Sample records for aboveground litter inputs

  1. Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World’s Grasslands

    PubMed Central

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Chengjin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M. H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex. PMID:23405103

  2. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    USGS Publications Warehouse

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  3. Linkages between below and aboveground communities: Decomposer responses to simulated tree species loss are largely additive.

    Treesearch

    Becky A. Ball; Mark A. Bradford; Dave C. Coleman; Mark D. Hunter

    2009-01-01

    Inputs of aboveground plant litter influence the abundance and activities of belowground decomposer biota. Litter-mixing studies have examined whether the diversity and heterogeneity of litter inputs...

  4. Twenty Years of Litter and Root Manipulations: Insights into Multi-Decadal SOM Dynamics and Controls

    NASA Astrophysics Data System (ADS)

    Wig, J.; Lajtha, K.; Nadelhoffer, K. J.

    2012-12-01

    Reforestation, reducing deforestation, and sustainable forest management are often recommended by policy makers to mitigate the greenhouse gas contributions of the forestry sector. However, underlying many of these policy recommendations is the assumption that increasing above-ground carbon stocks corresponds to long-term increases in ecosystem carbon stocks, the majority of which is stored in soils. We analyzed soil carbon and nitrogen dynamics in forest soils that had undergone twenty years of continuous manipulations of above- and below-ground organic inputs as part of the Detritus Input and Removal Treatment (DIRT) network. Although we expected that increased C inputs would correspond to significantly elevated C in surface mineral soils, our data suggest that increasing above-ground litter inputs has had a positive priming effect in this soil. Positive priming occurs when increased rates of litter addition to soil lead to disproportionate increases in microbial respiration rates of native soil C, resulting in a net decrease of soil C. Soil respiration rates in a year-long laboratory incubation support this theory: increased above-ground litter inputs led to decreased respiration rates, suggesting a relative deficit of labile organic matter. Removal of below ground inputs, either with or without above-ground litter inputs, also led to decreased respiration in laboratory incubations, demonstrating the importance of fresh root inputs to labile C. Trends in non-hydrolyzable C fractions, a proxy for the more stable C pool, agree with our respiration measurements. Data from sequential density fractionation are consistent with the hypotheses that priming has occurred in response to increased above-ground litter inputs and that root inputs are an important control of the labile C pool. The importance of roots inputs for C stabilization is well documented in the literature, and our hypothesis that increased above-ground litter inputs leads to priming is supported by

  5. Riparian litter inputs to streams in the central Oregon Coast Range

    USGS Publications Warehouse

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  6. Do Variations in Detrital Inputs Influence Stable Soil Organic Matter? - An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Townsend, K.; Brewer, E.; Caldwell, B.; Kalbitz, K.; Plante, A.

    2007-12-01

    Recognition of the importance of feedbacks from plants in determining soil nutrient dynamics and C storage led to a large number of litter decomposition studies. Despite growing knowledge of short-term litter dynamics, we know relatively little about the fate of plant litter and its role in determining SOM content and nutrient cycling over time scales ranging from decades and centuries. To address this gap, we established long-term studies of controls on soil organic matter formation in an old-growth forest at the H.J. Andrews Experimental Forest, OR. This study complements a network of recently established similar experiments that pan climatic and soil gradients, as well as the original DIRT experiment established in the Wisconsin Arboretum in 1956 in both grassland and forested sites. The central goal of the DIRT project is to assess how rates and sources of plant litter inputs control the accumulation and dynamics of organic matter and nutrients in forest soils over decadal time scales. Treatment plots include doubled litter (needle) inputs , doubled wood, no above ground litter (screened) inputs, no root inputs (trenched), and no inputs (screened and trenched). For the 50th anniversary of the Wisconsin sites and the 10th anniversary of the H.J. Andrews site, we used sequential density fractionation of soils from all treatments to determine if adding or removing either below- or above-ground litter inputs influenced carbon stabilization as soil organic matter. After 50 years, double litter plots in both prairie and forested soils had higher %C in the 0-10 cm horizon. In the forested site, plots showed increased C content of the lightest fraction, which represents relatively young SOM with a short turnover time. However, the first two heavy fractions also showed increases in C with added aboveground litter, suggesting the importance of aboveground litter inputs to SOM in the forest. No such pattern existed for the prairie soil, and we hypothesize that this is

  7. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina?

    PubMed

    Araujo, Patricia I; Yahdjian, Laura; Austin, Amy T

    2012-01-01

    Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P < 0.001). Although soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.

  8. Regional contingencies in the relationship between aboveground biomass and litter in the world’s grasslands

    Treesearch

    L.R. O' Halloran; E.T. Borer; E.W. Seabloom; A.S. MacDougall; E.E. Cleland; R.L. McCulley; S. Hobbie; S. Harpole; N.M. DeCrappeo; C.-J. Chu; J.D. Bakker; K.F. Davies; G. Du; J. Firn; N. Hagenah; K.S. Hofmockel; J.M.H. Knops; W. Li; B.A. Melbourne; J.W. Morgan; J.L. Orrock; S.M. Prober; C.J. Stevens

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a...

  9. Long-term litter manipulation alters soil organic matter turnover in a temperate deciduous forest.

    PubMed

    Wang, Jun-Jian; Pisani, Oliva; Lin, Lisa H; Lun, Olivia O Y; Bowden, Richard D; Lajtha, Kate; Simpson, André J; Simpson, Myrna J

    2017-12-31

    Understanding soil organic matter (OM) biogeochemistry at the molecular-level is essential for assessing potential impacts from management practices and climate change on shifts in soil carbon storage. Biomarker analyses and nuclear magnetic resonance (NMR) spectroscopy were used in an ongoing detrital input and removal treatment experiment in a temperate deciduous forest in Pennsylvania, USA, to examine how above- and below-ground plant inputs control soil OM quantity and quality at the molecular-level. From plant material to surface soils, the free acyclic lipids and cutin, suberin, and lignin biomarkers were preferentially retained over free sugars and free cyclic lipids. After 20years of above-ground litter addition (Double Litter) or exclusion (No Litter) treatments, soil OM composition was relatively more degraded, as revealed by solid-state 13 C NMR spectroscopy. Under Doubled Litter inputs, soil carbon and phospholipid fatty acid (PLFA) concentrations were unchanged, suggesting that the current OM degradation status is a reflection of microbial-mediated degradation that occurred prior to the 20-year sampling campaign. Soil OM degradation was higher in the No Litter treatments, likely due to the decline in fresh, above-ground litter inputs over time. Furthermore, root and root and litter exclusion treatments (No Roots and No Inputs, respectively) both significantly reduced free sugars and PLFAs and increased preservation of suberin-derived compounds. PLFA stress ratios and the low N-acetyl resonances from diffusion edited 1 H NMR also indicate substrate limitations and reduced microbial biomass with these treatments. Overall, we highlight that storage of soil carbon and its biochemical composition do not linearly increase with plant inputs because the microbial processing of soil OM is also likely altered in the studied forest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Litter fall from shrubs in the northern Majove Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strojan, C.L.; Turner,F.B.; Castetter, R.

    1979-10-01

    Plant litter was collected in traps from 8 to 10 replicates each of Ambrosia dumosa, Ephedra nevadensis, Krameria parvifolia, Larrea tradentata, Lycium andersonii, and Lycium pallidum in Rock Valley, southern Nevada, USA. Collections were made at biweekly to monthly intervals from 1975 to 1977 and handsorted into leaves, stems, flowers, and fruits. Litter fall was generally correlated with annual rainfall, which was low in 1975 (62 mm), high in 1976 (223 mm), and close to the longterm mean in 1977 (141 mm). Leaves were generally the largest litter category, followed by stems, fruits, and flowers. Large sample variations were found,more » particularly for reproductive parts. Aboveground litter fall from the six species, which comprise approx. = 82% of pernnial plant biomass and approx. = 81% of shrub cover in Rock Valley, was about 117 kg/ha in 1975 and 318 kg/ha in 1976. Total aboveground litter fall for Rock Valley (all perennial and annual plants) was estimated to be 194 kg/ha in 1975 and 530 kg/ha in 1976. Distinct litter fall patterns occurred for shrub species and litter categories. Most litter fell during the summer months, with individual species peaks reflecting particular phenologies. Significant amounts of live aboveground biomass were shed as litter. Amounts of litter from the six species ranged from 7 to 83% of their respective live aboveground biomass.« less

  11. Significance of microbial asynchronous anabolism to soil carbon dynamics driven by litter inputs

    PubMed Central

    Fan, Zhaosheng; Liang, Chao

    2015-01-01

    Soil organic carbon (SOC) plays an important role in the global carbon cycle. However, it remains largely unknown how plant litter inputs impact magnitude, composition and source configuration of the SOC stocks over long term through microbial catabolism and anabolism, mostly due to uncoupled research on litter decomposition and SOC formation. This limits our ability to predict soil system responses to changes in land-use and climate. Here, we examine how microbes act as a valve controlling carbon sequestrated from plant litters versus released to the atmosphere in natural ecosystems amended with plant litters varying in quantity and quality. We find that litter quality – not quantity – regulates long-term SOC dynamics under different plausible scenarios. Long-term changes in bulk SOC stock occur only when the quality of carbon inputs causes asynchronous change in a microbial physiological trait, defined as “microbial biosynthesis acceleration” (MBA). This is the first theoretical demonstration that the response of the SOC stocks to litter inputs is critically determined by the microbial physiology. Our work suggests that total SOC at an equilibrium state may be an intrinsic property of a given ecosystem, which ultimately is controlled by the asynchronous MBA between microbial functional groups. PMID:25849864

  12. Significance of microbial asynchronous anabolism to soil carbon dynamics driven by litter inputs

    DOE PAGES

    Fan, Zhaosheng; Liang, Chao

    2015-04-02

    Soil organic carbon (SOC) plays an important role in the global carbon cycle. However, it remains largely unknown how plant litter inputs impact magnitude, composition and source configuration of the SOC stocks over long term through microbial catabolism and anabolism, mostly due to uncoupled research on litter decomposition and SOC formation. This limits our ability to predict soil system responses to changes in land-use and climate. Here, we examine how microbes act as a valve controlling carbon sequestrated from plant litters versus released to the atmosphere in natural ecosystems amended with plant litters varying in quantity and quality. We findmore » that litter quality – not quantity – regulates long-term SOC dynamics under different plausible scenarios. Long-term changes in bulk SOC stock occur only when the quality of carbon inputs causes asynchronous change in a microbial physiological trait, defined as ‘‘microbial biosynthesis acceleration’’ (MBA). This is the first theoretical demonstration that the response of the SOC stocks to litter inputs is critically determined by the microbial physiology. Our work suggests that total SOC at an equilibrium state may be an intrinsic property of a given ecosystem, which ultimately is controlled by the asynchronous MBA between microbial functional groups.« less

  13. Longevity of contributions to SOC stocks from roots and aboveground plant litter below a Miscanthus plantation

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew; Smith, Pete; Davies, Christian; Bottoms, Emily; McNamara, Niall

    2013-04-01

    Miscanthus is a lignocellulosic crop that uses the Hatch-Slack (C4) photosynthetic pathway as opposed to most C3 vegetation native to the UK. Miscanthus can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by improving the carbon (C) budgets associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC), however the longevity and origin of this 'new' SOC must be assessed. Consequently, we combined an input manipulation experiment with physio-chemical soil fractionation to quantify new SOC and CO2 emissions from Miscanthus roots, decomposing plant litter and soil individually. Further, fractionation of SOC from the top 30 cm gave insight into the longevity of that SOC. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input to the soil by way of controlled exclusion techniques. Treatments excluded roots only ("No Roots"), surface litter only ("No Litter"), both roots and surface litter ("No Roots or Litter") or had double the litter amount added to the soil surface ("Double Litter"). A fifth treatment was a control with undisturbed roots and an average amount of litter added. Monthly measurements of CO2 emissions were taken at the soil surface from each treatment between March 2009 and March 2013, and soil C from the top 30 cm was monitored in all plots over the same period. Miscanthus-derived SOC was determined using the isotopic discrimination between C4 plant matter and C3 soil, and soil fractionation was then used to establish the longevity of that Miscanthus-derived SOC. Ongoing results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2

  14. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    NASA Astrophysics Data System (ADS)

    Peterson, Fox S.; Lajtha, Kate J.

    2013-07-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil characteristics, and current and historical vegetation composition and structure versus SOM fractions and DOC pools and leaching on a small catchment (WS1) in the H.J. Andrews Experimental Forest, located in the western Cascades Range of Oregon, USA. We predicted that aboveground net primary productivity (ANPP), litter fall, and nitrogen mineralization would be positively correlated with SOM, DOC, and carbon (C) content of the soil based on the principle that increased C inputs cause C stores in and losses from in the soil. We expected that in tandem, certain microtopographical and microclimatic characteristics might be associated with elevated C inputs and correspondingly, soil C stores and losses. We confirmed that on this site, positive relationships exist between ANPP, C inputs (litter fall), and losses (exportable DOC), but we did not find that these relationships between ANPP, inputs, and exports were translated to SOM stores (mg C/g soil), C content of the soil (% C/g soil), or DOC pools (determined with salt and water extractions). We suggest that the biogeochemical processes controlling C storage and lability in soil may relate to longer-term variability in aboveground inputs that result from a heterogeneous and evolving forest stand.

  15. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  16. Aboveground biomass, wood volume, nutrient stocks and leaf litter in novel forests compared to native forests and tree plantations in Puerto Rico

    Treesearch

    A.E. Lugo; O. Abelleira Martínez; J. Fonseca da Silva

    2012-01-01

    The article presents comparative data for aboveground biomass, wood volume, nutirent stocks (N, P, K) and leaf litter in different types of forests in Puerto Rico. The aim of the study is to assess how novel forests of Castilla elastica, Panama Rubber Tree, and Spathodea campanulata, African Tulip Tree, compare with tree plantations and native historical forests (both...

  17. Terrestrial litter inputs as determinants of food quality of organic matter in a forest stream

    Treesearch

    J.L. Meyer; C. Hax; J.B. Wallace; S.L. Eggert; J.R. Webster

    2000-01-01

    Inputs of leaf litter and other organic matter from the catchment exceed autochthonous production and provide an important food resource in most streams (WEBSTER & MEYER 1997, ANDERSON & SEDELL 1979). An experimental long-term exclusion of terrestrial litter inputs to a forested headwater stream (WALLACE et al. 1997) provided an opportunity to determine if the...

  18. Composition of riparian litter input regulates organic matter decomposition: Implications for headwater stream functioning in a managed forest landscape.

    PubMed

    Lidman, Johan; Jonsson, Micael; Burrows, Ryan M; Bundschuh, Mirco; Sponseller, Ryan A

    2017-02-01

    Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in-stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse- and fine-mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse-mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter-input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher-quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower-quality litter inputs. Birch litter decomposition rate in coarse-mesh bags was best predicted by the same environmental variables as in fine-mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous

  19. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B; Christensen, Candace; Jennings, Terry L

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited onmore » the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and

  20. Using an input manipulation experiment to partition greenhouse gas fluxes from a commercial Miscanthus plantation in the UK

    NASA Astrophysics Data System (ADS)

    Robertson, Andy; Davies, Christian; Smith, Pete; McNamara, Niall

    2014-05-01

    Miscanthus is a lignocellulosic C4 crop that can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by reducing carbon (C) emissions associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC) however there is still considerable uncertainty surrounding estimates of net C exchange and the best management practices to achieve the best greenhouse gas (GHG) mitigation potential. Using an input manipulation experiment, we monitored emissions of N2O, CH4 and CO2 from living Miscanthus roots, aboveground plant litter and soil individually to quantify and partition these emissions and better understand the influence of abiotic factors on SOC and GHG dynamics under Miscanthus. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare commercial Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input (roots or senesced aboveground plant litter) to the soil by way of controlled exclusion techniques. The delta 13C value of soil C and CO2 emitted from each treatment was measured monthly between March 2009 and March 2013. Measurements of CH4 and N2O emissions were also taken at the soil surface from each treatment. Miscanthus-derived emissions were determined using the isotopic discrimination between C4 plant matter and C3 soil, and the treatments were compared to assess their effects on C inputs and outputs to the soil. Both CH4 and N2O emissions were below detection limits, mainly due to a lack of fertiliser additions and limited disturbance of the agricultural site. However, results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2 emissions in winter and spring whereas root respiration dominates the summer

  1. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    PubMed Central

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-01-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545

  2. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition.

    PubMed

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-06-03

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.

  3. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-06-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.

  4. Galling by Rhopalomyia solidaginis alters Solidago altissima architecture and litter nutrient dynamics in an old-field ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutsinger, Greg; Habenicht, Melissa N; Classen, Aimee T

    2008-01-01

    Plant-insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3-34%). Aboveground biomass ofmore » galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant-insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant-insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and roadsides and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.« less

  5. A Greener Arctic: Vascular Plant Litter Input in Subarctic Peat Bogs Changes Soil Invertebrate Diets and Decomposition Patterns

    NASA Astrophysics Data System (ADS)

    Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.

    2014-12-01

    Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that

  6. Potential Rapid Effects on Soil Organic Matter Characteristics and Chemistry Following a Change in Dominant Litter Inputs

    NASA Astrophysics Data System (ADS)

    Crow, S. E.; Filley, T.; Conyers, G.; Stott, D.; McCormick, M.; Whigham, D.; Taylor, D.

    2006-12-01

    Changes in vegetation structure are expected in forests globally under predicted future climate scenarios. Shifts in type or quantity of litter inputs, which will be associated with changes in plant community, may influence soil organic matter (SOM) characteristics. We altered litter inputs in a mixed-deciduous forest at the Smithsonian Environmental Research Center beginning in May 2004: litter removal, leaf amendment, and wood amendment plots were established in three old (120-150 y) and three young (50-70 y) forests. Plots were amended with wood and leaves collected locally from the dominant tree species, tulip poplar (Lirodendron tulipifera). 0-5 cm A horizon soil was collected in November 2005, 18 months after initial treatment, and physically fractionated first by dispersal in HMP and size separation (53 μm) to remove silts and clays then the >53 μm fraction by density (1.4 g cm-3) in SPT to separate the organic debris (light fraction, LF) from the mineral material. Soil with the greatest amount of C present within the LF came from the wood amendment treatment (35.2 ± 0.1%), followed by the leaf amendment (27.7 ± 0.0%) and the litter removal (24.5 ± 0.0%) treatments. In a pattern opposite of the other treatments, leaf amended soil from the old sites had less C within LF than the young. Potentially, a priming effect from the leaf addition at the old sites resulted in increased decomposition of soil LF. While at the young sites, invasive earthworms potentially provided a rapid, direct mode for incorporation of fresh leaf inputs into LF. Preliminary data indicate differences in lignin and cutin/suberin decay rates during litter decomposition between old and young sites. An investigation into the biopolymer composition of LF will determine whether altering litter inputs will ultimately influence SOM dynamics at both the old and young forest sites.

  7. Variable response by aquatic invertebrates to experimental manipulations of leaf litter input into seasonal woodland ponds

    Treesearch

    Darold P. Batzer; Brian J. Palik

    2007-01-01

    Aquatic invertebrates are crucial components of foodwebs in seasonal woodland ponds, and leaf litter is probably the most important food resource for those organisms. We quantified the influence of leaf litter inputs on aquatic invertebrates in two seasonal woodland ponds using an interception experiment. Ponds were hydrologically split using a sandbag-plastic barrier...

  8. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level

    NASA Astrophysics Data System (ADS)

    Straková, Petra; Anttila, Jani; Spetz, Peter; Kitunen, Veikko; Tapanila, Tarja; Laiho, Raija

    2010-05-01

    There is increasing evidence that changes in the species composition and structure of plant communities induced by global change will have much more impact on plant-mediated carbon cycling than any phenotypic responses. These impacts are largely mediated by shifts in litter quality. There are few documentations of these changes so far, due to the relatively long time scale required for their direct observation. Here, we examine the changes in litter inputs induced by persistent water-level drawdown in boreal peatland sites. Peatlands contain a major proportion of the terrestrial carbon pool, and it is thus important to be able to predict their behaviour and role in the global C cycle under different global change factors. We studied the effects of short-term (ca. 4 years) and long-term (ca. 40 years) persistent water level (WL) drawdown on the quantity and chemical quality of above-ground plant litter inputs at three sites: bog, oligotrophic fen and mesotrophic fen. The parameters used to characterize litter quality included various extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), lignin, CuO oxidation phenolic products, and concentrations of C, nitrogen (N), phosphorus (P), potassium, magnesium, manganese and calcium. Four different groups of litter were clearly distinct based on their chemical quality: foliar litters, graminoids, mosses and woody litters. The pristine conditions were characterized by Sphagnum moss and graminoid litter. Following short-term WL drawdown, changes in the quality and quantity of litter inputs were small. Following long-term WL drawdown, total litter inputs dramatically increased, due to increased tree litter inputs, and the litter type composition greatly changed. These changes resulted in annual inputs of 1901-2010 kg•ha-1 C, 22-24 kg•ha-1 N, 1.5-2.2 kg•ha-1 P, 967-1235 kg•ha-1 lignin and lignin-like compounds and 254-300 kg•ha-1 water solubles after long-term WL

  9. Forest Floor Decomposition Following Hurricane Litter Inputs in Several Puerto Rican Forests

    Treesearch

    Rebecca Ostertag; Frederick N. Scatena; Whendee L. Silver

    2003-01-01

    Hurricanes affect ecosystem processes by altering resource availability and heterogeneity, but the spatial and temporal signatures of these events on biomass and nutrient cycling processes are not well understood. We examined mass and nutrient inputs of hurricane-derived litter in six tropical forests spanning three life zones in northeastern Puerto Rico after the...

  10. Altered Plant Litter and Microbial Composition Lead to Topsoil Organic Carbon Loss Over a Shrub-encroachment Gradient in an Inner Mongolia Grassland

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Li, H.; Shen, H.; Xu, Y.; Wang, Y.; Xing, A.; Fang, J.

    2017-12-01

    Over the past 150 years, shrub encroachment has occurred in arid and semi-arid ecosystems resulting from climate change and increased human disturbance. Previous studies have revealed that shrub encroachment has substantial effects on habitat heterogeneity, aboveground biomass and bulk carbon content of grasslands, thereby affecting the regional carbon balance. Soil organic carbon (SOC) is mainly derived from aboveground litter, root litter and root exudates and is metabolized by microorganisms. The quality and quantity of plant litter together with soil microbial biomass are important drivers of SOC accumulation. However, the mechanisms regulating soil carbon accumulation by the shrub encroachment remain unclear and molecular evidence is particularly lacking. We use the data of the chemical composition of plant tissues and SOC, and the soil microbial communities to identify the effects of shrub encroachment on SOC accumulation in the top layer along a gradient of natural shrub cover in the grasslands of Inner Mongolia. Our finding indicates that nitrogen-rich legume-shrub encroachment led to soil carbon accumulation in the shrub patch, with more extensive carbon loss observed in the grassy matrix, which resulted in an overall carbon loss. In the pure grassland, a higher abundance of cutin and suberin and a lower concentration of free lipids were detected, suggesting the preservation of recalcitrant polymers derived from herb inputs. In the shrub-encroached grasslands, the labile shrub leaves did not decompose alone but were mixed with herb litter to promote the degradation of SOC via the priming of microbial activities. The SOC remained unchanged in the shrub patches with the increasing shrub cover, which might have been caused by the replacement of prior carbon decompositions with the fresh input of shrub leaves. Similarly, the SOC decreased significantly with increasing shrub cover in the grassy matrix, which likely resulted from insufficient fresh plant inputs

  11. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping

    Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. Withmore » less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. IMPORTANCE Global change involves simultaneous alterations, including those caused by climate warming and land management practices (e.g., clipping). Data on the

  12. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    DOE PAGES

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping; ...

    2016-09-27

    Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. Withmore » less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. IMPORTANCE Global change involves simultaneous alterations, including those caused by climate warming and land management practices (e.g., clipping). Data on the

  13. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity

    PubMed Central

    Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui

    2015-01-01

    This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots. PMID:26657180

  14. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of

  15. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems.

    PubMed

    Tamura, Mioko; Suseela, Vidya; Simpson, Myrna; Powell, Brian; Tharayil, Nishanth

    2017-10-01

    Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant-microbe-mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant-derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial-derived C in the silt-clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above-ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0-5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of

  16. Threshold Level of Harvested Litter Input for Carbon Sequestration by Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.

    2013-12-01

    Due to the increase in the demands for bioenergy, considerable areas in the Midwestern United States could be converted into croplands for second generation bioenergy, such as the cultivation of miscanthus and switchgrass. Study on the effect of the expansion of these crops on soil carbon and nitrogen dynamics is integral to understanding their long-term environmental impacts. In this study, we focus on a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation on the below-ground dynamics of carbon and nitrogen. Fate of soil carbon and nitrogen is sensitive to harvest litter treatments and residue quality. Therefore, we attempt to address how different amounts of harvested biomass inputs into the soil impact the evolution of organic carbon and inorganic nitrogen in the subsurface. We use Precision Agricultural Landscape Modeling System, version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained from 10 years of atmospheric data recorded at both the study site and Willard Airport. Comparisons of model results against observations of drainage, ammonium and nitrate loads in tile drainage, nitrogen mineralization, nitrification, and litterfall in 2011 reveal the ability of the model to accurately capture the ecohydrology, as well as the carbon and nitrogen dynamics at the study site. The results obtained here highlight that there is a critical return of biomass to the soil when harvested for miscanthus (15% of aboveground biomass), and switchgrass (25%) after which the accumulation of carbon in the soil is significantly enhanced and nitrogen leaching is reduced, unlike corn-corn-soybean rotation. The main factor

  17. Litter type control on soil C and N stabilization dynamics in a temperate forest.

    PubMed

    Hatton, Pierre-Joseph; Castanha, Cristina; Torn, Margaret S; Bird, Jeffrey A

    2015-03-01

    While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type ((13) C/(15) N-labeled needles vs. fine roots) and placement-depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement-depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root-derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle-derived C and N was transferred into stable SOM fractions. The stoichiometry of litter-derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N-rich compounds for long-term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates. © 2014 John Wiley & Sons Ltd.

  18. Soil respiration and aboveground litter dynamics of a tropical transitional forest in northwest Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Valentini, Carla Maria Abido; Sanches, Luciana; de Paula, SéRgio Roberto; Vourlitis, George Louis; de Souza Nogueira, José; Pinto, Osvaldo Borges; de Almeida Lobo, Francisco

    2008-03-01

    Measurements of soil CO2 efflux, litter production, and the surface litter pool biomass were made over a 1 year period in a tropical transitional forest near Sinop, Mato Grosso, Brazil with the aim of quantifying the seasonal variation in soil respiration and litter decomposition and the annual contribution of litter decomposition to soil CO2 efflux. Average annual soil CO2 efflux (±95% confidence interval (CI)) was 7.91 ± 1.16 g C m-2 d-1. Soil CO2 efflux was highest during the November-February wet season (9.15 ± 0.90 g C m-2 d-1) and lowest during the May-September dry season (6.19 ± 1.40 g C m-2 d-1), and over 60% of the variation in seasonal soil CO2 efflux was explained by seasonal variations in soil temperature and moisture. Mass balance estimates of mean (±95% CI) decomposition rates were statistically different between the wet and dry seasons (0.66 ± 0.08 and 1.65 ± 0.10 g C m-2 d-1, respectively), and overall, decomposition of leaf litter comprised 16% of the average annual soil respiration. Leaf litter production was higher during the dry season, and mean (±95% CI) leaf litter fall (5.6 ± 1.7 Mg ha-1) comprised 73% of the total litter fall (7.8 ± 2.3 Mg ha-1). Average (±95% CI) annual litter pool biomass was estimated to be 5.5 ± 0.3 Mg ha-1, which was similar to the measured pool size (5.7 ± 2.2 Mg ha-1). Overall, seasonal variations in environmental variables, specifically water availability (soil moisture and rainfall), had a profound influence on litter production, soil respiration, and surface litter decomposition.

  19. Soil respiration and aboveground litter dynamics of a tropical transitional forest in northwest Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Valentini, Carla Maria Abido; Sanches, Luciana; de Paula, Sérgio Roberto; Vourlitis, George Louis; de Souza Nogueira, José; Pinto, Osvaldo Borges; de Almeida Lobo, Francisco

    2008-12-01

    Measurements of soil CO2 efflux, litter production, and the surface litter pool biomass were made over a 1 year period in a tropical transitional forest near Sinop, Mato Grosso, Brazil with the aim of quantifying the seasonal variation in soil respiration and litter decomposition and the annual contribution of litter decomposition to soil CO2 efflux. Average annual soil CO2 efflux (+/-95% confidence interval (CI)) was 7.91 +/- 1.16 g C m-2 d-1. Soil CO2 efflux was highest during the November-February wet season (9.15 +/- 0.90 g C m-2 d-1) and lowest during the May-September dry season (6.19 +/- 1.40 g C m-2 d-1), and over 60% of the variation in seasonal soil CO2 efflux was explained by seasonal variations in soil temperature and moisture. Mass balance estimates of mean (+/-95% CI) decomposition rates were statistically different between the wet and dry seasons (0.66 +/- 0.08 and 1.65 +/- 0.10 g C m-2 d-1, respectively), and overall, decomposition of leaf litter comprised 16% of the average annual soil respiration. Leaf litter production was higher during the dry season, and mean (+/-95% CI) leaf litter fall (5.6 +/- 1.7 Mg ha-1) comprised 73% of the total litter fall (7.8 +/- 2.3 Mg ha-1). Average (+/-95% CI) annual litter pool biomass was estimated to be 5.5 +/- 0.3 Mg ha-1, which was similar to the measured pool size (5.7 +/- 2.2 Mg ha-1). Overall, seasonal variations in environmental variables, specifically water availability (soil moisture and rainfall), had a profound influence on litter production, soil respiration, and surface litter decomposition.

  20. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    PubMed Central

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping; Li, Dejun; Qin, Yujia; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Tiedje, James M.

    2016-01-01

    ABSTRACT Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. PMID:27677789

  1. Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability.

    PubMed

    Soong, Jennifer L; Cotrufo, M Francesca

    2015-06-01

    Grassland ecosystems store an estimated 30% of the world's total soil C and are frequently disturbed by wildfires or fire management. Aboveground litter decomposition is one of the main processes that form soil organic matter (SOM). However, during a fire biomass is removed or partially combusted and litter inputs to the soil are substituted with inputs of pyrogenic organic matter (py-OM). Py-OM accounts for a more recalcitrant plant input to SOM than fresh litter, and the historical frequency of burning may alter C and N retention of both fresh litter and py-OM inputs to the soil. We compared the fate of these two forms of plant material by incubating (13) C- and (15) N-labeled Andropogon gerardii litter and py-OM at both an annually burned and an infrequently burned tallgrass prairie site for 11 months. We traced litter and py-OM C and N into uncomplexed and organo-mineral SOM fractions and CO2 fluxes and determined how fire history affects the fate of these two forms of aboveground biomass. Evidence from CO2 fluxes and SOM C:N ratios indicates that the litter was microbially transformed during decomposition while, besides an initial labile fraction, py-OM added to SOM largely untransformed by soil microbes. Additionally, at the N-limited annually burned site, litter N was tightly conserved. Together, these results demonstrate how, although py-OM may contribute to C and N sequestration in the soil due to its resistance to microbial degradation, a long history of annual removal of fresh litter and input of py-OM infers N limitation due to the inhibition of microbial decomposition of aboveground plant inputs to the soil. These results provide new insight into how fire may impact plant inputs to the soil, and the effects of py-OM on SOM formation and ecosystem C and N cycling. © 2014 John Wiley & Sons Ltd.

  2. Effects of top-dressing recycled broiler litter on litter production, litter characteristics, and nitrogen mass balance.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    Top-dressing is a method of broiler litter management in which a thin layer of new, clean litter material is spread over the top of previously used litter prior to placement of a new flock. This fresh layer of bedding material increases the absorptive capacity of the litter and decreases litter caking. Although this practice has been widely used in the poultry industry for many years, no research has been conducted to quantify the effects the practice has on broiler performance, litter production rates, and nutrient content, or the ability of broiler litter to retain manure N and prevent volatilization. An experiment was conducted to quantify these parameters under simulated commercial conditions in a research facility. Nine consecutive flocks of broilers were reared on recycled broiler litter that had previously been used for 9 flocks. Control pens received no litter treatment whereas top-dressed pens received a thin layer of new rice hulls (1 to 2 cm) before the placement of each flock. Nitrogen loss was calculated using the mass balance method. Average broiler performance was not different between the top-dressed and control pens. Top-dressing of litter significantly (P < 0.05) reduced caked litter production compared with control pens in 6 of 9 flocks. However, average total litter production over all 9 flocks was not different between the 2 litter management strategies. In all flocks, litter N content was significantly reduced in top-dressed pens compared with control pens. As a result, litter C:N ratios were significantly higher for pens with top-dressed litter. Differences in N loss between the treatments were not consistent. Average N loss for all flocks was 10.61 and 11.92 g of N/kg of marketed broiler for control and top-dressed pens, respectively, or 20.1 and 22.5% of N inputs, respectively. Based on this experiment, top-dressing of recycled broiler litter would not be recommended as a strategy to reduce the volatilization of N from broiler rearing

  3. Effects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation

    PubMed Central

    Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus v.

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q 10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest. PMID:25970791

  4. Effects of manipulated above- and belowground organic matter input on soil respiration in a Chinese pine plantation.

    PubMed

    Fan, Juan; Wang, Jinsong; Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus V

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.

  5. Low dissolved organic carbon input from fresh litter to deep mineral soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froeberg, Mats J; Jardine, Philip M; Hanson, Paul J

    2007-01-01

    Dissolved organic carbon (DOC) leached from recent litter in the forest floor has been suggested to be an important source of C to the mineral soil of forest ecosystems. In order to determine the rate at which this flux of C occurs we have taken advantage of a local release of 14C at Oak Ridge National Laboratory Reservation, USA (latitude N 35 58'; longitude W 84 16'). Eight replicate 7x7 m plots were estab lished at four field sites on the reservation in an upland oak forest setting. Half of the plots were provided with 14C-enriched litter (∆14C ≈1000 ),more » and the other half with near-background litter (∆14C ≈220 ) over multiple years. Differences in the labeled leaf litter were used to quantify the movement of litter derived DOC through the soil profile. Soil solutions were collected over several years with tension lysimeters at 15 and 70 cm depth and measured for DOC concentration and 14C abundance. The net amount of DOC retained between 15 and 70 cm was 1.5-6 g m-2 y-1. There were significant effects of the litter additions on the 14C abundance in the DOC, but the net transport of 14C from the added litter was small. The difference in ∆14C between the treatments with enriched and near-background litter was only about 130 at both depths, which is small compared with the difference in Δ14C in the added litter. The primary source of DOC within the mineral soil must therefore have been either the Oe/Oa horizon or the organic matter in the mineral soil. Over a 2-year time frame, leaching of DOC from recent litter did not have a major impact on the C stock in the mineral soil below 15 cm in this ecosystem.« less

  6. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition

    USDA-ARS?s Scientific Manuscript database

    The leaching of dissolved organic matter (DOM) from fresh and pyrolyzed aboveground plant inputs to the soil is a major pathway by which decomposing aboveground plant material contributes to soil organic matter formation. Understanding how aboveground plant input chemical traits control the partiti...

  7. Methods for estimating litter decomposition. Chapter 8

    Treesearch

    Noah J. Karberg; Neal A. Scott; Christian P. Giardina

    2008-01-01

    Litterfall in terrestrial ecosystems represents the primary pathway for nutrient return to soil. Heterotrophic metabolism, facilitated through comminution by small insects and leaching during precipitation events, results in the release of plant litter carbon as CO2 into the atmosphere. The balance between litter inputs and heterotrophic litter...

  8. UVB exposure does not accelerate rates of litter decomposition in a semiarid riparian ecosystem

    USDA-ARS?s Scientific Manuscript database

    Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive e...

  9. Effects of Litter Manipulation on Litter Decomposition in a Successional Gradients of Tropical Forests in Southern China

    PubMed Central

    Chen, Hao; Gurmesa, Geshere A.; Liu, Lei; Zhang, Tao; Fu, Shenglei; Liu, Zhanfeng; Dong, Shaofeng; Ma, Chuan; Mo, Jiangming

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8% and litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can affect litter decomposition, and this impact may become stronger with forest succession in tropical forest ecosystem. PMID:24901698

  10. Meta-analysis as a tool to study crop productivity response to poultry litter application

    USDA-ARS?s Scientific Manuscript database

    Extensive research on the use of poultry litter (PL) under different agricultural practices in the USA has shown both negative and positive effects on crop productivity (either yield or aboveground biomass). However, these experimental results are substantially dependent on the experimental set-up, ...

  11. Chemical properties of litter inputs and organic matter along the Canadian Boreal Forest Transect Case Study

    NASA Astrophysics Data System (ADS)

    Preston, C. M.; Bhatti, J. S.; Norris, C. E.; Quideau, S. A.; Arevalo, C.

