AGB within the complex southern Africa savanna ecosystem. A random forest (RF) regression model is produced which relates the Lidar canopy-height metrics (CHM) with both synthetic aperture radar (SAR) and high resolution RapidEye datasets. As a validation, we compare our results with both national and global level ABG estimates.

  4. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability

    USGS Publications Warehouse

    Lorenzen, B.; Brix, H.; Mendelssohn, I.A.; McKee, K.L.; Miao, S.L.

    2001-01-01

    The effects of phosphorus (P) and oxygen availability on growth, biomass allocation and nutrient use efficiency in Cladium jamaicense Crantz and Typha domingensis Pers. were studied in a growth facility equipped with steady-state hydroponic rhizotrons. The treatments included four P concentrations (10, 40, 80 and 500 ??g I-1) and two oxygen concentration (8.0 and <0.5 mg O2 I-1) in the culture solutions. In Cladium, no clear relationship was found between P availability and growth rate (19-37 mg g-1 d-1), the above to below ground biomass ratio (A/B) (mean = 4.6), or nitrogen use efficiency (NUE) (mean = 72 g dry weight g-1 N). However, the ratio between root supported tissue (leaves, rhizomes and ramets) and root biomass (S/R) (5.6-8) increased with P availability. In contrast, the growth rate (48-89 mg g-1 d-1) and the biomass ratios A/B (2.4-6.1) and S/R (5.4-10.3) of Typha increased with P availability, while NUE (71-30 g dry weight g-1 N) decreased. The proportion of root laterals was similar in the two species, but Typha had thinner root laterals (diameter = 186 ??m) than Cladium (diameter = 438 ??m) indicating a larger root surface area in Typha. The two species had a similar P use efficiency (PUE) at 10 ??g PI-1 (mean = 1134 g dry weight g-1 P) and at 40 and 80 ??g PI-1 (mean = 482 dry weight g-1 P) but the N/P ratio indicated imbalances in nutrient uptake at a higher P concentration (40 ??g PI-1) in Typha than in Cladium (10 ??g PI-1). The two species had similar root specific P accumulation rate at the two lowest P levels, whereas Typha had 3-13-fold higher P uptake rates at the two highest P levels, indicating a higher nutrient uptake capacity in Typha. The experimental oxygen concentration in the rhizosphere had only limited effect on the growth of the two species and had little effect on biomass partitioning and nutrient use efficiency. The aerenchyma in these species was probably sufficient to maintain adequate root oxygenation under partially oxygen

  5. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    NASA Astrophysics Data System (ADS)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked

  6. Spatial allocation of future landscape patterns for biomass and alleviation of hydrologic impacts of climate change

    NASA Astrophysics Data System (ADS)

    Ssegane, H.; Negri, M. C.

    2015-12-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. Concurrently, the Intergovernmental Panel on Climate Change (IPCC) predicts an increase of 2 to 4°C over the next 100 years above the preindustrial baseline, beginning as early as 2016 to 2035 over all seasons in the North America. This climate change is projected to further strain water resources currently stressed by anthropogenic activities. Therefore, placement of bioenergy crops on strategically selected sub-field areas in an agricultural landscape has the potential to increase the environmental and economic sustainability if location and choice of the crops result in minimal disruption of current food production systems and therefore cause minimal indirect land use change. This study identified sub-field marginal areas in an agricultural watershed using soil-based environmental sustainability criteria and a crop productivity index. Future landscape patterns (FLPs) were developed by allocating bioenergy crops (switchgrass: Panicum virgatum or shrub willows: Salix spp.) to these marginal areas (20% of the watershed). SWAT hydrologic model and dynamically downscaled climatic projection were used to asses impact of climate change on extreme flow conditions, total annual production of commodity and bioenergy crops, and water quality under current and future landscape patterns for the mid-21st century (2045-2055) and late 21st century (2085-2095) climatic projections. The frequency of flood and drought conditions was projected to increase while the corresponding durations to decrease. Sediment yields were projected to increase by 85% to 170% while FLPs would mitigate this increase by 26% to 32%.

  7. Flexible C, N and P allocation in maize plants and soil microbial biomass under recurrent and long-term drought

    NASA Astrophysics Data System (ADS)

    Larionova, Alla; Semenov, Vyacheslav; Yevdokimov, Ilya; Blagodatskaya, Evgenia

    2016-04-01

    One of the negative effects of the global warming is increasing aridity worldwide. Alterations in plant and microbial C, N and P in response to drought events can differ considerably in magnitude and direction. Therefore, synchronization between C, N and P in plants, dissolved forms and microbial biomass in soil is of great interest. Our objective was to evaluate C:N:P stoichiometry relations in plants and soil as affected by moderate water shortage and severe drought with subsequent rewetting. We tested the sensitivity of stoichiometry ratios in plants, dissolved compounds and soil microbial biomass in greenhouse experiment with maize. Three treatments were used: i) control with constant soil moisture (CTL); ii) soil with constantly low wetness of 25% WHC (DRY) and iii) soil exposed to drying-rewetting events (DRW). N dynamics was the most sensitive to water stress in maize plants and soil, while P dynamics was almost unaffected by drought and rewetting. As a result, C:N and N:P ratios were also sensitive to water treatment indicating that C, N and P cycles were decoupled by the water stresses. High C:N ratios in CTL and low C:N ratios in DRY and DRW treatments indicate stoichiometric flexibility in plants and soil microbes. N allocation was found to respond to N shortage in CTL and increased salt concentrations in soil solution in DRY and DRW treatments. C:N:P stoichiometry in soil microbes was found flexible during active plant growth, while that at the end of growth season turned to almost homeostatic ratio. The research was supported by Russian Science Foundation (project 14-14-00625)

  8. Aboveground and belowground competition between willow Salix caprea its understory

    NASA Astrophysics Data System (ADS)

    Mudrák, Ondřej; Hermová, Markéta; Frouz, Jan

    2016-04-01

    The effects of aboveground and belowground competition with the willow S. caprea on its understory plant community were studied in unreclaimed post-mining sites. Belowground competition was evaluated by comparing (i) frames inserted into the soil that excluded woody roots (frame treatment), (ii) frames that initially excluded woody root growth but then allowed regrowth of the roots (open-frame treatment), and (iii) undisturbed soil (no-frame treatment). These treatments were combined with S. caprea thinning to assess the effect of aboveground competition. Three years after the start of the experiment, aboveground competition from S. caprea (as modified by thinning of the S. caprea canopy) had not affected understory biomass or species number but had affected species composition. In contrast, belowground competition significantly affected both the aboveground and belowground biomass of the understory. The aboveground biomass of the understory was greater in the frame treatment (which excluded woody roots) than in the other two treatments. The belowground biomass of the understory was greater in the frame than in the open-frame treatment. Unlike aboveground competition (light availability), belowground competition did not affect understory species composition. Our results suggest that S. caprea is an important component during plant succession on post-mining sites because it considerably modifies its understory plant community. Belowground competition is a major reason for the low cover and biomass of the herbaceous understory in S. caprea stands on post-mining sites.

  9. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.

    PubMed

    Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G

    2017-03-01

    Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit.

  10. Estimating woody aboveground biomass in an area of agroforestry using airborne light detection and ranging and compact airborne spectrographic imager hyperspectral data: individual tree analysis incorporating tree species information

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Liu, Liangyun; Peng, Dailiang; Liu, Xinjie; Zhang, Su; Wang, Yingjie

    2016-07-01

    Until now, there have been only a few studies that have made estimates of the woody aboveground biomass (AGB) in an area of agroforestry using remote sensing technology. The woody AGB density was estimated using individual tree analysis (ITA) that incorporated tree species information using a combination of airborne light detection and ranging (LiDAR) and compact airborne spectrographic imagery acquired over a typical agroforestry in northwestern China. First, a series of improved LiDAR processing algorithms was applied to achieve individual tree segmentation, and accurate plot-level canopy heights and crown diameters were obtained. The individual tree species were then successfully classified using both spectral and shape characteristics with an overall accuracy of 0.97 and a kappa coefficient of 0.85. Finally, the tree-level AGB (kg) was estimated based on the ITA; the AGB density (Mg/ha) was then upscaled based on the tree-level AGB values. It is concluded that, compared with the commonly used area-based method combining LiDAR and spectral metrics [root mean square error (RMSE)=19.58 Mg/ha], the ITA method performs better at estimating AGB density (RMSE=10.56 Mg/ha). The tree species information also improved the accuracy of the AGB estimation even though the species are not well diversified in this study area.

  11. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.

    PubMed

    Brown, Caleb E; Mickelbart, Michael V; Jacobs, Douglass F

    2014-12-01

    Partial canopy cover promotes regeneration of many temperate forest trees, but the consequences of shading on seedling drought resistance are unclear. Reintroduction of blight-resistant American chestnut (Castanea dentata (Marsh.) Borkh.) into eastern North American forests will often occur on water-limited sites and under partial canopy cover. We measured leaf pre-dawn water potential (Ψpd), leaf gas exchange, and growth and biomass allocation of backcross hybrid American chestnut seedlings from three orchard sources grown under different light intensities (76, 26 and 8% full photosynthetically active radiation (PAR)) and subjected to well-watered or mid-season water-stressed conditions. Seedlings in the water-stress treatment were returned to well-watered conditions after wilting to examine recovery. Seedlings growing under medium- and high-light conditions wilted at lower leaf Ψpd than low-light seedlings. Recovery of net photosynthesis (Anet) and stomatal conductance (gs) was greater in low and medium light than in high light. Seed source did not affect the response to water stress or light level in most cases. Between 26 and 8% full PAR, light became limiting to the extent that the effects of water stress had no impact on some growth and morphological traits. We conclude that positive and negative aspects of shading on seedling drought tolerance and recovery are not mutually exclusive. Partial shade may help American chestnut tolerate drought during early establishment through effects on physiological conditioning.

  12. Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes.

    PubMed

    Callaway, R M; DeLucia, E H; Thomas, E M; Schlesinger, W H

    1994-07-01

    Increases in the concentration of atmospheric carbon dioxide may have a fertilizing effect on plant growth by increasing photosynthetic rates and therefore may offset potential growth decreases caused by the stress associated with higher temperatures and lower precipitation. However, plant growth is determined both by rates of net photosynthesis and by proportional allocation of fixed carbon to autotrophic tissue and heterotrophic tissue. Although CO2 fertilization may enhance growth by increasing leaf-level assimilation rates, reallocation of biomass from leaves to stems and roots in response to higher concentrations of CO2 and higher temperatures may reduce whole-plant assimilation and offset photosynthetic gains. We measured growth parameters, photosynthesis, respiration, and biomass allocation of Pinus ponderosa seedlings grown for 2 months in 2×2 factorial treatments of 350 or 650μ bar CO2 and 10/25° C or 15/30° C night/day temperatures. After 1 month in treatment conditions, total seedling biomass was higher in elevated CO2, and temperature significantly enhanced the positive CO2 effect. However, after 2 months the effect of CO2 on total biomass decreased and relative growth rates did not differ among CO2 and temperature treatments over the 2-month growth period even though photosynthetic rates increased ≈7% in high CO2 treatments and decreased ≈10% in high temperature treatments. Additionally, CO2 enhancement decreased root respiration and high temperatures increased shoot respiration. Based on CO2 exchange rates, CO2 fertilization should have increased relative growth rates (RGR) and high temperatures should have decreased RGR. Higher photosynthetic rates caused by CO2 fertilization appear to have been mitigated during the second month of exposure to treatment conditions by a ≈3% decrease in allocation of biomass to leaves and a ≈9% increase in root:shoot ratio. It was not clear why diminished photosynthetic rates and increased respiration rates

  13. ABOVEGROUND NITROGEN USE EFFICIENCY AND ...

    EPA Pesticide Factsheets

    Long-term nitrogen (N) fertilization studies suggest shifting dominance from Spartina alterniflora to Distichlis spicata, although the underlying mechanism is unclear. A limitation on our ability to predict changes is a poor understanding of resource use under ambient conditions. The present project compares growth rates and N use dynamics between two emerging salt marsh dominants, S. alterniflora and D. spicata. We hypothesize that under ambient Narragansett Bay nutrient conditions, S. alterniflora is a more efficient user of N than D. spicata. Spartina alterniflora and D. spicata cores were collected from the field and raised in a greenhouse. Heights of all stems were measured weekly to determine growth rates. To understand N movement, a pulse of 15N was added and three cores were sacrificed each subsequent week. Live aboveground biomass was separated into stems and leaves, with leaves categorized based on their position from the top of the stem. Samples were analyzed by isotope ratio mass spectrometry to trace N accumulation in different pools over time. One week after the 15N pulse, most of the aboveground 15N was bound in the stems and the youngest leaves. Efficient nutrient transfer in photosynthetic material likely provides a stronger competitive advantage for taller plants, which are able to compete better for light. Growth rates of S. alterniflora proved to be more variable over time than that of D. spicata. A better understanding of N dynamics under am

  14. Carbon allocation in a Bornean tropical rainforest without dry seasons.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Saitoh, Taku M; Ohashi, Mizue; Nakagawa, Michiko; Suzuki, Masakazu; Otsuki, Kyoichi; Kumagai, Tomo'omi

    2013-07-01

    To clarify characteristics of carbon (C) allocation in a Bornean tropical rainforest without dry seasons, gross primary production (GPP) and C allocation, i.e., above-ground net primary production (ANPP), aboveground plant respiration (APR), and total below-ground carbon flux (TBCF) for the forest were examined and compared with those from Amazonian tropical rainforests with dry seasons. GPP (30.61 MgC ha(-1) year(-1), eddy covariance measurements; 34.40 MgC ha(-1) year(-1), biometric measurements) was comparable to those for Amazonian rainforests. ANPP (6.76 MgC ha(-1) year(-1)) was comparable to, and APR (8.01 MgC ha(-1) year(-1)) was slightly lower than, their respective values for Amazonian rainforests, even though aboveground biomass was greater at our site. TBCF (19.63 MgC ha(-1) year(-1)) was higher than those for Amazonian forests. The comparable ANPP and higher TBCF were unexpected, since higher water availability would suggest less fine root competition for water, giving higher ANPP and lower TBCF to GPP. Low nutrient availability may explain the comparable ANPP and higher TBCF. These data show that there are variations in C allocation patterns among mature tropical rainforests, and the variations cannot be explained solely by differences in soil water availability.

  15. Growing larger with domestication: a matter of physiology, morphology or allocation?

    PubMed

    Milla, R; Matesanz, S

    2017-05-01

    Domestication might affect plant size. We investigated whether herbaceous crops are larger than their wild progenitors, and the traits that influence size variation. We grew six crop plants and their wild progenitors under common garden conditions. We measured the aboveground biomass gain by individual plants during the vegetative stage. We then tested whether photosynthesis rate, biomass allocation to leaves, leaf size and specific leaf area (SLA) accounted for variations in whole-plant photosynthesis, and ultimately in aboveground biomass. Despite variations among crops, domestication generally increased the aboveground biomass (average effect +1.38, Cohen's d effect size). Domesticated plants invested less in leaves and more in stems than their wild progenitors. Photosynthesis rates remained similar after domestication. Variations in whole-plant C gains could not be explained by changes in leaf photosynthesis. Leaves were larger after domestication, which provided the main contribution to increases in leaf area per plant and plant-level C gain, and ultimately to larger aboveground biomass. In general, cultivated plants have become larger since domestication. In our six crops, this occurred despite lower investment in leaves, comparable leaf-level photosynthesis and similar biomass costs of leaf area (i.e. SLA) than their wild progenitors. Increased leaf size was the main driver of increases in aboveground size. Thus, we suggest that large seeds, which are also typical of crops, might produce individuals with larger organs (i.e. leaves) via cascading effects throughout ontogeny. Larger leaves would then scale into larger whole plants, which might partly explain the increases in size that accompanied domestication.

  16. Biomass Partitioning and Its Relationship with the Environmental Factors at the Alpine Steppe in Northern Tibet

    PubMed Central

    Wu, Jianbo; Hong, Jiangtao; Wang, Xiaodan; Sun, Jian; Lu, Xuyang; Fan, Jihui; Cai, Yanjiang

    2013-01-01

    Alpine steppe is considered to be the largest grassland type on the Tibetan Plateau. This grassland contributes to the global carbon cycle and is sensitive to climate changes. The allocation of biomass in an ecosystem affects plant growth and the overall functioning of the ecosystem. However, the mechanism by which plant biomass is allocated on the alpine steppe remains unclear. In this study, biomass allocation and its relationship to environmental factors on the alpine grassland were studied by a meta-analysis of 32 field sites across the alpine steppe of the northern Tibetan Plateau. We found that there is less above-ground biomass (MA) and below-ground biomass (MB) in the alpine steppe than there is in alpine meadows and temperate grasslands. By contrast, the root-to-shoot ratio (R:S) in the alpine steppe is higher than it is in alpine meadows and temperate grasslands. Although temperature maintained the biomass in the alpine steppe, precipitation was found to considerably influence MA, MB, and R:S, as shown by ordination space partitioning. After standardized major axis (SMA) analysis, we found that allocation of biomass on the alpine steppe is supported by the allometric biomass partitioning hypothesis rather than the isometric allocation hypothesis. Based on these results, we believe that MA and MB will decrease as a result of the increased aridity expected to occur in the future, which will reduce the landscape’s capacity for carbon storage. PMID:24349170

  17. Tree Biomass Allocation and Its Model Additivity for Casuarina equisetifolia in a Tropical Forest of Hainan Island, China

    PubMed Central

    Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng

    2016-01-01

    Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (P<0.05). However, the biomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia. PMID:27002822

  18. Tree Biomass Allocation and Its Model Additivity for Casuarina equisetifolia in a Tropical Forest of Hainan Island, China.

