Science.gov

Sample records for aboveground biomass root

  1. Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.

    2013-01-01

    Annual/perennial and tall/short plant species differentially dominate early to late successional shortgrass steppe communities. Plant species can have different ratios of above-/below-ground biomass distributions and this can be modified by precipitation and grazing. We compared grazing effects on aboveground production and root biomass in early- and mid-seral fields and undisturbed shortgrass steppe. Production averaged across four years and grazed and ungrazed treatments were 246, 134, and 102 g m−2 yr−1 for the early-, mid-seral, and native sites, respectively, while root biomass averaged 358, 560, and 981 g m−2, respectively. Early- and mid-seral communities provided complimentary forage supplies but at the cost of root biomass. Grazing increased, decreased, or had no effect on aboveground production in early-, mid-seral, and native communities, and had no effect on roots in any. Grazing had some negative effects on early spring forage species, but not in the annual dominated early-seral community. Dominant species increased with grazing in native communities with a long evolutionary history of grazing by large herbivores, but had no effects on the same species in mid-seral communities. Effects of grazing in native communities in a region cannot necessarily be used to predict effects at other seral stages.

  2. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    SciTech Connect

    French, Sean B; Christensen, Candace; Jennings, Terry L; Jaros, Christopher L; Wykoff, David S; Crowell, Kelly J; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  3. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    USGS Publications Warehouse

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton haa??1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  4. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  5. MODIS Based Estimation of Forest Aboveground Biomass in China

    PubMed Central

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  6. [Aboveground architecture and biomass distribution of Quercus variabilis].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou

    2015-08-01

    The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline

  7. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam

    PubMed Central

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P. R.

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam. PMID:27309718

  8. ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS

    EPA Science Inventory

    Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...

  9. THE USE OF INTER SIMPLE SEQUENCE REPEATS (ISSR) IN DISTINGUISHING NEIGHBORING DOUGLAS-FIR TREES AS A MEANS TO IDENTIFYING TREE ROOTS WITH ABOVE-GROUND BIOMASS

    EPA Science Inventory

    We are attempting to identify specific root fragments from soil cores with individual trees. We successfully used Inter Simple Sequence Repeats (ISSR) to distinguish neighboring old-growth Douglas-fir trees from one another, while maintaining identity among each tree's parts. W...

  10. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  11. Evaluating lidar point densities for effective estimation of aboveground biomass

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  12. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar

    PubMed Central

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-01

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE) = 81.89 g·m−2, and relative error of 14.1%). The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns. PMID:28106819

  13. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.

    PubMed

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-19

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R² = 0.340, root-mean-square error (RMSE) = 81.89 g·m(-2), and relative error of 14.1%). The improvement of multiple regressions to the R² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns.

  14. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  15. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    PubMed

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  16. Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient

    PubMed Central

    Kumordzi, Bright B.; Gundale, Michael J.; Nilsson, Marie-Charlotte; Wardle, David A.

    2016-01-01

    Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems. PMID:27270445

  17. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem.

    PubMed

    Blue, Jarrod D; Souza, Lara; Classen, Aimée T; Schweitzer, Jennifer A; Sanders, Nathan J

    2011-11-01

    Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.

  18. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River Basin of Southeastern Colorado, USA

    USGS Publications Warehouse

    Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.

    2007-01-01

    Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.

  19. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery

    NASA Astrophysics Data System (ADS)

    Wu, Chaofan; Shen, Huanhuan; Shen, Aihua; Deng, Jinsong; Gan, Muye; Zhu, Jinxia; Xu, Hongwei; Wang, Ke

    2016-07-01

    Biomass is one significant biophysical parameter of a forest ecosystem, and accurate biomass estimation on the regional scale provides important information for carbon-cycle investigation and sustainable forest management. In this study, Landsat satellite imagery data combined with field-based measurements were integrated through comparisons of five regression approaches [stepwise linear regression, K-nearest neighbor, support vector regression, random forest (RF), and stochastic gradient boosting] with two different candidate variable strategies to implement the optimal spatial above-ground biomass (AGB) estimation. The results suggested that RF algorithm exhibited the best performance by 10-fold cross-validation with respect to R2 (0.63) and root-mean-square error (26.44 ton/ha). Consequently, the map of estimated AGB was generated with a mean value of 89.34 ton/ha in northwestern Zhejiang Province, China, with a similar pattern to the distribution mode of local forest species. This research indicates that machine-learning approaches associated with Landsat imagery provide an economical way for biomass estimation. Moreover, ensemble methods using all candidate variables, especially for Landsat images, provide an alternative for regional biomass simulation.

  20. Forest classification and impact of BIOMASS resolution on forest area and aboveground biomass estimation

    NASA Astrophysics Data System (ADS)

    Schlund, Michael; Scipal, Klaus; Davidson, Malcolm W. J.

    2017-04-01

    The European Space Agency (ESA) is currently implementing the BIOMASS mission as 7th Earth Explorer satellite. BIOMASS will provide for the first time global forest aboveground biomass estimates based on P-band synthetic aperture radar (SAR) imagery. This paper addresses an often overlooked element of the data processing chain required to ensure reliable and accurate forest biomass estimates: accurate identification of forest areas ahead of the inversion of radar data into forest biomass estimates. The use of the P-band data from BIOMASS itself for the classification into forest and non-forest land cover types is assessed in this paper. For airborne data in tropical, hemi-boreal and boreal forests we demonstrate that classification accuracies from 90 up to 97% can be achieved using radar backscatter and phase information. However, spaceborne data will have a lower resolution and higher noise level compared to airborne data and a higher probability of mixed pixels containing multiple land cover types. Therefore, airborne data was reduced to 50 m, 100 m and 200 m resolution. The analysis revealed that about 50-60% of the area within the resolution level must be covered by forest to classify a pixel with higher probability as forest compared to non-forest. This results in forest omission and commission leading to similar forest area estimation over all resolutions. However, the forest omission resulted in a biased underestimated biomass, which was not equaled by the forest commission. The results underline the necessity of a highly accurate pre-classification of SAR data for an accurate unbiased aboveground biomass estimation.

  1. Plant roots and spectroscopic methods - analyzing species, biomass and vitality.

    PubMed

    Rewald, Boris; Meinen, Catharina

    2013-01-01

    In order to understand plant functioning, plant community composition, and terrestrial biogeochemistry, it is decisive to study standing root biomass, (fine) root dynamics, and interactions belowground. While most plant taxa can be identified by visual criteria aboveground, roots show less distinctive features. Furthermore, root systems of neighboring plants are rarely spatially segregated; thus, most soil horizons and samples hold roots of more than one species necessitating root sorting according to taxa. In the last decades, various approaches, ranging from anatomical and morphological analyses to differences in chemical composition and DNA sequencing were applied to discern species' identity and biomass belowground. Among those methods, a variety of spectroscopic methods was used to detect differences in the chemical composition of roots. In this review, spectroscopic methods used to study root systems of herbaceous and woody species in excised samples or in situ will be discussed. In detail, techniques will be reviewed according to their usability to discern root taxa, to determine root vitality, and to quantify root biomass non-destructively or in soil cores holding mixtures of plant roots. In addition, spectroscopic methods which may be able to play an increasing role in future studies on root biomass and related traits are highlighted.

  2. [Effects of shading on the aboveground biomass and stiochiometry characteristics of Medicago sativa].

    PubMed

    Ma, Zhi-Liang; Yang, Wan-Qin; Wu, Fu-Zhong; Gao, Shun

    2014-11-01

    In order to provide scientific basis for inter-planting alfalfa in abandoned farmland, a shading experiment was conducted to simulate the effects of different light intensities on the aboveground biomass, the contents of carbon, nitrogen, phosphorus and potassium, and the stoichiometric characteristics of alfalfa under the plantation. The results showed that the aboveground biomass of alfalfa correlated significantly with the light intensity, and shading treatment reduced the aboveground biomass of alfalfa significantly. The aboveground alfalfa tissues under the 62% shading treatment had the highest contents of carbon, nitrogen and phosphorus, which was 373.73, 34.38 and 5.47 g · kg(-1), respectively, and significantly higher than those of the control. However, shading treatments had no significant effect on the potassium content of aboveground part. The C/N ratio in aboveground tissues under the 72% shading treatment was significantly higher than that of the control, but no significant differences among other treatments were found. The ratios of N/P and C/P in aboveground tissues showed a tendency that decreased firstly and then increased with the increase of light intensity.

  3. Root-fed salicylic acid in grape involves the response caused by aboveground high temperature.

    PubMed

    Liu, Hong-Tao; Liu, Yue-Ping; Huang, Wei-Dong

    2008-06-01

    In order to investigate the transportation and distribution of salicylic acid (SA) from root to aboveground tissues in response to high temperature, the roots of grape plant were fed with (14)C-SA before high temperature treatment. Radioactivity results showed that progressive increase in SA transportation from root to aboveground as compared with the control varied exactly with the heat treatment time. Radioactivity results of leaves at different stem heights indicated that the increase in SA amount at the top and middle leaves during the early period was most significant in comparison with the bottom leaves. The up-transportation of SA from root to aboveground tissues was dependent on xylem rather than phloem. Auto-radiographs of whole grape plants strongly approved the conclusions drawn above. Root-derived SA was believed to be a fundamental source in response to aboveground high temperature.

  4. A study on estimation of aboveground wet biomass based on the microwave vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation biomass is an important parameter in the carbon cycle study. In this paper, a new technique to estimate aboveground vegetation wet biomass based on the Microwave Vegetation Indices (MVIs), which are computed through the observed brightness temperature of AMSR-E/Aqua under two adjacent fre...

  5. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  6. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  7. Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota

    PubMed Central

    Kong, Hyun G.; Kim, Byung K.; Song, Geun C.; Lee, Soohyun; Ryu, Choong-Min

    2016-01-01

    Plants respond to various types of herbivore and pathogen attack using well-developed defensive machinery designed for self-protection. Infestation from phloem-sucking insects such as whitefly and aphid on plant leaves was previously shown to influence both the saprophytic and pathogenic bacterial community in the plant rhizosphere. However, the modulation of the root microbial community by plants following insect infestation has been largely unexplored. Only limited studies of culture-dependent bacterial diversity caused by whitefly and aphid have been conducted. In this study, to obtain a complete picture of the belowground microbiome community, we performed high-speed and high-throughput next-generation sequencing. We sampled the rhizosphere soils of pepper seedlings at 0, 1, and 2 weeks after whitefly infestation versus the water control. We amplified a partial 16S ribosomal RNA gene (V1–V3 region) by polymerase chain reaction with specific primers. Our analysis revealed that whitefly infestation reshaped the overall microbiota structure compared to that of the control rhizosphere, even after 1 week of infestation. Examination of the relative abundance distributions of microbes demonstrated that whitefly infestation shifted the proteobacterial groups at week 2. Intriguingly, the population of Pseudomonadales of the class Gammaproteobacteria significantly increased after 2 weeks of whitefly infestation, and the fluorescent Pseudomonas spp. recruited to the rhizosphere were confirmed to exhibit insect-killing capacity. Additionally, three taxa, including Caulobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, and three genera, including Achromobacter, Janthinobacterium, and Stenotrophomonas, were the most abundant bacterial groups in the whitefly infested plant rhizosphere. Our results indicate that whitefly infestation leads to the recruitment of specific groups of rhizosphere bacteria by the plant, which confer beneficial traits to the host plant. This

  8. Aboveground tree biomass on productive forest land in Alaska. Forest Service research paper

    SciTech Connect

    Yarie, J.; Mead, D.R.

    1982-08-01

    Total aboveground woody biomass of trees on forest land that can produce 1.4 cubic meters per hectare per year of industrial wood in Alaska is 1.33 billion metric tons green weight. The estimated energy value of the standing woody biomass is 11.9 x 10 Btu's. Statewide tables of biomass and energy values for softwoods, hardwoods, and species group are presented.

  9. A SPATIAL ANALYSIS OF FINE-ROOT BIOMASS FROM STAND DATA IN OREGON AND WASHINGTON

    EPA Science Inventory

    Because of the high spatial variability of fine roots in natural forest stands, accurate estimates of stand-level fine root biomass are difficult and expensive to obtain by standard coring methods. This study compares two different approaches that employ aboveground tree metrics...

  10. A SPATIAL ANALYSIS OF THE FINE ROOT BIOMASS FROM STAND DATA IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    High spatial variability of fine roots in natural forest stands makes accurate estimates of stand-level fine root biomass difficult and expensive to obtain by standard coring methods. This study uses aboveground tree metrics and spatial relationships to improve core-based estima...

  11. Demographic controls of aboveground forest biomass across North America.

    PubMed

    Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W

    2016-04-01

    Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea).

  12. Improved allometric models to estimate the aboveground biomass of tropical trees.

    PubMed

    Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto; Chidumayo, Emmanuel; Colgan, Matthew S; Delitti, Welington B C; Duque, Alvaro; Eid, Tron; Fearnside, Philip M; Goodman, Rosa C; Henry, Matieu; Martínez-Yrízar, Angelina; Mugasha, Wilson A; Muller-Landau, Helene C; Mencuccini, Maurizio; Nelson, Bruce W; Ngomanda, Alfred; Nogueira, Euler M; Ortiz-Malavassi, Edgar; Pélissier, Raphaël; Ploton, Pierre; Ryan, Casey M; Saldarriaga, Juan G; Vieilledent, Ghislain

    2014-10-01

    Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

  13. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution of many dryland vegetation species are expected to shift based on predictions of future increases in global temperatures. Quantifying aboveground biomass in dryland systems is important for assessing global carbon storage and monitoring the presence and distribution of these rapidl...

  14. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    PubMed

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  15. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China.

    PubMed

    Lin, Dunmei; Lai, Jiangshan; Muller-Landau, Helene C; Mi, Xiangcheng; Ma, Keping

    2012-01-01

    The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha(-1) (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha(-1) (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha(-1) (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.

  16. Topographic Variation in Aboveground Biomass in a Subtropical Evergreen Broad-Leaved Forest in China

    PubMed Central

    Lin, Dunmei; Lai, Jiangshan; Muller-Landau, Helene C.; Mi, Xiangcheng; Ma, Keping

    2012-01-01

    The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha−1 (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha−1 (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha−1 (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage. PMID:23118961

  17. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    USGS Publications Warehouse

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  18. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California, forests

    USGS Publications Warehouse

    McGinnis, T.W.; Shook, C.D.; Keeley, J.E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  19. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka.

    PubMed

    Ali, Arshad; Mattsson, Eskil

    2017-01-01

    Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry

  20. Topographically mediated controls on aboveground biomass across a mediterranean-type landscape

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2009-12-01

    Aboveground biomass accumulation is a useful metric for evaluating habitat restoration and ecosystem services projects, in addition to being a robust measure of carbon sequestration. However, at the landscape scale non-anthropogenic controls on biomass accumulation are poorly understood. In this study we combined field measurements, high resolution data from the NASA JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Carnegie Airborne Observatory (CAO) airborne light detection and ranging (lidar) system to create a comprehensive map of aboveground biomass across a patchy mediterranean-type landscape (Jasper Ridge Biological Preserve, Stanford, CA). Candidate explanatory variables (e.g. slope, elevation, incident solar radiation) were developed using a geologic map and a digital elevation model derived from the lidar data. Finally, candidate variables were tested, and a model was produced to predict aboveground biomass from environmental data. Though many of the explanatory variables have only indirect effects on plant growth, the model permits inferences to be made about the relative importance of light, water, temperature, and edaphic characteristics on carbon accumulation in mediterranean-type systems.

  1. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, Wenge; Lee, Shihyan; Strahler, Alan H.; Woodcock, Curtis E.; Schaaf, Crystal; Yao, Tian; Ranson, K. Jon; Sun, Guoqing; Blair, J. Bryan

    2010-06-01

    Lidar-based aboveground biomass is derived based on the empirical relationship between lidar-measured vegetation height and aboveground biomass, often leading to large uncertainties of aboveground biomass estimates at large scales. This study investigates whether the use of any additional lidar-derived vegetation structure parameters besides height improves aboveground biomass estimation. The analysis uses data collected in the field and with the Laser Vegetation Imaging Sensor (LVIS), and the Echidna® validation instrument (EVI), a ground-based hemispherical-scanning lidar data in New England in 2003 and 2007. Our field data analysis shows that using wood volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve aboveground biomass estimates at large scales. This result is comparable to previous individual-tree based analyses. Our LVIS data analysis indicates that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, are closely related to wood volume and thus biomass particularly for conifer forests. RH100*cover and RH50*cover perform similarly or even better than RH50, a good biomass predictor found in previous study. This study shows that the use of structure parameters that combine height and gap fraction (rather than height alone) improves the aboveground biomass estimate, and that the fusion of lidar and optical remote sensing (to provide vegetation type) will provide better aboveground biomass estimates than using lidar alone. Our ground lidar analysis shows that EVI provides good estimates of wood volume, and thus accurate estimates of aboveground biomass particularly at the stand level.

  2. Remote sensing of aboveground biomass and annual net aerial primary productivity in tidal wetlands

    SciTech Connect

    Hardisky, M.A.

    1983-01-01

    A technique was investigated for estimating biomass and net aerial primary productivity (NAPP) in Delaware tidal marshes from spectral data, describing marsh vegetation canopies. Spectral radiance data were collected with hand-held radiometers from the ground and from low altitude aircraft. Spectral wavebands corresponding to Landsat 4 thematic mapper bands 3, 4 and 5 and multispectral scanner bands 5 and 7 were employed. Spectral data, expressed as index values, were substituted into simple regression models to nondestructively compute total aboveground biomass. Dead biomass, salt crystals on plant leaves and soil background reflectance, all attenuated the spectral radiance index values. A large spectral contribution from any one of these canopy components caused an underestimate of live biomass. Biomass and annual NAPP of a S. alterniflora dominated salt marsh was estimated by traditional harvesting techniques and from ground-gathered spectral radiance data. The live and dead standing crop biomass estimates computed from spectral data were usually not significantly different from harvest biomass estimates. Spectral estimates of NAPP were usually within 10% of NAPP estimates calculated from harvest data. August live standing crop biomass estimates computed from ground-gathered spectral data for a tidal brackish marsh were generally within 10% of harvest estimates. Live biomass estimates computed from spectral data gathered from a low altitude aircraft were equally similar to harvest biomass estimates. The remote sensing technique holds much promise for rapid and accurate estimates of biomass and NAPP in tidal marshes.

  3. [Aboveground biomass of Tamarix on piedmont plain of Tianshan Mountains south slope].

    PubMed

    Zhao, Zhenyong; Wang, Ranghui; Zhang, Huizhi; Wang, Lei

    2006-09-01

    Based on the geo-morphological and hydro-geological characteristics, the piedmont plain of Tianshan Mountains south slope was classified into 4 geo-morphological belts, i.e., flood erosion belt, groundwater spill belt, delta belt, and the joining belt of piedmont plain and Tarim floodplain. A field investigation on the Tamarix shrub in this region showed that there was a significant difference in its aboveground biomass among the four belts, ranged from 1428.53 kg x hm(-2) at groundwater spill belt to 111.18 kg x hm(-2) at the joining belt of piedmont plain and Tarim floodplain. The main reason for such a big difference might be the different density of Tamarix shrub on different belts. Both the Tamarix aboveground biomass and the topsoil's salinity were decreased with increasing groundwater level. Groundwater level was the main factor limiting Tamarix growth, while soil salinity was not.

  4. Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance.

    PubMed

    Wang, Minggang; Biere, Arjen; Van der Putten, Wim H; Bezemer, T Martijn

    2014-05-01

    Plants are often simultaneously or sequentially attacked by multiple herbivores and changes in host plants induced by one herbivore can influence the performance of other herbivores. We examined how sequential feeding on the plant Plantago lanceolata by the aboveground herbivore Spodoptera exigua and the belowground herbivore Agriotes lineatus influences plant defense and the performance of both insects. Belowground herbivory caused a reduction in the food consumption by the aboveground herbivore independent of whether it was initiated before, at the same time, or after that of the aboveground herbivore. By contrast, aboveground herbivory did not significantly affect belowground herbivore performance, but significantly reduced the performance of later arriving aboveground conspecifics. Interestingly, belowground herbivores negated negative effects of aboveground herbivores on consumption efficiency of their later arriving conspecifics, but only if the belowground herbivores were introduced simultaneously with the early arriving aboveground herbivores. Aboveground-belowground interactions could only partly be explained by induced changes in an important class of defense compounds, iridoid glycosides (IGs). Belowground herbivory caused a reduction in IGs in roots without affecting shoot levels, while aboveground herbivory increased IG levels in roots in the short term (4 days) but only in the shoots in the longer term (17 days). We conclude that the sequence of aboveground and belowground herbivory is important in interactions between aboveground and belowground herbivores and that knowledge on the timing of exposure is essential to predict outcomes of aboveground-belowground interactions.

  5. Root growth dynamics linked to aboveground growth in walnuts (Juglans regia L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims: Examination of belowground plant responses to canopy and soil moisture manipulation is scant compared to that aboveground but needed to understand whole plant responses to environmental factors. Plasticity in the seasonal timing and vertical distribution of root growth in respon...

  6. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    NASA Astrophysics Data System (ADS)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-03-01

    In mountainous areas of southwestern China, especially Guizhou Province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass, and land degradation reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five degraded (successional) stages: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou Province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats, are mostly distributed in the topsoil layers (89% on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26±0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  7. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    NASA Astrophysics Data System (ADS)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-07-01

    In mountainous areas of southwestern China, especially Guizhou province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass and land degradation that reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five land cover types: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats are mostly distributed in the topsoil layers (89 % on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26 ± 0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  8. Tibetan alpine tundra responses to simulated changes in climate: Aboveground biomass and community responses

    SciTech Connect

    Yanqing Zhang; Welker, J.M.

    1996-05-01

    High-elevation ecosystems are predicted to be some of the terrestrial habitats most sensitive to changing climates. The ecological consequences of changes in alpine tundra environmental conditions are still unclear especially for habitats in Asia. In this study we report findings from a field experiment where an alpine tundra grassland on the Tibetan plateau (37{degrees}N, 101{degrees}E) was exposed to experimental warming, irradiance was lowered, and wind speed reduced to simulate a suite of potential changes in environmental conditions. Our warming treatment increased air temperatures by 5{degrees}C on average and soil temperatures were elevated by 3{degrees}C at 5 cm depth. Aboveground biomass of grasses responded rapidly to the warmer conditions whereby biomass was 25% greater than that of controls after only 5 wk of experimental warming. This increase was accompanied by a simultaneous decrease in forb biomass, resulting in almost no net change in community biomass after 5 wk. Lower irradiance reduced grass biomass during the same period. Under ambient conditions total aboveground community biomass increased seasonally from 161 g m{sup -2} in July to a maximum of 351 g m{sup -2} in September, declining to 285 g m{sup -2} in October. However, under warmed conditions, peak community biomass was extended into October due in part to continued growth of grasses and the postponement of senescence. Our finding indicate that while alpine grasses respond favorably to altered conditions, others may not. And, while peak community biomass may actually change very little under warmer summers, the duration of peak biomass may be extended having feedback effects on net ecosystem CO{sub 2} balances, nutrient cycling, and forage availability. 47 refs., 3 figs., 3 tabs.

  9. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images

    NASA Astrophysics Data System (ADS)

    Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.

    2014-09-01

    Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.

  10. Aboveground Biomass Modeling from Field and LiDAR Data in Brazilian Amazon Tropical Rain Forest

    NASA Astrophysics Data System (ADS)

    Silva, C. A.; Hudak, A. T.; Vierling, L. A.; Keller, M. M.; Klauberg Silva, C. K.

    2015-12-01

    Tropical forests are an important component of global carbon stocks, but tropical forest responses to climate change are not sufficiently studied or understood. Among remote sensing technologies, airborne LiDAR (Light Detection and Ranging) may be best suited for quantifying tropical forest carbon stocks. Our objective was to estimate aboveground biomass (AGB) using airborne LiDAR and field plot data in Brazilian tropical rain forest. Forest attributes such as tree density, diameter at breast height, and heights were measured at a combination of square plots and linear transects (n=82) distributed across six different geographic zones in the Amazon. Using previously published allometric equations, tree AGB was computed and then summed to calculate total AGB at each sample plot. LiDAR-derived canopy structure metrics were also computed at each sample plot, and random forest regression modelling was applied to predict AGB from selected LiDAR metrics. The LiDAR-derived AGB model was assessed using the random forest explained variation, adjusted coefficient of determination (Adj. R²), root mean square error (RMSE, both absolute and relative) and BIAS (both absolute and relative). Our findings showed that the 99th percentile of height and height skewness were the best LiDAR metrics for AGB prediction. The AGB model using these two best predictors explained 59.59% of AGB variation, with an Adj. R² of 0.92, RMSE of 33.37 Mg/ha (20.28%), and bias of -0.69 (-0.42%). This study showed that LiDAR canopy structure metrics can be used to predict AGC stocks in Tropical Forest with acceptable precision and accuracy. Therefore, we conclude that there is good potential to monitor carbon sequestration in Brazilian Tropical Rain Forest using airborne LiDAR data, large field plots, and the random forest algorithm.

  11. Roots under attack: contrasting plant responses to below- and aboveground insect herbivory.

    PubMed

    Johnson, Scott N; Erb, Matthias; Hartley, Susan E

    2016-04-01

    The distinctive ecology of root herbivores, the complexity and diversity of root-microbe interactions, and the physical nature of the soil matrix mean that plant responses to root herbivory extrapolate poorly from our understanding of responses to aboveground herbivores. For example, root attack induces different changes in phytohormones to those in damaged leaves, including a lower but more potent burst of jasmonates in several plant species. Root secondary metabolite responses also differ markedly, although patterns between roots and shoots are harder to discern. Root defences must therefore be investigated in their own ecophysiological and evolutionary context, specifically one which incorporates root microbial symbionts and antagonists, if we are to better understand the battle between plants and their hidden herbivores.

  12. Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Koptur, S.; Snyder, J.R.

    2004-01-01

    Species-specific allometric equations that provide estimates of biomass from measured plant attributes are currently unavailable for shrubs common to South Florida pine rocklands, where fire plays an important part in shaping the structure and function of ecosystems. We developed equations to estimate total aboveground biomass and fine fuel of 10 common hardwood species in the shrub layer of pine forests of the lower Florida Keys. Many equations that related biomass categories to crown area and height were significant (p < 0.05), but the form and variables comprising the best model varied among species. We applied the best-fit regression models to structural information from the shrub stratum in 18 plots on Big Pine Key, the most extensive pine forest in the Keys. Estimates based on species-specific equations indicated clearly that total aboveground shrub biomass and shrub fine fuel increased with time since last fire, but the relationships were non-linear. The relative proportion of biomass constituted by the major species also varied with stand age. Estimates based on mixed-species regressions differed slightly from estimates based on species-specific models, but the former could provide useful approximations in similar forests where species-specific regressions are not yet available. ?? 2004 Elsevier B.V. All rights reserved.

  13. Mapping Aboveground Biomass in the Amazon Basin: Exploring Sensors, Scales, and Strategies for Optimal Data Linkage

    NASA Astrophysics Data System (ADS)

    Walker, W. S.; Baccini, A.

    2013-05-01

    Information on the distribution and density of carbon in tropical forests is critical to decision-making on a host of globally significant issues ranging from climate stabilization and biodiversity conservation to poverty reduction and human health. Encouraged by recent progress at both the international and jurisdictional levels on the design of incentive-based policy mechanisms to compensate tropical nations for maintaining their forests intact, governments throughout the tropics are moving with urgency to implement robust national and sub-national forest monitoring systems for operationally tracking and reporting on changes in forest cover and associated carbon stocks. Monitoring systems will be required to produce results that are accurate, consistent, complete, transparent, and comparable at sub-national to pantropical scales, and satellite-based remote sensing supported by field observations is widely-accepted as the most objective and cost-effective solution. The effectiveness of any system for large-area forest monitoring will necessarily depend on the capacity of current and near-future Earth observation satellites to provide information that meets the requirements of developing monitoring protocols. However, important questions remain regarding the role that spatially explicit maps of aboveground biomass and carbon can play in IPCC-compliant forest monitoring systems, with the majority of these questions stemming from doubts about the inherit sensitivity of satellite data to aboveground forest biomass, confusion about the relationship between accuracy and resolution, and a general lack of guidance on optimal strategies for linking field reference and remote sensing data sources. Here we demonstrate the ability of a state-of-the-art satellite radar sensor, the Japanese ALOS/PALSAR, and a venerable optical platform, Landsat 5, to support large-area mapping of aboveground tropical woody biomass across a 153,000-km2 region in the southwestern Amazon

  14. Pantropical trends in mangrove above-ground biomass and annual litterfall.

    PubMed

    Saenger, Peter; Snedaker, Samuel C

    1993-12-01

    A major paradigm in biosphere ecology is that organic production, carbon turnover and, perhaps, species diversity are highest at tropical latitudes, and decrease toward higher latitudes. To examine these trends in the pantropical mangrove forest vegetation type, we collated and analysed data on above-ground biomass and annual litterfall for these communities. Regressions of biomass and litterfall data show significant relationships with height of the vegetation and latitude. It is suggested that height and latitude are causally related to biomass, while the relationship with litterfall reflects the specific growing conditions at the respective study sites. Comparison of mangrove and upland forest litterfall data shows similar trends with latitude but indicates that mangrove litterfall is higher than upland forest litterfall. The regression equations allow the litterfall/biomass ratio to be simulated, and this suggests that the patterns of organic matter partitioning differ according to latitude.

  15. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland.

    PubMed

    Zhang, Qing; Buyantuev, Alexander; Li, Frank Yonghong; Jiang, Lin; Niu, Jianming; Ding, Yong; Kang, Sarula; Ma, Wenjing

    2017-03-01

    The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

  16. Assessing General Relationships Between Above-Ground Biomass and Vegetation Structure Parameters for Improved Carbon Estimate from Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, W.; Lee, S.; Strahler, A. H.; Woodcock, C. E.; Schaaf, C.; Yao, T.; Ranson, J.; Sun, G.; Blair, J. B.

    2009-12-01

    Lidar remote sensing uses vegetation height to estimate large-scale above-ground biomass. However, lidar height and biomass relationships are empirical and thus often lead to large uncertainties in above-ground biomass estimates. This study uses vegetation structure measurements from field: an airborne lidar (Laser Vegetation Imaging Sensor, LVIS)) and a full wave form ground-based lidar (Echidna® validation instrument, EVI) collected in the New England region in 2003 and 2007, to investigate using additional vegetation structure parameters besides height for improved above-ground biomass estimation from lidar. Our field data analysis shows that using woody volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve above-ground biomass estimates at large scale. This result is comparable to previous work by Chave et al. (2005), which focused on individual trees. However this study uses a slightly different approach, and our woody volume is estimated differently from Chave et al. (2005). Previous studies found that RH50 is a good predictor of above-ground biomass (Drake et al., 2002; 2003). Our LVIS data analysis shows that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, perform similarly or even better than RH50. We also found that the close relationship of RH100*cover and RH50*cover with woody volume explains why they are good predictors of above-ground biomass. RH50 is highly related to RH100*cover, and this explains why RH50 is a better predictor of biomass than RH100. This study shows that using structure parameters combining height and gap fraction improve above-ground biomass estimate compared to height alone, and fusion of lidar and optical remote sensing (to provide vegetation type) will provide better above-ground biomass estimates than lidar alone. Ground lidar analysis

  17. The relationship between aboveground biomass and radar backscatter as observed on airborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Bourgeau-Chavez, Laura L.; Christensen, Norman L., Jr.; Dobson, M. Craig

    1991-01-01

    The initial results of an experiment to examine the dependence of radar image intensity on total above-ground biomass in a southern US pine forest ecosystem are presented. Two sets of data are discussed. First, we examine two L-band (VV-polarization) data sets which were collected 5 years apart. These data sets clearly illustrate the change in backscatter resulting from the growth of a young pine stand. Second, we examine the dependence between radar backscatter and biomass as a function of radar frequency using data from the JPL Airborne Synthetic Aperture Radar (AIRSAR) and ERIM/NADC P-3 SAR systems. These results show that there is a positive correlation between above-ground biomass and radar backscatter and at C-, L-, and P-bands, but very little correlation at C-band. The biomass level for which this positive correlation holds decreases as radar frequency increases. This positive correlation is stronger at HH and HV polarizations that VV polarization at L- and P-bands, but strongest at VV polarization for C-band.

  18. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    PubMed

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  19. Spatial effects of aboveground biomass on soil ecological parameters and trace gas fluxes in a savannah ecosystem of Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2015-04-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation in this area consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. Canopy structure is known to affect microclimate, throughfall and evapotranspiration and thereby controls soil moisture conditions. Consequently, the canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine trends and changes of soil parameters and relate their spatial variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. Distances were calculated in relation to the crown radius. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass carbon C and N, soil respiration as well as root biomass and -density, soil temperature and soil water content. Each tree was characterized by crown spread, leaf area index and basal area. Preliminary results show that C and N stocks decreased about 50% with depth independently of distance to the tree. Soil water content under the tree crown increased with depth while it decreased under grass cover. Microbial

  20. Forest Aboveground Biomass Estimation in the Greater Mekong, Subregion and Russian Siberia

    NASA Astrophysics Data System (ADS)

    Pang, Yong; Li, Zengyuan; Sun, Gouqing; Zhang, Zhiyu; Schmullius, Christiane; Meng, Shili; Ma, Zhenyu; Lu, Hao; Li, Shiming; Liu, Qingwang; Bai, Lina; Tian, Xin

    2016-08-01

    Forests play a vital role in sustainable development and provide a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. We summarized works in forest aboveground biomass estimation in Greater Mekong Subregion (GMS) and Russian Siberia (RuS). Both regions are rich in forest resources. These mapping and estimation works were based on multiple-source remote sensing data and some field measurements. Biomass maps were generated at 500 m and 30 m pixel size for RuS and GMS respectively. With the available of the 2015 PALSAR-2 mosaic at 25 m spacing, Sentinel-2 data at 20 m, we will work on the biomass mapping and dynamic study at higher spatial resolution.

  1. Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data

    SciTech Connect

    Harrell, P.A.; Haney, E.M.; Christensen, N.L. Jr.; Kasischke, E.S.; Bourgeau-Chavez, L.L.

    1997-02-01

    Estimation of forest biomass on a global basis is a key issue in studies of ecology and biogeochemical cycling. Forests are a terrestrial sink of atmospheric carbon dioxide and play a central role in regulating the exchange of this important greenhouse gas between the atmosphere and the biosphere. A study was performed to evaluate various techniques for estimating aboveground, woody plant biomass in pine stands found in the southeastern United States, using C- and L- band multiple polarization radar imagery collected by the Shuttle Imaging Radar-C (SIR-C) system. The biomass levels present in the test stands ranged between 0.0 and 44.5 kg m{sup {minus}2}. Two SIR-C data sets were used one collected in April, 1994, when the soil conditions were very wet and the canopy was slightly wet from dew and a second collected in October, 1994, when the soils and canopy were dry. During the October mission, pine needles were completely flushed and the foliar biomass was twice as great in the forest stands as in April. Four methods were evaluated to estimate total biomass: one including a straight multiple linear correlation between total biomass and the various SIR-C channels, another including a ratio of the L-band HV/C-band HV channels; and two others requiring multiple steps, where linear regression equations for different stand components were used as the basis for estimating total biomass.

  2. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Olsoy, Peter J.; Glenn, Nancy F.; Clark, Patrick E.; Derryberry, DeWayne R.

    2014-02-01

    Sagebrush (Artemisia tridentata), a dominant shrub species in the sagebrush-steppe ecosystem of the western US, is declining from its historical distribution due to feedbacks between climate and land use change, fire, and invasive species. Quantifying aboveground biomass of sagebrush is important for assessing carbon storage and monitoring the presence and distribution of this rapidly changing dryland ecosystem. Models of shrub canopy volume, derived from terrestrial laser scanning (TLS) point clouds, were used to accurately estimate aboveground sagebrush biomass. Ninety-one sagebrush plants were scanned and sampled across three study sites in the Great Basin, USA. Half of the plants were scanned and destructively sampled in the spring (n = 46), while the other half were scanned again in the fall before destructive sampling (n = 45). The latter set of sagebrush plants was scanned during both spring and fall to further test the ability of the TLS to quantify seasonal changes in green biomass. Sagebrush biomass was estimated using both a voxel and a 3-D convex hull approach applied to TLS point cloud data. The 3-D convex hull model estimated total and green biomass more accurately (R2 = 0.92 and R2 = 0.83, respectively) than the voxel-based method (R2 = 0.86 and R2 = 0.73, respectively). Seasonal differences in TLS-predicted green biomass were detected at two of the sites (p < 0.001 and p = 0.029), elucidating the amount of ephemeral leaf loss in the face of summer drought. The methods presented herein are directly transferable to other dryland shrubs, and implementation of the convex hull model with similar sagebrush species is straightforward.

  3. [Vegetation above-ground biomass and its affecting factors in water/wind erosion crisscross region on Loess Plateau].

    PubMed

    Wang, Jian-guo; Fan, Jun; Wang, Quan-jiu; Wang, Li

    2011-03-01

    Field investigations were conducted in Liudaogou small watershed in late September 2009 to study the differences of vegetation above-ground biomass, soil moisture content, and soil nutrient contents under different land use patterns, aimed to approach the vegetation above-ground biomass level and related affecting factors in typical small watershed in water/wind erosion crisscross region on Loess Plateau. The above-ground dry biomass of the main vegetations in Liudaogou was 177-2207 g x m(-2), and that in corn field, millet field, abandoned farmland, artificial grassland, natural grassland, and shrub land was 2097-2207, 518-775, 248-578, 280-545, 177-396, and 372-680 g x m(-2), respectively. The mean soil moisture content in 0-100 layer was the highest (14.2%) in farmlands and the lowest (10.9%) in shrub land. The coefficient of variation of soil moisture content was the greatest (26. 7% ) in abandoned farmland, indicating the strong spatial heterogeneity of soil moisture in this kind of farmland. The mean soil water storage was in the order of farmland > artificial grassland > natural grassland > shrub land. Soil dry layer was observed in alfalfa and caragana lands. There was a significant positive correlation (r = 0.639, P < 0.05) between above-ground dry biomass and 0-100 cm soil water storage, and also, a very significant positive correlation between above-ground fresh biomass and vegetation height. The above-ground biomass of the higher vegetations could potentially better control the wind and water erosion in the water/wind erosion crisscross region. Vegetation above-ground biomass was highly correlated with soil moisture and nutrient contents, but had no significant correlations with elevation, slope gradient, slope aspect, and soil bulk density.

  4. Decreasing precipitation variability does not elicit major aboveground biomass or plant diversity responses in a mesic rangeland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an emergent need to understand how altered precipitation regimes will affect aboveground biomass, stability of this biomass, and diversity in grassland ecosystems. We used replicated 9X10 m rainout shelters to experimentally remove inherent intra- and inter-annual variability of precipitati...

  5. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    PubMed Central

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping; Li, Dejun; Qin, Yujia; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Tiedje, James M.

    2016-01-01

    ABSTRACT Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. PMID:27677789

  6. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming.

    PubMed

    Xue, Kai; Yuan, Mengting M; Xie, Jianping; Li, Dejun; Qin, Yujia; Hale, Lauren E; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong

    2016-09-27

    Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  7. Mapping aboveground forest biomass combining dendrometric data and spectral signature of forest species

    NASA Astrophysics Data System (ADS)

    Avocat, H.; Tourneux, F.

    2013-12-01

    Accurate measures and explicit spatial representations of forest biomass compose an important aspect to model the forest productivity and crops, and to implement sustainable forest management. Several methods have been developed to estimate and to map forest biomass, combining point-sources measurements of biophysical variables such as diameter-at-breast height (DBH), tree height, crown size, crown length, crown volume and remote sensing data (spectral vegetation index values). In this study, we propose a new method for aboveground biomass (AGB) mapping of forests and isolated trees. This method is tested on a 1100 km2 area located in the eastern France. In contrast to most of studies, our model is not calibrated using field plot measurements or point-source inventory data. The primary goal of this model is to propose an accessible and reproducible method for AGB mapping of temperate forests, by combining standard biomass values coming from bibliography and remotely sensed data. This method relies on three steps. (1) The first step consists of produce a map of wooded areas including small woods and isolated trees, and to identify the major forest stands. To do this, we use an unsupervised classification of a Landsat 7 ETM+ image. Results are compared and improved with various land cover data. (2) The second step consists of extract the normalized difference vegetation index (NDVI) values of main forest stands. (3) Finally, these values are combined with standard AGB values provided by bibliography, to calibrate four AGB estimation models of different forest types (broadleaves, coniferous, coppices, and mixed stands). This method provides a map of aboveground biomass for forests and isolated trees with a 30 meters spatial resolution. Results demonstrate that 71 % of AGB values for hardwoods vary between 143 and 363 t.ha-1, i.e. × 1 standard deviation around the average. For coniferous stands, most of values of AGB range from 167 to 256 t.ha-1.