    2012-04-01

    To improve prediction of climate change impacts on the carbon balance of boreal forests, we are investigating C stocks, fluxes and organic matter quality of jack pine (Pinus banksiana) and black spruce (Picea mariana) stands in northern Saskatchewan and Manitoba along the Boreal Forest Transect Case Study (BFTCS). Jack pine stands occupy well-drained sandy soils with thin forest floor, whereas poorly-drained black spruce stands have a thick moss-dominated forest floor. Carbon storage for jack pine and black spruce stands respectively was 3.0-5.5 kg m-2 and 5.2-8.2 kg m-2 in vegetation, and 0.20-0.85 kg m-2 and 0.12-0.40 kg m-2 in coarse woody debris. Forest floor C stock was much higher for black spruce (6.0-12.7 kg m-2) than for jack pine (0.6-0.82 kg m-2). Mineral soil C to 50 cm was also significantly higher for black spruce (3.3-12.5 kg m-2) than for jack pine sites (2.2-3.0 kg m-2). Black spruce forest floor properties indicate hindered decomposition and N cycling, with high C/N ratios, strongly stratified and depleted ^13C and ^15N values, high tannins and phenolics, and 13C nuclear magnetic resonance (NMR) spectra typical of poorly decomposed plant material, especially roots and mosses. The thinner jack pine forest floor appears to be dominated by lichen, with charcoal in some samples. These contrasts are unlikely due to the small differences in aboveground litter inputs (110 vs 121 g m-2) for jack pine and black spruce respectively, 2000-2010 means) or litter quality. Development of colder, wetter and thicker black spruce forest floor is more likely associated with soil texture and drainage, further exacerbated by increasing sphagnum coverage and forest floor depth. This suggests that small environmental changes could trigger large C losses through enhanced forest floor decomposition. An investigation of mineral soil C stabilization in four jack pine sites showed that silt plus clay accounted for 15-43 % of 0-1 m C (1.5-2.8 kg m-2); silt held 0.9-3.3% of

  12. Soil Microbe Active Community Composition and Capability of Responding to Litter Addition after 12 Years of No Inputs

    PubMed Central

    Brewer, Elizabeth; Yarwood, Rockie; Lajtha, Kate; Myrold, David

    2013-01-01

    One explanation given for the high microbial diversity found in soils is that they contain a large inactive biomass that is able to persist in soils for long periods of time. This persistent microbial fraction may help to buffer the functionality of the soil community during times of low nutrients by providing a reservoir of specialized functions that can be reactivated when conditions improve. A study was designed to test the hypothesis: in soils lacking fresh root or detrital inputs, microbial community composition may persist relatively unchanged. Upon addition of new inputs, this community will be stimulated to grow and break down litter similarly to control soils. Soils from two of the Detrital Input and Removal Treatments (DIRT) at the H. J. Andrews Experimental Forest, the no-input and control treatment plots, were used in a microcosm experiment where Douglas-fir needles were added to soils. After 3 and 151 days of incubation, soil microbial DNA and RNA was extracted and characterized using quantitative PCR (qPCR) and 454 pyrosequencing. The abundance of 16S and 28S gene copies and RNA copies did not vary with soil type or amendment; however, treatment differences were observed in the abundance of archaeal ammonia-oxidizing amoA gene abundance. Analysis of ∼110,000 bacterial sequences showed a significant change in the active (RNA-based) community between day 3 and day 151, but microbial composition was similar between soil types. These results show that even after 12 years of plant litter exclusion, the legacy of community composition was well buffered against a dramatic disturbance. PMID:23263952

  13. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.

    PubMed

    Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L

    2009-01-01

    Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (< 2 cm diameter) were removed from a 400-m2 area and added to an adjacent 100-m2 area. This transfer was the equivalent of adding 5-25 kg/ha of organic P to the forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release

  14. Radiocesium migration in the litter layer of different forest types in Fukushima, Japan.

    PubMed

    Kurihara, Momo; Onda, Yuichi; Kato, Hiroaki; Loffredo, Nicolas; Yasutaka, Tetsuo; Coppin, Frederic

    2018-07-01

    Cesium-137 ( 137 Cs) migration in the litter layer consists of various processes, such as input via throughfall, output via litter decomposition, and input from deeper layers via soil organism activity. We conducted litter bag experiments over 2 years (December 2014-November 2016) to quantify the inputs and outputs of 137 Cs in the litter layer in a Japanese cedar plantation (Cryptomeria japonica) and a mixed broadleaf forest dominated by Quercus serrata located 40 km northwest of the Fukushima Dai-ichi Nuclear Power Plant. The experiments included four conditions, combining contaminated and non-contaminated litter and deeper layer material, and the inputs and outputs were estimated from the combination of 137 Cs increases and decreases in the litter layer under each condition. The 137 Cs dynamics differed between the two forests. In the C. japonica forest, some 137 Cs input via throughfall remained in the litter layer, and downward 137 Cs flux passed through the litter layer was 0.42 (/year).Upward flux of 137 Cs from the deeper layer was very restricted, < 0.017 (/year). In the broadleaf forest, migration of 137 Cs in throughfall into deeper layers was restricted, downward 137 Cs flux was less than 0.003 (/year).Upward input of 137 Cs from the deeper layer was prominent, 0.037 (/year). 137 Cs output via litter decomposition was observed in both forests. The flux in the C. japonica forest was slower than that in the broadleaf forest, 0.12 and 0.15 (/year), respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Stronger influence of litter quality on decomposition rates than microbial home field advantage in novel subtropical dry forests

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Atkinson, E. E.

    2015-12-01

    Litter decomposition is one of the most studied ecosystem processes, given its role in carbon cycling and nutrient availability, yet our knowledge of how decomposition is influenced by novel species assemblages in tropical forests emerging on post-agricultural landscapes is limited. This is especially true in tropical dry forests, which are some of the most fragmented forests worldwide due to human pressures and sensitive to changes in rainfall and fire regimes. Here we tested for the effects of litter quality, site conditions, and microbial "home-field advantage" on decomposition rates in subtropical dry forests in St. Croix, U.S. Virgin Islands. We conducted a 22-month in situ and reciprocal transplant field decomposition experiment of aboveground litter and fine roots in 10-year old sites dominated by an early successional N-fixing tree and 40-year old mixed-species secondary forests. Total annual litterfall mass did not differ between the two forest types, but monthly amounts did, with more litter accumulating in the 40-year old secondary forests during the dry season and in the 10-year old secondary forests during the wet season. Litter chemistry differed between the two forest types and showed divergent patterns over the two-year field incubation. To test for the effects of litter quality on decomposition rates, we compared mass loss rates for aboveground and root litter from each forest decomposed in situ and transplanted to the other forest type. Litter in the 10-year old forests decomposed faster in situ (k= 1.07 ± 0.04) than when it was transplanted (k=0.86 ± 0.04). Litter from the 40-year old forests showed the opposite pattern. In situ root decomposition in both forests occurred at the same rate compared to roots that were transplanted there from the other forest type, suggesting that site conditions were equally important as litter quality. Our results were not consistent with a microbial home-field advantage for litter and root decomposition, that

  16. Long-term variation in above and belowground plant inputs alters soil organic matter biogeochemistry at the molecular-level

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Pisani, O.; Lin, L.; Lun, O.; Simpson, A.; Lajtha, K.; Nadelhoffer, K. J.

    2015-12-01

    The long-term fate of soil carbon reserves with global environmental change remains uncertain. Shifts in moisture, altered nutrient cycles, species composition, or rising temperatures may alter the proportions of above and belowground biomass entering soil. However, it is unclear how long-term changes in plant inputs may alter the composition of soil organic matter (SOM) and soil carbon storage. Advanced molecular techniques were used to assess SOM composition in mineral soil horizons (0-10 cm) after 20 years of Detrital Input and Removal Treatment (DIRT) at the Harvard Forest. SOM biomarkers (solvent extraction, base hydrolysis and cupric (II) oxide oxidation) and both solid-state and solution-state nuclear magnetic resonance (NMR) spectroscopy were used to identify changes in SOM composition and stage of degradation. Microbial activity and community composition were assessed using phospholipid fatty acid (PLFA) analysis. Doubling aboveground litter inputs decreased soil carbon content, increased the degradation of labile SOM and enhanced the sequestration of aliphatic compounds in soil. The exclusion of belowground inputs (No roots and No inputs) resulted in a decrease in root-derived components and enhanced the degradation of leaf-derived aliphatic structures (cutin). Cutin-derived SOM has been hypothesized to be recalcitrant but our results show that even this complex biopolymer is susceptible to degradation when inputs entering soil are altered. The PLFA data indicate that changes in soil microbial community structure favored the accelerated processing of specific SOM components with littler manipulation. These results collectively reveal that the quantity and quality of plant litter inputs alters the molecular-level composition of SOM and in some cases, enhances the degradation of recalcitrant SOM. Our study also suggests that increased litterfall is unlikely to enhance soil carbon storage over the long-term in temperate forests.

  17. Do Long-Term Changes in Organic Matter Inputs to Forest Soils Affect Dissolved Organic Matter Chemistry and Export?

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Strid, A.; Lee, B. S.

    2014-12-01

    Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.

  18. Flower litters of alpine plants affect soil nitrogen and phosphorus rapidly in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jinniu; Xu, Bo; Wu, Yan; Gao, Jing; Shi, Fusun

    2016-10-01

    Litters of reproductive organs have rarely been studied despite their role in allocating nutrients for offspring reproduction. This study determines the mechanism through which flower litters efficiently increase the available soil nutrient pool. Field experiments were conducted to collect plant litters and calculate biomass production in an alpine meadow of the eastern Tibetan Plateau. C, N, P, lignin, cellulose content, and their relevant ratios of litters were analyzed to identify their decomposition features. A pot experiment was performed to determine the effects of litter addition on the soil nutrition pool by comparing the treated and control samples. The litter-bag method was used to verify decomposition rates. The flower litters of phanerophyte plants were comparable with non-flower litters. Biomass partitioning of other herbaceous species accounted for 10-40 % of the aboveground biomass. Flower litter possessed significantly higher N and P levels but less C / N, N / P, lignin / N, and lignin and cellulose concentrations than leaf litter. The litter-bag experiment confirmed that the flower litters of Rhododendron przewalskii and Meconopsis integrifolia decompose approximately 3 times faster than mixed litters within 50 days. Pot experiment findings indicated that flower litter addition significantly increased the available nutrient pool and soil microbial productivity. The time of litter fall significantly influenced soil available N and P, and soil microbial biomass. Flower litters fed the soil nutrition pool and influenced nutrition cycling in alpine ecosystems more efficiently because of their non-ignorable production, faster decomposition rate, and higher nutrient contents compared with non-flower litters. The underlying mechanism can enrich nutrients, which return to the soil, and non-structural carbohydrates, which feed and enhance the transitions of soil microorganisms.

  19. Does Litter Impart A Detectable Chemical Signal on Soil DOC? DOC Fluorescence Signatures in Soils Undergoing Long-Term Litter Manipulations

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Strid, A.; Lee, B. S.

    2015-12-01

    Soil dissolved organic carbon (DOC) is a small but crucial part of the forest carbon cycle. Characterizing the relationship between organic matter inputs to soil and DOC chemistry is crucial to understanding the ultimate fate of root carbon, fallen wood and needles. Chemical differences in the DOC pool may help to explain whether fractions are sorbed to mineral surfaces and contribute to accumulation of soil organic carbon, respired as CO2, or exported. Soil solution DOC was sampled from the detrital input and removal treatment (DIRT) plots located in the H.J. Andrews Experimental Forest, OR to determine whether detrital inputs impart a detectable signal on DOC in mineral soil. Multiple types of fresh litter extracts, along with lysimeter and soil extracts from DIRT treatment plots were characterized using UV-Vis and fluorescence spectroscopy coupled with the Cory and McKnight (2005) parallel factor analysis (PARAFAC) model. Principal component analysis of 13 unique fluorophores distinguished using PARAFAC show that litter and soil extracts (needles, wood of decomposition Class 1, Class 3 and Class 5, O-horizon, and A-horizon) each have distinct fluorescence signatures. However, while litter-leached DOC chemistry varies by litter type, neither lysimeter-collected DOC or soil extracts show statistically significant differences in fluorescence signatures among treatments, even after 17 years of litter manipulations. The lack of observed differences among DIRT treatments suggests a "Soil Blender" hypothesis whereby both abiotic and biotic mechanisms effectively homogenize organic carbon constituents within the dissolved pool. The results of this work emphasize the ability of sorption and biodegradation to homogenize soil DOC and demonstrate that fluorescence can be an effective fingerprinting technique for soil DOC composition.

  20. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.

    PubMed

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-05-01

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by

  1. Reciprocal Effects of Litter from Exotic and Congeneric Native Plant Species via Soil Nutrients

    PubMed Central

    Meisner, Annelein; de Boer, Wietse; Cornelissen, Johannes H. C.; van der Putten, Wim H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener. PMID:22359604

  2. Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes

    USGS Publications Warehouse

    Janousek, Christopher; Buffington, Kevin J.; Guntenspergen, Glenn R.; Thorne, Karen M.; Dugger, Bruce D.; Takekawa, John Y.

    2017-01-01

    The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.

  3. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    NASA Astrophysics Data System (ADS)

    Garten, Charles T., Jr.

    2009-03-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  4. Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species.

    PubMed

    Loydi, A; Donath, T W; Otte, A; Eckstein, R L

    2015-05-01

    Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co-occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. A multi-criteria evaluation system for marine litter pollution based on statistical analyses of OSPAR beach litter monitoring time series.

    PubMed

    Schulz, Marcus; Neumann, Daniel; Fleet, David M; Matthies, Michael

    2013-12-01

    During the last decades, marine pollution with anthropogenic litter has become a worldwide major environmental concern. Standardized monitoring of litter since 2001 on 78 beaches selected within the framework of the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) has been used to identify temporal trends of marine litter. Based on statistical analyses of this dataset a two-part multi-criteria evaluation system for beach litter pollution of the North-East Atlantic and the North Sea is proposed. Canonical correlation analyses, linear regression analyses, and non-parametric analyses of variance were used to identify different temporal trends. A classification of beaches was derived from cluster analyses and served to define different states of beach quality according to abundances of 17 input variables. The evaluation system is easily applicable and relies on the above-mentioned classification and on significant temporal trends implied by significant rank correlations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimee T; Overby, Stephen; Hart, Stephen C

    2007-01-01

    Herbivores can directly impact ecosystem function by altering litter quality entering an ecosystem or indirectly by affecting a shift in the microbial community that mediate nutrient processes. We examine herbivore susceptibility and resistance effects on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore driven changes in litter inputs will feedback to the microbial community. Our study population consisted of individual trees that are susceptible or resistant to the stem-boring moth (Dioryctria albovittella) and trees that herbivores have been manually removed since 1982. Moth herbivory increased pi on litter nitrogen concentrations (16%) and canopy precipitation infiltrationmore » (28%), both significant factors influencing litter and soil microbial populations. Our research resulted in three major conclusions: 1) In spite of an increase in litter quality, herbivory does not change litter microarthropod abundance or species richness. 2) Herbivore susceptibility alters bulk soil microbial communities, but not soil properties. 3) Season has a strong influence on microbial communities, and their response to herbivore inputs, in this semi-arid ecosystem.« less

  7. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  8. Artificial neural networks for modeling time series of beach litter in the southern North Sea.

    PubMed

    Schulz, Marcus; Matthies, Michael

    2014-07-01

    In European marine waters, existing monitoring programs of beach litter need to be improved concerning litter items used as indicators of pollution levels, efficiency, and effectiveness. In order to ease and focus future monitoring of beach litter on few important litter items, feed-forward neural networks consisting of three layers were developed to relate single litter items to general categories of marine litter. The neural networks developed were applied to seven beaches in the southern North Sea and modeled time series of five general categories of marine litter, such as litter from fishing, shipping, and tourism. Results of regression analyses show that general categories were predicted significantly moderately to well. Measured and modeled data were in the same order of magnitude, and minima and maxima overlapped well. Neural networks were found to be eligible tools to deliver reliable predictions of marine litter with low computational effort and little input of information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Experimental study of terrestrial plant litter interaction with aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fraysse, F.; Pokrovsky, O. S.; Meunier, J.-D.

    2010-01-01

    Quantification of silicon and calcium recycling by plants is hampered by the lack of physico-chemical data on reactivity of plant litter in soil environments. We applied a laboratory experimental approach for determining the silica and calcium release rates from litter of typical temperate and boreal plants: pine ( Pinus laricio), birch ( Betula pubescens), larch ( Larix gmelinii), elm ( Ulmus laevis Pall.), tree fern ( Dicksonia squarrosa), and horsetail (Equisetum arvense) in 0.01 M NaCl solutions, pH of 2-10 and temperature equals to 5, 25 and 40 °C. Open system, mixed-flow reactors equipped with dialysis compartment and batch reactors were used. Comparative measurements were performed on intact larch needles and samples grounded during different time, sterilized or not and with addition or not of sodium azide in order to account for the effect of surface to mass ratio and possible microbiological activity on the litter dissolution rates. Litter degradation results suggest that the silica release rate is independent on dissolved organic carbon release (cell breakdown) which implies the presence of phytoliths in a pure "inorganic" pool not complexed with organic matter. Calcium and DOC are released at the very first stage of litter dissolution while Si concentration increases gradually suggesting the presence of Ca and Si in two different pools. The dry-weight normalized dissolution rate at circum-neutral pH range (approx. 1-10 μmol/g DW/day) is 2 orders of magnitude higher than the rates of Si release from common soil minerals (kaolinite, smectite, illite). Minimal Ca release rates evaluated from batch and mixed-flow reactors are comparable with those of most reactive soil minerals such as calcite and apatite, and several orders of magnitude higher than the dissolution rates of major rock-forming silicates (feldspars, pyroxenes). The activation energy for Si liberation from plant litter is approx. 50 kJ/mol which is comparable with that of surface

  10. Effects of non-native earthworms on on below- and aboveground processes in the Mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; McCormick, M. K.; Xia, L.; Pitz, S.; O'Neill, J.; Bernard, M.; Chang, C.; Whigham, D. F.

    2011-12-01

    Many biotic and abiotic disturbances have shaped the structure of the deciduous forests in the Mid-Atlantic region. One major anthropogenic factor is land use history. Agricultural practices in the past undoubtedly facilitated non-native earthworm colonization and establishment. Today most secondary forests are dominated by European lumbricid earthworms, although native species also occur in some habitats. To investigate how earthworm community composition and abundance affect belowground processes and tree seedling growth we set up a field manipulation experiment at the Smithsonian Environmental Research Center in Edgewater, MD. A total of 66 experimental plots were set up in successional (70 yrs) and mature (150 yrs) Tulip-poplar-Oak associations. We manipulated earthworm abundance and leaf litter input, and planted seedlings of Tulip poplar, Red maple, Red oak, and American beech. The experiment lasted for two years during which we regularly monitored density, biomass and species composition of earthworm assemblages and measured soil respiration. Soil moisture, temperature and air temperature were also continuously monitored using a wireless sensor network. At harvest, soil bulk density, pH, N pools, C:N ratio, potential N-mineralization rates, and enzyme activity were determined. We used quantitative PCR to assess the community composition of soil fungi. We also determined the extent of mycorrhizal colonization and biomass of roots, shoots and leaves. We conducted likelihood ratio tests for random and fixed effects based on mixed model analyses of variance. Differences between soil depths and among sites and plots accounted for a large portion of the variation in many soil properties. Litter quality affected soil pH and N mineralization. Earthworm densities affected bulk density, inorganic N content, and N mineralization. Both mycorrhizal groups were more abundant in mature than in successional forests. Both ectomycorrhizal (ECM) and arbuscular (AM) fungi were

  11. Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition.

    PubMed

    Lucisine, Pierre; Lecerf, Antoine; Danger, Michaël; Felten, Vincent; Aran, Delphine; Auclerc, Apolline; Gross, Elisabeth M; Huot, Hermine; Morel, Jean-Louis; Muller, Serge; Nahmani, Johanne; Maunoury-Danger, Florence

    2015-12-15

    Soil pollution has adverse effects on the performance and life history traits of microorganisms, plants, and animals, yet evidence indicates that even the most polluted sites can support structurally-complex and dynamic ecosystems. The present study aims at determining whether and how litter decomposition, one of the most important soil ecological processes leaf, is affected in a highly trace-metal polluted site. We postulated that past steel mill activities resulting in soil pollution and associated changes in soil characteristics would influence the rate of litter decomposition through two non-exclusive pathways: altered litter chemistry and responses of decomposers to lethal and sub-lethal toxic stress. We carried out a litter-bag experiment using Populus tremula L. leaf litter collected at, and allowed to decompose in, a trace metal polluted site and in three unpolluted sites used as controls. We designed a fully-factorial transplant experimental design to assess effects of litter origin and exposure site on the rate of litter decomposition. We further determined initial litter chemistry, fungal biomass, mesofauna abundance in litter bags, and the soil macrofauna community. Irrespective of the site of litter exposure, litter originating from the polluted site had a two-fold faster decomposition than litter from the unpolluted sites. Litter chemistry, notably the lignin content, seemed most important in explaining the degradation rate of the leaf litter. Abundance of meso and macro-detritivores was higher at the polluted site than at the unpolluted sites. However, litter decomposition proceeded at similar rates in polluted and unpolluted sites. Our results show that trace metal pollution and associated soil and litter changes do not necessarily weaken consumer control on litter decomposition through lethal and sub-lethal toxic stress. Copyright © 2015. Published by Elsevier B.V.

  12. Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment.

    PubMed

    Freschet, Grégoire T; Ostlund, Lars; Kichenin, Emilie; Wardle, David A

    2014-04-01

    Human activities that involve land-use change often cause major transformations to community and ecosystem properties both aboveground and belowground, and when land use is abandoned, these modifications can persist for extended periods. However, the mechanisms responsible for rapid recovery vs. long-term maintenance of ecosystem changes following abandonment remain poorly understood. Here, we examined the long-term ecological effects of two remote former settlements, regularly visited for -300 years by reindeer-herding Sami and abandoned -100 years ago, within an old-growth boreal forest that is considered one of the most pristine regions in northern Scandinavia. These human legacies were assessed through measurements of abiotic and biotic soil properties and vegetation characteristics at the settlement sites and at varying distances from them. Low-intensity land use by Sami is characterized by the transfer of organic matter towards the settlements by humans and reindeer herds, compaction of soil through trampling, disappearance of understory vegetation, and selective cutting of pine trees for fuel and construction. As a consequence, we found a shift towards early successional plant species and a threefold increase in soil microbial activity and nutrient availability close to the settlements relative to away from them. These changes in soil fertility and vegetation contributed to 83% greater total vegetation productivity, 35% greater plant biomass, and 23% and 16% greater concentrations of foliar N and P nearer the settlements, leading to a greater quantity and quality of litter inputs. Because decomposer activity was also 40% greater towards the settlements, soil organic matter cycling and nutrient availability were further increased, leading to likely positive feedbacks between the aboveground and belowground components resulting from historic land use. Although not all of the activities typical of Sami have left visible residual traces on the ecosystem after

  13. Satellite detection of land-use change and effects on regional forest aboveground biomass estimates

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    We used remote-sensing-driven models to detect land-cover change effects on forest aboveground biomass (AGB) density (Mg·ha−1, dry weight) and total AGB (Tg) in Minnesota, Wisconsin, and Michigan USA, between the years 1992-2001, and conducted an evaluation of the approach. Inputs included remotely-sensed 1992 reflectance data...

  14. Leaf-litter inputs from an invasive nitrogen-fixing tree influence organic-matter dynamics and nitrogen inputs in a Hawaiian river

    Treesearch

    Richard A. MacKenzie; Tracy N. Wiegner; Frances Kinslow; Nicole Cormier; Ayron M. Strauch

    2013-01-01

    Abstract. We examined how invasion of tropical riparian forests by an exotic N-fixing tree (Falcataria moluccana) affects organic-matter dynamics in a Hawaiian river by comparing early stages of leaf-litter breakdown between the exotic F. moluccana and native Metrosideros polymorpha trees. We examined early...

  15. Association between litterers' profile and littering behavior: A chi-square approach

    NASA Astrophysics Data System (ADS)

    Asmui, Mas'udah; Zaki, Suhanom Mohd; Wahid, Sharifah Norhuda Syed; Mokhtar, Noorsuraya Mohd; Harith, Siti Suhaila

    2017-05-01

    Littering is not a novelty, yet a prolonged issue. The solutions have been discussed for a long time; however this issue still remains unresolved. Littering is commonly associated with littering behavior and awareness. The littering behavior is normally influenced by the litter profile such as gender, family income, education level and age. Jengka Street market, which is located in Pahang, is popularly known as a trade market. It offers diversities of wet and dry goods and is awaited by local residents and tourists. This study analyzes association between litterers' profile and littering behavior. Littering behavior is measured based on factors of trash bin facilities, awareness campaign and public littering behavior. 114 respondents were involved in this study with 62 (54.39%) are female aged more than 18 years old and majority of these female respondents are diploma holders. In addition, 78.95% of the respondents have family income below than RM3,000.00 per month. Based on the data analysis, it was found that first-time visitors littered higher than frequent visitors, lack of providing trash bin facilities contributes to positive littering behavior and there is a significant association between litterers' age and littering behavior by using chi-square approach.

  16. Measurement of broiler litter production rates and nutrient content using recycled litter.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    It is important for broiler producers to know litter production rates and litter nutrient content when developing nutrient management plans. Estimation of broiler litter production varies widely in the literature due to factors such as geographical region, type of housing, size of broiler produced, and number of flocks reared on the same litter. Published data for N, P, and K content are also highly variable. In addition, few data are available regarding the rate of production, characteristics, and nutrient content of caked litter (cake). In this study, 18 consecutive flocks of broilers were reared on the same litter in experimental pens under simulated commercial conditions. The mass of litter and cake produced was measured after each flock. Samples of all litter materials were analyzed for pH, moisture, N, P, and K. Average litter and cake moisture content were 26.4 and 46.9%, respectively. Significant variation in litter and cake nutrient content was observed and can largely be attributed to ambient temperature differences. Average litter, cake, and total litter (litter plus cake) production rates were 153.3, 74.8, and 228.2 g of dry litter material per kg of live broiler weight (g/kg) per flock, respectively. Significant variation in litter production rates among flocks was also observed. Cumulative litter, cake, and total litter production rates after 18 flocks were 170.3, 78.7, and 249.0 g/kg, respectively. The data produced from this research can be used by broiler producers to estimate broiler litter and cake production and the nutrient content of these materials.

  17. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

    PubMed

    Cotrufo, M Francesca; Wallenstein, Matthew D; Boot, Claudia M; Denef, Karolien; Paul, Eldor

    2013-04-01

    The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix. © 2012 Blackwell Publishing Ltd.

  18. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-06-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability, using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp: r2 = 0.63, n = 30 plots; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall inputs were generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry being more recalcitrant to decay.

  19. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-09-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay.

  20. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  1. Litter-Spinning Retarders

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1995-01-01

    Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.

  2. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.

  3. Tracing C Fluxes From Leaf Litter To Microbial Respired CO2 And Specific Soil Compounds

    NASA Astrophysics Data System (ADS)

    Rubino, M.; Lubritto, C.; D'Onofrio, A.; Gleixner, G.; Terrasi, F.; Cotrufo, F. M.

    2004-12-01

    Despite litter decomposition is one of the major process controlling soil C stores and nutrient cycling, yet C dynamics during litter decay are poorly understood and quantified. Here we report the results of a laboratory experiment where 13C depleted leaf litter was incubated on a 13C enriched soil with the aims to: i) partition the C loss during litter decay into microbial respired-CO2 and C input into the soil; ii) identify the soil compounds where litter derived C is retained; iii) assess whether litter quality is a determinant of both the above processes. Three 13C-depleted leaf litter(delta13C ca. -43), differing in their degradability, were incubated on C4 soil (delta13C ca. -18) under laboratory controlled conditions for 8 months, with litter respiration and delta13C-CO2 being measured at regular intervals. At harvest, Compound Specific Isotope Analyses was performed on soil and litter samples in order to follow the fate of litter-derived C compounds in the various pools of SOMƒn The delta13C of soils carbohydrates, alkanes and Phospho Lipids Fatty Acids (PLFA) were measured, and the mixing model approach used to quantify the contribution of litter derived C to the specific compounds.

  4. Ammonia emission factors from broiler litter in barns, in storage, and after land application.

    PubMed

    Moore, Philip A; Miles, Dana; Burns, Robert; Pote, Dan; Berg, Kess; Choi, In Hag

    2011-01-01

    We measured NH₃ emissions from litter in broiler houses, during storage, and after land application and conducted a mass balance of N in poultry houses. Four state-of-the-art tunnel-ventilated broiler houses in northwest Arkansas were equipped with NH₃ sensors, anemometers, and data loggers to continuously record NH₃ concentrations and ventilation for 1 yr. Gaseous fluxes of NH₃, N₂O, CH₄, and CO₂ from litter were measured. Nitrogen (N) inputs and outputs were quantified. Ammonia emissions during storage and after land application were measured. Ammonia emissions during the flock averaged approximately 15.2 kg per day-house (equivalent to 28.3 g NH₃per bird marketed). Emissions between flocks equaled 9.09 g NH₃ per bird. Hence, in-house NH₃ emissions were 37.5 g NH₃ per bird, or 14.5 g kg(-1) bird marketed (50-d-old birds). The mass balance study showed N inputs for the year to the four houses totaled 71,340 kg N, with inputs from bedding, chicks, and feed equal to 303, 602, and 70,435 kg, respectively (equivalent to 0.60, 1.19, and 139.56 g N per bird). Nitrogen outputs totaled 70,396 kg N. Annual N output from birds marketed, NH₃ emissions, litter or cake, mortality, and NO₂ emissions was 39,485, 15,571, 14,464, 635, and 241 kg N, respectively (equivalent to 78.2, 30.8, 28.7, 1.3, and 0.5 g N per bird). The percent N recovery for the N mass balance study was 98.8%. Ammonia emissions from stacked litter during a 16-d storage period were 172 g Mg(-1) litter, which is equivalent to 0.18 g NH₃ per bird. Ammonia losses from poultry litter broadcast to pastures were 34 kg N ha (equivalent to 15% of total N applied or 7.91 g NH₃ per bird). When the litter was incorporated into the pasture using a new knifing technique, NH₃ losses were virtually zero. The total NH₃ emission factor for broilers measured in this study, which includes losses in-house, during storage, and after land application, was 45.6 g NH₃ per bird marketed. by the

  5. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    PubMed

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    . The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom-up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short-term alterations of the aboveground herbivore community can strongly impact nutrient cycling within ecosystems independent of long-term management and grazing history.

  6. Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study

    Treesearch

    Lingli Lui; John S. King; Fitzgerald L. Booker; Christian P. Giardina; H. Lee Allen; Shuijin Hu

    2009-01-01

    Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether...

  7. Steroid hormones in biosolids and poultry litter: a comparison of potential environmental inputs.

    PubMed

    Bevacqua, Christine E; Rice, Clifford P; Torrents, Alba; Ramirez, Mark

    2011-05-01

    Steroid hormones can act as potent endocrine disruptors when released into the environment. The main sources of these chemicals are thought to be wastewater treatment plant discharges and waste from animal feeding operations. While these compounds have frequently been found in wastewater effluents, few studies have investigated biosolids or manure, which are routinely land applied, as potential sources. This study assessed the potential environmental contribution of steroid hormones from biosolids and chicken litter. Hormone concentrations in samples of limed biosolids collected at a waste treatment plant over a four year period ranged from <2.5 to 21.7ng/g dry weight for estrone (E1) and <2.5 to 470ng/g dry weight for progesterone. Chicken litter from 12 mid-Atlantic farms had averages of 41.4ng/g dry weight E1, 63.4ng/g dry weight progesterone, and 19.2ng/g dry weight E1-sulfate (E1-S). Other analytes studied were 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), testosterone, E2-3-sulfate (E2-3-S), and E2-17-sulfate (E2-17-3). Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The use of beached bird surveys for marine plastic litter monitoring in Ireland.

    PubMed

    Acampora, Heidi; Lyashevska, Olga; Van Franeker, Jan Andries; O'Connor, Ian

    2016-09-01

    Marine plastic litter has become a major threat to wildlife. Marine animals are highly susceptible to entanglement and ingestion of debris at sea. Governments all around the world are being urged to monitor litter sources and inputs, and to mitigate the impacts of marine litter, which is primarily composed of plastics. European policies, such as Oslo-Paris Convention (OSPAR) and Marine Strategy Framework Directive (MSFD) have adopted the monitoring of a seabird species, the Northern Fulmar (Fulmarus glacialis), as an environmental quality indicator through the analysis of stomach contents of beached Fulmar specimens. The aims of this research were to: firstly set a baseline investigation of multispecies of seabirds in Ireland affected by the ingestion of litter and, secondly to investigate the feasibility of using Fulmar and/or other potential species of seabird as an indicator for marine debris in Ireland through beached bird surveys. Within 30 months, 121 birds comprising 16 different species were collected and examined for the presence of litter. Of these, 27.3% (n = 33) comprising 12 different species were found to ingest litter, mainly plastics. The average mass of ingested litter was 0.141 g. Among 14 sampled Northern Fulmars, 13 (93%) had ingested plastic litter, all of them over the 0.1 g threshold used in OSPAR and MSFD policy target definitions. Results show that seabirds in Ireland are ingesting marine litter, as in many other countries in the world. Monitoring seabird litter ingestion has the potential to form part of a wider marine litter monitoring programme that can help to inform mitigation and management measures for marine litter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Litter composition effects on decomposition across the litter-soil interface

    EPA Science Inventory

    Background/Question/Methods Many studies have investigated the influence of plant litter species composition on decomposition dynamics, but given the variety of communities and environments around the world, a variety of consequences of litter-mixing have been reported. Litter ...

  10. Role of litter decomposition sensitivity to water content in non-additive litter mixture effect: theoretical demonstration and validation with a peatland litter experiment

    NASA Astrophysics Data System (ADS)

    Gogo, Sébastien; Leroy, Fabien; Zoccatelli, Renata; Bernard-Jannin, Léonard; Laggoun-Défarge, Fatima

    2017-04-01

    In this work, we showed theoretically that differences in litter water content, evaporation rate and reaction rate sensitivity to water content can give account of non-additive litter mixture effect. More specifically two litters with the same dependence to litter water content and contrasted water content, and 2 litters with contrasted decomposition sensitivity to litter water content can exert synergistic mixture effect on decomposition when the 2 litters interact. In these situations, water can flow from the wettest to the driest litter, changing the whole reaction rate without changing the whole litter water content. The reaction rate increase of the litter receiving the water was relatively more important than the reaction rate decrease of the litter supplying the water. These theoretical considerations were validated with experimental data. Sphagnum rubellum and Molinia caerulea decompose faster in measured mixture than expected from the rates obtained in monoculture incubation. Sphagnum rubellum litter can contain more water, which evaporates at a slower rate than Molinia caerulea. It is thus proposed that water flowed from Sphagnum rubellum litter to the Molinia caerulea litter, with a substantial increase of the decomposition of the latter. The physical and biochemical litter characteristics towards water explains a fraction of the synergistic effect of mixing the 2 litters, which suggests that other factors intervene in this effect, such as the carbon substrate.

  11. A comparison of litter production in young and old baldcypress (Taxodium distichum L.) stands at Caddo Lake, Texas

    USGS Publications Warehouse

    McCoy, John W.; Draugelis-Dale, Rassa O.; Keeland, Bobby D.; Darville, Roy

    2010-01-01

    Aboveground primary productivity for cypress forests was assessed from measurements of litter production in two age groups and in two hydrological regimes (standing water and free-flowing). Caddo Lake, located in northeast Texas on the Texas-Louisiana border, offered a unique study site since it is dominated by extensive stands composed entirely of Taxodium distichum (L.) Rich, (baldcypress) in different age groups. Young stands (approximately 100 years old) are found along the shoreline and on shallow flooded islands. Old stands (-150 to 300 years old) are found in deeper water where they were continuously flooded. Litter production over three years from October 1998 to September 2001 was measured. Litter consisting of leaves, twigs, bark, reproductive parts, and Tillandsia usneoides (L.) L. (Spanish moss) was collected monthly using 0.5 m2 floating traps. Tree diameters were measured within 200 m2 circular plots in each stand. The young stands supported densities greater than 2,000 stems/ha and a mean stand basal area of 72.3 m2/ha, whereas old stands supported lower densities of about 500 stems/ha but with a similar mean stand basal area of 73.3 m2/ha. There was a significant difference between old and young stands for overall yearly litter production, averaging about 670 g/m2/yr in the young stands and 460 g/m2/yr in the old stands. Leaves and twigs were significantly greater in the young stands, while reproductive parts were higher in old stands. Litter collections between years or hydrological regimes were not significantly different.

  12. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    PubMed Central

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod

  13. [Influence of fire disturbance on aboveground deadwood debris carbon storage in Huzhong forest region of Great Xing'an Mountains, Northeast China].

    PubMed

    Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long

    2015-02-01

    Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.

  14. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.

    PubMed

    He, Yuejun; Cornelissen, J Hans C; Zhong, Zhangcheng; Dong, Ming; Jiang, Changhong

    2017-04-01

    In the karst landscape, widespread in the world including southern China, soil nutrient supply is strongly constrained. In such environments, arbuscular mycorrhizal (AM) fungi may facilitate plant nutrient uptake. However, the possible role of different AM fungal species, and their interactions, especially in transferring nitrogen (N) from litter to plant, is poorly understood. We conducted two microcosm experiments to investigate the role that two karst soil AM fungi, Glomus etunicatum and Glomus mosseae, play in the transfer of N from decomposing litter to the host plant and to determine how N availability influences these processes. In experiment 1, Cinnamomum camphora tree seedlings were grown in compartments inoculated with G. etunicatum. Lolium perenne leaf litter labeled with δ 15 N was added to the soil in unplanted compartments. Compartments containing the δ 15 N labeled litter were either accessible to hyphae but not to seedling roots or were not accessible to hyphae or roots. The addition of mineral N to one of the host compartments at the start of the experiment significantly increased the biomass of the C. camphora seedlings, N content and N:P ratio, AM mycelium length, and soil microbial biomass carbon and N. However, significantly, more δ 15 N was acquired, from the leaf litter by the AM hyphae and transferred to the host when mineral N was not added to the soil. In experiment 2, in which C. camphora seedlings were inoculated with both G. etunicatum and G. mosseae rather than with G. mosseae alone, there was a significant increase in mycelial growth (50.21%), in soil microbial biomass carbon (417.73%) in the rhizosphere, and in the amount of δ 15 N that was transferred to the host. These findings suggest that maintaining AM fungal diversity in karst soils could be important for mediating N transfer from organic material to host plants in N-poor soils.