    PubMed

    Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng

    2016-01-01

    Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (P<0.05). However, the biomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia.

  19. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    SciTech Connect

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  20. [Effects of plant species combination and water body nutrient level on the biomass accumulation and allocation of three kinds functional plants].

    PubMed

    Sun, Li-Fang; Sun, Yi-Xiang; Zhou, Chang-Fang; An, Shu-Qing

    2009-10-01

    Four nutrient levels, i.e., 0.5 mg N x L(-1) and 0.1 mg P x L(-1) (I), 1.5 mg N x L(-1) and 0.3 mg P x L(-1) (II), 4.5 mg N x L(-1) and 0.9 mg P x L(-1) (III), and 13.5 mg N x L(-1) and 2.7 mg P x L(-1) (IV), were installed to study the effects of water body's nutrient level, plant species combination, and their interactions on the biomass accumulation and allocation of invasive floating species Eichhornia crassipes, native rooted leaf-floating species Jussiaea stipulacea, and submerged plant Vallisneria spiralis. The total, root, stem, and leaf biomass of E. crassipes and J. stipulacea, either in monoculture or in mixed-culture, increased with increasing water body's nutrient level, their total biomass in treatments III and IV being averagely 54.47% and 102.63% higher than that in treatments I and II, respectively. Under different plant species combination, the total, root, stem, and leaf biomass of V. spiralis showed a declining trend with the increase of nutrient level, and the total biomass of V. spiralis in treatments III and IV was averagely 45.88% lower than that in treatments I and II. The results of two-way ANOVA showed that water body's nutrient level had significant positive effects on the biomass of E. crassipes and J. stipulacea but negative effects on that of V. spiralis, and the effects of plant species combination varied with target plant species.

  1. Dryland Wheat Domestication Changed the Development of Aboveground Architecture for a Well-Structured Canopy

    PubMed Central

    Li, Pu-Fang; Cheng, Zheng-Guo; Ma, Bao-Luo; Palta, Jairo A.; Kong, Hai-Yan; Mo, Fei; Wang, Jian-Yong; Zhu, Ying; Lv, Guang-Chao; Batool, Asfa; Bai, Xue; Li, Feng-Min; Xiong, You-Cai

    2014-01-01

    We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate. PMID:25181037

  2. Storage of atmospheric carbon in global litter and soil pools in response to vegetation change and biomass allocation

    SciTech Connect

    Klooster, S.A.; Potter, C.S.

    1995-06-01

    Changes in the distribution of vegetation types under altered climate regimes could have important consequences for the storage of stems. Because there are relatively few definitive field studies of changes in whole ecosystem carbon process-level models driven by gridded global databases may provide reasonable indicators of to changes in vegetation cover. We have used plant litter quality (lignin content) and carbon allocation to woody tissues as surrogates for testing the hypothetical effects of future vegetation change using the CASA (Carnegie-Ames-Stanford Approach) Biosphere model. The model is driven by global gridded (1{degree}) satellite imagery on a monthly time interval to simulate seasonal patterns in net ecosystem carbon balance and steady-state carbon storage in detritus arid soils. Sensitivity tests treated litter quality and allocation effects independently from other direct effects of changes in climate, atmospheric CO{sub 2} levels, and primary production. Results support the hypothesis that soil C storage in today`s temperate and boreal forest life zones are those most sensitive to changes in litter lignin content which may accompany increased climate stress. For these systems, the model predicts that a 50% increase in litter lignin concentration would result in a long-term net gain of about 10% C from the atmosphere into surface litter and soil organic matter pools. A 50% decrease in C allocation to woody tissues would invoke a net loss of 10% C from litter and soil organic matter pools.

  3. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    PubMed

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  4. Ammonium and nitrate uptake, nitrogen productivity and biomass allocation in interior spruce families with contrasting growth rates and mineral nutrient preconditioning.

    PubMed

    Miller, Brad D; Hawkins, Barbara J

    2007-06-01

    Four full-sib families of interior spruce (Picea glauca (Moench) Voss) x Picea engelmanii Parry ex Engelm.) with contrasting growth rates (two fast-growing and two slow-growing families) were grown aeroponically with either a 2% relative nitrogen addition rate or free access to nitrogen. Fast-growing families showed greater plasticity in allocating biomass to shoots at high nitrogen supply and to roots at low nitrogen supply than slow-growing families. Compared with the slow-growing families, short-term net ammonium uptake rate measured with an ion selective electrode was significantly greater in fast-growing families at high ammonium supply, but not at low supply. Net nitrate uptake showed the same trend, but differences among families were not significant. Results indicate that differences in seedling growth rate are partly a result of physiological differences in net nitrogen uptake efficiency and nitrogen productivity.

  5. Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters

    NASA Astrophysics Data System (ADS)

    Castanho, A. D. A.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Galbraith, D.; Quesada, C. A.

    2013-04-01

    Dynamic vegetation models forced with spatially homogeneous biophysical parameters are capable of producing average productivity and biomass values for the Amazon basin forest biome that are close to the observed estimates, but these models are unable to reproduce observed spatial variability. Recent observational studies have shown substantial regional spatial variability of above-ground productivity and biomass across the Amazon basin, which is believed to be primarily driven by a combination of soil physical and chemical properties. In this study, spatial heterogeneity of vegetation properties is added to the Integrated Biosphere Simulator (IBIS) land surface model, and the simulated productivity and biomass of the Amazon basin are compared to observations from undisturbed forest. The maximum RuBiCo carboxylation capacity (Vcmax) and the woody biomass residence time (τw) were found to be the most important properties determining the modeled spatial variation of above-ground woody net primary productivity and biomass, respectively. Spatial heterogeneity of these properties may lead to simulated spatial variability of 1.8 times in the woody net primary productivity (NPPw) and 2.8 times in the woody above-ground biomass (AGBw). The coefficient of correlation between the modeled and observed woody productivity improved from 0.10 with homogeneous parameters to 0.73 with spatially heterogeneous parameters, while the coefficient of correlation between the simulated and observed woody above-ground biomass improved from 0.33 to 0.88. The results from our analyses with the IBIS dynamic vegetation model demonstrated that using single values for key ecological parameters in the tropical forest biome severely limits simulation accuracy. Clearer understanding of the biophysical mechanisms that drive the spatial variability of carbon allocation, τw and Vcmax is necessary to achieve further improvements to simulation accuracy.

  6. Storage of atmospheric carbon in global litter and soil pools in response to vegetation change and biomass allocation

    SciTech Connect

    Klooster, S.A.; Potter, C.S.

    1995-09-01

    Changes in the distribution of vegetation types under altered climate regimes could have important consequences for the storage of atmospheric carbon in terrestrial ecosystems. Because there are relatively few definitive field studies of changes in whole ecosystem carbon balance under modified climate stress, process-level models driven by gridded global databases may provide reasonable indicators of biome-specific sensitivity of C storage to changes in vegetation cover. We have used plant litter quality (lignin content) and carbon allocation to woody tissues as surrogates for testing the hypothetical effects of future vegetation change using the CASA (Carnegie-Ames-Stanford Approach) Biosphere model. The model is driven by global gridded (1{degrees}) satellite imagery on a monthly time interval to simulate seasonal patterns in net ecosystem carbon balance and steady-state carbon storage in detritus and soils. Sensitivity tests treated litter quality and allocation effects independently from other direct effects of changes in climate, atmospheric CO{sub 2} levels, and primary production. Results support the hypothesis that soil C storage in today`s temperate and boreal forest life zones are those most sensitive to changes in litter lignin content which may accompany increased climate stress. For these systems, the model predicts that a 50% increase in litter lignin concentrations would result in a long-term net gain of about 10% C from the atmosphere into surface litter and soil organic matter pools. A 50% decrease in C allocation to woody tissues would invoke a net loss of 10% C from litter and soil organic matter pools.

  7. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    PubMed

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements.

  8. Estimating above-ground biomasss using lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Lim, Kevin S.; Treitz, Paul; Morrison, Ian; Baldwin, Ken

    2003-03-01

    Previous forest research using time-of-flight lidar suggests that there exists some quantile of the distribution of laser canopy heights that could provide an estimate of various forest biophysical properties. The results presented here not only support this theory, but also extend it by suggesting that a quantile of the distribution of all laser heights could provide estimates of aboveground biomass for forests with similar stand structure. Tolerant northern hardwood forests, composed predominantly of mature sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton), were surveyed using an ALTM 1225 (Optech Inc.) in August 2000. Field data for 49 circular plots, each 400 m2 in area, were collected in July 2000. Using site-specific allometric equations, total aboveground biomass and biomass components (i.e., stem wood, stem bark, live branches, and foliage) were derived for each plot. Three laser height metrics were derived from the lidar data: (i) maximum laser height; (ii) mean laser height; and (iii) mean laser height calculated from lidar returns filtered based on a threshold applied to the intensity return data LhIR). LhIR was identified as the best predictor of total aboveground biomass (R2 = 0.85) and biomass components (R2 between 0.84 to 0.85) when all plot types were considered.

  9. Running Title: C and N Allocation in Pine

    SciTech Connect

    Ball, J. Timothy

    1996-12-01

    A long standing challenge has been understanding how plants and ecosystems respond to shifts in the balance of resource availabilities. The continuing rise in atmospheric CO{sub 2} will induce changes in the availability and use of several terrestrial ecosystem resources. We report on the acquisition and allocation of carbon and nitrogen in Pinus ponderosa Laws. seedlings grown at three levels of atmospheric carbon dioxide (370, 525, and 700 {micro}mol mol{sup -1}) and three levels of soil nitrogen supply in a controlled environment experiment. Nitrogen was applied (0, 100, and 200 {micro}g N g soil{sup -1}) at planting and again at week 26 of a 58-week, 4-harvest experiment. At the final harvest, plants grown with variety low available soil nitrogen showed no significant response to atmospheric CO{sub 2}. Plants at higher N levels responded positively to CO{sub 2} with the highest biomass at the middle CO{sub 2} level. Plants growing at the lowest N levels immediately allocated a relatively large portion of their nitrogen and biomass to roots. Plants growing at near present ambient CO{sub 2} levels allocated relatively little material to roots when N was abundant but moved both carbon and nitrogen below-ground when N was withheld. Plants growing at higher CO{sub 2} levels, allocated more C and N to roots even when N was abundant, and made only small shifts in allocation patterns when N was no longer supplied. In general, allocation of C and N to roots tended to increase when N supply was restricted and also with increasing atmospheric CO{sub 2} level. These allocation responses were consistent with patterns suggesting a functional balance in the acquisition of above-ground versus below-ground resources. In particular, variation in whole tree average nitrogen concentration can explain 68% of the variation ratio of root biomass to shoot biomass across the harvests. The capability to respond to temporal variation in nutrient conditions, the dynamics of nutrient

  10. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species.

    PubMed

    Niinemets, Ulo; Portsmuth, Angelika; Truus, Laimi

    2002-02-01

    Young trees 0.03-1.7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light-saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (F(L)). Because the site effect was generally non-significant in the analyses of variance with foliar nitrogen content per unit dry mass (N(M)) as a covariate, N(M) was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with N(M) and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing N(M), whereas the effects were species-specific. Increases in plant size led to a lower and increases in N(M) to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self-shading probably increased with increasing N(M) and decreased with increasing H. Nevertheless, the whole-plant average M(A), as well as M(A) values of topmost fully exposed leaves, correlated with N(M) and H in a similar manner, indicating that scaling of MA with N(M) and H did not necessarily result from the modified degree of within-plant shading. The rate of photosynthetic electron transport per unit dry mass (J(M)) scaled positively with N(M), but decreased with increasing H and M(A). Thus, increases in M(A) with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = F(L)/M(A)), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (J(M), N(M) and M(A)) varied threefold, but the whole-plant characteristic FL varied 20-fold and LAR 30-fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our

  11. Effects of a three-year exposure to ambient ozone on biomass allocation in poplar using ethylenediurea.

    PubMed

    Hoshika, Yasutomo; Pecori, Francesco; Conese, Ilaria; Bardelli, Tommaso; Marchi, Enrico; Manning, William J; Badea, Ovidiu; Paoletti, Elena

    2013-09-01

    We examined the effect of ambient ozone on visible foliar injury, growth and biomass in field-grown poplar cuttings of an Oxford clone sensitive to ozone (Populus maximoviczii Henry × berolinensis Dippel) irrigated with ethylenediurea (EDU) or water for three years. EDU is used as an ozone protectant for plants. Protective effects of EDU on ozone visible injury were found. As a result, poplar trees grown under EDU treatment increased leaves, lateral branches and root density in the third year, although no significant enhancement of stem height and diameter was found. Ambient ozone (AOT40, 24.6 ppm h; diurnal hourly average, 40.3 ppb) may finally reduce carbon gain by reducing the number of branches, and thus sites for leaf formation, in ozone-sensitive poplar trees under not-limiting conditions.

  12. Balanced allocation of organic acids and biomass for phosphorus and nitrogen demand in the fynbos legume Podalyria calyptrata.

    PubMed

    Maistry, Pravin M; Muasya, A Muthama; Valentine, Alex J; Chimphango, Samson B M

    2015-02-01

    Podalyria calyptrata is from fynbos soils with low availability of phosphorus (P) and nitrogen (N). We investigated the physiological basis for tolerance of low P supply in nodulated P. calyptrata and examined responses to increased supply of combined-N as Ca(NO3)2 and P. It was hypothesized that increasing supply of combined-N would stimulate P-acquisition mechanisms and enhance plant growth with high P supply. Biomass, leaf [N] and [P], organic acid and phosphatase root exudates, and phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity in nodules and roots were examined in two N×P experiments. Low P supply decreased leaf [P] and limited growth, decreasing the nodule:root ratio but increasing nodular PEPC and MDH activity for enhanced P-acquisition or P-utilization. At low P supply, a N-induced demand for P increased root exudation of citrate and PEPC and MDH activity in roots. Greater combined-N supply inhibited nodulation more at low P supply than at high P supply. With a P-induced demand for N the plants nodulated prolifically and increased combined-N supply did not enhance plant growth. The physiological basis for N2-fixing P. calyptrata tolerating growth at low P supply and responding to greater P supply is through balanced acquisition of P and N for plant demand.

  13. Accounting for spatial variation in vegetation properties improves simulations of Amazon forest biomass and productivity in a global vegetation model

    NASA Astrophysics Data System (ADS)

    de Almeida Castanho, A. D.; Coe, M. T.; Heil Costa, M.; Malhi, Y.; Galbraith, D.; Quesada, C. A.

    2012-08-01

    Dynamic vegetation models forced with spatially homogeneous biophysical parameters are capable of producing average productivity and biomass values for the Amazon basin forest biome that are close to the observed estimates, but are unable to reproduce the observed spatial variability. Recent observational studies have shown substantial regional spatial variability of above-ground productivity and biomass across the Amazon basin, which is believed to be primarily driven by soil physical and chemical properties. In this study, spatial heterogeneity of vegetation properties is added to the IBIS land surface model, and the simulated productivity and biomass of the Amazon basin are compared to observations from undisturbed forest. The maximum Rubisco carboxylation capacity (Vcmax) and the woody biomass residence time (τw) were found to be the most important properties determining the modeled spatial variation of above-ground woody net primary productivity and biomass, respectively. Spatial heterogeneity of these properties may lead to a spatial variability of 1.8 times in the simulated woody net primary productivity and 2.8 times in the woody above-ground biomass. The coefficient of correlation between the modeled and observed woody productivity improved from 0.10 with homogeneous parameters to 0.73 with spatially heterogeneous parameters, while the coefficient of correlation between the simulated and observed woody above-ground biomass improved from 0.33 to 0.88. The results from our analyses with the IBIS dynamic vegetation model demonstrate that using single values for key ecological parameters in the tropical forest biome severely limits simulation accuracy. We emphasize that our approach must be viewed as an important first step and that a clearer understanding of the biophysical mechanisms that drive the spatial variability of carbon allocation, τw and Vcmax are necessary.

  14. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    PubMed Central

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-01-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions. PMID:27378420

  15. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-07-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions.

  16. The dynamics of resource allocation and costs of reproduction in a sexually dimorphic, wind-pollinated dioecious plant.

    PubMed

    Teitel, Z; Pickup, M; Field, D L; Barrett, S C H

    2016-01-01

    Sexual dimorphism in resource allocation is expected to change during the life cycle of dioecious plants because of temporal differences between the sexes in reproductive investment. Given the potential for sex-specific differences in reproductive costs, resource availability may contribute to variation in reproductive allocation in females and males. Here, we used Rumex hastatulus, a dioecious, wind-pollinated annual plant, to investigate whether sexual dimorphism varies with life-history stage and nutrient availability, and determine whether allocation patterns differ depending on reproductive commitment. To examine if the costs of reproduction varied between the sexes, reproduction was either allowed or prevented through bud removal, and biomass allocation was measured at maturity. In a second experiment to assess variation in sexual dimorphism across the life cycle, and whether this varied with resource availability, plants were grown in high and low nutrients and allocation to roots, aboveground vegetative growth and reproduction were measured at three developmental stages. Males prevented from reproducing compensated with increased above- and belowground allocation to a much larger degree than females, suggesting that male reproductive costs reduce vegetative growth. The proportional allocation to roots, reproductive structures and aboveground vegetative growth varied between the sexes and among life-cycle stages, but not with nutrient treatment. Females allocated proportionally more resources to roots than males at peak flowering, but this pattern was reversed at reproductive maturity under low-nutrient conditions. Our study illustrates the importance of temporal dynamics in sex-specific resource allocation and provides support for high male reproductive costs in wind-pollinated plants.