  8. [Effects of drip irrigation under mulching on cotton root and shoot biomass and yield].

    PubMed

    Yan, Ying-Yu; Zhao, Cheng-Yi; Sheng, Yu; Li, Ju-Yan; Peng, Dong-Mei; Li, Zi-Liang; Feng, Sheng-Li

    2009-04-01

    By using bidirectional sampling method with soil drill, the effects of different amounts of drip irrigation (2618, 2947, 3600 and 4265 m3 x hm(-2)) under mulching on the root distribution, aboveground growth, and yield of cotton was studied in field. The results indicated that irrigation amount affected the root and shoot growth significantly. In all irrigation treatments, cotton root was mainly distributed in mulched area, occupying 60.65%-73.45% of total root biomass, while only 39.35%-26.55% was distributed in bare area. Water stress increased rooting depth, root biomass, and the extent of lateral rooting. Significant differences were observed in the biological characteristics and the biomass accumulation and allocation of cotton plant among different irrigation treatments. Over-irrigation (4265 m3 x hm(-2)) increased plant height, width of inverse fourth leaf, and amounts of branch and bud, and thus, accelerated biomass accumulation rate. Over-irrigation also increased the root/shoot ratio and the proportion of biomass allocated to vegetative organs, but increased the fruit abscission rate and therefore reduced the economic yield. It was suggested that both excessive soil moisture content and water stress could affect the biomass accumulation and allocation in different cotton organs and at various life stages. Under the conditions of our experiment, 3600 m3 x hm(-2) was the optimal irrigation amount.

  9. [Spatial distribution of Tamarix ramosissima aboveground biomass and water consumption in the lower reaches of Heihe River, Northwest China].

    PubMed

    Peng, Shou-Zhang; Zhao, Chuan-Yan; Peng, Huan-Hua; Zheng, Xiang-Lin; Xu, Zhong-Lin

    2010-08-01

    Based on the field observation on the Tamarix ramosissima populations in the lower reaches of Heihe River, the relationship models between the aboveground biomass of T. ramosissima and its morphological features (basal diameter, height, and canopy perimeter) were built. In the mean time, the land use/cover of the study area was classified by the decision tree classification with high resolution image (QuickBird), the distribution of T. ramosissima was extracted from classification map, and the morphological feature (canopy perimeter) of T. ramosissima was calculated with ArcGIS 9.2. On the bases of these, the spatial distribution of T. ramosissima aboveground biomass in the study area was estimated. Finally, the spatial distribution of the water consumption of T. ramosissima in the study area was calculated by the transpiration coefficient (300) and the aboveground biomass. The results showed that the aboveground biomass of T. ramosissima was 69644.7 t, and the biomass per unit area was 0.78 kg x m(-2). Spatially, the habitats along the banks of Heihe River were suitable for T. ramosissima, and thus, this tree species had a high biomass. The total amount of water consumption of T. ramosissima in the study area was 2.1 x 10(7) m3, and the annual mean water consumption of T. ramosissima ranged from 30 mm to 386 mm.

  10. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale.

    PubMed

    Han, Ji Soo; Lee, Sunmin; Kim, Hyang Yeon; Lee, Choong Hwan

    2015-09-03

    Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  11. Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar

    NASA Astrophysics Data System (ADS)

    Chen, Qi

    2015-08-01

    Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.

  12. Does species richness affect fine root biomass and production in young forest plantations?

    PubMed

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  13. Underground roots monitor aboveground environment by sensing stem-piped light

    PubMed Central

    Lee, Hyo-Jun; Ha, Jun-Ho; Park, Chung-Mo

    2016-01-01

    ABSTRACT Light is a critical environmental cue for plant growth and development. Plants actively monitor surrounding environments by sensing changes in light wavelength and intensity. Therefore, plants have evolved a series of photoreceptors to perceive a broad wavelength range of light. Phytochrome photoreceptors sense red and far-red light, which serves as a major photomorphogenic signal in shoot growth and morphogenesis. Notably, plants also express phytochromes in the roots, obscuring whether and how they perceive light in the soil. We have recently demonstrated that plants directly channel light to the roots through plant body to activate root phytochrome B (phyB). Stem light facilitates the nuclear import of phyB in the roots, and the photoactivated phyB triggers the accumulation of the photomorphogenic regulator ELONGATED HYPOCOTYL 5 in modulating root growth and gravitropism. Optical experiments revealed that red to far-red light is efficiently transduced through plant body. Our findings provide physical and molecular evidence, supporting that photoreceptors expressed in the underground roots directly sense light. We propose that the roots are not a passive organ but a central organ that actively monitors changes in the aboveground environment by perceiving light information from the shoots. PMID:28042383

  14. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns

    NASA Astrophysics Data System (ADS)

    Riihimäki, Henri; Heiskanen, Janne; Luoto, Miska

    2017-04-01

    Topography is a key factor affecting numerous environmental phenomena, including Arctic and alpine aboveground biomass (AGB) distribution. Digital Elevation Model (DEM) is a source of topographic information which can be linked to local growing conditions. Here, we investigated the effect of DEM derived variables, namely elevation, topographic position, radiation and wetness on AGB and Normalized Difference Vegetation Index (NDVI) in a Fennoscandian forest-alpine tundra ecotone. Boosted regression trees were used to derive non-parametric response curves and relative influences of the explanatory variables. Elevation and potential incoming solar radiation were the most important explanatory variables for both AGB and NDVI. In the NDVI models, the response curves were smooth compared with AGB models. This might be caused by large contribution of field and shrub layer to NDVI, especially at the treeline. Furthermore, radiation and elevation had a significant interaction, showing that the highest NDVI and biomass values are found from low-elevation, high-radiation sites, typically on the south-southwest facing valley slopes. Topographic wetness had minor influence on AGB and NDVI. Topographic position had generally weak effects on AGB and NDVI, although protected topographic position seemed to be more favorable below the treeline. The explanatory power of the topographic variables, particularly elevation and radiation demonstrates that DEM-derived land surface parameters can be used for exploring biomass distribution resulting from landform control on local growing conditions.

  15. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Nossov, Dana R.; Peterson, Birgit E.; Waldrop, Mark P.; McFarland, Jack W.; Rover, Jennifer R.; Hollingsworth, Teresa N.

    2012-01-01

    Terrestrial plant biomass is a key biophysical parameter required for understanding ecological systems in Alaska. An accurate estimation of biomass at a regional scale provides an important data input for ecological modeling in this region. In this study, we created an aboveground biomass (AGB) map at 30-m resolution for the Yukon Flats ecoregion of interior Alaska using Landsat data and field measurements. Tree, shrub, and herbaceous AGB data in both live and dead forms were collected in summers and autumns of 2009 and 2010. Using the Landsat-derived spectral variables and the field AGB data, we generated a regression model and applied this model to map AGB for the ecoregion. A 3-fold cross-validation indicated that the AGB estimates had a mean absolute error of 21.8 Mg/ha and a mean bias error of 5.2 Mg/ha. Additionally, we validated the mapping results using an airborne lidar dataset acquired for a portion of the ecoregion. We found a significant relationship between the lidar-derived canopy height and the Landsat-derived AGB (R2 = 0.40). The AGB map showed that 90% of the ecoregion had AGB values ranging from 10 Mg/ha to 134 Mg/ha. Vegetation types and fires were the primary factors controlling the spatial AGB patterns in this ecoregion.

  16. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Longo, Marcos; Keller, Michael; dos-Santos, Maiza N.; Leitold, Veronika; Pinagé, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.

    2016-11-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n = 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained 70% of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 ± 2.5 and 31.9 ± 10.8 kg C m-2. Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 ± 0.7 kg C m-2 (94%) of ACD. Forests that burned nearly 15 years ago had between 4.1 ± 0.5 and 6.8 ± 0.3 kg C m-2 (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 ± 0.3 and 4.4 ± 0.4 kg C m-2 (4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pantropical products consistently overestimated ACD in degraded forests, underestimated ACD in intact forests, and showed little sensitivity to fires and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation (REDD+).

  17. Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina

    NASA Astrophysics Data System (ADS)

    Pucheta, Eduardo; Cabido, Marcelo; Díaz, Sandra; Funes, Guillermo

    1998-04-01

    Changes in plant community composition, diversity, aboveground biomass, and aboveground net primary production (ANPP) of different plant growth-forms were assessed in sites protected from livestock grazing for 2, 4, and 15 years, and in a heavily-grazed site. Species richness was maximum at the grazed site and decreased significantly after 4 years of protection. Diversity decreased significantly only after 15 years of protection. No alien or weedy species were found at grazed or protected sites. Grazing exclusion produced a shift from grazing-tolerant or grazing-avoiding species with a graminoid or prostrate growth-form to taller species with a tall tussock growth-form. Grazing produced a 33% decrease in standing biomass but little change in ANPP when compared to the site protected from grazing for 2 years, but important changes in both biomass and ANPP respect to the sites protected for 4 and 15 years. Consumption was near 35% of ANPP.

  18. Estimating above-ground biomass on mountain meadows and pastures through remote sensing

    NASA Astrophysics Data System (ADS)

    Barrachina, M.; Cristóbal, J.; Tulla, A. F.

    2015-06-01

    Extensive stock-breeding systems developed in mountain areas like the Pyrenees are crucial for local farming economies and depend largely on above-ground biomass (AGB) in the form of grass produced on meadows and pastureland. In this study, a multiple linear regression analysis technique based on in-situ biomass collection and vegetation and wetness indices derived from Landsat-5 TM data is successfully applied in a mountainous Pyrenees area to model AGB. Temporal thoroughness of the data is ensured by using a large series of images. Results of on-site AGB collection show the importance for AGB models to capture the high interannual and intraseasonal variability that results from both meteorological conditions and farming practices. AGB models yield best results at midsummer and end of summer before mowing operations by farmers, with a mean R2, RMSE and PE for 2008 and 2009 midsummer of 0.76, 95 g m-2 and 27%, respectively; and with a mean R2, RMSE and PE for 2008 and 2009 end of summer of 0.74, 128 g m-2 and 36%, respectively. Although vegetation indices are a priori more related with biomass production, wetness indices play an important role in modeling AGB, being statistically selected more frequently (more than 50%) than other traditional vegetation indexes (around 27%) such as NDVI. This suggests that middle infrared bands are crucial descriptors of AGB. The methodology applied in this work compares favorably with other works in the literature, yielding better results than those works in mountain areas, owing to the ability of the proposed methodology to capture natural and anthropogenic variations in AGB which are the key to increasing AGB modeling accuracy.

  19. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    NASA Astrophysics Data System (ADS)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since

  20. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands.

    PubMed

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-09-26

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity-ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao's quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands.

  1. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    PubMed

    Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  2. Aboveground biomass and carbon stocks modelling using non-linear regression model

    NASA Astrophysics Data System (ADS)

    Ain Mohd Zaki, Nurul; Abd Latif, Zulkiflee; Nazip Suratman, Mohd; Zainee Zainal, Mohd

    2016-06-01

    Aboveground biomass (AGB) is an important source of uncertainty in the carbon estimation for the tropical forest due to the variation biodiversity of species and the complex structure of tropical rain forest. Nevertheless, the tropical rainforest holds the most extensive forest in the world with the vast diversity of tree with layered canopies. With the usage of optical sensor integrate with empirical models is a common way to assess the AGB. Using the regression, the linkage between remote sensing and a biophysical parameter of the forest may be made. Therefore, this paper exemplifies the accuracy of non-linear regression equation of quadratic function to estimate the AGB and carbon stocks for the tropical lowland Dipterocarp forest of Ayer Hitam forest reserve, Selangor. The main aim of this investigation is to obtain the relationship between biophysical parameter field plots with the remotely-sensed data using nonlinear regression model. The result showed that there is a good relationship between crown projection area (CPA) and carbon stocks (CS) with Pearson Correlation (p < 0.01), the coefficient of correlation (r) is 0.671. The study concluded that the integration of Worldview-3 imagery with the canopy height model (CHM) raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the lowland Dipterocarp forest.

  3. Impacts of Tree Height-Dbh Allometry on Lidar-Based Tree Aboveground Biomass Modeling

    NASA Astrophysics Data System (ADS)

    Fang, R.

    2016-06-01

    Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in R2 and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.

  4. Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity

    PubMed Central

    Barlow, Jos; Silveira, Juliana M.; Mestre, Luiz A. M.; Andrade, Rafael B.; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z.; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A.

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions. PMID:22428035

  5. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands

    PubMed Central

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-01-01

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity–ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands. PMID:27666532

  6. Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.

    2015-01-01

    Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.

  7. Carbon dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schöngart, J.; Arieira, J.; Felfili Fortes, C.; Cezarine de Arruda, E.; Nunes da Cunha, C.

    2008-05-01

    This is the first estimation on carbon dynamics in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in Central Southern America. In four 1-ha plots in stands characterized by the pioneer species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ≥10 cm diameter at breast height, DBH) have been performed and converted to predictions of AGWB by five different allometric models using two or three predicting parameters (DBH, tree height, wood density). Best prediction has been achieved using allometric equations with three independent variables. Carbon stocks (50% of AGWB) vary from 7.4 to 100.9 Mg C ha-1 between the four stands. Carbon sequestration differs 0.50-4.24 Mg C ha-1 yr-1 estimated by two growth models derived from tree-ring analysis describing the relationships between age and DBH for V. divergens and other tree species. We find a close correlation between estimated tree age and C-stock, C-sequestration and C-turnover (mean residence of C in AGWB).

  8. Above-ground biomass and structure of 260 African tropical forests

    PubMed Central

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  9. Above-ground biomass and structure of 260 African tropical forests.

    PubMed

    Lewis, Simon L; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M F; Phillips, Oliver L; Affum-Baffoe, Kofi; Baker, Timothy R; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E N; Fauset, Sophie; Feldpausch, Ted R; Foli, Ernest G; Gillet, Jean-François; Hamilton, Alan C; Harris, David J; Hart, Terese B; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J; Kearsley, Elizabeth; Leal, Miguel E; Lloyd, Jon; Lovett, Jon C; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R; Ojo, Lucas; Peh, Kelvin S-H; Pickavance, Georgia; Poulsen, John R; Reitsma, Jan M; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E; Talbot, Joey; Taplin, James R D; Taylor, David; Thomas, Sean C; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J T; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.

  10. Aboveground Biomass Monitoring over Siberian Boreal Forest Using Radar Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Stelmaszczuk-Gorska, M. A.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Aboveground biomass (AGB) plays an essential role in ecosystem research, global cycles, and is of vital importance in climate studies. AGB accumulated in the forests is of special monitoring interest as it contains the most of biomass comparing with other land biomes. The largest of the land biomes is boreal forest, which has a substantial carbon accumulation capability; carbon stock estimated to be 272 +/-23 Pg C (32%) [1]. Russian's forests are of particular concern, due to the largest source of uncertainty in global carbon stock calculations [1], and old inventory data that have not been updated in the last 25 years [2]. In this research new empirical models for AGB estimation are proposed. Using radar L-band data for AGB retrieval and optical data for an update of in situ data the processing scheme was developed. The approach was trained and validated in the Asian part of the boreal forest, in southern Russian Central Siberia; two Siberian Federal Districts: Krasnoyarsk Kray and Irkutsk Oblast. Together the training and testing forest territories cover an area of approximately 3,500 km2. ALOS PALSAR L-band single (HH - horizontal transmitted and received) and dual (HH and HV - horizontal transmitted, horizontal and vertical received) polarizations in Single Look Complex format (SLC) were used to calculate backscattering coefficient in gamma nought and coherence. In total more than 150 images acquired between 2006 and 2011 were available. The data were obtained through the ALOS Kyoto and Carbon Initiative Project (K&C). The data were used to calibrate a randomForest algorithm. Additionally, a simple linear and multiple-regression approach was used. The uncertainty of the AGB estimation at pixel and stand level were calculated approximately as 35% by validation against an independent dataset. The previous studies employing ALOS PALSAR data over boreal forests reported uncertainty of 39.4% using randomForest approach [2] or 42.8% using semi-empirical approach [3].

  11. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  12. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  13. Estimation of aboveground woody biomass using HJ-1 and Radarsat-2 data for deciduous forests in Daxing'anling, China

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Yang, Le; Liu, Qinhuo; Li, Jing

    2014-11-01

    Accurate estimation of forest aboveground biomass is important for global carbon budgets and ecosystem change studies. Most algorithms for regional or global aboveground biomass estimation using optical and microwave remote sensing data are based on empirical regression and non-parametric training methods, which require large amount of ground measurements for training and are lacking of explicit interaction mechanisms between electromagnetic wave and vegetation. In this study, we proposed an optical/microwave synergy method based on a coherent polarimetric SAR model to estimate woody biomass. The study area is sparse deciduous forest dominated by birch with understory of shrubs and herbs in Daxing'anling, China. HJ-1, Radarsat-2 images, and field LAI were collected during May to August in 2013, tree biophysical parameters were measured at the field campaign during August to September in 2012. The effects of understory and wet ground were evaluated by introducing the NDVI derived from HJ-1 image and rain rate. Field measured LAI was used as an input to the SAR model to define the scattering and attenuation of the green canopy to the total backscatter. Finally, an logarithmic equation between the backscatter coefficient of direct forest scattering mechanism and woody biomass was generated (R2=0.582). The retrieval results were validated with the ground biomass measurements (RMSE=29.01ton/ha). The results indicated the synergy of optical and microwave remote sensing data based on SAR model has the potential to improve the accuracy of woody biomass estimation.

  14. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    PubMed

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  15. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest.

    PubMed

    Slik, J W Ferry; Bernard, Caroline S; Van Beek, Marloes; Breman, Floris C; Eichhorn, Karl A O

    2008-12-01

    Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.

  16. Structure, Aboveground Biomass, and Soil Characterization of Avicennia marina in Eastern Mangrove Lagoon National Park, Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Alsumaiti, Tareefa Saad Sultan

    Mangrove forests are national treasures of the United Arab Emirates (UAE) and other arid countries with limited forested areas. Mangroves form a crucial part of the coastal ecosystem and provide numerous benefits to society, economy, and especially the environment. Mangrove trees, specifically Avicennia marina, are studied in their native habitat in order to characterize their population structure, aboveground biomass, and soil properties. This study focused on Eastern Mangrove Lagoon National Park in Abu Dhabi, which was the first mangrove protected area to be designated in UAE. In situ measurements were collected to estimate Avicennia marina status, mortality rate (%), height (m), crown spread (m), stem number, diameter at breast height (cm), basal area (m), and aboveground biomass (t ha-1 ). Small-footprint aerial light detection and ranging (LIDAR) data acquired by UAE were processed to characterize mangrove canopy height and aboveground biomass density. This included extraction of LIDAR-derived height percentile statistics, segmentation of the forest into structurally homogenous units, and development of regression relationships between in situ reference and remote sensing data using a machine learning approach. An in situ soil survey was conducted to examine the soils' physical and chemical properties, fertility status, and organic matter. The data of soil survey were used to create soil maps to evaluate key characteristics of soils, and their influence on Avicennia marina in Eastern Mangrove Lagoon National Park. The results of this study provide new insights into Avicennia marina canopy population, structure, aboveground biomass, and soil properties in Abu Dhabi, as data in such arid environments is lacking. This valuable information can help in managing and preserving this unique ecosystem.

  17. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    PubMed Central

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  18. Plot-level aboveground woody biomass modeling using canopy height and auxiliary remote sensing data in a heterogeneous savanna

    NASA Astrophysics Data System (ADS)

    Gwenzi, David; Lefsky, Michael Andrew

    2016-01-01

    Remote sensing studies aiming at assessing woody biomass have demonstrated a strong relationship between canopy height and plot-level aboveground biomass, but most of these studies focused on closed canopy forests. To date, a few studies have examined the strength and reliability of this relationship using large footprint lidar in savannas. Furthermore, there have been few studies of appropriate methods for the comparison of models that relate aboveground biomass to canopy height metrics without consideration of variation in species composition (generic models) to models developed for individual species composition or vegetation types. We developed generic models using the classical least-squares regression modeling approach to relate selected canopy height metrics to aboveground woody biomass in a savanna landscape. Hierarchical Bayesian analysis (HBA) was then used to explore the implications of using generic or composition-specific models. Our study used the estimates of aboveground biomass from field data, canopy height estimates from airborne discrete return lidar, and a proxy for canopy cover (the Normalized Difference Vegetation Index) from Landsat 5 Thematic Mapper data, collected from the oak savannas of Tejon Ranch Conservancy in Kern County, California. Models were developed and analyzed using estimates of canopy height and aboveground biomass calculated at the level of 50-m diameter plots, comparable with footprint diameter of existing large footprint spaceborne lidar data. The two generic models that incorporated canopy cover proxies performed better than one model that did not use canopy cover information. From the HBA, we found out that for all models both the intercept and slope had interspecific variability. The valley oak dominated plots consistently had higher slopes and intercepts, whereas the plots dominated by blue oaks had the lowest. However, the intercept and slope values of the composition-specific models did not differ much from the

  19. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass.

    PubMed

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P; Mommer, Liesje

    2017-04-04

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that the quantity and diversity of root inputs into the soil, i.e. though root exudates, drive plant diversity effects on soil biota. Here we used a microcosm experiment to study the role of plant species richness on the biomass of soil bacteria and fungi as well as fungal-to-bacterial ratio via root biomass and root exudates. Plant diversity significantly increased shoot biomass, root biomass, the amount of root exudates, bacterial biomass, and fungal biomass. Fungal biomass increased most with increasing plant diversity resulting in a significant shift in the fungal-to-bacterial biomass ratio at high plant diversity. Fungal biomass increased significantly with plant diversity-induced increases in root biomass and the amount of root exudates. These results suggest that plant diversity enhances soil microbial biomass, particularly soil fungi, by increasing root-derived organic inputs.

  20. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    PubMed Central

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, Liesje

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that the quantity and diversity of root inputs into the soil, i.e. though root exudates, drive plant diversity effects on soil biota. Here we used a microcosm experiment to study the role of plant species richness on the biomass of soil bacteria and fungi as well as fungal-to-bacterial ratio via root biomass and root exudates. Plant diversity significantly increased shoot biomass, root biomass, the amount of root exudates, bacterial biomass, and fungal biomass. Fungal biomass increased most with increasing plant diversity resulting in a significant shift in the fungal-to-bacterial biomass ratio at high plant diversity. Fungal biomass increased significantly with plant diversity-induced increases in root biomass and the amount of root exudates. These results suggest that plant diversity enhances soil microbial biomass, particularly soil fungi, by increasing root-derived organic inputs. PMID:28374800

  1. Toward Aboveground Biomass Estimation with RADAR, Lidar and Optical Remote Sensing Data in Southern Mexico

    NASA Astrophysics Data System (ADS)

    Urbazaev, M.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Information on the spatial distribution of aboveground biomass (AGB) over large areas is needed (1) for understanding and managing the processes involved in the carbon cycle, and (2) supporting international policies for climate change mitigation and adaption. Using remote sensing techniques it is possible to provide spatially explicit information of AGB from local to global scales. In this work we present the first results on the use of multi-sensor remote sensing data to estimate AGB over three test sites in southern Mexico. In order to develop a set of AGB retrieval algorithms, we firstly compared different SAR parameters (e.g. multi-polarized backscatter intensities and interferometric coherence) obtained from ALOS PALSAR sensor and Landsat imagery with field-based AGB estimates using empirical regressions and analyzed the relationships between them. The next steps of the work will be development of a two-stage up-scaling approach: firstly, to enlarge the cal/val data, we propose to estimate AGB along airborne LiDAR (from G-LiHT sensor) transects using field-based AGB and LiDAR height metrics. With LiDAR-based AGB we will then calibrate SAR parameters in a non-parametric model (e.g., randomForest) to create AGB maps over the study areas. An overall aim of the study is the analysis of capabilities and limitations of SAR data for AGB mapping and the investigation of the potential synergistic use of SAR, LiDAR and optical systems.The proposed monitoring tool will facilitate quantitative estimations in loss of carbon storage and support the selection of terrestrial (e.g. tropical dry forests, shrublands) sites for conservation priorities with high value for the national carbon budget.

  2. A radiative transfer model-based method for the estimation of grassland aboveground biomass

    NASA Astrophysics Data System (ADS)

    Quan, Xingwen; He, Binbin; Yebra, Marta; Yin, Changming; Liao, Zhanmang; Zhang, Xueting; Li, Xing

    2017-02-01

    This paper presents a novel method to derive grassland aboveground biomass (AGB) based on the PROSAILH (PROSPECT + SAILH) radiative transfer model (RTM). Two variables, leaf area index (LAI, m2m-2, defined as a one-side leaf area per unit of horizontal ground area) and dry matter content (DMC, gcm-2, defined as the dry matter per leaf area), were retrieved using PROSAILH and reflectance data from Landsat 8 OLI product. The result of LAI × DMC was regarded as the estimated grassland AGB according to their definitions. The well-known ill-posed inversion problem when inverting PROSAILH was alleviated using ecological criteria to constrain the simulation scenario and therefore the number of simulated spectra. A case study of the presented method was applied to a plateau grassland in China to estimate its AGB. The results were compared to those obtained using an exponential regression, a partial least squares regression (PLSR) and an artificial neural networks (ANN). The RTM-based method offered higher accuracy (R2 = 0.64 and RMSE = 42.67 gm-2) than the exponential regression (R2 = 0.48 and RMSE = 41.65 gm-2) and the ANN (R2 = 0.43 and RMSE = 46.26 gm-2). However, the proposed method offered similar performance than PLSR as presented better determination coefficient than PLSR (R2 = 0.55) but higher RMSE (RMSE = 37.79 gm-2). Although it is still necessary to test these methodologies in other areas, the RTM-based method offers greater robustness and reproducibility to estimate grassland AGB at large scale without the need to collect field measurements and therefore is considered the most promising methodology.

  3. Mapping 2002-2012 Aboveground Biomass Carbon from LiDAR and Landsat Time Series across Northern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Hudak, A. T.; Fekety, P.; Falkowski, M. J.; Kennedy, R. E.; Crookston, N.; Smith, A. M.

    2015-12-01

    The heavy investment by public and private land management entities in commercial off-the-shelf airborne lidar provides an optimum basis for a Carbon Monitoring System due to the known sensitivity of lidar to vegetation canopy structure. The ability to accurately map aboveground carbon pools from lidar and collocated field plot data has been demonstrated in many studies. Our goal is to upscale this biomass information, mapped at 30 m resolution, to the regional level using wall-to-wall, multi-temporal Landsat imagery. We use the LandTrendr approach to transform Landsat time series into annual maps of Brightness, Greenness, and Wetness along with annual change estimates of these same tasseled cap indices. These, along with ancillary layers of canopy height (e.g., GLAS-derived), topography (e.g., insolation), and climate (e.g., mean annual precipitation) are used to predict 2002-2012 aboveground carbon annually across the northern half of Idaho, USA. Ecoregion-specific models are developed to impute aboveground biomass and forest type beneath a forest/non-forest mask. Annual maps are then summarized at the county-level and compared to publically available Forest Inventory and Analysis estimates for Monitoring, Reporting and Verification.

  4. [Effects of phosphorus fertilizer on the root system and its relationship with the aboveground part of flue-cured tobacco].

    PubMed

    Wang, Yan-li; Liu, Guo-shun; Ding, Song-shuang; Wang, Jing; Li, Yuan-bo; Dong, Xiao-li

    2015-05-01

    Using 'Yuyan 10' as the material, the effects of different phosphorus fertilizer application on root characteristics of tobacco, such as root dry mass and the difference of dry matter distribution and mineral nutrient accumulation between its above and underground parts were investigated. The results showed that the growth of flue-cured tobacco root system and the distribution of dry matter to the aboveground part were significantly promoted by phosphorus fertilizer application. The application of 30 kg P2O5 · hm(-2) led to the maximums of root dry mass, root volume, root activity and the minimum of root to shoot ratio. The maximum nutrient accumulation rates of root and leaf appeared 57-66 days after transplanting and 44-55 days after transplanting, respectively. Phosphorus could not only promote the mineral nutrition absorption of tobacco and the earlier appearance of maximum nutrient accumulation, but significantly promote the nutrient accumulation of the aboveground part. But, the positive effects described above would be weakened when the amount of phosphorus fertilizer was more than 30 kg P2O5 · hm(-2). Therefore, it's necessary to control the amount of phosphorus application to improve the quality of tobacco leaves.

  5. Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States.

    PubMed

    Vanderwel, Mark C; Coomes, David A; Purves, Drew W

    2013-05-01

    The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1-5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on

  6. Investigating Appropriate Sampling Design for Estimating Above-Ground Biomass in Bruneian Lowland Mixed Dipterocarp Forest

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, D.; Abu Salim, K.; Yun, H. M.; Han, S.; Lee, W. K.; Davies, S. J.; Son, Y.

    2014-12-01

    Mixed tropical forest structure is highly heterogeneous unlike plantation or mixed temperate forest structure, and therefore, different sampling approaches are required. However, the appropriate sampling design for estimating the above-ground biomass (AGB) in Bruneian lowland mixed dipterocarp forest (MDF) has not yet been fully clarified. The aim of this study was to provide supportive information in sampling design for Bruneian forest carbon inventory. The study site was located at Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Six 60 m × 60 m quadrats were established, separated by a distance of approximately 100 m and each was subdivided into quadrats of 10 m × 10 m, at an elevation between 200 and 300 m above sea level. At each plot all free-standing trees with diameter at breast height (dbh) ≥ 1 cm were measured. The AGB for all trees with dbh ≥ 10 cm was estimated by allometric models. In order to analyze changes in the diameter-dependent parameters used for estimating the AGB, different quadrat areas, ranging from 10 m × 10 m to 60 m × 60 m, were used across the study area, starting at the South-West end and moving towards the North-East end. The derived result was as follows: (a) Big trees (dbh ≥ 70 cm) with sparse distribution have remarkable contribution to the total AGB in Bruneian lowland MDF, and therefore, special consideration is required when estimating the AGB of big trees. Stem number of trees with dbh ≥ 70 cm comprised only 2.7% of all trees with dbh ≥ 10 cm, but 38.5% of the total AGB. (b) For estimating the AGB of big trees at the given acceptable limit of precision (p), it is more efficient to use large quadrats than to use small quadrats, because the total sampling area decreases with the former. Our result showed that 239 20 m × 20 m quadrats (9.6 ha in total) were required, while 15 60 m × 60 m quadrats (5.4 ha in total) were required when estimating the AGB of the trees

  7. Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data

    NASA Astrophysics Data System (ADS)

    Fayad, Ibrahim; Baghdadi, Nicolas; Guitet, Stéphane; Bailly, Jean-Stéphane; Hérault, Bruno; Gond, Valéry; El Hajj, Mahmoud; Tong Minh, Dinh Ho

    2016-10-01

    Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain "wall-to-wall" AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS

  8. Exploring the possibility of estimating the aboveground biomass of Vallisneria spiralis L. using Landsat TM image in Dahuchi, Jiangxi Province, China

    NASA Astrophysics Data System (ADS)

    Wu, Guofeng; de Leeuw, Jan; Skidmore, Andrew K.; Prins, Herbert H. T.; Liu, Yaolin

    2005-10-01

    The provision of food to breeding and migrating waterfowl is one of the major functions of submerged aquatic vegetation in shallow lakes. Vallisneria spiralis L. is a submerged aquatic plant species widely distributed within Jiangxi Poyang Lake National Nature Reserve, China. More than 95% of the world population of the endangered Siberian crane as well as significant numbers of Bewick's swan and swan goose over winter in this area, while foraging on the tubers of Vallisneria. The objective of this paper was to explore the possibility of estimating the aboveground biomass of Vallisneria in Dahuchi Lake using Landsat TM image. The relations between aboveground biomass and the bands of a Landsat TM image and their derived variables were investigated using uni- and multivariate linear and non-linear regression models. The results revealed significant but very weak relations between aboveground biomass and the remotely sensed variables. Hence Landsat TM imagery offered little potential to predict aboveground biomass of Vallisneria in this particular region. Possible reasons which could have caused these results were discussed, including: 1) the possible influence of suspended matter in the water; 2) the less accurate field sampling; 3) the limitations of spatial and spectral resolutions of Landsat TM image; 4) the methods used are not appropriate; 5) the homogeneously spatial distribution of aboveground biomass. We propose considering two alternative methods to improve the estimation of aboveground biomass of Vallisneria. First of all, results might be improved while combining alternative data sources (hyperspectral or high spatial resolution images) with innovative methods and more accurate sampling data; Secondly we propose assessing aboveground biomass while using productivity simulation models of submerged aquatic vegetation integrated with geographic information system (GIS) and remote sensing.

  9. The response of tundra plant biomass, above-ground production, nitrogen, and CO{sub 2} flux to experimental warming

    SciTech Connect

    Hobbie, S.E.; Chapin, F.S. III

    1998-07-01

    The authors manipulated air temperature in tussock tundra near Toolik Lake, Alaska, and determined the consequences for total plant biomass, aboveground net primary production (ANPP), ecosystem nitrogen (N) pools and N uptake, and ecosystem CO{sub 2} flux. After 3.5 growing seasons, in situ plastic greenhouses that raised air temperature during the growing season had little effect on total biomass, N content, or growing-season N uptake of the major plant and soil pools. Similarly, vascular ANPP and net ecosystem CO{sub 2} exchange did not change with warming, although net primary production of mosses decreased with warming. Such general lack of response supports the hypothesis that productivity in tundra is constrained by the indirect effects of cold temperatures rather than by cold growing-season temperatures per se. Despite no effect on net ecosystem CO{sub 2} flux, air warming stimulated early-season gross photosynthesis (GP) and ecosystem respiration (ER) throughout the growing season. This increased carbon turnover was probably associated with species-level responses to increased air temperature. Warming increased the aboveground biomass of the overstory shrub, dwarf birch (Betula nana), and caused a significant net redistribution of N from the understory evergreen shrub, Vaccinium vitis-idaea, to B. nana, despite no effects on soil temperature, total plant N, or N availability.

  10. Carbon dynamics in aboveground biomass of co-dominant plant species in a temperate grassland ecosystem: same or different?

    PubMed

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A; Schnyder, Hans

    2016-04-01

    Understanding the role of individual organisms in whole-ecosystem carbon (C) fluxes is probably the biggest current challenge in C cycle research. Thus, it is unknown whether different plant community members share the same or different residence times in metabolic (τmetab ) and nonmetabolic (i.e. structural) (τnonmetab ) C pools of aboveground biomass and the fraction of fixed C allocated to aboveground nonmetabolic biomass (Anonmetab ). We assessed τmetab , τnonmetab and Anonmetab of co-dominant species from different functional groups (two bunchgrasses, a stoloniferous legume and a rosette dicot) in a temperate grassland community. Continuous, 14-16-d-long (13) C-labeling experiments were performed in September 2006, May 2007 and September 2007. A two-pool compartmental system, with a well-mixed metabolic and a nonmixed nonmetabolic pool, was the simplest biologically meaningful model that fitted the (13) C tracer kinetics in the whole-shoot biomass of all species. In all experimental periods, the species had similar τmetab (5-8 d), whereas τnonmetab ranged from 20 to 58 d (except for one outlier) and Anonmetab from 7 to 45%. Variations in τnonmetab and Anonmetab were not systematically associated with species or experimental periods, but exhibited relationships with leaf life span, particularly in the grasses. Similar pool kinetics of species suggested similar kinetics at the community level.

  11. Simulation results of aboveground woody biomass and leaf litterfall for African tropical forest with a global terrestrial model

    NASA Astrophysics Data System (ADS)

    De Weirdt, Marjolein; Maignan, Fabienne; Peylin, Philippe; Poulter, Benjamin; Moreau, Inès; Ciais, Philippe; Defourny, Pierre; Steppe, Kathy; Verbeeck, Hans

    2014-05-01

    The response of tropical forest vegetation to global climate change could be central to predictions of future levels of atmospheric carbon dioxide. Tropical forests are believed to annually process approximately six times as much carbon via photosynthesis and respiration as humans emit from fossil fuel use. Of all tropical forests worldwide, the role of African tropical forest is not very well known and both the quantity as well as the dynamics of tropical forest carbon stocks and fluxes are very poorly quantified components of the global carbon cycle. Furthermore, African tropical forest spatial carbon stocks patterns as measured in the field are not as well represented by the global biogeochemical models as they are for temperate forests. In this study, a first simulation for the African tropical forest with the process based global terrestrial ecosystem model ORCHIDEE was done. In this work, ORCHIDEE included deep soils, seasonal leaf litterfall and phosphorus availability mechanisms for tropical evergreen forests included. The ORCHIDEE model run outputs are evaluated against reported field inventories, investigating seasonal variations in leaf litterfall and spatial variation in aboveground woody biomass. A comparison between modeled and measured leaf litterfall was made at a semi-deciduous Equatorial rainforest site in the Republic of Congo at the Biosphere reserve Dimonika south of Gabon. Also, simulated woody aboveground biomass was compared against site-level field inventories and satellite-based estimates based on a combination of MODIS imagery with field inventory data from Uganda, DRC and Cameroon. First comparison results seem promising and show that the radiation driven leaf litterfall model results correspond well with the field inventories and that the mean of the modelled aboveground woody biomass matches the available field inventory observations but there is still a need for more ground data to evaluate the model outcome over a large region like

  12. Aboveground and belowground competition between willow Salix caprea its understory

    NASA Astrophysics Data System (ADS)

    Mudrák, Ondřej; Hermová, Markéta; Frouz, Jan

    2016-04-01

    The effects of aboveground and belowground competition with the willow S. caprea on its understory plant community were studied in unreclaimed post-mining sites. Belowground competition was evaluated by comparing (i) frames inserted into the soil that excluded woody roots (frame treatment), (ii) frames that initially excluded woody root growth but then allowed regrowth of the roots (open-frame treatment), and (iii) undisturbed soil (no-frame treatment). These treatments were combined with S. caprea thinning to assess the effect of aboveground competition. Three years after the start of the experiment, aboveground competition from S. caprea (as modified by thinning of the S. caprea canopy) had not affected understory biomass or species number but had affected species composition. In contrast, belowground competition significantly affected both the aboveground and belowground biomass of the understory. The aboveground biomass of the understory was greater in the frame treatment (which excluded woody roots) than in the other two treatments. The belowground biomass of the understory was greater in the frame than in the open-frame treatment. Unlike aboveground competition (light availability), belowground competition did not affect understory species composition. Our results suggest that S. caprea is an important component during plant succession on post-mining sites because it considerably modifies its understory plant community. Belowground competition is a major reason for the low cover and biomass of the herbaceous understory in S. caprea stands on post-mining sites.

  13. Root biomass response to foliar application of imazapyr for two imidazolinone tolerant alleles of sunflower (Helianthus annuus L.).

    PubMed

    Sala, Carlos A; Bulos, Mariano; Altieri, Emiliano; Ramos, María Laura

    2012-09-01

    Imisun and CLPlus are two imidazolinone tolerance traits in sunflower (Helianthus annuus L.) determined by the expression of two alleles at the locus Ahasl1. Both traits differed in their tolerance level to imazapyr -a type of imidazolinone herbicide- when aboveground biomass is considered, but the concomitant herbicide effect over the root system has not been reported. The objective of this work was to quantify the root biomass response to increased doses of imazapyr in susceptible (ahasl1/ahasl1), Imisun (Ahasl1-1/Ahasl1-1) and CLPlus (Ahasl1-3/Ahasl1-3) homozygous sunflower genotypes. These materials were sprayed at the V2-V4 stage with increased doses of imazapyr (from 0 to 480 g active ingredient ha(-1)) and 14 days after treatment root biomass of each plant was assessed. Genotype at the Ahasl1 locus, dose of imazapyr and their interaction significantly contributed (P < 0.001) to explain the reduction in root biomass accumulation after herbicide application. Estimated dose of imazapyr required to reduce root biomass accumulation by fifty percent (GR(50)) differed statistically for the three genotypes under study (P < 0.001). CLPlus genotypes showed the highest values of GR(50), 300 times higher on average than the susceptible genotypes, and almost 8 times higher than Imisun materials, demonstrating that both alleles differ in their root biomass response to foliar application of increased doses of imazapyr.