  15. [Effects of litter and root exclusion on soil microbial community composition and function of four plantations in subtropical sandy coastal plain area, China].

    PubMed

    Sang, Chang Peng; Wan, Xiao Hua; Yu, Zai Peng; Wang, Min Huang; Lin, Yu; Huang, Zhi Qun

    2017-04-18

    We conducted detritus input and removal treatment (DIRT) to examine the effects of shifting above- and belowground carbon (C) inputs on soil microbial biomass, community composition and function in subtropical Pinus elliottii, Eucalyptus urophylla × Eucalyptus grandis, Acacia aulacocarpa and Casuarina equisetifolia coastal sandy plain forests, and the treatments included: root trenching, litter removal and control. Up to September 2015, one year after the experiment began, we collected the 0-10 cm soil samples from each plot. Phospholipid fatty acid (PLFA) analysis was used to characterize the microbial community composition, and micro-hole enzymatic detection technology was utilized to determine the activity of six kinds of soil enzymes. Results showed that changes in microbial biomass induced by the C input manipulations differed among tree species, and mainly affected by litter and root qualily. In E. urophylla × E. grandis stands, root trenching significantly decreased the contents of total PLFAs, Gram-positive bacteria, Gram-negative bacteria, fungi and actinomycetes by 31%, 30%, 32%, 36% and 26%, respectively. Litter removal reduced the contents of Gram-positive bacteria, fungi and actinomycetes by 24%, 27% and 24%, respectively. However, C input manipulations had no significant effect on soil microbial biomassunder other three plantations. According to the effect of C input manipulations on soil microbial community structure, litter and root exclusion decreased fungi abundance and increased actinomycetes abundance. Different treatments under different plantations resulted in various soil enzyme activities. Litter removal significantly decreased the activities of cellobiohydrolase, β-glucosidase, acid phosphatase and N-acetyl-β-d-glucosaminidase of P. elliottii, A. aulacocarpa and C. equisetifolia, root exclusion only decreased and increased the activities of β-glucosidase in P. elliottii and A. aulacocarpa forest soils, respectively. Litter removal also

  16. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    NASA Astrophysics Data System (ADS)

    Esperschütz, J.; Zimmermann, C.; Dümig, A.; Welzl, G.; Buegger, F.; Elmer, M.; Munch, J. C.; Schloter, M.

    2013-07-01

    In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany). Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L.) were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1-4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity)

  17. McDonald's Litter Hunt: A Community Litter Control System for Youth.

    ERIC Educational Resources Information Center

    McNees, M. Patrick; And Others

    1979-01-01

    Describes a community litter control program. Special adhesive stickers were randomly placed on existing litter throughout a community and youth were rewarded with special prizes for participating in the program. Litter was reduced 32 percent across the city. (Author/MA)

  18. Effects of different types of conditioning on rates of leaf-litter shredding by Xiphocaris elongata, a Neotropical freshwater shrimp.

    Treesearch

    Todd A. Crowl; Vanessa Welsh; Tamara Heartsill Scalley

    2006-01-01

    Temperate headwater streams with closed canopies rely on inputs of terrestrially derived organic matter to provide the major energy basis for their food webs. Microbial colonization, or conditioning, makes leaf litter more nutritional and palatable to stream detritivores, but few studies have investigated the relative importance of litter source to macroshredders in...

  19. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community.

    PubMed

    Patoine, Guillaume; Thakur, Madhav P; Friese, Julia; Nock, Charles; Hönig, Lydia; Haase, Josephine; Scherer-Lorenzen, Michael; Eisenhauer, Nico

    2017-11-01

    A better understanding of the mechanisms driving litter diversity effects on decomposition is needed to predict how biodiversity losses affect this crucial ecosystem process. In a microcosm study, we investigated the effects of litter functional diversity and two major groups of soil macro-detritivores on the mass loss of tree leaf litter mixtures. Furthermore, we tested the effects of litter trait community means and dissimilarity on litter mass loss for seven traits relevant to decomposition. We expected macro-detritivore effects on litter mass loss to be most pronounced in litter mixtures of high functional diversity. We used 24 leaf mixtures differing in functional diversity, which were composed of litter from four species from a pool of 16 common European tree species. Earthworms, isopods, or a combination of both were added to each litter combination for two months. Litter mass loss was significantly higher in the presence of earthworms than in that of isopods, whereas no synergistic effects of macro-detritivore mixtures were found. The effect of functional diversity of the litter material was highest in the presence of both macro-detritivore groups, supporting the notion that litter diversity effects are most pronounced in the presence of different detritivore species. Species-specific litter mass loss was explained by nutrient content, secondary compound concentration, and structural components. Moreover, dissimilarity in N concentrations increased litter mass loss, probably because detritivores having access to nutritionally diverse food sources. Furthermore, strong competition between the two macro-detritivores for soil surface litter resulted in a decrease of survival of both macro-detritivores. These results show that the effects of litter functional diversity on decomposition are contingent upon the macro-detritivore community and composition. We conclude that the temporal dynamics of litter trait diversity effects and their interaction with

  20. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community

    PubMed Central

    Patoine, Guillaume; Thakur, Madhav P.; Friese, Julia; Nock, Charles; Hönig, Lydia; Haase, Josephine; Scherer-Lorenzen, Michael; Eisenhauer, Nico

    2017-01-01

    A better understanding of the mechanisms driving litter diversity effects on decomposition is needed to predict how biodiversity losses affect this crucial ecosystem process. In a microcosm study, we investigated the effects of litter functional diversity and two major groups of soil macro-detritivores on the mass loss of tree leaf litter mixtures. Furthermore, we tested the effects of litter trait community means and dissimilarity on litter mass loss for seven traits relevant to decomposition. We expected macro-detritivore effects on litter mass loss to be most pronounced in litter mixtures of high functional diversity. We used 24 leaf mixtures differing in functional diversity, which were composed of litter from four species from a pool of 16 common European tree species. Earthworms, isopods, or a combination of both were added to each litter combination for two months. Litter mass loss was significantly higher in the presence of earthworms than in that of isopods, whereas no synergistic effects of macro-detritivore mixtures were found. The effect of functional diversity of the litter material was highest in the presence of both macro-detritivore groups, supporting the notion that litter diversity effects are most pronounced in the presence of different detritivore species. Species-specific litter mass loss was explained by nutrient content, secondary compound concentration, and structural components. Moreover, dissimilarity in N concentrations increased litter mass loss, probably because detritivores having access to nutritionally diverse food sources. Furthermore, strong competition between the two macro-detritivores for soil surface litter resulted in a decrease of survival of both macro-detritivores. These results show that the effects of litter functional diversity on decomposition are contingent upon the macro-detritivore community and composition. We conclude that the temporal dynamics of litter trait diversity effects and their interaction with

  1. Linking SOM Content, Chemistry, and Decomposition: Complex Responses to Input Manipulation and Long-term Incubation

    NASA Astrophysics Data System (ADS)

    Bridgham, S. D.; Reynolds, L. L.; Tfaily, M.; Roscioli, K.; Lajtha, K.; Bowden, R.; Johnson, B. R.

    2014-12-01

    The mechanisms of soil organic matter (SOM) protection and their relationship with carbon inputs and decomposition are poorly understood. We used Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and Fourier transform infrared spectroscopy (FTIR) to characterize SOM in soils exposed to litter-input exclusion or addition for 20 years, and subsequently incubated for more than a year. Our aim was to describe shifts in SOM content and chemical composition due to the input manipulation and degree of decomposition, particularly in the light (i.e., free particulate, younger) versus the heavy (mineral-adsorbed, older) fractions of SOM, and to link these shifts to carbon mineralization rates. The soils were collected from a deciduous hardwood forest in Meadville, PA, one of the Detritus and Input Removal Treatment (DIRT) sites. They were subjected to either litter and root exclusion (NI), double litter (DL), or ambient inputs (CO) for 20 years and subsequently incubated at 35oC for 525 days. Soils from the beginning and end of the incubation were divided into light and heavy fractions using 1.8 g cm-3 sodium polytungstate. Bulk CO soils and heavy fractions of NI, DL, and CO soil were analyzed with FTICR-MS, while light and heavy fractions were analyzed with FTIR. Twenty years of input exclusion decreased the mineralization rate, the total carbon respired, and total carbon content, though litter addition had no significant effect (NI < CO = DL). The FTICR-MS and FTIR data reveal substantial differences in SOM chemistry among DIRT treatments, fractions, and before and after incubation. CO contained several classes of compounds, including alcohols and phenols, not detected in either DL or NI soils, and all samples showed an enrichment in aromatics between the light and heavy fractions. The heavy fraction DL soils were proportionally enriched in lipids compared to NI and CO soils, and these lipids were preferentially mineralized during incubation. Heavy

  2. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    PubMed

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filley, T. R.; Boutton, T. W.; Liao, J. D.

    Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plantmore » carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.« less

  4. Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna

    NASA Astrophysics Data System (ADS)

    Filley, Timothy R.; Boutton, Thomas W.; Liao, Julia D.; Jastrow, Julie D.; Gamblin, David E.

    2008-09-01

    Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plant carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.

  5. Climate change triggers effects of fungal pathogens and insect herbivores on litter decomposition

    NASA Astrophysics Data System (ADS)

    Butenschoen, Olaf; Scheu, Stefan

    2014-10-01

    Increasing infestation by insect herbivores and pathogenic fungi in response to climate change will inevitably impact the amount and quality of leaf litter inputs into the soil. However, little is known on the interactive effect of infestation severity and climate change on litter decomposition, and no such study has been published for deciduous forests in Central Europe. We assessed changes in initial chemical quality of beech (Fagus sylvatica L.) and maple litter (Acer platanoides L.) in response to infestation by the gall midge Mikiola fagi Hart. and the pathogenic fungus Sawadaea tulasnei Fuckel, respectively, and investigated interactive effects of infestation severity, changes in temperature and soil moisture on carbon mineralization in a short-term laboratory study. We found that infestation by the gall midge M. fagi and the pathogenic fungus S. tulasnei significantly changed the chemical quality of beech and maple litter. Changes in element concentrations were generally positive and more pronounced, and if negative less pronounced for maple than beech litter most likely due to high quality fungal tissue remaining on litter after abscission. More importantly, alterations in litter chemical quality did not translate to distinct patterns of carbon mineralization at ambient conditions, but even low amounts of infested litter accelerated carbon mineralization at moderately increased soil moisture and in particular at higher temperature. Our results indicate that insect herbivores and fungal pathogens can markedly alter initial litter chemical quality, but that afterlife effects on carbon mineralization depend on soil moisture and temperature, suggesting that increased infestation severity under projected climate change potentially increases soil carbon release in deciduous forests in Central Europe.

  6. Can species-specific differences in foliar chemistry influence leaf litter decomposition in grassland species?

    NASA Astrophysics Data System (ADS)

    Sanaullah, M.; Chabbi, A.; Rumpel, C.

    2009-04-01

    The influence of litter quality on its rate of decomposition is a crucial aspect of C cycle. In this study we concentrated on grassland ecosystems where leaf litter is one of the major sources of C input. To quantify the contribution of initial leaf chemistry within different plant species, the decomposition of chemically different leaf litter of three grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) was monitored, using the litter bag technique. Litter of different maturity stages i.e. green (fresh leaves) and brown litter (brown leaves were still attached to the plant), were incubated on bare soil surface. Samples were taken at different time intervals (0, 2, 4, 8, 20 and 44 weeks) and were analyzed for mass loss, organic C and N contents and stable isotopic signatures (C and N). Changes in litter chemistry were addressed by determining lignin-derived phenols after CuO oxidation and non-cellulosic polysaccharides after acid hydrolysis followed by gas chromatography. Green litter was chemically different from brown litter due to higher initial N and lower lignin contents. While in grassland species, both L. perenne and D. glomerata were similar in their initial chemical composition compared with F. arundinacea. Green litter showed higher rate of degradation. In green litter, Percent lignin remaining of initial (% OI) followed the similar decomposition pattern as of C remaining indicating lignin as controlling factor in decomposition. Constant Acid-to-Aldehyde ratios of lignin-derived phenols (vanillyl and syringyl) did not suggest any transformation in lignin structures. In green litter, increase in non-cellulosic polysaccharides ratios (C6/C5 and deoxy/C5) proposed microbial-derived sugars, while there was no significant increase in these ratios in brown litter. In conclusion, due to the differences in initial chemical composition (initial N and lignin contents), green litter decomposition was higher than brown litter in all

  7. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... aboveground breakout tanks. (a) For aboveground breakout tanks built into API Specification 12F and first placed in service after October 2, 2000, pneumatic testing must be in accordance with section 5.3 of API Specification 12 F (incorporated by reference, see § 195.3). (b) For aboveground breakout tanks built to API...

  8. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... aboveground breakout tanks. (a) For aboveground breakout tanks built into API Specification 12F and first placed in service after October 2, 2000, pneumatic testing must be in accordance with section 5.3 of API Specification 12 F (incorporated by reference, see § 195.3). (b) For aboveground breakout tanks built to API...

  9. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... aboveground breakout tanks. (a) For aboveground breakout tanks built into API Specification 12F and first placed in service after October 2, 2000, pneumatic testing must be in accordance with section 5.3 of API Specification 12 F (incorporated by reference, see § 195.3). (b) For aboveground breakout tanks built to API...

  10. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aboveground breakout tanks. (a) For aboveground breakout tanks built into API Specification 12F and first placed in service after October 2, 2000, pneumatic testing must be in accordance with section 5.3 of API Specification 12 F (incorporated by reference, see § 195.3). (b) For aboveground breakout tanks built to API...

  11. Ecological linkages between aboveground and belowground biota.

    PubMed

    Wardle, David A; Bardgett, Richard D; Klironomos, John N; Setälä, Heikki; van der Putten, Wim H; Wall, Diana H

    2004-06-11

    All terrestrial ecosystems consist of aboveground and belowground components that interact to influence community- and ecosystem-level processes and properties. Here we show how these components are closely interlinked at the community level, reinforced by a greater degree of specificity between plants and soil organisms than has been previously supposed. As such, aboveground and belowground communities can be powerful mutual drivers, with both positive and negative feedbacks. A combined aboveground-belowground approach to community and ecosystem ecology is enhancing our understanding of the regulation and functional significance of biodiversity and of the environmental impacts of human-induced global change phenomena.

  12. The effect of long-term changes in plant inputs on soil carbon stocks

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Li, Z.; Torn, M. S.

    2017-12-01

    Soil organic carbon (SOC) is the largest actively-cycling terrestrial reservoir of C and an integral component of thriving natural and managed ecosystems. C input interventions (e.g., litter removal or organic amendments) are common in managed landscapes and present an important decision for maintaining healthy soils in sustainable agriculture and forestry. Furthermore, climate and land-cover change can also affect the amount of plant C inputs that enter the soil through changes in plant productivity, allocation, and rooting depth. Yet, the processes that dictate the response of SOC to such changes in C inputs are poorly understood and inadequately represented in predictive models. Long-term litter manipulations are an invaluable resource for exploring key controls of SOC storage and validating model representations. Here we explore the response of SOC to long-term changes in plant C inputs across a range of biomes and soil types. We synthesize and analyze data from long-term litter manipulation field experiments, and focus our meta-analysis on changes to total SOC stocks, microbial biomass carbon, and mineral-associated (`protected') carbon pools and explore the relative contribution of above- versus below-ground C inputs. Our cross-site data comparison reveals that divergent SOC responses are observed between forest sites, particularly for treatments that increase C inputs to the soil. We explore trends among key variables (e.g., microbial biomass to SOC ratios) that inform soil C model representations. The assembled dataset is an important benchmark for evaluating process-based hypotheses and validating divergent model formulations.

  13. Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales.

    PubMed

    Manninen, Sirkku; Zverev, Vitali; Bergman, Igor; Kozlov, Mikhail V

    2015-12-01

    Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.

    PubMed

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich

    2016-02-01

    Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.

  15. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    PubMed

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.

  16. Marine litter on the seafloor of the Faial-Pico Passage, Azores Archipelago.

    PubMed

    Rodríguez, Yasmina; Pham, Christopher K

    2017-03-15

    Plastic pollution in the marine environment attracts much attention from both researchers and the general public. Plastic items and other debris are commonly observed everywhere in the ocean, from the surface down to the deep ocean floor. In this study, we analysed 45.2km of video footage, collected during 56 transects surveying the seafloor of the Faial-Pico Passage in order to quantify the abundance of marine litter and its interactions with benthic fauna. The footage was collected by a Remotely Operated Vehicle (ROV) and a manned submersible at depths ranging between 40 and 525m. The mean litter density in the passage was 0.26±0.03 items·100m -1 (±SE) and was significantly higher between 151 and 250m compared to other depth strata. Overall, derelict fishing gear, mostly made of plastic, were the most common objects found on the seafloor, representing 64% of all items. Although we observed few evidence of direct deleterious effects by the litter, interactions with fauna were observed in more than half of the items. This study makes an important contribution in quantifying the abundance of marine litter on the seafloor of the Azores. The location of the Faial-Pico Passage, close to shore, makes it an appropriate site for long-term monitoring of litter on the seafloor and evaluate the efficiency of upcoming public policies aimed at reducing litter input into the oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Litter survey in Virginia.

    DOT National Transportation Integrated Search

    1976-01-01

    This report summarizes the findings of the litter survey for highways, urban areas, and recreational areas as specified in the "Virginia Litter Control Act". Litter samples from 61 highway sites, 11 urban sites, and 10 recreational sites geographical...

  18. Marine Litter in the context of `G7' - Nothing but empty rhetoric?

    NASA Astrophysics Data System (ADS)

    Neumann, J.; Imhoff, H.

    2016-02-01

    The G7 summit 2015 in Germany has demonstrated that the major advanced economies mark a new path and mindset beyond their classical issues of world economy, foreign-, security-, and development policy - the protection of the marine environment. Focus themes were marine litter, deep-sea mining, and the protection of the high seas. In the G7 Leaders' Declaration they "acknowledge that marine litter, in particular plastic litter, poses a global challenge, directly affecting marine and coastal life and ecosystems […]". Based on priority actions defined in the annex to the Leaders' Declaration, termed the `G7 Action Plan to combat Marine Litter' (G7AP ML), in fact a novelty to the otherwise rather restrained political statements, the German Presidency aims at further defining and specifying actions that are listed in the `G7AP ML'. This will include inter alia explicit measures and timelines. Emphasizing the global importance and willingness of the G7 to act, and aiming at a swift implementation of the action plan with the intention to establish a real and realistic tool in the race of litter input vs. reduction of anthropogenic pressure on the marine environment, is key to the envisaged approach. Thus, building on existing experiences, such as the OSPAR Regional Action Plan on Marine Litter for the North-East Atlantic, it is intended to expand the geographical range of application towards a global perspective. What has been learned - e.g. concerning the need of close collaboration with stakeholders? What has been decided - on how implementation may be done in reality? And is the `G7AP ML' a valuable add-on to other initiatives, e.g. Global Partnership on Marine Litter - United Nations Environment Programme (UNEP)? These questions will be discussed in the light of the state of the art of the G7 marine litter topic.

  19. Initial Soil Organic Matter Content Influences the Storage and Turnover of Litter-, Root- and Soil Carbon in Grasslands

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, S.; Li, P.; Sayer, E. J.

    2017-12-01

    Grassland degradation is a worldwide problem that often leads to substantial loss of soil organic matter (SOM). Understanding how SOM content influences the stabilization of plant carbon (C) to form soil C is important to evaluate the potential of degraded grasslands to sequester additional C. We conducted a greenhouse experiment using C3 soils with six levels of SOM content and planted the C4 grass Cleistogenes squarrosa and/or added its litter to investigate how SOM content regulates the storage of new soil C derived from litter and roots, the decomposition of extant soil C, and the formation of soil aggregates. We found that microbial biomass carbon (MBC) increased with SOM content, and increased the mineralization of litter C. Both litter addition and planted treatments increased the amount of new C inputs to soil. However, litter addition had no significant impacts on the mineralization of extant soil C, but the presence of living roots significantly accelerated it. Thus, by the end of the experiment, soil C content was significantly higher in the litter addition treatments, but was not affected by planted treatments. The soil macroaggregate fraction increased with SOM content and was positively related to MBC. Overall, our study suggests that as SOM content increases, plant growth and soil microbes become more active, which allows microbes to process more plant-derived C and increases new soil C formation. The interactions between SOM content and plant C inputs should be considered when evaluating soil C turnover in degraded grasslands.

  20. Soil and leaf litter metaproteomics—a brief guideline from sampling to understanding

    PubMed Central

    Keiblinger, Katharina M.; Fuchs, Stephan; Zechmeister-Boltenstern, Sophie; Riedel, Katharina

    2016-01-01

    The increasing application of soil metaproteomics is providing unprecedented, in-depth characterization of the composition and functionality of in situ microbial communities. Despite recent advances in high-resolution mass spectrometry, soil metaproteomics still suffers from a lack of effective and reproducible protein extraction protocols and standardized data analyses. This review discusses the opportunities and limitations of selected techniques in soil-, and leaf litter metaproteomics, and presents a step-by-step guideline on their application, covering sampling, sample preparation, extraction and data evaluation strategies. In addition, we present recent applications of soil metaproteomics and discuss how such approaches, linking phylogenetics and functionality, can help gain deeper insights into terrestrial microbial ecology. Finally, we strongly recommend that to maximize the insights environmental metaproteomics may provide, such methods should be employed within a holistic experimental approach considering relevant aboveground and belowground ecosystem parameters. PMID:27549116

  1. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.

    PubMed

    Joly, François-Xavier; Kurupas, Kelsey L; Throop, Heather L

    2017-09-01

    Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands. © 2017 by the Ecological Society of America.

  2. Impact of litter quantity on the soil bacteria community during the decomposition of Quercus wutaishanica litter.

    PubMed

    Zeng, Quanchao; Liu, Yang; An, Shaoshan

    2017-01-01

    The forest ecosystem is the main component of terrestrial ecosystems. The global climate and the functions and processes of soil microbes in the ecosystem are all influenced by litter decomposition. The effects of litter decomposition on the abundance of soil microorganisms remain unknown. Here, we analyzed soil bacterial communities during the litter decomposition process in an incubation experiment under treatment with different litter quantities based on annual litterfall data (normal quantity, 200 g/(m 2 /yr); double quantity, 400 g/(m 2 /yr) and control, no litter). The results showed that litter quantity had significant effects on soil carbon fractions, nitrogen fractions, and bacterial community compositions, but significant differences were not found in the soil bacterial diversity. The normal litter quantity enhanced the relative abundance of Actinobacteria and Firmicutes and reduced the relative abundance of Bacteroidetes, Plantctomycets and Nitrospiare. The Beta-, Gamma-, and Deltaproteobacteria were significantly less abundant in the normal quantity litter addition treatment, and were subsequently more abundant in the double quantity litter addition treatment. The bacterial communities transitioned from Proteobacteria-dominant (Beta-, Gamma-, and Delta) to Actinobacteria-dominant during the decomposition of the normal quantity of litter. A cluster analysis showed that the double litter treatment and the control had similar bacterial community compositions. These results suggested that the double quantity litter limited the shift of the soil bacterial community. Our results indicate that litter decomposition alters bacterial dynamics under the accumulation of litter during the vegetation restoration process, which provides important significant guidelines for the management of forest ecosystems.

  3. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  4. The impact of alum addition on organic P transformations in poultry litter and litter-amended soil.

    PubMed

    Warren, Jason G; Penn, Chad J; McGrath, Joshua M; Sistani, Karamat

    2008-01-01

    Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation. However, recent studies suggest that alum additions to poultry litter may influence organic P mineralization. Therefore, alum-treated and untreated litters were incubated for 93 d to assess organic P transformations during simulated storage. A 62-d soil incubation was also conducted to determine the fate of incorporated litter organic P, which included alum-treated litter, untreated litter, KH(2)PO(4) applied at 60 mg P kg(-1) of soil, and an unamended control. Liquid-state (31)P nuclear magnetic resonance indicated that phytic acid was the only organic P compound present, accounting for 50 and 45% of the total P in untreated and alum-treated litters, respectively, before incubation and declined to 9 and 37% after 93 d of storage-simulating incubation. Sequential fractionation of litters showed that alum addition to litter transformed 30% of the organic P from the 1.0 mol L(-1) HCl to the 0.1 mol L(-1) NaOH extractable fraction and that both organic P fractions were more persistent in alum-treated litter compared with untreated litter. The soil incubation revealed that 0.1 mol L(-1) NaOH-extractable organic P was more recalcitrant after mixing than was the 1.0 mol L(-1) HCl-extractable organic P. Thus, adding alum to litter inhibits organic P mineralization during storage and promotes the formation of alkaline extractable organic P that sustains lower P solubility in the soil environment.

  5. Leaf Litter Mixtures Alter Microbial Community Development: Mechanisms for Non-Additive Effects in Litter Decomposition

    PubMed Central

    Chapman, Samantha K.; Newman, Gregory S.; Hart, Stephen C.; Schweitzer, Jennifer A.; Koch, George W.

    2013-01-01

    To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate. PMID:23658639

  6. Carbon And Nitrogen Storage Of A Mediterranean-Type Shrubland In Response To Post-Fire Succession And Long-Term Experimental Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Vourlitis, G. L.; Hentz, C. S.

    2015-12-01

    Mediterranean-type shublands are subject to periodic fire and high levels of atmospheric nitrogen (N) deposition. Little is known how N inputs interact with post-fire secondary succession to affect ecosystem carbon (C) and N storage and cycling. Thus, a field experiment was conducted in a chaparral stand located in NE San Diego County, USA that burned during a wildfire in July 2003 to test the hypotheses that rates of C and N storage would significantly increase in response to experimental N addition. The experimental layout consists of a randomized design where four-10 x 10 m plots received 5 gN m-2 (added N) in the fall of each year since 2003 and four-10 x 10 m plots served as un-manipulated controls. Aboveground biomass C and N pools and fluxes, including biomass and litter C and N pool size, litter production, net primary production (NPP), N uptake, and litter C and N mineralization were measured seasonally (every 3 months) for a period of 10 years. Belowground surface (0-10 cm) soil extractable N, pH, and total soil N and C pools and surface root biomass C and N pools were also measured seasonally for a period of 10 years, while N losses from leaching were measured over a shorted (8 year) period of time. Added N led to a rapid increase in soil extractable N and a decline in soil pH; however, total soil C and N storage have yet to be affected by N input. Added N plots initially had significantly lower C and N storage than control plots; however, rates of aboveground N and C storage became significantly higher added N plots after 4-5 years of exposure. N losses from leaching continue to be significantly higher in added N plots even with an increase in aboveground C and N storage. The impact of N enrichment on ecosystem C and N storage varied depending on the stage of succession, but the eventual N-induced increase in NPP has implications for fuel buildup and future fire intensity. While N enrichment acted to increase aboveground C and N storage, plots exposed

  7. Broiler diet modification and litter storage: impacts on phosphorus in litters, soils, and runoff.

    PubMed

    McGrath, Joshua M; Sims, J Thomas; Maguire, Rory O; Saylor, William W; Angel, C Roselina; Turner, Benjamin L

    2005-01-01

    Modifying broiler diets to mitigate water quality concerns linked to excess phosphorus (P) in regions of intensive broiler production has recently increased. Our goals were to evaluate the effects of dietary modification, using phytase and reduced non-phytate phosphorus (NPP) supplementation, on P speciation in broiler litters, changes in litter P forms during long-term storage, and subsequent impacts of diets on P in runoff from litter-amended soils. Four diets containing two levels of NPP with and without phytase were fed to broilers in a three-flock floor pen study. After removal of the third flock, litters were stored for 440 d at their initial moisture content (MC; 24%) and at a MC of 40%. Litter P fractions and orthophosphate and phytate P concentrations were determined before and after storage. After storage, litters were incorporated with a sandy and silt loam and simulated rainfall was applied. Phytase and reduced dietary NPP significantly reduced litter total P. Reducing dietary NPP decreased water-extractable inorganic phosphorus (IP) and the addition of dietary phytase reduced NaOH- and HCl-extractable organic P in litter, which correlated well with orthophosphate and phytic acid measured by 31P nuclear magnetic resonance (NMR), respectively. Although dry storage caused little change in P speciation, wet storage increased concentrations of water-soluble IP, which increased reactive P in runoff from litter-amended soils. Therefore, diet modification with phytase and reduced NPP could be effective in reducing P additions on a watershed scale. Moreover, efforts to minimize litter MC during storage may reduce the potential for dissolved P losses in runoff.

  8. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    PubMed

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  9. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  10. Cigarette Litter: Smokers’ Attitudes and Behaviors

    PubMed Central

    Rath, Jessica M.; Rubenstein, Rebecca A.; Curry, Laurel E.; Shank, Sarah E.; Cartwright, Julia C.

    2012-01-01

    Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers’ littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers’ knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000) were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value < 0.05). The majority (74.1%) of smokers reported having littered cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7%) reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66) and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32). Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94). Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic waste and are harmful when disposed of

  11. Aboveground tree biomass statistics for Maine: 1982

    Treesearch

    Eric H. Wharton; Thomas S. Frieswyk; Anne M. Malley

    1985-01-01

    Traditional measures of volume inadequately describe the total aboveground wood resource. The 1980-82 inventory of Maine included estimates of aboveground tree biomass on timberland. There are nearly 1,504.4 million green tons of wood and bark in all trees above the ground level, or 88.2 green tons per acre of timberland. Most of the biomass is in growing stock, but 49...

  12. Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions.

    PubMed

    Gentile, Roberta; Vanlauwe, Bernard; Six, Johan

    2011-04-01

    litter quality effects. Hence, the formation and stabilization of SOC is more controlled by the quantity of litter input and its interaction with the soil matrix than by litter quality.

  13. Improving basic and translational science by accounting for litter-to-litter variation in animal models

    PubMed Central

    2013-01-01

    Background Animals from the same litter are often more alike compared with animals from different litters. This litter-to-litter variation, or “litter effects”, can influence the results in addition to the experimental factors of interest. Furthermore, sometimes an experimental treatment can only be applied to whole litters rather than to individual offspring. An example is the valproic acid (VPA) model of autism, where VPA is administered to pregnant females thereby inducing the disease phenotype in the offspring. With this type of experiment the sample size is the number of litters and not the total number of offspring. If such experiments are not appropriately designed and analysed, the results can be severely biased as well as extremely underpowered. Results A review of the VPA literature showed that only 9% (3/34) of studies correctly determined that the experimental unit (n) was the litter and therefore made valid statistical inferences. In addition, litter effects accounted for up to 61% (p <0.001) of the variation in behavioural outcomes, which was larger than the treatment effects. In addition, few studies reported using randomisation (12%) or blinding (18%), and none indicated that a sample size calculation or power analysis had been conducted. Conclusions Litter effects are common, large, and ignoring them can make replication of findings difficult and can contribute to the low rate of translating preclinical in vivo studies into successful therapies. Only a minority of studies reported using rigorous experimental methods, which is consistent with much of the preclinical in vivo literature. PMID:23522086

  14. The partitioning of litter carbon during litter decomposition under different rainfall patterns: a laboratory study

    NASA Astrophysics Data System (ADS)

    Yang, X.; Szlavecz, K. A.; Langley, J. A.; Pitz, S.; Chang, C. H.

    2017-12-01

    Quantifying litter C into different C fluxes during litter decomposition is necessary to understand carbon cycling under changing climatic conditions. Rainfall patterns are predicted to change in the future, and their effects on the fate of litter carbon are poorly understood. Soils from deciduous forests in Smithsonian Environmental Research Center (SERC) in Maryland, USA were collected to reconstruct soil columns in the lab. 13C labeled tulip poplar leaf litter was used to trace carbon during litter decomposition. Top 1% and the mean of 15-minute historical precipitation data from nearby weather stations were considered as extreme and control rainfall intensity, respectively. Both intensity and frequency of rainfall were manipulated, while the total amount was kept constant. A pulse of CO2 efflux was detected right after each rainfall event in the soil columns with leaf litter. After the first event, CO2 efflux of the control rainfall treatment soils increased to threefold of the CO2 efflux before rain event and that of the extreme treatment soils increased to fivefold. However, in soils without leaf litter, CO2 efflux was suppressed right after rainfall events. After each rainfall event, the leaf litter contribution to CO2 efflux first showed an increase, decreased sharply in the following two days, and then stayed relatively constant. In soil columns with leaf litter, the order of cumulative CO2 efflux was control > extreme > intermediate. The order of cumulative CO2 efflux in the bare soil treatment was extreme > intermediate > control. The order of volume of leachate from different treatments was extreme > intermediate > control. Our initial results suggest that more intense rainfall events result in larger pulses of CO2, which is rarely measured in the field. Additionally, soils with and without leaf litter respond differently to precipitation events. This is important to consider in temperate regions where leaf litter cover changes throughout the year

  15. Toward a Simple Framework for Understanding the Influence of Litter Quality on Vertical and Horizontal Patterns of Soil Organic Matter Pools

    NASA Astrophysics Data System (ADS)

    Craig, M.; Phillips, R.

    2016-12-01

    Decades of research have revealed that plant litter quality fundamentally influences soil organic matter (SOM) properties. Yet we lack the predictive frameworks necessary to up-scale our understanding of these dynamics in biodiverse systems. Given that ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) plants are thought to differ in their litter quality, we ask whether this dichotomy represents a framework for understanding litter quality effects on SOM in temperate forests. To do this, we sampled soils from 250 spatially referenced locations within a 25-Ha plot where 28,000 trees had been georeferenced, and analyzed spatial patterns of plant and SOM properties. We then examined the extent to which the dominance of AM- versus EM-trees relates to 1) the quality of litter inputs to forest soils and 2) the horizontal and vertical distribution of SOM fractions. We found that leaf litters produced by EM-associated trees were generally of lower quality, having a lower concentration of soluble compounds and higher C:N. Concomitant with this, we observed higher soil C:N under EM trees. Interestingly, this reflected greater N storage in AM-dominated soils rather than greater C storage in EM-dominated soils. These patterns were driven by the storage of SOM in N-rich fractions in AM-dominated soils. Specifically, trees with high litter quality were associated with greater amounts of deep and mineral-associated SOM; pools that are generally considered stable. Our results support the recent contention that high-quality plant inputs should lead to the formation of stable SOM and suggest that the AM-EM framework may provide a way forward for representing litter quality effects on SOM in earth system models.

  16. Fallout volume and litter type affect 137Cs concentration difference in litter between forest and stream environments.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N

    2016-11-01

    It is important to understand the changes in the 137 Cs concentration in litter through leaching when considering that 137 Cs is transferred from basal food resources to animals in forested streams. We found that the difference of 137 Cs activity concentration in litter between forest and stream was associated with both litter type and 137 Cs fallout volume around Fukushima, Japan. The 137 Cs activity concentrations in the litter of evergreen conifers tended to be greater than those in the litter of broad-leaved deciduous trees because of the absence of deciduous leaves during the fallout period in March 2011. Moreover, 137 Cs activity concentrations in forest litter were greater with respect to the 137 Cs fallout volume. The 137 Cs activity concentrations in stream litter were much lower than those in forest litter when those in forest litter were higher. The 137 Cs leaching patterns indicated that the differences in 137 Cs activity concentration between forest and stream litter could change with changes in both fallout volume and litter type. Because litter is an important basal food resource in the food webs of both forests and streams, the 137 Cs concentration gradient reflects to possible 137 Cs transfer from lower to higher trophic animals. Our findings will improve our understanding of the spatial heterogeneity and variability of 137 Cs concentrations in animals resident to the contaminated landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Can't See the Wood for the Litter: Evaluation of Litter Behavior Modification in a Forest

    ERIC Educational Resources Information Center

    Lindemann-Matthies, Petra; Bonigk, Isabel; Benkowitz, Dorothee

    2012-01-01

    This study investigated elementary school children's (n = 171) litter behavior during guided forest tours following two different treatments. Four classes received a verbal appeal not to litter in the forest, while another four classes received both a verbal appeal and a demonstration of the desired litter behavior (picking up litter, putting it…

  18. Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis (PARAFAC) modeling and self-organizing maps

    NASA Astrophysics Data System (ADS)

    Wheeler, K. I.; Levia, D. F.; Hudson, J. E.

    2017-09-01

    In autumn, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams in forested watersheds changes as trees undergo resorption, senescence, and leaf abscission. Despite its biogeochemical importance, little work has investigated how leaf litter leachate DOM changes throughout autumn and how any changes might differ interspecifically and intraspecifically. Since climate change is expected to cause vegetation migration, it is necessary to learn how changes in forest composition could affect DOM inputs via leaf litter leachate. We examined changes in leaf litter leachate fluorescent DOM (FDOM) from American beech (Fagus grandifolia Ehrh.) leaves in Maryland, Rhode Island, Vermont, and North Carolina and from yellow poplar (Liriodendron tulipifera L.) leaves from Maryland. FDOM in leachate samples was characterized by excitation-emission matrices (EEMs). A six-component parallel factor analysis (PARAFAC) model was created to identify components that accounted for the majority of the variation in the data set. Self-organizing maps (SOM) compared the PARAFAC component proportions of leachate samples. Phenophase and species exerted much stronger influence on the determination of a sample's SOM placement than geographic origin. As expected, FDOM from all trees transitioned from more protein-like components to more humic-like components with senescence. Percent greenness of sampled leaves and the proportion of tyrosine-like component 1 were found to be significantly different between the two genetic beech clusters, suggesting differences in photosynthesis and resorption. Our results highlight the need to account for interspecific and intraspecific variations in leaf litter leachate FDOM throughout autumn when examining the influence of allochthonous inputs to streams.

  19. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents.

    PubMed

    Filgueiras, Camila Cramer; Willett, Denis S; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W

    2016-11-04

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems.

  20. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimee T; Chapman, Samantha K.; Whitham, Thomas G

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimentalmore » removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting

  1. [Responses of forest soil carbon pool and carbon cycle to the changes of carbon input].