  17. [Effects of drip irrigation under mulching on cotton root and shoot biomass and yield].

    PubMed

    Yan, Ying-Yu; Zhao, Cheng-Yi; Sheng, Yu; Li, Ju-Yan; Peng, Dong-Mei; Li, Zi-Liang; Feng, Sheng-Li

    2009-04-01

    By using bidirectional sampling method with soil drill, the effects of different amounts of drip irrigation (2618, 2947, 3600 and 4265 m3 x hm(-2)) under mulching on the root distribution, aboveground growth, and yield of cotton was studied in field. The results indicated that irrigation amount affected the root and shoot growth significantly. In all irrigation treatments, cotton root was mainly distributed in mulched area, occupying 60.65%-73.45% of total root biomass, while only 39.35%-26.55% was distributed in bare area. Water stress increased rooting depth, root biomass, and the extent of lateral rooting. Significant differences were observed in the biological characteristics and the biomass accumulation and allocation of cotton plant among different irrigation treatments. Over-irrigation (4265 m3 x hm(-2)) increased plant height, width of inverse fourth leaf, and amounts of branch and bud, and thus, accelerated biomass accumulation rate. Over-irrigation also increased the root/shoot ratio and the proportion of biomass allocated to vegetative organs, but increased the fruit abscission rate and therefore reduced the economic yield. It was suggested that both excessive soil moisture content and water stress could affect the biomass accumulation and allocation in different cotton organs and at various life stages. Under the conditions of our experiment, 3600 m3 x hm(-2) was the optimal irrigation amount.

  18. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).

    PubMed

    Hecht, Vera L; Temperton, Vicky M; Nagel, Kerstin A; Rascher, Uwe; Postma, Johannes A

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  19. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.)

    PubMed Central

    Hecht, Vera L.; Temperton, Vicky M.; Nagel, Kerstin A.; Rascher, Uwe; Postma, Johannes A.

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm−3) increases in the topsoil as well as specific root length (root length per root dry weight, cm g−1) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24–340 seeds m−2) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0–10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4–1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m−2 suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  20. Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings.

    PubMed

    Kazantseva, Olga; Bingham, Marcus; Simard, Suzanne W; Berch, Shannon M

    2009-11-01

    Commercial nursery practices usually fail to promote mycorrhization of interior Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco] seedlings in British Columbia, which may account for their poor performance following planting in the field. We tested the effects of four nursery cultivation factors (nitrogen fertilization, phosphorus fertilization, watering, and soil aeration) and field soil addition on mycorrhization, survival, growth, and biomass allocation of interior Douglas-fir seedlings in a series of greenhouse experiments. Where field soil was added to the growing medium, mycorrhization and root/shoot ratios were maximized at lower levels of mineral nutrient application and aeration. Where field soil was not added, mycorrhization was negligible across all fertilization and aeration treatments, but root/shoot ratio was maximized at lower levels of mineral nutrients and the highest level of aeration. Regardless of whether field soil was added, intermediate levels of soil water resulted in the best mycorrhizal colonization and root/shoot ratios. However, field soil addition reduced seedling mortality at the two lowest water levels. A cluster analysis placed ectomycorrhizal morphotypes into three groups (Mycelium radicis-atrovirens Melin, Wilcoxina, and mixed) based on their treatment response, with all but two morphotypes in the mixed group whose abundance was maximized under conditions common to advanced seedling establishment. For maximal mycorrhization and root development of interior Douglas-fir seedlings, nurseries should minimize addition of nitrogen and phosphorus nutrients, maximize aeration, provide water at moderate rates, and, where possible, add small amounts of field soil to the growing medium.

  1. Modelling C allocation in response to nutrient availability

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Prentice, Colin

    2015-04-01

    Carbon (C) allocation in ecosystems is a key variable of the global terrestrial C cycle. While photosynthesis governs the amount of C that enters ecosystems, its subsequent allocation to compartments with different life times determines its over-all residence time and variations in allocation patterns drive changes in ecosystem C balance and its response to environmental change. A better understanding of the controls on allocation is thus key to improving global vegetation models that commonly rely on using fixed partitioning factors. Observational data suggests variations of ecosystem structure and functioning along large-scale gradients of resource availability. Below-ground C allocation, inferred as gross primary production minus above-ground biomass production increases along gradients of decreasing nutrient availability. This is not only due to more root growth, but also due to enhanced production of exudates and stimulation of root symbionts and has been interpreted to reflect optimal plant allocation decisions under a varying soil fertility status. Here, we propose a model that accounts for trade-offs between (i) growth in above-ground and (ii) below-ground plant compartments, (iii) exudation to the rhizosphere and root symbionts and (iv) temporary storage in non-structural pools. By postulating the maximization of long-term growth under a given (seasonal regime) of soil nitrogen (N) availability, we attempt to reproduce observed large-scale gradients. The model is formulated based on a C cost for different N uptake decisions, where the cost is a function of N availability, root mass, and soil temperature (for biological N fixation). On a daily time scale, ecosystem N uptake may be realized by C exudation to the rhizosphere and/or symbiotic fixation of atmospheric N2. On an annual time scale, allocation to roots versus leaves is adjusted to soil inorganic N availability and modeled to yield maximum total growth. Exudation versus temporary storage of C is

  2. Estimating Above-Ground Biomass Within the Footprint of an Eddy-Covariance Flux Tower: Continuous LiDAR Based Estimates Compared With Discrete Inventory and Disturbance History Based Stratification Boundaries

    NASA Astrophysics Data System (ADS)

    Ferster, C. J.; Trofymow, J. A.; Coops, N. C.; Chen, B.; Black, T. A.

    2008-12-01

    Eddy-covariance (EC) flux towers provide data about carbon (C) exchange between land and the atmosphere at an ecosystem scale. However, important research questions need to be addressed when placing EC flux towers in complex heterogeneous forest landscapes, such as the coastal forests of Western Canada. Recently available footprint analysis, which describes the contribution function and catchment area where EC flux is being measured, can be used to relate EC flux tower measurements with the biological structure and carbon stock distributions of complex forest landscapes. In this study, above ground biomass is estimated near an EC flux tower using two approaches. In the first approach, a remote sensing based surface representing above ground biomass was estimated using small footprint, discrete return, light detection and ranging (LiDAR) data. Plot level LiDAR metrics were supplemented with metrics calculated using individual tree detection. A multiple regression model was developed to estimate above ground biomass using ground plot and LiDAR data, and then the model was applied across the EC flux footprint area to estimate the spatial distribution of above ground biomass. In the second approach, line boundaries from forest inventory, disturbance history, and site series were used to delineate discrete stratification units and the measured groundplot data assigned to the various strata. Within the heterogeneous tower footprint area, footprint weighting allows us to compare and contrast above ground biomass estimates from these two approaches. Using this methodology we then plan to compare, for the same period, ground-based measurements of ecosystem C stock changes with accumulative EC measured net ecosystem C flux.

  3. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants

    PubMed Central

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2015-01-01

    Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions

  4. Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree productivity and soil organic matter in high fertility forests

    NASA Astrophysics Data System (ADS)

    Cotrufo, M.; Alberti, G.; Vicca, S.; Inglima, I.; Belelli-Marchesini, L.; Genesio, L.; Miglietta, F.; Marjanovic, H.; Martinez, C.; Matteucci, G.; Peressotti, A.; Petrella, L.; Rodeghiero, M.

    2013-12-01

    The release of organic compounds from roots is a key process influencing soil carbon (C) dynamics and nutrient availability in terrestrial ecosystems and is a process by which plants stimulate microbial activity and soil organic matter (SOM) mineralization thus releasing nitrogen (N) to sustain their gross and net primary production (GPP and NPP). Root inputs also contribute to soil organic matter (SOM) formation. In this study, we quantified the annual net root derived C input to soil (Net-Croot) across six high fertile forests using an in-growth core isotope technique. On the basis of Net-Croot, wood and coarse root biomass changes and eddy covariance data, we quantified net belowground C sequestration. This and GPP were inversely related to soil C:N, but not to climate or age. Because, at these high fertile sites, biomass growth did not change with soil C:N ratio, biomass growth-to-GPP ratio significantly increased with increasing soil C:N. This was true for both our six forest sites and for high fertile sites across a set of other 23 sites selected at global scale. We suggest that, at high fertile sites, the interaction between plant demand for nutrients, soil stoichiometry and microbial activity sustain higher ecosystem C-sink allocation to above ground tree biomass with increasing soil C:N ratio and that this clear and strong relationship can be used for modelling forest C sink partitioning between plant biomass and soil. When C:N is high, microbes have a low C use efficiency, respire more of the fresh C inputs by roots and prime SOM decomposition increasing N availability for tree uptake. Soil C sequestration would therefore decrease, whereas the extra N released during SOM decomposition can promote tree growth and ecosystem C sink allocation in aboveground biomass. Conversely, C is sequestered in soil when the low soil C:N promotes microbial C use efficiency and new SOM formation.

  5. Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world

    NASA Astrophysics Data System (ADS)

    Peng, Yunfeng; Yang, Yuanhe

    2016-06-01

    Allometric and optimal hypotheses have been widely used to explain biomass partitioning in response to resource changes for individual plants; however, little evidence has been reported from measurements at the community level across a broad geographic scale. This study assessed the nitrogen (N) effect on community-level root to shoot (R/S) ratios and biomass partitioning functions by synthesizing global manipulative experiments. Results showed that, in aggregate, N addition decreased the R/S ratios in various biomes. However, the scaling slopes of the allometric equations were not significantly altered by the N enrichment, possibly indicating that N-induced reduction of the R/S ratio is a consequence of allometric allocation as a function of increasing plant size rather than an optimal partitioning model. To further illustrate this point, we developed power function models to explore the relationships between aboveground and belowground biomass for various biomes; then, we generated the predicted root biomass from the observed shoot biomass and predicted R/S ratios. The comparison of predicted and observed N-induced changes of the R/S ratio revealed no significant differences between each other, supporting the allometric allocation hypothesis. These results suggest that allometry, rather than optimal allocation, explains the N-induced reduction in the R/S ratio across global biomes.

  6. Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world

    PubMed Central

    Peng, Yunfeng; Yang, Yuanhe

    2016-01-01

    Allometric and optimal hypotheses have been widely used to explain biomass partitioning in response to resource changes for individual plants; however, little evidence has been reported from measurements at the community level across a broad geographic scale. This study assessed the nitrogen (N) effect on community-level root to shoot (R/S) ratios and biomass partitioning functions by synthesizing global manipulative experiments. Results showed that, in aggregate, N addition decreased the R/S ratios in various biomes. However, the scaling slopes of the allometric equations were not significantly altered by the N enrichment, possibly indicating that N-induced reduction of the R/S ratio is a consequence of allometric allocation as a function of increasing plant size rather than an optimal partitioning model. To further illustrate this point, we developed power function models to explore the relationships between aboveground and belowground biomass for various biomes; then, we generated the predicted root biomass from the observed shoot biomass and predicted R/S ratios. The comparison of predicted and observed N-induced changes of the R/S ratio revealed no significant differences between each other, supporting the allometric allocation hypothesis. These results suggest that allometry, rather than optimal allocation, explains the N-induced reduction in the R/S ratio across global biomes. PMID:27349584

  7. Biomass responses to elevated CO2, soil heterogeneity and diversity: an experimental assessment with grassland assemblages.

    PubMed

    Maestre, Fernando T; Reynolds, James F

    2007-03-01

    While it is well-established that the spatial distribution of soil nutrients (soil heterogeneity) influences the competitive ability and survival of individual plants, as well as the productivity of plant communities, there is a paucity of data on how soil heterogeneity and global change drivers interact to affect plant performance and ecosystem functioning. To evaluate the effects of elevated CO(2), soil heterogeneity and diversity (species richness and composition) on productivity, patterns of biomass allocation and root foraging precision, we conducted an experiment with grassland assemblages formed by monocultures, two- and three-species mixtures of Lolium perenne, Plantago lanceolata and Holcus lanatus. The experiment lasted for 90 days, and was conducted on microcosms built out of PVC pipe (length 38 cm, internal diameter 10 cm). When nutrients were heterogeneously supplied (in discrete patches), assemblages exhibited precise root foraging patterns, and had higher total, above- and belowground biomass. Greater aboveground biomass was observed under elevated CO(2). Species composition affected the below:aboveground biomass ratio and interacted with nutrient heterogeneity to determine belowground and total biomass. Species richness had no significant effects, and did not interact with either CO(2) or nutrient heterogeneity. Under elevated CO(2) conditions, the two- and three-species mixtures showed a clear trend towards underyielding. Our results show that differences among composition levels were dependent on soil heterogeneity, highlighting its potential role in modulating diversity-productivity relationships.

  8. Increasing native, but not exotic, biodiversity increases aboveground productivity in ungrazed and intensely grazed grasslands.

    PubMed

    Isbell, Forest I; Wilsey, Brian J

    2011-03-01

    Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.

  9. Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings.

    PubMed

    Cheng, Dongliang; Ma, Yuzhu; Zhong, Quanling; Xu, Weifeng

    2014-10-01

    Allometric biomass allocation theory predicts that leaf biomass (M L ) scaled isometrically with stem (M S ) and root (M R ) biomass, and thus above-ground biomass (leaf and stem) (M A ) and root (M R ) scaled nearly isometrically with below-ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above- and below-ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above- to below-ground biomass. The results indicated that M L and M S scaled in an isometric or a nearly isometric manner with M R , as well as M A to M R for five woody species. Significant variation was observed in the Y-intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for M L versus M S and M L versus M R , but not for M S versus M R and M A versus M R . We conclude, therefore, that a nearly isometric scaling relationship of M A versus M R holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.

  10. No allocation trade-offs between flowering and sproutingin the lignotuberous, Mediterranean shrub Erica australis

    NASA Astrophysics Data System (ADS)

    Cruz, Alberto; Moreno, José M.

    2001-04-01

    Trade-offs between allocation to sexual or vegetative regeneration capacity are well established as a driving force in the life history patterns of plants in fire-prone environments. However, it is not known whether such trade-offs exist in plants which after aboveground removing disturbances, such as fire, may regenerate by sexual (seeding) or asexual (sprouting) mechanisms. We evaluated whether in the fire-recruiting resprouter Erica australis, which after fire can regenerate by seedling establishment or resprouting, a larger investment in flowers and seeds prior to being disturbed by clipping its aboveground parts would decrease subsequent sprouting, that is, its vegetative regeneration capacity. We analysed the relationships between flower and seed production and the ensuing production and growth of sprouts of six plants from thirteen different sites in central-western Spain. We found no significant relationships between measures of sexual reproductive effort and resprout production and growth 6 months after clipping the aboveground parts of the plants. No evidence of trade-offs between sexual and asexual efforts was found. Furthermore, no significant relationship was found between lignotuber total non-structural carbohydrates and sexual reproductive effort. In addition, 2 years after the disturbance, resprout biomass was positively and significantly correlated with sexual reproductive effort prior to the disturbance. This indicates that growth of resprouts was higher at the sites where plants made a greater reproductive effort. The sites that were more favourable to producing flowers and seeds could also be more favourable to resprouting.

  11. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan

    2016-08-01

    Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and

  12. [Nitrogen absorption and allocation in cotton plant under effects of double-cropping wheat and cotton root mass].

    PubMed

    Wang, Ying; Zhou, Zhiguo; Chen, Binglin; Meng, Yali; Shu, Hongmei

    2006-12-01

    By the methods of 15N-foliar feeding and 15N dilution, a pot experiment of double-cropping wheat and cotton was conducted to study the nitrogen absorption and allocation in cotton plant under effects of wheat and cotton root mass. Three treatments were installed, i.e., no separation of wheat and cotton roots (treatment I), separation with nylon net (treatment II), and separation with plastic film (treatment III). The results showed that both the competition of 15N absorption between wheat and cotton root, and the translocation of absorbed 15N from wheat root to cotton were existed in the wheat-cotton double-cropping system. The absorbed 15N by cotton root was mostly allocated in aboveground part, and less in root. The aboveground part of cotton had the highest N utilization rate (NUR) in treatment I and the lowest one in treatment III, but the Ndff was lower in treatment I than in treatments II and III. At the early flowering stage of cotton when wheat was harvested and its straw was amended in situ, the absorbed nitrogen by cotton was mainly from the applied 15N, but not from the amended wheat straw. The allocation of absorbed 15N in different organs of cotton was quite different, being much higher in reproductive organs than in other organs. The biomass of cotton plant was also higher in treatment I than in treatments II and III.

  13. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    NASA Technical Reports Server (NTRS)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  14. Sex Allocation in California Oaks: Trade-Offs or Resource Tracking?

    PubMed Central

    Knops, Johannes M. H.; Koenig, Walter D.