  14. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, Yuxiang; Lee, Gilzae; Lee, Pilzae; Oikawa, Takehisa

    2007-01-01

    In this study, we have analyzed the productivity of a grassland ecosystem in Kherlenbayan-Ulaan (KBU), Mongolia under non-grazing and grazing conditions using a new simulation model, Sim-CYCLE grazing. The model was obtained by integrating the Sim-CYCLE [Ito, A., Oikawa, T., 2002. A simulation model of carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecological Modeling, 151, pp. 143-176] and a defoliation formulation [Seligman, N.G., Cavagnaro, J.B., Horno, M.E., 1992. Simulation of defoliation effects on primary production of warm-season, semiarid perennial- species grassland. Ecological Modelling, 60, pp. 45-61]. The results from the model have been validated against a set of field data obtained at KBU showing that both above-ground biomass (AB) and above-ground net primary production ( Np,a) decrease with increasing grazing intensity. The simulated maximum AB for a year maintains a nearly constant value of 1.15 Mg DM ha -1 under non-grazing conditions. The AB decreases and then reaches equilibrium under a stocking rate ( Sr) of 0.4 sheep ha -1 and 0.7 sheep ha -1. The AB decreases all the time if Sr is greater than 0.7 sheep ha -1. These results suggest that the maximum sustainable Sr is 0.7 sheep ha -1. A similar trend is also observed for the simulated Np,a. The annual Np,a is about 1.25 Mg DM ha -1 year -1 and this value is also constant under non-grazing conditions. The annual Np,a decreases and then reaches equilibrium under an Sr of 0.4 sheep ha -1 and 0.7 sheep ha -1, but the Np,a decreases all the time when Sr is greater than 0.7 sheep ha -1. It also indicates that the maximum sustainable Sr is 0.7 sheep ha -1. Transpiration ( ET) and evaporation ( EE) rates were determined by the Penman-Monteith method. Simulated results show that ET decreases with increasing Sr, while EE increases with increasing Sr. At equilibrium, the annual mean evapotranspiration ( E) is 189.11 mm year -1

  15. Above-ground biomass estimation of tuberous bulrush ( Bolboschoenus planiculmis) in mudflats using remotely sensed multispectral image

    NASA Astrophysics Data System (ADS)

    Kim, Ji Yoon; Im, Ran-Young; Do, Yuno; Kim, Gu-Yeon; Joo, Gea-Jae

    2016-03-01

    We present a multivariate regression approach for mapping the spatial distribution of above-ground biomass (AGB) of B. planiculmis using field data and coincident moderate spatial resolution satellite imagery. A total of 232 ground sample plots were used to estimate the biomass distribution in the Nakdong River estuary. Field data were overlain and correlated with digital values from an atmospherically corrected multispectral image (Landsat 8). The AGB distribution was derived using empirical models trained with field-measured AGB data. The final regression model for AGB estimation was composed using the OLI3, OLI4, and OLI7 spectral bands. The Pearson correlation between the observed and predicted biomass was significant (R = 0.84, p < 0.0001). OLI3 made the largest contribution to the final model (relative coefficient value: 53.4%) and revealed a negative relationship with the AGB biomass. The total distribution area of B. planiculmis was 1,922,979 m2. Based on the model estimation, the total AGB had a dry weight (DW) of approximately 298.2 tons. The distribution of high biomass stands (> 200 kg DW/900 m2) constituted approximately 23.91% of the total vegetated area. Our findings suggest the expandability of remotely sensed products to understand the distribution pattern of estuarine plant productivity at the landscape level.

  16. Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression

    PubMed Central

    Marabel, Miguel; Alvarez-Taboada, Flor

    2013-01-01

    Aboveground biomass (AGB) is one of the strategic biophysical variables of interest in vegetation studies. The main objective of this study was to evaluate the Support Vector Machine (SVM) and Partial Least Squares Regression (PLSR) for estimating the AGB of grasslands from field spectrometer data and to find out which data pre-processing approach was the most suitable. The most accurate model to predict the total AGB involved PLSR and the Maximum Band Depth index derived from the continuum removed reflectance in the absorption features between 916–1,120 nm and 1,079–1,297 nm (R2 = 0.939, RMSE = 7.120 g/m2). Regarding the green fraction of the AGB, the Area Over the Minimum index derived from the continuum removed spectra provided the most accurate model overall (R2 = 0.939, RMSE = 3.172 g/m2). Identifying the appropriate absorption features was proved to be crucial to improve the performance of PLSR to estimate the total and green aboveground biomass, by using the indices derived from those spectral regions. Ordinary Least Square Regression could be used as a surrogate for the PLSR approach with the Area Over the Minimum index as the independent variable, although the resulting model would not be as accurate. PMID:23925082

  17. Soil microbial biomass and root growth in Bt and non-Bt cotton

    NASA Astrophysics Data System (ADS)

    Tan, D. K. Y.; Broughton, K.; Knox, O. G.; Hulugalle, N. R.

    2012-04-01

    The introduction of transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) has had a substantial impact on pest management in the cotton industry. While there has been substantial research done on the impact of Bt on the above-ground parts of the cotton plant, less is known about the effect of Bt genes on below ground growth of cotton and soil microbial biomass. The aim of this research was to test the hypothesis that Bt [Sicot 80 BRF (Bollgard II Roundup Ready Flex®)] and non-Bt [Sicot 80 RRF (Roundup Ready Flex®)] transgenic cotton varieties differ in root growth and root turnover, carbon indices and microbial biomass. A field experiment was conducted in Narrabri, north-western NSW. The experimental layout was a randomised block design and used minirhizotron and core break and root washing methods to measure cotton root growth and turnover during the 2008/09 season. Root growth in the surface 0-0.1 m of the soil was measured using the core break and root washing methods, and that in the 0.1 to 1 m depth was measured with a minirhizotron and an I-CAP image capture system. These measurements were used to calculate root length per unit area, root carbon added to the soil through intra-seasonal root death, carbon in roots remaining at the end of the season and root carbon potentially added to the soil. Microbial biomass was also measured using the ninhydrin reactive N method. Root length densities and length per unit area of non-Bt cotton were greater than Bt cotton. There were no differences in root turnover between Bt and non-Bt cotton at 0-1 m soil depth, indicating that soil organic carbon stocks may not be affected by cotton variety. Cotton variety did not have an effect on soil microbial biomass. The results indicate that while there are differences in root morphology between Bt and non-Bt cotton, these do not change the carbon turnover dynamics in the soil.

  18. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    NASA Astrophysics Data System (ADS)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  19. [Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China].

    PubMed

    Yan, Tao; Zhu, Jiao-Jun; Yang, Kai; Yu, Li-Zhong

    2014-10-01

    Larch is the main timber species of forest plantations in North China. Imbalance in nutrient cycling in soil emerged due to single species composition and mono system structure of plantation. Thus it is necessary to grasp its biomass and nutrients allocation for scientific management and nutrient cycling studies of larch plantation. We measured aboveground biomass (stem, branch, bark and leaf) and nutrient concentrations (C, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn), and analyzed the patterns of accumulation and distribution of 19-year-old larch plantation with diameter at breast height of 12. 8 cm, tree height of 15. 3 m, and density of 2308 trees · hm(-2), in a montane region of eastern Liaoning Province, China. The results showed that aboveground biomass values were 70.26 kg and 162.16 t · hm(-2) for the individual tree of larch and the stand, respectively. There was a significant difference between biomass of the organs, and decreased in the order of stem > branch > bark > leaf. Nutrient accumulation was 749.94 g and 1730.86 kg · hm(-2) for the individual tree of larch and the stand, respectively. Nutrient accumulation of stem was significantly higher than that of branch, bark and leaf, whether it was macro-nutrient or micro-nutrient. Averagely, 749.94 g nutrient elements would be removed from the system when a 19-year-old larch tree was harvested. If only the stem part was removed from the system, the removal of nutrient elements could be reduced by 40.7%.

  20. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    SciTech Connect

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density

  1. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  2. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    PubMed

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.

  3. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing

    NASA Astrophysics Data System (ADS)

    Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil

    2014-01-01

    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.

  4. Aboveground and Belowground Herbivores Synergistically Induce Volatile Organic Sulfur Compound Emissions from Shoots but Not from Roots.

    PubMed

    Danner, Holger; Brown, Phil; Cator, Eric A; Harren, Frans J M; van Dam, Nicole M; Cristescu, Simona M

    2015-07-01

    Studies on aboveground (AG) plant organs have shown that volatile organic compound (VOC) emissions differ between simultaneous attack by herbivores and single herbivore attack. There is growing evidence that interactive effects of simultaneous herbivory also occur across the root-shoot interface. In our study, Brassica rapa roots were infested with root fly larvae (Delia radicum) and the shoots infested with Pieris brassicae, either singly or simultaneously, to study these root-shoot interactions. As an analytical platform, we used Proton Transfer Reaction Mass Spectrometry (PTR-MS) to investigate VOCs over a 3 day time period. Our set-up allowed us to monitor root and shoot emissions concurrently on the same plant. Focus was placed on the sulfur-containing compounds; methanethiol, dimethylsulfide (DMS), and dimethyldisulfide (DMDS), because these compounds previously have been shown to be biologically active in the interactions of Brassica plants, herbivores, parasitoids, and predators, yet have received relatively little attention. The shoots of plants simultaneously infested with AG and belowground (BG) herbivores emitted higher levels of sulfur-containing compounds than plants with a single herbivore species present. In contrast, the emission of sulfur VOCs from the plant roots increased as a consequence of root herbivory, independent of the presence of an AG herbivore. The onset of root emissions was more rapid after damage than the onset of shoot emissions. The shoots of double infested plants also emitted higher levels of methanol. Thus, interactive effects of root and shoot herbivores exhibit more strongly in the VOC emissions from the shoots than from the roots, implying the involvement of specific signaling interactions.

  5. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China

    PubMed Central

    Shao, Zhenfeng; Zhang, Linjing

    2016-01-01

    Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378

  6. Carbon dynamics in aboveground biomass of co-dominant plant species: related rather to leaf life span than to species

    NASA Astrophysics Data System (ADS)

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A.; Schnyder, Hans

    2016-04-01

    This study investigates the role of individual organisms in whole ecosystem carbon (C) fluxes. It is currently unknown if different plant community members share the same or different kinetics of C pools in aboveground biomass, thereby adding (or not) variability to the first steps in ecosystem C cycling. We assessed the residence times in metabolic and non-metabolic (or structural) C pools and the allocation pattern of assimilated C in aboveground plant parts of four co-existing, co-dominant species from different functional groups in a temperate grassland community. For this purpose continuous, 14-16 day long 13CO2/12CO2-labeling experiments were performed in Sept. 2006, May 2007 and Sept. 2007, and the tracer kinetics were analysed with compartmental modeling. In all experimental periods, the species shared vastly similar residence times in metabolic C (5-8 d). In contrast, the residence times in non-metabolic C ranged from 20 to 58 d (except one outlier) and the fraction of fixed C allocated to the non-metabolic pool from 7 to 45%. These variations in non-metabolic C kinetics were not systematically associated with species or experimental periods, but exhibited close relationships with (independent estimates of) leaf life span, particularly in the grasses. This adds new meaning to leaf life span as a functional trait in the leaf and plant economics spectrum and its implication for C cycle studies in grassland and also forest systems. As the four co-dominant species accounted for ~80% of total community shoot biomass, we should also expect that the observed similarities in pool kinetics and allocation will scale up to similar relationships at the community level.

  7. Qualitative and quantitative modifications of root mitochondria during senescence of above-ground parts of Arabidopis thaliana.

    PubMed

    Fanello, Diego Darío; Bartoli, Carlos Guillermo; Guiamet, Juan José

    2017-05-01

    This work studied modifications experienced by root mitochondria during whole plant senescence or under light deprivation, using Arabidopsis thaliana plants with YFP tagged to mitochondria. During post-bolting development, root respiratory activity started to decline after aboveground organs (i.e., rosette leaves) had senesced. This suggests that carbohydrate starvation may induce root senescence. Similarly, darkening the whole plant induced a decrease in respiration of roots. This was partially due to a decrease in the number of total mitochondria (YFP-labelled mitochondria) and most probably to a decrease in the quantity of mitochondria with a developed inner membrane potential (ΔΨm, i.e., Mitotracker red- labelled mitochondria). Also, the lower amount of mitochondria with ΔΨm compared to YFP-labelled mitochondria at 10d of whole darkened plant, suggests the presence of mitochondria in a "standby state". The experiments also suggest that small mitochondria made the main contribution to the respiratory activity that was lost during root senescence. Sugar supplementation partially restored the respiration of mitochondria after 10d of whole plant dark treatment. These results suggest that root senescence is triggered by carbohydrate starvation, with loss of ΔΨm mitochondria and changes in mitochondrial size distribution.

  8. Aboveground Biomass and Dynamics of Forest Attributes using LiDAR Data and Vegetation Model

    NASA Astrophysics Data System (ADS)

    V V L, P. A.

    2015-12-01

    In recent years, biomass estimation for tropical forests has received much attention because of the fact that regional biomass is considered to be a critical input to climate change. Biomass almost determines the potential carbon emission that could be released to the atmosphere due to deforestation or conservation to non-forest land use. Thus, accurate biomass estimation is necessary for better understating of deforestation impacts on global warming and environmental degradation. In this context, forest stand height inclusion in biomass estimation plays a major role in reducing the uncertainty in the estimation of biomass. The improvement in the accuracy in biomass shall also help in meeting the MRV objectives of REDD+. Along with the precise estimate of biomass, it is also important to emphasize the role of vegetation models that will most likely become an important tool for assessing the effects of climate change on potential vegetation dynamics and terrestrial carbon storage and for managing terrestrial ecosystem sustainability. Remote sensing is an efficient way to estimate forest parameters in large area, especially at regional scale where field data is limited. LIDAR (Light Detection And Ranging) provides accurate information on the vertical structure of forests. We estimated average tree canopy heights and AGB from GLAS waveform parameters by using a multi-regression linear model in forested area of Madhya Pradesh (area-3,08,245 km2), India. The derived heights from ICESat-GLAS were correlated with field measured tree canopy heights for 60 plots. Results have shown a significant correlation of R2= 74% for top canopy heights and R2= 57% for stand biomass. The total biomass estimation 320.17 Mt and canopy heights are generated by using random forest algorithm. These canopy heights and biomass maps were used in vegetation models to predict the changes biophysical/physiological characteristics of forest according to the changing climate. In our study we have

  9. A RAPID NON-DESTRUCTIVE METHOD FOR ESTIMATING ABOVEGROUND BIOMASS OF SALT MARSH GRASSES

    EPA Science Inventory

    Understanding the primary productivity of salt marshes requires accurate estimates of biomass. Unfortunately, these estimates vary enough within and among salt marshes to require large numbers of replicates if the averages are to be statistically meaningful. Large numbers of repl...

  10. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  11. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding?

    PubMed

    Meinen, Catharina; Hertel, Dietrich; Leuschner, Christoph

    2009-08-01

    Biodiversity effects on ecosystem functioning in forests have only recently attracted increasing attention. The vast majority of studies in forests have focused on above-ground responses to differences in tree species diversity, while systematic analyses of the effects of biodiversity on root systems are virtually non-existent. By investigating the fine root systems in 12 temperate deciduous forest stands in Central Europe, we tested the hypotheses that (1) stand fine root biomass increases with tree diversity, and (2) 'below-ground overyielding' of species-rich stands in terms of fine root biomass is the consequence of spatial niche segregation of the roots of different species. The selected stands represent a gradient in tree species diversity on similar bedrock from almost pure beech forests to medium-diverse forests built by beech, ash, and lime, and highly-diverse stands dominated by beech, ash, lime, maple, and hornbeam. We investigated fine root biomass and necromass at 24 profiles per stand and analyzed species differences in fine root morphology by microscopic analysis. Fine root biomass ranged from 440 to 480 g m(-2) in the species-poor to species-rich stands, with 63-77% being concentrated in the upper 20 cm of the soil. In contradiction to our two hypotheses, the differences in tree species diversity affected neither stand fine root biomass nor vertical root distribution patterns. Fine root morphology showed marked distinctions between species, but these root morphological differences did not lead to significant differences in fine root surface area or root tip number on a stand area basis. Moreover, differences in species composition of the stands did not alter fine root morphology of the species. We conclude that 'below-ground overyielding' in terms of fine root biomass does not occur in the species-rich stands, which is most likely caused by the absence of significant spatial segregation of the root systems of these late-successional species.

  12. [Aboveground biomass input of Myristicaceae tree species in the Amazonian Forest in Peru].

    PubMed

    Ureta Adrianzén, Marisabel

    2015-03-01

    Amazonian forests are a vast storehouse of biodiversity and function as carbon sinks from biomass that accumulates in various tree species. In these forests, the taxa with the greatest contribution of biomass cannot be precisely defined, and the representative distribution of Myristicaceae in the Peruvian Amazon was the starting point for designing the present study, which aimed to quantify the biomass contribution of this family. For this, I analyzed the databases that corresponded to 38 sample units that were previously collected and that were provided by the TeamNetwork and RAINFOR organizations. The analysis consisted in the estimation of biomass using pre-established allometric equations, Kruskal-Wallis sample comparisons, interpolation-analysis maps, and nonparametric multidimensional scaling (NMDS). The results showed that Myristicaceae is the fourth most important biomass contributor with 376.97 Mg/ha (9.92 Mg/ha in average), mainly due to its abundance. Additionally, the family shows a noticeable habitat preference for certain soil conditions in the physiographic units, such is the case of Virola pavonis in "varillales", within "floodplain", or Iryanthera tessmannii and Virola loretensis in sewage flooded areas or "igapo" specifically, and the preference of Virola elongata and irola surinamensis for white water flooded areas or "varzea" edaphic conditions of the physiographic units taken in the study.

  13. The evaluation of different forest structural indices to predict the stand aboveground biomass of even-aged Scotch pine (Pinus sylvestris L.) forests in Kunduz, Northern Turkey.

    PubMed

    Ercanli, İlker; Kahriman, Aydın

    2015-03-01

    We assessed the effect of stand structural diversity, including the Shannon, improved Shannon, Simpson, McIntosh, Margelef, and Berger-Parker indices, on stand aboveground biomass (AGB) and developed statistical prediction models for the stand AGB values, including stand structural diversity indices and some stand attributes. The AGB prediction model, including only stand attributes, accounted for 85 % of the total variance in AGB (R (2)) with an Akaike's information criterion (AIC) of 807.2407, Bayesian information criterion (BIC) of 809.5397, Schwarz Bayesian criterion (SBC) of 818.0426, and root mean square error (RMSE) of 38.529 Mg. After inclusion of the stand structural diversity into the model structure, considerable improvement was observed in statistical accuracy, including 97.5 % of the total variance in AGB, with an AIC of 614.1819, BIC of 617.1242, SBC of 633.0853, and RMSE of 15.8153 Mg. The predictive fitting results indicate that some indices describing the stand structural diversity can be employed as significant independent variables to predict the AGB production of the Scotch pine stand. Further, including the stand diversity indices in the AGB prediction model with the stand attributes provided important predictive contributions in estimating the total variance in AGB.

  14. Root growth dynamics linked to above-ground growth in walnut (Juglans regia)

    PubMed Central

    Contador, Maria Loreto; Comas, Louise H.; Metcalf, Samuel G.; Stewart, William L.; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D.

    2015-01-01

    Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques. Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs

  15. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes

    NASA Astrophysics Data System (ADS)

    Mitchard, E. T. A.; Saatchi, S. S.; Woodhouse, I. H.; Nangendo, G.; Ribeiro, N. S.; Williams, M.; Ryan, C. M.; Lewis, S. L.; Feldpausch, T. R.; Meir, P.

    2009-12-01

    Regional-scale above-ground biomass (AGB) estimates of tropical savannas and woodlands are highly uncertain, despite their global importance for ecosystems services and as carbon stores. In response, we collated field inventory data from 253 plots at four study sites in Cameroon, Uganda and Mozambique, and examined the relationships between field-measured AGB and cross-polarized radar backscatter values derived from ALOS PALSAR, an L-band satellite sensor. The relationships were highly significant, similar among sites, and displayed high prediction accuracies up to 150 Mg ha-1 (±˜20%). AGB predictions for any given site obtained using equations derived from data from only the other three sites generated only small increases in error. The results suggest that a widely applicable general relationship exists between AGB and L-band backscatter for lower-biomass tropical woody vegetation. This relationship allows regional-scale AGB estimation, required for example by planned REDD (Reducing Emissions from Deforestation and Degradation) schemes.

  16. Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China

    PubMed Central

    Xu, Xiaotian; Liu, Hongyan; Song, Zhaoliang; Wang, Wei; Hu, Guozheng; Qi, Zhaohuan

    2015-01-01

    Although nitrogen addition and recovery from degradation can both promote production of grassland biomass, these two factors have rarely been investigated in combination. In this study, we established a field experiment with six N-treatment (CK, 10, 20, 30, 40, 50 g N m−2 yr−1) on five fields with different degradation levels in the Inner Mongolian steppe of China from 2011–2013. Our observations showed that while the external nitrogen increased the aboveground biomass in all five grasslands, the magnitude of the effects differed with the severity of degradation. Fields with a higher level of degradation tended to have a higher saturation value (20 g N m−2 yr−1) than those with a lower degradation level ( < 10 g N m−2 yr−1). After three years of experimentation, species richness showed little change across degradation levels. Among the four functional groups of grasses, sedges, forbs and legumes, grasses shared the most similar response patterns with those of the whole community, demonstrating the predominant role that they play in the restoration of grassland under a stimulus of nitrogen addition. PMID:26194184

  17. Integration method to estimate above-ground biomass in arid prairie regions using active and passive remote sensing data

    NASA Astrophysics Data System (ADS)

    Xing, Minfeng; He, Binbin; Li, Xiaowen

    2014-01-01

    The use of microwave remote sensing for estimating vegetation biomass is limited in arid grassland regions because of the heterogeneous distribution of vegetation, sparse vegetation cover, and the strong influence from soil. To minimize the problem, a synergistic method of active and passive remote sensing data for retrieval of above-ground biomass (AGB) was developed in this paper. Vegetation coverage, which can be easily estimated from optical data, was combined in the scattering model. The total backscattering was divided into the amount attributed to areas covered with vegetation and that attributed to areas of bare soil. Backscattering coefficients were simulated using the established scattering model. A look-up table was established using the relationship between the vegetation water content and the backscattering coefficient for water content retrieval. Then, AGB was estimated using the relationship between the vegetation water content and the AGB. The method was applied to estimate the AGB of the Wutumeiren prairie. Finally, the accuracy and sources of error in this innovative AGB retrieval method were evaluated. The results showed that the predicted AGB correlated with the measured AGB (R2=0.8414, RMSE=0.1953 kg/m2). Thus, the method has operational potential for the estimation of the AGB of herbaceous vegetation in arid regions.

  18. Biotic and abiotic controls on the distribution of tropical forest aboveground biomass

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Schimel, D.; Keller, M. M.; Chambers, J. Q.; Dubayah, R.; Duffy, P.; Yu, Y.; Robinson, C. M.; Chowdhury, D.; Yang, Y.

    2013-12-01

    AUTHOR: Sassan Saatchi1,2, Yan Yang2, Diya Chowdhury2, Yifan Yu2, Chelsea Robinson2, David Schimel1, Paul Duffy3, Michael Keller4, Ralph Dubayah5, Jeffery Chambers6 1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA 2. Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA 3. Neptune and Company, Inc. Denver, CO, USA 4. International Institute of Tropical Forestry & International Programs, USDA Forest Service, Campinas, Brazil 5. Department of Geography, University of Maryland, College Park, MD, USA 6. Department of Geography, University of California, Berkeley, CA, USA ABSTRACT BODY: In recent years, climate change policies and scientific research created a widespread interest in quantify the carbon stock and changes of global tropical forests extending from forest patches to national and regional scales. Using a combination of inventory data from field plots and forest structure from spaceborne Lidar data, we examine the main controls on the distribution of tropical forest biomass. Here, we concentrate on environmental and landscape variables (precipitation, temperature, topography, and soil), and biotic variables such as functional traits (density of large trees, and wood specific gravity). The analysis is performed using global bioclimatic variables for precipitation and temperature, SRTM data for topographical variables (elevation and ruggedness), and global harmonized soil data for soil type and texture. For biotic variables, we use the GLAS Lidar data to quantify the distribution of large trees, a combined field and remote sensing data for distribution of tree wood specific gravity. The results show that climate variables such as precipitation of dry season can explain the heterogeneity of forest biomass over the landscape but cannot predict the biomass variability significantly and particularly for high biomass forests. Topography such as elevation and ruggedness along with temperature can

  19. Aboveground Biomass Estimation in a Tidal Brackish Marsh Using Simulated Thematic Mapper Spectral Data

    NASA Technical Reports Server (NTRS)

    Hardisky, M.; Klemas, V.

    1984-01-01

    Spectral radiance data were collected from the ground and from a low altitude aircraft in an attempt to gain some insight into the potential utility of actual Thematic Mapper data for biomass estimation in wetland plant communities. No attempt was made to distinguish individual plant species within brackish marsh plant associations. Rather, it was decided to lump plant species with similar canopy morphologies and then estimate from spectral radiance data the biomass of the group. The rationale for such an approach is that plants with a similar morphology will produce a similar reflecting or absorping surface (i.e., canopy) for incoming electromagnetic radiation. Variations in observed reflectance from different plant communities with a similar canopy morphology are more likely to be a result of biomass differences than a result of differences in canopy architecture. If the hypothesis that plants with a similar morphology exhibit similar reflectance characteristics is true, then biomass can be estimated based on a model for the dominant plant morphology within a plant association and the need for species discrimination has effectively been eliminated.

  20. Estimating terrestrial aboveground biomass estimation using lidar remote sensing: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zolkos, S. G.; Goetz, S. J.; Dubayah, R.

    2012-12-01

    Estimating biomass of terrestrial vegetation is a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD). The accuracy of biomass estimates is important in the context carbon markets emerging under REDD, since areas with more accurate estimates command higher prices, but also for characterizing uncertainty in estimates of carbon cycling and the global carbon budget. There is particular interest in mapping biomass so that carbon stocks and stock changes can be monitored consistently across a range of scales - from relatively small projects (tens of hectares) to national or continental scales - but also so that other benefits of forest conservation can be factored into decision making (e.g. biodiversity and habitat corridors). We conducted an analysis of reported biomass accuracy estimates from more than 60 refereed articles using different remote sensing platforms (aircraft and satellite) and sensor types (optical, radar, lidar), with a particular focus on lidar since those papers reported the greatest efficacy (lowest errors) when used in the a synergistic manner with other coincident multi-sensor measurements. We show systematic differences in accuracy between different types of lidar systems flown on different platforms but, perhaps more importantly, differences between forest types (biomes) and plot sizes used for field calibration and assessment. We discuss these findings in relation to monitoring, reporting and verification under REDD, and also in the context of more systematic assessment of factors that influence accuracy and error estimation.

  1. Rapid assessment of above-ground biomass of Giant Reed using visibility estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid estimation of biomass and density of giant reed (Arundo donax L.) was developed using estimates of visibility as a predictive tool. Visibility estimates were derived by capturing digital images of a 0.25 m2 polystyrene whiteboard placed a set distance (1m) from the edge of gia...

  2. Aboveground Herbivory Shapes the Biomass Distribution and Flux of Soil Invertebrates

    PubMed Central

    Mulder, Christian; Den Hollander, Henri A.; Hendriks, A. Jan

    2008-01-01

    Background Living soil invertebrates provide a universal currency for quality that integrates physical and chemical variables with biogeography as the invertebrates reflect their habitat and most ecological changes occurring therein. The specific goal was the identification of “reference” states for soil sustainability and ecosystem functioning in grazed vs. ungrazed sites. Methodology/Principal Findings Bacterial cells were counted by fluorescent staining and combined direct microscopy and automatic image analysis; invertebrates (nematodes, mites, insects, oligochaetes) were sampled and their body size measured individually to allow allometric scaling. Numerical allometry analyses food webs by a direct comparison of weight averages of components and thus might characterize the detrital soil food webs of our 135 sites regardless of taxonomy. Sharp differences in the frequency distributions are shown. Overall higher biomasses of invertebrates occur in grasslands, and all larger soil organisms differed remarkably. Conclusions/Significance Strong statistical evidence supports a hypothesis explaining from an allometric perspective how the faunal biomass distribution and the energetic flux are affected by livestock, nutrient availability and land use. Our aim is to propose faunal biomass flux and biomass distribution as quantitative descriptors of soil community composition and function, and to illustrate the application of these allometric indicators to soil systems. PMID:18974874

  3. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  4. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.

    PubMed

    Zwicke, Marine; Alessio, Giorgio A; Thiery, Lionel; Falcimagne, Robert; Baumont, René; Rossignol, Nicolas; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-11-01

    Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more

  5. Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.

    PubMed

    Schnabel, William; Munk, Jens; Byrd, Amanda

    2015-01-01

    Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.

  6. Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation.

    PubMed

    Mundra, Sunil; Halvorsen, Rune; Kauserud, Håvard; Müller, Eike; Vik, Unni; Eidesen, Pernille B

    2015-03-01

    Soil conditions and microclimate are important determinants of the fine-scale distribution of plant species in the Arctic, creating locally heterogeneous vegetation. We hypothesize that root-associated fungal (RAF) communities respond to the same fine-scale environmental gradients as the aboveground vegetation, creating a coherent pattern between aboveground vegetation and RAF. We explored how RAF communities of the ectomycorrhizal (ECM) plant Bistorta vivipara and aboveground vegetation structure of arctic plants were affected by biotic and abiotic variables at 0.3-3.0-m scales. RAF communities were determined using pyrosequencing. Composition and spatial structure of RAF and aboveground vegetation in relation to collected biotic and abiotic variables were analysed by ordination and semi-variance analyses. The vegetation was spatially structured along soil C and N gradients, whereas RAF lacked significant spatial structure. A weak relationship between RAF community composition and the cover of two ECM plants, B. vivipara and S. polaris, was found, and RAF richness increased with host root length and root weight. Results suggest that the fine-scale spatial structure of RAF communities of B. vivipara and the aboveground vegetation are driven by different factors. At fine spatial scales, neighbouring ECM plants may affect RAF community composition, whereas soil nutrients gradients structure the vegetation.

  7. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.

    PubMed

    Johnson, Scott N; Mitchell, Carolyn; McNicol, James W; Thompson, Jacqueline; Karley, Alison J

    2013-09-01

    1. Terrestrial food webs are woven from complex interactions, often underpinned by plant-mediated interactions between herbivores and higher trophic groups. Below- and above-ground herbivores can influence one another via induced changes to a shared host plant, potentially shaping the wider community. However, empirical evidence linking laboratory observations to natural field populations has so far been elusive. 2. This study investigated how root-feeding weevils (Otiorhynchus sulcatus) influence different feeding guilds of herbivore (phloem-feeding aphids, Cryptomyzus galeopsidis, and leaf-chewing sawflies, Nematus olfaciens) in both controlled and field conditions. 3. We hypothesized that root herbivore-induced changes in plant nutrients (C, N, P and amino acids) and defensive compounds (phenolics) would underpin the interactions between root and foliar herbivores, and ultimately populations of natural enemies of the foliar herbivores in the field. 4. Weevils increased field populations of aphids by ca. 700%, which was followed by an increase in the abundance of aphid natural enemies. Weevils increased the proportion of foliar essential amino acids, and this change was positively correlated with aphid abundance, which increased by 90% on plants with weevils in controlled experiments. 5. In contrast, sawfly populations were 77% smaller during mid-June and adult emergence delayed by >14 days on plants with weevils. In controlled experiments, weevils impaired sawfly growth by 18%, which correlated with 35% reductions in leaf phosphorus caused by root herbivory, a previously unreported mechanism for above-ground-below-ground herbivore interactions. 6. This represents a clear demonstration of root herbivores affecting foliar herbivore community composition and natural enemy abundance in the field via two distinct plant-mediated nutritional mechanisms. Aphid populations, in particular, were initially driven by bottom-up effects (i.e. plant-mediated effects of root

  8. Linking Carbon Fluxes with Remotely-Sensed Vegetation Indices for Leaf Area and Aboveground Biomass Through Footprint Climatology

    NASA Astrophysics Data System (ADS)

    Wayson, C.; Clark, K.; Hollinger, D. Y.; Skowronski, N.; Schmid, H. E.

    2010-12-01

    A major challenge of bottom-up scaling is that in-situ flux observations are spatially limited. Thus, to achieve valid regional exchange rates, models are used to interpolate and extrapolate to the vegetational/spatial domain covered by these observations. To parameterize these models from flux data, efforts must be made to select data that best represents the region being modeled as well as linking the fluxes to remotely-sensed data products that can be produced from site to regional scales. Because most long-term flux stations are not in spatially extensive, homogeneous locations, this requirement is often a challenge. However, this requirement can be met by selecting observation periods whose flux footprints are statistically representative of the type of ecosystem identified in the model. The flux footprint function indicates the time-varying surface “field-of-view” (or spatial sampling window) of an eddy-flux sensor, oriented mostly in upwind direction. For each observation period, the modeled flux footprint window is overlain with a high-resolution vegetation index map to determine a footprint-weighted vegetation index for which the observation is representative. Using flux-footprint analysis to link fluxes to models using just an enhanced vegetation index (EVI) map shows a positive trend between EVI and eddy covariance measured fluxes, but the link is not strong. Leaf area is linked with carbon (C) uptake, but forests tend to maximize leaf area, as determined through remote sensing, early on with forests having similar leaf areas across a wide range of ages. Adding another remotely-sensed dataset, aboveground biomass map (AGB), helps capture the processes of lower productivity rates (as biomass increases per unit of leaf area there is a decline, due to the forest ageing) and the C losses due to respiration, both heterotrophic and autotrophic (linked to live and detrital biomass pools). Adding biomass from LIDAR and a combined EVI-biomass layer to examine

  9. Stoichiometry in aboveground and fine roots of Seriphidium korovinii in desert grassland in response to artificial nitrogen addition.

    PubMed

    Li, Lei; Gao, Xiaopeng; Gui, Dongwei; Liu, Bo; Zhang, Bo; Li, Xiangyi

    2017-03-31

    Nitrogen (N) input by atmospheric deposition and human activity enhances the availability of N in various ecosystems, which may further affect N and phosphorus (P) cycling and use by plants. However, the internal use of N, P, and N:P stoichiometry by plants in response to N supply, particularly for grass species in a desert steppe ecosystem, remains unclear. In this work, a field experiment was conducted at an infertile area in a desert steppe to investigate the effects of N fertilizer addition rates on the stoichiometry of N and P in a dominant grass species, Seriphidium korovinii. Results showed that for both aboveground and fine roots of S. korovinii, N inputs exponentially increased the N concentration and N:P ratios while P concentrations decreased. Meanwhile, the relationships between N and P concentrations for both aboveground and fine roots were significantly negative. Furthermore, while the N concentrations in the plants were relatively low, P concentrations were higher than the global means, resulting in a relatively low N:P ratio. These results suggest that the stoichiometric characteristics of N were different from that of P for this desert plant species. Results also show that the intraspecific variations in the main element traits (N, P, and N:P ratios) were consistent at the whole-plant level. Our results also suggest that N should be part of any short-term fertilization plan that is part of a management strategy designed to restore degraded desert grassland. These findings highlight that nutrient addition by atmospheric N deposition and human activity can have significant effects on the internal use of N and P by plants. Therefore, establishing a nutrient-conservation strategy for desert grasslands is important.

  10. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    PubMed

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  11. Diversity and Above-Ground Biomass Patterns of Vascular Flora Induced by Flooding in the Drawdown Area of China's Three Gorges Reservoir

    PubMed Central

    Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  12. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    PubMed

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  13. Progress in the remote sensing of C3 and C4 grass species aboveground biomass over time and space

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Mutanga, Onisimo; Dube, Timothy

    2016-10-01

    The remote sensing of grass aboveground biomass (AGB) has gained considerable attention, with substantial research being conducted in the past decades. Of significant importance is their photosynthetic pathways (C3 and C4), which epitomizes a fundamental eco-physiological distinction of grasses functional types. With advances in technology and the availability of remotely sensed data at different spatial, spectral, radiometric and temporal resolutions, coupled with the need for detailed information on vegetation condition, the monitoring of C3 and C4 grasses AGB has received renewed attention, especially in the light of global climate change, biodiversity and, most importantly, food security. This paper provides a detailed survey on the progress of remote sensing application in determining C3 and C4 grass species AGB. Importantly, the importance of species functional type is highlighted in conjunction with the availability and applicability of different remote sensing datasets, with refined resolutions, which provide an opportunity to monitor C3 and C4 grasses AGB. While some progress has been made, this review has revealed the need for further remote sensing studies to model the seasonal (cyclical) variability, as well as long-term AGB changes in C3 and C4 grasses, in the face of climate change and food security. Moreover, the findings of this study have shown the significance of shifting towards the application of advanced statistical models, to further improve C3 and C4 grasses AGB estimation accuracy.

  14. Impacts of Sample Design on Estimation of Aboveground Biomass: Implications for the Assimilation of Lidar and Forest Inventory Data

    NASA Astrophysics Data System (ADS)

    Duffy, P.; Keller, M. M.; Morton, D. C.; Schimel, D.

    2015-12-01

    The availability of lidar data that can be used to characterize forest structure and estimate aboveground biomass (AGB) is rapidly increasing. When lidar data are considered in conjunction with forest inventory data to estimate AGB, the order of acquisition for these data products may impact the quality of the resulting estimates. In this work, we address this question in the context of uncertainty reduction with respect to estimation of AGB in a degraded forest in Paragominas, Brazil. We have developed a simulation framework that quantitatively assesses the uncertainty associated with estimation of AGB for different sampling strategies that combine forest inventory and lidar data. We utilize a Bayesian hierarchical modeling (BHM) data assimilation framework to combine information from the forest inventory and lidar data products into a higher order data product of AGB. Spatially explicit realizations of AGB are generated under different sampling strategies. Sampling strategies are assessed using the distributional properties of the assimilated higher order data product in the context of uncertainty reduction. We consider both spatially explicit maps of uncertainty as well as the standard deviation of the posterior predictive distributions of AGB as endpoints for the quantification of uncertainty. This framework allows for the explicit characterization of important sources of uncertainty. Our results show that a significant reduction in the uncertainty associated with estimation of AGB can be realized when design optimization is utilized in this context.

  15. Using LiDAR to Estimate Total Aboveground Biomass of Redwood Stands in the Jackson Demonstration State Forest, Mendocino, California

    NASA Astrophysics Data System (ADS)

    Rao, M.; Vuong, H.

    2013-12-01

    The overall objective of this study is to develop a method for estimating total aboveground biomass of redwood stands in Jackson Demonstration State Forest, Mendocino, California using airborne LiDAR data. LiDAR data owing to its vertical and horizontal accuracy are increasingly being used to characterize landscape features including ground surface elevation and canopy height. These LiDAR-derived metrics involving structural signatures at higher precision and accuracy can help better understand ecological processes at various spatial scales. Our study is focused on two major species of the forest: redwood (Sequoia semperirens [D.Don] Engl.) and Douglas-fir (Pseudotsuga mensiezii [Mirb.] Franco). Specifically, the objectives included linear regression models fitting tree diameter at breast height (dbh) to LiDAR derived height for each species. From 23 random points on the study area, field measurement (dbh and tree coordinate) were collected for more than 500 trees of Redwood and Douglas-fir over 0.2 ha- plots. The USFS-FUSION application software along with its LiDAR Data Viewer (LDV) were used to to extract Canopy Height Model (CHM) from which tree heights would be derived. Based on the LiDAR derived height and ground based dbh, a linear regression model was developed to predict dbh. The predicted dbh was used to estimate the biomass at the single tree level using Jenkin's formula (Jenkin et al 2003). The linear regression models were able to explain 65% of the variability associated with Redwood's dbh and 80% of that associated with Douglas-fir's dbh.

  16. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    SciTech Connect

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer to true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.

  17. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    DOE PAGES

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; ...

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore » true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less

  18. Characterizing the environmental conditions and estimating aboveground biomass productivity for switchgrass in the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wylie, B. K.; Howard, D. M.

    2013-12-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to investigate the relationship between site environmental conditions and switchgrass productivity and identify the optimal conditions for productive switchgrass in the Great Plains (GP). Environmental and climate variables such as elevation, soil organic carbon, available water capacity, climate, and seasonal weather were used in this study. Satellite-derived growing season averaged Normalized Difference Vegetation Index was used as a proxy for switchgrass productivity. The environmental conditions for switchgrass sites of variable productivity were summarized and a data-driven multiple regression switchgrass productivity model was developed. Results show that spring precipitation has the strongest correlation with switchgrass productivity (r = 0.92, 176 samples) and spring minimum temperature has the weakest correlation with switchgrass productivity (r = 0.16). An estimated switchgrass productivity map for the entire GP based on site environmental and climate conditions was generated. The estimated switchgrass biomass productivity map indicates that highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study provide useful information for assessing economic feasibility or optimal land use decisions regarding switchgrass development in the GP.

  19. China Forest Aboveground Biomass Estimation by Fusion of Inventory and Remote Sensing Data: 1st results from Heilongjiang Province and Yunnan Province

    NASA Astrophysics Data System (ADS)

    Pang, Y.; Li, Z.; Huang, G.; Sun, G.; Cheng, Z.; Zhang, Z.; Zhang, G.