    PubMed

    Wang, Qing-kui

    2011-04-01

    Litters and plant roots are the main sources of forest soil organic carbon (C). This paper summarized the effects of the changes in C input on the forest soil C pool and C cycle, and analyzed the effects of these changes on the total soil C, microbial biomass C, dissoluble organic C, and soil respiration. Different forests in different regions had inconsistent responses to C input change, and the effects of litter removal or addition and of root exclusion or not differed with tree species and regions. Current researches mainly focused on soil respiration and C pool fractions, and scarce were about the effects of C input change on the changes of soil carbon structure and stability as well as the response mechanisms of soil organisms especially soil fauna, which should be strengthened in the future.

  2. Broiler litter management effects on the nutrient composition of the litter

    USDA-ARS?s Scientific Manuscript database

    Application of poultry litter as a fertilizer source is a common practice in agriculture production. However, potential water quality concerns as a result of over application of poultry litter has risen as a major environmental issue in states with substantial poultry production. Fundamental to the ...

  3. Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2016-07-15

    Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Plant diversity does not buffer drought effects on early-stage litter mass loss rates and microbial properties.

    PubMed

    Vogel, Anja; Eisenhauer, Nico; Weigelt, Alexandra; Scherer-Lorenzen, Michael

    2013-09-01

    Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non-additive way. We studied early-stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community-specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community-specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community-specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community-specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes. © 2013 John Wiley & Sons Ltd.

  5. Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau

    PubMed Central

    Zhu, Wenyan; Wang, Jinzhou; Zhang, Zhenhua; Ren, Fei; Chen, Litong; He, Jin-Sheng

    2016-01-01

    The effects of nitrogen (N) and phosphorus (P) addition on litter decomposition are poorly understood in Tibetan alpine meadows. Leaf litter was collected from plots within a factorial N × P addition experiment and allowed to decompose over 708 days in an unfertilized plot to determine the effects of N and/or P addition on litter decomposition. Results showed that nutrient addition significantly affected initial P and P-related biochemical properties of litter from all four species. However, the responses of litter N and N-related biochemical properties to nutrient addition were quite species-specific. Litter C decomposition and N release were species-specific. However, N and P addition significantly affected litter P release. Ratios of Hemicellulose + Cellulose to N and P were significantly related to litter C decomposition; C:N ratio was a determinant of litter N release; and C:P and (Hemicellulose + Cellulose):P controlled litter P release. Overall, litter C decomposition was controlled by litter quality of different plant species, and strongly affected by P addition. Increasing N availability is likely to affect litter C decomposition more indirectly by shifting plant species composition than directly by improving litter quality, and may accelerate N and P cycles, but shift the ecosystem to P limitation. PMID:27694948

  6. The Origin of DIRT (Detrital Input and Removal Treatments): the Legacy of Dr. Francis D. Hole

    NASA Astrophysics Data System (ADS)

    Townsend, K. L.; Lajtha, K.; Caldwell, B.; Sollins, P.

    2007-12-01

    Soil organic matter (SOM) plays a key role in the cycling and retention of nitrogen and carbon within soil. Both above and belowground detrital inputs determine the nature and quantity of SOM. Studies on detrital impacts on SOM dynamics are underway at several LTER, ILTER and LTER-affiliated sites using a common experimental design, Detrital Input and Removal Treatments (DIRT). The concept for DIRT was originally based on experimental plots established at the University of Wisconsin Arboretum by Dr. Francis D. Hole in 1956 to study the effects of detrital inputs on pedogenesis. These plots are located on two forested sites and two prairie sites within the arboretum. Manipulations of the forested sites include double litter, no litter and removal of the O and A horizons. Manipulations of the prairie sites include harvest, mulch, bare and burn. These original treatments have largely been maintained since 1956. After 40 years of maintenance, there were significant differences in soil carbon between the double and no litter plots. The double litter plots had increased by nearly 30% while the no litter plots had decreased over 50%. The original DIRT plots are now 50 years old and have been re-sampled, where possible, for total carbon and nitrogen, labile and recalcitrant carbon fractions, net and gross nitrogen mineralization rates, and SOM bioavailability through CO2 respiration. The soils were fractionated by density to examine the role of carbon in each density fraction. The mean age of carbon in each fraction was determined by radiocarbon dating. This sampling and analysis is of special significance because it provides a glimpse into the future SOM trajectories for the new DIRT sites: Harvard Forest (MA), Bousson (PA), Andrews Experimental Forest (OR) and Sikfokut (Hungary).

  7. Molecular Assessment of litter decay dynamics across old and young forest sites

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Crow, S.; Gamblin, D.; McCormick, M.; Whigham, D.; Taylor, D. L.

    2006-12-01

    The response of soil organic matter pools to changes in litter input, land cover, and ýinvertebrate activity is a research area of intensive study given the proposed impacts that ýrising CO2 and surface temperatures may have on forest productivity and distribution of ýinvasive species. In a mixed deciduous forest at the Smithsonian Environmental ýResearch Center litter amendment plots were established in old (120-150 y) and young ýý(50-70 y) forests. In May 2004, six plots were amended with locally collected ýLirodendron tulipifera wood (chipped) and leaves. At the same time, leaf and wood litter ýbag decomposition experiments on the sites were also started. Changes in the ýconcentration and composition of biopolymers, e.g. lignin and cutin/suberin, after ýapproximately four months of decay were tracked by alkaline CuO extraction. Resultant ýleaf and wood litter in the surface amendments was distinct between age groupings. ýYoung sites exhibited the greatest change in chemical character showing increased lignin ýand decreased cutin/suberin resulting in a cutin-poor residue. Minor changes to ýbiopolymer character were observed in older sites with residues exhibiting small but ýopposite trends to the young sites. In contrast, the litter bag studies exhibited little to no ývariation in chemistry with age of stand; although, generally leaf litter showed the ýgreatest age-related effect. These patterns in litter decay are consistent with both ýmicrobial activity and relative biomass of invasive earthworms; young forests exhibit ýrelatively higher activity of both phenol oxidase and B-glucosidase in the soil (0-5 cm) ýplots and greater biomass and relative abundance invasive earthworms. These results are ýimportant as they show how stand age and the presence of invertebrate species may have ýimportant controls on the impact that many global change drivers may have on forest soil ýand carbon exchange dynamics.ý

  8. An evaluation of the presence of pathogens on broilers raised on poultry litter treatment-treated litter.

    PubMed

    Pope, M J; Cherry, T E

    2000-09-01

    Two trials were conducted to evaluate the presence of salmonella, campylobacter, and generic Escherichia coli on broilers raised on Poultry Litter Treatment (PLT)-enhanced litter in comparison with those raised on untreated litter. Two Company A farms included three houses on each farm as the treated group and three houses per farm as controls. Two complete growouts were evaluated on each farm. The Company B study included 10 farms with two paired houses per farm, one house as the treated group and one house as the control. One growout was evaluated per farm. The pathogen sampling consisted of litter sampling and whole bird rinses on the farm and in the processing plant. Litter pH, ammonia concentration, total litter bacteria, temperatures, and humidity were also recorded. The study with Company A resulted in lower mean levels of pH, ammonia concentration, total litter bacteria, litter E. coli, and bird rinse counts for salmonella and E. coli in houses treated with PLT. The results for Company B closely resembled those for Company A, but also included campylobacter data, which showed no difference between treated and control groups. The data indicate that PLT may be a beneficial component for on-farm pathogen reduction.

  9. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter

    USGS Publications Warehouse

    Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.

    2003-01-01

    Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.

  10. The influence of litter quality and micro-habitat on litter decomposition and soil properties in a silvopasture system

    NASA Astrophysics Data System (ADS)

    Tripathi, G.; Deora, R.; Singh, G.

    2013-07-01

    Studies to understand litter processes and soil properties are useful for maintaining pastureland productivity as animal husbandry is the dominant occupation in the hot arid region. We aimed to quantify how micro-habitats and combinations of litters of the introduced leguminous tree Colophospermum mopane with the grasses Cenchrus ciliaris or Lasiurus sindicus influence decomposition rate and soil nutrient changes in a hot desert silvopasture system. Litter bags with tree litter alone (T), tree + C. ciliaris in 1:1 ratio (TCC) and tree + L. sindicus 1:1 ratio (TLS) litter were placed inside and outside of the C. mopane canopy and at the surface, 3-7 cm and 8-12 cm soil depths. We examined litter loss, soil fauna abundance, organic carbon (SOC), total (TN), ammonium (NH4-N) and nitrate (NO3-N) nitrogen, phosphorus (PO4-P), soil respiration (SR) and dehydrogenase activity (DHA) in soil adjacent to each litter bag. After 12 months exposure, the mean residual litter was 40.2% of the initial value and annual decomposition rate constant (k) was 0.98 (0.49-1.80). Highest (p < 0.01) litter loss was in the first four months, when faunal abundance, SR, DHA and humidity were highest but it decreased with time. These variables and k were highest under the tree canopies. The litter loss and k were highest (p < 0.01) in TLS under the tree canopy, but the reverse trend was found for litter outside the canopy. Faunal abundance, litter loss, k, nutrient release and biochemical activities were highest (p < 0.01) in the 3-7 cm soil layer. Positive correlations of litter loss and soil fauna abundance with soil nutrients, SR and DHA demonstrated the interactions of litter quality and micro-habitats together with soil fauna on increased soil fertility. These results suggest that a Colophospermum mopane and L. sindicus silvopasture system best promotes faunal abundance, litter decomposition and soil fertility. The properties of these species and the associated faunal resources may be

  11. Soil Carbon Budget During Establishment of Short Rotation Woody Crops

    NASA Astrophysics Data System (ADS)

    Coleman, M. D.

    2003-12-01

    Carbon budgets were monitored following forest harvest and during re-establishment of short rotation woody crops. Soil CO2 efflux was monitored using infared gas analyzer methods, fine root production was estimated with minirhizotrons, above ground litter inputs were trapped, coarse root inputs were estimated with developed allometric relationships, and soil carbon pools were measured in loblolly pine and cottonwood plantations. Our carbon budget allows evaluation of errors, as well as quantifying pools and fluxes in developing stands during non-steady-state conditions. Soil CO2 efflux was larger than the combined inputs from aboveground litter fall and root production. Fine-root production increased during stand development; however, mortality was not yet equivalent to production, showing the belowground carbon budget was not yet in equilibrium and root carbon standing crop was accruing. Belowground production was greater in cottonwood than pine, but the level of pine soil CO2 efflux was equal to or greater than that of cottonwood, indicating heterotrophic respiration was higher for pine. Comparison of unaccounted efflux with soil organic carbon changes provides verification of loss or accrual.

  12. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Treesearch

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  13. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics.

    PubMed

    Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene

  14. The Afterlife of Interspecific Indirect Genetic Effects: Genotype Interactions Alter Litter Quality with Consequences for Decomposition and Nutrient Dynamics

    PubMed Central

    Genung, Mark A.; Bailey, Joseph K.; Schweitzer, Jennifer A.

    2013-01-01

    Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant’s phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as

  15. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    PubMed

    Ficken, Cari D; Wright, Justin P

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  16. Riparian plant litter quality increases with latitude.

    PubMed

    Boyero, Luz; Graça, Manuel A S; Tonin, Alan M; Pérez, Javier; J Swafford, Andrew; Ferreira, Verónica; Landeira-Dabarca, Andrea; A Alexandrou, Markos; Gessner, Mark O; McKie, Brendan G; Albariño, Ricardo J; Barmuta, Leon A; Callisto, Marcos; Chará, Julián; Chauvet, Eric; Colón-Gaud, Checo; Dudgeon, David; Encalada, Andrea C; Figueroa, Ricardo; Flecker, Alexander S; Fleituch, Tadeusz; Frainer, André; Gonçalves, José F; Helson, Julie E; Iwata, Tomoya; Mathooko, Jude; M'Erimba, Charles; Pringle, Catherine M; Ramírez, Alonso; Swan, Christopher M; Yule, Catherine M; Pearson, Richard G

    2017-09-05

    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.

  17. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  18. Interaction of initial litter quality and thinning intensity on litter decomposition rate, nitrogen accumulation and release in a pine plantation

    Treesearch

    Xiao Chen; Deborah Page-Dumroese; Ruiheng Lv; Weiwei Wang; Guolei Li; Yong Liu

    2014-01-01

    Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus...

  19. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions

    PubMed Central

    Wright, Justin P.

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system. PMID:29023560

  20. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  1. MODIS Based Estimation of Forest Aboveground Biomass in China

    PubMed Central

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  2. Environmentally friendly animal litter

    DOEpatents

    Chett, Boxley; McKelvie, Jessica

    2013-08-20

    A method of making an animal litter that includes geopolymerized ash, wherein, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control may be accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  3. Quality of soluble organic C, N, and P produced by different types and species of litter: root litter versus leaf litter

    USDA-ARS?s Scientific Manuscript database

    In forested ecosystems, the quality of dissolved organic matter (DOM) produced by freshly senesced litter may differ by litter type and species, and these differences may influence the amount of DOM that is respired versus that which may either contribute to soil organic matter accumulation or be le...

  4. Maternal-Neonatal Pheromone/Interomone Added to Cat Litter Improves Litter Box Use and Reduces Aggression in Pair-Housed Cats.

    PubMed

    McGlone, John J; Garcia, Arlene; Thompson, William G; Pirner, Glenna M

    2018-03-27

    Introducing a new cat into a household with one or more resident cats can be a significant source of stress for the cats involved. These studies sought to determine if rabbit maternal-neonatal pheromone (2-methyl-2-butenal [2M2B]) in litter impacted cat social behaviors and litter box use. Study 1 determined that cats preferred to eliminate in litter containing 2M2B; other semiochemicals tested did not change litter box use. Cats prone to aggression were identified in an intermediate pilot study, and eight pairs of these cats were selected for Study 2. In Study 2, cat pairs were provided litter containing either vehicle or 2M2B for 24 hours. Cats experiencing control litter displayed more aggression during the first 6 hours (p < .01) and spent more time using the litter box 12 hours and 18 hours after pairing compared with cats experiencing litter with 2M2B (p = .02). These results suggest 2M2B-infused cat litter may act as an interomone in cats housed domestically to prevent initial occurrences of aggression and may improve cat welfare in multicat households.

  5. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling

    PubMed Central

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling. PMID:28686660

  6. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    PubMed

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  7. Tree litter and forest understorey vegetation: a conceptual framework to understand the effects of tree litter on a perennial geophyte, Anemone nemorosa.

    PubMed

    Baltzinger, Marie; Archaux, Frédéric; Dumas, Yann

    2012-05-01

    Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions between tree litter and understorey plant populations are worthy of study. In a 1-year ex-situ experiment, the effects of tree litter on the growth of Anemone nemorosa, a small perennial forest geophyte, were investigated. Three 'litter quantity' treatments were defined, representative of forest floor litter (199, 356·5 and 514 g m(-2)), which were crossed with five 'litter composition' treatments (Quercus petraea, Fagus sylvatica, Carpinus betulus, Q. petraea + F. sylvatica and Q. petraea + C. betulus), plus a no-litter control. Path analysis was then used to investigate the pathways linking litter characteristics and components of adult plant growth. As expected, the heavier the litter, the longer the petiole; rhizome growth, however, was not depreciated by the litter-induced petiole lengthening. Both rhizome mass increment and number of initiated buds marginally increased with the amount of litter. Rhizome mass increment was in fact determined primarily by leaf area and leaf life span, neither of which was unequivocally correlated with any litter characteristics. However, the presence of litter significantly increased leafing success: following a late frost event, control rhizomes growing in the absence of litter experienced higher leaf mortality before leaf unfolding. The study questions the role of litter as a physical or chemical barrier to ground vegetation; to better understand this role, there is a need for ex-situ, longer-term experiments coupled with in-situ observations in the forest.

  8. Tree litter and forest understorey vegetation: a conceptual framework to understand the effects of tree litter on a perennial geophyte, Anemone nemorosa

    PubMed Central

    Baltzinger, Marie; Archaux, Frédéric; Dumas, Yann

    2012-01-01

    Background and Aims Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions between tree litter and understorey plant populations are worthy of study. Methods In a 1-year ex-situ experiment, the effects of tree litter on the growth of Anemone nemorosa, a small perennial forest geophyte, were investigated. Three ‘litter quantity’ treatments were defined, representative of forest floor litter (199, 356·5 and 514 g m−2), which were crossed with five ‘litter composition’ treatments (Quercus petraea, Fagus sylvatica, Carpinus betulus, Q. petraea + F. sylvatica and Q. petraea + C. betulus), plus a no-litter control. Path analysis was then used to investigate the pathways linking litter characteristics and components of adult plant growth. Key Results As expected, the heavier the litter, the longer the petiole; rhizome growth, however, was not depreciated by the litter-induced petiole lengthening. Both rhizome mass increment and number of initiated buds marginally increased with the amount of litter. Rhizome mass increment was in fact determined primarily by leaf area and leaf life span, neither of which was unequivocally correlated with any litter characteristics. However, the presence of litter significantly increased leafing success: following a late frost event, control rhizomes growing in the absence of litter experienced higher leaf mortality before leaf unfolding. Conclusions The study questions the role of litter as a physical or chemical barrier to ground vegetation; to better understand this role, there is a need for ex-situ, longer

  9. The fate of nitrogen mineralized from leaf litter — Initial evidence from 15N-labeled litter

    Treesearch

    Kathryn B. Piatek

    2011-01-01

    Decomposition of leaf litter includes microbial immobilization of nitrogen (N), followed by N mineralization. The fate of N mineralized from leaf litter is unknown. I hypothesized that N mineralized from leaf litter will be re-immobilized into other forms of organic matter, including downed wood. This mechanism may retain N in some forests. To test this hypothesis, oak...

  10. Litter decomposition in southern Appalachian black locust and pine-hardwood stands: litter quality and nitrogen dynamics

    Treesearch

    David L. White; Bruce L. Haines

    1988-01-01

    The chemical quality of litter, through its interaction with macroclimate and the litter biota, largely regulates the rate of organic matter (OM) and nitrogen (N) turnover in the forest floor (Cromack 1973; Fogel and Cromack 1977; Meentemeyer 1978; Aber and Melillo 1982; Melillo et al. 1982). Litter quality is thought to be related to the N require-ment and...

  11. Extractability of 137Cs in Response to its Input Forms into Fukushima Forest Soils.

    NASA Astrophysics Data System (ADS)

    Mengistu, T. T.; Carasco, L.; Orjollet, D.; Coppin, F.

    2017-12-01

    In case of nuclear accidents like Fukushima disaster, the influence of 137Cs depositional forms (soluble and/or solid forms) on mineral soil of forest environment on its availability have not reported yet. Soluble (137Cs tagged ultra-pure water) and solid (137Cs contaminated litter-OL and fragmented litter-OF) input forms were mixed with the mineral soils collected under Fukushima coniferous and broadleaf forests. The mixtures then incubated under controlled laboratory condition to evaluate the extractability of 137Cs in soil over time in the presence of decomposition process through two extracting reagents- water and ammonium acetate. Results show that extracted 137Cs fraction with water was less than 1% for soluble input form and below detection limit for solid input form. On the same way with acetate reagent, the extracted 137Cs fraction ranged from 46 to 56% for soluble input and 2 to 15% for solid input, implying the nature of 137Cs contamination strongly influences the extractability and hence the mobility of 137Cs in soil. Although the degradation rate of the organic materials has been calculated in the range of 0.18 ± 0.1 to 0.24 ± 0.1 y-1, its impact on 137Cs extractability appeared very weak at least within the observation period, probably due to shorter time scale. Concerning the treatments of solid 137Cs input forms through acetate extraction, relatively more 137Cs has been extracted from broadleaf organic materials mixes (BL-OL & BL-OF) than the coniferous counterparts. This probably is due to the fact that the lignified coniferous organic materials (CED-OL & CED-OF) components tend to retain more 137Cs than that of the broadleaf. Generally, by extrapolating these observations in to a field context, one can expect more available 137Cs fraction in forest soil from wet depositional pathways such as throughfall and stemflow than those attached with organic materials like litter (OL) and its eco-processed forms (OF).

  12. Test of validity of a dynamic soil carbon model using data from leaf litter decomposition in a West African tropical forest

    NASA Astrophysics Data System (ADS)

    Guendehou, G. H. S.; Liski, J.; Tuomi, M.; Moudachirou, M.; Sinsin, B.; Mäkipää, R.

    2013-05-01

    We evaluated the applicability of the dynamic soil carbon model Yasso07 in tropical conditions in West Africa by simulating the litter decomposition process using as required input into the model litter mass, litter quality, temperature and precipitation collected during a litterbag experiment. The experiment was conducted over a six-month period on leaf litter of five dominant tree species, namely Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense and Diospyros mespiliformis in a semi-deciduous vertisol forest in Southern Benin. Since the predictions of Yasso07 were not consistent with the observations on mass loss and chemical composition of litter, Yasso07 was fitted to the dataset composed of global data and the new experimental data from Benin. The re-parameterized versions of Yasso07 had a good predictive ability and refined the applicability of the model in Benin to estimate soil carbon stocks, its changes and CO2 emissions from heterotrophic respiration as main outputs of the model. The findings of this research support the hypothesis that the high variation of litter quality observed in the tropics is a major driver of the decomposition and needs to be accounted in the model parameterization.

  13. Using Moran's I and GIS to study spatial pattern of forest litter carbon density in typical subtropical region, China

    NASA Astrophysics Data System (ADS)

    Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.

    2013-12-01

    The spatial variation of forest litter carbon (FLC) density in the typical subtropical forests in southeast China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (South-North) × 6 km (East-West) grid system in Zhejiang Province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using Local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas. While Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns in distribution map were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS could be used to study spatial patterns of environmental variables related to forest ecosystem.

  14. Environmentally-friendly animal litter

    DOEpatents

    Boxley, Chett; McKelvie, Jessica

    2012-08-28

    An animal litter composition including geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control is accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  15. Environmentally-friendly animal litter

    DOEpatents

    Boxley, Chett; McKelvie, Jessica

    2013-09-03

    An animal litter composition that includes geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. This geopolymerization reaction may occur within a pelletizer. After the geopolymerized ash is formed, it may be dried and sieved to a desired size. These geopolymerized ash particulates may be used to make a non-clumping or clumping animal litter or other absorbing material. Aluminum sulfate, clinoptilolite, silica gel, sodium alginate and mineral oil may be added as additional ingredients.

  16. Timber volume and aboveground live tree biomass estimations for landscape analyses in the Pacific Northwest

    Treesearch

    Xiaoping Zhou; Miles A. Hemstrom

    2010-01-01

    Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...

  17. Marine anthropogenic litter on British beaches: A 10-year nationwide assessment using citizen science data.

    PubMed

    Nelms, S E; Coombes, C; Foster, L C; Galloway, T S; Godley, B J; Lindeque, P K; Witt, M J

    2017-02-01

    Growing evidence suggests that anthropogenic litter, particularly plastic, represents a highly pervasive and persistent threat to global marine ecosystems. Multinational research is progressing to characterise its sources, distribution and abundance so that interventions aimed at reducing future inputs and clearing extant litter can be developed. Citizen science projects, whereby members of the public gather information, offer a low-cost method of collecting large volumes of data with considerable temporal and spatial coverage. Furthermore, such projects raise awareness of environmental issues and can lead to positive changes in behaviours and attitudes. We present data collected over a decade (2005-2014 inclusive) by Marine Conservation Society (MCS) volunteers during beach litter surveys carried along the British coastline, with the aim of increasing knowledge on the composition, spatial distribution and temporal trends of coastal debris. Unlike many citizen science projects, the MCS beach litter survey programme gathers information on the number of volunteers, duration of surveys and distances covered. This comprehensive information provides an opportunity to standardise data for variation in sampling effort among surveys, enhancing the value of outputs and robustness of findings. We found that plastic is the main constituent of anthropogenic litter on British beaches and the majority of traceable items originate from land-based sources, such as public littering. We identify the coast of the Western English Channel and Celtic Sea as experiencing the highest relative litter levels. Increasing trends over the 10-year time period were detected for a number of individual item categories, yet no statistically significant change in total (effort-corrected) litter was detected. We discuss the limitations of the dataset and make recommendations for future work. The study demonstrates the value of citizen science data in providing insights that would otherwise not be

  18. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  19. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna

    PubMed Central

    Borrell Pichs, Yaisel J.; García-Vazquez, Eva

    2018-01-01

    Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports) and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Australian barnacle (Austrominius modestus). The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a much more diverse

  20. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna.

    PubMed

    Rech, Sabine; Borrell Pichs, Yaisel J; García-Vazquez, Eva

    2018-01-01

    Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports) and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Australian barnacle (Austrominius modestus). The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a much more diverse

  1. Plant litter decomposition and nutrient release in peatlands

    NASA Astrophysics Data System (ADS)

    Bragazza, Luca; Buttler, Alexandre; Siegenthaler, Andy; Mitchell, Edward A. D.

    Decomposition of plant litter is a crucial process in controlling the carbon balance of peatlands. Indeed, as long as the rate of litter decomposition remains lower than the rate of above- and belowground litter production, a net accumulation of peat and, thus, carbon will take place. In addition, decomposition controls the release of important nutrients such as nitrogen, phosphorus, and potassium, the availability of which affects the structure and the functioning of plant communities. This chapter describes the role of the main drivers in affecting mass loss and nutrient release from recently deposited plant litter. In particular, the rate of mass loss of Sphagnum litter and vascular plant litter is reviewed in relation to regional climatic conditions, aerobic/anaerobic conditions, and litter chemistry. The rate of nutrient release is discussed in relation to the rate of mass loss and associated litter chemistry by means of a specific case study.

  2. Effects of prescribed burning and litter type on litter decomposition and nutrient release in mixed-grass prairie in Eastern Montana

    USDA-ARS?s Scientific Manuscript database

    Fire can affect litter decomposition and carbon (C) and nitrogen (N) dynamics. Here, we examined the effect of summer fire and three litter types on litter decomposition and litter C and N dynamics in a northern mixed-grass prairie over a 24 month period starting ca. 14 months after fire. Over all...

  3. The Experimental Control of Littering

    ERIC Educational Resources Information Center

    Clark, Roger N.; And Others

    1972-01-01

    Behavior, incentives, and education programs were researched as factors relating to littering. Experiments in theaters, forest campgrounds, and hiking and dispersed car camping areas indicate incentive systems are necessary and feasible for curbing litter problems. (BL)

  4. Trees as templates for tropical litter arthropod diversity.

    PubMed

    Donoso, David A; Johnston, Mary K; Kaspari, Michael

    2010-09-01

    Increased tree species diversity in the tropics is associated with even greater herbivore diversity, but few tests of tree effects on litter arthropod diversity exist. We studied whether tree species influence patchiness in diversity and abundance of three common soil arthropod taxa (ants, gamasid mites, and oribatid mites) in a Panama forest. The tree specialization hypothesis proposes that tree-driven habitat heterogeneity maintains litter arthropod diversity. We tested whether tree species differed in resource quality and quantity of their leaf litter and whether more heterogeneous litter supports more arthropod species. Alternatively, the abundance-extinction hypothesis states that arthropod diversity increases with arthropod abundance, which in turn tracks resource quantity (e.g., litter depth). We found little support for the hypothesis that tropical trees are templates for litter arthropod diversity. Ten tree species differed in litter depth, chemistry, and structural variability. However, the extent of specialization of invertebrates on particular tree taxa was low and the more heterogeneous litter between trees failed to support higher arthropod diversity. Furthermore, arthropod diversity did not track abundance or litter depth. The lack of association between tree species and litter arthropods suggests that factors other than tree species diversity may better explain the high arthropod diversity in tropical forests.

  5. Study on Hydrological Functions of Litter Layers in North China

    PubMed Central

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2013-01-01

    Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter mass, rainfall intensity and litter type on the maximum water storage capacity of litter (S) and litter interception storage capacity (C) were investigated under five simulated rainfall intensities and four litter masses for two litter types. The results indicated: 1) the S values increased linearly with litter mass, and the S values of broadleaf litter were on average 2.65 times larger than the S values of needle leaf litter; 2) rainfall intensity rather than litter mass determined the maximum interception storage capacity (Cmax); Cmax increased linearly with increasing rainfall intensity; by contrast, the minimum interception storage capacity (Cmin) showed a linear relationship with litter mass, but a poor correlation with rainfall intensity; 3) litter type impacted Cmax and Cmin; the values of Cmax and Cmin for broadleaf litter were larger than those of needle leaf litter, which indicated that broadleaf litter could intercepte and store more water than needle leaf litter; 4) a gap existed between Cmax and Cmin, indicating that litter played a significant role by allowing rainwater to infiltrate or to produce runoff rather than intercepting it and allowing it to evaporate after the rainfall event; 5) Cmin was always less than S at the same litter mass, which should be considered in future interception predictions. Vegetation and precipitation characteristics played important roles in hydrological characteristics. PMID:23936188

  6. Above-ground biomass of mangrove species. I. Analysis of models

    NASA Astrophysics Data System (ADS)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  7. Sequential monitoring of beach litter using webcams.

    PubMed

    Kako, Shin'ichiro; Isobe, Atsuhiko; Magome, Shinya

    2010-05-01

    This study attempts to establish a system for the sequential monitoring of beach litter using webcams placed at the Ookushi beach, Goto Islands, Japan, to establish the temporal variability in the quantities of beach litter every 90 min over a one and a half year period. The time series of the quantities of beach litter, computed by counting pixels with a greater lightness than a threshold value in photographs, shows that litter does not increase monotonically on the beach, but fluctuates mainly on a monthly time scale or less. To investigate what factors influence this variability, the time derivative of the quantity of beach litter is compared with satellite-derived wind speeds. It is found that the beach litter quantities vary largely with winds, but there may be other influencing factors. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Temperatures below leaf litter during winter prescribed burns: implications for litter-roosting bats

    Treesearch

    Roger W. Perry; Virginia L. McDaniel

    2015-01-01

    Some bat species, including eastern red bats (Lasiurus borealis), roost for short periods beneath leaf litter on the forest floor during winter in the south-eastern USA, a region subjected to frequent fire. The variability in fuel consumption, the heterogeneous nature of burns, and the effects of litter and duff moisture on forest-floor...

  9. Changes in litter near an aluminum reduction plant

    USGS Publications Warehouse

    Beyer, W.N.; Fleming, W.J.; Swineford, D.

    1987-01-01

    Litter was collected from eight sites at distances as far as 33 km from an AI reduction plant in western Tennessee. As a result of an accumulation of fine litter (< 4.75 mm) the weight of the litter per unit area was abnormally high at the two sites within 2 km of the plant. Compared to litter collected far from the plant, it had a lower fiber content, was more sapric, and was less acid. Fluoride emissions from the plant were suggested as the probable cause of litter changes. Concentrations of water-extractable and acid-extractable F- in the litter, the 0- to 5-cm soil layer, and the 5- to 15-cm soil layer were strongly correlated with distance from the plant. Total acid-extractable F- in the litter and upper 15 cm of soil was about 41 times as much at the closest site (700 mg/kg) as at the most distant sites (12 and 16 mg/kg). In a bioassay of litter from our study sites, woodlice (Porcellio scaber Latr.) had an abnormally high mortality in litter that contained 440 mg/kg or more of acid-extractable F-. However, when F- was added as NaF to litter, a significant increase in mortality was observed only in treatments exceeding 800 mg/kg. The decrease in the rate of decomposition of the litter might eventually induce a deficiency of soil macronutrients, but none was detected.

  10. Influence of in-house composting of reused litter on litter quality, ammonia volatilisation and incidence of broiler foot pad dermatitis.

    PubMed

    Martins, R S; Hötzel, M J; Poletto, R

    2013-01-01

    1. The objectives of this study were to evaluate the residual effects of two windrow composting methods for reused litter on its quality (pH, moisture, ammonia), ammonia (NH3) volatilisation and the prevalence (scores 0-4) of foot pad dermatitis (FPD) and hock burn (HB) on d 1, 7, 14 and 21 of age in broilers. Litter was allowed to compost for 8 d within a 14-d interval between flocks. 2. The composting methods studied were with or without a PVC plastic sheet. The same procedures were applied for three consecutive flocks, with litter initially having been used for 12 flocks. Data were analysed with a mixed model of repeated measures of day, with main effects and interactions of day, composting method, litter age (block) and house nested within method. 3. At d 1, litter NH3 and NH3 volatilisation were higher in the covered litter method. Litter moisture increased to 45.3% as broilers aged. The incidence of FPD also increased with age. No signs of HB were found in any bird throughout the trials. 4. There was no effect of litter composting methods on the prevalence of FPD or body weight at any age. 5. Litter moisture should be controlled to avoid NH3 volatilisation reaching critical levels. Windrow composting of litter with a PVC plastic sheet may not be required when considering the broiler housing environment.

  11. [Aboveground architecture and biomass distribution of Quercus variabilis].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou

    2015-08-01

    The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline

  12. Litter survey : status report 1.

    DOT National Transportation Integrated Search

    1979-01-01

    At the request of the Division of Litter Control of the Department of Conservation and Economic Development, the Research Council has initiated a litter survey program at approximately 25 sites on the state highway system. The purpose of this program...

  13. Litter mixture dominated by leaf litter of the invasive species, Flaveria bidentis, accelerates decomposition and favors nitrogen release.

    PubMed

    Li, Huiyan; Wei, Zishang; Huangfu, Chaohe; Chen, Xinwei; Yang, Dianlin

    2017-01-01

    In natural ecosystems, invasive plant litter is often mixed with that of native species, yet few studies have examined the decomposition dynamics of such mixtures, especially across different degrees of invasion. We conducted a 1-year litterbag experiment using leaf litters from the invasive species Flaveria bidentis (L.) and the dominant co-occurring native species, Setaria viridis (L.). Litters were allowed to decompose either separately or together at different ratios in a mothproof screen house. The mass loss of all litter mixtures was non-additive, and the direction and strength of effects varied with species ratio and decomposition stage. During the initial stages of decomposition, all mixtures had a neutral effect on the mass loss; however, at later stages of decomposition, mixtures containing more invasive litter had synergistic effects on mass loss. Importantly, an increase in F. bidentis litter with a lower C:N ratio in mixtures led to greater net release of N over time. These results highlight the importance of trait dissimilarity in determining the decomposition rates of litter mixtures and suggest that F. bidentis could further synchronize N release from litter as an invasion proceeds, potentially creating a positive feedback linked through invasion as the invader outcompetes the natives for nutrients. Our findings also demonstrate the importance of species composition as well as the identity of dominant species when considering how changes in plant community structure influence plant invasion.

  14. Plant and litter influences on earthworm abundance and community structures in a tropical wet forest

    Treesearch

    G. Gonzalez; X. Zou

    1999-01-01

    Plant communities differ in species composition and litter input. To examine the influence of plant species on the abundance and community structure of soil fauna, we sampled earthworms in areas close to and away from the bases of Dacryodes excelsa and Heliconia caribaea, two distinct plant communities within a tropical wet forest in Puerto Rico. We also carried out a...

  15. Spatial modeling of litter and soil carbon stocks with associated uncertainty on forest land in the conterminous United States

    NASA Astrophysics Data System (ADS)

    Cao, B.; Domke, G. M.; Russell, M.; McRoberts, R. E.; Walters, B. F.

    2017-12-01

    Forest ecosystems contribute substantially to carbon (C) storage. The dynamics of litter decomposition, translocation and stabilization into soil layers are essential processes in the functioning of forest ecosystems, as they control the cycling of soil organic matter and the accumulation and release of C to the atmosphere. Therefore, the spatial distributions of litter and soil C stocks are important in greenhouse gas estimation and reporting and inform land management decisions, policy, and climate change mitigation strategies. In this study, we explored the effects of spatial aggregation of climatic, biotic, topographic and soil input data on national estimates of litter and soil C stocks and characterized the spatial distribution of litter and soil C stocks in the conterminous United States. Data from the Forest Inventory and Analysis (FIA) program within the US Forest Service were used with vegetation phenology data estimated from LANDSAT imagery (30 m) and raster data describing relevant environmental parameters (e.g. temperature, precipitation, topographic properties) for the entire conterminous US. Litter and soil C stocks were estimated and mapped through geostatistical analysis and statistical uncertainty bounds on the pixel level predictions were constructed using a Monte Carlo-bootstrap technique, by which credible variance estimates for the C stocks were calculated. The sensitivity of model estimates to spatial aggregation depends on geographic region. Further, using long-term (30-year) climate averages during periods with strong climatic trends results in large differences in litter and soil C stock estimates. In addition, results suggest that local topographic aspect is an important variable in litter and soil C estimation at the continental scale.

  16. Water addition, evaporation and water holding capacity of poultry litter.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  17. [Spatial distribution of aboveground biomass of shrubs in Tianlaochi catchment of the Qilian Mountains].

    PubMed

    Liang, Bei; Di, Li; Zhao, Chuan-Yan; Peng, Shou-Zhang; Peng, Huan-Hua; Wang, Chao

    2014-02-01

    This study estimated the spatial distribution of the aboveground biomass of shrubs in the Tianlaochi catchment of Qilian Mountains based on the field survey and remote sensing data. A relationship model of the aboveground biomass and its feasibly measured factors (i. e. , canopy perimeter and plant height) was built. The land use was classified by object-oriented technique with the high resolution image (GeoEye-1) of the study area, and the distribution of shrub coverage was extracted. Then the total aboveground biomass of shrubs in the study area was estimated by the relationship model with the distribution of shrub coverage. The results showed that the aboveground biomass of shrubs in the study area was 1.8 x 10(3) t and the aboveground biomass per unit area was 1598.45 kg x m(-2). The distribution of shrubs mainly was at altitudes of 3000-3700 m, and the aboveground biomass of shrubs on the sunny slope (1.15 x 10(3) t) was higher than that on the shady slope (0.65 x 10(3) t).