    2012-01-01

    Trade-offs in sex resource allocation are commonly inferred from a negative correlation between male and female reproduction. We found that for three California oak species, aboveground annual net productivity (ANP) differences among individuals were primarily correlated with water availability and soil fertility. Reproductive biomass increased with ANP, but the relative allocation to reproduction was constant, indicating that reproduction tracked productivity, which in turn tracked site quality. Although there was a negative correlation between male and female reproduction, this was not the result of a resource investment trade-off, but rather a byproduct of the positive correlation between female reproductive biomass and ANP combined with the greater overall resource allocation to female, compared to male, function. Thus, we reject the hypothesis of a trade-off between these key life-history components within individuals of these species. For long-lived individuals, a plastic resource tracking response to environmental fluctuations may be more adaptive than directly linking life-history traits through trade-offs. PMID:22952692

  15. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.

    PubMed

    Hartmann, Henrik; McDowell, Nate G; Trumbore, Susan

    2015-03-01

    Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools.

  16. Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests.

    PubMed

    Keeling, Helen C; Baker, Timothy R; Martinez, Rodolfo Vasquez; Monteagudo, Abel; Phillips, Oliver L

    2008-12-01

    Species' functional traits may help determine rates of carbon gain, with physiological and morphological trade-offs relating to shade tolerance affecting photosynthetic capacity and carbon allocation strategies. However, few studies have examined these trade-offs from the perspective of whole-plant biomass gain of adult trees. We compared tree-level annual diameter increments and annual above-ground biomass (AGB) increments in eight long-term plots in hyper-diverse northwest Amazonia to wood density (rho; a proxy for shade tolerance), whilst also controlling for resource supply (light and soil fertility). rho and annual diameter increment were negatively related, confirming expected differences in allocation associated with shade tolerance, such that light-demanding species allocate a greater proportion of carbon to diameter gain at the expense of woody tissue density. However, contrary to expectations, we found a positive relationship between rho and annual AGB increment in more fertile sites, although AGB gain did not differ significantly with rho class on low-fertility sites. Whole-plant carbon gain may be greater in shade-tolerant species due to higher total leaf area, despite lower leaf-level carbon assimilation rates. Alternatively, rates of carbon loss may be higher in more light-demanding species: higher rates of litterfall, respiration or allocation to roots, are all plausible mechanisms. However, the relationships between rho and AGB and diameter increments were weak; resource availability always exerted a stronger influence on tree growth rates.

  17. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    USGS Publications Warehouse

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  18. Identifying aboveground wood fiber potentials in New York state. Forest Service resource bulletin

    SciTech Connect

    Wharton, E.H.

    1985-01-01

    This is a statistical analytical report on the biomass resources of New York. The study was conducted in conjunction with the third forest survey of New York by the USDA Forest Service. Statistical findings are based on new 10-point-variable radius plots, a canvas of wood manufacturers, timber-utilization plots, and a mail canvass of private, commercial forest-land owners - all conducted in 1978 and 1979. The report presents total aboveground biomass supplies, the use of biomass in the state for forest products, and sources of wood from residues and standing trees that can be used to improve wood-fiber recovery.

  19. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    PubMed

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots <2 mm in diameter at 0-20 cm soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning.

  20. Biomass resilience of Neotropical secondary forests

    NASA Astrophysics Data System (ADS)

    Poorter, Lourens; Bongers, Frans; Aide, T. Mitchell; Almeyda Zambrano, Angélica M.; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Broadbent, Eben N.; Chazdon, Robin L.; Craven, Dylan; de Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben H. J.; Denslow, Julie S.; Dent, Daisy H.; Dewalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; de Oliveira, Alexandre A.; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velázquez, Jorge; Romero-Pérez, I. Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans F. M.; Vicentini, Alberto; Vieira, Ima C. G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Rozendaal, Danaë M. A.

    2016-02-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha-1), corresponding to a net carbon uptake of 3.05 Mg C ha-1 yr-1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha-1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  1. Biomass resilience of Neotropical secondary forests.

    PubMed

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  2. Optimal allocation in annual plants and its implications for drought response

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Smith, Matthew; Purves, Drew

    2015-04-01

    The concept of plant optimality refers to the plastic behaviour of plants that results in lifetime and offspring fitness. Optimality concepts have been used in vegetation models for a variety of processes, including stomatal conductance, leaf phenology and biomass allocation. Including optimality in vegetation models has the advantages of creating process based models with a relatively low complexity in terms of parameter numbers but which are capable of reproducing complex plant behaviour. We present a general model of plant growth for annual plants based on the hypothesis that plants allocate biomass to aboveground and belowground vegetative organs in order to maintain an optimal C:N ratio. The model also represents reproductive growth through a second optimality criteria, which states that plants flower when they reach peak nitrogen uptake. We apply this model to wheat and maize crops at 15 locations corresponding to FLUXNET cropland sites. The model parameters are data constrained using a Bayesian fitting algorithm to eddy covariance data, satellite derived vegetation indices, specifically the MODIS fAPAR product and field level crop yield data. We use the model to simulate the plant drought response under the assumption of plant optimality and show that the plants maintain unstressed total biomass levels under drought for a reduction in precipitation of up to 40%. Beyond that level plant response stops being plastic and growth decreases sharply. This behaviour results simply from the optimal allocation criteria as the model includes no explicit drought sensitivity component. Models that use plant optimality concepts are a useful tool for simulation plant response to stress without the addition of artificial thresholds and parameters.

  3. Response of “Alamo” switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA

    SciTech Connect

    Garten, Charles T.; Brice, Deanne J.; Castro, Hector F.; Graham, Robin L.; Mayes, Melanie A.; Phillips, Jana R.; Post, Wilfred M.; Schadt, Christopher W.; Wullschleger, Stan D.; Tyler, Donald D.; Jardine, Phillip M.; Jastrow, Julie D.; Matamala, Roser; Miller, R. Michael; Moran, Kelly K.; Vugteveen, Timothy W.; Izaurralde, R. Cesar; Thomson, Allison M.; West, Tristram O.; Amonette, James E.; Bailey, Vanessa L.; Metting, F. Blaine; Smith, Jeffrey L.

    2011-01-01

    Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha-1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P ≤ 0.05) at the highest fertilizer nitrogen treatment (2.16 ± 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha-1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Finally, fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.

  4. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores.

    PubMed

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-09-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  5. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores

    PubMed Central

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-01-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  6. Sexual competition affects biomass partitioning, carbon-nutrient balance, Cd allocation and ultrastructure of Populus cathayana females and males exposed to Cd stress.

    PubMed

    Chen, Juan; Duan, Baoli; Xu, Gang; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2016-11-01

    Although increasing attention has been paid to plant adaptation to soil heavy metal contamination, competition and neighbor effects have been largely overlooked, especially in dioecious plants. In this study, we investigated growth as well as biochemical and ultrastructural responses of Populus cathayana Rehder females and males to cadmium (Cd) stress under different sexual competition patterns. The results showed that competition significantly affects biomass partitioning, photosynthetic capacity, leaf and root ultrastructure, Cd accumulation, the contents of polyphenols, and structural and nonstructural carbohydrates. Compared with single-sex cultivation, plants of opposite sexes exposed to sexual competition accumulated more Cd in tissues and their growth was more strongly inhibited, indicating enhanced Cd toxicity under sexual competition. Under intrasexual competition, females showed greater Cd accumulation, more serious damage at the ultrastructural level and greater reduction in physiological activity than under intersexual competition, while males performed better under intrasexual competition than under intersexual competition. Males improved the female microenvironment by greater Cd uptake and lower resource consumption under intersexual competition. These results demonstrate that the sex of neighbor plants and competition affect sexual differences in growth and in key physiological processes under Cd stress. The asymmetry of sexual competition highlighted here might regulate population structure, and spatial segregation and phytoremediation potential of both sexes in P. cathayana growing in heavy metal-contaminated soils.

  7. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi.

    PubMed

    Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan

    2017-01-01

    Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. (13)CO2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO2 collection system is presented which allows assessment of gaseous CO2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled (13)C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased (13)C allocation to mycorrhizal substrate) and 2.9% (reduction of (13)C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO2 released belowground. These results advocate quantification of both above- and belowground CO2 emissions in future studies.

  8. Mechanisms driving carbon allocation in tropical rainforests: allometric constraints and environmental responses

    NASA Astrophysics Data System (ADS)

    Hofhansl, Florian; Schnecker, Jörg; Singer, Gabriel; Wanek, Wolfgang

    2014-05-01

    Tropical forest ecosystems play a major role in global water and carbon cycles. However, mechanisms of C allocation in tropical forests and their response to environmental variation are largely unresolved as, due to the scarcity of data, they are underrepresented in global syntheses of forest C allocation. Allocation of gross primary production to wood production exerts a key control on forest C residence time and biomass C turnover, and therefore is of special interest for terrestrial ecosystem research and earth system science. Here, we synthesize pantropical data from 105 old-growth rainforests to investigate relationships between climate (mean annual precipitation, mean annual temperature, dry season length and cloud cover), soil nutrient relations (soil N:P) and the partitioning of aboveground net primary production (ANPP) to wood production (WPart) using structural equation modelling. Our results show a strong increase of WPart with ANPP, pointing towards allometric scaling controls on WPart, with increasing light competition in more productive forests triggering greater ANPP allocation to wood production. ANPP itself was positively affected by mean annual temperature and soil N:P. Beyond these allometric controls on WPart we found direct environmental controls. WPart increased with dry season length in tropical montane rainforests and with mean annual precipitation in lowland tropical rainforests. We discuss different trade-offs between plant traits, such as community-wide changes along the wood economics spectrum, the leaf economics spectrum and the plant resource economics spectrum, as underlying mechanisms for direct climatic controls on WPart. We thereby provide new insights into mechanisms driving carbon allocation to WPart in tropical rainforests and show that low and high productive tropical rainforests may respond differently to projected global changes.

  9. Reference electrodes for aboveground storage tanks

    SciTech Connect

    Ansuini, F.J.; Dimond, J.R.

    1995-12-31

    This paper discusses several factors affecting the reference potential established by copper/copper sulfate and silver/silver chloride reference electrodes. Guidelines for using references in aboveground storage tank applications are presented and some causes of misleading readings are discussed.

  10. Aboveground storage tanks -- Better safe than sorry

    SciTech Connect

    Rizzo, J.A.

    1995-12-31

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: safety; product losses; cost comparison of UST vs AGSTs; space availability/accessibility; precipitation handling; aesthetics and security; and existing and pending regulations.

  11. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    PubMed Central

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  12. Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe.

    PubMed

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals.

  13. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile

    PubMed Central

    Urrutia-Jalabert, Rocio; Malhi, Yadvinder; Lara, Antonio

    2015-01-01

    Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113–114 Mg C ha-1 and 448–517 Mg C ha-1 in AC and AA, respectively. Aboveground productivity was 3.35–3.36 Mg C ha-1 year-1 in AC and 2.22–2.54 Mg C ha-1 year-1 in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21–4.24 and 3.78–4.10 Mg C ha-1 year-1 in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539–640 years for the whole forest in the Andes and 1368–1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia. PMID:26353111

  14. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile.

    PubMed

    Urrutia-Jalabert, Rocio; Malhi, Yadvinder; Lara, Antonio

    2015-01-01

    Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1) and 448-517 Mg C ha(-1) in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1) year(-1) in AC and 2.22-2.54 Mg C ha(-1) year(-1) in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1) year(-1) in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.

  15. No cumulative effect of 10 years of elevated [CO2 ] on perennial plant biomass components in the Mojave Desert.

    PubMed

    Newingham, Beth A; Vanier, Cheryl H; Charlet, Therese N; Ogle, Kiona; Smith, Stanley D; Nowak, Robert S

    2013-07-01

    Elevated atmospheric CO2 concentrations ([CO2 ]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2 ] may be particularly large in deserts, but information on their long-term response is unknown. We evaluated the cumulative effects of elevated [CO2 ] on primary production at the Nevada Desert FACE (free-air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10-year elevated [CO2 ] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long-term results of elevated [CO2 ] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2 ] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above- and belowground components. However, elevated [CO2 ] increased short-term responses, including leaf water-use efficiency (WUE) as measured by carbon isotope discrimination and increased plot-level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above- and belowground pools significantly differed among dominant species, but responses to elevated [CO2 ] did not vary among species, photosynthetic pathway (C3 vs. C4 ), or growth form (drought-deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf-level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2 ] during the 10-year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2 ] is explained by inter

  16. Phenology of belowground carbon allocation in a mid-latitude forest

    NASA Astrophysics Data System (ADS)

    Abramoff, R. Z.; Klosterman, S.; Finzi, A. C.

    2012-12-01

    Annual forest productivity and carbon storage are affected by the amount and timing of carbon allocated belowground. Despite clear relationships between some climate factors (e.g. temperature) and NPP, there are still large gaps in our understanding of the partitioning between above and belowground C allocation. It is generally assumed that above and belowground phenology is synchronous, but a number of recent studies show that there is wide variability. Some phenological studies suggest that root production peaks are offset from leaf out and shoot elongation. Related belowground processes such as root respiration and nonstructural carbohydrate accumulation may also be offset from root or shoot production as a result of tradeoffs in C allocation. Due to uncertainties in the seasonal pattern and magnitude of allocation to roots, we have collected measurements of root phenology for three temperate tree species at Harvard Forest in Petersham, MA: eastern hemlock (Tsuga canadensis), red oak (Quercus rubra), and white ash (Fraxinus americana). Bi-weekly to monthly measurements of root production, root respiration, and root nonstructural carbohydrate content are used to determine when roots are receiving C from aboveground and patterns of C use. Minirhizotron and soil core data suggest that fine root biomass does not accumulate in a unimodal peak. In T.canadensis stands, fine root production peaks in late May, coinciding with green up and shoot elongation. In Q.rubra stands, fine root production begins in early June, about 3 weeks after leaf out and continues throughout the season in oscillating peaks. Average turnover times for Q.rubra and T.canadensis were 3.76 years and 6.83 years respectively. Standing root biomass for all stands fluctuates seasonally but with high spatial variability, with live fine root biomass averaging 210 ± 75.2 gC m-2 in F.americana stands, 554 ± 241 gC m-2 in Q.rubra, and 449 ± 172 gC m-2 in T.canadensis. Root respiration for all stands

  17. Cathodic protection design for aboveground storage tanks

    SciTech Connect

    Koszewski, L.; Quincy, G.L.

    1995-12-31

    The application of cathodic protection for aboveground storage tank (AST) bottoms has been accomplished in a variety of approaches, with varying degrees of success. Recent State regulations, requiring corrosion protection for new tanks and secondary containment for double bottom tanks, have prompted new application techniques to be developed for AST cathodic protection. Improved design applications are now available to todays` tank owners and operators to provide effective long term cathodic protection.

  18. Cathodic protection maintenance for aboveground storage tanks

    SciTech Connect

    Koszewski, L.

    1995-12-31

    Cathodic protection systems are utilized to mitigate corrosion on the external bottom surfaces of aboveground storage tanks (ASTs). Cathodic protection systems should be part of a preventative maintenance program to minimize in-service failures. A good maintenance program will permit determination of continuous adequate cathodic protection of ASTs, through sustained operation and also provide the opportunity to detect cathodic protection system malfunctions, through periodic observations and testing.

  19. Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage.

    PubMed

    Ibáñez, Inés; Zak, Donald R; Burton, Andrew J; Pregitzer, Kurt S

    2016-04-01

    As increasing levels of nitrogen (N) deposition impact many terrestrial ecosystems, understanding the potential effects of higher N availability is critical for forecasting tree carbon allocation patterns and thus future forest productivity. Most regional estimates of forest biomass apply allometric equations, with parameters estimated from a limited number of studies, to forest inventory data (i.e., tree diameter). However most of these allometric equations cannot account for potential effects of increased N availability on biomass allocation patterns. Using 18 yr of tree diameter, height, and mortality data collected for a dominant tree species (Acer saccharum) in an atmospheric N deposition experiment, we evaluated how greater N availability affects allometric relationships in this species. After taking into account site and individual variability, our results reveal significant differences in allometric parameters between ambient and experimental N deposition treatments. Large trees under experimental N deposition reached greater heights at a given diameter; moreover, their estimated maximum height (mean ± standard deviation: 33.7 ± 0.38 m) was significantly higher than that estimated under the ambient condition (31.3 ± 0.31 m). Within small tree sizes (5-10 cm diameter) there was greater mortality under experimental N deposition, whereas the relative growth rates of small trees were greater under experimental N deposition. Calculations of stemwood biomass using our parameter estimates for the diameter-height relationship indicated the potential for significant biases in these estimates (~2.5%), with under predictions of stemwood biomass averaging 4 Mg/ha lower if ambient parameters were to be used to estimate stem biomass of trees in the experimental N deposition treatment. As atmospheric N deposition continues to increase into the future, ignoring changes in tree allometry will contribute to the uncertainty associated with aboveground carbon storage

  20. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks.

    PubMed

    DiTommaso, Antonio; Morris, Scott H; Parker, John D; Cone, Caitlin L; Agrawal, Anurag A

    2014-01-01

    Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus) populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15 × 15 m fenced enclosures and paired open plots in recently followed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005-2010), we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005-2008) and tree density (2005-2012). The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity), reduced seed bank abundance, relatively more short-lived species (annuals and biennials), and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually recruit from an

  1. Deer Browsing Delays Succession by Altering Aboveground Vegetation and Belowground Seed Banks

    PubMed Central

    DiTommaso, Antonio; Morris, Scott H.; Parker, John D.; Cone, Caitlin L.; Agrawal, Anurag A.