    2013-12-01

    Forests play an irreplaceable role in maintaining regional ecological environment, global carbon balance and mitigating global climate change. Forest aboveground biomass (AGB) is an important indicator of forest carbon stocks. Estimating forest aboveground biomass accurately could significantly reduce the uncertainties in terrestrial ecosystem carbon cycle. LIDAR provides accurate information on the vertical structure of forests (Lefsky et al., 2007; Naesset et al., 2004; Pang et al., 2008). Combining airborne LiDAR and spaceborne LiDAR for regional forest biomass retrieval could provide a more reliable and accurate quantitative information in regional forest biomass estimate (Boudreau et al., 2008; Nelson et al., 2009; Pang et al., 2011; Saatchi et al., 2011). The Heilongjiang Province and Yunnan Province are rich in forest resources and suffers intensive forest management activities for timber products. The Heilongjiang Province is typical in temperate forest and the Yunnan Province contains multiple forest types including tropical forest. These two provinces also have good ground inventory system with thousands of permanent field plots. Two campaign consists of in-situ measurement, airborne Lidar data and spaceborne data fusion were designed and implemented. First results show that i). Both spaceborne lidar and forest inventory data are useful for AGB mapping at province level. ii). The combination of spaceborne lidar and forest inventory data gave better biomass estimation with less bias. iii). A pixel level bias mapping was also proposed and gave spatial explicit map of estimation uncertainties. This method will be investigated further with more reference data and tested in other area.

  20. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  1. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  2. Reducing Uncertainties in Satellite-derived Forest Aboveground Biomass Estimates using a High Resolution Forest Cover Map

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Ganguly, S.; Nemani, R. R.; Milesi, C.; Basu, S.; Kumar, U.

    2014-12-01

    Several studies to date have provided an extensive knowledge base for estimating forest aboveground biomass (AGB) and recent advances in space-based modeling of the 3-D canopy structure, combined with canopy reflectance measured by passive optical sensors and radar backscatter, are providing improved satellite-derived AGB density mapping for large scale carbon monitoring applications. A key limitation in forest AGB estimation from remote sensing, however, is the large uncertainty in forest cover estimates from the coarse-to-medium resolution satellite-derived land cover maps (present resolution is limited to 30-m of the USGS NLCD Program). The uncertainties in forest cover estimates at the Landsat scale result in high uncertainties for AGB estimation, predominantly in heterogeneous forest and urban landscapes. We have successfully developed an approach using a machine learning algorithm and High-Performance-Computing with NAIP air-borne imagery data for mapping tree cover at 1-m over California and Maryland. In a comparison with high resolution LiDAR data available over selected regions in the two states, we found our results to be promising both in terms of accuracy as well as our ability to scale nationally. The generated 1-m forest cover map will be aggregated to the Landsat spatial grid to demonstrate differences in AGB estimates (pixel-level AGB density, total AGB at aggregated scales like ecoregions and counties) when using a native 30-m forest cover map versus a 30-m map derived from a higher resolution dataset. The process will also be complemented with a LiDAR derived AGB estimate at the 30-m scale to aid in true validation.

  3. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data

    NASA Astrophysics Data System (ADS)

    Zhao, Panpan; Lu, Dengsheng; Wang, Guangxing; Liu, Lijuan; Li, Dengqiu; Zhu, Jinru; Yu, Shuquan

    2016-12-01

    In remote sensing-based forest aboveground biomass (AGB) estimation research, data saturation in Landsat and radar data is well known, but how to reduce this problem for improving AGB estimation has not been fully examined. Different vegetation types have their own species composition and stand structure, thus they have different data saturation values in Landsat or radar data. Optical and radar data also have different characteristics in representing forest stand structures, thus effective use of their features may improve AGB estimation. This research examines the effects of Landsat Thematic Mapper (TM) and ALOS PALSAR L-band data and their integrations in forest AGB estimation of Zhejiang Province, China, and the roles of textural images from both datasets. The linear regression models of AGB were conducted by using (1) Landsat TM alone, (2) ALOS PALSAR data alone, (3) their combination as extra bands, and (4) their data fusion, based on non-stratification and stratification of vegetation types, respectively. The results show that (1) overall, Landsat TM data perform better than PALSAR data, but the latter can produce more accurate estimates for bamboo and shrub, and for forests with AGB values less than 60 Mg/ha; (2) the combination of TM and PALSAR data as extra bands can greatly improve AGB estimation performance, but their fusion using the modified high-pass filter resolution-merging technique cannot; (3) textures are indeed valuable in AGB estimation, especially for forests with complex stand structures such as mixed forests and pine forests with understories of broadleaf species; (4) stratification of vegetation types can improve AGB estimation performance; and (5) the results from the linear regression models are characterized by overestimation and underestimation for the smaller and larger AGB values, respectively, and thus, selecting non-linear models or non-parametric algorithms may be needed in future research.

  4. Spatial distributions of forest aboveground biomass and landscape dynamics associated with conservation status and ownership in New England, USA

    NASA Astrophysics Data System (ADS)

    Zheng, D.; Heath, L. S.; Ducey, M. J.

    2009-05-01

    We combined remote sensing derived forest aboveground biomass (AGB) estimation and the Conservation Biology Institute/World Wildlife Fund Protected Area Database using GIS techniques and spatial pattern analysis to illustrate how different conservation status and ownership could affect the landscape dynamics and spatial distributions of AGB in New England states, USA. The AGB means between all pairs of protection status and ownership categories were significantly different (P < 0.05). The highest mean AGB was observed in the protected public lands (156 Mg/ha), 44% higher than the lowest AGB mean (108 Mg/ha) observed in private regulated lands (privately owned but under the regulatory control by a state agency), or 30% higher than that in privately owned lands on average (120 Mg/ha). Seventy-seven percent of the regional forests with AGB > 200 Mg/ha, totaling about 9,300 km2, were located outside protected areas and were concentrated in western MA, southern VT, southwestern NH, and northwestern CT. The fragmentation rate in protected public lands between 1992 and 2001 was the least with greater rates were observed in privately regulated and non-regulated lands. Changing rates for the 4 representative fragmentation indices (patch density (PD), edge density (ED), landscape shape index (LSI), and mean patch size (MPS)) ranged from 1% in MPS to 6% in PD in protected public lands during the 9-year period whereas the mean changing rates ranged from 21% in LSI to 32% in PD in private lands. Thus, ownership and conservation status appears to have a strong impact on the dynamic changes of landscape structures in the region. These results indicate that if maintenance and enhancement of relatively unfragmented, high-AGB forest is a goal, expansion of protected areas appears to be an important management strategy.

  5. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands

    PubMed Central

    Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857

  6. Non-Parametric Responses of Aboveground Biomass and NDVI to Land Surface Parameters in Arctic-Alpine Environments

    NASA Astrophysics Data System (ADS)

    Riihimäki, H. K.; Heiskanen, J.; Luoto, M.

    2015-12-01

    Aboveground biomass (AGB) is an important carbon pool and it affects various phenomena in Arctic and alpine areas, e.g. biodiversity, surface albedo and soil conditions. The growing availability of high-resolution digital elevation models (DEM) makes it possible to utilize topographical information for modeling local ground surface conditions globally. We investigated the effect of topography on field measured AGB (n = 359) and its commonly used proxy, the Normalized Difference Vegetation Index (NDVI) calculated from SPOT 5 imagery. The study area located in an Arctic-alpine treeline environment (69 °N, 21 °E). We performed the analyses with boosted regression trees method by using elevation and four land surface parameters (LSPs), derived from 10 m DEM, as predictors. The LSPs were namely Potential Incoming Solar Radiation (PISR, MJ m-2 a-1), Topographic Position Index (TPI, r = 300 m), Slope (angle in degrees) and Topographic Wetness Index (TWI). AGB varied from 0 to 5647 g m-2, while median AGB of the data was 449 g m-2. The explained deviance of the AGB and NDVI models were 53 % and 65 %, respectively. Elevation and PISR were the most important predictors. Their interaction was also significant in both cases as the highest AGB were at low-elevation, high-radiation sites, which implicates that PISR significantly improves the modelling of temperature related growing conditions. TWI had no clear effect to AGB nor to NDVI. TPI and Slope had a minor effect on AGB, but no effect to NDVI. Areas lower than their surroundings (negative TPI) had relatively high AGB. Furthermore, steeper slopes had higher AGB compared to flat sites. This is probably caused by the presence of mountain birch (Betula pubescens ssp. czerepanovii), which favors protected and steeper topography. Local topography is an important driver of the fine scale AGB patterns. Thus, DEM derived LSPs should be taken into account when modelling current and future biomass distributions in Arctic and alpine

  7. Root crops and their biomass potential in Florida

    SciTech Connect

    O'Hair, S.K.; Locascio, S.J.; Forbes, R.R.; White, J.M.; Hensel, D.R.; Shumaker, J.R.; Dangler, J.M.

    1983-01-01

    Root and tuber crops are of particular interest as biofuel crops because of their ability to concentrate and store fermentables including starch and sugars, in enlarged organs at or below the soil surface. In Florida, harvest index, the storage organ biomass divided by total plant biomass, of sweet potato, fodder beet, cassava and potato has approached 0.80. Chicory, fodder beet, cassava and sweet potato produced a total plant yield of 16.0, 14.1, 11.4 and 11.3 t/ha, respectively. Since the crops vary for time to maturity and storage organ chemical composition, a conventional unit to equate yield differences is kilocalorie (kcal) production/ha/day. Of the warm season crops, sweet potato and cassava roots produced an estimated 32 and 14 x 10/sup 4/ kcal/ha/day, respectively. Chinese radish and rutabaga roots produced 18 and 17 x 10/sup 4/ kcal/ha/day. Thus, a year round average of as much as 25 x 10/sup 4/ kcal/ha/day has been demonstrated. In conjunction with the total potential biomass production by a plant, root and tuber crops may be able to surpass grain crops in fermentable productivity on a temporal and spacial basis. The factors that will contribute to this include developing the appropriate cultural practices for biomass production along with breeding and selecting for adaptability and favorable harvest index. Since many of these crops have been neglected from a research standpoint, there is little doubt that improvements can be made by further work. 27 references.

  8. A cross-scale remote sensing approach to estimate tree cover and aboveground biomass in pinyon-juniper woodlands of the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Huang, C.; Asner, G.; Martin, R.; Barger, N.; Neff, J.

    2007-12-01

    Vegetation dominated by pinyon pines and junipers (pinyon-juniper [P-J] woodlands) is one of the largest vegetation types in the North America. P-J woodlands maintain the highest level of woody biomass compared to other major dryland ecosystems. However, distributions of tree cover and biomass in the P-J woodlands of the Colorado Plateau have not been well studied. Here we developed a synoptic remote sensing approach to scale up pinyon pine and juniper cover and biomass field observations from plot to regional levels using fractional photosynthetic vegetation cover (PV) derived from airborne imaging spectroscopy and Landsat satellite data. Our results demonstrated strong correlations (p < 0.001) between field and airborne tree canopy cover estimates (r2 = 0.92), and between airborne and satellite canopy cover estimates (r2 = 0.61). Field data also indicated that P-J aboveground biomass can be estimated from canopy cover using a unified allometric equation (r2 = 0.69, p < 0.001). Using these multi-scale, cover-biomass relationships, we developed high-resolution, regional-scale maps of P-J cover and biomass for the western Colorado Plateau. The mean (± standard deviation) P-J cover was 27.4 (± 9.9)%, and the mean aboveground woody carbon (C) converted from biomass was 5.2 (± 2.0)MgC/ha. Combining our data with the southwest Regional Gap Analysis Program vegetation map, we estimated that total contemporary woody C storage for the entire Colorado Plateau P-J woodlands (113,600 km2) is 59 TgC. Our results facilitate further investigation of the processes controlling carbon stocks and fluxes across this large region, which forms a key component of the North American Carbon Program (NACP).

  9. Drought effects on fine-root and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico.

    PubMed

    Valdés, María; Asbjornsen, Heidi; Gómez-Cárdenas, Martín; Juárez, Margarita; Vogt, Kristiina A

    2006-03-01

    The effects of a severe drought on fine-root and ectomycorrhizal biomass were investigated in a forest ecosystem dominated by Pinus oaxacana located in Oaxaca, Mexico. Root cores were collected during both the wet and dry seasons of 1998 and 1999 from three sites subjected to different forest management treatments in 1990 and assessed for total fine-root biomass and ectomycorrhizal-root biomass. Additionally, a bioassay experiment with P. oaxacana seedlings was conducted to assess the ectomycorrhizal inoculum potential of the soil for each of the three stands. Results indicated that biomasses of both fine roots and ectomycorrhizal roots were reduced by almost 60% in the drought year compared to the nondrought year. There were no significant differences in ectomycorrhizal and fine-root biomass between the wet and dry seasons. Further, the proportion of total root biomass consisting of ectomycorrhizal roots did not vary between years or seasons. These results suggest that both total fine-root biomass and ectomycorrhizal-root biomass are strongly affected by severe drought in these high-elevation tropical pine forests, and that these responses outweigh seasonal effects. Forest management practices in these tropical pine forests should consider the effects of drought on the capacity of P. oaxacana to maintain sufficient levels of ectomycorrhizae especially when there is a potential for synergistic interactions between multiple disturbances that may lead to more severe stress in the host plant and subsequent reductions in ectomycorrhizal colonization.

  10. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China.

    PubMed

    Dai, Erfu; Wu, Zhuo; Ge, Quansheng; Xi, Weimin; Wang, Xiaofan

    2016-11-01

    In the past three decades, our global climate has been experiencing unprecedented warming. This warming has and will continue to significantly influence the structure and function of forest ecosystems. While studies have been conducted to explore the possible responses of forest landscapes to future climate change, the representative concentration pathways (RCPs) scenarios under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) have not been widely used in quantitative modeling research of forest landscapes. We used LANDIS-II, a forest dynamic landscape model, coupled with a forest ecosystem process model (PnET-II), to simulate spatial interactions and ecological succession processes under RCP scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively. We also modeled a control scenario of extrapolating current climate conditions to examine changes in distribution and aboveground biomass (AGB) among five different forest types for the period of 2010-2100 in Taihe County in southern China, where subtropical coniferous plantations dominate. The results of the simulation show that climate change will significantly influence forest distribution and AGB. (i) Evergreen broad-leaved forests will expand into Chinese fir and Chinese weeping cypress forests. The area percentages of evergreen broad-leaved forests under RCP2.6, RCP4.5, RCP8.5 and the control scenarios account for 18.25%, 18.71%, 18.85% and 17.46% of total forest area, respectively. (ii) The total AGB under RCP4.5 will reach its highest level by the year 2100. Compared with the control scenarios, the total AGB under RCP2.6, RCP4.5 and RCP8.5 increases by 24.1%, 64.2% and 29.8%, respectively. (iii) The forest total AGB increases rapidly at first and then decreases slowly on the temporal dimension. (iv) Even though the fluctuation patterns of total AGB will remain consistent under various future climatic scenarios, there will be certain responsive differences among various forest types.

  11. Estimation of Regional Forest Aboveground Biomass Combining Icesat-Glas Waveforms and HJ-1A/HSI Hyperspectral Imageries

    NASA Astrophysics Data System (ADS)

    Xing, Yanqiu; Qiu, Sai; Ding, Jianhua; Tian, Jing

    2016-06-01

    Estimation of forest aboveground biomass (AGB) is a critical challenge for understanding the global carbon cycle because it dominates the dynamics of the terrestrial carbon cycle. Light Detection and Ranging (LiDAR) system has a unique capability for estimating accurately forest canopy height, which has a direct relationship and can provide better understanding to the forest AGB. The Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) is the first polarorbiting LiDAR instrument for global observations of Earth, and it has been widely used for extracting forest AGB with footprints of nominally 70 m in diameter on the earth's surface. However, the GLAS footprints are discrete geographically, and thus it has been restricted to produce the regional full coverage of forest AGB. To overcome the limit of discontinuity, the Hyper Spectral Imager (HSI) of HJ-1A with 115 bands was combined with GLAS waveforms to predict the regional forest AGB in the study. Corresponding with the field investigation in Wangqing of Changbai Mountain, China, the GLAS waveform metrics were derived and employed to establish the AGB model, which was used further for estimating the AGB within GLAS footprints. For HSI imagery, the Minimum Noise Fraction (MNF) method was used to decrease noise and reduce the dimensionality of spectral bands, and consequently the first three of MNF were able to offer almost 98% spectral information and qualified to regress with the GLAS estimated AGB. Afterwards, the support vector regression (SVR) method was employed in the study to establish the relationship between GLAS estimated AGB and three of HSI MNF (i.e. MNF1, MNF2 and MNF3), and accordingly the full covered regional forest AGB map was produced. The results showed that the adj.R2 and RMSE of SVR-AGB models were 0.75 and 4.68 t hm-2 for broadleaf forests, 0.73 and 5.39 t hm-2 for coniferous forests and 0.71 and 6.15 t hm-2 for mixed forests respectively. The

  12. [Effects of aboveground and belowground competition between grass and tree on elm seedlings growth in Horqin Sandy Land].

    PubMed

    Tang, Yi; Jiang, De-ming; Chen, Zhuo; Toshio, Oshida

    2011-08-01

    Elm sparse woodland steppe plays an important role in vegetation restoration and landscape protection in Horqin Sandy Land. In this paper, a two-factor and two-level field experiment was conducted to explore the effects of aboveground and belowground competition between grass and tree on the growth of elm seedlings in the Sandy Land. Five aspects were considered, i.e., seedling biomass, belowground biomass/aboveground biomass, stem height, ratio of root to stem, and leaf number. For the one-year-old elm seedlings, their biomass showed a trend of no competition > aboveground competition > full competition > belowground competition, belowground biomass / aboveground biomass showed a trend of belowground competition > full competition > no competition > aboveground competition, stem height showed a trend of aboveground competition > no competition > full competition > belowground competition, root/stem ratio showed a trend of belowground competition > full competition > no competition > aboveground competition, and leaf number showed a trend of aboveground competition > no competition > belowground competition > full competition. Belowground competition had significant effects on the growth of one-year-old elm seedlings, while aboveground competition did not have. Neither belowground competition nor aboveground competition had significant effects on the growth of two-year-old elm seedlings. It was suggested that in Horqin Sandy Land, grass affected the growth of elm seedlings mainly via below-ground competition, but the belowground competition didn' t affect the resource allocation of elm seedlings. With the age increase of elm seedlings, the effects of grass competition on the growth of elm seedlings became weaker.

  13. Root biomass and soil δ13C in C3 and C4 grasslands along a precipitation gradient

    NASA Astrophysics Data System (ADS)

    Pau, S.; Angelo, C. L.

    2014-12-01

    Many studies have investigated the distribution of C3 and C4 grasses along climatic gradients because they illustrate complex interactions between abiotic and biotic controls on ecosystem functions. Yet few studies have examined belowground components of these distributions, which may present very different patterns compared to aboveground measures. In this study, we surveyed grass species cover and collected soil and root samples from field plots at 100 - 150 m elevation intervals along a climatic gradient in Hawai'i. We examined how the relationship between soil carbon isotopic composition (δ13C), a proxy for C4 productivity and dominance, and % C4 cover changed along a climatic gradient. Results showed that δ13C underpredicted C4 dominance in wetter sites. Indeed, the relationship between % C4 cover and soil δ13C became more negative with increasing mean annual precipitation (MAP) based on a linear mixed-effects model (F 1,34 = 12.25, P < 0.01). Soil δ13C in wetter sites indicated a larger C3 contribution than estimated by aboveground cover, which was in part due to C3 root biomass increasing (P < 0.05) whereas C4 root biomass did not change along the precipitation gradient. C3 and C4 grasses appear to allocate disproportionately belowground, thus a different understanding of C4 ecological dominance may emerge when considering both above and belowground components. Our results show that belowground allocation and interpretation of soil δ13C need to be more carefully considered in global vegetation and carbon models and paleoecological reconstructions of C4 dominance.

  14. [Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kintze (Arecaceae) at a palm shrub community on the Marambaia beach ridge, Rio de Janeiro, Brazil].

    PubMed

    de Menezes, L F; de Araujo, D S

    2000-02-01

    Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kuntze (Arecaceae) along five topographic profiles perpendicular to the ocean was examined in a palm scrub community on Marambaia beach ridge, Rio de Janeiro State, Brazil. Aerial biomass was positively correlated with distance from the sea (F = 39.57; R2 = 0.69; P < 0.01) as was detritus cover (F = 525.92; R2 = 0.92; P < 0.01). A. arenaria growth is closely related to the topography of the beach area. Dense populations of this palm enrich the soil by increasing organic matter under the plants through dead leaf material. This promotes the accumulation of nutrients and the creation of micro-climates that favor the establishment of other species.

  15. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides

    PubMed Central

    Sánchez-Vilas, Julia; Bermúdez, Raimundo; Retuerto, Rubén

    2012-01-01

    Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the

  16. Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data

    NASA Astrophysics Data System (ADS)

    Behera, M. D.; Tripathi, P.; Mishra, B.; Kumar, Shashi; Chitale, V. S.; Behera, Soumit K.

    2016-01-01

    Mechanisms to mitigate climate change in tropical countries such as India require information on forest structural components i.e., biomass and carbon for conservation steps to be implemented successfully. The present study focuses on investigating the potential use of a one time, QuadPOL ALOS PALSAR L-band 25 m data to estimate above-ground biomass (AGB) using a water cloud model (WCM) in a wildlife sanctuary in India. A significant correlation was obtained between the SAR-derived backscatter coefficient (σ°) and the field measured AGB, with the maximum coefficient of determination for cross-polarized (HV) σ° for Shorea robusta, and the weakest correlation was observed with co-polarized (HH) σ° for Tectona grandis forests. The biomass of S. robusta and that of T. grandis were estimated on the basis of field-measured data at 444.7 ± 170.4 Mg/ha and 451 ± 179.4 Mg/ha respectively. The mean biomass values estimated using the WCM varied between 562 and 660 Mg/ha for S. robusta; between 590 and 710 Mg/ha for T. grandis using various polarized data. Our results highlighted the efficacy of one time, fully polarized PALSAR data for biomass and carbon estimate in a dense forest.

  17. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species), indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type. PMID:25717334

  18. Characterizing uncertainties of the national-scale forest gross aboveground biomass (AGB) loss estimate: a case study of the Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Tyukavina, A.; Stehman, S.; Potapov, P.; Turubanova, S.; Baccini, A.; Goetz, S. J.; Laporte, N. T.; Houghton, R. A.; Hansen, M.

    2013-12-01

    Modern remote sensing techniques enable the mapping and monitoring of aboveground biomass (AGB) carbon stocks without relying on extensive in situ measurements. The Democratic Republic of the Congo (DRC) is among the countries where a national forest inventory (NFI) has yet to be established due to a lack of infrastructure and political instability. We demonstrate a method for producing national-scale gross AGB loss estimates and quantifying uncertainty of the estimates using remotely sensed-derived forest cover loss and biomass carbon density data. Forest cover type and loss were characterized using published Landsat-based data sets and related to LIDAR-derived biomass data from the Geoscience Laser Altimeter System (GLAS). We produced two gross AGB loss estimates for the DRC for the last decade (2000-2010): a conservative estimate accounting for classification errors in the 60-m resolution FACET forest cover change product, and a maximal estimate that also took into consideration omitted change at the 30m spatial resolution. Omitted disturbances were largely related to smallholder agriculture, the detection of which is scale-dependent. The use of LIDAR data as a substitute for NFI data to estimate AGB loss based on Landsat-derived activity data was demonstrated. Comparisons of our forest cover loss and AGB estimates with published studies raise the issue of scale in forest cover change mapping and its impact on carbon stock change estimation using remotely sensed data.

  19. RELATING FINE ROOT BIOMASS TO SOIL AND CLIMATE CONDITIONS IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    The additive contribution of fine root biomass for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) to the stand average fine root biomass were estimated for eight conifer stands in the Pacific Northwest. Base...

  20. Increasing native, but not exotic, biodiversity increases aboveground productivity in ungrazed and intensely grazed grasslands.

    PubMed

    Isbell, Forest I; Wilsey, Brian J

    2011-03-01

    Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.

  1. Evaluating Post-fire Ecosystem Effects in Tussock Tundra of the Seward Peninsula: Characterizing Above-ground Biomass Accumulation, Soil Nutrient Pools, and Foliar Nitrogen.

    NASA Astrophysics Data System (ADS)

    Hollingsworth, T. N.; Mack, M. C.; Breen, A. L.

    2014-12-01

    Over the last century in the circumpolar north, changes in vegetation include shrub cover expansion and shifts in tree line. Invasion of tundra by trees and shrubs may be further facilitated by wildfire disturbance, which creates opportunities for establishment where recruitment is otherwise rare. Even moderate increases in warm-season temperatures are predicted to increase the likelihood of tundra fires. Understanding the consequences of a change in fire regime are complicated by the fact that there are relatively few large recent fires to study. However, the Seward Peninsula is a region that currently experiences more frequent and large fires than other tundra regions in Arctic Alaska. In this tundra region, there are areas of overlapping burns dating back to the 1970s. Using a chronosequence approach, we looked at post-fire biomass accumulation as well as foliar and soil C and N. Our experimental design incorporated sites that showed no evidence of recent burning, sites that burned in 1971, 1997, 2002, and 2011 as well as sites that burned multiple times over the last 30 years. We found that fire had a significant effect on total biomass and shrub basal area in tussock tundra. Our site that burned in 2011 had the lowest total biomass, about half of the biomass of our unburned site. However, our results indicated the site that burned in 1971 had over double the aboveground biomass and more soil N than the unburned site. We found that sites that repeatedly burned since 1971 were very similar in biomass to unburned tundra. This suggests that repeat fires keep a post-fire site at unburned levels of biomass. However, in these repeat fire sites, foliar C/N was ~25% greater and soil C and N was ~50% less than in unburned tundra. These results indicate that repeat fires are potentially causing nitrogen loss that not likely to be replenished into the system. As tundra fires become more frequent prediction of post-fire ecosystem effects is critical due to impacts on

  2. Estimating woody aboveground biomass in an area of agroforestry using airborne light detection and ranging and compact airborne spectrographic imager hyperspectral data: individual tree analysis incorporating tree species information

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Liu, Liangyun; Peng, Dailiang; Liu, Xinjie; Zhang, Su; Wang, Yingjie

    2016-07-01

    Until now, there have been only a few studies that have made estimates of the woody aboveground biomass (AGB) in an area of agroforestry using remote sensing technology. The woody AGB density was estimated using individual tree analysis (ITA) that incorporated tree species information using a combination of airborne light detection and ranging (LiDAR) and compact airborne spectrographic imagery acquired over a typical agroforestry in northwestern China. First, a series of improved LiDAR processing algorithms was applied to achieve individual tree segmentation, and accurate plot-level canopy heights and crown diameters were obtained. The individual tree species were then successfully classified using both spectral and shape characteristics with an overall accuracy of 0.97 and a kappa coefficient of 0.85. Finally, the tree-level AGB (kg) was estimated based on the ITA; the AGB density (Mg/ha) was then upscaled based on the tree-level AGB values. It is concluded that, compared with the commonly used area-based method combining LiDAR and spectral metrics [root mean square error (RMSE)=19.58 Mg/ha], the ITA method performs better at estimating AGB density (RMSE=10.56 Mg/ha). The tree species information also improved the accuracy of the AGB estimation even though the species are not well diversified in this study area.

  3. Estimation of Aboveground Biomass in Alpine Forests: A Semi-Empirical Approach Considering Canopy Transparency Derived from Airborne LiDAR Data

    PubMed Central

    Jochem, Andreas; Hollaus, Markus; Rutzinger, Martin; Höfle, Bernhard

    2011-01-01

    In this study, a semi-empirical model that was originally developed for stem volume estimation is used for aboveground biomass (AGB) estimation of a spruce dominated alpine forest. The reference AGB of the available sample plots is calculated from forest inventory data by means of biomass expansion factors. Furthermore, the semi-empirical model is extended by three different canopy transparency parameters derived from airborne LiDAR data. These parameters have not been considered for stem volume estimation until now and are introduced in order to investigate the behavior of the model concerning AGB estimation. The developed additional input parameters are based on the assumption that transparency of vegetation can bemeasured by determining the penetration of the laser beams through the canopy. These parameters are calculated for every single point within the 3D point cloud in order to consider the varying properties of the vegetation in an appropriate way. Exploratory Data Analysis (EDA) is performed to evaluate the influence of the additional LiDAR derived canopy transparency parameters for AGB estimation. The study is carried out in a 560 km2 alpine area in Austria, where reference forest inventory data and LiDAR data are available. The investigations show that the introduction of the canopy transparency parameters does not change the results significantly according to R2 (R2 = 0.70 to R2 = 0.71) in comparison to the results derived from, the semi-empirical model, which was originally developed for stem volume estimation. PMID:22346577

  4. Estimation of aboveground biomass in alpine forests: a semi-empirical approach considering canopy transparency derived from airborne LiDAR data.

    PubMed

    Jochem, Andreas; Hollaus, Markus; Rutzinger, Martin; Höfle, Bernhard

    2011-01-01

    In this study, a semi-empirical model that was originally developed for stem volume estimation is used for aboveground biomass (AGB) estimation of a spruce dominated alpine forest. The reference AGB of the available sample plots is calculated from forest inventory data by means of biomass expansion factors. Furthermore, the semi-empirical model is extended by three different canopy transparency parameters derived from airborne LiDAR data. These parameters have not been considered for stem volume estimation until now and are introduced in order to investigate the behavior of the model concerning AGB estimation. The developed additional input parameters are based on the assumption that transparency of vegetation can be measured by determining the penetration of the laser beams through the canopy. These parameters are calculated for every single point within the 3D point cloud in order to consider the varying properties of the vegetation in an appropriate way. Exploratory Data Analysis (EDA) is performed to evaluate the influence of the additional LiDAR derived canopy transparency parameters for AGB estimation. The study is carried out in a 560 km(2) alpine area in Austria, where reference forest inventory data and LiDAR data are available. The investigations show that the introduction of the canopy transparency parameters does not change the results significantly according to R(2) (R(2) = 0.70 to R(2) = 0.71) in comparison to the results derived from, the semi-empirical model, which was originally developed for stem volume estimation.

  5. Temporal changes in allocation and partitioning of new carbon as (11)C elicited by simulated herbivory suggest that roots shape aboveground responses in Arabidopsis.

    PubMed

    Ferrieri, Abigail P; Agtuca, Beverly; Appel, Heidi M; Ferrieri, Richard A; Schultz, Jack C

    2013-02-01

    Using the short-lived isotope (11)C (t(1/2) = 20.4 min) as (11)CO(2), we captured temporal changes in whole-plant carbon movement and partitioning of recently fixed carbon into primary and secondary metabolites in a time course (2, 6, and 24 h) following simulated herbivory with the well-known defense elicitor methyl jasmonate (MeJA) to young leaves of Arabidopsis (Arabidopsis thaliana). Both (11)CO(2) fixation and (11)C-photosynthate export from the labeled source leaf increased rapidly (2 h) following MeJA treatment relative to controls, with preferential allocation of radiolabeled resources belowground. At the same time, (11)C-photosynthate remaining in the aboveground sink tissues showed preferential allocation to MeJA-treated, young leaves, where it was incorporated into (11)C-cinnamic acid. By 24 h, resource allocation toward roots returned to control levels, while allocation to the young leaves increased. This corresponded to an increase in invertase activity and the accumulation of phenolic compounds, particularly anthocyanins, in young leaves. Induction of phenolics was suppressed in sucrose transporter mutant plants (suc2-1), indicating that this phenomenon may be controlled, in part, by phloem loading at source leaves. However, when plant roots were chilled to 5°C to disrupt carbon flow between above- and belowground tissues, source leaves failed to allocate resources belowground or toward damaged leaves following wounding and MeJA treatment to young leaves, suggesting that roots may play an integral role in controlling how plants respond defensively aboveground.

  6. The Allometry of Coarse Root Biomass: Log-Transformed Linear Regression or Nonlinear Regression?

    PubMed Central

    Lai, Jiangshan; Yang, Bo; Lin, Dunmei; Kerkhoff, Andrew J.; Ma, Keping

    2013-01-01

    Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR) on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR) is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees. PMID:24116197

  7. Aboveground biomass allocation of ponderosa pine along an elevational gradient: An analog for response to climate change

    SciTech Connect

    Callaway, R.M.; DeLucia, E.H.; Schlesinger, W.H. Duke Univ., Durham, NC )

    1993-06-01

    Predictions of CO[sub 2]-enhanced growth for adult trees are primarily based on leaf-level assimilation responses and improved growth rates of seedlings and saplings. Plant growth may be more dependent on biomass allocation than on rates of assimilation, but predictions have not incorporated the effects of temperature on biomass reallocation among autotrophic and heterotrophic tissues and whole-plant carbon balance. We measured biomass allocation of Pinus ponderosa on hydrothermally altered andesite in montane and desert climates, thus substrate was held constant while climate varied. Trees from montane climates supported higher leaf mass per cross-sectional sapwood area (functional conducting xylem) than trees from desert climates, suggesting that a functional response to climate had occurred. Our results also indicate that sapwood mass:leaf mass ratios of P. ponderosa may increase [approx] 50% with a 5[degrees]C change. in mean growing season temperature, approximately the difference between our montane and desert sites. Such an increase in sapwood:leaf ratio may partially offset predicted CO[sub 2]-enhancement effects and substantially reduce whole-plant carbon balance. Biomass allocation responses must be incorporated into growth-response models used to predict fluctuations in forest productivity with changes in climate and atmospheric CO[sub 2] concentration.

  8. Root growth and plant biomass in Lolium perenne exploring a nutrient-rich patch in soil.

    PubMed

    Nakamura, Ryoji; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-11-01

    We investigated soil exploration by roots and plant growth in a heterogeneous environment to determine whether roots can selectively explore a nutrient-rich patch, and how nutrient heterogeneity affects biomass allocation and total biomass before a patch is reached. Lolium perenne L. plants were grown in a factorial experiment with combinations of fertilization (heterogeneous and homogeneous) and day of harvest (14, 28, 42, or 56 days after transplanting). The plant in the heterogeneous treatment was smaller in its mean total biomass, and allocated more biomass to roots. The distributions of root length and root biomass in the heterogeneous treatment did not favor the nutrient-rich patch, and did not correspond to the patchy distribution of inorganic nitrogen. Specific root length (length/biomass) was higher and root elongation was more extensive both laterally and vertically in the heterogeneous treatment. These characteristics may enable plants to acquire nutrients efficiently and increase the probability of encountering nutrient-rich patches in a heterogeneous soil. However, heterogeneity of soil nutrients would hold back plant growth before a patch was reached. Therefore, although no significant selective root placement in the nutrient-rich patch was observed, plant growth before reaching nutrient-rich patches differed between heterogeneous and homogeneous environments.

  9. Effect of seven years of experimental drought on the aboveground biomass storage of an eastern Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    da Costa, Antonio Carlos Lola; Galbraith, David; Almeida, Samuel; Fisher, Rosie; Phillips, Oliver; Metcalfe, Daniel; Levy, Peter; Portela, Bruno; da Costa, Mauricio; Meir, Patrick

    2010-05-01

    At least one climate model predicts severe reductions of rainfall over Amazonia during this century. Long-term throughfall exclusion (TFE) experiments represent the best available means to investigate the resilience of the Amazon rainforest to such droughts. Results are presented from a 7-year TFE study at Caxiuanã National Forest, eastern Amazonia. We focus on the impacts of the drought on tree mortality, wood production and aboveground carbon storage. Tree mortality in the TFE plot over the experimental period was 2.5% yr-1, compared to 1.25% yr-1 in a nearby Control plot experiencing normal rainfall. Differences in stem mortality between plots were greatest in the largest (> 40 cm dbh) size class (4.1% yr-1 in the TFE and 1.4% yr-1 in the Control). Wood production in the TFE plot was approximately 30% lower than in the Control plot. Together, these changes resulted in a loss of 37.8 ± 2.0 Mg C ha-1 (~ 20%) in the TFE plot (2002-2008), whereas the Control plot was essentially carbon neutral(change of - 0.2 ± 1.0 Mg C ha-1). These results are remarkably consistent with those from another TFE (at Tapajós National Forest), suggesting that Amazonian forests may respond to prolonged drought in a predictable manner.

  10. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; Kauffman, Jobriath; Prisley, Stephen

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  11. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species.

    PubMed

    Liu, Daijun; Ogaya, Romà; Barbeta, Adrià; Yang, Xiaohong; Peñuelas, Josep

    2015-11-01

    Climate change is predicted to increase the aridity in the Mediterranean Basin and severely affect forest productivity and composition. The responses of forests to different timescales of drought, however, are still poorly understood because extreme and persistent moderate droughts can produce nonlinear responses in plants. We conducted a rainfall-manipulation experiment in a Mediterranean forest dominated by Quercus ilex, Phillyrea latifolia, and Arbutus unedo in the Prades Mountains in southern Catalonia from 1999 to 2014. The experimental drought significantly decreased forest aboveground-biomass increment (ABI), tended to increase the litterfall, and decreased aboveground net primary production throughout the 15 years of the study. The responses to the experimental drought were highly species-specific. A. unedo suffered a significant reduction in ABI, Q. ilex experienced a decrease during the early experiment (1999-2003) and in the extreme droughts of 2005-2006 and 2011-2012, and P. latifolia was unaffected by the treatment. The drought treatment significantly increased branch litterfall, especially in the extremely dry year of 2011, and also increased overall leaf litterfall. The drought treatment reduced the fruit production of Q. ilex, which affected seedling recruitment. The ABIs of all species were highly correlated with SPEI in early spring, whereas the branch litterfalls were better correlated with summer SPEIs and the leaf and fruit litterfalls were better correlated with autumn SPEIs. These species-specific responses indicated that the dominant species (Q. ilex) could be partially replaced by the drought-resistant species (P. latifolia). However, the results of this long-term study also suggest that the effect of drought treatment has been dampened over time, probably due to a combination of demographic compensation, morphological and physiological acclimation, and epigenetic changes. However, the structure of community (e.g., species composition

  12. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

    PubMed

    Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R

    2016-12-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.

  13. Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents - how different are co-occurring savanna and forest formations?

    NASA Astrophysics Data System (ADS)

    Veenendaal, E. M.; Torello-Raventos, M.; Feldpausch, T. R.; Domingues, T. F.; Gerard, F.; Schrodt, F.; Saiz, G.; Quesada, C. A.; Djagbletey, G.; Ford, A.; Kemp, J.; Marimon, B. S.; Marimon-Junior, B. H.; Lenza, E.; Ratter, J. A.; Maracahipes, L.; Sasaki, D.; Sonke, B.; Zapfack, L.; Villarroel, D.; Schwarz, M.; Yoko Ishida, F.; Gilpin, M.; Nardoto, G. B.; Affum-Baffoe, K.; Arroyo, L.; Bloomfield, K.; Ceca, G.; Compaore, H.; Davies, K.; Diallo, A.; Fyllas, N. M.; Gignoux, J.; Hien, F.; Johnson, M.; Mougin, E.; Hiernaux, P.; Killeen, T.; Metcalfe, D.; Miranda, H. S.; Steininger, M.; Sykora, K.; Bird, M. I.; Grace, J.; Lewis, S.; Phillips, O. L.; Lloyd, J.

    2015-05-01

    Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna-forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna-forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three continents coexistence

  14. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter

    PubMed Central

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen

    2017-01-01

    Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial “DOK.” We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0–0.25, 0.25–0.5, 0.5–0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and

  15. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter.

    PubMed

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen

    2017-01-01

    Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial "DOK." We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0-0.25, 0.25-0.5, 0.5-0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations

  16. Reply to Comment on 'A first map of tropical Africa's above-ground biomass derived from satellite imagery'

    NASA Astrophysics Data System (ADS)

    Baccini, A.; Goetz, S. J.; Laporte, N.; Sun, M.; Dong, H.

    2011-10-01

    Biomass mapping using satellite imagery is a rapidly evolving field that has been greatly facilitated in recent years by the advent of LiDAR remote sensing coupled with co-located field measurements. The biomass map of Africa that we published in 2008 did not take direct advantage of coincident field and LiDAR measurements, as our more recent efforts have. The criticisms of our earlier map by Mitchard et al (2011 Environ. Res. Lett. 6 049001) are duly noted and worthwhile, although they are also limited in several respects that we describe. Most notably, they assess our map with field data sets that are only representative of a subset of conditions across the study domain, thus they not only inadequately characterize undisturbed tropical forest regions but also the diverse disturbance dynamics that are captured in satellite imagery. We point out the limitations of their assessment and focus on a way forward, moving beyond both inadequate field sampling and remote sensing to an approach the captures the full range of dynamics by directly coupling field and satellite measurements.