  18. Interacting Microbe and Litter Quality Controls on Litter Decomposition: A Modeling Analysis

    PubMed Central

    Moorhead, Daryl; Lashermes, Gwenaëlle; Recous, Sylvie; Bertrand, Isabelle

    2014-01-01

    The decomposition of plant litter in soil is a dynamic process during which substrate chemistry and microbial controls interact. We more clearly quantify these controls with a revised version of the Guild-based Decomposition Model (GDM) in which we used a reverse Michaelis-Menten approach to simulate short-term (112 days) decomposition of roots from four genotypes of Zea mays that differed primarily in lignin chemistry. A co-metabolic relationship between the degradation of lignin and holocellulose (cellulose+hemicellulose) fractions of litter showed that the reduction in decay rate with increasing lignin concentration (LCI) was related to the level of arabinan substitutions in arabinoxylan chains (i.e., arabinan to xylan or A∶X ratio) and the extent to which hemicellulose chains are cross-linked with lignin in plant cell walls. This pattern was consistent between genotypes and during progressive decomposition within each genotype. Moreover, decay rates were controlled by these cross-linkages from the start of decomposition. We also discovered it necessary to divide the Van Soest soluble (labile) fraction of litter C into two pools: one that rapidly decomposed and a second that was more persistent. Simulated microbial production was consistent with recent studies suggesting that more rapidly decomposing materials can generate greater amounts of potentially recalcitrant microbial products despite the rapid loss of litter mass. Sensitivity analyses failed to identify any model parameter that consistently explained a large proportion of model variation, suggesting that feedback controls between litter quality and microbial activity in the reverse Michaelis-Menten approach resulted in stable model behavior. Model extrapolations to an independent set of data, derived from the decomposition of 12 different genotypes of maize roots, averaged within <3% of observed respiration rates and total CO2 efflux over 112 days. PMID:25264895

  19. Aboveground biomass in Tibetan grasslands

    Treesearch

    Y.H. Yang; J.Y. Fang; Y.D. Pan; C.J. Ji

    2009-01-01

    This study investigated spatial patterns and environmental controls of aboveground biomass (AGB) in alpine grasslands on the Tibetan Plateau by integrating AGB data collected from 135 sites during 2001-2004 and concurrent enhanced vegetation index derived from MODIS data sets. The AGB was estimated at 68.8 gm-2, with a larger value (90.8 gm

  20. Long-term litter decomposition controlled by manganese redox cycling

    PubMed Central

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E.; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-01-01

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn2+ provided by fresh plant litter to produce oxidative Mn3+ species at sites of active decay, with Mn eventually accumulating as insoluble Mn3+/4+ oxides. Formation of reactive Mn3+ species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn3+-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn3+ species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant–soil system may have a profound impact on litter decomposition rates. PMID:26372954

  1. Long-term litter decomposition controlled by manganese redox cycling.

    PubMed

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-09-22

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.

  2. Evaluation of broiler litter transportation in northern Alabama, USA.

    PubMed

    Paudel, Krishna P; Adhikari, Murali; Martin, Neil R

    2004-10-01

    The profitability of using broiler litter as a source of crop nutrients was calculated using a phosphorus-consistent litter application rule. A ton of litter can cost effectively be transported up to 164 miles from the production facility. A cost-minimizing phosphorus-consistent transportation model developed to meet the nutrient needs of 29 counties in northern Alabama revealed that not all of the litter can be utilized in the region. The total cost increased when transportation of the litter out of the heavily surplus counties was prioritized. Total litter use was minimally affected by changes in chemical fertilizer prices. Shadow prices indicated the robustness of the model.

  3. Fate of tannins in Corsican pine litter.

    PubMed

    Nierop, Klaas G J; Verstraten, Jacobus M

    2006-12-01

    Tannins are ubiquitous in higher plants and also in litter and soils where they affect many biogeochemical processes. Despite this well-recognized role, their fate in litter and mineral soils is hardly known, as often only trace amounts, if any, are measured. In this study, we conducted an incubation experiment with Corsican pine litter to which known amounts of tannic acid (TA) or condensed tannins (CTs) from Corsican pine were added. Using Folin-Ciocalteu as a measure for total phenolics and HCl-butanol as an assay specific for CTs, acetone/water extractable phenolics and tannins decreased with time towards very low levels. Application of thermally assisted hydrolysis and methylation to litter before and after acetone/water extraction revealed that TA concentration decreased. By contrast, CTs remained to a great extent in the litter and could not be extracted suggesting that they were tightly bound.

  4. Long-term litter decomposition controlled by manganese redox cycling

    DOE PAGES

    Keiluweit, Marco; Nico, Peter S.; Harmon, Mark; ...

    2015-09-08

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of littermore » was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn 2+ provided by fresh plant litter to produce oxidative Mn 3+ species at sites of active decay, with Mn eventually accumulating as insoluble Mn 3+/4+ oxides. Formation of reactive Mn 3+ species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn 3+-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn 3+ species in the litter layer. As a result, this observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant–soil system may have a profound impact on litter decomposition rates.« less

  5. Aboveground and belowground net primary production

    Treesearch

    Hal O. Liechty; Mark H. Eisenbies

    2000-01-01

    The relationship among net primary productivity (NPP), hydroperiod, and fertility in forested wetlands is poorly understood (Burke and others 1999), particularly with respect to belowground NPP (Megonigal and others 1997). Although some researchers have studied aboveground and belowground primary production in depressional, forested wetland systems, e.g., Day and...

  6. Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition.

    PubMed

    Li, Yulin; Ning, Zhiying; Cui, Duo; Mao, Wei; Bi, Jingdong; Zhao, Xueyong

    2016-01-01

    The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined. A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis) with contrasting substrate chemistry (e.g. N concentration, lignin content in this study) in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter. These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China. Additionally, litter quality of plant species should be considered

  7. Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition

    PubMed Central

    Li, Yulin; Ning, Zhiying; Cui, Duo; Mao, Wei; Bi, Jingdong; Zhao, Xueyong

    2016-01-01

    Background The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined. Methodology/Principal Findings A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis) with contrasting substrate chemistry (e.g. N concentration, lignin content in this study) in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter. Conclusion/Significance These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China

  8. Potential energy expenditure by litter-roosting bats associated with temperature under leaf litter during winter

    Treesearch

    Roger W. Perry

    2013-01-01

    In temperate portions of North America, some bats that remain active during winter undergo short periods of hibernation below leaf litter on the forest floor during episodes of below-freezing weather. These winter roosts may provide above-freezing conditions, but the thermal conditions under leaf litter are unclear. Further, little is known of the relationship between...

  9. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores

    PubMed Central

    Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing

    2015-01-01

    Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence. PMID:25681822

  10. Variable role of aquatic macroinvertebrates in initial breakdown of seasonal leaf litter inputs to a cold-desert river

    USGS Publications Warehouse

    Nelson, S.M.; Andersen, D.C.

    2007-01-01

    We used coarse-mesh and fine-mesh leafpacks to examine the importance of aquatic macroinvertebrates in the breakdown of floodplain tree leaf litter that seasonally entered a sand-bedded reach of the sixth-order Yampa River in semiarid Colorado. Leafpacks were positioned off the easily mobilized channel bed, mimicking litter trapped in debris piles. Organic matter (OM) loss was fastest for leaves collected from the floodplain and placed in the river in spring (k = 0.029/day) and slowest for leaves collected and placed in the river in winter (0.006/day). Macroinvertebrates were most abundant in winter and spring leaves, but seemed important to processing only in spring, when exclusion by fine mesh reduced OM loss by 25% and nitrogen loss by 65% in spring leaves. Macroinvertebrates seemed to have little role in processing of autumn, winter, or summer leaves over the 50-day to 104-day monitoring periods. Desiccation during bouts of low discharge and sediment deposition on leaves limited invertebrate processing in summer and autumn, whereas processing of winter leaves, which supported relatively large numbers of shredders, might have been restricted by ice formation and low water temperatures. These results were consistent with the concept that microbial processing dominates in higher-order rivers, but suggested that macroinvertebrate processing can be locally important in higher-order desert rivers in seasons or years with favorable discharge and water quality conditions.

  11. Effects of elevated atmospheric CO2 on competition between the mosquitoes Aedes albopictus and Ae. triseriatus via changes in litter quality and production.

    PubMed

    Smith, C; Baldwin, A H; Sullivan, J; Leisnham, P T

    2013-05-01

    Elevated atmospheric CO2 can alter aquatic communities via changes in allochthonous litter inputs. We tested effects of atmospheric CO2 on the invasive Aedes albopictus (Skuse) and native Aedes triseriatus (Say) (Diptera: Culicidae) via changes in competition for microbial food or resource inhibition/toxicity. Quercus alba L. litter was produced under elevated (879 ppm) and ambient (388 ppm) atmospheric CO2. Saplings grown at elevated CO2 produced greater litter biomass, which decayed faster and leached more tannins than saplings at ambient CO2. Competition was tested by raising larvae in different species and density combinations provisioned with elevated- or ambient-CO2 litter. Species-specific performance to water conditions was tested by providing single-species larval cohorts with increasing amounts of elevated- or ambient-CO2 litter, or increasing concentrations of tannic acid. Larval densities affected some fitness parameters of Ae. albopictus and Ae. triseriatus, but elevated-CO2 litter did not modify the effects of competition on population growth rates or any fitness parameters. Population growth rates and survival of each species generally were affected negatively by increasing amounts of both elevated- and ambient-CO2 litter from 0.252 to 2.016 g/liter, and tannic acid concentrations above 100 mg/liter were entirely lethal to both species. Aedes albopictus had consistently higher population growth rates than Ae. triseriatus. These results suggest that changes to litter production and chemistry from elevated CO2 are unlikely to affect the competitive outcome between Ae. albopictus and Ae. triseriatus, but that moderate increases in litter production increase population growth rates of both species until a threshold is exceeded that results in resource inhibition and toxicity.

  12. Incorporation of 13C labeled Pinus ponderosa needle and fine root litter into soil organic matter measured by Py-GC/MS-C-IRMS

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Gleixner, G.; Dawson, T. E.; Bird, J. A.; Torn, M. S.

    2006-12-01

    Developing effective strategies for enhancing C storage in soils requires understanding the influence of plant C quality. In turn, plant C quality impacts the decay continuum between plant residue and humified, stable SOM. This remains one of the least understood aspects of soil biogeochemistry. We investigated the initial phase of incorporation of 13C labeled Pinus ponderosa needle and fine root litter into SOM. The two litter types were placed in separate microcosms in the A horizon in a temperate conifer soil. Curie-point pyrolysis-gas chromatography coupled with on-line mass spectrometry and isotope ratio mass spectrometry (Py-GC/MS-C- IRMS) were used to determine the identity and the 13C enrichment of pyrolysis products (fragments of carbohydrates, lignin, proteins and lipids). We compared the two initial litter types, needles and fine roots, to samples of the bulk soil (A horizon, < 2mm) and soil humin fraction (from chemical solubility) obtained from each microcosm 1.5y after litter addition. Pyrolysis of plant material and SOM produced 56 suitable products for isotopic analysis; of them, 15 occurred in both the litter and bulk soil, 7 in both the litter and the humin fraction and 9 in both bulk soil and the humin fraction. The pyrolysis products found in common in the plant and soil were related either to polysaccharides or were non-specific and could have originated from various precursors. The data suggest that the majority of plant inputs, both from needles or fine roots, were degraded very rapidly. In the humin fraction, the most recalcitrant pool of C in soil, with a measured turnover time of 260y (this soil), only products from the fragmentation of polysaccharides and alkyl-benzene compounds were found. Comparisons of the enrichment normalized by input level suggest little difference between the incorporation of C from needles versus fine roots into SOM. The most enriched fragments in the humin fraction were products from polysaccharides degradation

  13. Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect

    PubMed Central

    Strengbom, Joachim; Viketoft, Maria; Bommarco, Riccardo

    2016-01-01

    Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of

  14. Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect.

    PubMed

    Borgström, Pernilla; Strengbom, Joachim; Viketoft, Maria; Bommarco, Riccardo

    2016-01-01

    Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of

  15. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    PubMed

    Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  16. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications

    PubMed Central

    Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    Background African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Principal Findings Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. Conclusions/Significance We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to

  17. Marine litter in submarine canyons of the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    van den Beld, Inge M. J.; Guillaumont, Brigitte; Menot, Lénaïck; Bayle, Christophe; Arnaud-Haond, Sophie; Bourillet, Jean-François

    2017-11-01

    Marine litter is a matter of increasing concern worldwide, from shallow seas to the open ocean and from beaches to the deep-seafloor. Indeed, the deep sea may be the ultimate repository of a large proportion of litter in the ocean. We used footage acquired with a Remotely Operated Vehicle (ROV) and a towed camera to investigate the distribution and composition of litter in the submarine canyons of the Bay of Biscay. This bay contains many submarine canyons housing Vulnerable Marine Ecosystems (VMEs) such as scleractinian coral habitats. VMEs are considered to be important for fish and they increase the local biodiversity. The objectives of the study were to investigate and discuss: (i) litter density, (ii) the principal sources of litter, (iii) the influence of environmental factors on the distribution of litter, and (iv) the impact of litter on benthic communities. Litter was found in all 15 canyons and at three sites on the edge of the continental shelf/canyon, in 25 of 29 dives. The Belle-île and Arcachon Canyons contained the largest amounts of litter, up to 12.6 and 9.5 items per 100 images respectively. Plastic items were the most abundant (42%), followed by fishing-related items (16%). The litter had both a maritime and a terrestrial origin. The main sources could be linked to fishing activities, major shipping lanes and river discharges. Litter appeared to accumulate at water depths of 801-1100 m and 1401-1700 m. In the deeper of these two depth ranges, litter accumulated on a geologically structured area, accounting for its high frequency at this depth. A larger number of images taken in areas of coral in the shallower of these two depth ranges may account for the high frequency of litter detection at this depth. A larger number of litter items, including plastic objects in particular, were observed on geological structures and in coral areas than on areas of bare substratum. The distribution of fishing-related items was similar for the various types of

  18. Water quality benefits of subsurface-banded poultry litter

    USDA-ARS?s Scientific Manuscript database

    Broiler chicken production is an important industry in Alabama and several other states. Broiler litter is commonly used as a fertilizer on pastures and cropland. This litter has commonly been land-applied near the broiler houses and this has resulted in long-term repeated application of litter to...

  19. Monitoring multi-year macro ocean litter dynamics and backward-tracking simulation of litter origins on a remote island in the South China Sea

    NASA Astrophysics Data System (ADS)

    Ko, Chia-Ying; Hsin, Yi-Chia; Yu, Teng-Lang; Liu, Kuo-Lieh; Shiah, Fuh-Kwo; Jeng, Ming-Shiou

    2018-04-01

    Ocean litter has accumulated rapidly and is becoming a major environmental concern, yet quantitative and regular observations and exploration that track litter origins are limited. By implementing monthly sample collections over five years (2012–2016) at Dongsha Island, a remote island in the northern South China Sea (SCS), we assessed macro ocean litter dynamics, identified source countries of individual plastic bottles, and analyzed the origins of the litter by a backward-tracking model simulation considering both the effects of current velocity and windage. The results showed that large amounts of litter, which varied monthly and annually in weight and quantity, reached the island during the study years, and there were spatial differences in accumulation patterns between the north and south coasts. Styrofoam and plastic bottles were the two primary sources of macro ocean litter both annually and monthly, and most of the litter collected on the island originated from China and Vietnam, which were collectively responsible for approximately 47.5%–63.7% per month. The simulation indicated that current advection at the near-surface depths and low windage at the sea surface showed similar patterns, while medium to high windage exhibited comparable expression patterns in response to potential source regions and drifting time experiments. At either the surface with low windage or current advection at depths of 0.5 m and 1 m, macro ocean litter in the Western Philippine Sea, i.e. through the Luzon Strait between Taiwan and the Philippines, was an important contributor to the litter bulk from October to March, whereas the litter was predicted to mainly originate from the southwestern SCS from April to September. With an increasing windage effect, litter in the Taiwan Strait was predicted to be an additional major potential source. Surprisingly, a small proportion of the macro ocean litter was predicted to continuously travel in the northern SCS for a long duration

  20. Mixing effects on litter decomposition rates in a young tree diversity experiment

    NASA Astrophysics Data System (ADS)

    Setiawan, Nuri Nurlaila; Vanhellemont, Margot; De Schrijver, An; Schelfhout, Stephanie; Baeten, Lander; Verheyen, Kris

    2016-01-01

    Litter decomposition is an essential process for biogeochemical cycling and for the formation of new soil organic matter. Mixing litter from different tree species has been reported to increase litter decomposition rates through synergistic effects. We assessed the decomposition rates of leaf litter from five tree species in a recently established tree diversity experiment on a post-agriculture site in Belgium. We used 20 different leaf litter compositions with diversity levels ranging from 1 up to 4 species. Litter mass loss in litterbags was assessed 10, 20, 25, 35, and 60 weeks after installation in the field. We found that litter decomposition rates were higher for high-quality litters, i.e., with high nitrogen content and low lignin content. The decomposition rates of mixed litter were more affected by the identity of the litter species within the mixture than by the diversity of the litter per se, but the variability in litter decomposition rates decreased as the litter diversity increased. Among the 15 different mixed litter compositions in our study, only three litter combinations showed synergistic effects. Our study suggests that admixing tree species with high-quality litter in post-agricultural plantations helps in increasing the mixture's early-stage litter decomposition rate.

  1. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Estimating aboveground live understory vegetation carbon in the United States

    NASA Astrophysics Data System (ADS)

    Johnson, Kristofer D.; Domke, Grant M.; Russell, Matthew B.; Walters, Brian; Hom, John; Peduzzi, Alicia; Birdsey, Richard; Dolan, Katelyn; Huang, Wenli

    2017-12-01

    Despite the key role that understory vegetation plays in ecosystems and the terrestrial carbon cycle, it is often overlooked and has few quantitative measurements, especially at national scales. To understand the contribution of understory carbon to the United States (US) carbon budget, we developed an approach that relies on field measurements of understory vegetation cover and height on US Department of Agriculture Forest Service, Forest Inventory and Analysis (FIA) subplots. Allometric models were developed to estimate aboveground understory carbon. A spatial model based on stand characteristics and remotely sensed data was also applied to estimate understory carbon on all FIA plots. We found that most understory carbon was comprised of woody shrub species (64%), followed by nonwoody forbs and graminoid species (35%) and seedlings (1%). The largest estimates were found in temperate or warm humid locations such as the Pacific Northwest and southeastern US, thus following the same broad trend as aboveground tree biomass. The average understory aboveground carbon density was estimated to be 0.977 Mg ha-1, for a total estimate of 272 Tg carbon across all managed forest land in the US (approximately 2% of the total aboveground live tree carbon pool). This estimate is more than twice as low as previous FIA modeled estimates that did not rely on understory measurements, suggesting that this pool may currently be overestimated in US National Greenhouse Gas reporting.

  3. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River Basin of Southeastern Colorado, USA

    USGS Publications Warehouse

    Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.

    2007-01-01

    Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.

  4. Litter decay rates are determined by lignin chemistry

    Treesearch

    Jennifer M. Talbot; Daniel J. Yelle; James Nowick; Kathleen K. Treseder

    2011-01-01

    Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial...

  5. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China.

    PubMed

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui; Su, Jianrong

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management.

  6. Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: implications for soil nitrogen dynamics.

    PubMed

    Bernal, S; Butturini, A; Nin, E; Sabater, F; Sabater, S

    2003-01-01

    Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink.

  7. Fire recurrence effects on aboveground plant and soil carbon stocks in Mediterranean shrublands with Aleppo pine

    NASA Astrophysics Data System (ADS)

    Herman, J.; den Ouden, J.; Mohren, G. M. J.; Retana, J.; Serrasolses, I.

    2009-04-01

    Changes in fire regime due to intensification of human influence during the last decades led to changes in vegetation structure and composition, productivity and carbon sink strength of Mediterranean shrublands and forests. It is anticipated that further climate warming and lower precipitation will enhance fire frequency, having consequences for the carbon budget and carbon storage in Mediterranean ecosystems. The purpose of this study was to determine whether fire recurrence modifies aboveground plant and soil carbon stocks, soil organic carbon content and total soil nitrogen content in shrublands with Aleppo pine on the Garraf Massif in Catalonia (Spain). Stands differing in fire frequency (1, 2 and 3 fires since 1957) were examined 13 years after the stand-replacing fire of 1994 and compared with control stands which were free of fire since 1957. Recurrent fires led to a decrease in total ecosystem carbon stocks. Control sites stored 12203 g m-2C which was 3.5, 5.0 and 5.5 times more than sites that burned 1, 2 and 3 times respectively. Carbon stored in the aboveground biomass exceeded soil carbon stocks in control plots, while soils were the dominant carbon pool in burned plots. An increasing fire frequency from 1 to 2 fires decreased total soil carbon stock. Control soils stored 3551 g m-2C, of which 70 % was recovered over 13 years in once burned soils and approximately 50 % in soils that had 2 or 3 fires. The soil litter (LF) layer carbon stock decreased with increasing fire frequency from 1 to 2 fires, whereas humus (H) layer and upper mineral soil carbon stocks did not change consistently with fire frequency. Fire decreased the organic carbon content in LF and H horizons, however no significant effect of fire frequency was found. Increasing fire frequency from 1 to 2 fires caused a decrease in the organic carbon content in the upper mineral soil. Total soil N content and C/N ratios were not significantly impacted by fire frequency. Recurrent fires had the

  8. Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system.

    PubMed

    Fonte, Steven J; Six, Johan

    2010-06-01

    The development of sustainable agricultural systems depends in part upon improved management of non-crop species to enhance the overall functioning and provision of services by agroecosystems. To address this need, our research examined the role of earthworms and litter management on nutrient dynamics, soil organic matter (SOM) stabilization, and crop growth in the Quesungual agroforestry system of western Honduras. Field mesocosms were established with two earthworm treatments (0 vs. 8 Pontoscolex corethrurus individuals per mesocosm) and four litter quality treatments: (1) low-quality Zea mays, (2) high-quality Diphysa robinioides, (3) a mixture of low- and high-quality litters, and (4) a control with no organic residues applied. Mesocosms included a single Z. mays plant and additions of 15N-labeled inorganic nitrogen. At maize harvest, surface soils (0-15 cm) in the mesocosms were sampled to determine total and available P as well as the distribution of C, N, and 15N among different aggregate-associated SOM pools. Maize plants were divided into grain and non-grain components and analyzed for total P, N, and 15N. Earthworm additions improved soil structure as demonstrated by a 10% increase in mean weight diameter and higher C and N storage within large macro-aggregates (>2000 microm). A corresponding 17% increase in C contained in micro-aggregates within the macro-aggregates indicates that earthworms enhance the stabilization of SOM in these soils; however, this effect only occurred when organic residues were applied. Earthworms also decreased available P and total soil P, indicating that earthworms may facilitate the loss of labile P added to this system. Earthworms decreased the recovery of fertilizer-derived N in the soil but increased the uptake of 15N by maize by 7%. Litter treatments yielded minimal effects on soil properties and plant growth. Our results indicate that the application of litter inputs and proper management of earthworm populations can have

  9. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores.

    PubMed

    Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing

    2015-04-01

    Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Abundance of litter on Condor seamount (Azores, Portugal, Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Pham, C. K.; Gomes-Pereira, J. N.; Isidro, E. J.; Santos, R. S.; Morato, T.

    2013-12-01

    Marine litter is an emerging problem for the world's ocean health but little is known on its distribution and abundance on seamounts and how it affects deep-sea ecosystems. The scientific underwater laboratory set up on Condor seamount offered an ideal case study for the first documentation of litter distribution on a shallow seamount with historical fishing. A total of 48 video transects deployed on the summit (n=45) and the northern flank (n=3) covered an area of 0.031 and 0.025km2, respectively, revealing 55 litter items. Litter density on the summit was 1439 litter items km-2, whilst on the deeper northern flank, estimates indicate densities of 397 litter items km-2. Lost fishing line was the dominant litter item encountered on both areas (73% of total litter on the summit and 50% on northern flank), all being entirely or partly entangled in the locally abundant gorgonians Dentomuricea cf. meteor and Viminella flagellum. Other items included lost weights, anchors and glass bottles. The predominance of lost fishing gear identifies the source of litter on Condor seamount as exclusively ocean-based and related to fishing activities. Abundance of litter on the Condor seamount was much lower than that reported from other locations closer to populated areas.

  11. Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest

    USGS Publications Warehouse

    Keller, Adrienne B.; Reed, Sasha C.; Townsend, Alan R.; Cleveland, Cory C.

    2013-01-01

    Tropical rain forests are known for their high biological diversity, but the effects of plant diversity on important ecosystem processes in this biome remain unclear. Interspecies differences in both the demand for nutrients and in foliar and litter nutrient concentrations could drive variations in both the pool sizes and fluxes of important belowground resources, yet our understanding of the effects and importance of aboveground heterogeneity on belowground biogeochemistry is poor, especially in the species-rich forests of the wet tropics. To investigate the effects of individual tree species on belowground biogeochemical processes, we used both field and laboratory studies to examine how carbon (C), nitrogen (N), and phosphorus (P) cycles vary under nine different canopy tree species – including three legume and six non-legume species – that vary in foliar nutrient concentrations in a wet tropical forest in southwestern Costa Rica. We found significant differences in belowground C, N and P cycling under different canopy tree species: total C, N and P pools in standing litter varied by species, as did total soil and microbial C and N pools. Rates of soil extracellular acid phosphatase activity also varied significantly among species and functional groups, with higher rates of phosphatase activity under legumes. In addition, across all tree species, phosphatase activity was significantly positively correlated with litter N/P ratios, suggesting a tight coupling between relative N and P inputs and resource allocation to P acquisition. Overall, our results suggest the importance of aboveground plant community composition in promoting belowground biogeochemical heterogeneity at relatively small spatial scales.

  12. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China

    PubMed Central

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management. PMID:29324901

  13. Using Moran's I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China

    NASA Astrophysics Data System (ADS)

    Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.

    2014-04-01

    Spatial pattern information of carbon density in forest ecosystem including forest litter carbon (FLC) plays an important role in evaluating carbon sequestration potentials. The spatial variation of FLC density in the typical subtropical forests in southeastern China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (south-north) × 6 km (east-west) grid system in Zhejiang province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas, while Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) Basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS, could be used to study spatial patterns of environmental variables related to forest ecosystem.

  14. Alum treatment of poultry litter: decomposition and nitrogen dynamics.

    PubMed

    Gilmour, J T; Koehler, M A; Cabrera, M L; Szajdak, L; Moore, P A

    2004-01-01

    While the poultry industry is a major economic benefit to several areas in the USA, land application of poultry litter to recycle nutrients can lead to impaired surface and ground water quality. Amending poultry litter with alum [Al3(SO4)2 x 14H2O] has received considerable attention as a method of economically reducing ammonia volatilization in the poultry house and soluble phosphorus in runoff waters. The objective of this study was to characterize the effect of alum on broiler litter decomposition and N dynamics under laboratory conditions. Litter that had been amended with alum in the poultry house after each of the first four of five flock cycles (Experiment I) and litter that had been amended with alum after removal from a poultry house after the third flock cycle (Experiment II) were compared with unamended litter in separate studies. The litters in Experiment I were surface-applied to simulate application to grasslands, while the litters in Experiment II were incorporated to simulate application to conventionally tilled crops. The only statistically significant differences in decomposition due to alum occurred early in Experiment II and the differences were small. The only statistically significant differences in net N mineralization, soil inorganic N, and soil NH4+-N in either experiment was found in Experiment I after 70 d of incubation where soil inorganic N was significantly greater for the alum treatment. Thus, alum had little effect on decomposition or N dynamics. Results of many of the studies on litter not amended with alum should be applicable to litters amended with alum to reduce P availability.

  15. Fungal contamination of poultry litter: a public health problem.

    PubMed

    Viegas, C; Carolino, E; Malta-Vacas, J; Sabino, R; Viegas, S; Veríssimo, C

    2012-01-01

    Although numerous studies have been conducted on microbial contaminants associated with various stages related to poultry and meat products processing, only a few reported on fungal contamination of poultry litter. The goals of this study were to (1) characterize litter fungal contamination and (2) report the incidence of keratinophilic and toxigenic fungi presence. Seven fresh and 14 aged litter samples were collected from 7 poultry farms. In addition, 27 air samples of 25 litters were also collected through impaction method, and after laboratory processing and incubation of collected samples, quantitative colony-forming units (CFU/m³) and qualitative results were obtained. Twelve different fungal species were detected in fresh litter and Penicillium was the most frequent genus found (59.9%), followed by Alternaria (17.8%), Cladosporium (7.1%), and Aspergillus (5.7%). With respect to aged litter, 19 different fungal species were detected, with Penicillium sp. the most frequently isolated (42.3%), followed by Scopulariopsis sp. (38.3%), Trichosporon sp. (8.8%), and Aspergillus sp. (5.5%). A significant positive correlation was found between litter fungal contamination (CFU/g) and air fungal contamination (CFU/m³). Litter fungal quantification and species identification have important implications in the evaluation of potential adverse health risks to exposed workers and animals. Spreading of poultry litter in agricultural fields is a potential public health concern, since keratinophilic (Scopulariopsis and Fusarium genus) as well as toxigenic fungi (Aspergillus, Fusarium, and Penicillium genus) were isolated.

  16. Nonculturability Might Underestimate the Occurrence of Campylobacter in Broiler Litter.

    PubMed

    Kassem, Issmat I; Helmy, Yosra A; Kathayat, Dipak; Candelero-Rueda, Rosario A; Kumar, Anand; Deblais, Loic; Huang, Huang-Chi; Sahin, Orhan; Zhang, Qijing; Rajashekara, Gireesh

    2017-08-01

    We investigated the contribution of litter to the occurrence of Campylobacter on three broiler farms, which were known to have low (LO) and high (HI-A and HI-B) Campylobacter prevalence. For this purpose, we collected litter samples (n = 288) during and after two rearing cycles from each farm. We evaluated the occurrence of Campylobacter (using selective enrichment and quantitative real-time polymerase chain reaction [q-PCR] analysis) in the litter samples as well as the litter's pH and moisture content. Ceca from each flock (n = 144) were harvested at slaughter age and used to quantify Campylobacter colony-forming units (CFUs). Campylobacter was only retrieved from 7 litter samples that were collected from HI-A and HI-B during the growing period, but no Campylobacter was isolated from LO farms. The q-PCR analysis detected Campylobacter in pooled litter samples from all three farms. However, in litter collected during the same rotation, Campylobacter levels were significantly higher (p < 0.05) in HI-A and HI-B litter samples in comparison to those in LO. Cecal samples from HI-A and HI-B yielded relatively high numbers of Campylobacter CFUs, which were undetectable in LO samples. Litter's pH and moisture did not affect the overall occurrence of Campylobacter in litter and ceca on any of the farms. Our data suggest that Campylobacter was generally more abundant in litter that was collected from farms with highly colonized flocks. Therefore, better approaches for assessing the occurrence of Campylobacter in litter might be warranted in order to reduce the dissemination of these pathogens on and off poultry farms.

  17. Functionally dissimilar neighbors accelerate litter decomposition in two grass species.

    PubMed

    Barbe, Lou; Jung, Vincent; Prinzing, Andreas; Bittebiere, Anne-Kristel; Butenschoen, Olaf; Mony, Cendrine

    2017-05-01

    Plant litter decomposition is a key regulator of nutrient recycling. In a given environment, decomposition of litter from a focal species depends on its litter quality and on the efficiency of local decomposers. Both may be strongly modified by functional traits of neighboring species, but the consequences for decomposition of litter from the focal species remain unknown. We tested whether decomposition of a focal plant's litter is influenced by the functional-trait dissimilarity to the neighboring plants. We cultivated two grass species (Brachypodium pinnatum and Elytrigia repens) in experimental mesocosms with functionally similar and dissimilar neighborhoods, and reciprocally transplanted litter. For both species, litter quality increased in functionally dissimilar neighborhoods, partly as a result of changes in functional traits involved in plant-plant interactions. Furthermore, functional dissimilarity increased overall decomposer efficiency in one species, probably via complementarity effects. Our results suggest a novel mechanism of biodiversity effects on ecosystem functioning in grasslands: interspecific functional diversity within plant communities can enhance intraspecific contributions to litter decomposition. Thus, plant species might better perform in diverse communities by benefiting from higher remineralization rates of their own litter. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Flux of carbon from 14C-enriched leaf litter throughout a forest soil mesocosm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froberg, Mats J.; Hanson, Paul J; Trumbore, Susan E.

    2009-01-01

    The role of DOC for the build-up of soil organic carbon pools is still not well known, but it is thought to play a role in the transport of carbon to a greater depth where it becomes more stable. The aim of this study was to elucidate within-year dynamics of carbon transport from litter to the O (Oe and Oa) and A horizons. Mesocosms with constructed soil profiles were used to study dynamics of C transport from 14C-enriched (about 1000 ) leaf litter to the Oe/Oa and A horizons as well as the mineralization of leaf litter. The mesocosms weremore » placed in the field for 17 months during which time fluxes and 14C content of DOC and CO2 were measured. Changes in 14C in leaf litter and bulk soil C pools were also recorded. Significant simultaneous release and immobilization of DOC occurring in both the O and A horizons was hypothesized. Contrary to our hypothesis, DOC released from the labeled Oi horizon was not retained within the Oe/Oa layer. DOC originating in the unlabeled Oe/Oa layer was also released for transport. Extensive retention of DOC occurred in the A horizon. DOC leaching from A horizon consisted of a mix of DOC from different sources, with a main fraction originating in the A horizon and a smaller fraction leached from the overlaying horizons. The C and 14C budget for the litter layer also indicated a surprisingly large amount of carbon with ambient Δ14C-signature to be respired from this layer. Data for this site also suggested significant contributions from throughfall to dissolved organic carbon (DOC) transport into and respiration from the litter layer. The results from this study showed that DOC retentionwas low in the O horizon and therefore not important for the O horizon carbon budget. In the A horizon DOC retention was extensive, but annual DOC input was small compared to C stocks and therefore not important for changes in soil C on an annual timescale.« less

  19. Uncertainty Analysis in Large Area Aboveground Biomass Mapping

    NASA Astrophysics Data System (ADS)

    Baccini, A.; Carvalho, L.; Dubayah, R.; Goetz, S. J.; Friedl, M. A.

    2011-12-01

    Satellite and aircraft-based remote sensing observations are being more frequently used to generate spatially explicit estimates of aboveground carbon stock of forest ecosystems. Because deforestation and forest degradation account for circa 10% of anthropogenic carbon emissions to the atmosphere, policy mechanisms are increasingly recognized as a low-cost mitigation option to reduce carbon emission. They are, however, contingent upon the capacity to accurately measures carbon stored in the forests. Here we examine the sources of uncertainty and error propagation in generating maps of aboveground biomass. We focus on characterizing uncertainties associated with maps at the pixel and spatially aggregated national scales. We pursue three strategies to describe the error and uncertainty properties of aboveground biomass maps, including: (1) model-based assessment using confidence intervals derived from linear regression methods; (2) data-mining algorithms such as regression trees and ensembles of these; (3) empirical assessments using independently collected data sets.. The latter effort explores error propagation using field data acquired within satellite-based lidar (GLAS) acquisitions versus alternative in situ methods that rely upon field measurements that have not been systematically collected for this purpose (e.g. from forest inventory data sets). A key goal of our effort is to provide multi-level characterizations that provide both pixel and biome-level estimates of uncertainties at different scales.

  20. Early stage litter decomposition across biomes

    Treesearch

    Ika Djukic; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alberto Humber; Alejandro Valdecantos; Alessandro Petraglia; Heather Alexander; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; André-Jean Francez; Andrea Fischer; Andreas Bohner; Andrey Malyshev; Andrijana Andrić; Andy Smith; Angela Stanisci; Anikó Seres; Anja Schmidt; Anna Avila; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Arely N. Palabral-Aguilera; Artur Stefanski; Aurora Gaxiola; Bart Muys; Bernard Bosman; Bernd Ahrends; Bill Parker; Birgit Sattler; Bo Yang; Bohdan Juráni; Brigitta Erschbamer; Carmen Eugenia Rodriguez Ortiz; Casper T. Christiansen; E. Carol Adair; Céline Meredieu; Cendrine Mony; Charles A. Nock; Chi-Ling Chen; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dana Polyanskaya; David Fuentes Delgado; Dirk Wundram; Diyaa Radeideh; Eduardo Ordóñez-Regil; Edward Crawford; Elena Preda; Elena Tropina; Elli Groner; Eric Lucot; Erzsébet Hornung; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Evy Ampoorter; Fabio Padilha Bolzan; Felipe Varela; Ferdinand Kristöfel; Fernando T. Maestre; Florence Maunoury-Danger; Florian Hofhansl; Florian Kitz; Flurin Sutter; Francisco Cuesta; Francisco de Almeida Lobo; Franco Leandro de Souza; Frank Berninger; Franz Zehetner; Georg Wohlfahrt; George Vourlitis; Geovana Carreño-Rocabado; Gina Arena; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Hanna Lee; Hans Verbeeck; Harald Auge; Harald Pauli; Hassan Bismarck Nacro; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena C. Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hideaki Shibata; Hiroko Kurokawa; Hugo López Rosas; Hugo L. Rojas Villalobos; Ian Yesilonis; Inara Melece; Inge Van Halder; Inmaculada García Quirós; Isaac Makelele; Issaka Senou; István Fekete; Ivan Mihal; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Shoqeir; Jean-Christophe Lata; Jean-Paul Theurillat; Jean-Luc Probst; Jess Zimmerman; Jeyanny Vijayanathan; Jianwu Tang; Jill Thompson; Jiří Doležal; Joan-Albert Sanchez-Cabeza; Joël Merlet; Joh Henschel; Johan Neirynck; Johannes Knops; John Loehr; Jonathan von Oppen; Jónína Sigríður Þorláksdóttir; Jörg Löffler; José-Gilberto Cardoso-Mohedano; José-Luis Benito-Alonso; Jose Marcelo Torezan; Joseph C. Morina; Juan J. Jiménez; Juan Dario Quinde; Juha Alatalo; Julia Seeber; Jutta Stadler; Kaie Kriiska; Kalifa Coulibaly; Karibu Fukuzawa; Katalin Szlavecz; Katarína Gerhátová; Kate Lajtha; Kathrin Käppeler; Katie A. Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Lambiénou Yé; Laryssa Helena Ribeiro Pazianoto; Laura Dienstbach; Laura Williams; Laura Yahdjian; Laurel M. Brigham; Liesbeth van den Brink; Lindsey Rustad; al. et

    2018-01-01

    Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies...