    2014-01-01

    Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus) populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15×15 m fenced enclosures and paired open plots in recently fallowed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005–2010), we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005–2008) and tree density (2005–2012). The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity), reduced seed bank abundance, relatively more short-lived species (annuals and biennials), and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually recruit

  2. Productivity and carbon allocation in pure and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil

    NASA Astrophysics Data System (ADS)

    Nouvellon, Y.; Laclau, J.; Epron, D.; Le Maire, G.; Gonçalves, J.; Bouillet, J.

    2010-12-01

    Nitrogen fertilizer inputs are required in fast growing eucalypt plantations to meet tree requirements, and to compensate for the large nitrogen outputs associated with wood exportation at the end of the short rotations. Due to the economic and potential environmental cost of fertilizers, mixed-species plantations (MSP) with N-fixing species (NFS) such as Acacia sp. might be an attractive option to improve the long-term soil N (and possibly soil carbon) status. In such MSP, increases in N availability may influence the productivity and C partitioning of the non-N fixing species. To investigate the effects of NFS on nutrient cycling, wood production, C sequestration, and soil fertility, a randomized block design including monocultures of Eucalyptus grandis (100%E) and Acacia mangium (100%A), and mixtures of these species (50%E:50%A) was set up in southern Brazil. Our specific goals in the present study were to compare the production and C allocation patterns of these plantations, during the two last years of the 6-yr rotation. We hypothesized that 1) a large part of the differences in wood production between monospecific stands would be explained by differences in C allocation; and 2) the C allocation patterns of each species would be strongly modified in mixed- species plantations compared to mono-specific plantations due to inter-specific interactions and shifts in soil N status. Biomass increase (growth, G) in the different plant compartments was assessed by means of inventories and allometric relationships. Total aboveground net primary productivity (ANPP), and the productivity of each aboveground plant compartment were estimated from measurements of G and litterfall (L) (ANPP=G+L). Total belowground C allocations (TBCA) were estimated using a mass-balance approach as soil CO2 efflux C minus the C input from aboveground litter plus changes in the C stored in roots, in the forest floor litter layer, and in soil. Over this first rotation, mixing NFS with eucalypt

  3. Dependence of radar backscatter on coniferous forest biomass

    SciTech Connect

    Dobson, M.C.; Ulaby, F.T. ); LeToan, T.; Beaudoin, A. ); Kasischke, E.S. ); Christensen, N. )

    1992-03-01

    This paper discusses two independent experimental efforts which have examined the dependence of radar backscatter on aboveground biomass of mono specie conifer forests using polarimetric airborne SAR data at P-, L- and C-bands. Plantations of maritime pines near Landes, France range in age from 8 to 46 years with aboveground biomass between 5 and 105 tons/ha. Loblolly pine stands established on abandoned agricultural fields near Duke, NC range in age from 4 to 90 years and extend the range of aboveground biomass to 560 tons/ha for the older stands. These two experimental forests are largely complementary with respect to biomass. Radar backscatter is found to increase approximately linearly with increasing biomass until it saturates at a biomass level that depends on the radar frequency. The biomass saturation level is about 200 tons/ha at P-band and 100 tons/ha at L-band, and the C-band backscattering coefficient shows much less sensitivity to total aboveground biomass.

  4. Correlating radar backscatter with components of biomass in loblolly pine forests

    SciTech Connect

    Kasischke, E.S.; Bourgeau-Chavez, L.L.; Christensen, N.L. Jr.

    1995-05-01

    A multifrequency, multipolarization airborne SAR data set was utilized to examine the relationship between radar backscatter and the aboveground biomass in loblolly pine forests. This data set was also used to examine the potential of SAR to estimate aboveground biomass in these forests. The total aboveground biomass in the test stands used in this study ranged from <1--50 kg m{sup {minus}2}. Not only was total aboveground biomass considered, but the biomass of the tree boles, branches, and needles/leaves. Significant correlations were found in all three frequencies of radar imagery used in this study. At P- and L-bands, the greatest sensitivity to change in biomass occurred in the HH and VH polarized channels, while at C-band, the greatest sensitivity was in the VH polarized channel. The results of the correlation analyses support modeling studies which show the dominant scattering mechanisms from these pines should be double-bounce, ground-trunk scattering and canopy volume scattering. To produce equations to estimate biomass, a stepwise, multiple-linear regression approach was used, using all the radar channels as independent variables, and the log of the biomass components as the dependent variables. The authors conclude from this analysis that the image intensity signatures recorded on SAR imagery have the potential to be used as a basis for estimation of aboveground biomass in pine forests, for total stand biomass levels up to 35--40 kg m{sup {minus}2}.

  5. Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil.

    PubMed

    Nouvellon, Yann; Laclau, Jean-Paul; Epron, Daniel; Le Maire, Guerric; Bonnefond, Jean-Marc; Gonçalves, José Leonardo M; Bouillet, Jean-Pierre

    2012-06-01

    Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO(2) efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (ΔB(w)) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, ΔB(w)/ANPP and ΔB(w)/GPP. In contrast, the 28% lower ΔB(w) in MS than in E100 was explained both by

  6. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    PubMed

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3-, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, short-term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion

  7. Aboveground pipeline response to random ground motion

    SciTech Connect

    Banerji, P.; Ghosh, A.

    1995-12-31

    Response of two types of aboveground pipelines--rigid, segmented pipelines, and flexible, continuous pipelines--to random ground motion are studied in this paper. The emphasis is on studying the effect of pipeline system parameters on its response. It is seen that pipe parameters, except for the pipe span, affect system response negligibly. Pier height and flexibility, and foundation-soil flexibility, however, affect response significantly. Furthermore, for practical situations, pipe and pier responses are decoupled, and the pier, therefore, behaves essentially as a point structure that is not affected by spatial variation of ground motion.

  8. Maintenance and growth respiration of the aboveground parts of young field-grown hinoki cypress (Chamaecyparis obtusa).

    PubMed

    Yokota, T; Hagihara, A

    1995-06-01

    Aboveground respiration of five 8-year-old trees of field-grown hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) was nondestructively measured at monthly intervals over 1 year with an enclosed standing tree method. The relationship between monthly specific respiration rate and monthly mean relative growth rate at the individual tree level was described by a linear equation. During the dormant season, respiration was used mainly for maintenance purposes, whereas during the growing season, more than 40% of the respiration was used for growth purposes, i.e., 60 to 70% in May. We conclude that annual maintenance and growth respiration of a tree are directly proportional to the aboveground phytomass and its annual increment, respectively. The maintenance coefficient was estimated to be 0.504 +/- 0.039 (SE) kg kg(-1) year(-1), indicating that the amount respired for maintaining already existing phytomass was equivalent to about half of the existing phytomass. The growth coefficient was estimated to be 0.772 +/- 0.043 (SE) kg kg(-1), indicating that the amount respired for constructing new phytomass was equivalent to about three-fourths of the annual phytomass increment. The annual stand maintenance and growth respiration were, respectively, 8.8 Mg ha(-1) year(-1) for an aboveground biomass of 17.4 Mg ha(-1) and 5.0 Mg ha(-1) year(-1) for an annual stand aboveground biomass increment of 6.5 Mg ha(-1) year(-1). About two-thirds of the total respiration was used to maintain already existing biomass, and about one-third was used to construct new biomass.

  9. Conspecific and Heterospecific Aboveground Herbivory Both Reduce Preference by a Belowground Herbivore.

    PubMed

    Milano, N J; Barber, N A; Adler, L S

    2015-04-01

    Insect herbivores damage plants both above- and belowground, and interactions in each realm can influence the other via shared hosts. While effects of leaf damage on aboveground interactions have been well-documented, studies examining leaf damage effects on belowground interactions are limited, and mechanisms for these indirect interactions are poorly understood. We examined how leaf herbivory affects preference of root-feeding larvae [Acalymma vittatum F. (Coleoptera: Chrysomelidae)] in cucumber (Cucumis sativus L.). We manipulated leaf herbivory using conspecific adult A. vittatum and heterospecific larval Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) herbivores in the greenhouse and the conspecific only in the field, allowing larvae to choose between roots of damaged and undamaged plants. We also examined whether leaf herbivory induced changes in defensive cucurbitacin C in leaves and roots. We hypothesized that induced changes in roots would deter larvae, and that effects would be stronger for damage by conspecifics than the unrelated caterpillar because the aboveground damage could be a cue to plants indicating future root damage by the same species. In both the greenhouse and field, plants with damaged leaves recruited significantly fewer larvae to their roots than undamaged plants. Effects of conspecific and heterospecific damage did not differ. Leaf damage did not induce changes in leaf or root cucurbitacin C, but did reduce root biomass. While past work has suggested that systemic induction by aboveground herbivory increases resistance in roots, our results suggest that decreased preference by belowground herbivores in this system may be because of reduced root growth.

  10. Effects of prolonged drought stress on Scots pine seedling carbon allocation.

    PubMed

    Aaltonen, Heidi; Lindén, Aki; Heinonsalo, Jussi; Biasi, Christina; Pumpanen, Jukka

    2016-12-14

    As the number of drought occurrences has been predicted to increase with increasing temperatures, it is believed that boreal forests will become particularly vulnerable to decreased growth and increased tree mortality caused by the hydraulic failure, carbon starvation and vulnerability to pests following these. Although drought-affected trees are known to have stunted growth, as well as increased allocation of carbon to roots, still not enough is known about the ways in which trees can acclimate to drought. We studied how drought stress affects belowground and aboveground carbon dynamics, as well as nitrogen uptake, in Scots pine (Pinus sylvestris L.) seedlings exposed to prolonged drought. Overall 40 Scots pine seedlings were divided into control and drought treatments over two growing seasons. Seedlings were pulse-labelled with (13)CO2 and litter bags containing (15)N-labelled root biomass, and these were used to follow nutrient uptake of trees. We determined photosynthesis, biomass distribution, root and rhizosphere respiration, water potential, leaf osmolalities and carbon and nitrogen assimilation patterns in both treatments. The photosynthetic rate of the drought-induced seedlings did not decrease compared to the control group, the maximum leaf specific photosynthetic rate being 0.058 and 0.045 µmol g(-1) s(-1) for the drought and control treatments, respectively. The effects of drought were, however, observed as lower water potentials, increased osmolalities as well as decreased growth and greater fine root-to-shoot ratio in the drought-treated seedlings. We also observed improved uptake of labelled nitrogen from soil to needles in the drought-treated seedlings. The results indicate acclimation of seedlings to long-term drought by aiming to retain sufficient water uptake with adequate allocation to roots and root-associated mycorrhizal fungi. The plants seem to control water potential with osmolysis, for which sufficient photosynthetic capability is needed.

  11. Root biomass and soil δ13C in C3 and C4 grasslands along a precipitation gradient

    NASA Astrophysics Data System (ADS)

    Pau, S.; Angelo, C. L.

    2014-12-01

    Many studies have investigated the distribution of C3 and C4 grasses along climatic gradients because they illustrate complex interactions between abiotic and biotic controls on ecosystem functions. Yet few studies have examined belowground components of these distributions, which may present very different patterns compared to aboveground measures. In this study, we surveyed grass species cover and collected soil and root samples from field plots at 100 - 150 m elevation intervals along a climatic gradient in Hawai'i. We examined how the relationship between soil carbon isotopic composition (δ13C), a proxy for C4 productivity and dominance, and % C4 cover changed along a climatic gradient. Results showed that δ13C underpredicted C4 dominance in wetter sites. Indeed, the relationship between % C4 cover and soil δ13C became more negative with increasing mean annual precipitation (MAP) based on a linear mixed-effects model (F 1,34 = 12.25, P < 0.01). Soil δ13C in wetter sites indicated a larger C3 contribution than estimated by aboveground cover, which was in part due to C3 root biomass increasing (P < 0.05) whereas C4 root biomass did not change along the precipitation gradient. C3 and C4 grasses appear to allocate disproportionately belowground, thus a different understanding of C4 ecological dominance may emerge when considering both above and belowground components. Our results show that belowground allocation and interpretation of soil δ13C need to be more carefully considered in global vegetation and carbon models and paleoecological reconstructions of C4 dominance.

  12. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  13. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2010-10-01 2010-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  14. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  15. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  16. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  17. Aboveground storage tank double bottom cathodic protection

    SciTech Connect

    Surkein, M.B.

    1995-12-31

    Cathodic protection is typically used to achieve corrosion control between bottoms of aboveground storage tanks with double bottoms. To determine the proper design of such systems, an investigation was conducted on the performance of two different cathodic protection system designs utilizing zinc ribbon anodes. A full scale field test on a 35 meter (115 feet) diameter tank was conducted to determine cathodic protection system performance. The test included periodic measurement of tank bottom steel potentials including on, instant off and polarization decay, anode current output and tank product level measurements.Results showed that zinc ribbon anode spacing in a chord fashion of 1.2 meter (4 feet) or less can be effective to achieve cathodic protection according to industry accepted standards. Utilizing the design information gained by the study, a standard sacrificial anode and impressed current anode cathodic protection system has been developed.

  18. Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales.

    PubMed

    Manninen, Sirkku; Zverev, Vitali; Bergman, Igor; Kozlov, Mikhail V

    2015-12-01

    Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities.

  19. Growth characteristics, nutrient allocation and photosynthesis ofCarex species from floating fens.

    PubMed

    Konings, H; Koot, E; Wolf, A T

    1989-03-01

    The purpose of this study was to investigate various growth parameters, dry matter and nitrogen, phosphorus and potassium allocation and photosynthesis ofCarex acutiformis, C. rostrata andC. diandra growing in fens with, in this order, decreasing nutrient availability and decreasing aboveground productivity. Plants were grown from cuttings at optimum nutrient conditions in a growth chamber. Growth analysis at sequential harvests revealed that the species had no inherently different relative growth rates which could explain their different productivity, but that their LAR (LWR and SLA) decreased in the orderC. acutiformis, C. rostrata, C. diandra and their NAR increased in this order. All growth parameters decreased during plant growth even under the controlled conditions of the experiment.C. acutiformis allocated relatively much dry matter to the leaves,C. rostrata to the rhizomes andC. diandra to the roots. This may, in part, explain the higher aboveground biomass production ofC. acutiformis in the field. Nitrogen, but not phosphorus and potassium, allocation patterns were different for the three species.C. diandra, the species from the nitrogen-poorest site, had the highest leaf N content of the three species and also a higher chlorophyll content. Related to this, this species had the highest photosynthetic activity of whole plants both when collected from the field and when grown in the growth chamber. The nitrogen productivity was similar for the three species and the photosynthetic nitrogen use efficiency, determined forC. acutiformis andC. diandra, was similar for these two species.C. diandra had the most finely branched root system, i.e., the highest specific root length of the three species and its root surface area to leaf surface area ratio was also the highest. All three species showed higher nitrate reductase activity in the leaves than in the roots when grown on nutrient solution. The growth ofC. diandra at a relatively nutrient-poor site and a rather

  20. [Individual biomass of natural Pinus densiflora].

    PubMed

    Wang, C; Jin, Y; Jin, C; Liu, J; Jin, Y

    2000-02-01

    The aboveground biomass of individuals with different growth potentials in natural Pinus densiflora forest with different stand densities was measured in Yanbian, Jilin Province. The variation of individual biomass affected by densities was in order of dominant tree < intermediate tree < suppressed tree, while the distribution proportion of biomass in different organs affected by densities was: in order of trunk > branch > needle > bark. The biomass components of P. densifliora with different growth potentials varied markedly with the approaching of density class III, and the change of intermediate trees was similar to the whole stand. The vertical distributions of biomass of different trees were different from each other, but all showed that the biomass of trunks and barks was mainly distributed below 6 m high from ground, that of branches was within 6-10 m high, that of needles was uniform in the upper, middle and lower layers, and that of branches and needles in upper layer was least affected by density.

  1. POLINSAR Coherence-Based Regression Analysis of Forest Biomass Using RADARSAT-2 Datasets

    NASA Astrophysics Data System (ADS)

    Singh, J.; Kumar, S.; Kushwaha, S. P. S.