  17. Response of aboveground biomass and diversity to nitrogen addition – a five-year experiment in semi-arid grassland of Inner Mongolia, China

    PubMed Central

    He, Kejian; Qi, Yu; Huang, Yongmei; Chen, Huiying; Sheng, Zhilu; Xu, Xia; Duan, Lei

    2016-01-01

    Understanding the response of the plant community to increasing nitrogen (N) deposition is helpful for improving pasture management in semi-arid areas. We implemented a 5-year N addition experiment in a Stipa krylovii steppe of Inner Mongolia, northern China. The aboveground biomass (AGB) and species richness were measured annually. Along with the N addition levels, the species richness declined significantly, and the species composition changed noticeably. However, the total AGB did not exhibit a noticeable increase. We found that compensatory effects of the AGB occurred not only between the grasses and the forbs but also among Gramineae species. The plant responses to N addition, from the community to species level, lessened in dry years compared to wet or normal years. The N addition intensified the reduction of community productivity in dry years. Our study indicated that the compensatory effects of the AGB among the species sustained the stability of grassland productivity. However, biodiversity loss resulting from increasing N deposition might lead the semi-arid grassland ecosystem to be unsustainable, especially in dry years. PMID:27573360

  18. Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schöngart, J.; Arieira, J.; Felfili Fortes, C.; Cezarine de Arruda, E.; Nunes da Cunha, C.

    2011-11-01

    In this study we use allometric models combined with tree ring analysis to estimate carbon stocks and sequestration in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in central South America. In four 1-ha plots in stands characterized by the pioneer tree species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ≥10 cm diameter at breast height, D) have been performed and converted to estimates of AGWB by two allometric models using three independent parameters (D, tree height H and wood density ρ). We perform a propagation of measurement errors to estimate uncertainties in the estimates of AGWB. Carbon stocks of AGWB vary from 7.8 ± 1.5 to 97.2 ± 14.4 Mg C ha-1 between the four stands. From models relating tree ages determined by dendrochronological techniques to C-stocks in AGWB we derived estimates for C-sequestration which differs from 0.50 ± 0.03 to 3.34 ± 0.31 Mg C ha-1 yr-1. Maps based on geostatistic techniques indicate the heterogeneous spatial distribution of tree ages and C-stocks of the four studied stands. This distribution is the result of forest dynamics due to the colonizing and retreating of V. divergens and other species associated with pluriannual wet and dry episodes in the Pantanal, respectively. Such information is essential for the management of the cultural landscape of the Pantanal wetlands.

  19. Response of aboveground biomass and diversity to nitrogen addition – a five-year experiment in semi-arid grassland of Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    He, Kejian; Qi, Yu; Huang, Yongmei; Chen, Huiying; Sheng, Zhilu; Xu, Xia; Duan, Lei

    2016-08-01

    Understanding the response of the plant community to increasing nitrogen (N) deposition is helpful for improving pasture management in semi-arid areas. We implemented a 5-year N addition experiment in a Stipa krylovii steppe of Inner Mongolia, northern China. The aboveground biomass (AGB) and species richness were measured annually. Along with the N addition levels, the species richness declined significantly, and the species composition changed noticeably. However, the total AGB did not exhibit a noticeable increase. We found that compensatory effects of the AGB occurred not only between the grasses and the forbs but also among Gramineae species. The plant responses to N addition, from the community to species level, lessened in dry years compared to wet or normal years. The N addition intensified the reduction of community productivity in dry years. Our study indicated that the compensatory effects of the AGB among the species sustained the stability of grassland productivity. However, biodiversity loss resulting from increasing N deposition might lead the semi-arid grassland ecosystem to be unsustainable, especially in dry years.

  20. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.

    PubMed

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-11-03

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.

  1. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests

    PubMed Central

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-01-01

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117

  2. Conspecific and Heterospecific Aboveground Herbivory Both Reduce Preference by a Belowground Herbivore.

    PubMed

    Milano, N J; Barber, N A; Adler, L S

    2015-04-01

    Insect herbivores damage plants both above- and belowground, and interactions in each realm can influence the other via shared hosts. While effects of leaf damage on aboveground interactions have been well-documented, studies examining leaf damage effects on belowground interactions are limited, and mechanisms for these indirect interactions are poorly understood. We examined how leaf herbivory affects preference of root-feeding larvae [Acalymma vittatum F. (Coleoptera: Chrysomelidae)] in cucumber (Cucumis sativus L.). We manipulated leaf herbivory using conspecific adult A. vittatum and heterospecific larval Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) herbivores in the greenhouse and the conspecific only in the field, allowing larvae to choose between roots of damaged and undamaged plants. We also examined whether leaf herbivory induced changes in defensive cucurbitacin C in leaves and roots. We hypothesized that induced changes in roots would deter larvae, and that effects would be stronger for damage by conspecifics than the unrelated caterpillar because the aboveground damage could be a cue to plants indicating future root damage by the same species. In both the greenhouse and field, plants with damaged leaves recruited significantly fewer larvae to their roots than undamaged plants. Effects of conspecific and heterospecific damage did not differ. Leaf damage did not induce changes in leaf or root cucurbitacin C, but did reduce root biomass. While past work has suggested that systemic induction by aboveground herbivory increases resistance in roots, our results suggest that decreased preference by belowground herbivores in this system may be because of reduced root growth.

  3. Assessing the influence of return density on estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Manuri, Solichin; Andersen, Hans-Erik; McGaughey, Robert J.; Brack, Cris

    2017-04-01

    The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of

  4. [Fine root biomass and production of four vegetation types in Loess Plateau, China].

    PubMed

    Deng, Qiang; Li, Ting; Yuan, Zhi-You; Jiao, Feng

    2014-11-01

    Fine roots (≤ 2 mm) play a major role in biogeochemical cycling in ecosystems. By the methods of soil cores and ingrowth soil cores, we studied the biomass and annual production of fine roots in 0-40 cm soil layers of four main vegetation types, i. e. , Robinia pseudoacacia plantation, deciduous shrubs, abandoned grassland, and Artemisia desertorum community in Loess Plateau, China. The spatial patterns of fine root biomass and production were negatively associated with latitudes. The fine root biomass in the 0-40 cm soil layer was in the order of deciduous shrubs (220 g · m(-2)), R. pseudoacacia plantation (163 g · m(-2)), abandoned grassland (162 g · m(-2)) and A. desertorum community (79 g · m(-2)). The proportion of ≤ 1 mm fine root biomass (74.1%) in the 0-40 cm soil layer of abandoned grassland was significantly higher than those in the other three vegetation types. The fine root biomass of the four vegetation types was mainly distributed in the 0-10 cm soil layer and decreased with soil depth. The proportion of fine root biomass (44.1%) in the 0-10 cm soil layer of abandoned grassland was significantly higher than those in other three vegetation types. The fine root productions of four vegetation types were in the order of abandoned grassland (315 g · m(-2) · a(-1)) > deciduous shrubs (249 g · m(-2) a(-1)) > R. pseudoacacia plantation (219 g · m(-2) · a(-1)) > A. desertorum community (115 g · m(-2) · a(-1)), and mainly concentrated in the 0-10 cm top soil layer and decreased with the soil depth. The proportion of the annual production (40.4%) in the 0-10 cm soil layer was the highest in abandoned grassland. Fine roots of abandoned grassland turned over faster than those from the other three vegetation types.

  5. Estimating aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus using data from the Forest Inventory and Analysis program, Landsat, and LANDFIRE

    USGS Publications Warehouse

    Chen, X.; Liu, S.; Zhu, Z.; Vogelmann, J.; Li, Z.; Ohlen, D.

    2011-01-01

    The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fire-induced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High

  6. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the

  7. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome

    PubMed Central

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID

  8. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.

  9. Optimizing the number of training areas for modeling above-ground biomass with ALS and multispectral remote sensing in subtropical Nepal

    NASA Astrophysics Data System (ADS)

    Rana, Parvez; Gautam, Basanta; Tokola, Timo

    2016-07-01

    Remote sensing-based inventories of above-ground forest biomass (AGB) require a set of training plots representative of the area to be studied, the collection of which is the most expensive part of the analysis. These are time-consuming and costly because the large variety in forest conditions requires more plots to adequately capture this variability. A field campaign in general is challenging and is hampered by the complex topographic conditions, limited accessibility, steep mountainous terrains which increase labor efforts and costs. In addition it is also depend on the ratio between size of study area and number of training plots. In this study, we evaluate the number of training areas (sample size) required to estimate AGB for an area in the southern part of Nepal using airborne laser scanning (ALS), RapidEye and Landsat data. Three experiments were conducted: (i) AGB model performance, based on all the field training plots; (ii) reduction of the sample size, based on the ALS metrics and the AGB distribution; and (iii) prediction of the optimal number of training plots, based on the correlation between the remote sensing and field data. The AGB model was fitted using the sparse Bayesian method. AGB model performance was validated using an independent validation dataset. The effect of the strategies for reducing the sample size was readily apparent for the ALS-based AGB prediction, but the RapidEye and Landsat sensor data failed to capture any such effect. The results indicate that adequate coverage of the variability in tree height and density was an important condition for selecting the training plots. In addition, the ALS-based AGB prediction required the smallest number of training plots and was also quite stable with a small number of field plots.

  10. Sensitivity of Backscatter Intensity of ALOS/PALSAR to Above-ground Biomass and Other Biophysical Parameters of Boreal Forests in Alaska and Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Hayashi, M.; Kim, Y.; Ishii, R.; Kobayashi, H.; Shoyama, K.; Adachi, M.; Takahashi, A.; Saigusa, N.; Ito, A.

    2012-12-01

    For the better understanding of the carbon cycle in the global environment, investigations on the spatio-temporal variation of the carbon stock which is stored as vegetation biomass is important. The backscatter intensity of "Phased Array type L-band Synthetic Aperture Radar (PALSAR)" onboard the satellite "Advanced Land Observing Satellite (ALOS)" provides us the information which is applicable to estimate the forest above-ground biomass (AGB). This study examines the sensitivity of the backscatter intensity of ALOS/PALSAR to the forest AGB and other biophysical parameters (tree height, tree diameter at breast height (DBH), and tree stand density) for boreal forests in two geographical regions of Alaska and Kushiro, northern Japan, and compares the sensitivities in two regions. In Alaska, a forest survey was executed in the south-north transect (about 300 km long) along a trans-Alaska pipeline which profiles the ecotone from the boreal forest to tundra in 2007. Forest AGBs and other biophysical parameters at 29 forests along the transect were measured by Bitterlich method. In Kushiro, a forest survey was carried out at 42 forests in 2011 and those parameters were similarly obtained by Bitterlich method. 20 and 2 scenes of ALOS/PALSAR FBD Level 1.5 data that cover the regions in Alaska and Kushiro, respectively, were collected and mosaicked. Backscatter intensities of ALOS/PALSAR in HH (horizontally polarized transmitted and horizontally polarized received) and HV (horizontally polarized transmitted and vertically polarized received) modes were compared with the forest AGB and other biophysical parameters. The intensity generally increased with the increase of those biophysical parameters in both HV and HH modes, but the intensity in HV mode generally had a stronger correlation to those parameters than in HH mode in both Alaska and Kushiro. The HV intensity had strong correlation to the forest AGB and DBH, while weak correlation to the tree stand density in Alaska

  11. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    USGS Publications Warehouse

    Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  12. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    PubMed Central

    Reich, Peter B.; Luo, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics. PMID:25225412

  13. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    PubMed

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  14. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.

    PubMed

    Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta

    2008-10-01

    Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.

  15. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    PubMed

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  16. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests

    PubMed Central

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer. PMID:26047358

  17. Estimation of Aboveground Biomass Change for Tropical Deciduous Forest in Bago Yoma, Myanmar between year 2000 and 2014 using Landsat Images and Ground Measurements

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Wynn, K. Z.; Ryu, Y.

    2015-12-01

    Even with recently increased awareness of the environmental conservation, the degradation of tropical forests are still one of the major sources of global carbon emission. Especially in Myanmar, the pressure to develop natural forest is growing rapidly after the change from socialism to capitalism in 2010. As the initial step of the forest conservation, the aboveground biomass(AGB) of South Zarmani Reserved Forest in Bago Yoma region were estimated using Landsat 8 OLI after the evaluation with 100 sample plot measurements. Multiple linear regression (MLR) model of band values and their principal component analysis (PCA) model were developed to estimate the AGB using the spectral reflectance from Landsat images and elevation as the input variables. The MLR model had r2 = 0.43, RMSE = 60.2 tons/ha, relative RMSE = 70.1%, Bias = -9.1 tons/ha, Bias (%) = -10.6%, and p < 0.0001, while the PCA model showed r2 = 0.45, RMSE = 55.1 tons/ha, relative RMSE = 64.1%, Bias = -8.3 tons/ha, Bias (%) = -9.7%, and p < 0.0001. The AGB maps of the study area were generated based on both MLR and PCA models. The estimated mean AGB values were 74.74±22.3 tons/ha and 73.04±17.6 tons/ha and the total AGB of the study area are about 5.7 and 5.6 million tons from MLR and PCA, respectively. Then, Landsat 7 ETM+ image acquired on 2000 was also used to compare the changing of AGB between year 2000 and 2014. The estimated mean AGB value generated from the Landsat 7 ETM+ image was 78.9±16.9 tons/ha, which is substantially decreased about 7.5% compared to year 2014. The reduction of AGB increased with closeness to village, however AGB in distant areas showed steady increases. In conclusion, we were able to generate solid regression models from Landsat 8 OLI image after ground truth and two regression models gave us very similar AGB estimation (less than 2%) of the study area. We were also able to estimate the changing of AGB from year 2000 to 2014 of South Zarmani Reserved Forest, Bago Yoma

  18. Characterization of Scots pine stump-root biomass as feed-stock for gasification.

    PubMed

    Eriksson, Daniel; Weiland, Fredrik; Hedman, Henry; Stenberg, Martin; Öhrman, Olov; Lestander, Torbjörn A; Bergsten, Urban; Öhman, Marcus

    2012-01-01

    The main objective was to explore the potential for gasifying Scots pine stump-root biomass (SRB). Washed thin roots, coarse roots, stump heartwood and stump sapwood were characterized (solid wood, milling and powder characteristics) before and during industrial processing. Non-slagging gasification of the SRB fuels and a reference stem wood was successful, and the gasification parameters (synthesis gas and bottom ash characteristics) were similar. However, the heartwood fuel had high levels of extractives (≈19%) compared to the other fuels (2-8%) and thereby ≈16% higher energy contents but caused disturbances during milling, storage, feeding and gasification. SRB fuels could be sorted automatically according to their extractives and moisture contents using near-infrared spectroscopy, and their amounts and quality in forests can be predicted using routinely collected stand data, biomass functions and drill core analyses. Thus, SRB gasification has great potential and the proposed characterizations exploit it.

  19. IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass.

    PubMed

    Fierro-Coronado, Rosario Alicia; Quiroz-Figueroa, Francisco Roberto; García-Pérez, Luz María; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Maldonado-Mendoza, Ignacio Eduardo

    2014-10-01

    Rhizobacteria promote and have beneficial effects on plant growth, making them useful to agriculture. Nevertheless, the rhizosphere of the chickpea plant has not been extensively examined. The aim of the present study was to select indole-3-acetic acid (IAA) producing rhizobacteria from the rhizosphere of chickpea plants for their potential use as biofertilizers. After obtaining a collection of 864 bacterial isolates, we performed a screen using the Salkowski reaction for the presence of auxin compounds (such as IAA) in bacterial Luria-Bertani supernatant (BLBS). Our results demonstrate that the Salkowski reaction has a greater specificity for detecting IAA than other tested auxins. Ten bacterial isolates displaying a wide range of auxin accumulation were selected, producing IAA levels of 5 to 90 μmol/L (according to the Salkowski reaction). Bacterial isolates were identified on the basis of 16S rDNA partial sequences: 9 isolates belonged to Enterobacter, and 1 isolate was classified as Serratia. The effect of BLBS on root morphology was evaluated in Arabidopsis thaliana. IAA production by rhizobacteria was confirmed by means of a DR5::GFP construct that is responsive to IAA, and also by HPLC-GC/MS. Finally, we observed that IAA secreted by rhizobacteria (i) modified the root architecture of A. thaliana, (ii) caused an increase in chickpea root biomass, and (iii) activated the green fluorescent protein (GFP) reporter gene driven by the DR5 promoter. These findings provide evidence that these novel bacterial isolates may be considered as putative plant-growth-promoting rhizobacteria modifying root architecture and increasing root biomass.

  20. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-10-01

    The successful launch of the 30-m Landsat-8 Operational Land Imager (OLI) pushbroom sensor offers a new primary data source necessary for aboveground biomass (AGB) estimation, especially in resource-limited environments. In this work, the strength and performance of Landsat-8 OLI image derived texture metrics (i.e. texture measures and texture ratios) in estimating plantation forest species AGB was investigated. It was hypothesized that the sensor's pushbroom design, coupled with the presence of refined spectral properties, enhanced radiometric resolution (i.e. from 8 bits to 12 bits) and improved signal-to-noise ratio have the potential to provide detailed spectral information necessary for significantly strengthening AGB estimation in medium-density forest canopies. The relationship between image texture metrics and measurements of forest attributes can be used to help characterize complex forests, and enhance fine vegetation biophysical properties, a difficult challenge when using spectral vegetation indices especially in closed canopies. This study examines the prospects of using Landsat-8 OLI sensor derived texture metrics for estimating AGB for three medium-density plantation forest species in KwaZulu Natal, South Africa. In order to achieve this objective, three unique data pre-processing techniques were tested (analysis I: Landsat-8 OLI raw spectral-bands vs. raw texture bands; analysis II: Landsat-8 OLI raw spectral-band ratios vs. texture band ratios and analysis III: Landsat-8 OLI derived vegetation indices vs. texture band ratios). The landsat-8 OLI derived texture parameters were examined for robustness in estimating AGB using linear regression, stepwise-multiple linear regression and stochastic gradient boosting regression models. The results of this study demonstrated that all texture parameters particularly band texture ratios calculated using a 3 × 3 window size, could enhance AGB estimation when compared to simple spectral reflectance, simple

  1. Distribution, biomass, and dynamics of roots in a revegetated stand of Caragana korshinskii in the Tengger Desert, northwestern China.

    PubMed

    Zhang, Zhi-Shan; Li, Xin-Rong; Liu, Li-Chao; Jia, Rong-Liang; Zhang, Jing-Guang; Wang, Tao

    2009-01-01

    A field experiment was conducted to investigate root distribution, biomass, and seasonal dynamics in a revegetated stand of Caragana korshinskii Kom. in the Tengger Desert. We used soil profile trenches, soil core sampling, and minirhizotron measurements to measure root dynamics. Results showed that the roots of C. korshinskii were distributed vertically in the uppermost portion of the soil profile, especially the coarse roots, which were concentrated in the upper 0.4 m. The horizontal distribution of the root length and weight of C. korshinskii coarse roots was concentrated within 0.6 and 0.4 m of the trunk, respectively. The lateral distribution of fine roots was more uniform than coarse roots. Total-root and fine-root biomasses were 662.4 +/- 45.8 and 361.1 +/- 10.3 g m(-2), accounting for about two-thirds and one-third of the total plant biomass, respectively. Fine-root turnover is closely affected by soil water, and both of these parameters showed synchronously seasonal trends during the growing season in 2004 and 2005. The interaction between fine-root turnover and soil water resulted in the fine-root length densities and soil water content in the 0- to 1.0-m soil layer having similar trends, but the soil water peaks occurred before those of the fine-root length densities.

  2. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  3. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    PubMed

    Raich, James W; Clark, Deborah A; Schwendenmann, Luitgard; Wood, Tana E

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  4. The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2016-09-01

    Reliable and accurate mapping and extraction of key forest indicators of ecosystem development and health, such as aboveground biomass (AGB) and aboveground carbon stocks (AGCS) is critical in understanding forests contribution to the local, regional and global carbon cycle. This information is critical in assessing forest contribution towards ecosystem functioning and services, as well as their conservation status. This work aimed at assessing the applicability of the high resolution 8-band WorldView-2 multispectral dataset together with environmental variables in quantifying AGB and aboveground carbon stocks for three forest plantation species i.e. Eucalyptus dunii (ED), Eucalyptus grandis (EG) and Pinus taeda (PT) in uMgeni Catchment, South Africa. Specifically, the strength of the Worldview-2 sensor in terms of its improved imaging agilities is examined as an independent dataset and in conjunction with selected environmental variables. The results have demonstrated that the integration of high resolution 8-band Worldview-2 multispectral data with environmental variables provide improved AGB and AGCS estimates, when compared to the use of spectral data as an independent dataset. The use of integrated datasets yielded a high R2 value of 0.88 and RMSEs of 10.05 t ha-1 and 5.03 t C ha-1 for E. dunii AGB and carbon stocks; whereas the use of spectral data as an independent dataset yielded slightly weaker results, producing an R2 value of 0.73 and an RMSE of 18.57 t ha-1 and 09.29 t C ha-1. Similarly, high accurate results (R2 value of 0.73 and RMSE values of 27.30 t ha-1 and 13.65 t C ha-1) were observed from the estimation of inter-species AGB and carbon stocks. Overall, the findings of this work have shown that the integration of new generation multispectral datasets with environmental variables provide a robust toolset required for the accurate and reliable retrieval of forest aboveground biomass and carbon stocks in densely forested terrestrial ecosystems.

  5. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage

    PubMed Central

    Tomlinson, Kyle W.; van Langevelde, Frank; Ward, David; Bongers, Frans; da Silva, Dulce Alves; Prins, Herbert H. T.; de Bie, Steven; Sterck, Frank J.

    2013-01-01

    Background and Aims Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species. Methods Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g). Key Results Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits. Conclusions Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant

  6. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    PubMed

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  7. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    PubMed

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.

  8. Quantitative, nondestructive estimates of coarse root biomass in a temperate pine forest using 3-D ground-penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Molon, Michelle; Boyce, Joseph I.; Arain, M. Altaf

    2017-01-01

    Coarse root biomass was estimated in a temperate pine forest using high-resolution (1 GHz) 3-D ground-penetrating radar (GPR). GPR survey grids were acquired across a 400 m2 area with varying line spacing (12.5 and 25 cm). Root volume and biomass were estimated directly from the 3-D radar volume by using isometric surfaces calculated with the marching cubes algorithm. Empirical relations between GPR reflection amplitude and root diameter were determined for 14 root segments (0.1-10 cm diameter) reburied in a 6 m2 experimental test plot and surveyed at 5-25 cm line spacing under dry and wet soil conditions. Reburied roots >1.4 cm diameter were detectable as continuous root structures with 5 cm line separation. Reflection amplitudes were strongly controlled by soil moisture and decreased by 40% with a twofold increase in soil moisture. GPR line intervals of 12.5 and 25 cm produced discontinuous mapping of roots, and GPR coarse root biomass estimates (0.92 kgC m-2) were lower than those obtained previously with a site-specific allometric equation due to nondetection of vertical roots and roots <1.5 cm diameter. The results show that coarse root volume and biomass can be estimated directly from interpolated 3-D GPR volumes by using a marching cubes approach, but mapping of roots as continuous structures requires high inline sampling and line density (<5 cm). The results demonstrate that 3-D GPR is viable approach for estimating belowground carbon and for mapping tree root architecture. This methodology can be applied more broadly in other disciplines (e.g., archaeology and civil engineering) for imaging buried structures.

  9. Comparing the above-ground component biomass estimates of western junipers using airborne and full-waveform terrestrial laser scanning data

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Glenn, N. F.; Spaete, L.; Hardegree, S. P.

    2012-12-01

    With the rapid expansion into shrub steppe and grassland ecosystems over the last century, western juniper (Juniperus occidentalis var. occidentalis Hook) is becoming a major component of the regional carbon pool in the Intermountain West. Understanding how biomass is allocated across individual tree components is necessary to understand the uncertainties in biomass estimates and more accurately quantify biomass and carbon dynamics in these ecosystems. Estimates of component biomass are also important for canopy fuel load assessment and predicting rangeland fire behavior. Airborne LiDAR can capture vegetation structure over larger scales, but the high crown penetration and sampling density of terrestrial laser scanner (TLS) instruments can better capture tree components. In this study, we assessed the ability of airborne LiDAR to estimate biomass of tree components of western juniper with validation data from field measured tees and a full-waveform TLS. Sixteen juniper trees (height range 1.5-10 m) were randomly selected using a double sampling strategy from different height classes in the Reynolds Creek Experimental Watershed in the Owyhee Mountains, southwestern Idaho, USA. Each tree was scanned with a full-waveform TLS, and the dry biomass of each component (foliage, branches and main stem) were measured by destructive harvesting of the trees. We compare the allometric relationships of biomass estimates of the tree components obtained from field-measured trees and TLS-based estimates with the estimates from discrete-return airborne-LiDAR based estimates.

  10. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forests: results from a Dynamic Vegetation Model

    NASA Astrophysics Data System (ADS)

    Delbart, N.; Ciais, P.; Chave, J.; Viovy, N.; Malhi, Y.; Le Toan, T.

    2010-04-01

    Dynamic Vegetation Models (DVMs) simulate energy, water and carbon fluxes between the ecosystem and the atmosphere, between the vegetation and the soil, and between plant organs. They also estimate the potential biomass of a forest in equilibrium having grown under a given climate and atmospheric CO2 level. In this study, we evaluate the above ground woody biomass (AGWB) and the above ground woody Net Primary Productivity (NPPAGW) simulated by the DVM ORCHIDEE across Amazonian forests, by comparing the simulation results to a large set of ground measurements (220 sites for biomass, 104 sites for NPPAGW). We found that the NPPAGW is on average overestimated by 63%. We also found that the fraction of biomass that is lost through mortality is 85% too high. These model biases nearly compensate each other to give an average simulated AGWB close to the ground measurement average. Nevertheless, the simulated AGWB spatial distribution differs significantly from the observations. Then, we analyse the discrepancies in biomass with regards to discrepancies in NPPAGW and those in the rate of mortality. When we correct for the error in NPPAGW, the errors on the spatial variations in AGWB are exacerbated, showing clearly that a large part of the misrepresentation of biomass comes from a wrong modelling of mortality processes. Previous studies showed that Amazonian forests with high productivity have a higher mortality rate than forests with lower productivity. We introduce this relationship, which results in strongly improved modelling of biomass and of its spatial variations. We discuss the possibility of modifying the mortality modelling in ORCHIDEE, and the opportunity to improve forest productivity modelling through the integration of biomass measurements, in particular from remote sensing.

  11. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Delbart, N.; Ciais, P.; Chave, J.; Viovy, N.; Malhi, Y.; Le Toan, T.

    2010-10-01

    Dynamic Vegetation Models (DVMs) simulate energy, water and carbon fluxes between the ecosystem and the atmosphere, between the vegetation and the soil, and between plant organs. They also estimate the potential biomass of a forest in equilibrium having grown under a given climate and atmospheric CO2 level. In this study, we evaluate the Above Ground Woody Biomass (AGWB) and the above ground woody Net Primary Productivity (NPPAGW) simulated by the DVM ORCHIDEE across Amazonian forests, by comparing the simulation results to a large set of ground measurements (220 sites for biomass, 104 sites for NPPAGW). We found that the NPPAGW is on average overestimated by 63%. We also found that the fraction of biomass that is lost through mortality is 85% too high. These model biases nearly compensate each other to give an average simulated AGWB close to the ground measurement average. Nevertheless, the simulated AGWB spatial distribution differs significantly from the observations. Then, we analyse the discrepancies in biomass with regards to discrepancies in NPPAGW and those in the rate of mortality. When we correct for the error in NPPAGW, the errors on the spatial variations in AGWB are exacerbated, showing clearly that a large part of the misrepresentation of biomass comes from a wrong modelling of mortality processes. Previous studies showed that Amazonian forests with high productivity have a higher mortality rate than forests with lower productivity. We introduce this relationship, which results in strongly improved modelling of biomass and of its spatial variations. We discuss the possibility of modifying the mortality modelling in ORCHIDEE, and the opportunity to improve forest productivity modelling through the integration of biomass measurements, in particular from remote sensing.

  12. Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands

    PubMed Central

    Jagodzinski, Andrzej M.; Ziółkowski, Jędrzej; Warnkowska, Aleksandra; Prais, Hubert

    2016-01-01

    There are few data on fine root biomass and morphology change in relation to stand age. Based on chronosequences for beech (9–140 years old), oak (11–140 years) and alder (4–76 years old) we aimed to examine how stand age affects fine root biomass and morphology. Soil cores from depths of 0–15 cm and 16–30 cm were used for the study. In contrast to previously published studies that suggested that maximum fine root biomass is reached at the canopy closure stage of stand development, we found almost linear increases of fine root biomass over stand age within the chronosequences. We did not observe any fine root biomass peak in the canopy closure stage. However, we found statistically significant increases of mean fine root biomass for the average individual tree in each chronosequence. Mean fine root biomass (0–30 cm) differed significantly among tree species chronosequences studied and was 4.32 Mg ha-1, 3.71 Mg ha-1 and 1.53 Mg ha-1, for beech, oak and alder stands, respectively. The highest fine root length, surface area, volume and number of fine root tips (0–30 cm soil depth), expressed on a stand area basis, occurred in beech stands, with medium values for oak stands and the lowest for alder stands. In the alder chronosequence all these values increased with stand age, in the beech chronosequence they decreased and in the oak chronosequence they increased until ca. 50 year old stands and then reached steady-state. Our study has proved statistically significant negative relationships between stand age and specific root length (SRL) in 0–30 cm soil depth for beech and oak chronosequences. Mean SRLs for each chronosequence were not significantly different among species for either soil depth studied. The results of this study indicate high fine root plasticity. Although only limited datasets are currently available, these data have provided valuable insight into fine root biomass and morphology of beech, oak and alder stands. PMID:26859755

  13. Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands.

    PubMed

    Jagodzinski, Andrzej M; Ziółkowski, Jędrzej; Warnkowska, Aleksandra; Prais, Hubert

    2016-01-01

    There are few data on fine root biomass and morphology change in relation to stand age. Based on chronosequences for beech (9-140 years old), oak (11-140 years) and alder (4-76 years old) we aimed to examine how stand age affects fine root biomass and morphology. Soil cores from depths of 0-15 cm and 16-30 cm were used for the study. In contrast to previously published studies that suggested that maximum fine root biomass is reached at the canopy closure stage of stand development, we found almost linear increases of fine root biomass over stand age within the chronosequences. We did not observe any fine root biomass peak in the canopy closure stage. However, we found statistically significant increases of mean fine root biomass for the average individual tree in each chronosequence. Mean fine root biomass (0-30 cm) differed significantly among tree species chronosequences studied and was 4.32 Mg ha(-1), 3.71 Mg ha(-1) and 1.53 Mg ha(-1), for beech, oak and alder stands, respectively. The highest fine root length, surface area, volume and number of fine root tips (0-30 cm soil depth), expressed on a stand area basis, occurred in beech stands, with medium values for oak stands and the lowest for alder stands. In the alder chronosequence all these values increased with stand age, in the beech chronosequence they decreased and in the oak chronosequence they increased until ca. 50 year old stands and then reached steady-state. Our study has proved statistically significant negative relationships between stand age and specific root length (SRL) in 0-30 cm soil depth for beech and oak chronosequences. Mean SRLs for each chronosequence were not significantly different among species for either soil depth studied. The results of this study indicate high fine root plasticity. Although only limited datasets are currently available, these data have provided valuable insight into fine root biomass and morphology of beech, oak and alder stands.

  14. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat.

    PubMed

    Chen, Dandan; Richardson, Terese; Chai, Shoucheng; Lynne McIntyre, C; Rae, Anne L; Xue, Gang-Ping

    2016-10-01

    A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil.

  15. Fire and the distribution and uncertainty of carbon sequestered as above-ground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks

    USGS Publications Warehouse

    Lutz, James A.; Matchett, John R.; Tarnay, Leland W.; Smith, Douglas F.; Becker, Kendall M.L.; Furniss, Tucker J.; Brooks, Matthew L.

    2017-01-01

    Fire is one of the principal agents changing forest carbon stocks and landscape level distributions of carbon, but few studies have addressed how accurate carbon accounting of fire-killed trees is or can be. We used a large number of forested plots (1646), detailed selection of species-specific and location-specific allometric equations, vegetation type maps with high levels of accuracy, and Monte Carlo simulation to model the amount and uncertainty of aboveground tree carbon present in tree species (hereafter, carbon) within Yosemite and Sequoia & Kings Canyon National Parks. We estimated aboveground carbon in trees within Yosemite National Park to be 25 Tg of carbon (C) (confidence interval (CI): 23–27 Tg C), and in Sequoia & Kings Canyon National Park to be 20 Tg C (CI: 18–21 Tg C). Low-severity and moderate-severity fire had little or no effect on the amount of carbon sequestered in trees at the landscape scale, and high-severity fire did not immediately consume much carbon. Although many of our data inputs were more accurate than those used in similar studies in other locations, the total uncertainty of carbon estimates was still greater than ±10%, mostly due to potential uncertainties in landscape-scale vegetation type mismatches and trees larger than the ranges of existing allometric equations. If carbon inventories are to be meaningfully used in policy, there is an urgent need for more accurate landscape classification methods, improvement in allometric equations for tree species, and better understanding of the uncertainties inherent in existing carbon accounting methods.

  16. COSMOS Sensors in Agricultural Ecosystems: Accounting for Rapid Changes in Biomass in Order to Monitor Root Zone Water

    NASA Astrophysics Data System (ADS)

    Hornbuckle, B. K.; Irvin, S.; Franz, T. E.

    2013-12-01

    the transient and quasi-static hydrogen pools vary significantly over the course of a growing season. We expect that in order to use neutron detectors as soil moisture sensors we must certainly account for the growth of crops. However, we do not know whether all crops can be treated as simply a uniform layer of hydrogen or if it necessary to model specific crop geometries. Furthermore, we do not know if current allometric relationships are adequate to estimate root mass within the sensing depth of a neutron detector from above-ground measurements of vegetation. We will attempt to answer these questions by using periodic measurements of soil water in the top 30 cm and above-ground biomass within the footprint of a COSMOS probe for two crops with distinctive geometries: corn (stem-dominated) and soybean (leaf-dominated).

  17. Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants.

    PubMed

    Lovelli, Stella; Scopa, Antonio; Perniola, Michele; Di Tommaso, Teodoro; Sofo, Adriano

    2012-02-15

    Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na(+) and Cl(-) in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψ(w)) decreased from an average value of approximately -1.0 MPa, measured on control plants and S10, to -1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g(-1) fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.

  18. A comparative analysis of extended water cloud model and backscatter modelling for above-ground biomass assessment in Corbett Tiger Reserve

    NASA Astrophysics Data System (ADS)

    Kumar, Yogesh; Singh, Sarnam; Chatterjee, R. S.; Trivedi, Mukul

    2016-04-01

    Forest biomass acts as a backbone in regulating the climate by storing carbon within itself. Thus the assessment of forest biomass is crucial in understanding the dynamics of the environment. Traditionally the destructive methods were adopted for the assessment of biomass which were further advanced to the non-destructive methods. The allometric equations developed by destructive methods were further used in non-destructive methods for the assessment, but they were mostly applied for woody/commercial timber species. However now days Remote Sensing data are primarily used for the biomass geospatial pattern assessment. The Optical Remote Sensing data (Landsat8, LISS III, etc.) are being used very successfully for the estimation of above ground biomass (AGB). However optical data is not suitable for all atmospheric/environmental conditions, because it can't penetrate through clouds and haze. Thus Radar data is one of the alternate possible ways to acquire data in all-weather conditions irrespective of weather and light. The paper examines the potential of ALOS PALSAR L-band dual polarisation data for the estimation of AGB in the Corbett Tiger Reserve (CTR) covering an area of 889 km2. The main focus of this study is to explore the accuracy of Polarimetric Scattering Model (Extended Water Cloud Model (EWCM) with respect to Backscatter model in the assessment of AGB. The parameters of the EWCM were estimated using the decomposition components (Raney Decomposition) and the plot level information. The above ground biomass in the CTR ranges from 9.6 t/ha to 322.6 t/ha.

  19. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses.

    PubMed

    Wilson, Gail W T; Hickman, Karen R; Williamson, Melinda M

    2012-07-01

    Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.

  20. Weed management, training, and irrigation practices for organic production of trailing blackberry: III. Accumulation and removal of aboveground biomass, carbon, and nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various production practices on biomass, C, and nutrient content, accumulation, and loss were assessed over 2 years in a mature organic trailing blackberry (Rubus L. subgenus Rubus, Watson) production system. Treatments included two irrigation options (no irrigation after harvest and ...

  1. Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area

    NASA Astrophysics Data System (ADS)

    Cintra, B. B. L.; Schietti, J.; Emillio, T.; Martins, D.; Moulatlet, G.; Souza, P.; Levis, C.; Quesada, C. A.; Schöngart, J.

    2013-04-01

    The ongoing demand for information on forest productivity has increased the number of permanent monitoring plots across the Amazon. Those plots, however, do not comprise the whole diversity of forest types in the Amazon. The complex effects of soil, climate and hydrology on the productivity of seasonally waterlogged interfluvial wetland forests are still poorly understood. The presented study is the first field-based estimate for tree ages and wood biomass productivity in the vast interfluvial region between the Purus and Madeira rivers. We estimate stand age and wood biomass productivity by a combination of tree-ring data and allometric equations for biomass stocks of eight plots distributed along 600 km in the Purus-Madeira interfluvial area that is crossed by the BR-319 highway. We relate stand age and wood biomass productivity to hydrological and edaphic conditions. Mean productivity and stand age were 5.6 ± 1.1 Mg ha-1 yr-1 and 102 ± 18 yr, respectively. There is a strong relationship between tree age and diameter, as well as between mean diameter increment and mean wood density within a plot. Regarding the soil hydromorphic properties we find a positive correlation with wood biomass productivity and a negative relationship with stand age. Productivity also shows a positive correlation with the superficial phosphorus concentration. In addition, superficial phosphorus concentration increases with enhanced soil hydromorphic condition. We raise three hypotheses to explain these results: (1) the reduction of iron molecules on the saturated soils with plinthite layers close to the surface releases available phosphorous for the plants; (2) the poor structure of the saturated soils creates an environmental filter selecting tree species of faster growth rates and shorter life spans and (3) plant growth on saturated soil is favored during the dry season, since there should be low restrictions for soil water availability.

  2. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  3. Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in West Tennessee, USA

    SciTech Connect

    Garten, Jr, C. T.; Smith, Jeffery L.; Tyler, Donald D.; Amonette, James E.; Bailey, Vanessa L.; Brice, D. J.; Castro, H. F.; Graham, Robin L.; Gunderson, C. A.; Izaurralde, Roberto C.; Jardine, Philip M.; Jastrow, J. D.; Kerley, M. K.; Matamala, R.; Mayes, M. A.; Metting, F. B.; Miller, R. M.; Moran, K. K.; Post, W. M.; Sands, Ronald D.; Schadt, Christopher W.; Phillips, J. R.; Thomson, Allison M.; Vugteveen, T.; West, T. O.; Wullschleger, Stan D.

    2010-02-15

    Switchgrass is a potential bioenergy crop that could promote soil C sequestration in some environments. We compared four cultivars on a well-drained Alfisol to test for differences in biomass, C, and N dynamics during the fourth growing season. There was no difference (P > 0.05) among cultivars and no significant cultivar x time interaction in analyses of dry mass, C stocks, or N stocks in aboveground biomass and surface litter. At the end of the growing season, mean (±SE) aboveground biomass was 2.1±0.13 kg m-2, and surface litter dry mass was approximately 50% of aboveground biomass. Prior to harvest, the live root:shoot biomass ratio was 0.76. There was no difference (P > 0.05) among cultivars for total biomass, C, and N stocks belowground. Total belowground biomass (90-cm soil depth) as well as coarse (greater than or equal to 1 mm diameter) and fine (< 1 mm diameter) live root biomass increased from April to October. Dead roots were less than 7% of live root biomass to a depth of 90 cm. Net production of total belowground biomass (505 ±132 g m-2) occurred in the last half of the growing season. The increase in total live belowground biomass (426 ±139 g m-2) was more or less evenly divided among rhizomes, coarse, and fine roots. The N budget for annual switchgrass production was closely balanced with 6.3 g N m-2 removed by harvest of aboveground biomass and 6.7 g N m-2 supplied by fertilization. At the location of our study in west Tennessee, intra-annual changes in biomass, C, and N stocks belowground were of greater importance to crop management for C sequestration than were differences among cultivars.

  4. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores.