  1. The use of refused tea as litter material for broiler chickens.

    PubMed

    Atapattu, N S B M; Wickramasinghe, K P

    2007-05-01

    A completely randomized design experiment was conducted to determine the suitability of refused tea (RT) as a litter material for broiler chickens. Physiochemical properties of RT were compared with paddy husk (PH). Subsequently, broilers were raised on RT- or PH-based litter to compare the performances and litter qualities. Twenty-day-old broiler chicks (n = 150) were randomly allocated into 6 deep litter pens so that each treatment had 3 replicates. Chicks received 0.8 ft(2) of floor spacing until d 28 and 1.3 ft(2) thereafter. Each cage had a feeder and a drinker. Litter materials and litter samples taken on 28, 35, and 39 d were analyzed for bulk density, moisture, ash, and N. Chick mortality was low (1.3%) and similar on 2 types of litters. Live weights on d 28, 35, 39, and weight gains, feed intakes, dressing percentages, and feed conversion ratios were not affected by the type of litter material. The bulk density, moisture level, and pH of the RT were comparable with PH. Even though the water-holding capacity of PH (213%) was significantly higher (P < 0.01) than RT (70%), the latter material had significantly higher (P < 0.01) water-releasing capacity compared with the former (17.9 vs. 13.6%). Throughout the experiment the RT litter had around 10% units higher moisture level than PH litter. By d 39, the moisture content of the RT litter was (48%) significantly higher (P = 0.05) than PH litter (37%). The N contents of RT litter were higher (P < 0.05) than those of PH on d 28, 35, and 39, being 8.1, 7.8, and 7% and 3.4, 3.6, and 3%, respectively. It was concluded that RT could be successfully used as an alternative litter material for broilers. A higher N content in RT-based spent broiler litter would make it be a better organic fertilizer and ruminant feed compared with PH-based litter.

  2. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan

    2016-08-01

    Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and

  3. Evaluation of the Caravelle litter retrieval system.

    DOT National Transportation Integrated Search

    1988-01-01

    Based on observations, the Caravelle Litter Technologies, Inc's., demonstration of its litter retrieval equipment it was concluded that use of the equipment on highways open to traffic would require extensive and expensive traffic control. The machin...

  4. Flammability across the gymnosperm phylogeny: the importance of litter particle size.

    PubMed

    Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C

    2015-04-01

    Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Larch Litter Removal Has No Significant Effect On Runoff

    Treesearch

    Richard S. Startz; David N. Tolsted

    1974-01-01

    Runoff was measured on paired litter-removed, litter-left plots in an 11-year-old European larch plantation. On five of the six pairs of plots, the plot with the litter left intact yielded more runoff. however, the differences were neither statistically nor hydrologically significant.

  6. Public perspective towards marine litter in West Aceh City

    NASA Astrophysics Data System (ADS)

    Kusumawati, I.; Setyowati, M.; Riana, E.; Prartono, T.

    2018-03-01

    Marine litter or marine debris is a man-made solid material discarded, abandoned or lost in coastline or into the sea. To reduce the amount of marine litter in the ocean, raising public awareness is an important way. One of the contributing factors on marine litter is the lack of understanding within the community, but to identify how people notice the problem is required adequate research literature. The purpose of this study is to examine the awareness of West Aceh community on marine litter along western coastal area. The research objectives; 1) to evaluate societal perception towards marine litter; 2) to examine the urgent indicator of public awareness in West Aceh City. This study will employ a survey approach by distributing questionnaires to 383 respondents. It was found that respondents show low awareness on marine litter according to statistical data, but there are some rooms to manage in order to raise the level of public awareness. It concludes that sense of responsibility could be enhanced by involving public in any activities for preventing and eradicating marine litter. Education aspect is also important to increase public understanding about the threats of marine debris on environment, human health and economic income.

  7. Recent (<4 year old) Leaf Litter is Not a Major Source of Microbial Carbon in a Temperate Forest Mineral Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Christiane; Trumbore, Susan E.; Froberg, Mats J.

    2010-01-01

    Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the {sup 14}C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (< {approx}40{per_thousand} given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acidsmore » (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by {approx}750{per_thousand} between high-{sup 14}C and low-{sup 14}C treatments. Assuming any difference in {sup 14}C between the high- and low-{sup 14}C plots would reflect C derived from these manipulated litter additions, we estimate that <6% of the microbial C after 4 years was derived from the added 1-4-year-old surface litter. Large contributions of C from litter < 1 year (or >4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the {sup 14}C signatures of the PLFA compounds (averaging 200-220{per_thousand}) is much higher that of the 2004-5 leaf litter (115{per_thousand}) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from {sup 14}C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the {sup 14}C of PLFA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA {Delta}{sup 14}C signatures were higher than those measured in

  8. Debris is not a cheese: litter in coastal Louisiana

    USGS Publications Warehouse

    Lindstedt, Dianne M.; Holmes, Joseph C.

    1989-01-01

    An 18-month study of six Louisiana beaches determined the extent, composition, and possible sources of beach litter. Data showed that from 2590 to 23,154 items may be encountered along any one-mile stretch of Louisiana beach, depending upon location and season, and that densities of litter ranged from 5 to 28 items per 100 m2. Plastics constituted 47% of the total, followed by polystyrene at 16% and glass at 10%. Drink-related items accounted for 40% of the identifiable material; operational wastes, 21%; galley wastes, 15%; personal items, 11%; and fishing items, 6%. Litter laws already exist at state and federal levels. Strict enforcement of Annex V of MARPOL should significantly reduce plastic beach litter. Solutions to beach litter will come from public participation in adopt-a-beach programs and statewide clean-ups and from educational programs focusing on existing laws, proper disposal methods, recycling, and the threat litter poses to wildlife and public health.

  9. Eutrophication triggers contrasting multilevel feedbacks on litter accumulation and decomposition in fens.

    PubMed

    Emsens, W-J; Aggenbach, C J S; Grootjans, A P; Nfor, E E; Schoelynck, J; Struyf, E; van Diggelen, R

    2016-10-01

    Eutrophication is a major threat for the persistence of nutrient-poor fens, as multilevel feedbacks on decomposition rates could trigger carbon loss and increase nutrient cycling. Here, we experimentally investigate the effects of macronutrient (NPK) enrichment on litter quality of six species of sedge (Carex sp.), which we relate to litter decomposition rates in a nutrient-poor and nutrient-rich environment. Our research focused on four levels: we examined how eutrophication alters (1) fresh litter production ("productivity shift"), (2) litter stoichiometry within the same species ("intraspecific shift"), (3) overall litter stoichiometry of the vegetation under the prediction that low-competitive species are outcompeted by fast-growing competitors ("interspecific shift"), and (4) litter decomposition rates due to an altered external environment (e.g., shifts in microbial activity; "exogenous shift"). Eutrophication triggered a strong increase in fresh litter production. Moreover, individuals of the same species produced litter with lower C:N and C:P ratios, higher K contents, and lower lignin, Ca and Mg contents (intraspecific shift), which increased litter decomposability. In addition, species typical for eutrophic conditions produced more easily degradable litter than did species typical for nutrient-poor conditions (interspecific shift). However, the effects of nutrient loading of the external environment (exogenous shift) were contradictory. Here, interactions between litter type and ambient nutrient level indicate that the (exogenous) effects of eutrophication on litter decomposition rates are strongly dependent of litter quality. Moreover, parameters of litter quality only correlated with decomposition rates for litter incubated in nutrient-poor environments, but not in eutrophic environments. This suggests that rates of litter decomposition can be uncoupled from litter stoichiometry under eutrophic conditions. In conclusion, our results show that

  10. Litter in submarine canyons off the west coast of Portugal

    NASA Astrophysics Data System (ADS)

    Mordecai, Gideon; Tyler, Paul A.; Masson, Douglas G.; Huvenne, Veerle A. I.

    2011-12-01

    Marine litter is of global concern and is present in all the world's oceans, including deep benthic habitats where the extent of the problem is still largely unknown. Litter abundance and composition were investigated using video footage and still images from 16 Remotely Operated Vehicle (ROV) dives in Lisbon, Setúbal, Cascais and Nazaré Canyons located west of Portugal. Litter was most abundant at sites closest to the coastline and population centres, suggesting the majority of the litter was land sourced. Plastic was the dominant type of debris, followed by fishing gear. Standardised mean abundance was 1100 litter items km -2, but was as high as 6600 litter items km -2 in canyons close to Lisbon. Although all anthropogenic material may be harmful to biota, debris was also used as a habitat by some macro-invertebrates. Litter composition and abundance observed in the canyons of the Portuguese margin were comparable to those seen in other deep sea areas around the world. Accumulation of litter in the deep sea is a consequence of human activities both on land and at sea. This needs to be taken into account in future policy decisions regarding marine pollution.

  11. Intestinal Microbiota of Broiler Chickens As Affected by Litter Management Regimens

    PubMed Central

    Wang, Lingling; Lilburn, Mike; Yu, Zhongtang

    2016-01-01

    Poultry litter is a mixture of bedding materials and enteric bacteria excreted by chickens, and it is typically reused for multiple growth cycles in commercial broiler production. Thus, bacteria can be transmitted from one growth cycle to the next via litter. However, it remains poorly understood how litter reuse affects development and composition of chicken gut microbiota. In this study, the effect of litter reuse on the microbiota in litter and in chicken gut was investigated using 2 litter management regimens: fresh vs. reused litter. Samples of ileal mucosa and cecal digesta were collected from young chicks (10 days of age) and mature birds (35 days of age). Based on analysis using DGGE and pyrosequencing of bacterial 16S rRNA gene amplicons, the microbiota of both the ileal mucosa and the cecal contents was affected by both litter management regimen and age of birds. Faecalibacterium, Oscillospira, Butyricicoccus, and one unclassified candidate genus closely related to Ruminococcus were most predominant in the cecal samples, while Lactobacillus was predominant in the ileal samples at both ages and in the cecal samples collected at day 10. At days 10 and 35, 8 and 3 genera, respectively, in the cecal luminal microbiota differed significantly in relative abundance between the 2 litter management regimens. Compared to the fresh litter, reused litter increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a butyrate-producing gut bacterium. This study suggests that litter management regimens affect the chicken GI microbiota, which may impact the host nutritional status and intestinal health. PMID:27242676

  12. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    PubMed

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  13. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    PubMed

    Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  14. Evaluation of litter type and dietary coarse ground corn inclusion on broiler live performance, gastrointestinal tract development, and litter characteristics.

    PubMed

    Xu, Y; Stark, C R; Ferket, P R; Williams, C M; Nusairat, B; Brake, J

    2015-03-01

    Two 49 d floor pen studies were conducted to evaluate the effects of litter type and dietary coarse ground corn (CC) inclusion on broiler live performance, gastrointestinal tract (GIT) development, and litter characteristics. Experiment 1 was a 2×2 factorial arrangement of 2 genders (male or female) and 2 CC levels (0 or 50%). From 15 to 35 d, the addition of CC decreased feed intake (P<0.01) and BW gain (P<0.05) of males but not females. The inclusion of CC decreased feed intake (P<0.01) and BW gain (P<0.01) from 0 to 49 d but improved adjusted feed conversion ratio (AdjFCR) from 35 to 49 d (P<0.05). Male broilers exhibited better live performance than females during the study as evidenced by greater feed intake (P<0.01) and BW gain (P<0.01), and improved FCR (P<0.01), but with increased mortality (P<0.05). The inclusion of CC increased relative gizzard weight (P<0.01) and decreased relative proventriculus weight (P<0.01) at 49 d. Experiment 2 was a 2×2 factorial arrangement of 2 CC levels (0 or 50%) and 2 litter types (ground old litter or new wood shavings litter). The inclusion of CC decreased feed intake throughout the experiment without affecting final BW when only males were used and improved FCR after 25 d (P<0.01). New litter improved FCR from 1 to 14 d (P<0.01). At 49 d, the birds fed the CC diet had reduced excreta nitrogen (P<0.05) and litter moisture (P<0.05). In conclusion, 50% CC inclusion initially produced negative effects on live performance that became positive as BW increased. The effects of CC became evident at an earlier age for males. New litter had only a marginal benefit on broiler live performance. © 2015 Poultry Science Association Inc.

  15. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition.

    PubMed

    Crippen, Tawni L; Sheffield, Cynthia L; Byrd, J Allen; Esquivel, Jesus F; Beier, Ross C; Yeater, Kathleen

    2016-05-15

    The U.S. broiler meat market has grown over the past 16 years and destinations for U.S. broiler meat exports expanded to over 150 countries. This market opportunity has spurred a corresponding increase in industrialized poultry production, which due to the confined space in which high numbers of animals are housed, risks accumulating nutrients and pollutants. The purpose of this research was to determine the level of pollutants within poultry litter and the underlying soil within a production facility; and to explore the impact of spent litter deposition into the environment. The study follows a production facility for the first 2.5 years of production. It monitors the effects of successive flocks and management practices on 15 physiochemical parameters: Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, moisture, Na, NO3(-)/N, organic matter, P, pH, S, and Zn. Litter samples were collected in-house, after clean-outs and during stockpiling. The soil before house placement, after the clean-outs and following litter stockpiling was monitored. Management practices markedly altered the physiochemical profiles of the litter in-house. A canonical discriminant analysis was used to describe the relationship between the parameters and sampling times. The litter profiles grouped into five clusters corresponding to time and management practices. The soil in-house exhibited mean increases in all physiochemical parameters (2-297 fold) except Fe, Mg, %M, and pH. The spent litter was followed after deposition onto a field for use as fertilizer. After 20 weeks, the soil beneath the litter exhibited increases in EC, Cu, K, Na, NO3(-)/N, %OM, P, S and Zn; while %M decreased. Understanding the impacts of industrialized poultry farms on the environment is vital as the cumulative ecological impact of this land usage could be substantial if not properly managed to reduce the risk of potential pollutant infiltration into the environment. Published by Elsevier B.V.

  16. Distribution of beach litter along the coastline of Cádiz, Spain.

    PubMed

    Williams, Allan Thomas; Randerson, Peter; Di Giacomo, Carlo; Anfuso, Giorgio; Macias, Ana; Perales, José Antonio

    2016-06-15

    A total of 59 categories of litter items were found at 20 beaches (13 mechanically cleaned, 7 non-cleaned) in the Cádiz tourist environment, Spain. Cluster Analysis and Principal Components Analysis were used to highlight similarities and contrasts between sites and/or associations between litter categories. Multivariate analyses separated beaches according to the total numbers of litter items present. Non-cleaned sites showed a variety of litter category abundance with distinct origins and abundant, ubiquitous items (plastic and glass fragments). Of the 7 non-cleaned beaches (49 litter categories) river-mouth sites were distinct due with high numbers of litter items. The sheltered inner part of Cádiz Bay beaches had a wide range of litter type. Many sites were associated with locally deposited recreational litter categories; while industrial/commercial/fishing categories were abundant only at a few sites, indicating items transported onto the shore from the Guadalete river. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Broiler house litter sampling: the final frontier

    USDA-ARS?s Scientific Manuscript database

    Today, the sustainability of broiler operations reaches beyond the need for litter nutrient management plans that came to the forefront of the industry’s attention in the last fifteen years. Thorough characterization of litter within houses provides the basis for emission models to benefit growers,...

  18. Long-term changes in forest floor processes in southern Appalachian forests

    Treesearch

    Jennifer D. Knoepp; Barbara C. Reynolds; D.A. Crossley; Wayne T. Swank

    2005-01-01

    Soil nutrient concentrations decreased in an aggrading southern Appalachian forest over a 20-year period. Construction of nutrient budgets showed significant nutrient sequestration aboveground including increased forest floor mass. We hypothesized that the changes in forest floor mass resulted from decreased litter decomposition rates because of decreased litter...

  19. Tadpoles of Early Breeding Amphibians are Negatively Affected by Leaf Litter From Invasive Chinese Tallow Trees

    NASA Astrophysics Data System (ADS)

    Leonard, N. E.

    2005-05-01

    As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.

  20. Influence of Soil Moisture on Litter Respiration in the Semiarid Loess Plateau

    PubMed Central

    Zhang, Yanjun; Guo, Shengli; Liu, Qingfang; Jiang, Jishao

    2014-01-01

    Understanding the response mechanisms of litter respiration to soil moisture in water-limited semi-arid regions is of vital importance to better understanding the interplay between ecological processes and the local carbon cycle. In situ soil respiration was monitored during 2010–2012 under various conditions (normal litter, no litter, and double litter treatments) in a 30-year-old artificial black locust plantation (Robinia pseudoacacia L.) on the Loess Plateau. Litter respiration with normal and double litter treatments exhibited similar seasonal variation, with the maximum value obtained in summer (0.57 and 1.51 μmol m−2 s−1 under normal and double litter conditions, respectively) and the minimum in spring (0.27 and 0.69 μmol m−2 s−1 under normal and double litter conditions, respectively). On average, annual cumulative litter respiration was 115 and 300 g C m−2 y−1 under normal and double litter conditions, respectively. Using a soil temperature of 17°C as the critical point, the relationship between litter respiration and soil moisture was found to follow quadratic functions well, whereas the determination coefficient was much greater at high soil temperature than at low soil temperature (33–35% vs. 22–24%). Litter respiration was significantly higher in 2010 and 2012 than in 2011 under both normal litter (132–165 g C m−2 y−1 vs. 48 g C m−2 y−1) and double litter (389–418 g C m−2 y−1 vs. 93 g C m−2 y−1) conditions. Such significant interannual variations were largely ascribed to the differences in summer rainfall. Our study demonstrates that, apart from soil temperature, moisture also has significant influence on litter respiration in semi-arid regions. PMID:25474633

  1. Litter survey detects the South Atlantic 'garbage patch'.

    PubMed

    Ryan, Peter G

    2014-02-15

    A distance-based technique was used to assess the distribution and abundance of floating marine debris (>1cm) in the southeast Atlantic Ocean between Cape Town and Tristan da Cunha, crossing the southern edge of the South Atlantic 'garbage patch' predicted by surface drift models. Most litter was made of plastic (97%). Detection distances were influenced by the size and buoyancy of litter items. Litter density decreased from coastal waters off Cape Town (>100 items km(-2)) to oceanic waters (<10 items km(-2)), and was consistently higher (6.2 ± 1.3 items km(-2)) from 3 to 8°E than in adjacent oceanic waters (2.7 ± 0.3 items km(-2)) or in the central South Atlantic around Tristan (1.0 ± 0.4 items km(-2)). The area with high litter density had few seaweeds, suggesting that most litter had been drifting for a long time. The results indicate that floating debris is accumulating in the South Atlantic gyre as far south as 34-35°S. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    EPA Pesticide Factsheets

    This issue paper, developed for EPA's Engineering Forum, identifies and summarizes experiences with proven aboveground treatment alternatives for arsenic in groundwater, and provides information on their relative effectiveness and cost.

  3. OSPAR standard method and software for statistical analysis of beach litter data.

    PubMed

    Schulz, Marcus; van Loon, Willem; Fleet, David M; Baggelaar, Paul; van der Meulen, Eit

    2017-09-15

    The aim of this study is to develop standard statistical methods and software for the analysis of beach litter data. The optimal ensemble of statistical methods comprises the Mann-Kendall trend test, the Theil-Sen slope estimation, the Wilcoxon step trend test and basic descriptive statistics. The application of Litter Analyst, a tailor-made software for analysing the results of beach litter surveys, to OSPAR beach litter data from seven beaches bordering on the south-eastern North Sea, revealed 23 significant trends in the abundances of beach litter types for the period 2009-2014. Litter Analyst revealed a large variation in the abundance of litter types between beaches. To reduce the effects of spatial variation, trend analysis of beach litter data can most effectively be performed at the beach or national level. Spatial aggregation of beach litter data within a region is possible, but resulted in a considerable reduction in the number of significant trends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Anti-Litter Curriculum Packet, Interdisciplinary, K-12.

    ERIC Educational Resources Information Center

    Tillis, Richard

    This curriculum packet consists of 20 illustrated cards with 15 activities designed to create "positive feelings" about a clean environment. Activities range from picture coloring for younger students, to lessons such as the economic and health problems litter creates for older students. Objectives include encouraging anti-litter and…

  5. Effects of dietary coarsely ground corn and litter type on broiler live performance, litter characteristics, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and intestinal morphology.

    PubMed

    Xu, Y; Stark, C R; Ferket, P R; Williams, C M; Auttawong, S; Brake, J

    2015-03-01

    The objectives of this study were to evaluate the effects of the dietary inclusion of 2 coarsely ground corn (CC) levels (0 or 50%) in diets of broilers reared on 2 litter types (new wood shavings or used litter) on live performance, litter characteristics, gastrointestinal tract (GIT) development, apparent ileal digestibility (AID) of energy and nitrogen (N), and intestinal morphology. No interaction effects between CC level and litter type were observed on live performance. No litter effect was observed on live performance. Dietary inclusion of 50% CC increased BW at 35 d (P<0.01) and improved cumulative feed conversion ratio (FCR) at 35 and 49 d of age (P<0.01). The 50% CC treatment increased absolute and relative gizzard weight (P<0.01) and decreased jejunum unit weight (g/cm) (P<0.01). The new litter treatment (litter N) increased absolute and relative proventriculus weight (P<0.05) but did not affect gizzard weight. An interaction effect between CC level and litter type was observed for litter N, where the 50% CC treatment reduced litter N regardless of litter type (P<0.01), but litter N was reduced by new litter only among birds fed 0% CC (P<0.05). The 50% CC inclusion increased litter pH (P<0.05) and improved the AID of energy and N by 6.8% (P<0.01) and 3.5% (P<0.05), respectively. The 50% CC treatment increased jejunum villi tip width (P<0.05) and villi surface area (P<0.01), and decreased the muscularis layer thickness (P<0.01), whereas new litter increased jejunum villi and ileum villi height (P<0.05), jejunum villi surface area (P<0.01), and the ratio of jejunum villi height to crypt depth (P<0.01). This study showed that birds fed pelleted and screened diets containing 50% CC exhibited improved BW, FCR, and AID of energy and N, in conjunction with altered morphology of the GIT and intestinal mucosa. Litter type affected some GIT traits and functions but did not affect live performance. © 2015 Poultry Science Association Inc.

  6. Input-decomposition balance of heterotrophic processes in a warm-temperate mixed forest in Japan

    NASA Astrophysics Data System (ADS)

    Jomura, M.; Kominami, Y.; Ataka, M.; Makita, N.; Dannoura, M.; Miyama, T.; Tamai, K.; Goto, Y.; Sakurai, S.

    2010-12-01

    Carbon accumulation in forest ecosystem has been evaluated using three approaches. One is net ecosystem exchange (NEE) estimated by tower flux measurement. The second is net ecosystem production (NEP) estimated by biometric measurements. NEP can be expressed as the difference between net primary production and heterotrophic respiration. NEP can also be expressed as the annual increment in the plant biomass (ΔW) plus soil (ΔS) carbon pools defined as follows; NEP = ΔW+ΔS The third approach needs to evaluate annual carbon increment in soil compartment. Soil carbon accumulation rate could not be measured directly in a short term because of the small amount of annual accumulation. Soil carbon accumulation rate can be estimated by a model calculation. Rothamsted carbon model is a soil organic carbon turnover model and a useful tool to estimate the rate of soil carbon accumulation. However, the model has not sufficiently included variations in decomposition processes of organic matters in forest ecosystems. Organic matter in forest ecosystems have a different turnover rate that creates temporal variations in input-decomposition balance and also have a large variation in spatial distribution. Thus, in order to estimate the rate of soil carbon accumulation, temporal and spatial variation in input-decomposition balance of heterotrophic processes should be incorporated in the model. In this study, we estimated input-decomposition balance and the rate of soil carbon accumulation using the modified Roth-C model. We measured respiration rate of many types of organic matters, such as leaf litter, fine root litter, twigs and coarse woody debris using a chamber method. We can illustrate the relation of respiration rate to diameter of organic matters. Leaf and fine root litters have no diameter, so assumed to be zero in diameter. Organic matters in small size, such as leaf and fine root litter, have high decomposition respiration. It could be caused by the difference in

  7. Reducing highway litter.

    DOT National Transportation Integrated Search

    2013-06-01

    The objective of this report is to evaluate the status of highway litter in the State of Utah. Under the direction of Russ Scovil, engineer with the Utah Department of Transportation (UDOT), researchers at the University of Utah performed a literatur...

  8. Stoichiometry in aboveground and fine roots of Seriphidium korovinii in desert grassland in response to artificial nitrogen addition.

    PubMed

    Li, Lei; Gao, Xiaopeng; Gui, Dongwei; Liu, Bo; Zhang, Bo; Li, Xiangyi

    2017-07-01

    Nitrogen (N) input by atmospheric deposition and human activity enhances the availability of N in various ecosystems, which may further affect N and phosphorus (P) cycling and use by plants. However, the internal use of N, P, and N:P stoichiometry by plants in response to N supply, particularly for grass species in a desert steppe ecosystem, remains unclear. In this work, a field experiment was conducted at an infertile area in a desert steppe to investigate the effects of N fertilizer addition rates on the stoichiometry of N and P in a dominant grass species, Seriphidium korovinii. Results showed that for both aboveground and fine roots of S. korovinii, N inputs exponentially increased the N concentration and N:P ratios while P concentrations decreased. Meanwhile, the relationships between N and P concentrations for both aboveground and fine roots were significantly negative. Furthermore, while the N concentrations in the plants were relatively low, P concentrations were higher than the global means, resulting in a relatively low N:P ratio. These results suggest that the stoichiometric characteristics of N were different from that of P for this desert plant species. Results also show that the intraspecific variations in the main element traits (N, P, and N:P ratios) were consistent at the whole-plant level. Our results also suggest that N should be part of any short-term fertilization plan that is part of a management strategy designed to restore degraded desert grassland. These findings highlight that nutrient addition by atmospheric N deposition and human activity can have significant effects on the internal use of N and P by plants. Therefore, establishing a nutrient-conservation strategy for desert grasslands is important.

  9. Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian Grassland

    USGS Publications Warehouse

    Barger, N.N.; Ojima, D.S.; Belnap, J.; Shiping, W.; Yanfen, W.; Chen, Z.

    2004-01-01

    This study reports on changes in plant functional group composition, litter quality, and soil C and N mineralization dynamics from a 9-year sheep grazing study in Inner Mongolia. Addressed are these questions: 1) How does increasing grazing intensity affect plant community composition? 2) How does increasing grazing intensity alter soil C and N mineralization dynamics? 3) Do changes in soil C and N mineralization dynamics relate to changes in plant community composition via inputs of the quality or quantity of litter? Grazing plots were set up near the Inner Mongolia Grassland Ecosystem Research Station (IMGERS) with 5 grazing intensities: 1.3, 2.7, 4.0, 5.3, and 6.7 sheep ha -1??yr-1. Plant cover was lower with increasing grazing intensity, which was primarily due to a dramatic decline in grasses, Carex duriuscula, and Artemisia frigida. Changes in litter mass and percentage organic C resulted in lower total C in the litter layer at 4.0 and 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Total litter N was lower at 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Litter C:N ratios, an index of litter quality, were significantly lower at 4.0 sheep ha-1??yr -1 relative to 1.3 and 5.3 sheep ha-1??yr -1. Cumulative C mineralized after 16 days decreased with increasing grazing intensity. In contrast, net N mineralization (NH4+ + NO3-) after a 12-day incubation increased with increasing grazing intensity. Changes in C and N mineralization resulted in a narrowing of CO2-C:net Nminratios with increasing grazing intensity. Grazing explained 31% of the variability in the ratio of CO 2-C:net Nmin. The ratio of CO2-C:net N min was positively correlated with litter mass. Furthermore, there was a positive correlation between litter mass and A. frigida cover. Results suggest that as grazing intensity increases, microbes become more C limited resulting in decreased microbial growth and demand for N.

  10. American Beech Leaf-litter Leachate Chemistry: Effects of Geography and Phenophase

    NASA Astrophysics Data System (ADS)

    Hudson, J. E.; Levia, D. F., Jr.; Wheeler, K. I.; Winters, C. G.; Vaughan, M.; Chace, J.; Sleeper, R.

    2017-12-01

    The decomposition of leaves from broadleaved trees contributes to the energy budget of forested watersheds via dissolved organic matter, nutrients, and biological activity. Although it is often implicitly assumed that intraspecific differences in leaf-litter leachate chemistry do not significantly differ geographically, we attempted to discern how these inputs may vary from single tree species that is known to have two genetically distinct and geographically separate populations, as well as how these inputs may change throughout autumn senescence and after abscission. We analyzed the physical and chemical leaf traits and leaf leachates of leaves from Fagus grandifolia (American beech; n = 360) during three phenophases: fresh green, senescing, and fallen. During each phenophase, leaves were collected from four sites along a geographic transect stretching from Vermont to North Carolina (over 1400 km), with two sites representing each genetic population and differing climatic conditions. Pooled leaf leachates from each site and phenophase were analyzed for routine solutes and nutrients, as well as fluorescent and UV-visible absorbance indices. Quantities of macro- and micronutrients were highly variable among sites and phenophases but tended to be lowest from fallen leaves, while measured fluorescence and absorbance indices tended to increase during leaves collected during senescence. Results suggest significant differences in leached nutrients among field sites, while optical properties and nutrients varied significantly among phenophases. Aromaticity and molecular weight of DOM in leachates was generally low, and aromaticity and humification of leachates both increased as leaves aged throughout the selected phenophases. Results also suggest that geographically (or genetically) separate populations of the same species do not experience senescence in the same way and that implicit assumptions of intraspecific uniformity of leaf-litter leachate chemistry for a given

  11. Maize (Zea mays) seeds can detect above-ground weeds; thiamethoxam alters the view.

    PubMed

    Afifi, Maha; Lee, Elizabeth; Lukens, Lewis; Swanton, Clarence

    2015-09-01

    Far red light is known to penetrate soil and delay seed germination. Thiamethoxam as a seed treatment has been observed to enhance seed germination. No previous work has explored the effect of thiamethoxam on the physiological response of buried maize seed when germinating in the presence of above-ground weeds. We hypothesised that the changes in red:far red reflected from above-ground weeds would be detected by maize seed phytochrome and delay seed germination by decreasing the level of GA and increasing ABA. We further hypothesised that thiamethoxam would overcome this delay in germination. Thiamethoxam enhanced seed germination in the presence of above-ground weeds by increasing GA signalling and downregulating DELLA protein and ABA signalling genes. An increase in amylase activity and a degradation of starch were also observed. Far red reflected from the above-ground weeds was capable of penetrating below the soil surface and was detected by maize seed phytochrome. Thiamethoxam altered the effect of far red on seed germination by stimulating GA and inhibiting ABA synthesis. This is the first study to suggest that the mode of action of thiamethoxam involves both GA synthesis and ABA inhibition. © 2014 Society of Chemical Industry.

  12. Warming and Nitrogen Addition Increase Litter Decomposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gong, Shiwei; Guo, Rui; Zhang, Tao; Guo, Jixun

    2015-01-01

    Background Litter decomposition greatly influences soil structure, nutrient content and carbon sequestration, but how litter decomposition is affected by climate change is still not well understood. Methodology/Principal Findings A field experiment with increased temperature and nitrogen (N) addition was established in April 2007 to examine the effects of experimental warming, N addition and their interaction on litter decomposition in a temperate meadow steppe in northeastern China. Warming, N addition and warming plus N addition reduced the residual mass of L. chinensis litter by 3.78%, 7.51% and 4.53%, respectively, in 2008 and 2009, and by 4.73%, 24.08% and 16.1%, respectively, in 2010. Warming, N addition and warming plus N addition had no effect on the decomposition of P. communis litter in 2008 or 2009, but reduced the residual litter mass by 5.58%, 15.53% and 5.17%, respectively, in 2010. Warming and N addition reduced the cellulose percentage of L. chinensis and P. communis, specifically in 2010. The lignin percentage of L. chinensis and P. communis was reduced by warming but increased by N addition. The C, N and P contents of L. chinensis and P. communis litter increased with time. Warming and N addition reduced the C content and C:N ratios of L. chinensisand P. communis litter, but increased the N and P contents. Significant interactive effects of warming and N addition on litter decomposition were observed (P<0.01). Conclusion/Significance The litter decomposition rate was highly correlated with soil temperature, soil water content and litter quality. Warming and N addition significantly impacted the litter decomposition rate in the Songnen meadow ecosystem, and the effects of warming and N addition on litter decomposition were also influenced by the quality of litter. These results highlight how climate change could alter grassland ecosystem carbon, nitrogen and phosphorus contents in soil by influencing litter decomposition. PMID:25774776

  13. ABOVEGROUND NITROGEN USE EFFICIENCY AND ...

    EPA Pesticide Factsheets

    Long-term nitrogen (N) fertilization studies suggest shifting dominance from Spartina alterniflora to Distichlis spicata, although the underlying mechanism is unclear. A limitation on our ability to predict changes is a poor understanding of resource use under ambient conditions. The present project compares growth rates and N use dynamics between two emerging salt marsh dominants, S. alterniflora and D. spicata. We hypothesize that under ambient Narragansett Bay nutrient conditions, S. alterniflora is a more efficient user of N than D. spicata. Spartina alterniflora and D. spicata cores were collected from the field and raised in a greenhouse. Heights of all stems were measured weekly to determine growth rates. To understand N movement, a pulse of 15N was added and three cores were sacrificed each subsequent week. Live aboveground biomass was separated into stems and leaves, with leaves categorized based on their position from the top of the stem. Samples were analyzed by isotope ratio mass spectrometry to trace N accumulation in different pools over time. One week after the 15N pulse, most of the aboveground 15N was bound in the stems and the youngest leaves. Efficient nutrient transfer in photosynthetic material likely provides a stronger competitive advantage for taller plants, which are able to compete better for light. Growth rates of S. alterniflora proved to be more variable over time than that of D. spicata. A better understanding of N dynamics under am

  14. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka.

    PubMed

    Ali, Arshad; Mattsson, Eskil

    2017-01-01

    Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry

  15. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    PubMed

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests

  16. Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants

    PubMed Central

    Koorem, Kadri; Price, Jodi N.; Moora, Mari

    2011-01-01

    The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest—evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two species—and litter amount—shallow (4 mm), deep (12 mm) and leachate—on seedling emergence and biomass of three understorey species. The effect of litter amount on seedling emergence was highly dependent on litter type; while spruce needle litter had a significant negative effect that increased with depth, seedling emergence in the presence of hazel broadleaf litter did not differ from control pots containing no litter. Mixed litter of both species also had a negative effect on seedling emergence that was intermediate compared to the single-species treatments. Spruce litter had a marginally positive (shallow) or neutral effect (deep) on seedling biomass, while hazel and mixed litter treatments had significant positive effects on biomass that increased with depth. We found non-additive effects of litter mixtures on seedling biomass indicating that high quality hazel litter can reduce the negative effects of spruce. Hazel litter does not inhibit seedling emergence; it increases seedling growth, and creates better conditions for seedling growth in mixtures by reducing the suppressive effect of spruce litter, having a positive effect on understorey species richness. PMID:22028890

  17. Phosphorus runoff losses from subsurface-applied poultry litter on coastal plain soils.

    PubMed

    Kibet, Leonard C; Allen, Arthur L; Kleinman, Peter J A; Feyereisen, Gary W; Church, Clinton; Saporito, Lou S; Way, Thomas R

    2011-01-01

    The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.

  18. Quality of poultry litter-derived granular activated carbon.

    PubMed

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  19. Emissions of volatile organic compounds during the decomposition of plant litter

    NASA Astrophysics Data System (ADS)

    Gray, Christopher M.; Monson, Russell K.; Fierer, Noah

    2010-09-01

    Volatile organic compounds (VOCs) are emitted during plant litter decomposition, and such VOCs can have wide-ranging impacts on atmospheric chemistry, terrestrial biogeochemistry, and soil ecology. However, we currently have a limited understanding of the relative importance of biotic versus abiotic sources of these VOCs and whether distinct types of litter emit different types and quantities of VOCs during decomposition. We analyzed VOCs emitted by microbes or by abiotic mechanisms during the decomposition of litter from 12 plant species in a laboratory experiment using proton transfer reaction mass spectrometry (PTR-MS). Net emissions from litter with active microbial populations (non-sterile litters) were between 0 and 11 times higher than emissions from sterile controls over a 20-d incubation period, suggesting that abiotic sources of VOCs are generally less important than biotic sources. In all cases, the sterile and non-sterile litter treatments emitted different types of VOCs, with methanol being the dominant VOC emitted from litters during microbial decomposition, accounting for 78 to 99% of the net emissions. We also found that the types of VOCs released during biotic decomposition differed in a predictable manner among litter types with VOC profiles also changing as decomposition progressed over time. These results show the importance of incorporating both the biotic decomposition of litter and the species-dependent differences in terrestrial vegetation into global VOC emission models.

  20. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores.

    PubMed

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-09-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  1. Relationship of cryptorchidism with sex ratios and litter sizes in 12 dog breeds.