    2014-11-01

    Forests play a pivotal role in synchronizing earth's carbon cycle by absorbing carbon from the atmosphere and storing it in the form of biomass. Researchers today are trying to understand the climatic variations, especially those occurring due to destruction of forest and its corresponding biomass loss. Hence, quantification of various forest parameters such as biomass is imperative for evaluating the carbon. The objective of this research was to exploit the potential of C-band Radarsat-2 Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) technique for analysing the relationship between complex coherence and field-estimated aboveground biomass. Association between the backscatter and the aboveground biomass was also established in the process. To serve our objective, Radarsat-2 interferometric pair dated 4th March, 2013 (master image) and 28th March, 2013 (slave image) were procured for the Barkot Reserve Forest region of Dehradun, India. Field sampling was done for 30 plots (31.62 m x 31.62 m) and stem diameter and tree height were measured in each plot. The study emphasized on the application of POLINSAR coherence instead of using conventional method of relying on backscatter values for retrieving forest biomass. Coherence matrices were utilized for generating complex coherence values for different polarization channels and were regressed against field estimated aboveground biomass. Results indicated a negative linear relationship between complex coherence and aboveground biomass with the cross - polarized coherence showing the highest R2 value of 0.71. Further, the backscatter mechanism when studied with respect to aboveground biomass indicated a positive linear relationship between backscatter values and field estimated aboveground biomass with R2 value of 0.45 and 0.61 for slave and master image respectively. The results suggest that PolInSAR technique, in combination with different modelling approaches, can be adopted for estimating forest

  2. Can Canopy Uptake Influence Nitrogen Acquisition and Allocation by Trees?

    NASA Astrophysics Data System (ADS)

    Nair, Richard; Perks, Mike; Mencuccini, Maurizio

    2015-04-01

    field conditions, and if this extra N supplies growth in woody tissues such as the stem, as well as the canopy. To test these ideas, we applied a low (~ 2.5 % above ambient NDEP) 15N treatment to Picea sitchensis saplings, targeting the soil or the canopy in monthly fertilizations for 16 months, and investigating 15N return in different age classes of biomass and over time. While soil-targeted deposition treatments agreed well with existing knowledge of N partitioning from this source, we could infer 2-3 times more 15N was retained above-ground in canopy-targeted treatments, including a relative increase in 15N allocation to stem and woody biomass when compared to the soil treatment. These results suggest that existing forest 15N-fertilization experiments could under-estimate the overall ΔCΔN effect of atmospheric deposition.

  3. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods.

    PubMed

    Ebeling, Anne; Meyer, Sebastian T; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.

  4. How much biomass do plant communities pack per unit volume?

    PubMed Central

    Rheault, Guillaume; Bonin, Laurianne; Roca, Irene Torrecilla; Martin, Charles A.; Desrochers, Louis; Seiferling, Ian

    2015-01-01

    Aboveground production in terrestrial plant communities is commonly expressed in amount of carbon, or biomass, per unit surface. Alternatively, expressing production per unit volume allows the comparison of communities by their fundamental capacities in packing carbon. In this work we reanalyzed published data from more than 900 plant communities across nine ecosystems to show that standing dry biomass per unit volume (biomass packing) consistently averages around 1 kg/m3 and rarely exceeds 5 kg/m3 across ecosystem types. Furthermore, we examined how empirical relationships between aboveground production and plant species richness are modified when standing biomass is expressed per unit volume rather than surface. We propose that biomass packing emphasizes species coexistence mechanisms and may be an indicator of resource use efficiency in plant communities. PMID:25802814

  5. Dynamic Channel Allocation

    DTIC Science & Technology

    2003-09-01

    7 1 . Fixed Channel Allocation (FCA) ........................................................7 2. Dynamic Channel ...19 7. CSMA/CD-Based Multiple Network Lines .....................................20 8. Hybrid Channel Allocation in Wireless Networks...28 1 . Channel Allocation

  6. Seasonal evolution of Biomass Production Efficiency (BPE) of a French beech forest.

    NASA Astrophysics Data System (ADS)

    Heid, L.; Calvaruso, C.; Conil, S.; Turpault, M. P.; Longdoz, B.

    2015-12-01

    With the evolution of ecosystem management and the actual climate change we are facing, there is a need to improve our knowledge of carbon (C) balance and more specifically of C allocation in the plants. In our study, we quantified the seasonal variation of gross primary production (GPP, obtained through eddy covariance measurements) and biomass production (BP, the C fixed into the biomass obtained thanks to inventory campaign) for a 60-year-old even-aged beech stand located in North East of France. We also assessed the seasonal evolution of the BP efficiency (BPE=BP/GPP; Vicca et al., 2012) and its potential determining factors for our site. For 2014, we found a net ecosystem exchange (NEE) of -549 gC m-2, corresponding to a C sequestration. This value breaks down between 1089 gC m-2 for the respiration of the ecosystem and -1639 gC m-2 for the GPP. On the same year, our stand built up 461.6 gC m-2 of tree biomass (leaves, trunk, branches, fine roots), leading to an annual BPE of 0.28, which is within the range of value found on other similar sites. There was a large temporal variation of C allocation to the different parts of the tree biomass during the growth season. Our results show that the growth first happened in the trunk and branches -with a peak value of 74.5 gC m-2 month-1 in May - whereas the fine roots biomass production started later (end of July) and reached a maximum at the end of the growth season (28.49 gC m-2 month-1 for September). The BPE varied also during the year from 0.13 in April to 0.31 in August, where the BP was the same than in July but the cumulated GPP was already decreasing. The seasonal variation may be mainly explained by climatic variations, whereas the shift between woody above-ground biomass and fine roots biomass could be explained by the phenology (linked to physiological mechanisms).

  7. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  8. Biomass and nutrient distributions in central Oregon second-growth ponderosa pine ecosystems. Forest Service research paper

    SciTech Connect

    Little, S.N.; Shainsky, L.J.

    1995-03-01

    We investigated the distributioin of biomass and nurtrients in second-growth ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems in central Oregon. Destructive sampling of aboveground and belowground tree biomass was carried out at six sites in the Deschutes National Forest; three of these sites also were intensively sampled for biomass and nutrient concentrations of the soil, forest floor, residue, and shrub components. Tree biomass equations were developed that related component biomass to diameter at breast height and total tree height.

  9. Allocation of freshly assimilated carbon into primary and secondary metabolites after in situ ¹³C pulse labelling of Norway spruce (Picea abies).

    PubMed

    Heinrich, Steffen; Dippold, Michaela A; Werner, Christiane; Wiesenberg, Guido L B; Kuzyakov, Yakov; Glaser, Bruno

    2015-11-01

    Plants allocate carbon (C) to sink tissues depending on phenological, physiological or environmental factors. We still have little knowledge on C partitioning into various cellular compounds and metabolic pathways at various ecophysiological stages. We used compound-specific stable isotope analysis to investigate C partitioning of freshly assimilated C into tree compartments (needles, branches and stem) as well as into needle water-soluble organic C (WSOC), non-hydrolysable structural organic C (stOC) and individual chemical compound classes (amino acids, hemicellulose sugars, fatty acids and alkanes) of Norway spruce (Picea abies) following in situ (13)C pulse labelling 15 days after bud break. The (13)C allocation within the above-ground tree biomass demonstrated needles as a major C sink, accounting for 86% of the freshly assimilated C 6 h after labelling. In needles, the highest allocation occurred not only into the WSOC pool (44.1% of recovered needle (13)C) but also into stOC (33.9%). Needle growth, however, also caused high (13)C allocation into pathways not involved in the formation of structural compounds: (i) pathways in secondary metabolism, (ii) C-1 metabolism and (iii) amino acid synthesis from photorespiration. These pathways could be identified by a high (13)C enrichment of their key amino acids. In addition, (13)C was strongly allocated into the n-alkyl lipid fraction (0.3% of recovered (13)C), whereby (13)C allocation into cellular and cuticular exceeded that of epicuticular fatty acids. (13)C allocation decreased along the lipid transformation and translocation pathways: the allocation was highest for precursor fatty acids, lower for elongated fatty acids and lowest for the decarbonylated n-alkanes. The combination of (13)C pulse labelling with compound-specific (13)C analysis of key metabolites enabled tracing relevant C allocation pathways under field conditions. Besides the primary metabolism synthesizing structural cell compounds, a complex

  10. Complementarities between Biomass and FluxNet data to optimize ORCHIDEE ecosystem model at European forest and grassland sites

    NASA Astrophysics Data System (ADS)

    Thum, T.; Peylin, P.; Granier, A.; Ibrom, A.; Linden, L.; Loustau, D.; Bacour, C.; Ciais, P.

    2010-12-01

    Assimilation of data from several measurements provides knowledge of the model's performance and uncertainties. In this work we investigate the complementary of Biomass data to net CO2 flux (NEE) and latent heat flux (LE) in optimising parameters of the biogeochemical model ORCHIDEE. Our optimisation method is a gradient based iterative method. We optimized the model at the French forest sites, European beech forest of Hesse (48 .67°N, 7.06°E) and maritime pine forest of Le Bray (44.72°N, 0.77°W). First we adapted the model to represent the past clearcut on these two sites in order to obtain a realistic age of the forest. The model-data improvement in terms of aboveground biomass will be discussed. We then used FluxNet and Biomass data, separately and altogether, in the optimization process to assess the potential and the complementarities of these two data stream. For biomass data optimization we added parameters linked to allocation to the optimization scheme. The results show a decrease in the uncertainty of the parameters after optimization and reveal some structural deficiencies in the model. In a second step, data from ecosystem manipulation experiment site Brandbjerg (55.88°N, 11.97°E), a Danish grassland site, were used for model optimisation. The different ecosystem experiments at this site include rain exclusion, warming, and increased CO2 concentration, and only biomass data were available and used in the optimization for the different treatments. We investigate the ability of the model to represent the biomass differences between manipulative experiments with a given set of parameters and highlight model deficiencies.

  11. Can observed ecosystem responses to elevated CO2 and N fertilisation be explained by optimal plant C allocation?

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Prentice, I. Colin

    2016-04-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C export into the soil and to symbionts (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. These concepts are left unaccounted for in Earth system models. We present a model for the coupled cycles of C and N in grassland ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We further model a plant-controlled rate of biological N fixation (BNF) by assuming that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. The model is applied at two temperate grassland sites (SwissFACE and BioCON), subjected to factorial treatments of elevated CO2 (FACE) and N fertilization. Preliminary simulation results indicate initially increased N limitation, evident by increased relative allocation to roots and Cex. Depending on the initial state of N availability, this implies a varying degree of aboveground growth enhancement, generally consistent with observed responses. On a longer time scale, ecosystems are progressively released from N limitation due tighter N cycling. Allowing for plant-controlled BNF implies a quicker release from N limitation and an adjustment to more open N cycling. In both cases, optimal plant

  12. Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU).

    PubMed

    Carriero, G; Emiliani, G; Giovannelli, A; Hoshika, Y; Manning, W J; Traversi, M L; Paoletti, E

    2015-11-01

    This is the longest continuous experiment where ethylenediurea (EDU) was used to protect plants from ozone (O3). Effects of long-term ambient O3 exposure (23 ppm h AOT40) on biomass of an O3 sensitive poplar clone (Oxford) were examined after six years from in-ground planting. Trees were irrigated with either water or 450 ppm EDU. Above (-51%) and below-ground biomass (-47%) was reduced by O3 although the effect was significant only for stem and coarse roots. Ambient O3 decreased diameter of the lower stem, and increased moisture content along the stem of not-protected plants (+16%). No other change in the physical wood structure was observed. A comparison with a previous assessment in the same experiment suggested that O3 effects on biomass partitioning to above-ground organs depend on the tree ontogenetic stage. The root/shoot ratios did not change, suggesting that previous short-term observations of reduced allocation to tree roots may be overestimated.

  13. NORTH ELEVATION WITH GRADUATED MEASURING POLE. ABOVEGROUND PORTION IS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION WITH GRADUATED MEASURING POLE. ABOVE-GROUND PORTION IS ON THE LEFT. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  14. OBLIQUE VIEW WITH ABOVEGROUND PORTION IN THE FOREGROUND. VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW WITH ABOVE-GROUND PORTION IN THE FOREGROUND. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  15. Elicitors aboveground: an alternative for control of a belowground pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation ...

  16. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  17. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    EPA Pesticide Factsheets

    This issue paper, developed for EPA's Engineering Forum, identifies and summarizes experiences with proven aboveground treatment alternatives for arsenic in groundwater, and provides information on their relative effectiveness and cost.

  18. Environmental control of carbon allocation matters for modelling forest growth.

    PubMed

    Guillemot, Joannès; Francois, Christophe; Hmimina, Gabriel; Dufrêne, Eric; Martin-StPaul, Nicolas K; Soudani, Kamel; Marie, Guillaume; Ourcival, Jean-Marc; Delpierre, Nicolas

    2017-04-01

    We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 10(4) sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.

  19. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  20. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    PubMed

    Ceulemans, Tobias; Hulsmans, Eva; Berwaers, Sigi; Van Acker, Kasper; Honnay, Olivier

    2017-01-01

    Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  1. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands

    PubMed Central

    Ceulemans, Tobias; Hulsmans, Eva; Berwaers, Sigi; Van Acker, Kasper; Honnay, Olivier

    2017-01-01

    Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species’ recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary. PMID:28333985

  2. Grassland management affects belowground carbon allocation in mountain grasslands and its resistance and resilience to drought

    NASA Astrophysics Data System (ADS)

    Karlowsky, Stefan; Augusti, Angela; Ingrisch, Johannes; Hasibeder, Roland; Bahn, Michael; Gleixner, Gerd

    2015-04-01

    Future climate scenarios do not only forecast increased extreme events during summer, but also more frequent drought events in the early season. In mountain grasslands, different land uses may contribute to the response of the ecosystem to climate changes, like drought in May and June. In this study, we examined the drought response of two differently managed grasslands, 1) a more intensive used meadow and 2) a less intensive used abandoned area. Our aim was to highlight differences in both resistance and resilience of ecosystem functioning, based on carbon (C) belowground allocation as a key function in the plant-rhizosphere continuum. Therefore, we used an isotopic approach and in particular, we used 13C pulse labelling to track the fate of newly assimilated C from leaves, to roots and to soil, up to different microbial communities. We performed two 13C pulse labellings, the first during the acute phase of drought, when the water status of soil was drastically decreased compared to the control; and the second during the recovery phase, when the soil water status was restored to control level. We followed the kinetics of 13C incorporation in above- and below-ground bulk material as well as non-structural sugars, in general soil microbial biomass, in different soil microbial communities and in CO2 respired from roots, up to 5 days from each labelling. Preliminary results from the 13C analyses of bulk phytomass material and soil microbial biomass indicate, as expected, different kinetics of aboveground 13C incorporation and its belowground allocation. During the acute phase of drought, 13C incorporation shows a decrease compared to the control for both land uses, with generally higher reductions in meadow treatments. Root 13C tracer dynamics follow the leaf 13C enrichment with a delay. High label amounts are found in leaves directly after labelling, whereas in roots high 13C incorporation is found first after 24 hours, accompanied by a fast decrease of 13C label in

  3. Biomass and energy productivity of Leucaena under humid subtropical conditions

    SciTech Connect

    Othman, A.B.; Prine, G.M.

    1984-01-01

    A table shows the amount and energy content of above-ground biomass produced in 1982 and 1983 by the 12 most productive of 62 accessions of Leucanena spp. established in 1979 at the University of Florida. Mean annual biomass production of the 12 accessions was 29.3 and 24.7 Mg/ha, with energy contents of 19,690 and 19,820 J/g, in 1982 and 1983 respectively.

  4. Carbon allocation and accumulation in conifers

    SciTech Connect

    Gower, S.T.; Isebrands, J.G.; Sheriff, D.W.

    1995-07-01

    Forests cover approximately 33% of the land surface of the earth, yet they are responsible for 65% of the annual carbon (C) accumulated by all terrestrial biomes. In general, total C content and net primary production rates are greater for forests than for other biomes, but C budgets differ greatly among forests. Despite several decades of research on forest C budgets, there is still an incomplete understanding of the factors controlling C allocation. Yet, if we are to understand how changing global events such as land use, climate change, atmospheric N deposition, ozone, and elevated atmospheric CO{sub 2} affect the global C budget, a mechanistic understanding of C assimilation, partitioning, and allocation is necessary. The objective of this chapter is to review the major factors that influence C allocation and accumulation in conifer trees and forests. In keeping with the theme of this book, we will focus primarily on evergreen conifers. However, even among evergreen conifers, leaf, canopy, and stand-level C and nutrient allocation patterns differ, often as a function of leaf development and longevity. The terminology related to C allocation literature is often inconsistent, confusing and inadequate for understanding and integrating past and current research. For example, terms often used synonymously to describe C flow or movement include translocation, transport, distribution, allocation, partitioning, apportionment, and biomass allocation. A common terminology is needed because different terms have different meanings to readers. In this paper we use C allocation, partitioning, and accumulation according to the definitions of Dickson and Isebrands (1993). Partitioning is the process of C flow into and among different chemical, storage, and transport pools. Allocation is the distribution of C to different plant parts within the plant (i.e., source to sink). Accumulation is the end product of the process of C allocation.

  5. Allocation Games: Addressing the Ill-Posed Nature of Allocation in Life-Cycle Inventories.

    PubMed

    Hanes, Rebecca J; Cruze, Nathan B; Goel, Prem K; Bakshi, Bhavik R

    2015-07-07

    Allocation is required when a life cycle contains multi-functional processes. One approach to allocation is to partition the embodied resources in proportion to a criterion, such as product mass or cost. Many practitioners apply multiple partitioning criteria to avoid choosing one arbitrarily. However, life cycle results from different allocation methods frequently contradict each other, making it difficult or impossible for the practitioner to draw any meaningful conclusions from the study. Using the matrix notation for life-cycle inventory data, we show that an inventory that requires allocation leads to an ill-posed problem: an inventory based on allocation is one of an infinite number of inventories that are highly dependent upon allocation methods. This insight is applied to comparative life-cycle assessment (LCA), in which products with the same function but different life cycles are compared. Recently, there have been several studies that applied multiple allocation methods and found that different products were preferred under different methods. We develop the Comprehensive Allocation Investigation Strategy (CAIS) to examine any given inventory under all possible allocation decisions, enabling us to detect comparisons that are not robust to allocation, even when the comparison appears robust under conventional partitioning methods. While CAIS does not solve the ill-posed problem, it provides a systematic way to parametrize and examine the effects of partitioning allocation. The practical usefulness of this approach is demonstrated with two case studies. The first compares ethanol produced from corn stover hydrolysis, corn stover gasification, and corn grain fermentation. This comparison was not robust to allocation. The second case study compares 1,3-propanediol (PDO) produced from fossil fuels and from biomass, which was found to be a robust comparison.