    PubMed

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-09-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  5. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores

    PubMed Central

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-01-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  6. Aboveground biomass estimation using SAR-optical (Lidar, RapidEye) and field inventory datasets in Skukuza, Kruger National Park in South Africa

    NASA Astrophysics Data System (ADS)

    Onyango Odipo, Victor; Hüttich, Christian; Luck, Wolfgang; Schmullius, Christiane

    2015-04-01

    African savanna covers approximately two-thirds of sub-saharan Africa, playing important roles as a carbon pool, habitat for mankind and wildlife, source of livelihood, an important tropical climate modifier, among other ecological roles. Sub-saharan Africa alone accounts for 25% of the tropical aboveground carbon stock (193 Gt C). Global and national level AGB estimates rely on extrapolations with regression models from few field inventories, leading in some cases, up to 100% uncertainty. Remote sensing has proven to provide reliable vegetation structural mapping, given the high spatial and temporal resolution allowing datasets to be availed in areas where ground based inventories are infeasible due to time and financial constraints. The availability of freely accessible optical remotely-sensed datasets has made this feat attainable. However, the heterogeneity of tropical savannas (co-existence of trees and grasses), coupled with erratic rainfall events and atmospheric clouds and aerosol in the tropics has made it difficult to extract biophysical properties of the savannas by solely using optical datasets. This has necessitated an assessment of synergies between active and passive remotely sensed datasets to benefit from the complementarities. In this study we assess the extent to which multi-level sub-centimeter Unmanned Aerial Vehicle (UAV) Lidar, high resolution RapidEye and microwave (ALOS PALSAR L-band and Sentinel-1 C-band) remotely sensed datasets can be used together with tree census datasets to estimate AGB within the complex southern Africa savanna ecosystem. A random forest (RF) regression model is produced which relates the Lidar canopy-height metrics (CHM) with both synthetic aperture radar (SAR) and high resolution RapidEye datasets. As a validation, we compare our results with both national and global level ABG estimates.

  7. Sampling open-top chambers and plantations for live fine-root biomass of loblolly pine. Forest Service research note

    SciTech Connect

    Zarnoch, S.J.; Marx, D.H.; Ruehle, J.L.; Baldwin, V.C.

    1993-09-08

    A soil-core sampling protocol was developed for estimating the standing crop of live fine-root biomass in young loblolly pines (Pinus taeda L.). Some of the pines were in ozone experiments in open-top chambers. Others were in young plantations. Attempts were made to find strata that would reduce the variability of estimates. With the pilot study estimates of variability, sampling designs were developed to meet specified criteria of precision. Estimates of fine-root biomass based on three soil-core sizes increased monotonically with core size.

  8. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    NASA Astrophysics Data System (ADS)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked

  9. Drought and Root Herbivory Interact to Alter the Response of Above-Ground Parasitoids to Aphid Infested Plants and Associated Plant Volatile Signals

    PubMed Central

    Tariq, Muhammad; Wright, Denis J.; Bruce, Toby J. A.; Staley, Joanna T.

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40–55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may

  10. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    PubMed

    Tariq, Muhammad; Wright, Denis J; Bruce, Toby J A; Staley, Joanna T

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be

  11. Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest.

    PubMed

    Liu, Yanchun; Liu, Shirong; Wan, Shiqiang; Wang, Jingxin; Wang, Hui; Liu, Kuan

    2017-01-01

    Fine root dynamics play a critical role in regulating carbon (C) cycling in terrestrial ecosystems. Examining responses of fine root biomass and its decomposition to altered precipitation pattern and climate warming is crucial to understand terrestrial C dynamics and its feedback to climate change. Fine root biomass and its decomposition rate were investigated in a warm temperate oak forest through a field manipulation experiment with throughfall reduction and soil warming conducted. Throughfall reduction significantly interacted with soil warming in affecting fine root biomass and its decomposition. Throughfall reduction substantially increased fine root biomass and its decomposition in unheated plots, but negative effects occurred in warmed plots. Soil warming significantly enhanced fine root biomass and its decomposition under ambient precipitation, but the opposite effects exhibited under throughfall reduction. Different responses in fine root biomass among different treatments could be largely attributed to soil total nitrogen (N), while fine root decomposition rate was more depended on microbial biomass C and N. Our observations indicate that decreased precipitation may offset the positive effect of soil warming on fine root biomass and decomposition.

  12. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).

    PubMed

    Hecht, Vera L; Temperton, Vicky M; Nagel, Kerstin A; Rascher, Uwe; Postma, Johannes A

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  13. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.)

    PubMed Central

    Hecht, Vera L.; Temperton, Vicky M.; Nagel, Kerstin A.; Rascher, Uwe; Postma, Johannes A.

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm−3) increases in the topsoil as well as specific root length (root length per root dry weight, cm g−1) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24–340 seeds m−2) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0–10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4–1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m−2 suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  14. Biosorption of Congo Red from aqueous solution onto burned root of Eichhornia crassipes biomass

    NASA Astrophysics Data System (ADS)

    Roy, Tapas Kumar; Mondal, Naba Kumar

    2015-11-01

    Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye containing waste water. In this work, adsorption of Congo Red (CR) from aqueous solution on burned root of Eichhornia crassipes (BREC) biomass was investigated. A series of batch experiments were performed utilizing BREC biomass to remove CR dye from aqueous systems. Under optimized batch conditions, the BREC could remove up to 94.35 % of CR from waste water. The effects of operating parameters such as initial concentration, pH, adsorbent dose and contact time on the adsorption of CR were analyzed using response surface methodology. The proposed quadratic model for central composite design fitted very well to the experimental data. Response surface plots were used to determine the interaction effects of main factors and optimum conditions of the process. The optimum adsorption conditions were found to be initial CR concentration = 5 mg/L-1, pH = 7, adsorbent dose = 0.125 g and contact time = 45 min. The experimental isotherms data were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherm equations and the results indicated that the Freundlich isotherm showed a better fit for CR adsorption. Thermodynamic parameters were calculated from Van't Hoff plot, confirming that the adsorption process was spontaneous and exothermic. The high CR adsorptive removal ability and regeneration efficiency of this adsorbent suggest its applicability in industrial/household systems and data generated would help in further upscaling of the adsorption process.

  15. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd.) Iljin for the Production of Biomass and Caffeic Acid Derivatives

    PubMed Central

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A.; Kiss, Anna K.

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots. PMID:25811023

  16. Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) Iljin for the production of biomass and caffeic acid derivatives.

    PubMed

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A; Kiss, Anna K; Wysokińska, Halina

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L(-1) of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS(3) and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots.

  17. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  18. Effect of nitrogen source on biomass and bioactive compound production in submerged cultures of Eleutherococcus koreanum Nakai adventitious roots.

    PubMed

    Lee, Eun-Jung; Paek, Kee-Yoeup

    2012-01-01

    Ammonium to nitrate ratios of 0:30, 5:25, 10:20, 15:15, 20:10, 25:5, and 30:0 mM were tested to determine the optimal NH(4)(+) :NO(3)(-) ratio for improving biomass and bioactive compound production in Eleutherococcus koreanum Nakai adventitious roots using 3-L bulb-type bubble bioreactors. A high ammonium nitrogen ratio had a negative effect on root growth, and the highest fresh and dry weights were obtained when NH(4)(+):NO(3)(-) ratios were 5:25 and 10:20 (mM) after 5 weeks of culture. Although the total production of eleutherosides B and E was slightly higher at the 10:20 ratio than at the 5:25 ratio (NH(4)(+):NO(3)(-)), we proposed that the optimal NH(4)(+):NO(3)(-) ratio was 5:25 mM. This ratio achieved both the highest total production of five target bioactive compounds (eleutherosides B and E, chlorogenic acid, total phenolics, and flavonoids) and the highest root biomass. Furthermore, increasing NH(4)(+):NO(3)(-) ratios to 10:20 decreased pH in the medium, interrupted the absorption of essential minerals from the culture medium, and resulted in low biomass and increased relative oxidative stress levels, which were evaluated by determining 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Therefore, nitrate rather than ammonium nitrogen was more essential not for only biomass production but also for bioactive compound production in E. koreanum adventitious root cultures. The optimal nitrogen source ratio produced 5.63 g L(-1) of biomass and 24.41 mg of the five total bioactive compounds per gram of biomass (dry weight basis). The development of such in vitro culture technology will benefit the pilot-scale production of E. koreanum-based bioactive compounds for commercialization.

  19. Soil properties and root biomass responses to prescribed burning in young Corsican pine (Pinus nigra Arn.) stands.

    PubMed

    Tufekcioglu, Aydin; Kucuk, Mehmet; Saglam, Bulent; Bilgili, Ertugrul; Altun, Lokman

    2010-05-01

    Fire is an important tool in the management of forest ecosystems. Although both prescribed and wildland fires are common in Turkey, few studies have addressed the influence of such disturbances on soil properties and root biomass dynamics. In this study, soil properties and root biomass responses to prescribed fire were investigated in 25-year-old corsican pine (Pinus nigra Arn.) stands in Kastamonu, Turkey. The stands were established by planting and were subjected to prescribed burning in July 2003. Soil respiration rates were determined every two months using soda-lime method over a two-year period. Fine (0-2 mm diameter) and small root (2-5 mm diameter) biomass were sampled approximately bimonthly using sequential coring method. Mean daily soil respiration ranged from 0.65 to 2.19 g Cm(-2) d(-1) among all sites. Soil respiration rates were significantly higher in burned sites than in controls. Soil respiration rates were correlated significantly with soil moisture and soil temperature. Fine root biomass was significantly lower in burned sites than in control sites. Mean fine root biomass values were 4940 kg ha(-1) for burned and 5450 kg ha(-1) for control sites. Soil pH was significantly higher in burned sites than in control sites in 15-35 cm soil depth. Soil organic matter content did not differ significantly between control and burned sites. Our results indicate that, depending on site conditions, fire could be used successfully as a tool in the management of forest stands in the study area.

  20. ABOVEGROUND NITROGEN USE EFFICIENCY AND ...

    EPA Pesticide Factsheets

    Long-term nitrogen (N) fertilization studies suggest shifting dominance from Spartina alterniflora to Distichlis spicata, although the underlying mechanism is unclear. A limitation on our ability to predict changes is a poor understanding of resource use under ambient conditions. The present project compares growth rates and N use dynamics between two emerging salt marsh dominants, S. alterniflora and D. spicata. We hypothesize that under ambient Narragansett Bay nutrient conditions, S. alterniflora is a more efficient user of N than D. spicata. Spartina alterniflora and D. spicata cores were collected from the field and raised in a greenhouse. Heights of all stems were measured weekly to determine growth rates. To understand N movement, a pulse of 15N was added and three cores were sacrificed each subsequent week. Live aboveground biomass was separated into stems and leaves, with leaves categorized based on their position from the top of the stem. Samples were analyzed by isotope ratio mass spectrometry to trace N accumulation in different pools over time. One week after the 15N pulse, most of the aboveground 15N was bound in the stems and the youngest leaves. Efficient nutrient transfer in photosynthetic material likely provides a stronger competitive advantage for taller plants, which are able to compete better for light. Growth rates of S. alterniflora proved to be more variable over time than that of D. spicata. A better understanding of N dynamics under am

  1. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from -20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass-temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  2. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control.

    PubMed

    Poorter, Hendrik; Niklas, Karl J; Reich, Peter B; Oleksyn, Jacek; Poot, Pieter; Mommer, Liesje

    2012-01-01

    We quantified the biomass allocation patterns to leaves, stems and roots in vegetative plants, and how this is influenced by the growth environment, plant size, evolutionary history and competition. Dose-response curves of allocation were constructed by means of a meta-analysis from a wide array of experimental data. They show that the fraction of whole-plant mass represented by leaves (LMF) increases most strongly with nutrients and decreases most strongly with light. Correction for size-induced allocation patterns diminishes the LMF-response to light, but makes the effect of temperature on LMF more apparent. There is a clear phylogenetic effect on allocation, as eudicots invest relatively more than monocots in leaves, as do gymnosperms compared with woody angiosperms. Plants grown at high densities show a clear increase in the stem fraction. However, in most comparisons across species groups or environmental factors, the variation in LMF is smaller than the variation in one of the other components of the growth analysis equation: the leaf area : leaf mass ratio (SLA). In competitive situations, the stem mass fraction increases to a smaller extent than the specific stem length (stem length : stem mass). Thus, we conclude that plants generally are less able to adjust allocation than to alter organ morphology.

  3. [Adaptive adjustment of rhizome and root system on morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged condition].

    PubMed

    Liu, Yu-fang; Chen, Shuang-lin; Li Ying-chun; Guo, Zi-wu; Li, Ying-chun; Yang, Qing-ping

    2015-12-01

    The research was to approach the growth strategy of rhizome and roots based on the morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged conditions, and provided a theoretical basis for its application for vegetation restoration in wetland and water-level fluctuation belts. The morphological characteristics, physiological and biochemical indexes of annual bamboo rhizome and roots were investigated with an experiment using individually potted P. rivalis which was treated by artificial water-logging for 3, 6, and 12 months. Accordingly the morphological characteristics, biomass allocation, nutrient absorption and balance in rhizome and roots of P. rivalis were analyzed. The results showed that there was no obvious impact of long-term water-logging on the length and diameter of rhizomes, diameter of roots in P. rivalis. The morphological characteristics of rhizome had been less affected generally under water-logging for 3 months. And less rhizomes were submerged, while the growth of roots was inhibited to some extent. Furthermore, with waterlogging time extended, submerged roots and rhizomes grew abundantly, and the roots and rhizomes in soil were promoted. Moreover for ratios of rhizome biomass in soil and water, there were no obvious variations, the same for the root biomass in soil to total biomass. The ratio of root biomass in water to total biomass and the ratio of root biomass in water to root biomass in soil both increased significantly. The results indicated that P. rivalis could adapt to waterlogged conditions gradually through growth regulation and reasonable biomass distribution. However, the activity of rhizome roots in soil decreased and the nutrient absorption was inhibited by long-term water-logging, although it had no effect on stoichiometric ratios of root nutrient in soil. The activity of rhizome root in water increased and the stoichiometric ratios adjusted adaptively to waterlogged conditions, the ratio of N

  4. Defoliation and below-ground herbivory in the grass Muhlenbergiaquadridentata : Effects on plant performance and on the root-feeder Phyllophaga sp. (Coleoptera, Melolonthidae).

    PubMed

    Morón-Ríos, A; Dirzo, Rodolfo; Jaramillo, V J

    1997-04-01

    In this study we evaluated (1) the combined effects of simulated defoliation and below-ground herbivory (BGH) on the biomass and nitrogen content of tillers and roots of the bunchgrass Muhlenbergia quadridentata and (2) the effect of defoliation on the survival of third-instar root-feeder larvae of Phyllophaga sp. The experiment was performed in a pine forest area at an altitude of 3200 m above sea level. The grass and the root-feeder species were native and dominant in the understory and in the macroarthropod root-feeder communities, respectively. Plants were established in pots in the field and were subjected to the following treatments in a factorial design: simulated defoliation (three levels) and BGH (with or without root-feeder larvae) with ten replicates per treatment. Plants were defoliated three times at 2-month intervals. The interaction between defoliation and root herbivory was significant for all components of plant biomass. In every case, light defoliation with BGH decreased live above-ground, root and total plant biomass, and the number of live tillers by more than 50% with respect to the same defoliation level without root-feeders. Plants apparently did not compensate for the carbon drain by root-feeders when a high proportion of older leaves were not removed by defoliation. Plants under heavy defoliation were not affected by the presence of root-feeders and showed a greater live/dead above-ground biomass ratio than lightly defoliated and control plants. Defoliation and BGH did not change tiller and root N concentrations but root herbivores did decrease live-tiller N content in lightly defoliated plants. Root-feeders but not defoliation decreased the root/shoot ratio by 40% and the live/dead above-ground biomass ratio by 45% through increased tiller mortality. Survivorship and final biomass of Phyllophaga sp. larvae were not affected by defoliation treatments during the 6-month study period.

  5. Belowground herbivory by insects: influence on plants and aboveground herbivores.

    PubMed

    Blossey, Bernd; Hunt-Joshi, Tamaru R

    2003-01-01

    Investigations of plant-herbivore interactions continue to be popular; however, a bias neglecting root feeders may limit our ability to understand how herbivores shape plant life histories. Root feeders can cause dramatic plant population declines, often associated with secondary stress factors such as drought or grazing. These severe impacts resulted in substantial interest in root feeders as agricultural pests and increasingly as biological weed control agents, particularly in North America. Despite logistical difficulties, establishment rates in biocontrol programs are equal or exceed those of aboveground herbivores (67.2% for aboveground herbivores, 77.5% for belowground herbivores) and root feeders are more likely to contribute to control (53.7% versus 33.6%). Models predicting root feeders would be negatively affected by competitively superior aboveground herbivores may be limited to early successional habitats or generalist root feeders attacking annual plants. In later successional habitats, root feeders become more abundant and appear to be the more potent force in driving plant performance and plant community composition. Aboveground herbivores, even at high population levels, were unable to prevent buildup of root herbivore populations and the resulting population collapse of their host plants. Significant information gaps exist about the impact of root feeders on plant physiology and secondary chemistry and their importance in natural areas, particularly in the tropics.

  6. The effect of increased air humidity on fine root and rhizome biomass and turnover of silver birch forest ecosystem - a FAHM study.

    NASA Astrophysics Data System (ADS)

    Ostonen, I.; Kupper, P.; Sõber, J.; Aosaar, J.; Varik, M.; Lõhmus, K.

    2012-04-01

    A facility for free air humidity manipulation (FAHM) was established to investigate the effect of increased air humidity on belowground biomass and turnover in silver birch (Betula pendula Roth.) forest ecosystems with respect to rising air humidity predicted for Northern Europe. Fine root and rhizomes are short-lived and recognized as the most important component contributing to below-ground C fluxes in forests. The FAHM system enables air relative humidity to be increased on average 7 units (%) over the ambient level during mist fumigation. The experimental site contains humidified (H) and control (C) plots; each plot contains sectors with diverse "forest" understory and early successional grasses. The trees were planted in 2006, humidification started in spring 2008, and soil cores to study fine root and rhizome biomass and turnover were taken in 2007, 2009 and 2010. In July 2009, total fine root and rhizome biomass was 8 tons per ha in C and 16 tons per ha in H plots. The roots of understory formed 86% in C and 93% H plots, respectively. Our preliminary data suggest that the increased humidity affected more the roots of understory plants: fine root and rhizome biomass and production increased approximately twice by increasing air humidity. However, the tendency was similar for fine root biomass and production of silver birch. Fine root turnover speeded up for both silver birch and understory roots in H plots. Hence, changes in air humidity can significantly affect forest carbon cycling.

  7. [Seasonal dynamics of quantitative and morphological traits of poplar fine roots and their differences between successive rotation plantations].

    PubMed

    Wang, Yan-ping; Xu, Tan; Zhu, Wan-rui; Wang, Qi-tong; Liu, Meng-ling; Wang, Hua-tian; Li, Chuan-rong; Dong, Yu-feng

    2016-02-01

    Based on the fine root samples of the first and second generations of poplar (Populus x euramericana ' Neva'), this study examined the response of quantitative and morphological traits of fine roots of different orders and the difference between generations. The results showed that, the quantitative traits of fine roots, such as root length, root surface area and root biomass, presented obvious seasonal variation, and the fine root traits had obvious difference among root orders. The quantitative traits of lower-order fine roots showed significant seasonal difference, and the fine root biomass increased in the growing season and then decreased significantly. The specific root length (SRL) of higher-order roots also showed significant change with season, while the root length density (RLD) and root tissue density (RTD) changed a little. The successive rotation resulted in the significant increase of root length, root biomass, SRL and RLD of 1-2 orders in the growing season. The quantitative traits of first order root significantly positively correlated with soil temperature and moisture, and significantly negatively correlated with the soil organic matter and soil available nitrogen content. However, the quantitative traits of second order root only showed significant correlation with soil nutrient content. The seasonal dynamics of poplar fine roots and the difference between successive rotation plantations implied carbon investment change of poplar to roots. Soil nutrient deficiency induced more carbon investment into roots, and this carbon allocation pattern might affect the aboveground productivity of poplar plantation.

  8. The effects of 11 yr of CO₂ enrichment on roots in a Florida scrub-oak ecosystem.

    PubMed

    Day, Frank P; Schroeder, Rachel E; Stover, Daniel B; Brown, Alisha L P; Butnor, John R; Dilustro, John; Hungate, Bruce A; Dijkstra, Paul; Duval, Benjamin D; Seiler, Troy J; Drake, Bert G; Hinkle, C Ross

    2013-11-01

    Uncertainty surrounds belowground plant responses to rising atmospheric CO₂ because roots are difficult to measure, requiring frequent monitoring as a result of fine root dynamics and long-term monitoring as a result of sensitivity to resource availability. We report belowground plant responses of a scrub-oak ecosystem in Florida exposed to 11 yr of elevated atmospheric CO₂ using open-top chambers. We measured fine root production, turnover and biomass using minirhizotrons, coarse root biomass using ground-penetrating radar and total root biomass using soil cores. Total root biomass was greater in elevated than in ambient plots, and the absolute difference was larger than the difference aboveground. Fine root biomass fluctuated by more than a factor of two, with no unidirectional temporal trend, whereas leaf biomass accumulated monotonically. Strong increases in fine root biomass with elevated CO₂ occurred after fire and hurricane disturbance. Leaf biomass also exhibited stronger responses following hurricanes. Responses after fire and hurricanes suggest that disturbance promotes the growth responses of plants to elevated CO₂. Increased resource availability associated with disturbance (nutrients, water, space) may facilitate greater responses of roots to elevated CO₂. The disappearance of responses in fine roots suggests limits on the capacity of root systems to respond to CO₂ enrichment.

  9. Acetylcholinesterase-Inhibition and Antibacterial Activity of Mondia whitei Adventitious Roots and Ex vitro-Grown Somatic Embryogenic-Biomass

    PubMed Central

    Baskaran, Ponnusamy; Kumari, Aloka; Ncube, Bhekumthetho; Van Staden, Johannes

    2016-01-01

    Mondia whitei (Hook.f.) Skeels is an important endangered medicinal and commercial plant in South Africa. In vitro propagation systems are required for biomass production and bioactivity analysis to supplement wild resources/stocks. Adventitious roots from somatic embryogenic explants using suspension culture and ex vitro-grown plants produced via somatic embryogenesis were established using different plant growth regulator treatments. The adventitious root biomass and different parts of ex vitro-grown and mother plants were used to investigate the potential for acetylcholinesterase (AChE) and antibacterial activities. Adventitious roots derived from 2.5 μM indole-3-acetic acid (IAA) treatments and ex vitro-grown plants derived from meta-topolin riboside and IAA treatments gave the best AChE and antibacterial activities. The in vitro-established M. whitei and ex vitro biomass have comparable ability to function as inhibitors of acetylcholinesterase and antibacterial agents, and can be used as potent bioresources in traditional medicine. PMID:27752244

  10. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    PubMed

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3-, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, short-term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion

  11. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain

    SciTech Connect

    Topa, M.A.

    1984-01-01

    Seedlings of pond, and loblolly pines were grown in a non-circulating, continuously-flowing solution culture under anaerobic (0.75 mg/1 O/sub 2/) conditions to determine the effects of anaerobiosis on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root was demonstrated via rhizosphere oxidation experiments using indigo-carmine dye solutions and polarography. Stem and root collar lenticels were found to be the major sites of atmospheric O/sub 2/ entry for submerged roots. Longitudinal and radial pathways for gas diffusion via intercellular spaces in the pericycle and ray parenchyma, respectively, were elucidated histologically. Lenticel and aerenchyma development, and rhizosphere oxidation in roots of anaerobically-grown sand pine seedlings were minimal. Elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term /sup 32/P uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass. Phosphorus absorption rates were negatively correlated with internal tissue phosphorus concentrations, and root and shoot biomass. 315 refs., 25 figs., 14 tabs.

  12. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii

    PubMed Central

    Das, Aparajita; Kamal, Shwet; Shakil, Najam Akhtar; Sherameti, Irena; Oelmüller, Ralf; Dua, Meenakshi; Tuteja, Narendra; Johri, Atul Kumar; Varma, Ajit

    2012-01-01

    This study was undertaken to investigate the influence of plant probiotic fungus Piriformospora indica on the medicinal plant C. forskohlii. Interaction of the C. forskohlii with the root endophyte P. indica under field conditions, results in an overall increase in aerial biomass, chlorophyll contents and phosphorus acquisition. The fungus also promoted inflorescence development, consequently the amount of p-cymene in the inflorescence increased. Growth of the root thickness was reduced in P. indica treated plants as they became fibrous, but developed more lateral roots. Because of the smaller root biomass, the content of forskolin was decreased. The symbiotic interaction of C. forskohlii with P. indica under field conditions promoted biomass production of the aerial parts of the plant including flower development. The plant aerial parts are important source of metabolites for medicinal application. Therefore we suggest that the use of the root endophyte fungus P. indica in sustainable agriculture will enhance the medicinally important chemical production. PMID:22301976

  13. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  14. Biomass Production of Hairy Roots of Artemisia annua and Arachis hypogaea in a Scaled-Up Mist Bioreactor

    PubMed Central

    Sivakumar, Ganapathy; Liu, Chunzhao; Towler, Melissa J.

    2014-01-01

    Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low-cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2–3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2–3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was μ = 0.173 day−1 with biomass yield of 12.75 g DWL−1. This exceeded that in shake flasks at μ = 0.166 day−1 and 11.10 g DWL−1. Best growth rate and biomass yield at 20 L was μ = 0.147 and 7.77 g DWL−1, which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots. PMID:20687140

  15. Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems

    USGS Publications Warehouse

    Park, B.B.; Yanai, R.D.; Fahey, T.J.; Bailey, S.W.; Siccama, T.G.; Shanley, J.B.; Cleavitt, N.L.

    2008-01-01

    Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha-1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y-1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha-1 y-1 for hardwood stands and from 0.9 to 2.3 Mg ha-1 y -1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems. ?? 2008 Springer Science+Business Media, LLC.

  16. Efficiency of neural network-based combinatorial model predicting optimal culture conditions for maximum biomass yields in hairy root cultures.

    PubMed

    Mehrotra, Shakti; Prakash, O; Khan, Feroz; Kukreja, A K

    2013-02-01

    KEY MESSAGE : ANN-based combinatorial model is proposed and its efficiency is assessed for the prediction of optimal culture conditions to achieve maximum productivity in a bioprocess in terms of high biomass. A neural network approach is utilized in combination with Hidden Markov concept to assess the optimal values of different environmental factors that result in maximum biomass productivity of cultured tissues after definite culture duration. Five hidden Markov models (HMMs) were derived for five test culture conditions, i.e. pH of liquid growth medium, volume of medium per culture vessel, sucrose concentration (%w/v) in growth medium, nitrate concentration (g/l) in the medium and finally the density of initial inoculum (g fresh weight) per culture vessel and their corresponding fresh weight biomass. The artificial neural network (ANN) model was represented as the function of these five Markov models, and the overall simulation of fresh weight biomass was done with this combinatorial ANN-HMM. The empirical results of Rauwolfia serpentina hairy roots were taken as model and compared with simulated results obtained from pure ANN and ANN-HMMs. The stochastic testing and Cronbach's α-value of pure and combinatorial model revealed more internal consistency and skewed character (0.4635) in histogram of ANN-HMM compared to pure ANN (0.3804). The simulated results for optimal conditions of maximum fresh weight production obtained from ANN-HMM and ANN model closely resemble the experimentally optimized culture conditions based on which highest fresh weight was obtained. However, only 2.99 % deviation from the experimental values could be observed in the values obtained from combinatorial model when compared to the pure ANN model (5.44 %). This comparison showed 45 % better potential of combinatorial model for the prediction of optimal culture conditions for the best growth of hairy root cultures.

  17. Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.).

    PubMed

    Jang, Geupil; Lee, Jung-Hun; Rastogi, Khushboo; Park, Suhyoung; Oh, Sang-Hun; Lee, Ji-Young

    2015-08-01

    The root serves as an essential organ in plant growth by taking up nutrients and water from the soil and supporting the rest of the plant body. Some plant species utilize roots as storage organs. Sweet potatoes (Ipomoea batatas), cassava (Manihot esculenta), and radish (Raphanus sativus), for example, are important root crops. However, how their root growth is regulated remains unknown. In this study, we characterized the relationship between cambium and radial root growth in radish. Through a comparative analysis with Arabidopsis root expression data, we identified putative cambium-enriched transcription factors in radish and analysed their expression in representative inbred lines featuring distinctive radial growth. We found that cell proliferation activities in the cambium positively correlated with radial growth and final yields of radish roots. Expression analysis of candidate transcription factor genes revealed that some genes are differentially expressed between inbred lines and that the difference is due to the distinct cytokinin response. Taken together, we have demonstrated for the first time, to the best of our knowledge, that cytokinin-dependent radial growth plays a key role in the yields of root crops.

  18. Effects of externally supplied protein on root morphology and biomass allocation in Arabidopsis

    PubMed Central

    Lonhienne, Thierry G. A.; Trusov, Yuri; Young, Anthony; Rentsch, Doris; Näsholm, Torgny; Schmidt, Susanne; Paungfoo-Lonhienne, Chanyarat

    2014-01-01

    Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses. PMID:24852366

  19. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation.

  20. Root and shoot phenologies differ on an arctic elevation gradient

    NASA Astrophysics Data System (ADS)

    Blume-Werry, G.; Milbau, A.; Kreyling, J.; Wilson, S. D.

    2012-12-01

    The length of the growing season is usually determined from aboveground phenology, but our understanding of seasonal root growth and its coupling to shoot growth remains rudimentary. In many ecosystems the majority of plant biomass is belowground, and insights into belowground growth patterns are important for predicting arctic ecosystem responses to global change. We measured root and shoot phenology, with minirhizotrons and digital photography, over the growing season in three common vegetation types along an altitude gradient in northern Sweden. In addition, soil temperature and soil moisture were measured to assess the influence of abiotic factors. The growing season belowground was 35% longer than aboveground, with shoot growth ending 2 weeks prior to root growth. The largest time lag between the end of the growing season below and above the ground (25 days) occurred in birch forest at the lowest elevation. Fine root production was more evenly distributed throughout the season in the forest compared with the higher elevations. The importance of soil temperature and photoperiod in governing root growth increased with increasing elevation. Our results show that the overall growing season length at high latitudes is severely underestimated if aboveground phenology is used as the single indicator for seasonal plant productivity. This has important implications for modeling responses of tundra ecosystems to global change, in which roots are the main source of carbon in the soil, and which play a key role in global carbon storage.

  1. Salinity influences on aboveground and belowground net primary productivity in tidal wetlands

    USGS Publications Warehouse

    Pierfelice, Kathryn N.; Graeme Lockaby, B.; Krauss, Ken W.; Conner, William H.; Noe, Gregory; Ricker, Matthew C.

    2017-01-01

    Tidal freshwater wetlands are one of the most vulnerable ecosystems to climate change and rising sea levels. However salinification within these systems is poorly understood, therefore, productivity (litterfall, woody biomass, and fine roots) were investigated on three forested tidal wetlands [(1) freshwater, (2) moderately saline, and (3) heavily salt-impacted] and a marsh along the Waccamaw and Turkey Creek in South Carolina. Mean aboveground (litterfall and woody biomass) production on the freshwater, moderately saline, heavily salt-impacted, and marsh, respectively, was 1,061, 492, 79, and 0  g m−2 year−1 versus belowground (fine roots) 860, 490, 620, and 2,128  g m−2 year−1. Litterfall and woody biomass displayed an inverse relationship with salinity. Shifts in productivity across saline sites is of concern because sea level is predicted to continue rising. Results from the research reported in this paper provide baseline data upon which coupled hydrologic/wetland models can be created to quantify future changes in tidal forest functions.

  2. High water level impedes the adaptation of Polygonum hydropiper to deep burial: responses of biomass allocation and root morphology.

    PubMed

    Pan, Ying; Xie, Yong H; Deng, Zheng M; Tang, Yue; Pan, Dong D

    2014-07-08

    Many studies have investigated the individual effects of sedimentation or inundation on the performance of wetland plants, but few have examined the combined influence of these processes. Wetland plants might show greater morphological plasticity in response to inundation than to sedimentation when these processes occur simultaneously since inundation can negate the negative effects of burial on plant growth. Here, we evaluate this hypothesis by assessing growth of the emergent macrophyte Polygonum hydropiper under flooding (0 and 40 cm) and sedimentation (0, 5, and 10 cm), separately and in combination. Deep burial and high water level each led to low oxidation-reduction potential, biomass (except for 5-cm burial), and growth of thick, short roots. These characteristics were generally more significant under high water level than under deep burial conditions. More biomass was allocated to stems in the deep burial treatments, but more to leaves in the high water level treatments. Additionally, biomass accumulation was lower and leaf mass ratio was higher in the 40-cm water level + 10-cm burial depth treatment than both separate effects. Our data indicate that inundation plays a more important role than sedimentation in determining plant morphology, suggesting hierarchical effects of environmental stressors on plant growth.

  3. [Effects of adding straw carbon source to root knot nematode diseased soil on soil microbial biomass and protozoa abundance].

    PubMed

    Zhang, Si-Hui; Lian, Jian-Hong; Cao, Zhi-Ping; Zhao, Li

    2013-06-01

    A field experiment with successive planting of tomato was conducted to study the effects of adding different amounts of winter wheat straw (2.08 g x kg(-1), 1N; 4.16 g x kg(-1), 2N; and 8.32 g x kg(-1), 4N) to the soil seriously suffered from root knot nematode disease on the soil microbial biomass and protozoa abundance. Adding straw carbon source had significant effects on the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the abundance of soil protozoa, which all decreased in the order of 4N > 2N > 1N > CK. The community structure of soil protozoa also changed significantly under straw addition. In the treatments with straw addition, the average proportion of fagellate, amoeba, and ciliates accounted for 36.0%, 59.5%, and 4.5% of the total protozoa, respectively. Under the same adding amounts of wheat straw, there was an increase in the soil MBC and MBN contents, MBC/MBN ratio, and protozoa abundance with increasing cultivation period.

  4. Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L.) Accessions

    PubMed Central

    Juraimi, Abdul Shukor; Rafii, M. Y.; Abdul Hamid, Azizah

    2015-01-01

    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m−1. Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m−1 salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m−1 salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession. PMID:25802833

  5. Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions.

    PubMed

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Abdul Hamid, Azizah

    2015-01-01

    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.

  6. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots.

    PubMed

    Benyammi, Roukia; Paris, Cédric; Khelifi-Slaoui, Majda; Zaoui, Djamila; Belabbassi, Ouarda; Bakiri, Nouara; Meriem Aci, Myassa; Harfi, Boualem; Malik, Sonia; Makhzoum, Abdullah; Desobry, Stéphane; Khelifi, Lakhdar

    2016-10-01

    Context Catharanthus roseus (L.) G. Don (Apocynaceae) is still one of the most important sources of terpene indole alkaloids including anticancer and hypertensive drugs as vincristine and vinblastine. These final compounds have complex pathway and many enzymes are involved in their biosynthesis. Indeed, ajmalicine and catharanthine are important precursors their increase can lead to enhance levels of molecules of interest. Objective This study aims at selecting the highest yield of hairy root line(s) and at identifying best times for further treatments. We study kinetics growth and alkaloids (ajmalicine and catharanthine) accumulation of three selected hairy root lines during the culture cycle in order to determine the relationship between biomass production and alkaloids accumulation. Materials and methods Comparative analysis has been carried out on three selected lines of Catharanthus roseus hairy roots (LP10, LP21 and L54) for their kinetics of growth and the accumulation of ajamalicine and catharanthine, throughout a 35-day culture cycle. The methanolic extract for each line in different times during culture cycle is analyzed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Results Maximum accumulation of the alkaloids is recorded for LP10 line in which the peak of ajmalicine and catharanthine accumulation reached to 3.8 and 4.3 mg/g dry weight (DW), respectively. This increase coincides with an exponential growth phase. Discussion and conclusion Our results suggest that the evolution of accumulation of ajmalicine and catharanthine are positively correlated with the development of the biomass growth. Significantly, for LP10 line the most promising line to continue optimizing the production of TIAs. Additionally, the end of exponential phase remains the best period for elicitor stimuli.

  7. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress.

    PubMed

    Dash, Madhumita; Yordanov, Yordan S; Georgieva, Tatyana; Tschaplinski, Timothy J; Yordanova, Elena; Busov, Victor

    2017-02-01

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) gene with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.

  8. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE PAGES

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana; ...

    2017-02-10

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  9. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

    PubMed

    Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom

    2015-07-01

    Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved

  10. Aggregated and complementary: symmetric proliferation, overyielding, and mass effects explain fine-root biomass in soil patches in a diverse temperate deciduous forest landscape.

    PubMed

    Valverde-Barrantes, Oscar J; Smemo, Kurt A; Feinstein, Larry M; Kershner, Mark W; Blackwood, Christopher B

    2015-01-01

    Few studies describe root distributions at the species level in diverse forests, although belowground species interactions and traits are often assumed to affect fine-root biomass (FRB). We used molecular barcoding to study how FRB of trees relates to soil characteristics, species identity, root diversity, and root traits, and how these relationships are affected by proximity to ecotones in a temperate forest landscape. We found that soil patch root biomass increased in response to soil resources across all species, and there was little belowground vertical or horizontal spatial segregation among species. Root traits and species relative abundance did not explain significant variation in FRB after correcting for soil fertility. A positive relationship between phylogenetic diversity and FRB indicated significant belowground overyielding attributable to local root diversity. Finally, variation in FRB explained by soil fertility and diversity was reduced near ecotones, but only because of a reduction in biomass in periodically anoxic areas. These results suggest that symmetric responses to soil properties are coupled with complementary species traits and interactions to explain variation in FRB among soil patches. In addition, landscape-level dispersal among habitats and across ecotones helps explain variation in the strength of these relationships in complex landscapes.

  11. Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2008-01-01

    ICESat/GLAS waveform data are used to estimate biomass and carbon on a 1.27 million sq km study area. the Province of Quebec, Canada, below treeline. The same input data sets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include nonstratified and stratified versions of a multiple linear model where either biomass or (square root of) biomass serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial biomass estimates of up to 0.35 Gt (range 4.942+/-0.28 Gt to 5.29+/-0.36 Gt). The results suggest that if different predictive models are used to estimate regional carbon stocks in different epochs, e.g., y2005, y2015, one might mistakenly infer an apparent aboveground carbon "change" of, in this case, 0.18 Gt, or approximately 7% of the aboveground carbon in Quebec, due solely to the use of different predictive models. These findings argue for model consistency in future, LiDAR-based carbon monitoring programs. Regional biomass estimates from the four GLAS models are compared to ground estimates derived from an extensive network of 16,814 ground plots located in southern Quebec. Stratified models proved to be more accurate and precise than either of the two nonstratified models tested.

  12. Estimating above-ground biomasss using lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Lim, Kevin S.; Treitz, Paul; Morrison, Ian; Baldwin, Ken

    2003-03-01

    Previous forest research using time-of-flight lidar suggests that there exists some quantile of the distribution of laser canopy heights that could provide an estimate of various forest biophysical properties. The results presented here not only support this theory, but also extend it by suggesting that a quantile of the distribution of all laser heights could provide estimates of aboveground biomass for forests with similar stand structure. Tolerant northern hardwood forests, composed predominantly of mature sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton), were surveyed using an ALTM 1225 (Optech Inc.) in August 2000. Field data for 49 circular plots, each 400 m2 in area, were collected in July 2000. Using site-specific allometric equations, total aboveground biomass and biomass components (i.e., stem wood, stem bark, live branches, and foliage) were derived for each plot. Three laser height metrics were derived from the lidar data: (i) maximum laser height; (ii) mean laser height; and (iii) mean laser height calculated from lidar returns filtered based on a threshold applied to the intensity return data LhIR). LhIR was identified as the best predictor of total aboveground biomass (R2 = 0.85) and biomass components (R2 between 0.84 to 0.85) when all plot types were considered.

  13. Root to shoot ratios and belowground biomass distribution for Pacific Northwest dryland crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Roots, cereal crowns, and stems growing beneath the soil surface provide important resistance to soil erosion. Understanding the amount and distribution of this material in the soil profile could provide insights into resistance to soil erosion by water and improve performance of soil erosion models...

  14. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau.

    PubMed

    Nie, Xiuqing; Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011-2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level.

  15. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    PubMed Central

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level. PMID:27119379

  16. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (maxim.) Makino.

    PubMed

    Zhang, Luan; Pan, Yuxue; Lv, Wei; Xiong, Zhi-ting

    2014-06-01

    In the current study, we hypothesize that mine (metallicolous) populations of metallophytes form a trade-off between the roots and shoots when under copper (Cu) stress to adapt themselves to heavy metal contaminated habitats, and thus, differ from normal (non-metallicolous) populations in biomass allocation. To test the hypothesis, two populations of the metallophyte Kummerowia stipulacea, one from an ancient Cu mine (MP) and the other from a non-contaminated site (NMP), were treated with Cu(2+) in hydroponic conditions. The results showed that MP plants had higher root/shoot biomass allocation and more complicated root system architecture compared to those of the NMP plants when under Cu stress. The net photosynthetic capacity was more inhibited in the NMP plants than in the MP plants when under Cu stress. The sugar (sucrose and hexose) contents and acid invertase activities of MP plants were elevated while those in NMP plants were inhibited after Cu treatment. The neutral/alkaline invertase activities and sucrose synthase level showed no significant differences between the two populations when under Cu stress. The results showed that acid invertase played an important role in biomass allocation and that the physiological responses were beneficial for the high root/shoot biomass allocation, which were advantageous during adaptive evolution to Cu-enriched mine soils.