    PubMed

    Gubbels, Ed J; Scholten, Janneke; Janss, Luc; Rothuizen, Jan

    2009-07-01

    The aim of this study was to identify the influence of genetic carriership for cryptorchidism on litter sizes and sex ratios in the offspring. Weaning data of 11,230 litters in 12 purebred dog breeds were evaluated. Parents were classified as cryptorchidism 'carriers' (C) when at least one of their offspring was found cryptorchid. Subsequently the effects of 'carrier' and 'non-carrier' (NC) parents on their litters were studied. In litters from C x C parents we found an increased number of males per litter in all breeds, a reduced number of females per litter in 8 breeds and an increased litter size in 11 breeds in comparison with litters from NC x NC parents. Over all breeds the effects on litter size, on number of males per litter and on sex ratio were highly significant. Mixed litters from C x NC and NC x C did not show these effects and were not significantly different from the NC x NC offspring. Our results suggest a general mechanism in the dog species which causes cryptorchidism as well as increased male/female ratios and increased litter sizes. A consequence of such a mechanism is that selection in favor of increasing reproduction output frustrates selective efforts to eliminate cryptorchidism.

  2. Nitrogen availability in composted poultry litter using natural amendments.

    PubMed

    Turan, N Gamze

    2009-02-01

    Poultry litter compost is used as fertilizer on agricultural land because of its high nutrient content. A major limitation of land application of poultry litter compost is the loss of nitrogen via NH3 volatilization. The present work was conducted to monitor nitrogen availability during composting of poultry litter with natural zeolite, expanded perlite, pumice and expanded vermiculite. Poultry litter was composted for 100 days using five in-vessel composting simulators with a volumetric ratio of natural materials:poultry litter of 1:10. It was found that natural materials significantly reduced NH3 volatilization. At the end of the process, the control treatment without any natural materials had the lowest rate of total N: 72% of the initial total N was lost from the compost made with no amendment, while 53, 42, 26 and 16% of initial total N was lost from compost containing expandable perlite, expandable vermiculite, pumice and natural zeolite, respectively.

  3. Short-term Dynamics of Photopriming Increase Carbon Loss During Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Lin, Y.; King, J. Y.; Karlen, S. D.; Ralph, J.

    2017-12-01

    Solar radiation plays a key role in carbon (C) cycling by increasing the decomposition rates of plant litter through photodegradation. This process is particularly important in drylands where solar radiation is high and microbial activity may be limited by water availability. One mechanism of photodegradation may be the facilitation of microbial decomposition of litter by altering litter chemistry and consequently degradability, termed photopriming. However, it remains unclear to what extent photopriming contributes to litter decomposition. We evaluated photopriming by ultraviolet (UV) radiation through two laboratory experiments. In one experiment, we found that four months of UV exposure increased mass loss by 3-4% compared to dark treatment in two of three litter species commonly found in California oak savanna; however, UV exposure did not alter litter degradability as measured by microbial respiration in an incubation study. UV exposure had limited effects on lignin and other cell wall structures, but one month of microbial decomposition in the dark significantly reduced lignin β-aryl ether inter-unit linkages and acetylated xylans, which interestingly was the same pattern seen in litter exposed to UV radiation under field conditions and may account for the significant effects of UV exposure on litter mass loss observed in situ. These results indicate that microbial decomposition, not abiotic photodegradation, was ultimately responsible for changes in litter chemistry observed in the field. In a separate experiment, litter of a common grass was incubated for 128 days under either alternating UV radiation and dark conditions at two-day intervals or continuous darkness. During the second half of the experiment, alternating UV exposure increased CO2 production by 35% compared to continuous darkness, suggesting that UV exposure induces subtle but important changes in litter chemistry that facilitate microbial decomposition on a temporal scale of days. Together

  4. Microbiological and chemical properties of litter from different chicken types and production systems.

    PubMed

    Omeira, N; Barbour, E K; Nehme, P A; Hamadeh, S K; Zurayk, R; Bashour, I

    2006-08-15

    Chicken litter is produced in large quantities from all types of poultry raising activities. It is primarily used for land application, thus it is essential to analyze its properties before it is released to the environment. The objective of this study is to compare the microbiological and chemical properties of litter generated from layer and broiler chickens reared under intensive and free-range production systems. The microbiological analysis consisted of the enumeration of total bacteria, total coliforms, Staphylococcus species, Salmonella species and Clostridium perfringens. Chicken litter from layers reared under intensive and free range systems showed lower mean total bacterial count than the litter collected from chicken broilers reared under either of the two systems (P=0.0291). The litter from intensive layers had the lowest mean total coliform counts (P=0.0222) while the lowest Staphylococcus species count was observed in the litter from free-range layers (P=0.0077). The C. perfringens count was the lowest in chicken litter from intensively raised broilers and layers (P=0.0001). The chemical properties of litter from the different chicken types and production systems were compared based on determination of pH, electrical conductivity, carbon, nitrogen, phosphorus, potassium, cadmium and zinc. Litter from free-range broilers showed the highest pH value (P=0.0005); however, the electrical conductivity was higher in the litter from both intensive and free-range layers compared to the litter from both broiler production systems (P=0.0117). Chicken litter from intensive systems had higher nitrogen content than litter from free-range systems (P=0.0000). The total phosphorus was the lowest in free-range broiler litter (P=0.0001), while the total potassium was the lowest in litter from intensively managed broilers (P=0.0000). Zinc appeared higher in litter from layers compared to that from broilers (P=0.0101). The cadmium content was higher in the litter from

  5. Are litter decomposition and fire linked through plant species traits?

    PubMed

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Greenhouse gas and ammonia emission from a litter-windrowing in bird houses

    USDA-ARS?s Scientific Manuscript database

    One of emerging poultry manure management practices is in house windrowing to disinfect the litter. With this practice, growers windrow the litter in broiler houses between flocks, usually for 2 weeks. This results in high litter temperatures that can reduce pathogens in the litter. However, this p...

  7. Ammonia and nitrous oxide emissions from broiler houses with downtime windrowed litter

    USDA-ARS?s Scientific Manuscript database

    An emerging poultry manure management practice is in house windrowing to disinfect the litter. With this practice, growers windrow the litter in broiler houses between flocks, usually for 2 weeks. This results in high litter temperatures that can reduce pathogens in the litter. However, this practi...

  8. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between above-ground and below-ground herbivores.

    PubMed

    Huang, Wei; Siemann, Evan; Yang, Xuefang; Wheeler, Gregory S; Ding, Jianqing

    2013-09-22

    To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics.

  9. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between above-ground and below-ground herbivores

    PubMed Central

    Huang, Wei; Siemann, Evan; Yang, Xuefang; Wheeler, Gregory S.; Ding, Jianqing

    2013-01-01

    To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics. PMID:23902902

  10. Poultry litter placement effects on cotton seedling emergence and early growth stage

    USDA-ARS?s Scientific Manuscript database

    Interest in using poultry litter (PL) as a nutrient source for row crop production has increased in the Southeastern U.S. Poultry litter is generally broadcasted on the soil surface. This practice exposes litter N to volatilization and litter P to loss with surface water runoff, which potentially ne...

  11. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities

    Treesearch

    Lingli Liu; John S. King; Christian P. Giardina

    2005-01-01

    Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest...

  12. Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak-pine forest

    Treesearch

    Nicholas S. Skowronski; Kenneth L. Clark; Michael Gallagher; Richard A. Birdsey; John L. Hom

    2014-01-01

    We estimated aboveground tree biomass and change in aboveground tree biomass using repeated airborne laser scanner (ALS) acquisitions and temporally coincident ground observations of forest biomass, for a relatively undisturbed period (2004-2007; ∇07-04), a contrasting period of disturbance (2007-2009; ∇09-07...

  13. Photodegradation of roxarsone in poultry litter leachates

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ferrer, I.; Rutherford, D.W.; Wershaw, R. L.; Ranville, J.F.; Wildeman, T.R.

    2003-01-01

    Arsenic compounds have been used extensively in agriculture in the US for applications ranging from cotton herbicides to animal feed supplements. Roxarsone (3-nitro-4-hydroxyphenylarsonic acid), in particular, is used widely in poultry production to control coccidial intestinal parasites. It is excreted unchanged in the manure and introduced into the environment when litter is applied to farmland as fertilizer. Although the toxicity of roxarsone is less than that of inorganic arsenic, roxarsone can degrade, biotically and abiotically, to produce more toxic inorganic forms of arsenic, such as arsenite and arsenate. Experiments were conducted on aqueous litter leachates to test the stability of roxarsone under different conditions. Laboratory experiments have shown that arsenite can be cleaved photolytically from the roxarsone moiety at pH 4-8 and that the degradation rate increases with increasing pH. Furthermore, the rate of photodegradation increases with nitrate and natural organic matter concentration, reactants that are commonly found in poultry-litter-water leachates. Additional photochemical reactions rapidly oxidize the cleaved arsenite to arsenate. The formation of arsenate is not entirely undesirable, because it is less mobile in soil systems and less toxic than arsenite. A possible mechanism for the degradation of roxarsone in poultry litter leachates is proposed. The results suggest that poultry litter storage and field application practices could affect the degradation of roxarsone and subsequent mobilization of inorganic arsenic species. ?? 2002 Elsevier Science B.V. All rights reserved.

  14. Soil and litter exchange of reactive trace gases

    EPA Science Inventory

    The soil and litter play an important role in the exchange of trace gases between terrestrial ecosystems and the atmosphere. - The exchange of ammonia between vegetation and the atmosphere is highly influenced by soil and litter emissions especially in managed ecosystems (grassla...

  15. Ambient temperature affects postnatal litter size reduction in golden hamsters.

    PubMed

    Ohrnberger, Sarah A; Monclús, Raquel; Rödel, Heiko G; Valencak, Teresa G

    2016-01-01

    To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters ( Mesocricetus auratus ) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning. Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother's lactational performance, were lower at higher ambient temperatures. We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and

  16. Separating duff and litter for improved mass and carbon estimates

    Treesearch

    David Chojnacky; Michael Amacher; Michael Gavazzi

    2009-01-01

    Mass and carbon load estimates, such as those from forest soil organic matter (duff and litter), inform forestry decisions. The US Forest Inventory and Analysis (FIA) Program systematically collects data nationwide: a down woody material protocol specifies discrete duff and litter depth measurements, and a soils protocol specifies mass and carbon of duff and litter...

  17. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    PubMed

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  18. Can persuasive and demonstrative messages to visitors reduce littering in river beaches?

    PubMed

    Cingolani, Ana M; Barberá, Iván; Renison, Daniel; Barri, Fernando R

    2016-12-01

    Littering of public areas is a significant problem worldwide. Here we evaluate the success of persuasive and demonstrative messages at reducing littering in highly visited river beaches in Argentina. We made an intervention at the beaches which consisted of a personalized verbal request asking visitors to take their litter to the waste cans (persuasive message) while they were exposed to the example of picking up the litter already left on the beach (demonstrative message). We conducted 102 observations distributed over 29 dates, two years and four beaches. Each observation consisted of three or four rounds: before the presence of visitors we cleaned the beaches, during the stay of visitors we made the intervention (once or twice) in two out of the four beaches, and early next morning we estimated the amount of litter left per beach. Litter weight ranged from 0 to 53gvisitor -1 day -1 . Littering per visitor was reduced an average of 35% due to the intervention (p=0.049). We also found differences among beaches (p=0.001), and an increase in littering with crowding (p=0.005). We show for the first time that the personalized request combined with the example of picking up litter is effective in reducing littering in a Latin American country. Copyright © 2016. Published by Elsevier Ltd.

  19. Application of composted poultry litter as a fertilizer for landscape bedding plants

    USDA-ARS?s Scientific Manuscript database

    Each year, over 16 million tons of poultry litter is produced in the U.S. Federal and state regulations now limit the amount of poultry litter that can be land-applied, making it difficult to store and dispose poultry litter. The objective of this study was to evaluate composted poultry litter (CPL)...

  20. Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.

    PubMed

    Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape

    2014-05-01

    The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants.

  1. [Aboveground biomass of three conifers in Qianyanzhou plantation].

    PubMed

    Li, Xuanran; Liu, Qijing; Chen, Yongrui; Hu, Lile; Yang, Fengting

    2006-08-01

    In this paper, the regressive models of the aboveground biomass of Pinus elliottii, P. massoniana and Cunninghamia lanceolata in Qianyanzhou of subtropical China were established, and the regression analysis on the dry weight of leaf biomass and total biomass against branch diameter (d), branch length (L), d3 and d2L was conducted with linear, power and exponent functions. Power equation with single parameter (d) was proved to be better than the rests for P. massoniana and C. lanceolata, and linear equation with parameter (d3) was better for P. elliottii. The canopy biomass was derived by the regression equations for all branches. These equations were also used to fit the relationships of total tree biomass, branch biomass and foliage biomass with tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. For foliage-and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P <0.001) for foliage-, branch-and total biomass, with the highest for total biomass. By these equations, the aboveground biomass and its allocation were estimated, with the aboveground biomass of P. massoniana, P. elliottii, and C. lanceolata forests being 83.6, 72. 1 and 59 t x hm(-2), respectively, and more stem biomass than foliage-and branch biomass. According to the previous studies, the underground biomass of these three forests was estimated to be 10.44, 9.42 and 11.48 t x hm(-2), and the amount of fixed carbon was 47.94, 45.14 and 37.52 t x hm(-2), respectively.

  2. Root controls on soil microbial community structure in forest soils.

    PubMed

    Brant, Justin B; Myrold, David D; Sulzman, Elizabeth W

    2006-07-01

    We assessed microbial community composition as a function of altered above- and belowground inputs to soil in forest ecosystems of Oregon, Pennsylvania, and Hungary as part of a larger Detritus Input and Removal Treatment (DIRT) experiment. DIRT plots, which include root trenching, aboveground litter exclusion, and doubling of litter inputs, have been established in forested ecosystems in the US and Europe that vary with respect to dominant tree species, soil C content, N deposition rate, and soil type. This study used phospholipid fatty-acid (PLFA) analysis to examine changes in the soil microbial community size and composition in the mineral soil (0-10 cm) as a result of the DIRT treatments. At all sites, the PLFA profiles from the plots without roots were significantly different from all other treatments. PLFA analysis showed that the rootless plots generally contained larger quantities of actinomycete biomarkers and lower amounts of fungal biomarkers. At one of the sites in an old-growth coniferous forest, seasonal changes in PLFA profiles were also examined. Seasonal differences in soil microbial community composition were greater than treatment differences. Throughout the year, treatments without roots continued to have a different microbial community composition than the treatments with roots, although the specific PLFA biomarkers responsible for these differences varied by season. These data provide direct evidence that root C inputs exert a large control on microbial community composition in the three forested ecosystems studied.

  3. Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity

    PubMed Central

    Barlow, Jos; Silveira, Juliana M.; Mestre, Luiz A. M.; Andrade, Rafael B.; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z.; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A.

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions. PMID:22428035

  4. Influence of different litter materials on cecal microbiota colonization in broiler chickens.

    PubMed

    Torok, V A; Hughes, R J; Ophel-Keller, K; Ali, M; Macalpine, R

    2009-12-01

    A chicken growth study was conducted to determine if litter type influenced gut microbiota and performance in broilers. Seven bedding materials were investigated and included soft and hardwood sawdust, softwood shavings, shredded paper, chopped straw, rice hulls, and reused softwood shavings. Microbial profiling was done to investigate changes in cecal bacterial communities associated with litter material and age. Cecal microbiota were investigated at 14 and 28 d of age (n = 12 birds/litter material). At both ages, the cecal microbiota of chickens raised on reused litter was significantly (P < 0.05) different from that of chickens raised on any of the other litter materials, except softwood shavings at d 28. Cecal microbiota was also significantly different between birds raised on shredded paper and rice hulls at both ages. Age had a significant influence on cecal microbiota composition regardless of litter material. Similarity in cecal microbial communities among birds raised on the same litter treatment was greater at 28 d of age (29 to 40%) than at 14 d of age (25 to 32%). Bird performance on the different litter materials was measured by feed conversion ratio, live weight, and feed intake. Significant (P < 0.05) differences were detected in live weight at 14 d of age and feed intake at 14 and 28 d of age among birds (n = 160/treatment) raised on some of the different litter materials. However, no significant (P > 0.05) differences were observed in feed conversion ratio among birds raised on any of the 7 different litter materials at either 14 or 28 d of age. The type of litter material can influence colonization and development of cecal microbiota in chickens. Litter-induced changes in the gut microbiota may be partially responsible for some of the significant differences observed in early rates of growth; therefore, litter choice may have an important role in poultry gut health particularly in the absence of in-feed antibiotics.

  5. Extraction and textural characterization of above-ground areas from aerial stereo pairs: a quality assessment

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Dissard, O.; Jamet, O.; Maître, H.

    Above-ground analysis is a key point to the reconstruction of urban scenes, but it is a difficult task because of the diversity of the involved objects. We propose a new method to above-ground extraction from an aerial stereo pair, which does not require any assumption about object shape or nature. A Digital Surface Model is first produced by a stereoscopic matching stage preserving discontinuities, and then processed by a region-based Markovian classification algorithm. The produced above-ground areas are finally characterized as man-made or natural according to the grey level information. The quality of the results is assessed and discussed.

  6. Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.

    PubMed

    Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R

    2013-01-01

    Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. XANES Spectroscopic Analysis of Phosphorus Speciation in Alum-Amended Poultry Litter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiter,J.; Staats-Borda, K.; Ginder-Vogel, M.

    2008-01-01

    Aluminum sulfate (alum; Al2(SO4)3{center_dot}14H2O) is used as a chemical treatment of poultry litter to reduce the solubility and release of phosphate, thereby minimizing the impacts on adjacent aquatic ecosystems when poultry litter is land applied as a crop fertilizer. The objective of this study was to determine, through the use of X-ray absorption near edge structure (XANES) spectroscopy and sequential extraction, how alum amendments alter P distribution and solid-state speciation within the poultry litter system. Our results indicate that traditional sequential fractionation procedures may not account for variability in P speciation in heterogeneous animal manures. Analysis shows that NaOH-extracted Pmore » in alum amended litters is predominantly organic ({approx}80%), whereas in the control samples, >60% of NaOH-extracted P was inorganic P. Linear least squares fitting (LLSF) analysis of spectra collected of sequentially extracted litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic forms (phytic acid, polyphosphates, and monoesters) in alum- and non-alum-amended poultry litter. When determining land application rates of poultry litter, all of these compounds must be considered, especially organic P. Results of the sequential extractions in conjunction with LLSF suggest that no P species is completely removed by a single extractant. Rather, there is a continuum of removal as extractant strength increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid, whereas untreated samples contained Ca-P minerals and organic P compounds. This study provides in situ information about P speciation in the poultry litter solid and about P availability in alum- and non-alum-treated poultry litter that will dictate P losses to ground and surface water systems.« less

  8. Climatic effects on decomposing litter and substrate chemistry along climatological gradients.

    NASA Astrophysics Data System (ADS)

    Berg, B.

    2009-04-01

    Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.

  9. Factors influencing litter size and puppy losses in the Entlebucher Mountain dog.

    PubMed

    Schrack, J; Dolf, G; Reichler, I M; Schelling, C

    2017-06-01

    A good reproductive performance is a central element of animal breeding. The breeders of Entlebucher Mountain dogs observed a decrease of the mean litter size and an increase of the number of unsuccessful matings in the past years. The aim of the present study was to identify factors with an influence on fertility in this breed. In total, 915 litters from 202 sires and 348 dams from 1986 to 2013 entered the analyses. The total puppy losses (7.4%) reduced the mean litter size at birth of 5.49 ± 2.13 to a mean litter size at registration of 5.08 ± 2.05. There was no deviation from the expected equal sex distribution for puppies at birth and at registration, as well as for puppy losses consisting of stillborn puppies and puppies which died or had to be euthanized before registration. The mean annual litter inbreeding coefficient increased from 0.37 in 1986 to 0.40 in 2013 and was correlated with the year of birth of the litter (Kendall's tau b = 0.46). The age of the dam and parental inbreeding were identified as significant predictors with a negative effect on litter size at birth. For the litter size at registration the age and inbreeding of the dam had a significant negative effect and a 1% increase of dam inbreeding is expected to decrease the litter size at birth and registration by 0.1 and 0.09 puppies, respectively. The occurrence of total puppy losses decreased during the years and was more frequent in larger litters. In addition, in litters of older parents the occurrence of puppy losses was more frequent than in litters from younger parents. The final generalized linear mixed-effects models for litter size at birth, litter size at registration and for total puppy losses explained 36%, 33% and 22% of the total variance, respectively. The impact of inbreeding and parental age on fertility of the Entlebucher Mountain dog was small and the influence of the dam was much bigger than the one of the sire. Other factors must be responsible for the variability

  10. Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis

    PubMed Central

    Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng

    2013-01-01

    Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter

  11. Long-term marine litter monitoring in the remote Great Australian Bight, South Australia.

    PubMed

    Edyvane, K S; Dalgetty, A; Hone, P W; Higham, J S; Wace, N M

    2004-06-01

    The Anxious Bay beach litter clearance is the longest running annual survey of ocean-based litter in Australia. It's remoteness from centres of human population and location (with respect to prevailing winds and currents) make it an ideal place for monitoring ocean or ship-based litter in Australia's southern oceans and particularly, the Great Australian Bight. Over the 1991-1999 period, a large but gradual decline in the amount of beach washed litter was recorded (with minor peaks recorded during the 1992 and 1994 surveys). Beach washed litter decreased by approximately 86%, from 344 kg recorded in 1991 (13.2 kg/km) to 49 kg in 1999 (i.e. 1.9 kg/km), reaching a maximum of 390 kg in 1992 (or 15 kg/km of beach). However, a sharp increase in litter was recorded in 2000 (i.e. 252 kg or 9.7 kg/km). This increase in litter yield in 2000 is probably due to stronger than average onshore surface flow (or Ekman Transport) in the western Eyre Peninsula and Bight region. Prior to the survey in 2000, the results appeared to indicate that ocean litter on Anxious Bay beach was beginning to level out at around 50-70 kg/year (i.e. 2-3 kg/km). As the beach surveys involve the assumption that the beach is completely cleared of litter, this may represent a baseline level for ocean-based litter in the region. The yields and type of litter collected from the annual survey indicates that the majority of litter washed ashore originates from commercial fishing activities within the Great Australian Bight. Most of the fishing-related litter was directly sourced to the Southern Rock Lobster Fishery (i.e. bait buckets, baskets, pots), the Great Australian Bight Trawl Fishery (i.e. codends, trawl nets) and the Southern Shark Fishery (i.e. monofilament gillnets and longlines). Between 1994 and 1999, large reductions were observed in the amount of bait straps (77% reduction), lobster bait baskets/buckets (86% reduction), nets/ropes (62% reduction) and floats/buoys (83% reduction). Significantly

  12. Does previous use affect litter box appeal in multi-cat households?

    PubMed

    Ellis, J J; McGowan, R T S; Martin, F

    2017-08-01

    It is commonly assumed that cats actively avoid eliminated materials (especially in multi-cat homes), suggesting regular litter box cleaning as the best defense against out-of-box elimination. The relationship between previous use and litter box appeal to familiar subsequent users is currently unknown. The purpose of this study was to investigate the relationship between previous litter box use and the identity of the previous user, type of elimination, odor, and presence of physical/visual obstructions in a multi-cat household scenario. Cats preferred a clean litter box to a dirty one, but the identity of the previous user had no impact on preferences. While the presence of odor from urine and/or feces did not impact litter box preferences, the presence of odorless faux-urine and/or feces did - with the presence of faux-feces being preferred over faux-urine. Results suggest neither malodor nor chemical communication play a role in litter box preferences, and instead emphasize the importance of regular removal of physical/visual obstructions as the key factor in promoting proper litter box use. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Production of litter and detritus related to the density of mangrove

    NASA Astrophysics Data System (ADS)

    Budi Mulya, Miswar; Arlen, HJ

    2018-03-01

    Research about the production of leaf litter and detritus related to the density of mangrove trees has been done. The aims of this research are to know and analyze the amount of litter and detritus produced to the density of mangrove trees. The production and collection of leaf litter were carried out in five stations. Production of detritus and decomposition rate were calculated by measuring its dry weight. The density and level of mangrove trees were determined using transect quadratic method. The relationship between the leaf litter and detritus production ratio related to mangrove density were then analyzed. Results showed that mangrove trees with the density of 766.67 ind ha‑1 ccould produce the amount of litter and detritus to about 28597.33 gha‑1day‑1and 1099.35 gha‑1day‑1 while mangrove trees with the density of 1300 ind ha‑1 could produce the amount of litter and detritus to about 35093.33 g/ha/day and 1216.68 gha‑1day‑1 respectively. Data analysis showed that the increment of mangrove density is linearly related to the production increment of litter and detritus.

  14. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for

  15. Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1988-01-01

    The factors influencing leaf litter decomposition and nutrient release patterns were investigated for 3.6 years in two mixed conifer forests in the southern Sierra Nevada of California. The giant sequoia–fir forest was dominated by giant sequoia (Sequoiadendrongiganteum (Lindl.) Buchh.), white fir (Abiesconcolor Lindl. & Gord.), and sugar pine (Pinuslambertiana Dougl.). The fir–pine forest was dominated by white fir, sugar pine, and incense cedar (Calocedrusdecurrens (Torr.) Florin). Initial concentrations of nutrients and percent lignin, cellulose, and acid detergent fiber vary considerably in freshly abscised leaf litter of the studied species. Giant sequoia had the highest concentration of lignin (20.3%) and the lowest concentration of nitrogen (0.52%), while incense cedar had the lowest concentration of lignin (9.6%) and second lowest concentration of nitrogen (0.63%). Long-term (3.6 years) foliage decomposition rates were best correlated with initial lignin/N (r2 = 0.94, p r2 = 0.92, p r2 = 0.80, p < 0.05). Patterns of nutrient release were highly variable. Giant sequoia immobilized N and P, incense cedar immobilized N and to a lesser extent P, while sugar pine immobilized Ca. Strong linear or negative exponential relationships existed between initial concentrations of N, P, K, and Ca and percent original mass remaining of those nutrients after 3.6 years. This suggests efficient retention of these nutrients in the litter layer of these ecosystems. Nitrogen concentrations steadily increase in decomposing leaf litter, effectively reducing the C/N ratios from an initial range of 68–96 to 27–45 after 3.6 years.

  16. Effect of litter moisture on the development of footpad dermatitis in broiler chickens.

    PubMed

    Taira, Kazuyo; Nagai, Toshimune; Obi, Takeshi; Takase, Kozo

    2014-04-01

    Broiler chicks were reared on either wet litter or dry litter to compare the development of footpad dermatitis (FPD). Broilers reared on wet litter first developed FPD at 14 days of age. Their FPD scores increased sharply after 21 days of age, reaching 2.92 at 42 days. In broilers reared on dry litter, FPD was first observed at 28 days of age, and the FPD score was only 0.70 at 42 days. When 21- or 28-day-old broilers that had been reared on wet litter and had developed FPD were moved to dry litter, the progression of FPD was suppressed or delayed. These results suggest that reducing litter moisture is effective in preventing FPD and suppressing disease progression.

  17. Effect of Litter Moisture on the Development of Footpad Dermatitis in Broiler Chickens

    PubMed Central

    TAIRA, Kazuyo; NAGAI, Toshimune; OBI, Takeshi; TAKASE, Kozo

    2013-01-01

    ABSTRACT Broiler chicks were reared on either wet litter or dry litter to compare the development of footpad dermatitis (FPD). Broilers reared on wet litter first developed FPD at 14 days of age. Their FPD scores increased sharply after 21 days of age, reaching 2.92 at 42 days. In broilers reared on dry litter, FPD was first observed at 28 days of age, and the FPD score was only 0.70 at 42 days. When 21- or 28-day-old broilers that had been reared on wet litter and had developed FPD were moved to dry litter, the progression of FPD was suppressed or delayed. These results suggest that reducing litter moisture is effective in preventing FPD and suppressing disease progression. PMID:24366153

  18. Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees

    Treesearch

    K.P. Poudel; H. Temesgen

    2016-01-01

    Estimating aboveground biomass and its components requires sound statistical formulation and evaluation. Using data collected from 55 destructively sampled trees in different parts of Oregon, we evaluated the performance of three groups of methods to estimate total aboveground biomass and (or) its components based on the bias and root mean squared error (RMSE) that...

  19. Disproportionate Declines in Ground-Foraging Insectivorous Birds after Mistletoe Removal

    PubMed Central

    Watson, David M.

    2015-01-01

    Insectivorous birds have been recognized as disproportionately sensitive to land-use intensification and habitat loss, with those species feeding primarily on the ground exhibiting some of the most dramatic declines. Altered litter inputs and availability of epigeic arthropods have been suggested to underlie reduced abundances and shrinking distributions but direct evidence is lacking. I used a patch-scale removal experiment in southern Australia to evaluate whether ground-feeding insectivores are especially vulnerable to altered litter-fall. Building on work demonstrating the importance of mistletoe litter to nutrient dynamics, litter was reduced by removing mistletoe (Loranthaceae) from one set of eucalypt woodlands, responses of birds three years after mistletoe removal compared with otherwise similar control woodlands containing mistletoe. Despite not feeding on mistletoes directly, insectivores exhibited the greatest response to mistletoe removal. Among woodland residents, ground-foraging insectivores showed the most dramatic response; treatment woodlands losing an average of 37.4% of their pre-treatment species richness. Once these 19 species of ground-foraging insectivores were excluded, remaining woodland species showed no significant effect of mistletoe removal. This response reflects greater initial losses in treatment woodlands during the study (which coincided with a severe drought) and double the number of species returning to control woodlands (where mistletoe numbers and litter were not manipulated) post-drought. These findings support the productivity-based explanation of declining insectivores, suggesting diminished litter-fall reduced habitat quality for these birds via decreased availability of their preferred prey. In addition to altered prey availability, interactions between litter-fall and epigeic arthropods exemplify the importance of below-ground / above-ground linkages driving ecosystem function. PMID:26640895

  20. Managing broiler litter application rate and grazing to decrease watershed runoff losses.

    PubMed

    Sistani, K R; Brink, G E; Oldham, J L

    2008-01-01

    Pasture management and broiler litter application rate are critical factors influencing the magnitude of nutrients being transported by runoff from fields. We investigated the impact of pasture management and broiler litter application rate on nutrient runoff from bermudagrass (Cynodon dactylon) pastures. The experiment was conducted on a Ruston fine sandy loam with a factorial arrangement on 21 large paddocks. Runoff water was collected from natural rainfall events from 2001 to 2003. Runoff water and soil samples were analyzed for nutrients and sediments. Runoff was generally greater (29%) from grazed than hayed pastures regardless of the litter application rate. There was greater inorganic N in the runoff from grazed paddocks when litter rate was based on N rather than P. The mean total P loss per runoff event for all treatments ranged from 7 to 45 g ha(-1) and the grazed treatment with litter applied on N basis had the greatest total P loss. Total dissolved P was the dominant P fraction in the runoff, ranging from 85% to 93% of the total P. The soluble reactive P was greater for treatments with litter applied on N basis regardless of pasture management. Runoff total sediments were greater for N-based litter application compared to those which received litter on P basis. Our results indicate that litter may be applied on N basis if the pasture is hayed and the soil P is low. In contrast, litter rates should be based on a P-basis if pasture is grazed.

  1. Observations of mixed-aged litters in brown bears

    USGS Publications Warehouse

    Swenson, J.E.; Haroldson, M.A.

    2008-01-01

    We report on 3 cases of mixed-aged litters (young born in different years) in brown bears (Ursus arctos); in 1 instance the cub-of-the-year (hereafter called cubs) died in the den. Two cases occurred in Sweden after mothers were separated from their young during the breeding season. In one, the mother was separated from the accompanying cub for at least 12.5 hours and possibly up to 3.3 days, and later possibly separated for 4 days. In the other, the mother was separated from her yearling at least 3 times for 1-14, 1-6 and 1-6 days. She was with a male during the first separation. Specific events that produced the mixed-aged litter observed in Greater Yellowstone Ecosystem were unknown and our interpretation is based on estimates of ages of accompanying young from photographs. The observation of only 2 mixed-aged litters, after den emergence, from a sample of 406 observed cub litters accompanying radiomarked females confirms the rarity of this phenomenon. The mechanism apparently includes a short separation of mother and young, and, in the case of cubs, the mother must mate while lactating. Better understanding of the physiological mechanisms that allow mixed-age litters would help us in the debate about the occurrence of sexually selected infanticide in bears.

  2. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept.

    PubMed

    Castellano, Michael J; Mueller, Kevin E; Olk, Daniel C; Sawyer, John E; Six, Johan

    2015-09-01

    Labile, 'high-quality', plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High-quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than 'low-quality' litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency-Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high-quality litters are not always stabilized in SOM with greater efficiency than low-quality litters. © 2015 John Wiley & Sons Ltd.

  3. Effect of invader litter chemistries on soil organic matter compositions: consequences of Polygonum cuspidatum and Pueraria lobata invasions

    NASA Astrophysics Data System (ADS)

    Tharayil, N.; Tamura, M.

    2012-12-01

    Carbon fixation during photosynthesis forms the precursor of all organic carbon in soil and the predominant source of energy that drives soil microbial processes; hence the molecular identity of the fixed carbon could influence the formation of soil organic matter (SOM). Due to their high resource acquisition and resource use efficiencies, some invasive plants can input disproportionately high quantities of litter that are qualitatively distinctive, and this could influence the accrual of organic carbon and overall carbon cycling in invaded habitats. Hence, we hypothesized that invasive plants with unique litter chemistries would significantly influence the overall carbon cycling in the invaded soils. We tested this hypothesis by comparing plants exhibiting recalcitrant vs. labile litter chemistries using japanese knotweed (Polygonum cuspidatum) and kudzu (Pueraria lobata), respectively. Japanese knotweed produces low litter abundant in polyphenols which selectively hinders microbially mediated decomposition and re-synthesis; whereas kudzu produces low C:N, high quality litter that can stimulate microbial decomposition. Soil samples were collected at 5-cm intervals and from inside and outside 15 to 20 year old stands of the invasive species. The novelty of our study was that both of our study species were invading into soils of contrasting substrate qualities relative to the invading litter quality. The molecular composition of carbon in the soils and the degradation stage of the SOM were assessed with a biomarker approach using gas chromatography-mass spectrometry to determine the source of biomolecules (plant or microbes). Stability of SOM fractions was assessed through oxidation with hydrogen peroxide, serving as a proxy of biological degradation, followed by stable isotope analysis. Fungal communities dominated the uppermost soils under knotweed whereas kudzu litter suppressed fungal biomass in the top 10-cm. In constrast, increase in active microbial biomass C

  4. Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter

    USGS Publications Warehouse

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    High tissue nitrogen (N) accelerates decomposition of high-quality leaf litter in the early phases of mass loss, but the influence of initial tissue N variation on the decomposition of lignin-rich litter is less resolved. Because environmental changes such as atmospheric N deposition and elevated CO2 can alter tissue N levels within species more rapidly than they alter the species composition of ecosystems, it is important to consider how within-species variation in tissue N may shape litter decomposition and associated N dynamics. Douglas-fir (Pseudotsuga menziesii ) is a widespread lignin-rich conifer that dominates forests of high carbon (C) storage across western North America, and displays wide variation in tissue and litter N that reflects landscape variation in soil N. We collected eight unique Douglas-fir litter sources that spanned a two-fold range in initial N concentrations (0.67–1.31%) with a narrow range of lignin (29–35%), and examined relationships between initial litter chemistry, decomposition, and N dynamics in both ambient and N fertilized plots at four sites over 3 yr. High initial litter N slowed decomposition rates in both early (0.67 yr) and late (3 yr) stages in unfertilized plots. Applications of N fertilizer to litters accelerated early-stage decomposition, but slowed late-stage decomposition, and most strongly affected low-N litters, which equalized decomposition rates across litters regardless of initial N concentrations. Decomposition of N-fertilized litters correlated positively with initial litter manganese (Mn) concentrations, with litter Mn variation reflecting faster turnover of canopy foliage in high N sites, producing younger litterfall with high N and low Mn. Although both internal and external N inhibited decomposition at 3 yr, most litters exhibited net N immobilization, with strongest immobilization in low-N litter and in N-fertilized plots. Our observation for lignin-rich litter that high initial N can slow decomposition

  5. Effect of Poultry Litter Treatment (PLT) on death due to ascites in broilers.

    PubMed

    Terzich, M; Quarles, C; Goodwin, M A; Brown, J

    1998-01-01

    The purposes of this study were to determine the effect of Poultry Litter Treatment (PLT) on levels of litter moisture, litter nitrogen, atmospheric ammonia, and death due to ascites. Data were collected from chicks raised in containment conditions that resembled commercial settings. The ascites death rate (5.9%) in broiler chicks on PLT-treated litter was significantly (chi 2 = 15.5, df = 1, P = 0.0001) lower than that (31.5%) in broiler chicks raised on untreated litter. Likewise, atmospheric ammonia levels in pens that had been treated with PLT were significantly (P < 0.05) lower than those in pens that received no treatment. Under the conditions of the present study, litter moisture and litter nitrogen levels were not different (P > 0.05) among treatments at any sample interval.

  6. Transformations of DOM in forested catchments: the pathways of DOM from litter and soil to river export

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Yano, Y.; Crow, S.; Kaushal, S.