  6. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  7. A Functional and Structural Mongolian Scots Pine (Pinus sylvestris var. mongolica) Model Integrating Architecture, Biomass and Effects of Precipitation

    PubMed Central

    Wang, Feng; Letort, Véronique; Lu, Qi; Bai, Xuefeng; Guo, Yan; de Reffye, Philippe; Li, Baoguo

    2012-01-01

    Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production, allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration, the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one- to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows that the balance between internode and needle growth varies only slightly within the range of precipitations considered here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different soils and climates. PMID:22927982

  8. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    PubMed

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  9. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  10. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    SciTech Connect

    Kauffman, J.B.; Cummings, D.L. ); Sanford, R.L. Jr. ); Salcedo, I.H.; Sampaio, E.V.S.B. )

    1993-01-01

    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of deforestation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest ([open quotes]Caatinga[close quotes]) near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was [approx]74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (aboveground biomass, they accounted for [approx]60% of the aboveground pools of N and P. Three experimental fires were conducted during the 1989 burning season. Consumption was 78, 88, and 95% of the total aboveground biomass. As much as 96% of the prefire aboveground N and C pools and 56% of the prefire aboveground P pool was lost. Nitrogen losses exceeded 500 kg/ha and P losses exceeded 20 kg/ha in the fires of the greatest severity. With increasing fire severity, the concentrations of N and P in ash decreased while the concentration of Ca increased. Greater ecosystem losses of these nutrients occurred with increasing fire severity. Following fire, up to 47% of the residual aboveground N and 84% of the residual aboveground P were in the form of ash, quickly lost from the site via wind erosion. Fires appeared to have a minor immediate effect on total N, C, or P in the soils. However, soils in forests with no history of cultivation had significantly higher concentrations of C and P than second-growth forests. It would likely require a century or more of fallow for reaccumulation to occur. However, current fallow periods in this region are 15 yr or less. 38 refs., 2 figs., 7 tabs.

  11. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories.

    PubMed

    Randriamanana, Tendry R; Nybakken, Line; Lavola, Anu; Aphalo, Pedro J; Nissinen, Katri; Julkunen-Tiitto, Riitta

    2014-05-01

    Plant defence theories have recently evolved in such a way that not only the quantity but also the quality of mineral nutrients is expected to influence plant constitutive defence. Recently, an extended prediction derived from the protein competition model (PCM) suggested that nitrogen (N) limitation is more important for the production of phenolic compounds than phosphorus (P). We aimed at studying sexual differences in the patterns of carbon allocation to growth and constitutive defence in relation to N and P availability in Populus tremula L. seedlings. We compared the gender responses in photosynthesis, growth and whole-plant allocation to phenolic compounds at different combination levels of N and P, and studied how they are explained by the main plant defence theories. We found no sexual differences in phenolic concentrations, but interestingly, slow-growing females had higher leaf N concentration than did males, and genders differed in their allocation priority. There was a trade-off between growth and the production of flavonoid-derived phenylpropanoids on one hand, and between the production of salicylates and flavonoid-derived phenylpropanoids on the other. Under limited nutrient conditions, females prioritized mineral nutrient acquisition, flavonoid and condensed tannin (CT) production, while males invested more in above-ground biomass. Salicylate accumulation followed the growth differentiation balance hypothesis as low N mainly decreased the production of leaf and stem salicylate content while the combination of both low N and low P increased the amount of flavonoids and CTs allocated to leaves and to a lesser extent stems, which agrees with the PCM. We suggest that such a discrepancy in the responses of salicylates and flavonoid-derived CTs is linked to their clearly distinct biosynthetic origins and/or their metabolic costs.

  12. Salinity influences on aboveground and belowground net primary productivity in tidal wetlands

    USGS Publications Warehouse

    Pierfelice, Kathryn N.; Graeme Lockaby, B.; Krauss, Ken W.; Conner, William H.; Noe, Gregory; Ricker, Matthew C.

    2017-01-01

    Tidal freshwater wetlands are one of the most vulnerable ecosystems to climate change and rising sea levels. However salinification within these systems is poorly understood, therefore, productivity (litterfall, woody biomass, and fine roots) were investigated on three forested tidal wetlands [(1) freshwater, (2) moderately saline, and (3) heavily salt-impacted] and a marsh along the Waccamaw and Turkey Creek in South Carolina. Mean aboveground (litterfall and woody biomass) production on the freshwater, moderately saline, heavily salt-impacted, and marsh, respectively, was 1,061, 492, 79, and 0  g m−2 year−1 versus belowground (fine roots) 860, 490, 620, and 2,128  g m−2 year−1. Litterfall and woody biomass displayed an inverse relationship with salinity. Shifts in productivity across saline sites is of concern because sea level is predicted to continue rising. Results from the research reported in this paper provide baseline data upon which coupled hydrologic/wetland models can be created to quantify future changes in tidal forest functions.

  13. Biomass pretreatment

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  14. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    PubMed

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.

  15. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  16. Ability of LANDSAT-8 Oli Derived Texture Metrics in Estimating Aboveground Carbon Stocks of Coppice Oak Forests

    NASA Astrophysics Data System (ADS)

    Safari, A.; Sohrabi, H.

    2016-06-01

    The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics

  17. Converting wood volume to biomass for pinyon and juniper. Forest Service research note

    SciTech Connect

    Chojnacky, D.C.; Moisen, G.G.

    1993-03-01

    A technique was developed to convert pinyon-juniper volume equation predictions to weights. The method uses specific gravity and biomass conversion equations to obtain foliage weight and total wood weight of all stems, branches, and bark. Specific gravity data are given for several Arizona pinyon-juniper species. Biomass conversion equations are constructed from pinyon-juniper data collected in Nevada. Results provide an interim means of estimating pinyon-juniper aboveground biomass from available volume inventory data.

  18. Plant biomass in the Tanana River Basin, Alaska. Forest Service research paper

    SciTech Connect

    Mead, B.R.

    1995-01-01

    Vegetation biomass tables are presented for the Tanana River Basin. Average biomass for each species of tree, shrub, grass, forb, lichen, and moss in the 13 forest and 30 nonforest vegetation types is shown. These data combined with area estimates for each vegetation type provide a tool for estimating habitat carrying capacity for many wildlife species. Tree biomass is reported for the entire aboveground tree, thereby allowing estimates of total fiber content.

  19. Automated Aboveground Carbon Estimation of Forests with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Gordon, Piper

    Canada's forests are believed to contain 86 gigatons of carbon, stored above and below ground. These forests are large in area, making them difficult to monitor using conventional means. Understanding the carbon cycle and the role of forests as carbon sinks is crucial in the investigation and mitigation of climate change to address national obligations. One economical solution for monitoring the carbon content of Canada's forests is the development of an automated computer system which uses multisource remotely sensed data to estimate the aboveground carbon of trees. The process involves data fusion of remotely sensed hyperspectral data for tree species information and lidar (light detection and ranging) and radar (radio detection and ranging) for tree height. The size and dimensionality of the data necessitate the efficient use of computing resources for analysis. The outcome is a useful carbon measuring system. The three research questions are: (1) How do we map with remote sensing aboveground carbon in the forests? (2) How do we determine the accuracies of these aboveground carbon maps? (3) How can an automated system be designed for creating aboveground carbon maps?

  20. Belowground herbivory by insects: influence on plants and aboveground herbivores.

    PubMed

    Blossey, Bernd; Hunt-Joshi, Tamaru R

    2003-01-01

    Investigations of plant-herbivore interactions continue to be popular; however, a bias neglecting root feeders may limit our ability to understand how herbivores shape plant life histories. Root feeders can cause dramatic plant population declines, often associated with secondary stress factors such as drought or grazing. These severe impacts resulted in substantial interest in root feeders as agricultural pests and increasingly as biological weed control agents, particularly in North America. Despite logistical difficulties, establishment rates in biocontrol programs are equal or exceed those of aboveground herbivores (67.2% for aboveground herbivores, 77.5% for belowground herbivores) and root feeders are more likely to contribute to control (53.7% versus 33.6%). Models predicting root feeders would be negatively affected by competitively superior aboveground herbivores may be limited to early successional habitats or generalist root feeders attacking annual plants. In later successional habitats, root feeders become more abundant and appear to be the more potent force in driving plant performance and plant community composition. Aboveground herbivores, even at high population levels, were unable to prevent buildup of root herbivore populations and the resulting population collapse of their host plants. Significant information gaps exist about the impact of root feeders on plant physiology and secondary chemistry and their importance in natural areas, particularly in the tropics.

  1. WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE (BUILDING 3568), SPARES INERT STORAGE BUILDING (BUILDING 3570), MISSILE ASSEMBLY SHOP (BUILDING 3578) AND SEGREGATED MAGAZINE STORAGE BUILDING (BUILDING 3572). VIEW TO NORTHWEST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  2. Forecasting annual aboveground net primary production in the intermountain west

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...

  3. Inventory of Tank Farm equipment stored or abandoned aboveground

    SciTech Connect

    Hines, S.C.; Lakes, M.E.

    1994-10-12

    This document provides an inventory of Tank Farm equipment stored or abandoned aboveground and potentially subject to regulation. This inventory was conducted in part to ensure that Westinghouse Hanford Company (WHC) does not violate dangerous waste laws concerning storage of potentially contaminated equipment/debris that has been in contact with dangerous waste. The report identifies areas inventoried and provides photographs of equipment.

  4. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    PubMed

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  5. Biomass and nitrogen accumulation of hairy vetch-cereal rye cover crop mixtures as influenced by species proportions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance and suitability of a legume-grass cover crop mixture for specific functions may be influenced by the proportions of each species in the mixture. The objectives of this study were to: 1) evaluate aboveground biomass and species biomass proportions at different hairy vetch (Vicia villo...

  6. Remote sensing of submerged vegetation canopies for biomass estimation

    NASA Technical Reports Server (NTRS)

    Armstrong, Roy A.

    1993-01-01

    The visible bands of the Landsat Thematic Mapper (TM) sensor were used in an empirical assessment of seagrass biomass on shallow banks near Lee Stocking Island in the Bahamas. The TM bands were transformed to minimize the depth-dependent variance in the bottom reflectance signal. Regression analyses were performed between the transformed bands and field measurements of seagrass standing crop (above-ground biomass). Regression equations using spectral data accounted for up to 80 per cent of the variability in seagrass biomass. The unexplained variance was ascribed to variations in bottom sediment color.

  7. Soil water content determination with cosmic-ray neutron sensor: Correcting aboveground hydrogen effects with thermal/fast neutron ratio

    NASA Astrophysics Data System (ADS)

    Tian, Zhengchao; Li, Zizhong; Liu, Gang; Li, Baoguo; Ren, Tusheng

    2016-09-01

    The cosmic-ray neutron sensor (CRNS), which estimates field scale soil water content, bridges the gap between point measurement and remote sensing. The accuracy of CRNS measurements, however, is affected by additional hydrogen pools (e.g., vegetation, snow, and rainfall interception). The objectives of this study are to: (i) evaluate the accuracy of CRNS estimates in a farmland system using depth and horizontal weighted point measurements, (ii) introduce a novel method for estimating the amounts of hydrogen from biomass and snow cover in CRNS data, and (iii) propose a simple approach for correcting the influences of aboveground hydrogen pool (expressed as aboveground water equivalent, AWE) on CRNS measurements. A field experiment was conducted in northeast China to compare soil water content results from CRNS to in-situ data with time domain reflectometry (TDR) and neutron probe (NP) in the 0-40 cm soil layers. The biomass water equivalent (BWE) and snow water equivalent (SWE) were observed to have separate linear relationships with the thermal/fast neutron ratio, and the dynamics of BWE and SWE were estimated correctly in the crop seasons and snow-covered seasons, respectively. A simple approach, which considered the AWE, AWE at calibration, and the effective measurement depth of CRNS, was introduced to correct the errors caused by BWE and SWE. After correction, the correlation coefficients between soil water contents determined by CRNS and TDR were 0.79 and 0.77 during the 2014 and 2015 crop seasons, respectively, and CRNS measurements had RMSEs of 0.028, 0.030, and 0.039 m3 m-3 in the 2014 and 2015 crop seasons and the snow-covered seasons, respectively. The experimental results also indicated that the accuracies of CRNS estimated BWE and SWE were affected by the distributions of aboveground hydrogen pools, which were related to the height of the CRNS device above ground surface.

  8. Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach

    NASA Astrophysics Data System (ADS)

    Galeana-Pizaña, J. Mauricio; López-Caloca, Alejandra; López-Quiroz, Penélope; Silván-Cárdenas, José Luis; Couturier, Stéphane

    2014-08-01

    Forest conservation is considered an option for mitigating the effect of greenhouse gases on global climate, hence monitoring forest carbon pools at global and local levels is important. The present study explores the capability of remote-sensing variables (vegetation indices and textures derived from SPOT-5; backscattering coefficient and interferometric coherence of ALOS PALSAR images) for modeling the spatial distribution of above-ground biomass in the Environmental Conservation Zone of Mexico City. Correlation and spatial autocorrelation coefficients were used to select significant explanatory variables in fir and pine forests. The correlation for interferometric coherence in HV polarization was negative, with correlations coefficients r = -0.83 for the fir and r = -0.75 for the pine forests. Regression-kriging showed the least root mean square error among the spatial interpolation methods used, with 37.75 tC/ha for fir forests and 29.15 tC/ha for pine forests. The results showed that a hybrid geospatial method, based on interferometric coherence data and a regression-kriging interpolator, has good potential for estimating above-ground biomass carbon.

  9. Clonal Patch Size and Ramet Position of Leymus chinensis Affected Reproductive Allocation

    PubMed Central

    Zhang, Zhuo; Yang, Yunfei

    2015-01-01

    Reproductive allocation is critically important for population maintenance and usually varies with not only environmental factors but also biotic ones. As a typical rhizome clonal plant in China's northern grasslands, Leymus chinensis usually dominates the steppe communities and grows in clonal patches. In order to clarify the sexual reproductive allocation of L. chinensis in the process of the growth and expansion, we selected L. chinensis clonal patches of a range of sizes to examine the reproductive allocation and allometric growth of the plants. Moreover, the effects of position of L. chinensis ramets within the patch on their reproductive allocation were also examined. Clonal patch size and position both significantly affected spike biomass, reproductive tiller biomass and SPIKE/TILLER biomass ratio. From the central to the marginal zone, both the spike biomass and reproductive tiller biomass displayed an increasing trend in all the five patch size categories except for reproductive tiller biomass in 15–40m2 category. L. chinensis had significantly larger SPIKE/TILLER biomass ratio in marginal zone than in central zone of clonal patches that are larger than 15 m2 in area. Regression analysis showed that the spike biomass and SPIKE/TILLER biomass ratio were negatively correlated with clonal patch size while patch size showed significantly positive effect on SEED/SPIKE biomass ratio, but the reproductive tiller biomass and SEED/TILLER biomass ratio were not dependent on clonal patch size. The relationships between biomass of spike and reproductive tiller, between mature seed biomass and spike biomass and between mature seed biomass and reproductive tiller biomass were significant allometric for all or some of patch size categories, respectively. The slopes of all these allometric relationships were significantly different from 1. The allometric growth of L. chinensis is patch size-dependent. This finding will be helpful for developing appropriate practices for

  10. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    NASA Astrophysics Data System (ADS)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  11. Distribution of biomass within small tree and shrub form Quercus gambelii stands

    SciTech Connect

    Clary, W.P.; Tiedemann, A.R.

    1986-03-01

    Gambel oak (Quercus gambelii Nutt.) occupies approximately 3.5 million ha in the states of Arizona, Colorado, New Mexico, and Utah. It is becoming recognized as an important fuelwood resource. Design of appropriate management strategies requires information on the biomass distribution characteristics within these stands. Biomass components of eight Gambel oak small tree and shrub form stands (clones) were sampled in Utah. Stem densities ranged from 5000 to 34,000 per ha of clone. Mean stem diameters varied from 36 to 117 mm. Live stems averaged 4992 g including dead branches, while standing dead stems averaged 1347 g. Live biomass per occupied hectare averaged 124,388 kg including 40,702 kg of bole. The ratio of aboveground to belowground live biomasses was unusually low -44:56. Total aboveground and belowground biomass including detritus was 184,292 kg per hectare of clone.

  12. Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions

    PubMed Central

    Schädler, Martin

    2010-01-01

    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1–3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on

  13. Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions.

    PubMed

    Eisenhauer, Nico; Schädler, Martin

    2011-02-01

    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1-3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on

  14. Channel Allocation Options.

    ERIC Educational Resources Information Center

    Powers, Robert S.

    The Frequency Allocation Subcommittee of the Coordinating Committee for Cable Communication Systems, Institute of Electrical and Electronic Engineers, was formed to produce a background report on the general problems of frequency allocation and assignments in cable television. The present paper, based on the subcommittee's interim report,…

  15. Alien and endangered plants in the Brazilian Cerrado exhibit contrasting relationships with vegetation biomass and N : P stoichiometry.