  17. Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree productivity and soil organic matter in high fertility forests

    NASA Astrophysics Data System (ADS)

    Cotrufo, M.; Alberti, G.; Vicca, S.; Inglima, I.; Belelli-Marchesini, L.; Genesio, L.; Miglietta, F.; Marjanovic, H.; Martinez, C.; Matteucci, G.; Peressotti, A.; Petrella, L.; Rodeghiero, M.

    2013-12-01

    The release of organic compounds from roots is a key process influencing soil carbon (C) dynamics and nutrient availability in terrestrial ecosystems and is a process by which plants stimulate microbial activity and soil organic matter (SOM) mineralization thus releasing nitrogen (N) to sustain their gross and net primary production (GPP and NPP). Root inputs also contribute to soil organic matter (SOM) formation. In this study, we quantified the annual net root derived C input to soil (Net-Croot) across six high fertile forests using an in-growth core isotope technique. On the basis of Net-Croot, wood and coarse root biomass changes and eddy covariance data, we quantified net belowground C sequestration. This and GPP were inversely related to soil C:N, but not to climate or age. Because, at these high fertile sites, biomass growth did not change with soil C:N ratio, biomass growth-to-GPP ratio significantly increased with increasing soil C:N. This was true for both our six forest sites and for high fertile sites across a set of other 23 sites selected at global scale. We suggest that, at high fertile sites, the interaction between plant demand for nutrients, soil stoichiometry and microbial activity sustain higher ecosystem C-sink allocation to above ground tree biomass with increasing soil C:N ratio and that this clear and strong relationship can be used for modelling forest C sink partitioning between plant biomass and soil. When C:N is high, microbes have a low C use efficiency, respire more of the fresh C inputs by roots and prime SOM decomposition increasing N availability for tree uptake. Soil C sequestration would therefore decrease, whereas the extra N released during SOM decomposition can promote tree growth and ecosystem C sink allocation in aboveground biomass. Conversely, C is sequestered in soil when the low soil C:N promotes microbial C use efficiency and new SOM formation.

  18. Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach

    NASA Astrophysics Data System (ADS)

    Galeana-Pizaña, J. Mauricio; López-Caloca, Alejandra; López-Quiroz, Penélope; Silván-Cárdenas, José Luis; Couturier, Stéphane

    2014-08-01

    Forest conservation is considered an option for mitigating the effect of greenhouse gases on global climate, hence monitoring forest carbon pools at global and local levels is important. The present study explores the capability of remote-sensing variables (vegetation indices and textures derived from SPOT-5; backscattering coefficient and interferometric coherence of ALOS PALSAR images) for modeling the spatial distribution of above-ground biomass in the Environmental Conservation Zone of Mexico City. Correlation and spatial autocorrelation coefficients were used to select significant explanatory variables in fir and pine forests. The correlation for interferometric coherence in HV polarization was negative, with correlations coefficients r = -0.83 for the fir and r = -0.75 for the pine forests. Regression-kriging showed the least root mean square error among the spatial interpolation methods used, with 37.75 tC/ha for fir forests and 29.15 tC/ha for pine forests. The results showed that a hybrid geospatial method, based on interferometric coherence data and a regression-kriging interpolator, has good potential for estimating above-ground biomass carbon.

  19. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    PubMed

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots <2 mm in diameter at 0-20 cm soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning.

  20. Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species

    PubMed Central

    Keser, Lidewij H.; Visser, Eric J. W.; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2015-01-01

    Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders. PMID:25964790

  1. Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species.

    PubMed

    Keser, Lidewij H; Visser, Eric J W; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2015-01-01

    Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders.

  2. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected

  3. The unseen iceberg: plant roots in arctic tundra

    DOE PAGES

    Iversen, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; ...

    2014-09-10

    Arctic tundra is characterized by short-statured plant communities underlain by carbon (C)-rich soils and permafrost. Ecosystem C and nutrient cycles in tundra are driven by complex interactions between plants and their environment. However, root dynamics are one of the least understood aspects of plant growth in the Arctic. We synthesized available literature on tundra roots and discussed their representation in terrestrial biosphere models. Belowground biomass in tundra ecosystems can be an order of magnitude larger than aboveground biomass. Data on root production and turnover in tundra is sparse, limiting our understanding of the controls over root dynamics in these systems.more » Roots are shallowly distributed in the thin layer of soil that thaws each year, and are often found in the organic horizon at the soil surface. Species-specific differences in root distribution, mycorrhizal colonization, and resource partitioning may affect plant species competition under changing climatic conditions. Model representation of belowground processes has increased in complexity over recent years, but data are desperately needed to fill the gaps in model treatment of tundra roots. Future research should focus on estimates of root production and lifespan, and interactions between roots and the surrounding soil across the diversity of tundra ecosystems in the Arctic.« less

  4. The unseen iceberg: plant roots in arctic tundra

    SciTech Connect

    Iversen, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, Eugenie S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2014-09-10

    Arctic tundra is characterized by short-statured plant communities underlain by carbon (C)-rich soils and permafrost. Ecosystem C and nutrient cycles in tundra are driven by complex interactions between plants and their environment. However, root dynamics are one of the least understood aspects of plant growth in the Arctic. We synthesized available literature on tundra roots and discussed their representation in terrestrial biosphere models. Belowground biomass in tundra ecosystems can be an order of magnitude larger than aboveground biomass. Data on root production and turnover in tundra is sparse, limiting our understanding of the controls over root dynamics in these systems. Roots are shallowly distributed in the thin layer of soil that thaws each year, and are often found in the organic horizon at the soil surface. Species-specific differences in root distribution, mycorrhizal colonization, and resource partitioning may affect plant species competition under changing climatic conditions. Model representation of belowground processes has increased in complexity over recent years, but data are desperately needed to fill the gaps in model treatment of tundra roots. Future research should focus on estimates of root production and lifespan, and interactions between roots and the surrounding soil across the diversity of tundra ecosystems in the Arctic.

  5. Remotely-sensed indicators of N-related biomass allocation in Schoenoplectus acutus

    USGS Publications Warehouse

    O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi

    2014-01-01

    Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring.

  6. Remotely-Sensed Indicators of N-Related Biomass Allocation in Schoenoplectus acutus

    PubMed Central

    O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi

    2014-01-01

    Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring. PMID:24614037

  7. Estimating Above-Ground Biomass Within the Footprint of an Eddy-Covariance Flux Tower: Continuous LiDAR Based Estimates Compared With Discrete Inventory and Disturbance History Based Stratification Boundaries

    NASA Astrophysics Data System (ADS)

    Ferster, C. J.; Trofymow, J. A.; Coops, N. C.; Chen, B.; Black, T. A.

    2008-12-01

    Eddy-covariance (EC) flux towers provide data about carbon (C) exchange between land and the atmosphere at an ecosystem scale. However, important research questions need to be addressed when placing EC flux towers in complex heterogeneous forest landscapes, such as the coastal forests of Western Canada. Recently available footprint analysis, which describes the contribution function and catchment area where EC flux is being measured, can be used to relate EC flux tower measurements with the biological structure and carbon stock distributions of complex forest landscapes. In this study, above ground biomass is estimated near an EC flux tower using two approaches. In the first approach, a remote sensing based surface representing above ground biomass was estimated using small footprint, discrete return, light detection and ranging (LiDAR) data. Plot level LiDAR metrics were supplemented with metrics calculated using individual tree detection. A multiple regression model was developed to estimate above ground biomass using ground plot and LiDAR data, and then the model was applied across the EC flux footprint area to estimate the spatial distribution of above ground biomass. In the second approach, line boundaries from forest inventory, disturbance history, and site series were used to delineate discrete stratification units and the measured groundplot data assigned to the various strata. Within the heterogeneous tower footprint area, footprint weighting allows us to compare and contrast above ground biomass estimates from these two approaches. Using this methodology we then plan to compare, for the same period, ground-based measurements of ecosystem C stock changes with accumulative EC measured net ecosystem C flux.

  8. Biomass responses to elevated CO2, soil heterogeneity and diversity: an experimental assessment with grassland assemblages.

    PubMed

    Maestre, Fernando T; Reynolds, James F

    2007-03-01

    While it is well-established that the spatial distribution of soil nutrients (soil heterogeneity) influences the competitive ability and survival of individual plants, as well as the productivity of plant communities, there is a paucity of data on how soil heterogeneity and global change drivers interact to affect plant performance and ecosystem functioning. To evaluate the effects of elevated CO(2), soil heterogeneity and diversity (species richness and composition) on productivity, patterns of biomass allocation and root foraging precision, we conducted an experiment with grassland assemblages formed by monocultures, two- and three-species mixtures of Lolium perenne, Plantago lanceolata and Holcus lanatus. The experiment lasted for 90 days, and was conducted on microcosms built out of PVC pipe (length 38 cm, internal diameter 10 cm). When nutrients were heterogeneously supplied (in discrete patches), assemblages exhibited precise root foraging patterns, and had higher total, above- and belowground biomass. Greater aboveground biomass was observed under elevated CO(2). Species composition affected the below:aboveground biomass ratio and interacted with nutrient heterogeneity to determine belowground and total biomass. Species richness had no significant effects, and did not interact with either CO(2) or nutrient heterogeneity. Under elevated CO(2) conditions, the two- and three-species mixtures showed a clear trend towards underyielding. Our results show that differences among composition levels were dependent on soil heterogeneity, highlighting its potential role in modulating diversity-productivity relationships.

  9. Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifolia in balloon-type bubble bioreactor system.

    PubMed

    Lulu, Tao; Park, So-Young; Ibrahim, Rusli; Paek, Kee-Yoeup

    2015-06-01

    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.

  10. The unseen iceberg: plant roots in arctic tundra.

    PubMed

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  11. The unseen iceberg: Plant roots in arctic tundra

    USGS Publications Warehouse

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, Anthony; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  12. Aboveground and belowground responses to nutrient additions and herbivore exclusion in Arctic tundra ecosystems in northern Alaska

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Gough, L.; Simpson, R.; Johnson, D. R.

    2011-12-01

    The Arctic has experienced significant increased regional warming over the past 30 years. Warming generally increases tundra soil nutrient availability by creating a more favorable environment for plant growth, decomposition and nutrient mineralization. Aboveground there has been a "greening" of the Arctic with increased net primary productivity (NPP), and an increase in woody vegetation. Concurrent with the changes aboveground has been an increase in root growth at lower depths and a loss of soil organic C (40 -100 g C m-2 yr-1). Given that arctic soils contain 14% of the global soil C pool, understanding the mechanisms behind shifts of this magnitude that are changing arctic soils from a net sink to a net source of atmospheric C is critical. We took an integrated multi-trophic level approach to examine how altering soil nutrients and mammalian herbivore activity affects vegetation, soil fauna, and microbial communities as well as soil physical characteristics in moist acidic (MAT) and dry heath (DH) tundra. Our work was conducted at the Arctic LTER site in northern Alaska. We sampled the nutrient (controls and annual N+P additions) and herbivore (controls and exclosures) manipulations established in 1996 after 10 years of treatment. Models that incorporated the biomass estimates from the field were used to characterize the trophic structure of the belowground food web and to estimate carbon flux among soil organisms and C-mineralization rates. Both MAT and DH exhibited significant increases in NPP and root growth and changes in vegetation structure with transitions from a mixed community to deciduous shrubs in MAT and from lichens to grasses and shrubs in DH, with nutrient additions and herbivore exclosures. Belowground responses to the treatments were dependent on ecosystem type, but exposed alterations in trophic structure that included changes in microbial biomass, the establishment of microbivorous enchytreaids, increases in root-feeding nematodes, and

  13. Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings.

    PubMed

    Cheng, Dongliang; Ma, Yuzhu; Zhong, Quanling; Xu, Weifeng

    2014-10-01

    Allometric biomass allocation theory predicts that leaf biomass (M L ) scaled isometrically with stem (M S ) and root (M R ) biomass, and thus above-ground biomass (leaf and stem) (M A ) and root (M R ) scaled nearly isometrically with below-ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above- and below-ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above- to below-ground biomass. The results indicated that M L and M S scaled in an isometric or a nearly isometric manner with M R , as well as M A to M R for five woody species. Significant variation was observed in the Y-intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for M L versus M S and M L versus M R , but not for M S versus M R and M A versus M R . We conclude, therefore, that a nearly isometric scaling relationship of M A versus M R holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.

  14. Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.).

    PubMed

    Duman, Fatih; Ozturk, Fatma

    2010-01-01

    In order to understand its response towards nickel stress, watercress (Nasturtium officinale R. Br.) was exposed to nickel (1-25 mg/L) for 1, 3, 5 and 7 days. The accumulation and translocation of nickel were determined and the influence of nickel on biomass, protein content and enzymatic antioxidants was examined for both roots and leaves. It was determined that N. officinale could accumulate appreciable amounts of Ni in both roots and leaves. Nickel accumulated particularly in the roots of plants. Biomass increased at low nickel concentrations but certain measurable change was not found at high concentrations. Under stress conditions the antioxidant enzymes were up-regulated compared to control. An increase in protein content and enzyme activities was observed at moderate exposure conditions followed by a decline at both roots and leaves. The maximum enzyme activities were observed at different exposure conditions. Our results showed that N. officinale had the capacity to overcome nickel-induced stress especially at moderate nickel exposure. Therefore, N. officinale may be used as a phytoremediator in moderately polluted aquatic ecosystems.

  15. Biomass and content of ginsenosides and polyacetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds.

    PubMed

    Christensen, Lars P; Jensen, Martin

    2009-04-01

    Fifty selected roots from a 7-year-old American ginseng (Panax quinquefolium L.) plant population grown in Denmark, with root weights varying from 191 to 490 g fresh weight (FW), were investigated for bioactive ginsenosides and polyacetylenes (PAs) in order to determine the correlation between the content of ginsenosides and PAs and root FW. PAs (falcarinol, panaxydol) and ginsenosides (Rb(1), Rb(2), Rb(3), Rc, Rd, Re, Rg(1)) were extracted from roots by sequential extraction with ethyl acetate and 80% methanol, respectively, and quantified in extracts by reverse-phase high-performance liquid chromatography (HPLC) using photodiode array detection. Total concentrations of PAs and ginsenosides varied between 150 and 780 mg/kg FW and 5,920 and 15,660 mg/kg FW, respectively. No correlation existed between the content of ginsenosides and PAs and root FW or between the total concentration of ginsenosides and PAs. Strong significant correlation was found between total content of ginsenosides and ginsenoside Rb(1) (r = 0.8190, P < 0.0001) and between total content of PAs and falcarinol (r = 0.9904, P < 0.0001). Based on the results of this study, it was concluded that it is possible to select large American ginseng roots for increased biomass production and concentration of bioactive ginsenosides and PAs without affecting the profile of bioactive compounds. Ginsenoside Rb(1) and falcarinol were found to be important selection parameters for identifying superior genotypes with the highest content of bioactive compounds.

  16. Responses of belowground communities to large aboveground herbivores: meta-analysis reveals biome-dependent patterns and critical research gaps.

    PubMed

    Andriuzzi, Walter S; Wall, Diana H

    2017-02-28

    The importance of herbivore-plant and soil biota-plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta-analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root-feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked. This article is protected by copyright. All rights reserved.

  17. Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010.

    PubMed

    Veresoglou, Stavros D; Menexes, George; Rillig, Matthias C

    2012-04-01

    Arbuscular mycorrhizas (AM) are ubiquitous root symbioses with often pervasive effects on the plant host, one of which may be above- and belowground biomass allocation. A meta-analysis was conducted on 516 trials that were described in 90 available articles to examine whether AM colonization could result in a modification of partitioning of plant biomass in shoots and roots. It was hypothesized that alleviating plant nutrient limitations could result in a decrease of root to shoot (R/S) ratio in AM plants or, alternatively, the direction of shifts in the R/S ratio would be determined by the changes in total dry biomass. In our analysis, we considered four types of stresses: drought stress, single heavy metal stress, multiple heavy metal stress, and other potential abiotic plant stress factors. When disregarding any factors that could regulate effects, including stress status and mode of propagation, the overall AM effect was a significant modification of biomass towards shoot growth. However, the responses of stressed and clonally propagated plants differed from those of seed-grown unstressed plants. Our meta-analysis detected a considerable decline in the R/S ratio when plants were grown from seeds in the absence of abiotic stresses. Moreover, we demonstrate that additional regulators of the AM-mediated impact on R/S ratio were presence of competition from other plants, plant growth outcome of the symbiosis, growth substrate volume, experimental duration, and the identities of both plant and AM fungus. Our results indicate that a prediction of AM effects on R/S allocation becomes more accurate when considering regulators, most notably propagation mode and stress. We discuss possible mechanisms through which stress and other regulators may operate.

  18. [Vegetation biomass allocation and its spatial distribution after 20 years ecological restoration in a dry-hot valley in Yuanmou, Yunnan Province of Southwest China].

    PubMed

    Li, Bin; Tang, Guo-Yong; Li, Kun; Gao, Cheng-Jie; Liu, Fang-Yan; Wang, Xiao-Fei

    2013-06-01

    By using layering harvest method, a comparative study was conducted on the biomass allocation and its spatial distribution of 20-year-old Eucalyptus camaldulensis plantation, Leucaena leucocephala plantation, and E. camaldulensis-L. leucocephala plantation in Yuanmou dry-hot valley of Yunnan Province, Southwest China. The stand biomass in the mixed E. camaldulensis-L. leucocephala plantation (82.99 t x hm(-2)) was between that of monoculture E. camaldulensis plantation (60.64 t x hm(-2)) and L. leucocephala plantation (127.79 t x hm(-2)). The individual tree biomass of E. camaldulensis in the mixed plantation (44.32 kg) was 49.8% higher than that in monoculture plantation (29.58 kg). The branch and leaf biomass of L. leucocephala (25.4%) in monoculture plantation was larger than that of E. camaldulensis (8.9%) in monoculture plantation, and the aboveground biomass distribution ratio (78.0%) of L. leucocephala (25.4%) was also higher than that of E. camaldulensis (73.4%). The roots of L. leucocephala in both monoculture and mixed plantations were mainly distributed in 0-40 cm soil layer, while those of E. camaldulensis in monoculture and mixed plantations were mainly found in 0-80 cm and 0-60 cm, respectively. The proportion of biomass allocated to roots including medium roots, small roots, and fine roots of L. leucocephala in mixed plantation was higher than that in monoculture plantation, but it was contrary for E. camaldulensis. It was suggested that introducing L. leucocephala in E. camaldulensis plantation promoted the growth of E. camaldulensis, especially for its aboveground biomass, and increased the amount of lateral roots in 0-20 cm soil layer, which had significance in soil and water conservation in the study area.

  19. Root features related to plant growth and nutrient removal of 35 wetland plants.

    PubMed

    Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He

    2011-07-01

    Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different

  20. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.

  1. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth.

    PubMed

    Gavito, M E; Curtis, P S; Mikkelsen, T N; Jakobsen, I

    2001-09-01

    Nutrient requirements for plant growth are expected to rise in response to the predicted changes in CO(2) and temperature. In this context, little attention has been paid to the effects of soil temperature, which limits plant growth at early stages in temperate regions. A factorial growth-room experiment was conducted with winter wheat, varying soil temperature (10 degrees C and 15 degrees C), atmospheric CO(2) concentration (360 and 700 ppm), and N supply (low and high). The hypothesis was that soil temperature would modify root development, biomass allocation and nutrient uptake during vegetative growth and that its effects would interact with atmospheric CO(2) and N availability. Soil temperature effects were confirmed for most of the variables measured and 3-factor interactions were observed for root development, plant biomass components, N-use efficiency, and shoot P content. Importantly, the soil temperature effects were manifest in the absence of any change in air temperature. Changes in root development, nutrient uptake and nutrient-use efficiencies were interpreted as counterbalancing mechanisms for meeting nutrient requirements for plant growth in each situation. Most variables responded to an increase in resource availability in the order: N supply >soil temperature >CO(2).

  2. Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions

    PubMed Central

    Schädler, Martin

    2010-01-01

    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1–3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on

  3. Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions.

    PubMed

    Eisenhauer, Nico; Schädler, Martin

    2011-02-01

    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1-3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on

  4. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    PubMed Central

    Saunders, Lyndsay E.; Koontz, Melissa B.; Pezeshki, Reza

    2013-01-01

    Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested. PMID:24833234

  5. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan

    2016-08-01

    Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and

  6. Poyang Lake wetland vegetation biomass inversion using polarimetric RADARSAT-2 synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Shen, Guozhuang; Liao, Jingjuan; Guo, Huadong; Liu, Ju

    2015-01-01

    Poyang Lake is the largest freshwater lake in China and one of the most important wetlands in the world. Vegetation, an important component of wetland ecosystems, is one of the main sources of the carbon in the atmosphere. Biomass can quantify the contribution of wetland vegetation to carbon sinks and carbon sources. Synthetic aperture radar (SAR), which can operate in all day and weather conditions and penetrate vegetation to some extent, can be used to retrieve information about vegetation structure and the aboveground biomass. In this study, RADARSAT-2 polarimetric SAR data were used to retrieve aboveground vegetation biomass in the Poyang Lake wetland. Based on the canopy backscatter model, the vegetation backscatter characteristics in the C-band were studied, and a good relation between simulated backscatter and backscatter in the RADARSAT-2 imagery was achieved. Using the backscatter model, pairs of training data were built and used to train the back propagation artificial neural network. The biomass was retrieved using this ANN and compared with the field survey results. The root-mean-square error in the biomass estimation was 45.57 g/m2. This shows that the combination of the model and polarimetric decomposition components can efficiently improve the inversion precision.

  7. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization.

    PubMed

    Li, Ya; Wang, Qi; Wang, Lu; He, Lin-Yan; Sheng, Xia-Fang

    2016-02-01

    Endophytic bacterial strain K3-2 was isolated from the roots of Sorghum sudanense (an bioenergy plant) grown in a Cu mine wasteland soils and characterized. Strain K3-2 was identified as Enterobacter sp. based on 16S rRNA gene sequence analysis. Strain K3-2 exhibited Cu resistance and produced 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), siderophores, and arginine decarboxylase. Pot experiments showed that strain K3-2 significantly increased the dry weight and root Cu accumulation of Sorghum sudanense grown in the Cu mine wasteland soils. Furthermore, increase in total Cu uptake (ranging from 49% to 95%) of the bacterial inoculated-Sorghum sudanense was observed compared to the control. Notably, most of Cu (83-86%) was accumulated in the roots of Sorghum sudanense. Furthermore, inoculation with strain K3-2 was found to significantly increase Cu bioconcentration factors and the proportions of IAA- and siderophore-producing bacteria in the root interiors and rhizosphere soils of Sorghum sudanense compared with the control. Significant decrease in the available Cu content was also observed in the rhizosphere soils of the bacterial-inoculated Sorghum sudanense. The results suggest that the endophytic bacterial strain K3-2 may be exploited for promoting Sorghum sudanense biomass production and Cu phytostabilization in the Cu mining wasteland soils.

  8. Trichoderma virens, a Plant Beneficial Fungus, Enhances Biomass Production and Promotes Lateral Root Growth through an Auxin-Dependent Mechanism in Arabidopsis1[C][W][OA

    PubMed Central

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Cortés-Penagos, Carlos; López-Bucio, José

    2009-01-01

    Trichoderma species belong to a class of free-living fungi beneficial to plants that are common in the rhizosphere. We investigated the role of auxin in regulating the growth and development of Arabidopsis (Arabidopsis thaliana) seedlings in response to inoculation with Trichoderma virens and Trichoderma atroviride by developing a plant-fungus interaction system. Wild-type Arabidopsis seedlings inoculated with either T. virens or T. atroviride showed characteristic auxin-related phenotypes, including increased biomass production and stimulated lateral root development. Mutations in genes involved in auxin transport or signaling, AUX1, BIG, EIR1, and AXR1, were found to reduce the growth-promoting and root developmental effects of T. virens inoculation. When grown under axenic conditions, T. virens produced the auxin-related compounds indole-3-acetic acid, indole-3-acetaldehyde, and indole-3-ethanol. A comparative analysis of all three indolic compounds provided detailed information about the structure-activity relationship based on their efficacy at modulating root system architecture, activation of auxin-regulated gene expression, and rescue of the root hair-defective phenotype of the rhd6 auxin response Arabidopsis mutant. Our results highlight the important role of auxin signaling for plant growth promotion by T. virens. PMID:19176721

  9. Response of “Alamo” switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA

    SciTech Connect

    Garten, Charles T.; Brice, Deanne J.; Castro, Hector F.; Graham, Robin L.; Mayes, Melanie A.; Phillips, Jana R.; Post, Wilfred M.; Schadt, Christopher W.; Wullschleger, Stan D.; Tyler, Donald D.; Jardine, Phillip M.; Jastrow, Julie D.; Matamala, Roser; Miller, R. Michael; Moran, Kelly K.; Vugteveen, Timothy W.; Izaurralde, R. Cesar; Thomson, Allison M.; West, Tristram O.; Amonette, James E.; Bailey, Vanessa L.; Metting, F. Blaine; Smith, Jeffrey L.

    2011-01-01

    Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha-1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P ≤ 0.05) at the highest fertilizer nitrogen treatment (2.16 ± 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha-1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Finally, fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.

  10. Elevated Atmospheric CO2 Triggers Compensatory Feeding by Root Herbivores on a C3 but Not a C4 Grass

    PubMed Central

    Johnson, Scott N.; Lopaticki, Goran; Hartley, Susan E.

    2014-01-01

    Predicted increases in atmospheric carbon dioxide (CO2) concentrations often reduce nutritional quality for herbivores by increasing the C∶N ratio of plant tissue. This frequently triggers compensatory feeding by aboveground herbivores, whereby they consume more shoot material in an attempt to meet their nutritional needs. Little, however, is known about how root herbivores respond to such changes. Grasslands are particularly vulnerable to root herbivores, which can collectively exceed the mass of mammals grazing aboveground. Here we provide novel evidence for compensatory feeding by a grass root herbivore, Sericesthis nigrolineata, under elevated atmospheric CO2 (600 µmol mol−1) on a C3 (Microlaena stipoides) but not a C4 (Cymbopogon refractus) grass species. At ambient CO2 (400 µmol mol−1) M. stipoides roots were 44% higher in nitrogen (N) and 7% lower in carbon (C) concentrations than C. refractus, with insects performing better on M. stipoides. Elevated CO2 decreased N and increased C∶N in M. stipoides roots, but had no impact on C. refractus roots. Root-feeders displayed compensatory feeding on M. stipoides at elevated CO2, consuming 118% more tissue than at ambient atmospheric CO2. Despite this, root feeder biomass remained depressed by 24%. These results suggest that compensatory feeding under elevated atmospheric CO2 may make some grass species particularly vulnerable to attack, potentially leading to future shifts in the community composition of grasslands. PMID:24651855

  11. Elevated atmospheric CO2 triggers compensatory feeding by root herbivores on a C3 but not a C4 grass.

    PubMed

    Johnson, Scott N; Lopaticki, Goran; Hartley, Susan E

    2014-01-01

    Predicted increases in atmospheric carbon dioxide (CO2) concentrations often reduce nutritional quality for herbivores by increasing the C:N ratio of plant tissue. This frequently triggers compensatory feeding by aboveground herbivores, whereby they consume more shoot material in an attempt to meet their nutritional needs. Little, however, is known about how root herbivores respond to such changes. Grasslands are particularly vulnerable to root herbivores, which can collectively exceed the mass of mammals grazing aboveground. Here we provide novel evidence for compensatory feeding by a grass root herbivore, Sericesthis nigrolineata, under elevated atmospheric CO2 (600 µmol mol(-1)) on a C3 (Microlaena stipoides) but not a C4 (Cymbopogon refractus) grass species. At ambient CO2 (400 µmol mol(-1)) M. stipoides roots were 44% higher in nitrogen (N) and 7% lower in carbon (C) concentrations than C. refractus, with insects performing better on M. stipoides. Elevated CO2 decreased N and increased C:N in M. stipoides roots, but had no impact on C. refractus roots. Root-feeders displayed compensatory feeding on M. stipoides at elevated CO2, consuming 118% more tissue than at ambient atmospheric CO2. Despite this, root feeder biomass remained depressed by 24%. These results suggest that compensatory feeding under elevated atmospheric CO2 may make some grass species particularly vulnerable to attack, potentially leading to future shifts in the community composition of grasslands.

  12. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    NASA Technical Reports Server (NTRS)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  13. Species mixing boosts root yield in mangrove trees.

    PubMed

    Lang'at, Joseph K Sigi; Kirui, Bernard K Y; Skov, Martin W; Kairo, James G; Mencuccini, Maurizio; Huxham, Mark

    2013-05-01

    Enhanced species richness can stimulate the productivity of plant communities; however, its effect on the belowground production of forests has scarcely been tested, despite the role of tree roots in carbon storage and ecosystem processes. Therefore, we tested for the effects of tree species richness on mangrove root biomass: thirty-two 6 m by 6 m plots were planted with zero (control), one, two or three species treatments of six-month-old Avicennia marina (A), Bruguiera gymnorrhiza (B) and Ceriops tagal (C). A monoculture of each species and the four possible combinations of the three species were used, with four replicate plots per treatment. Above- and belowground biomass was measured after three and four years' growth. In both years, the all-species mix (ABC) had significant overyielding of roots, suggesting complementarity mediated by differences in rhizosphere use amongst species. In year four, there was higher belowground than aboveground biomass in all but one treatment. Belowground biomass was strongly influenced by the presence of the most vigorously growing species, A. marina. These results demonstrate the potential for complementarity between fast- and slow-growing species to enhance belowground growth in mangrove forests, with implications for forest productivity and the potential for belowground carbon sequestration.

  14. Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer.

    PubMed

    Sigua, G C; Novak, J M; Watts, D W; Johnson, M G; Spokas, K

    2016-01-01

    In the Coastal Plains region of the United States, the hard setting subsoil layer of Norfolk soils results in low water holding capacity and nutrient retention, which often limits root development. In this region, the Norfolk soils are under intensive crop production that further depletes nutrients and reduces organic carbon (C). Incorporation of pyrolyzed organic residues or "biochars" can provide an alternative recalcitrant C source. However, biochar quality and effect can be inconsistent and different biochars react differently in soils. We hypothesized that addition of different designer biochars will have variable effects on biomass and nutrient uptake of winter wheat. The objective of this study was to investigate the effects of designer biochars on biomass productivity and nutrient uptake of winter wheat (Triticum aestivum L.) in a Norfolk's hard setting subsoil layer. Biochars were added to Norfolk's hard setting subsoil layer at the rate of 40 Mg ha(-1). The different sources of biochars were: plant-based (pine chips, PC); animal-based (poultry litter, PL); 50:50 blend (50% PC:50% PL); 80:20 blend (80% PC:20% PL); and hardwood (HW). Aboveground and belowground biomass and nutrient uptake of winter wheat varied significantly (p⩽0.0001) with the different designer biochar applications. The greatest increase in the belowground biomass of winter wheat over the control was from 80:20 blend of PC:PL (81%) followed by HW (76%), PC (59%) and 50:50 blend of PC:PL (9%). However, application of PL resulted in significant reduction of belowground biomass by about 82% when compared to the control plants. The average uptake of P, K, Ca, Mg, Na, Al, Fe, Cu and Zn in both the aboveground and belowground biomass of winter wheat varied remarkably with biochar treatments. Overall, our results showed promising significance for the treatment of a Norfolk's hard setting subsoil layer since designer biochars did improve both aboveground/belowground biomass and nutrient uptake

  15. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores.

    PubMed

    Kumar, Pavan; Ortiz, Erandi Vargas; Garrido, Etzel; Poveda, Katja; Jander, Georg

    2016-09-01

    Plants mediate interactions between aboveground and belowground herbivores. Although effects of root herbivory on foliar herbivores have been documented in several plant species, interactions between tuber-feeding herbivores and foliar herbivores are rarely investigated. We report that localized tuber damage by Tecia solanivora (Guatemalan tuber moth) larvae reduced aboveground Spodoptera exigua (beet armyworm) and Spodoptera frugiperda (fall armyworm) performance on Solanum tuberosum (potato). Conversely, S. exigua leaf damage had no noticeable effect on belowground T. solanivora performance. Tuber infestation by T. solanivora induced systemic plant defenses and elevated resistance to aboveground herbivores. Lipoxygenase 3 (Lox3), which contributes to the synthesis of plant defense signaling molecules, had higher transcript abundance in T. solanivora-infested leaves and tubers than in equivalent control samples. Foliar expression of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and 3-hydroxy-3-methylglutaryl CoA reductase I (HMGR1) genes, which are involved in chlorogenic acid and steroidal glycoalkaloid biosynthesis, respectively, also increased in response to tuber herbivory. Leaf metabolite profiling demonstrated the accumulation of unknown metabolites as well as the known potato defense compounds chlorogenic acid, α-solanine, and α-chaconine. When added to insect diet at concentrations similar to those found in potato leaves, chlorogenic acid, α-solanine, and α-chaconine all reduced S. exigua larval growth. Thus, despite the fact that tubers are a metabolic sink tissue, T. solanivora feeding elicits a systemic signal that induces aboveground resistance against S. exigua and S. frugiperda by increasing foliar abundance of defensive metabolites.

  16. How tree roots respond to drought

    PubMed Central

    Brunner, Ivano; Herzog, Claude; Dawes, Melissa A.; Arend, Matthias; Sperisen, Christoph

    2015-01-01

    The ongoing climate change is characterized by increased temperatures and altered precipitation patterns. In addition, there has been an increase in both the frequency and intensity of extreme climatic events such as drought. Episodes of drought induce a series of interconnected effects, all of which have the potential to alter the carbon balance of forest ecosystems profoundly at different scales of plant organization and ecosystem functioning. During recent years, considerable progress has been made in the understanding of how aboveground parts of trees respond to drought and how these responses affect carbon assimilation. In contrast, processes of belowground parts are relatively underrepresented in research on climate change. In this review, we describe current knowledge about responses of tree roots to drought. Tree roots are capable of responding to drought through a variety of strategies that enable them to avoid and tolerate stress. Responses include root biomass adjustments, anatomical alterations, and physiological acclimations. The molecular mechanisms underlying these responses are characterized to some extent, and involve stress signaling and the induction of numerous genes, leading to the activation of tolerance pathways. In addition, mycorrhizas seem to play important protective roles. The current knowledge compiled in this review supports the view that tree roots are well equipped to withstand drought situations and maintain morphological and physiological functions as long as possible. Further, the reviewed literature demonstrates the important role of tree roots in the functioning of forest ecosystems and highlights the need for more research in this emerging field. PMID:26284083

  17. [Effects of drip irrigation methods on the regulation between root and crown function of 'Cabernet Sauvignon' seedlings].

    PubMed

    Yu, Kun; Yu, Song-lin; Liu, Huai-feng; Zhao, Bao-long; Wang, Wen-jing

    2015-05-01

    The objective of this experiment was to study the effects of three irrigation methods, i.e., subsurface drip irrigation with a tank system (SDI) , plastic film mulched-drip irrigation (MDI), and conventional drip irrigation (DI) on the regulation between root and crown function of Vitis vinifera 'Cabernet Sauvignon' seedlings. The results showed that both the SDI and MDI systems promoted the growth of the grape seedlings compared with DI, with the SDI system promoting the root growth, and MDI system promoting the aboveground growth. Root area, root volume, and root activity and SOD enzyme activity in the SDI treatment were greater than those of MDI or DI treatment in the 20-60 cm soil layer. SDI treatment increased root penetration and physiological activity. Symptoms of drought stress appeared earlier in DI treatment than in either MDI or SDI treatment in the same watering schedule. Net photosynthetic rate (Pn) and stomatal conductance (g(s)) of leaves were higher in SDI and MDI treatments than in DI treatment. ΦPS II and qP at 12:00-14:00 were lower in the MDI treatment than in SDI treatment at 7 d after irrigation, suggesting that the degree of photoinhibition in the fluorescence process in MDI treatment was more than that in SDI treatment. The high biomass and physiological activity of roots in the 20-40 cm depth could increase both of total plant biomass and aboveground biomass. The regulation between root and crown function was better in SDI treatment than in MDI and DI treatments. Therefore, SDI could be used as an alternative technique of water-saving irrigation practices.

  18. Estimation of forest biomass by integrating ALOS PALSAR And HJ1B data

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Guo, Y. G.; He, J.

    2014-11-01

    The use of the optical and microwave remote sensing in combination with field measured data can provide an effective way to improve the estimation of forest biomass over large regions. In order to improve the accuracy of biomass estimation from remotely sensed data in mountainous terrain, the methods for obtaining above-ground biomass (AGB) from forest canopy structure estimates based on a physically-based canopy reflectance model estimation approach was introduced in this paper. A geometric-optical canopy reflectance model was run in multiple-forward mode (MFM) using HJ1B imagery to derive forest biomass at Helan Mountain nature reserve region in the northwest of China. Simultaneously, the multiple regression model was also developed to estimate the forest above-ground biomass by integrating field measurements of 30 sample plots with ALOS/PALSAR Synthetic Aperture Radar (SAR) backscatter remotely sensed data. The estimation biomass of two methods was evaluated with 20 field validation sites. MFM predictions of AGB from HJ1B imagery were compared with the results from PALSAR regression model, respectively. Error levels for two model and field measured data were also analyzed. The result shows that a good fit can be found between AGB estimated by geometric-optical canopy reflectance model and ground measured biomass with a R2 (Coefficient of Determination) and RMSE (Root Mean-Square Error) of 0.61 and 8.33 t/ha respectively. MFM provides lower error for all validation plots and its estimated accuracy is better than PALSAR regression model, whick has less accuracy estimation (R2=0.39, RMSE=14.89 t/ha). Consequently, it can conclude that geometric-optical canopy reflectance model was considerably more suitable for estimating forest biomass in mountainous terrain.

  19. Biomass Partitioning and Its Relationship with the Environmental Factors at the Alpine Steppe in Northern Tibet

    PubMed Central

    Wu, Jianbo; Hong, Jiangtao; Wang, Xiaodan; Sun, Jian; Lu, Xuyang; Fan, Jihui; Cai, Yanjiang

    2013-01-01

    Alpine steppe is considered to be the largest grassland type on the Tibetan Plateau. This grassland contributes to the global carbon cycle and is sensitive to climate changes. The allocation of biomass in an ecosystem affects plant growth and the overall functioning of the ecosystem. However, the mechanism by which plant biomass is allocated on the alpine steppe remains unclear. In this study, biomass allocation and its relationship to environmental factors on the alpine grassland were studied by a meta-analysis of 32 field sites across the alpine steppe of the northern Tibetan Plateau. We found that there is less above-ground biomass (MA) and below-ground biomass (MB) in the alpine steppe than there is in alpine meadows and temperate grasslands. By contrast, the root-to-shoot ratio (R:S) in the alpine steppe is higher than it is in alpine meadows and temperate grasslands. Although temperature maintained the biomass in the alpine steppe, precipitation was found to considerably influence MA, MB, and R:S, as shown by ordination space partitioning. After standardized major axis (SMA) analysis, we found that allocation of biomass on the alpine steppe is supported by the allometric biomass partitioning hypothesis rather than the isometric allocation hypothesis. Based on these results, we believe that MA and MB will decrease as a result of the increased aridity expected to occur in the future, which will reduce the landscape’s capacity for carbon storage. PMID:24349170

  20. Photomorphogenesis and pigment induction in lentil seedling roots exposed to low light conditions.

    PubMed

    Vollsnes, A V; Melø, T B; Futsaether, C M

    2012-05-01

    Although roots are normally hidden in soil, they may inadvertently be exposed to low light levels in experiments or in natural conditions through cracks or light transmittance through the soil. Light has been implicated in root morphogenesis. Thus, effects of low light conditions on lentil (Lens culinaris L. cv. Verte du Puy) root morphology and root pigmentation were studied. Lentil seedlings were grown in peat or transparent, nutrient-fortified agar at a 12-h light (PAR 240 μmol · m(-2) · s(-1)), 12-h dark cycle. Roots were exposed to low levels (≈ 1-10 μmol · m(-2) · s(-1)) of broadband white light, either directly or indirectly by aboveground light penetrating the growth medium. Control roots were grown in darkness. In situ spectroscopy was used to measure transmittance and reflectance spectra of intact root tissue by mounting the upper part of the primary root directly in a spectrophotometer equipped with an integrating sphere attachment. The transmittance and reflectance spectra were used to calculate the in situ root absorbance spectrum. Absorbance bands were found in the regions 480-500 nm and 650-680 nm, possibly due to low levels of root-localised carotenoids and chlorophylls, respectively. Low light levels (≈ 1-10 μmol · m(-2) · s(-1) ) transmitted through the growth medium significantly increased root pigment concentration and root biomass, and altered root morphology by enhancing lateral root formation and inhibiting root elongation relative to roots grown in complete darkness. The light-induced changes in root morphogenesis and pigmentation appear to be primarily due to upper root light perception.

  1. Influence of the simulated microgravity on biomass and contents of carbohydrates at virus-infected wheat plants

    NASA Astrophysics Data System (ADS)

    Mishchenko, L.; Silayeva, A.; Mishchenko, I.; Boyko, A.

    The effects of clinostating has been studied on the contents of biomass, soluble carbohydrates and starches in Wheat streak mosaic virus (WSMV) infected plants of wheat Donska semidwarf, Albatross Odessky, Kollectivna-3 (summer), and Apogee (early-ripe, superdwarf). Plants in conditions of horizontal and vertical rotation with a frequency 2 min-1 were grown in containers during 35 days. WSMV was accumulated on barley i dicator plants of Ros' variety for then subsequent infestation by this virus of a part of clinostating and motionless wheat plants in a stage of 3 leaves. Researches have shown, that the most suitable for ground experiments with clinostating were Kollectivna-3 and Apogee varieties. At vertical and horizontal rotation of wheat plants of Kollectivna - 3 variety the weight of roots increased and that of above-ground part (leaves and stalks) decreased in comparison with motionless control plants, that resulted in decrease of the ratio of a biomass of an above-ground part to a root system. In Apogee variety the weight of the above-ground part of healthy plants at vertical clinostating decreased by 23 % in comparison with motionless variant, and the biomass of virus-infected plants was reduced on the average by 14 % in comparison with infected motionless control. The weight of above-ground part of infected and healthy motionless plants practically did not differ. Vertical clinorotation of plants caused the reduction of ear weight while in horizontally rotated plants and in the motionless control there were no difference. The number of ears in Apogee variety practically did not change in all variants of the experiment, and plant weight at clinostating decreased in both healthy, and virus infected plants. For the period of cultivation in Kollectivna-3 variety ears were not formed at all. The contents of soluble carbohydrates (reducing and saccharose) in leaves and stalks of healthy and virus infected at clinostating was increased in Apogee in 1,6-2,2 times

  2. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    USGS Publications Warehouse

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  3. Identifying aboveground wood fiber potentials in New York state. Forest Service resource bulletin

    SciTech Connect

    Wharton, E.H.

    1985-01-01

    This is a statistical analytical report on the biomass resources of New York. The study was conducted in conjunction with the third forest survey of New York by the USDA Forest Service. Statistical findings are based on new 10-point-variable radius plots, a canvas of wood manufacturers, timber-utilization plots, and a mail canvass of private, commercial forest-land owners - all conducted in 1978 and 1979. The report presents total aboveground biomass supplies, the use of biomass in the state for forest products, and sources of wood from residues and standing trees that can be used to improve wood-fiber recovery.

  4. Biomass resilience of Neotropical secondary forests

    NASA Astrophysics Data System (ADS)

    Poorter, Lourens; Bongers, Frans; Aide, T. Mitchell; Almeyda Zambrano, Angélica M.; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Broadbent, Eben N.; Chazdon, Robin L.; Craven, Dylan; de Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben H. J.; Denslow, Julie S.; Dent, Daisy H.; Dewalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; de Oliveira, Alexandre A.; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velázquez, Jorge; Romero-Pérez, I. Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans F. M.; Vicentini, Alberto; Vieira, Ima C. G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Rozendaal, Danaë M. A.

    2016-02-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha-1), corresponding to a net carbon uptake of 3.05 Mg C ha-1 yr-1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha-1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  5. Biomass resilience of Neotropical secondary forests.

    PubMed

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  6. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for

  7. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    PubMed

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  8. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications

    PubMed Central

    Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    Background African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Principal Findings Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. Conclusions/Significance We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to

  9. [Correlation analysis between meteorological factors, biomass, and active components of Salvia miltiorrhiza in different climatic zones].

    PubMed

    Zhang, Chen-lu; Liang, Zong-suo; Guo, Hong-bo; Liu, Jing-ling; Liu, Yan; Liu, Feng-hua; Wei, Lang-zhu

    2015-02-01

    In this study, the growth and accumulation of active components of Salvia miltiorrhiza in twenty two experimental sites which crossing through three typical climate zones. The S. miltiorrhiza seedlings with the same genotype were planted in each site in spring, which were cultivated in fields with uniform management during their growing seasons till to harvest. The diterpene ketones (dihydrotanshinone, cryptotanshinone, tanshinone I and tanshinone II(A)) in S. miltiorrhiza root samples were determined by using high-performance liquid chromatography (HPLC) method. The biomass of root (root length, number of root branches, root width and dry weight) was also measured. The results showed that tanshinone II(A) in all samples of each site were higher than the standards required by China Pharmacopoeia. It has been found there is a relationship between root shape and climate change. The correlation analysis between active components and meteorological factors showed that the accumulation of tanshinones were effected by such meteorological factors as average relative humidity from April to October > average vapor pressure from April to October > average temperature difference day and night from April to October > annual average temperature and so on. The correlation analysis between root biomass and meteorological factors exhibited that root shape and accumulation of dry matter were affected by those factors, such as average annual aboveground (0-20 cm) temperature from April to October > annual average temperature > average vapor pressure from April to October > annual active accumulated temperature > annual average temperature > average vapor pressure from April to October. The accumulation of tanshinones and biomass was increased with the decrease of latitude. At the same time, the dry matter and diameter of root decreased if altitude rises. In addition, S. miltiorrhiza required sunlight is not sophisticated, when compared with humid and temperature. To sum up, S

  10. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus.

    PubMed

    Sebastiana, Mónica; Martins, Joana; Figueiredo, Andreia; Monteiro, Filipa; Sardans, Jordi; Peñuelas, Josep; Silva, Anabela; Roepstorff, Peter; Pais, Maria Salomé; Coelho, Ana Varela

    2017-02-01

    An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered in the roots. Consistent with the results of the biochemical analysis, the proteome analysis of the mycorrhizal roots suggests a decreasing utilization of sucrose for the metabolic activity of mycorrhizal roots which is consistent with an increased allocation of carbohydrates from the plant to the fungus in order to sustain the symbiosis. In addition, a promotion of protein unfolding mechanisms, attenuation of defense reactions, increased nutrient mobilization from the plant-fungus interface (N and P), as well as cytoskeleton rearrangements and induction of plant cell wall loosening for fungal root accommodation in colonized roots are also suggested by the results. The suggested improvement in root capacity to take up nutrients accompanied by an increase of root biomass without apparent changes in aboveground biomass strongly re-enforces the potential of mycorrhizal inoculation to improve cork oak forest resistance capacity to cope with coming climate change.

  11. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff

    NASA Astrophysics Data System (ADS)

    de Baets, S.; Poesen, J.

    2009-04-01

    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  12. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera.

    PubMed

    Prasad, Ram; Kamal, Shwet; Sharma, Pradeep K; Oelmüller, Ralf; Varma, Ajit

    2013-12-01

    Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant.

  13. [Nitrogen absorption and allocation in cotton plant under effects of double-cropping wheat and cotton root mass].

    PubMed

    Wang, Ying; Zhou, Zhiguo; Chen, Binglin; Meng, Yali; Shu, Hongmei

    2006-12-01

    By the methods of 15N-foliar feeding and 15N dilution, a pot experiment of double-cropping wheat and cotton was conducted to study the nitrogen absorption and allocation in cotton plant under effects of wheat and cotton root mass. Three treatments were installed, i.e., no separation of wheat and cotton roots (treatment I), separation with nylon net (treatment II), and separation with plastic film (treatment III). The results showed that both the competition of 15N absorption between wheat and cotton root, and the translocation of absorbed 15N from wheat root to cotton were existed in the wheat-cotton double-cropping system. The absorbed 15N by cotton root was mostly allocated in aboveground part, and less in root. The aboveground part of cotton had the highest N utilization rate (NUR) in treatment I and the lowest one in treatment III, but the Ndff was lower in treatment I than in treatments II and III. At the early flowering stage of cotton when wheat was harvested and its straw was amended in situ, the absorbed nitrogen by cotton was mainly from the applied 15N, but not from the amended wheat straw. The allocation of absorbed 15N in different organs of cotton was quite different, being much higher in reproductive organs than in other organs. The biomass of cotton plant was also higher in treatment I than in treatments II and III.

  14. C3 and C4 biomass allocation responses to elevated CO2 and nitrogen: contrasting resource capture strategies

    USGS Publications Warehouse

    White, K.P.; Langley, J.A.; Cahoon, D.R.; Megonigal, J.P.

    2012-01-01

    Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient + 340 ppm) and soil N (ambient and ambient + 25 g m-2 year-1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3-C4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P 2 alone. C3 fine root production decreased with added N (P 2 (P = 0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.

  15. Morphological and physiological responses of Scots pine fine roots to water supply in a dry climatic region in Switzerland.

    PubMed

    Brunner, Ivano; Pannatier, Elisabeth Graf; Frey, Beat; Rigling, Andreas; Landolt, Werner; Zimmermann, Stephan; Dobbertin, Matthias

    2009-04-01

    In recent decades, Scots pine (Pinus sylvestris L.) forests in inner-Alpine dry valleys of Switzerland have suffered from drought and elevated temperatures, resulting in a higher mortality rate of trees than the mean mortality rate in Switzerland. We investigated the responses of fine roots (standing crop, morphological and physiological features) to water supply in a Scots pine forest in the Rhone valley. Before irrigation started in 2003, low- and high-productivity Scots pine trees were selected based on their crown transparency. The fine root standing crop measured in spring from 2003 to 2005 was unaffected by the irrigation treatment. However, irrigation significantly enhanced the fine root standing crop during the vegetation period when values from spring were compared with values from fall in 2005. Irrigation slightly increased specific root length but decreased root tissue density. Fine root O2-consumption capacity decreased slightly in response to the irrigation treatment. Using ingrowth cores to observe the responses of newly produced fine roots, irrigation had a significantly positive effect on the length of fine roots, but there were no differences between the low- and high-productivity trees. In contrast to the weak response of fine roots to irrigation, the aboveground parts responded positively to irrigation with more dense crowns. The lack of a marked response of the fine root biomass to irrigation in the low- and high-productivity trees suggests that fine roots have a high priority for within-tree carbon allocation.

  16. Fine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2016-01-01

    Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important. PMID:27617016

  17. Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world

    NASA Astrophysics Data System (ADS)

    Peng, Yunfeng; Yang, Yuanhe

    2016-06-01

    Allometric and optimal hypotheses have been widely used to explain biomass partitioning in response to resource changes for individual plants; however, little evidence has been reported from measurements at the community level across a broad geographic scale. This study assessed the nitrogen (N) effect on community-level root to shoot (R/S) ratios and biomass partitioning functions by synthesizing global manipulative experiments. Results showed that, in aggregate, N addition decreased the R/S ratios in various biomes. However, the scaling slopes of the allometric equations were not significantly altered by the N enrichment, possibly indicating that N-induced reduction of the R/S ratio is a consequence of allometric allocation as a function of increasing plant size rather than an optimal partitioning model. To further illustrate this point, we developed power function models to explore the relationships between aboveground and belowground biomass for various biomes; then, we generated the predicted root biomass from the observed shoot biomass and predicted R/S ratios. The comparison of predicted and observed N-induced changes of the R/S ratio revealed no significant differences between each other, supporting the allometric allocation hypothesis. These results suggest that allometry, rather than optimal allocation, explains the N-induced reduction in the R/S ratio across global biomes.

  18. Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world

    PubMed Central

    Peng, Yunfeng; Yang, Yuanhe

    2016-01-01

    Allometric and optimal hypotheses have been widely used to explain biomass partitioning in response to resource changes for individual plants; however, little evidence has been reported from measurements at the community level across a broad geographic scale. This study assessed the nitrogen (N) effect on community-level root to shoot (R/S) ratios and biomass partitioning functions by synthesizing global manipulative experiments. Results showed that, in aggregate, N addition decreased the R/S ratios in various biomes. However, the scaling slopes of the allometric equations were not significantly altered by the N enrichment, possibly indicating that N-induced reduction of the R/S ratio is a consequence of allometric allocation as a function of increasing plant size rather than an optimal partitioning model. To further illustrate this point, we developed power function models to explore the relationships between aboveground and belowground biomass for various biomes; then, we generated the predicted root biomass from the observed shoot biomass and predicted R/S ratios. The comparison of predicted and observed N-induced changes of the R/S ratio revealed no significant differences between each other, supporting the allometric allocation hypothesis. These results suggest that allometry, rather than optimal allocation, explains the N-induced reduction in the R/S ratio across global biomes. PMID:27349584

  19. Belowground induction by Delia radicum or phytohormones affect aboveground herbivore communities on field-grown broccoli

    PubMed Central

    Pierre, S. P.; Dugravot, S.; Hervé, M. R.; Hassan, H. M.; van Dam, N. M.; Cortesero, A. M.

    2013-01-01

    Induced plant defence in response to phytophagous insects is a well described phenomenon. However, so far little is known about the effect of induced plant responses on subsequently colonizing herbivores in the field. Broccoli plants were induced in the belowground compartment using (i) infestation by the root-herbivore Delia radicum, (ii) root application of jasmonic acid (JA) or (iii) root application of salicylic acid (SA). The abundance of D. radicum and six aboveground herbivores displaying contrasting levels of host specialization were surveyed for 5 weeks. Our study showed that the response of herbivores was found to differ from one another, depending on the herbivore species, its degree of specialization and the root treatment. The abundance of the root herbivore D. radicum and particularly the number of emerging adults was decreased by both phytohormone treatments, while the number of D. radicum eggs was increased on conspecific infested plants. The root infestation exhibited moderate effects on the aboveground community. The abundance of the aphid Brevicoryne brassicae was strongly increased on D. radicum infested plants, but the other species were not impacted. Root hormone applications exhibited a strong effect on the abundance of specialist foliar herbivores. A higher number of B. brassicae and Pieris brassicae and a lower number of Plutella xylostella were found on JA treated plants. On SA treated plants we observed a decrease of the abundance of B. brassicae, Pi. rapae, and P. xylostella. Surprisingly, generalist species, Mamestra brassicae and Myzus persicae were not affected by root induction treatments. Finally, root treatments had no significant effect on either glucosinolate (GLS) profiles of the heads or on plant quality parameters. These results are discussed from the perspective of below- aboveground interactions and adaptations of phytophagous insects to induced plant responses according to their trophic specialization level. PMID:23970888

  20. Evidence of old carbon used to grow new fine roots in a tropical forest.

    PubMed

    Vargas, Rodrigo; Trumbore, Susan E; Allen, Michael F

    2009-01-01

    In this study, we explore how a hurricane disturbance influenced carbon allocation for the production of new fine roots. Before and after a hurricane, we measured the age of carbon (time since fixation from the atmosphere) in fine root structural tissues using natural abundance radiocarbon (14C) measured by accelerator mass spectrometry. Roots were sampled from five seasonally dry tropical forests ranging in age from 6 yr to a mature forest. Structural carbon in combined live + dead roots picked from soil cores sampled 1 month before the hurricane had mean ages ranging from 4 to 11 yr, whereas live roots alone had ages of 1-2 yr. Structural carbon in new live fine roots produced over a period lasting from 3 wk before the hurricane to 2 months after the event had mean ages of between 2 and 10 yr. Contrary to expectations, our results showed that plants allocate long-lived storage carbon pools to the production of new fine roots after canopy defoliation and root mortality. The age of the carbon allocated for new roots increased with forest age and forest above-ground biomass, suggesting an adaptation of plants to survive and recover from severe disturbances.

  1. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  2. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    PubMed

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be

  3. Reference electrodes for aboveground storage tanks

    SciTech Connect

    Ansuini, F.J.; Dimond, J.R.

    1995-12-31

    This paper discusses several factors affecting the reference potential established by copper/copper sulfate and silver/silver chloride reference electrodes. Guidelines for using references in aboveground storage tank applications are presented and some causes of misleading readings are discussed.

  4. Aboveground storage tanks -- Better safe than sorry

    SciTech Connect

    Rizzo, J.A.

    1995-12-31

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: safety; product losses; cost comparison of UST vs AGSTs; space availability/accessibility; precipitation handling; aesthetics and security; and existing and pending regulations.

  5. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    PubMed Central

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  6. Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe.

    PubMed

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals.

  7. Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures.

    PubMed

    Ryalls, James M W; Moore, Ben D; Riegler, Markus; Gherlenda, Andrew N; Johnson, Scott N

    2015-02-01

    Changes in host plant quality, including foliar amino acid concentrations, resulting from global climate change and attack from multiple herbivores, have the potential to modify the pest status of insect herbivores. This study investigated how mechanically simulated root herbivory of lucerne (Medicago sativa) before and after aphid infestation affected the pea aphid (Acyrthosiphon pisum) under elevated temperature (eT) and carbon dioxide concentrations (eCO2). eT increased plant height and biomass, and eCO2 decreased root C:N. Foliar amino acid concentrations and aphid numbers increased in response to eCO2, but only at ambient temperatures, demonstrating the ability of eT to negate the effects of eCO2. Root damage reduced aboveground biomass, height, and root %N, and increased root %C and C:N, most probably via decreased biological nitrogen fixation. Total foliar amino acid concentrations and aphid colonization success were higher in plants with roots cut early (before aphid arrival) than those with roots cut late (after aphid arrival); however, this effect was counteracted by eT. These results demonstrate the importance of amino acid concentrations for aphids and identify individual amino acids as being potential factors underpinning aphid responses to eT, eCO2, and root damage in lucerne. Incorporating trophic complexity and multiple climatic factors into plant-herbivore studies enables greater insight into how plants and insects will interact in the future, with implications for sustainable pest control and future crop security.

  8. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies.

    PubMed

    Eyles, Alieta; Pinkard, Elizabeth A; Mohammed, Caroline

    2009-06-01

    In woody species, potential mechanisms to compensate for tissue loss to herbivory and diseases have been related to post-event shifts in growth, biomass and internal resource allocation patterns, as modulated by external resource limitations. We examined the interactive effects of belowground resource limitations by varying nutrient and water availability, and aboveground carbon limitation imposed by a single defoliation event (40% leaf removal) on stem growth, whole-tree and within-tree resource allocation patterns (total non-structural carbohydrate and nitrogen) and below- and aboveground biomass allocation patterns in 8-month-old, field-grown Eucalyptus globulus Labill. saplings. Two months after treatments were imposed, the direction of the stem growth response to defoliation depended on the abiotic treatment. Five months after defoliation, however, we found little evidence that resource availability constrained the expression of tolerance to defoliation. With the exception of the combined low-nutrient and low-water supply treatment, saplings grown with (1) adequate water and nutrient supplies and even with (2) low-water supply or (3) low-nutrient supply were able to compensate for the 40% foliage loss. The observed compensatory responses were attributed to the activation of several short- and longer-term physiological mechanisms including reduced biomass allocation to coarse roots, mobilization of carbohydrate reserves, robust internal N dynamics and increased ratio of foliage to wood dry mass.

  9. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures

    PubMed Central

    Postma, Johannes A.; Lynch, Jonathan P.

    2012-01-01

    Background and Aims During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures. Methods A functional–structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils. Key Results Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production. Conclusions We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production

  10. Cathodic protection design for aboveground storage tanks

    SciTech Connect

    Koszewski, L.; Quincy, G.L.

    1995-12-31

    The application of cathodic protection for aboveground storage tank (AST) bottoms has been accomplished in a variety of approaches, with varying degrees of success. Recent State regulations, requiring corrosion protection for new tanks and secondary containment for double bottom tanks, have prompted new application techniques to be developed for AST cathodic protection. Improved design applications are now available to todays` tank owners and operators to provide effective long term cathodic protection.

  11. Cathodic protection maintenance for aboveground storage tanks

    SciTech Connect

    Koszewski, L.

    1995-12-31

    Cathodic protection systems are utilized to mitigate corrosion on the external bottom surfaces of aboveground storage tanks (ASTs). Cathodic protection systems should be part of a preventative maintenance program to minimize in-service failures. A good maintenance program will permit determination of continuous adequate cathodic protection of ASTs, through sustained operation and also provide the opportunity to detect cathodic protection system malfunctions, through periodic observations and testing.

  12. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks.

    PubMed

    DiTommaso, Antonio; Morris, Scott H; Parker, John D; Cone, Caitlin L; Agrawal, Anurag A

    2014-01-01

    Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus) populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15 × 15 m fenced enclosures and paired open plots in recently followed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005-2010), we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005-2008) and tree density (2005-2012). The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity), reduced seed bank abundance, relatively more short-lived species (annuals and biennials), and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually recruit from an

  13. Deer Browsing Delays Succession by Altering Aboveground Vegetation and Belowground Seed Banks

    PubMed Central

    DiTommaso, Antonio; Morris, Scott H.; Parker, John D.; Cone, Caitlin L.; Agrawal, Anurag A.

    2014-01-01

    Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus) populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15×15 m fenced enclosures and paired open plots in recently fallowed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005–2010), we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005–2008) and tree density (2005–2012). The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity), reduced seed bank abundance, relatively more short-lived species (annuals and biennials), and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually recruit

  14. Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Lü, X. T.; Jiang, L. L.; Wu, H. F.; Miao, Y.; Kardol, P.

    2013-12-01

    Water availability has profound effects on plant growth and productivity in temperate and semiarid grasslands. However, it remains unclear how variation of inter-annual precipitation by extreme rainfall events will alter the aboveground and belowground responses of plants, and how these responses may be contingent on N availability. In this study, we examined the interactive effects of inter-annual precipitation variation and N addition on aboveground and live fine root biomass of a semiarid grassland in northern China for two consecutive years (2007 and 2008). Inter-annual variation in precipitation resulting mainly from the occurrence of extreme rainfall events in 2008 significantly affected above- and belowground plant biomass responses to water addition. In addition, variation of inter-annual precipitation by this extreme rainfall event suppressed plant responses to nitrogen addition and reduced the interaction effects between water and nitrogen addition. These effects of inter-annual precipitation fluctuation could be attributed to the negative influence of the extreme rainfall event on soil N and water availability, ultimately reducing plant rainfall use efficiency and nitrogen use efficiency. In conclusion, our results suggest ecosystem responses to water and N enrichment could be altered by inter-annual variation of precipitation regime caused by the naturally occurring extreme rainfall events.

  15. Dependence of radar backscatter on coniferous forest biomass

    SciTech Connect

    Dobson, M.C.; Ulaby, F.T. ); LeToan, T.; Beaudoin, A. ); Kasischke, E.S. ); Christensen, N. )

    1992-03-01

    This paper discusses two independent experimental efforts which have examined the dependence of radar backscatter on aboveground biomass of mono specie conifer forests using polarimetric airborne SAR data at P-, L- and C-bands. Plantations of maritime pines near Landes, France range in age from 8 to 46 years with aboveground biomass between 5 and 105 tons/ha. Loblolly pine stands established on abandoned agricultural fields near Duke, NC range in age from 4 to 90 years and extend the range of aboveground biomass to 560 tons/ha for the older stands. These two experimental forests are largely complementary with respect to biomass. Radar backscatter is found to increase approximately linearly with increasing biomass until it saturates at a biomass level that depends on the radar frequency. The biomass saturation level is about 200 tons/ha at P-band and 100 tons/ha at L-band, and the C-band backscattering coefficient shows much less sensitivity to total aboveground biomass.

  16. Correlating radar backscatter with components of biomass in loblolly pine forests

    SciTech Connect

    Kasischke, E.S.; Bourgeau-Chavez, L.L.; Christensen, N.L. Jr.

    1995-05-01

    A multifrequency, multipolarization airborne SAR data set was utilized to examine the relationship between radar backscatter and the aboveground biomass in loblolly pine forests. This data set was also used to examine the potential of SAR to estimate aboveground biomass in these forests. The total aboveground biomass in the test stands used in this study ranged from <1--50 kg m{sup {minus}2}. Not only was total aboveground biomass considered, but the biomass of the tree boles, branches, and needles/leaves. Significant correlations were found in all three frequencies of radar imagery used in this study. At P- and L-bands, the greatest sensitivity to change in biomass occurred in the HH and VH polarized channels, while at C-band, the greatest sensitivity was in the VH polarized channel. The results of the correlation analyses support modeling studies which show the dominant scattering mechanisms from these pines should be double-bounce, ground-trunk scattering and canopy volume scattering. To produce equations to estimate biomass, a stepwise, multiple-linear regression approach was used, using all the radar channels as independent variables, and the log of the biomass components as the dependent variables. The authors conclude from this analysis that the image intensity signatures recorded on SAR imagery have the potential to be used as a basis for estimation of aboveground biomass in pine forests, for total stand biomass levels up to 35--40 kg m{sup {minus}2}.

  17. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  18. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula).

    PubMed

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees' resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem-wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (K R) to increase, while K R (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation.

  19. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula)

    PubMed Central

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees’ resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem–wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (KR) to increase, while KR (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation. PMID:26528318

  20. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio.

  1. Synfuels from biomass grow slowly

    SciTech Connect

    Black, J.; Wedlock, J.C.

    1982-01-01

    Current developments in the manufacture of synfuels are discussed with emphasis on the sources of biomass suitable for synfuels production, processes for converting biomass to synfuels, and the economics of the technology. The sources include wood, nonwood crops, root crops, aquatic biomass, and oils from plants such as soybean, safflower, and peanut. The biomass conversion processes discussed include pyrolysis, gasification, liquefaction, and aerobic and anaerobic digestion.

  2. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize

    PubMed Central

    Park, Yong-Soon; Bae, Dong-Won; Ryu, Choong-Min

    2015-01-01

    Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants. PMID:26630288

  3. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize.

    PubMed

    Park, Yong-Soon; Bae, Dong-Won; Ryu, Choong-Min

    2015-01-01

    Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.

  4. [Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China].

    PubMed

    Zuo, Shu-di; Ren, Yin; Weng, Xian; Ding, Hong-feng; Luo, Yun-jian

    2015-02-01

    Biomass allometric equation (BAE) considered as a simple and reliable method in the estimation of forest biomass and carbon was used widely. In China, numerous studies focused on the BAEs for coniferous forest and pure broadleaved forest, and generalized BAEs were frequently used to estimate the biomass and carbon of mixed broadleaved forest, although they could induce large uncertainty in the estimates. In this study, we developed the species-specific and generalized BAEs using biomass measurement for 9 common broadleaved trees (Castanopsis fargesii, C. lamontii, C. tibetana, Lithocarpus glaber, Sloanea sinensis, Daphniphyllum oldhami, Alniphyllum fortunei, Manglietia yuyuanensis, and Engelhardtia fenzlii) of subtropical evergreen broadleaved forest, and compared differences in species-specific and generalized BAEs. The results showed that D (diameter at breast height) was a better independent variable in estimating the biomass of branch, leaf, root, aboveground section and total tree than a combined variable (D2 H) of D and H (tree height) , but D2H was better than D in estimating stem biomass. R2 (coefficient of determination) values of BAEs for 6 species decreased when adding H as the second independent variable into D- only BAEs, where R2 value for S. sinensis decreased by 5.6%. Compared with generalized D- and D2H-based BAEs, standard errors of estimate (SEE) of BAEs for 8 tree species decreased, and similar decreasing trend was observed for different components, where SEEs of the branch decreased by 13.0% and 20.3%. Therefore, the biomass carbon storage and its dynamic estimates were influenced largely by tree species and model types. In order to improve the accuracy of the estimates of biomass and carbon, we should consider the differences in tree species and model types.

  5. Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU).

    PubMed

    Carriero, G; Emiliani, G; Giovannelli, A; Hoshika, Y; Manning, W J; Traversi, M L; Paoletti, E

    2015-11-01

    This is the longest continuous experiment where ethylenediurea (EDU) was used to protect plants from ozone (O3). Effects of long-term ambient O3 exposure (23 ppm h AOT40) on biomass of an O3 sensitive poplar clone (Oxford) were examined after six years from in-ground planting. Trees were irrigated with either water or 450 ppm EDU. Above (-51%) and below-ground biomass (-47%) was reduced by O3 although the effect was significant only for stem and coarse roots. Ambient O3 decreased diameter of the lower stem, and increased moisture content along the stem of not-protected plants (+16%). No other change in the physical wood structure was observed. A comparison with a previous assessment in the same experiment suggested that O3 effects on biomass partitioning to above-ground organs depend on the tree ontogenetic stage. The root/shoot ratios did not change, suggesting that previous short-term observations of reduced allocation to tree roots may be overestimated.

  6. Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings.

    PubMed

    Gaucher, Catherine; Gougeon, Sébastien; Mauffette, Yves; Messier, Christian

    2005-01-01

    We investigated seasonal patterns of biomass and carbohydrate partitioning in relation to shoot growth phenology in two age classes of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) seedlings growing in the understory of a partially harvested forest. The high root:shoot biomass ratio and carbohydrate concentration of sugar maple are characteristic of species with truncated growth patterns (i.e., cessation of aboveground shoot growth early in the growing season), a conservative growth strategy and high shade tolerance. The low root:shoot biomass ratio and carbohydrate concentration of yellow birch are characteristic of species with continuous growth patterns, an opportunistic growth strategy and low shade tolerance. In both species, starch represented up to 95% of total nonstructural carbohydrates and was mainly found in the roots. Contrary to our hypothesis, interspecific differences in shoot growth phenology (i.e., continuous versus truncated) did not result in differences in seasonal patterns of carbohydrate partitioning. Our results help explain the niche differentiation between sugar maple and yellow birch in temperate, deciduous understory forests.

  7. Aboveground pipeline response to random ground motion

    SciTech Connect

    Banerji, P.; Ghosh, A.

    1995-12-31

    Response of two types of aboveground pipelines--rigid, segmented pipelines, and flexible, continuous pipelines--to random ground motion are studied in this paper. The emphasis is on studying the effect of pipeline system parameters on its response. It is seen that pipe parameters, except for the pipe span, affect system response negligibly. Pier height and flexibility, and foundation-soil flexibility, however, affect response significantly. Furthermore, for practical situations, pipe and pier responses are decoupled, and the pier, therefore, behaves essentially as a point structure that is not affected by spatial variation of ground motion.

  8. Aboveground and belowground plant traits as drivers of microbial abundance and activity.

    NASA Astrophysics Data System (ADS)

    Baxendale, Catherine; Lavorel, Sandra; Grigulis, Karl; Legay, Nicolas; Krainer, Ute; Bahn, Michael; Kastl, Eva; Pommier, Thomas; Bardgett, Richard

    2013-04-01

    Although there is growing awareness of the roles that plant-soil interactions play in regulating ecosystem processes, our understanding of the role that specific aboveground and belowground plant traits play in defining them is limited. In this study, we aimed to develop a conceptual model linking plant functional trait impacts on soil microbial functional diversity and their coupled effects on ecosystem processes. This was done by replicating three mesocosm studies, based on model sub-alpine grasslands, across three sites in different parts of Europe as part of the pan-European project, VITAL. We manipulated community plant traits by planting communities of varying abundance and dominance of 4 common grassland species. After 1.5 years, we then measured aboveground traits (specific leaf area, leaf dry matter content, leaf nitrogen and carbon content and leaf C:N ratio), belowground traits (specific root length, average diameter, root dry matter content, root nitrogen and carbon content and root C:N ratio) microbial community abundance (using phospholipid fatty acid (PLFA) analysis and gene abundance of nitrifier and denitrifier communities), and microbial activity (via potential nitrification and denitrification rates). We present links between manipulated community traits, microbial properties and ecosystem processes, supporting the role of plant traits in driving microbial properties.

  9. Differences in shoot and root terpenoid profiles and plant responses to fertilisation in Tanacetum vulgare.

    PubMed

    Kleine, Sandra; Müller, Caroline

    2013-12-01

    Intraspecific chemical diversity is a common phenomenon especially found in shoots of essential oil-accumulating plant species. Abiotic factors can influence the concentration of essential oils, but the effects are inconsistent and little is known in how far these may vary within an individual and within species between chemotypes. Tanacetum vulgare L. occurs in various chemotypes that differ in the composition of mono- and sesquiterpenoids in their shoot tissues. We investigated how far shoot chemotype grouping is mirrored in root terpenoid profiles. Furthermore, we studied whether different fertilisation amounts influence the plant growth and morphological traits as well as the constitutive terpenoid concentration of leaves and roots of three chemotypes, trans-carvyl acetate, β-thujone, and camphor, to different degrees. Shoot terpenoids were dominated by monoterpenoids, while the roots contained mainly sesquiterpenoids. The clear grouping in three chemotypes based on leaf chemistry was weakly mirrored in the root terpenoid composition. Furthermore, the leaf C/N ratio and the stem height differed between chemotypes. All plants responded to increased nutrient availability with increased total biomass and specific leaf area but decreased C/N and root/shoot ratios. Leaf terpenoid concentrations decreased with increasing fertiliser supply, independent of chemotype. In contrast to the leaves, the terpenoid concentrations of the roots were unaffected by fertilisation. Our results demonstrate that aboveground and belowground organs within a species can be under different selection pressures.

  10. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

    PubMed

    Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H

    2012-10-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.

  11. Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China.

    PubMed

    Wang, Cunguo; Han, Shijie; Zhou, Yumei; Yan, Caifeng; Cheng, Xubing; Zheng, Xingbo; Li, Mai-He

    2012-01-01

    Knowledge of the responses of soil nitrogen (N) availability, fine root mass, production and turnover rates to atmospheric N deposition is crucial for understanding fine root dynamics and functioning in forest ecosystems. Fine root biomass and necromass, production and turnover rates, and soil nitrate-N and ammonium-N in relation to N fertilization (50 kg N ha(-1) year(-1)) were investigated in a temperate forest over the growing season of 2010, using sequential soil cores and ingrowth cores methods. N fertilization increased soil nitrate-N by 16% (P<0.001) and ammonium-N by 6% (P<0.01) compared to control plots. Fine root biomass and necromass in 0-20 cm soil were 13% (4.61 vs. 5.23 Mg ha(-1), P<0.001) and 34% (1.39 vs. 1.86 Mg ha(-1), P<0.001) less in N fertilization plots than those in control plots. The fine root mass was significantly negatively correlated with soil N availability and nitrate-N contents, especially in 0-10 cm soil layer. Both fine root production and turnover rates increased with N fertilization, indicating a rapid underground carbon cycling in environment with high nitrogen levels. Although high N supply has been widely recognized to promote aboveground growth rates, the present study suggests that high levels of nitrogen supply may reduce the pool size of the underground carbon. Hence, we conclude that high levels of atmospheric N deposition will stimulate the belowground carbon cycling, leading to changes in the carbon balance between aboveground and underground storage. The implications of the present study suggest that carbon model and prediction need to take the effects of nitrogen deposition on underground system into account.

  12. Maintenance and growth respiration of the aboveground parts of young field-grown hinoki cypress (Chamaecyparis obtusa).

    PubMed

    Yokota, T; Hagihara, A

    1995-06-01

    Aboveground respiration of five 8-year-old trees of field-grown hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) was nondestructively measured at monthly intervals over 1 year with an enclosed standing tree method. The relationship between monthly specific respiration rate and monthly mean relative growth rate at the individual tree level was described by a linear equation. During the dormant season, respiration was used mainly for maintenance purposes, whereas during the growing season, more than 40% of the respiration was used for growth purposes, i.e., 60 to 70% in May. We conclude that annual maintenance and growth respiration of a tree are directly proportional to the aboveground phytomass and its annual increment, respectively. The maintenance coefficient was estimated to be 0.504 +/- 0.039 (SE) kg kg(-1) year(-1), indicating that the amount respired for maintaining already existing phytomass was equivalent to about half of the existing phytomass. The growth coefficient was estimated to be 0.772 +/- 0.043 (SE) kg kg(-1), indicating that the amount respired for constructing new phytomass was equivalent to about three-fourths of the annual phytomass increment. The annual stand maintenance and growth respiration were, respectively, 8.8 Mg ha(-1) year(-1) for an aboveground biomass of 17.4 Mg ha(-1) and 5.0 Mg ha(-1) year(-1) for an annual stand aboveground biomass increment of 6.5 Mg ha(-1) year(-1). About two-thirds of the total respiration was used to maintain already existing biomass, and about one-third was used to construct new biomass.

  13. Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO2 concentration

    USGS Publications Warehouse

    Yoder, C.K.; Vivin, P.; DeFalco, L.A.; Seemann, J.R.; Nowak, R.S.

    2000-01-01

    Root growth and physiological responses to elevated CO2 were investigated for three important Mojave Desert grasses: the C3 perennial Achnatherum hymenoides, the C4 perennial Pleuraphis rigida and the C3 annual Bromus madritensis ssp. rubens. Seeds of each species were grown at ambient (360 μl l−1) or elevated (1000 μl l−1) CO2 in a glasshouse and harvested at three phenological stages: vegetative, anthesis and seed fill. Because P. rigida did not flower during the course of this study, harvests for this species represent three vegetative stages. Primary productivity was increased in both C3 grasses in response to elevated CO2 (40 and 19% for A. hymenoides and B. rubens, respectively), but root biomass increased only in the C3 perennial grass. Neither above-ground nor below-ground biomass of the C4 perennial grass was significantly affected by the CO2 treatment. Elevated CO2 did not significantly affect root surface area for any species. Total plant nitrogen was also not statistically different between CO2treatments for any species, indicating no enhanced uptake of N under elevated CO2. Physiological uptake capacities for NO3 and NH4 were not affected by the CO2 treatment during the second harvest; measurements were not made for the first harvest. However, at the third harvest uptake capacity was significantly decreased in response to elevated CO2 for at least one N form in each species. NO3 uptake rates were lower in A. hymenoides and P. rigida, and NH4 uptake rates were lower in B. rubens at elevated CO2. Nitrogen uptake on a whole root-system basis (NO3+NH4uptake capacity × root biomass) was influenced positively by elevated CO2 only for A. hymenoidesafter anthesis. These results suggest that elevated CO2 may result in a competitive advantage forA. hymenoides relative to species that do not increase root-system N uptake capacity. Root respiration measurements normalized to 20 °C were not significantly affected by the CO2treatment. However, specific root

  14. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus).

    PubMed

    Sarropoulou, Virginia; Dimassi-Theriou, Kortessa; Therios, Ioannis; Koukourikou-Petridou, Magdalene

    2012-12-01

    The present study, investigates the effects of melatonin (0, 0.05, 0.1, 0.5, 1, 5 and 10 μM) on the morphogenic and biochemical responses in the cherry rootstock PHL-C (Prunus avium L. × Prunus cerasus L.), from shoot tip explants. The incorporation of melatonin (0-10 μM) in the Murashige and Skoog (MS) medium, greatly influenced rooting either positively or negatively. Melatonin, irrespective of its concentration, had a negative effect concerning the number of roots. However, application of 0.5 μM melatonin significantly increased the root length; while 1 μM melatonin increased the root length by 2.5 times, and the fresh weight of the roots by 4 times, in comparison to the control. Although 0.05 μM melatonin increased rooting by 11.11%, 5 μM melatonin had a significant reduction on the number, the fresh weight of roots, and the rooting percentage. Melatonin concentration of 0.1 μM resulted in the greatest chlorophyll (a + b) content, and 5-10 μM reduced the chlorophyll concentration by 2 times, compared to the control. The high melatonin concentrations (5 and 10 μM), increased the levels of proline and carbohydrates in leaves by 3-4 times. In the roots, 0.5 μM of melatonin concentration increased the carbohydrate levels by 1.5 times, while 0.05, 0.1 and 1 μM melatonin concentration significantly reduced the proline content.

  15. Inter-annual precipitation fluctuations alter the responses of above- and belowground biomass to water and N enrichment

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Lü, X. T.; Jiang, L. L.; Wu, H. F.; Miao, Y.; Kardol, P.

    2013-08-01

    Water availability has profound effects on plant growth and productivity in temperate and semi-arid grasslands. However, it remains unclear how variation of inter-annual precipitation by extreme rainfall events will alter the aboveground and belowground responses of plants, and how these responses may be contingent on N availability. In this study, we examined the interactive effects of inter-annual precipitation variation and N addition on aboveground and live fine root biomass of a semi-arid grassland in northern China for two consecutive years (2007 and 2008). Inter-annual variation in precipitation resulting mainly from the occurrence of extreme rainfall events in 2008 significantly affected above- and belowground plant biomass responses to water addition. In addition, variation of inter-annual precipitation by this extreme rainfall event suppressed plant responses to nitrogen addition and reduced the interaction effects between water and nitrogen addition. These effects of inter-annual precipitation fluctuation could be attributed to the negative influence of the extreme rainfall event on soil N and water availability, ultimately reducing plant rainfall use efficiency and nitrogen use efficiency. In conclusion, our results suggest ecosystem responses to water and N enrichment could be altered by inter-annual variation of precipitation regime caused by the naturally occurring extreme rainfall events.

  16. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  17. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2010-10-01 2010-