    PubMed

    Lannes, Luciola S; Bustamante, Mercedes M C; Edwards, Peter J; Venterink, Harry Olde

    2012-11-01

    Although endangered and alien invasive plants are commonly assumed to persist under different environmental conditions, surprisingly few studies have investigated whether this is the case. We examined how endangered and alien species are distributed in relation to community biomass and N : P ratio in the above-ground community biomass in savanna vegetation in the Brazilian Cerrado. For 60 plots, we related the occurrence of endangered (Red List) and alien invasive species to plant species richness, vegetation biomass and N : P ratio, and soil variables. Endangered plants occurred mainly in plots with relatively low above-ground biomass and high N : P ratios, whereas alien invasive species occurred in plots with intermediate to high biomass and low N : P ratios. Occurrences of endangered or alien plants were unrelated to extractable N and P concentrations in the soil. These contrasting distributions in the Cerrado imply that alien species only pose a threat to endangered species if they are able to invade sites occupied by these species and increase the above-ground biomass and/or decrease the N : P ratio of the vegetation. We found some evidence that alien species do increase above-ground community biomass in the Cerrado, but their possible effect on N : P stoichiometry requires further study.

  16. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores.

    PubMed

    Kumar, Pavan; Ortiz, Erandi Vargas; Garrido, Etzel; Poveda, Katja; Jander, Georg

    2016-09-01

    Plants mediate interactions between aboveground and belowground herbivores. Although effects of root herbivory on foliar herbivores have been documented in several plant species, interactions between tuber-feeding herbivores and foliar herbivores are rarely investigated. We report that localized tuber damage by Tecia solanivora (Guatemalan tuber moth) larvae reduced aboveground Spodoptera exigua (beet armyworm) and Spodoptera frugiperda (fall armyworm) performance on Solanum tuberosum (potato). Conversely, S. exigua leaf damage had no noticeable effect on belowground T. solanivora performance. Tuber infestation by T. solanivora induced systemic plant defenses and elevated resistance to aboveground herbivores. Lipoxygenase 3 (Lox3), which contributes to the synthesis of plant defense signaling molecules, had higher transcript abundance in T. solanivora-infested leaves and tubers than in equivalent control samples. Foliar expression of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and 3-hydroxy-3-methylglutaryl CoA reductase I (HMGR1) genes, which are involved in chlorogenic acid and steroidal glycoalkaloid biosynthesis, respectively, also increased in response to tuber herbivory. Leaf metabolite profiling demonstrated the accumulation of unknown metabolites as well as the known potato defense compounds chlorogenic acid, α-solanine, and α-chaconine. When added to insect diet at concentrations similar to those found in potato leaves, chlorogenic acid, α-solanine, and α-chaconine all reduced S. exigua larval growth. Thus, despite the fact that tubers are a metabolic sink tissue, T. solanivora feeding elicits a systemic signal that induces aboveground resistance against S. exigua and S. frugiperda by increasing foliar abundance of defensive metabolites.

  17. Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica.

    PubMed

    Taylor, Philip; Asner, Gregory; Dahlin, Kyla; Anderson, Christopher; Knapp, David; Martin, Roberta; Mascaro, Joseph; Chazdon, Robin; Cole, Rebecca; Wanek, Wolfgang; Hofhansl, Florian; Malavassi, Edgar; Vilchez-Alvarado, Braulio; Townsend, Alan

    2015-01-01

    Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD) varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO) Light Detection and Ranging (LiDAR) system to detect top-of-canopy tree height (TCH) and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH) reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors contribute to ACD

  18. Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica

    PubMed Central

    Taylor, Philip; Asner, Gregory; Dahlin, Kyla; Anderson, Christopher; Knapp, David; Martin, Roberta; Mascaro, Joseph; Chazdon, Robin; Cole, Rebecca; Wanek, Wolfgang; Hofhansl, Florian; Malavassi, Edgar; Vilchez-Alvarado, Braulio; Townsend, Alan

    2015-01-01

    Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD) varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO) Light Detection and Ranging (LiDAR) system to detect top-of-canopy tree height (TCH) and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH) reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors contribute to ACD

  19. Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation.

    PubMed

    Smith, Andrew R; Lukac, Martin; Hood, Robin; Healey, John R; Miglietta, Franco; Godbold, Douglas L

    2013-04-01

    In a free-air carbon dioxide (CO(2)) enrichment study (BangorFACE), Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one-, two- and three-species mixtures (n = 4). The trees were exposed to ambient or elevated CO(2) (580 μmol mol(-1)) for 4 yr, and aboveground growth characteristics were measured. In monoculture, the mean effect of CO(2) enrichment on aboveground woody biomass was + 29, + 22 and + 16% for A. glutinosa, F. sylvatica and B. pendula, respectively. When the same species were grown in polyculture, the response to CO(2) switched to + 10, + 7 and 0% for A. glutinosa, B. pendula and F. sylvatica, respectively. In ambient atmosphere, our species grown in polyculture increased aboveground woody biomass from 12.9 ± 1.4 to 18.9 ± 1.0 kg m(-2), whereas, in an elevated CO(2) atmosphere, aboveground woody biomass increased from 15.2 ± 0.6 to 20.2 ± 0.6 kg m(-2). The overyielding effect of polyculture was smaller (+ 7%) in elevated CO(2) than in an ambient atmosphere (+ 18%). Our results show that the aboveground response to elevated CO(2) is affected significantly by intra- and interspecific competition, and that the elevated CO(2) response may be reduced in forest communities comprising tree species with contrasting functional traits.

  20. Non-destructive aboveground biomass estimation of the tallgrass prairie ecosystem

    NASA Astrophysics Data System (ADS)

    Duong, Larry Le Ngoc

    Manganese Phthalocyanine (MnPc) is studied as a powder and as thin film form using scanning electron microscope, atomic force microscope, x-ray powder/thin film diffraction, magnetic hysteresis measurements, and temperature dependence susceptibility measurements. The powder crystallizes as mono-clinic β phase, but thin films can have different polymorphs depending on their substrate temperature during deposition. Manganese Phthalocyanine molecules in thin films have a standing orientation relative to the substrate surface possibly due to weak surface interactions. MnPc powder is ferromagnetic but MnPc thin films can either be ferromagnetic or canted-antiferromagnetic depending on different thin film polymorphs. The thin film sample deposited at 100°C is likely canted-antiferromagnetic based on a non-zero magnetic moment at low temperature and a negative intercept of inversed susceptibility. The thin film sample deposited at 230°C is ferromagnetic with transition temperature near 7.2 K and has an effective magnetic moment per formula unit of 7.15 µB.

  1. Biomass [updated

    SciTech Connect

    Turhollow Jr, Anthony F

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  2. Responses of belowground communities to large aboveground herbivores: meta-analysis reveals biome-dependent patterns and critical research gaps.

    PubMed

    Andriuzzi, Walter S; Wall, Diana H

    2017-02-28

    The importance of herbivore-plant and soil biota-plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta-analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root-feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked. This article is protected by copyright. All rights reserved.

  3. Changes in the relationship between tree size and aboveground respiration in field-grown hinoki cypress (Chamaecyparis obtusa) trees over three years.

    PubMed

    Yokota, Taketo; Hagihara, Akio

    1998-01-01

    Respiration measurements of aerial parts of 18-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) trees were made under field conditions over three years to study changing relationships with tree age between respiration and phytomass, phytomass increment, and leaf mass. The relationship between annual respiration (r(a)) and phytomass (w(T)) was approximated by a proportional function (r(a) = aw(T)), where the proportional constant (a) decreased year by year. The effect of time on the relationship between annual respiration and phytomass of each sample tree was fitted by a power function. Respiration of the tree suppressed by the canopy decreased year by year, but respiration of the other trees increased slightly with age. The relationship between annual respiration and leaf mass was also approximated by a generalized power function. Excluding the suppressed tree, the relationship between annual respiration (r(a)) and the annual increment of aboveground phytomass (Deltaw(T)) was described by a proportional function (r(a) = 2.27Deltaw(T)), where the proportional constant, 2.27, was independent of sample tree and year, indicating that about 2.3 times of the annual aboveground phytomass increment equivalent was respired annually. For any tree, the time constant relationships between annual respiration and leaf mass and phytomass increment for different-sized trees were similar to the corresponding time continuum relationships. In contrast, the time continuum relationship between annual respiration and phytomass differed from the time constant relationship, indicating that respiration of less active woody tissue contributed significantly to aboveground respiration. Based on the relationship between tree size and annual respiration, annual aboveground stand respiration was estimated to be 25.0, 26.9, and 25.8 Mg(dm) ha(-1) year(-1) for the three consecutive years, respectively, and the corresponding aboveground stand biomass was 60.0, 69.0, and 76.8 Mg

  4. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Fearnside, Philip M.; Leal, Niwton; Fernandes, Fernando Moreira

    1993-01-01

    Biomass present before and after burning was measured in forest cleared for pasture in a cattle ranch (Fazenda Dimona) near Manaus, Amazonas, Brazil. Aboveground dry weight biomass loading averaged 265 t ha-1 (standard deviation (SD) = 110, n = 6 quadrats) at Fazenda Dimona, which corresponds to approximately 311 t ha-1 total dry weight biomass. A five-category visual classification at 200 points showed highly variable burn quality. Postburn aboveground biomass loading was evaluated by cutting and weighing of 100 m2 quadrats and by line intersect sampling. Quadrats had a mean dry weight of 187 t ha-1 (SD = 69, n = 10), a 29.3% reduction from the preburn mean in the same clearing. Line intersect estimates in 1.65 km of transects indicated that 265 m3 ha-1 (approximately 164 t ha-1 of aboveground dry matter) survived burning. Using carbon contents measured for different biomass components (all ˜50% carbon) and assuming a carbon content of 74.8% for charcoal (from other studies near Manaus), the destructive measurements imply a 27.6% reduction of aboveground carbon pools. Charcoal composed 2.5% of the dry weight of the remains in the postburn destructive quadrats and 2.8% of the volume in the line intersect transects. Thus approximately 2.7% of the preburn aboveground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models. The findings confirm high values for biomass in central Amazonia. High variability indicates the need for further studies in many localities and for making maximum use of less laborious indirect methods of biomass estimation. While indirect methods are essential for regional estimates of average biomass, only direct weighing such as that reported here can yield information on combustion efficiency and charcoal formation. Both high biomass and low percentage of charcoal formation suggest the significant potential contribution of forest burning to global climate changes from CO2 and trace gases.

  5. Aboveground carbon in Quebec forests: stock quantification at the provincial scale and assessment of temperature, precipitation and edaphic properties effects on the potential stand-level stocking

    PubMed Central

    Houle, Daniel; Ouimet, Rock; Lambert, Marie-Claude; Logan, Travis

    2016-01-01

    Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km2 of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha−1, which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec’s managed forests MSAC may increase by 20% by 2041–2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec’s forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests. PMID:26966680

  6. Aboveground carbon in Quebec forests: stock quantification at the provincial scale and assessment of temperature, precipitation and edaphic properties effects on the potential stand-level stocking.

    PubMed

    Duchesne, Louis; Houle, Daniel; Ouimet, Rock; Lambert, Marie-Claude; Logan, Travis

    2016-01-01

    Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km(2) of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha(-1), which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec's managed forests MSAC may increase by 20% by 2041-2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec's forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests.

  7. Seeing the Forest through the Trees: Citizen Scientists Provide Critical Data to Refine Aboveground Carbon Estimates in Restored Riparian Forests

    NASA Astrophysics Data System (ADS)

    Viers, J. H.

    2013-12-01

    Integrating citizen scientists into ecological informatics research can be difficult due to limited opportunities for meaningful engagement given vast data streams. This is particularly true for analysis of remotely sensed data, which are increasingly being used to quantify ecosystem services over space and time, and to understand how land uses deliver differing values to humans and thus inform choices about future human actions. Carbon storage and sequestration are such ecosystem services, and recent environmental policy advances in California (i.e., AB 32) have resulted in a nascent carbon market that is helping fuel the restoration of riparian forests in agricultural landscapes. Methods to inventory and monitor aboveground carbon for market accounting are increasingly relying on hyperspatial remotely sensed data, particularly the use of light detection and ranging (LiDAR) technologies, to estimate biomass. Because airborne discrete return LiDAR can inexpensively capture vegetation structural differences at high spatial resolution (< 1 m) over large areas (> 1000 ha), its use is rapidly increasing, resulting in vast stores of point cloud and derived surface raster data. While established algorithms can quantify forest canopy structure efficiently, the highly complex nature of native riparian forests can result in highly uncertain estimates of biomass due to differences in composition (e.g., species richness, age class) and structure (e.g., stem density). This study presents the comparative results of standing carbon estimates refined with field data collected by citizen scientists at three different sites, each capturing a range of agricultural, remnant forest, and restored forest cover types. These citizen science data resolve uncertainty in composition and structure, and improve allometric scaling models of biomass and thus estimates of aboveground carbon. Results indicate that agricultural land and horticulturally restored riparian forests store similar

  8. Variability of aboveground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L.; Sayer, E. J.

    2013-03-01

    Global change has been shown to greatly alter the amount of aboveground litter inputs to soil, which could cause substantial cascading effects on belowground biogeochemical cyling. Although having been studied extensively, there is uncertainty about how changes in aboveground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a comprehensive compilation of 68 studies on litter addition or removal experiments, and used meta-analysis to assess the responses of soil physicochemical properties and carbon and nutrient cycling under changed aboveground litter inputs. Our results suggested that litter addition or removal could significantly alter soil temperature and moisture, but not soil pH. Litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Soil respiration, soil microbial biomass carbon and total carbon in the mineral soil increased with increasing litter inputs, suggesting that soil acted as a~net carbon sink although carbon loss and transformation increased with increasing litter inputs. Total nitrogen and the C : N ratio in the mineral soil increased with increased litter inputs. However, there was no correlation between litter inputs and extractable inorganic nitrogen in the mineral soil. Compared to other ecosystems, tropical and subtropical forests are more sensitive to variation in litter inputs. Increased or decreased litter inputs altered the turnover and accumulation of soil carbon and nutrient in tropical and subtropical forests more substantially over a shorter time period compared to other ecosystems. Overall, our study suggested that, although the magnitude of responses differed greatly among ecosystems, increased litter inputs generally accelerated the decomposition and accumulation of carbon and nutrients in soil, and decreased litter inputs reduced them.

  9. Fire recurrence effects on aboveground plant and soil carbon stocks in Mediterranean shrublands with Aleppo pine

    NASA Astrophysics Data System (ADS)

    Herman, J.; den Ouden, J.; Mohren, G. M. J.; Retana, J.; Serrasolses, I.

    2009-04-01

    Changes in fire regime due to intensification of human influence during the last decades led to changes in vegetation structure and composition, productivity and carbon sink strength of Mediterranean shrublands and forests. It is anticipated that further climate warming and lower precipitation will enhance fire frequency, having consequences for the carbon budget and carbon storage in Mediterranean ecosystems. The purpose of this study was to determine whether fire recurrence modifies aboveground plant and soil carbon stocks, soil organic carbon content and total soil nitrogen content in shrublands with Aleppo pine on the Garraf Massif in Catalonia (Spain). Stands differing in fire frequency (1, 2 and 3 fires since 1957) were examined 13 years after the stand-replacing fire of 1994 and compared with control stands which were free of fire since 1957. Recurrent fires led to a decrease in total ecosystem carbon stocks. Control sites stored 12203 g m-2C which was 3.5, 5.0 and 5.5 times more than sites that burned 1, 2 and 3 times respectively. Carbon stored in the aboveground biomass exceeded soil carbon stocks in control plots, while soils were the dominant carbon pool in burned plots. An increasing fire frequency from 1 to 2 fires decreased total soil carbon stock. Control soils stored 3551 g m-2C, of which 70 % was recovered over 13 years in once burned soils and approximately 50 % in soils that had 2 or 3 fires. The soil litter (LF) layer carbon stock decreased with increasing fire frequency from 1 to 2 fires, whereas humus (H) layer and upper mineral soil carbon stocks did not change consistently with fire frequency. Fire decreased the organic carbon content in LF and H horizons, however no significant effect of fire frequency was found. Increasing fire frequency from 1 to 2 fires caused a decrease in the organic carbon content in the upper mineral soil. Total soil N content and C/N ratios were not significantly impacted by fire frequency. Recurrent fires had the

  10. A SPATIAL ANALYSIS OF FINE-ROOT BIOMASS FROM STAND DATA IN OREGON AND WASHINGTON

    EPA Science Inventory

    Because of the high spatial variability of fine roots in natural forest stands, accurate estimates of stand-level fine root biomass are difficult and expensive to obtain by standard coring methods. This study compares two different approaches that employ aboveground tree metrics...

  11. A SPATIAL ANALYSIS OF THE FINE ROOT BIOMASS FROM STAND DATA IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    High spatial variability of fine roots in natural forest stands makes accurate estimates of stand-level fine root biomass difficult and expensive to obtain by standard coring methods. This study uses aboveground tree metrics and spatial relationships to improve core-based estima...

  12. Coal + Biomass → Liquids + Electricity (with CCS)

    EPA Science Inventory

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  13. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    SciTech Connect

    Fearnside, P.M.; Lea