    2006-12-01

    Although the quality and quantity of DOM ultimately derives from plant detritus and soils in watersheds, three is substantial alteration of DOM as it passes from litter through the terrestrial landscape. As DOM is generated from plant and microbial detritus and processing, different fractions may be lost via respiration, form quasi-stable soil organic matter, or be temporarily sorbed to soil minerals. We followed the fate of DOC and DON from forested plots with experimentally altered detritus loads to determine the relative roles of original plant litter chemistry and soil transformations. Our study site was the DIRT (Detrital Input and Removal Treatment) plots at the H.J. Andrews Experimental Forest in Oregon, where treatments include detrital additions (wood vs. needle litter), litter exclusion, and root exclusions. Fractionation of detritus leachate solutions demonstrated significant differences in DOC chemistry from different detrital sources. Root leachates produced high quantities of hydrophilic neutral DOC, a fraction rich in labile sugars and polysaccharides; young wood extracts produced higher quantities of weak hydrophobic acids and hydrophobic neutrals (longer chain hydrocarbons); older wood had lower quantities of most labile constituents but was rich in strong hydrophobic acids. Although laboratory extracts of different litter types showed differences in DOM chemistry, soil solutions collected just below the forest floor from the differing detrital treatments were remarkably uniform and poor in labile constituents, suggesting microbial equalization of DOM leachate in the field. DOM quality and concentrations changed significantly with passage through soil profiles. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons. Percent hydrophobic DOM decreased significantly

  7. Transformation of leaf litter by insect herbivory in the Subarctic: Consequences for soil biogeochemistry under global change

    NASA Astrophysics Data System (ADS)

    Kristensen, J. A.; Metcalfe, D. B.; Rousk, J.

    2017-12-01

    Climate warming may increase insect herbivore ranges and outbreak intensities in arctic ecosystems. Thorough understanding of the implications of these changes for ecosystem processes is essential to make accurate predictions of surface-atmosphere carbon (C) feedbacks. Yet, we lack a comprehensive understanding of the impacts of herbivore outbreaks on soil microbial underpinnings of C and nitrogen (N) fluxes. Here, we investigate the growth responses of heterotrophic soil decomposers and C and N mineralisation to simulated defoliator outbreaks in Subarctic birch forests. In microcosms, topsoil was incubated with leaf litter, insect frass, mineral N and combinations of the three; all was added in equal amounts of N. A higher fraction of added C and N was mineralised during outbreaks (frass addition) relative to non-outbreak years (litter addition). However, under high mineral N-availability in the soil of the kind likely under longer periods of enhanced insect herbivory (litter+mineral N), the mineralised fraction of added C decreased while the mineralised fraction of N increased substantially, which suggest a shift towards more N-mining of the organic substrates. This shift was accompanied by higher fungal dominance, and may facilitate soil C-accumulation assuming constant quality of C-inputs. Thus, long-term increases of insect herbivory, of the kind observed in some areas and projected by some models, may facilitate higher ecosystem C-sink capacity in this Subarctic ecosystem.

  8. Plants as green phones: Novel insights into plant-mediated communication between below- and above-ground insects.

    PubMed

    Soler, Roxina; Harvey, Jeffrey A; Bezemer, T Martijn; Stuefer, Josef F

    2008-08-01

    Plants can act as vertical communication channels or 'green phones' linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or 'green phones' between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects.

  9. High-frequency fire alters C : N : P stoichiometry in forest litter.

    PubMed

    Toberman, Hannah; Chen, Chengrong; Lewis, Tom; Elser, James J

    2014-07-01

    Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every 2 years (2yrB), burning every 4 years (4 yrB) and no burning (NB). C : N ratios in freshly fallen litter were 29-42% higher and C : P ratios were 6-25% lower for 2 yrB than NB during decomposition, with correspondingly lower 2yrB N : P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N : P ratios were similar to the overall litter N : P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2 yrB than NB, whereas 4 yrB was generally intermediate between 2 yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2 yrB (72 ± 2% mass remaining at the end of experiment) than for 4 yrB (59 ± 3%) and NB (62 ± 3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2 yrB) decoupled N and P cycling, as manifested in litter C : N : P stoichiometry and in microbial biomass N : P ratio and enzymatic activities. Furthermore, these data indicate that fire induced a transient shift to N-limited ecosystem conditions

  10. INVASIVE GRASS ALTERS LITTER DECOMPOSITION BY INFLUENCING MACRO-DETRITIVORES

    EPA Science Inventory

    Nitrogen fertilization experiments have produced results with inconsistent rates of plant litter decomposition, a phenomenon that may be explained if the influence of animal detritivores (macro-detritivores) on litter mass loss is greater than that of microbial decomposers whose ...

  11. Estimating Above-Ground Carbon Biomass in a Newly Restored Coastal Plain Wetland Using Remote Sensing

    PubMed Central

    Riegel, Joseph B.; Bernhardt, Emily; Swenson, Jennifer

    2013-01-01

    Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical challenge that must be overcome before a carbon offset market can be successfully implemented in the United States. Previous studies have shown that LiDAR (light detection and ranging) is well-suited for modeling above-ground biomass in mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in areas with young, aggrading vegetation. This study compared the abilities of discrete-return LiDAR and high resolution optical imagery to model above-ground carbon biomass at a young restored forested wetland site in eastern North Carolina. We found that the optical imagery model explained more of the observed variation in carbon biomass than the LiDAR model (adj-R2 values of 0.34 and 0.18 respectively; root mean squared errors of 0.14 Mg C/ha and 0.17 Mg C/ha respectively). Optical imagery was also better able to predict high and low biomass extremes than the LiDAR model. Combining both the optical and LiDAR improved upon the optical model but only marginally (adj-R2 of 0.37). These results suggest that the ability of discrete-return LiDAR to model above-ground biomass may be rather limited in areas with young, small trees and that high spatial resolution optical imagery may be the better tool in such areas. PMID:23840837

  12. The DIRT on Q10: In situ depletion of labile-inputs does not increase temperature sensitivity in a laboratory incubation (Invited)

    NASA Astrophysics Data System (ADS)

    Reynolds, L. L.; Lajtha, K.; Bowden, R.; Johnson, B. R.; Bridgham, S. D.

    2013-12-01

    The decomposition of soil organic matter is expected to increase with global warming and has been commonly described by kinetic models with at least two pools with differing turnover times. Pools characterized by rapid turnover are thought to consist of labile substrates. Meanwhile, slower turnover is attributed, in part, to greater chemical complexity and a necessarily higher activation energy which should in turn lead to a higher sensitivity (Q10) to temperature and a proportionally larger response to warming. Experimental tests of the relative Q10 of these pools have been inconclusive and contradictory in part due the fact that all pools are decomposing simultaneously and soils kept under differing conditions over long periods of time diverge in more than the Q10 response making them less comparable over time. We present here a test of the temperature response on soils from a 20 yr litter manipulation experiment incubated under an experimental regime that minimizes divergence among the soils. We hypothesize that 1) if exclusion of inputs has depleted labile substrates and 2) the remaining carbon is more chemically complex, then the input exclusion treatments should show a higher Q10 compared to the ambient or increased input treatments. The soils are taken from the Detritus Input and Removal Treatment (DIRT) plots in the Bousson Forest, Pennsylvania, US. The DIRT treatments consist of litter and root exclusion (no inputs = NI), no roots (NR), no litter (NL), double litter (DL), and ambient conditions (C). Soils were incubated at 25oC for 525 days. Periodically, replicate sets were rotated into 15oC, 35oC or remained at 25oC for 24 hr. The headspace CO2 concentration was measured before and after the 24 hr temperature treatments, and then all replicate sets were returned to 25oC. Twenty years of input exclusion decreased respiration rate, with NI < NR = NL < C = DL, and total carbon content, and thus, we conclude, labile substrates. The respiration rate at 25o

  13. Ingestion of marine litter by loggerhead sea turtles, Caretta caretta, in Portuguese continental waters.

    PubMed

    Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina

    2016-02-15

    The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Estimating litter carbon stocks on forest land in the United States

    Treesearch

    Grant M. Domke; Charles H. (Hobie) Perry; Brian F. Walters; Christopher W. Woodall; Matthew B. Russell; James E. Smith

    2016-01-01

    Forest ecosystems are the largest terrestrial carbon sink on earth, withmore than half of their net primary productionmoving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon (C) pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated...

  15. Evaluation and Validation of Aboveground Techniques for Coating Condition Assessment

    DOT National Transportation Integrated Search

    2006-02-28

    The overall objective was to determine the accuracy, resolution, and limitations of equipment typically used for modern aboveground ECDA work with respect to locating holidays and disbondments with commonly used coatings with varying spatial relation...

  16. Impact of logging on aboveground biomass stocks in lowland rain forest, Papua New Guinea.

    PubMed

    Bryan, Jane; Shearman, Phil; Ash, Julian; Kirkpatrick, J B

    2010-12-01

    Greenhouse-gas emissions resulting from logging are poorly quantified across the tropics. There is a need for robust measurement of rain forest biomass and the impacts of logging from which carbon losses can be reliably estimated at regional and global scales. We used a modified Bitterlich plotless technique to measure aboveground live biomass at six unlogged and six logged rain forest areas (coupes) across two approximately 3000-ha regions at the Makapa concession in lowland Papua New Guinea. "Reduced-impact logging" is practiced at Makapa. We found the mean unlogged aboveground biomass in the two regions to be 192.96 +/- 4.44 Mg/ha and 252.92 +/- 7.00 Mg/ha (mean +/- SE), which was reduced by logging to 146.92 +/- 4.58 Mg/ha and 158.84 +/- 4.16, respectively. Killed biomass was not a fixed proportion, but varied with unlogged biomass, with 24% killed in the lower-biomass region, and 37% in the higher-biomass region. Across the two regions logging resulted in a mean aboveground carbon loss of 35 +/- 2.8 Mg/ha. The plotless technique proved efficient at estimating mean aboveground biomass and logging damage. We conclude that substantial bias is likely to occur within biomass estimates derived from single unreplicated plots.

  17. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark E. Kubiske

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with themore » below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.« less

  18. The generation and cost of litter resulting from the curbside collection of recycling.

    PubMed

    Wagner, Travis P; Broaddus, Nathan

    2016-04-01

    This study examined the generation of litter, defined as spillage and uncollected residue, from a curbside collection system for residential recycling. The primary recycling containers used in the study were 18-gal (68 L), open-top bins. The study, conducted over a seven-week period, was comprised of both an urban and suburban area. Six litter characterizations were conducted in which all new litter larger than 1 in.(2) was collected, segregated, counted, and weighed. We found that each week the open-top recycling bins contributed approximately 20,590 pieces of litter over 1 in. in size per every 1000 households, which resulted in the generation of 3.74 tons of litter per 1000 households per year. In addition to the bins having no top, the primary root causes of the litter were constantly overflowing recycling bins, the method of collection, and material scavenging. Based on an estimated cost of litter cleanup ranging from $0.17 to $0.79 per piece of litter, the direct economic costs from the collection of litter and loss in recycling revenues were estimated at US$3920 to US$19,250 per 1000 households per year. Other notable impacts from the litter, such as increased risk of flood damage from storm drain impairment and marine ecosystem damages exist, but were not monetized. The results strongly suggest that modification of the curbside collection system would decrease the amount and associated cost of litter by replacing existing curbside collection containers with larger volume containers with covers and by modifying the task-based incentive system to emphasize litter prevention rather than the current aim of completing the task most quickly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. How does litter become soil organic matter? Tracing the fate of needle- and root-derived soil organic matter through 10 years of decomposition

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Hatton, Pierre-Joseph; Castanha, Cristina; Bird, Jeffrey A.; Torn, Margaret S.

    2014-05-01

    All soil organic matter (SOM) is derived from plant material. However, little is known about the process by which plant litter becomes SOM (as opposed to the better-studied controls on rates of carbon (C) and nitrogen (N) loss from litter). We investigated the transformations of above- and below-ground plant inputs in soil over ten years, and whether litter type (roots versus needles) affects the form and location of litter-derived C and N in soil after 10 years. We placed 15N and 13C-labeled Pinus ponderosa needle and fine root litter in the Blodgett Experimental Forest in the Sierra Nevada foothills in 2001. A two-way factorial design was used with needle and root litter placed into O and A soil horizons. Litter was inserted into the given horizon within soil mesocosms (10.2 cm diameter x 24 cm long PVC) that had two 5 x 5 cm mesh windows to allow contact with the surrounding soil. After 0.5, 1, 1.5, 4.5, and 10 years, the mesocosms were collected from the field. Isotopes were used to measure the percent recovery of the litter C and N in the bulk soil of the O and A horizons. To investigate mineral associations of the added litter C and N after 10 years, we sequentially fractionated the soils by density. The fractions were a free light fraction (<1.75 g cm-3), a fraction dominated by secondary phyllosilicate minerals (1.75-2.5 g cm-3), a quartz and feldspar-dominated fraction (2.5-2.78 g cm-3), and a fraction dominated by biotite with kaolinite and iron oxide coatings (>2.78 g cm-3). These fractions differ in the type of organic matter they are associated with according to C:N ratios and molecular characterization via FTIR. The biotite fraction had the lowest C:N ratios, indicating it was the most microbially-processed. After 10 years, more root litter C (about 44%) was retained in the soil than needle litter C (about 28%). In line with slower rates of decomposition, root C and N remained in the particulate (>2 mm) fraction and the free light fraction longer than

  20. Litter decomposition over broad spatial and long time scales investigated by advanced solid-state NMR: insight into effects of climate, litter quality, and time

    NASA Astrophysics Data System (ADS)

    Mao, J.; Chen, N.; Harmon, M. E.; Li, Y.; Cao, X.; Chappell, M.

    2012-12-01

    Advanced 13C solid-state NMR techniques were employed to study the chemical structural changes of litter decomposition across broad spatial and long time scales. The fresh and decomposed litter samples of four species (Acer saccharum (ACSA), Drypetes glauca (DRGL), Pinus resinosa (PIRE), and Thuja plicata (THPL)) incubated for up to 10 years at four sites under different climatic conditions (from Arctic to tropical forest) were examined. Decomposition generally led to an enrichment of cutin and surface wax materials, and a depletion of carbohydrates causing overall composition to become more similar compared with original litters. However, the changes of main constituents in the four litters were inconsistent with the four litters following different pathways of decomposition at the same site. As decomposition proceeded, waxy materials decreased at the early stage and then gradually increased in PIRE; DRGL showed a significant depletion of lignin and tannin while the changes of lignin and tannin were relative small and inconsistent for ACSA and THPL. In addition, the NCH groups, which could be associated with either fungal cell wall chitin or bacterial wall petidoglycan, were enriched in all litters except THPL. Contrary to the classic lignin-enrichment hypothesis, DRGL with low-quality C substrate had the highest degree of composition changes. Furthermore, some samples had more "advanced" compositional changes in the intermediate stage of decomposition than in the highly-decomposed stage. This pattern might be attributed to the formation of new cross-linking structures, that rendered substrates more complex and difficult for enzymes to attack. Finally, litter quality overrode climate and time factors as a control of long-term changes of chemical composition.

  1. [Litter production and breakdown in swamps dominated by palms (Arecaceae) in northeastern Costa Rica].

    PubMed

    Myers, Ronald L

    2013-09-01

    In Raffia (Raphia taedigera) palm-swamps, it is frequent to observe high mounds at the base of the palm clumps. These mounds are formed by the accumulation of litter and organic matter, or might result from upturned roots of wind-thrown trees. The mounds serve as anchorage site for the palms, and could be important for the establishment of woody tree species in the swamp. The formation of these mounds might be explained by the unequal accumulation of organic matter in the wetland, or by differences in decomposition rates between Raffia litter versus the litter produced in adjacent mixed forests. To distinguish between these hypotheses, I compared the spatial distribution of litter in a R. taedigera swamp with the litter distribution on an adjacent slope forest, where litter distribution is expected to be homogeneous. In addition, I compared decomposition rates of major components of fine litter in three different environments: two wetlands dominated by palms (R. taedigera and Manicaria saccifera) and a slope forest that experiences lower inundation effects. On the palm swamp, noticeable concentration of litter was observed near the bases of clumps of palm as opposed to the swamp floor. In the adjacent slope forest, the magnitude of the differences in the distribution of litter is small and there is no accumulation at the base of emergent trees. It was also found that litter production increases during heavy rains and storms that follow dry periods. The swamp environment, independent of the litter, showed significantly lower decomposition rates than the surrounding forest slope. Furthermore, R. taedigera litter decomposes as fast as the slope forest litter. Overall, these results suggest that resistance to decomposition is not a major factor in the formation of mounds at the bases of R. taedigera clumps. Instead, litter accumulation contributes to the formation of the mounds that rise above the surface of the swamp.

  2. Total and water-soluble phosphorus in broiler litter over three flocks with alum litter treatment and dietary inclusion of high available phosphorus corn and phytase supplementation.

    PubMed

    Miles, D M; Moore, P A; Smith, D R; Rice, D W; Stilborn, H L; Rowe, D R; Lott, B D; Branton, S L; Simmons, J D

    2003-10-01

    Three pen trials were conducted to determine the main effect of alum addition to litter on form of poultry litter P using a 2 x 2 factorial structure of the subunit treatments: diets including high available phosphorus/low phytate corn (HAPC) and phytase (PHYT). Male broilers (1,760 per flock) were grown to 42 d having starter diets with 0.45% available P and grower diets with 0.35% available P. In the first trial, total litter P (tP) was greatest for the yellow dent corn (YDC) diet (12 g/kg) and least for the HAPC and PHYT combination (H&P) diet (6.9 g/kg) with the individual PHYT and HAPC diets falling in between at 9.1 g/kg and 9.4 g/kg tP. Also in the first trial, the litter water-soluble P (wP) was highest for PHYT (2.8 g/kg), least for the HAPC and H&P diets (1.5 g/kg) with the YDC diet falling between (2.2 g/kg). Alum was added to the litter after the first experiment. In the second and third experiments, alum inclusion significantly reduced the wP when compared with the treatments with no alum. In the third trial, the least wP was present in the alum-HAPC treatment. Phytase, YDC, and HAPC diets with no alum litter treatment generated the most wP. Since these diets appear to have little or no difference with respect to quantity of wP, this work suggests that form of litter P generated by alternative diets should be considered as criteria when attempting to reduce P in broiler litter applied to land.

  3. Aboveground predation by an American badger (Taxidea taxus) on black-tailed prairie dogs (Cynomys ludovicianus)

    USGS Publications Warehouse

    Eads, D.A.; Biggins, D.E.

    2008-01-01

    During research on black-tailed prairie dogs (Cynomys ludovicianus), we repeatedly observed a female American badger (Taxidea taxus) hunting prairie dogs on a colony in southern Phillips County, Montana. During 1-14 June 2006, we observed 7 aboveground attacks (2 successful) and 3 successful excavations of prairie dogs. The locations and circumstances of aboveground attacks suggested that the badger improved her probability of capturing prairie dogs by planning the aboveground attacks based on perceptions of speeds, angles, distances, and predicted escape responses of prey. Our observations add to previous reports on the complex and varied predatory methods and cognitive capacities of badgers. These observations also underscore the individuality of predators and support the concept that predators are active participants in predator-prey interactions.

  4. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  5. Litter box preference in domestic cats: covered versus uncovered.

    PubMed

    Grigg, Emma K; Pick, Lindsay; Nibblett, Belle

    2013-04-01

    Feline inappropriate elimination (periuria and/or perichezia) remains a very common behavioral complaint of cat owners. Treatment recommendations often include improving the attractiveness of the litter boxes available to the cat. One frequent recommendation is to avoid covered litter boxes, although this has not previously been tested experimentally. The goal of this study was to assess whether, all else being equal, cats preferentially used uncovered litter boxes over covered litter boxes. Twenty-eight cats were enrolled in the study and offered the choice of a covered or uncovered box. Waste was scooped daily from each box, and the weight of waste in the different box styles was compared and evaluated using paired t-tests and χ(2) analyses. Overall, there was no significant difference between use of the two box styles. Eight individual cats did exhibit a preference (four for covered, four for uncovered), but individual preference results are not evenly distributed, with more cats than expected showing no preference between litter box types. We postulate that, if boxes are kept sufficiently clean (ie, once daily minimum cleaning), most cats will not show a preference for either box type. The observation that a minority of cats in the study exhibited a preference supports the recommendation of providing individual cats with a 'cafeteria' of litter box styles, including a covered box, to determine whether such a preference exists. These findings add to existing literature on the topic of feline inappropriate elimination and provide additional information for clinicians recommending treatment options for cats exhibiting this behavior.

  6. Covering their butts: responses to the cigarette litter problem.

    PubMed

    Smith, Elizabeth A; McDaniel, Patricia A

    2011-03-01

    Cigarette butt litter is a potential target of tobacco control. In addition to its toxicity and non-biodegradability, it can justify environmental regulation and policies that raise the price of tobacco and further denormalise its use. This paper examines how the tobacco industry has managed the cigarette butt litter issue and how the issue has been covered in the media. We searched the Legacy Tobacco Documents Library (http://legacy.library.ucsf.edu/) using a snowball strategy. We analysed data from approximately 700 documents, dated 1959-2006, using an interpretive approach. We also searched two newspaper databases, Lexis/Nexis and Newsbank, and found 406 relevant articles, dated 1982-2009 which we analysed quantitatively and qualitatively. The tobacco industry monitored and developed strategies for dealing with the cigarette litter issue because it affected the social acceptability of smoking, created the potential for alliances between tobacco control and environmental advocates, and created a target for regulation. The industry developed anti-litter programs with Keep America Beautiful (KAB) and similar organisations. Media coverage focused on industry-acceptable solutions, such as volunteer clean-ups and installation of ashtrays; stories that mentioned KAB were also more frequently positive towards the tobacco industry. Among alternative approaches, clean outdoor air (COA) laws received the most media attention. Cigarette litter, like secondhand smoke, is the result of smoker behaviour and affects nonsmokers. The tobacco industry has tried and failed to mitigate the impact of cigarette litter. Tobacco control advocates should explore alliances with environmental groups and propose policy options that hold the industry accountable for cigarette waste.

  7. Demonstration of a Small Modular BioPower System Using Poultry Litter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John P. Reardon; Art Lilley; Jim Wimberly

    2002-05-22

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricity and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB wasmore » the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter.« less

  8. Impact of fresh or used litter on the posthatch immune system of commercial broilers.

    PubMed

    Lee, K W; Lillehoj, H S; Lee, S H; Jang, S I; Ritter, G Donald; Bautista, D A; Lillehoj, E P

    2011-12-01

    This study was carried out to investigate the effects of exposure of growing broiler chickens of commercial origin to used poultry litter on intestinal and systemic immune responses. The litter types evaluated were fresh wood shavings or used litter obtained from commercial poultry farms with or without a history of gangrenous dermatitis (GD). Immune parameters measured were serum nitric oxide (NO) levels, serum antibody titers against Eimeria or Clostridium perfringens, mitogen-induced spleen cell proliferation, and intestinal intraepithelial lymphocyte or splenic lymphocyte subpopulations. At 43 days posthatch, birds raised on used litter from a GD farm had higher serum NO levels and greater Eimeria or C. perfringens antibody levels compared with chickens raised on fresh litter or used, non-GD litter. Birds raised on non-GD and GD used litter had greater spleen cell mitogenic responses compared with chickens raised on fresh litter. Finally, spleen and intestinal lymphocyte subpopulations were increased or decreased depending on the litter type and the surface marker analyzed. Although it is likely that the presence of Eimeria oocysts and endemic viruses varies qualitatively and quantitatively between flocks and, by extension, varies between different used litter types, we believe that these data provide evidence that exposure of growing chicks to used poultry litter stimulates humoral and cell-mediated immune responses, presumably due to contact with contaminating enteric pathogens.

  9. Litter sex composition influences dominance status of Alpine marmots (Marmota marmota).

    PubMed

    Dupont, Pierre; Pradel, Roger; Lardy, Sophie; Allainé, Dominique; Cohas, Aurélie

    2015-11-01

    In social species, the hierarchical status of an individual has important consequences for its fitness. While many studies have focused on individual condition to explain access to dominance, very few have investigated the influence of the social environment, especially during early life. Yet it is known that environmental conditions early in life may influence several traits at adulthood. Here, we examine the influence of early social environment on accession to dominance by investigating the influence of litter size and sex composition on survival and the probability of ascending to dominance later in life using a 20-year dataset from a wild population of Alpine marmots (Marmota marmota). Although litter size had no effect on the fate of individuals, litter sex composition affected male juvenile survival and both male and female probabilities of reaching dominant status when adult. Male juveniles incur lower survival when the number of male juveniles in the litter increases, and individuals of both sexes from male-biased litters are more likely to become dominant than individuals from female-biased litters. However, the absolute number of sisters in the litter, rather than the sex ratio, seems to be an important predictor of the probability of acquiring dominant status: pups having more sisters are less likely to become dominant. Several potential mechanisms to explain these results are discussed.

  10. Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens.

    PubMed

    Cressman, Michael D; Yu, Zhongtang; Nelson, Michael C; Moeller, Steven J; Lilburn, Michael S; Zerby, Henry N

    2010-10-01

    The intestinal microbiota of broiler chickens and the microbiota in the litter have been well studied, but the interactions between these two microbiotas remain to be determined. Therefore, we examined their reciprocal effects by analyzing the intestinal microbiotas of broilers reared on fresh pine shavings versus reused litter, as well as the litter microbiota over a 6-week cycle. Composite ileal mucosal and cecal luminal samples from birds (n = 10) reared with both litter conditions (fresh versus reused) were collected at 7, 14, 21, and 42 days of age. Litter samples were also collected at days 7, 14, 21, and 42. The microbiotas were profiled and compared within sample types based on litter condition using PCR and denaturing gradient gel electrophoresis (PCR-DGGE). The microbiotas were further analyzed using 16S rRNA gene clone libraries constructed from microbiota DNA extracted from both chick intestinal and litter samples collected at day 7. Results showed significant reciprocal effects between the microbiotas present in the litter and those in the intestines of broilers. Fresh litter had more environmental bacteria, while reused litter contained more bacteria of intestinal origin. Lactobacillus spp. dominated the ileal mucosal microbiota of fresh-litter chicks, while a group of bacteria yet to be classified within Clostridiales dominated in the ileal mucosal microbiota in the reused-litter chicks. The Litter condition (fresh versus reused) seemed to have a more profound impact on the ileal microbiota than on the cecal microbiota. The data suggest that the influence of fresh litter on ileal microbiota decreased as broilers grew, compared with temporal changes observed under reused-litter rearing conditions.

  11. Legacy phosphorus in calcareous soils: effects of long-term poultry litter application

    USDA-ARS?s Scientific Manuscript database

    Sequential fractionation techniques, coupled with phosphatase hydrolysis, have allowed for greater understanding of manure/litter effects on soil P distribution. We evaluated the effect of long-term (greater than 10 years) poultry litter (broiler and turkey litter) application at annual rates of 4.5...

  12. Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm.

    PubMed

    Olszyk, D M; Johnson, M G; Phillips, D L; Seidler, R J; Tingey, D T; Watrud, L S

    2001-01-01

    To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two

  13. NORTH ELEVATION WITH GRADUATED MEASURING POLE. ABOVEGROUND PORTION IS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION WITH GRADUATED MEASURING POLE. ABOVE-GROUND PORTION IS ON THE LEFT. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  14. Fate of leaf-litter N in forest and grassland along a pedo-climatic gradient in south-western Siberia: an in situ 15N-labelling experiment

    NASA Astrophysics Data System (ADS)

    Brédoire, Félix; Zeller, Bernd; Nikitich, Polina; Barsukov, Pavel A.; Rusalimova, Olga; Bakker, Mark R.; Legout, Arnaud; Bashuk, Alexander; Kayler, Zachary E.; Derrien, Delphine

    2017-04-01

    The suitability of Siberia for agriculture is expected to increase in the next decades due to strong and rapid climatic changes, but little is known on the environmental drivers of soil fertility there, especially nitrogen (N). Plant-available N is mainly derived from litter decomposition. South-western (SW) Siberia is located on the transition between several bioclimatic zones that are predicted to shift and extend along with climate change (steppe, forest-steppe, sub-taiga). The soils of this region are formed on a common loess deposit but they are submitted to different climatic conditions and vegetation cover. In the south of the region, typically in steppe/forest-steppe, soil freezes over winter because of a relatively shallow snow-pack, and water shortages are frequent in summer. In the north, typically in sub-taiga, the soil is barely frozen in winter due to a thick snow-pack and sufficient soil moisture in summer. In this study, we characterized the dynamics of leaf litter decomposition and the transfer of N from leaf litter to the soil and back to plants. Four sites were chosen along a climate gradient (temperature, precipitation and snow depth). At each site, we applied 15N-labelled leaf litter on the soil surface in experimental plots in an aspen (Populus tremula L.) forest and in a grassland. Twice a year during three years, we tracked the 15N derived from the decomposing labelled-litter in the organic layers, in the first 15 cm of the soil, and in above-ground vegetation. Soil temperature and moisture were monitored at a daily timestep over three years and soil water budgets were simulated (BILJOU model, Granier et al. 1999). We observed contrasting patterns in the fate of litter-derived 15N between bioclimatic zones. Over three years, along with faster decay rates, the release of leaf litter-N was faster in sub-taiga than in forest-steppe. As such, higher quantities of 15N were transferred into the soil in sub-taiga. The transfer was also deeper there

  15. Composting and gypsum amendment of broiler litter to reduce nutrient leaching loss

    USDA-ARS?s Scientific Manuscript database

    Relative to fresh broiler litter, little is known about the dynamics of composted litter derived-nutrient in the ecosystem. In this study, the potential leaching losses of nutrients from compost relative to fresh broiler litter along with flue gas desulfurization (FGD gypsum), as a nutrient immobil...

  16. [Contribution of soil fauna to the mass loss of Betula albosinensis leaf litter at early decomposition stage of subalpine forest litter in western Sichuan].

    PubMed

    Xia, Lei; Wu, Fu-Zhong; Yang, Wan-Qin; Tan, Bo

    2012-02-01

    In order to quantify the contribution of soil fauna to the decomposition of birch (Betula albosinensis) leaf litter in subalpine forests in western Sichuan of Southwest China during freeze-thaw season, a field experiment with different mesh sizes (0.02, 0.125, 1 and 3 mm) of litterbags was conducted in a representative birch-fir (Abies faxoniana) forest to investigate the mass loss rate of the birch leaf litter from 26 October, 2010 to 18 April, 2011, and the contributions of micro-, meso- and macro-fauna to the decomposition of the leaf litter. Over the freeze-thaw season, 11.8%, 13.2%, 15.4% and 19.5% of the mass loss were detected in the litterbags with 0.02, 0. 125, 1 and 3 mm mesh sizes, respectively. The total contribution of soil fauna to the litter decomposition accounted for 39.5% of the mass loss, and the taxa and individual relative density of the soil fauna in the litterbags had the similar variation trend with that of the mass loss rate. The contribution rate of soil fauna to the leaf litter mass loss showed the order of micro- < meso- < macro-fauna, with the highest contribution of micro-fauna (7.9%), meso-fauna (11.9%), and macro-fauna (22.7%) at the onset of freezing stage, deeply frozen stage, and thawing stage, respectively. The results demonstrated that soil fauna played an important role in the litter decomposition in subalpine forests of western Sichuan during freeze-thaw season.

  17. Predicting climate change impacts on polar bear litter size.

    PubMed

    Molnár, Péter K; Derocher, Andrew E; Klanjscek, Tin; Lewis, Mark A

    2011-02-08

    Predicting the ecological impacts of climate warming is critical for species conservation. Incorporating future warming into population models, however, is challenging because reproduction and survival cannot be measured for yet unobserved environmental conditions. In this study, we use mechanistic energy budget models and data obtainable under current conditions to predict polar bear litter size under future conditions. In western Hudson Bay, we predict climate warming-induced litter size declines that jeopardize population viability: ∼28% of pregnant females failed to reproduce for energetic reasons during the early 1990s, but 40-73% could fail if spring sea ice break-up occurs 1 month earlier than during the 1990s, and 55-100% if break-up occurs 2 months earlier. Simultaneously, mean litter size would decrease by 22-67% and 44-100%, respectively. The expected timeline for these declines varies with climate-model-specific sea ice predictions. Similar litter size declines may occur in over one-third of the global polar bear population.

  18. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study.

    PubMed

    Boyero, Luz; Pearson, Richard G; Hui, Cang; Gessner, Mark O; Pérez, Javier; Alexandrou, Markos A; Graça, Manuel A S; Cardinale, Bradley J; Albariño, Ricardo J; Arunachalam, Muthukumarasamy; Barmuta, Leon A; Boulton, Andrew J; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G; Dudgeon, David; Encalada, Andrea C; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S; Gonçalves, José F; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S; Pringle, Catherine M; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M

    2016-04-27

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. © 2016 The Author(s).

  19. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study

    PubMed Central

    Pearson, Richard G.; Hui, Cang; Gessner, Mark O.; Pérez, Javier; Alexandrou, Markos A.; Graça, Manuel A. S.; Cardinale, Bradley J.; Albariño, Ricardo J.; Arunachalam, Muthukumarasamy; Barmuta, Leon A.; Boulton, Andrew J.; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G.; Dudgeon, David; Encalada, Andrea C.; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S.; Gonçalves, José F.; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S.; Pringle, Catherine M.; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M.

    2016-01-01

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. PMID:27122551

  20. Ecological restoration of litter in mined areas

    NASA Astrophysics Data System (ADS)

    Teresinha Gonçalves Bizuti, Denise; Nino Diniz, Najara; Schweizer, Daniella; de Marchi Soares, Thaís; Casagrande, José Carlos; Henrique Santin Brancalion, Pedro

    2016-04-01

    The success of ecological restoration projects depends on going monitoring of key ecological variables to determine if a desired trajectory has been established and, in the case of mining sites, nutrient cycling recovery plays an utmost importance. This study aimed to quantify and compare the annual litter production in native forests, and in restoration sites established in bauxite mines. We collected samples in 6 native forest remnants and 6 year-old restoration sites every month for a period of one year, in the city of Poços de Caldas/MG, SE Brazil. 120 wire collectors were used (0,6x0,6) and suspended 30cm above the soil surface. The material was dried until constant weight, weighed and fractionated in leaves, branches and reproductive material. The average annual litter production was 2,6 Mg ha-1 in native forests and 2,1 in forest in restoration sites, differing statistically. Litter production was higher in the rainy season, especially in September. Among the litter components, the largest contributor to total production was the fraction leaves, with 55,4% of the total dry weight of material collected, followed by reproductive material which contributed 24,5% and branches, with 20%. We conclude that the young areas in restoration process already restored important part, but still below the production observed in native areas.

  1. Botulism outbreak associated with poultry litter consumption in three Brazilian cattle herds.

    PubMed

    Ortolani, E L; Brito, L A; Mori, C S; Schalch, U; Pacheco, J; Baldacci, L

    1997-04-01

    One hundred fifty-five of 201 cattle from 3 different farms showed clinical signs and died of botulism after eating the same batch of poultry litter contaminated with poultry and rodent carcasses. The cattle had access to poultry litter for only 1 d; afterwards it was removed from the diet. Death occurred over a period of 17 d after the poultry litter intake. The peak mortality was on day 4; 20 animals died within 10 d of the ingestion. The greater the intake of poultry litter, the higher the cattle mortality. Three steers which died on the first day had peracute effects while the remaining cattle showed classical signs. Twenty-five of the 46 surviving cattle had mild clinical signs, but recovered in a few days. Type C Clostridium botulinum toxin was found in extracts of the poultry litter, carcasses and cattle intestinal contents. Nutrient composition of the poultry litter was normal but pH was lower (6.9) than usual (7.5 to 9.3).

  2. Ammonia volatilization from surface-applied poultry litter under conservation tillage management practices.

    PubMed

    Sharpe, R R; Schomberg, H H; Harper, L A; Endale, D M; Jenkins, M B; Franzluebbers, A J

    2004-01-01

    Land application of poultry litter can provide essential plant nutrients for crop production, but ammonia (NH(3)) volatilization from the litter can be detrimental to the environment. A multiseason study was conducted to quantify NH(3) volatilization rates from surface-applied poultry litter under no-till and paraplowed conservation tillage managements. Litter was applied to supply 90 to 140 kg N ha(-1). Evaluation of NH(3) volatilization was determined using gas concentrations and the flux-gradient gas transport technique using the momentum balance transport coefficient. Ammonia fluxes ranged from 3.3 to 24% of the total N applied during the winter and summer, respectively. Ammonia volatilization was rapid immediately after litter application and stopped within 7 to 8 d. Precipitation of 17 mm essentially halted volatilization, probably by transporting litter N into the soil matrix. Application of poultry to conservation-tilled cropland immediately before rainfall events would reduce N losses to the atmosphere but could also increase NO(3) leaching and runoff to streams and rivers.

  3. Elicitors aboveground: an alternative for control of a belowground pest

    USDA-ARS?s Scientific Manuscript database

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation ...

  4. Through the sands of time: Beach litter trends from nine cleaned north cornish beaches.

    PubMed

    Watts, Andrew J R; Porter, Adam; Hembrow, Neil; Sharpe, Jolyon; Galloway, Tamara S; Lewis, Ceri

    2017-09-01

    Marine litter and its accumulation on beaches is an issue of major current concern due to its significant environmental and economic impacts. Yet our understanding of spatio-temporal trends in beach litter and the drivers of these trends are currently limited by the availability of robust long term data sets. Here we present a unique data set collected systematically once a month, every month over a six year period for nine beaches along the North Coast of Cornwall, U.K. to investigate the key drivers of beach litter in the Bude, Padstow and Porthcothan areas. Overall, an average of 0.02 litter items m -2 per month were collected during the six year study, with Bude beaches (Summerleaze, Crooklets and Widemouth) the most impacted (0.03 ± 0.004 litter items m -2 per month). The amount of litter collected each month decreased by 18% and 71% respectively for Padstow (Polzeath, Trevone and Harlyn) and Bude areas over the 6 years, possibly related to the regular cleaning, however litter increased by 120% despite this monthly cleaning effort on the Padstow area beaches. Importantly, at all nine beaches the litter was dominated by small, fragmented plastic pieces and rope fibres, which account for 32% and 17% of all litter items collected, respectively. The weathered nature of these plastics indicates they have been in the marine environment for an extended period of time. So, whilst classifying the original source of these plastics is not possible, it can be concluded they are not the result of recent public littering. This data highlights both the extent of the marine litter problem and that current efforts to reduce littering by beach users will only tackle a fraction of this litter. Such information is vital for developing effective management strategies for beach and marine litter at both regional and global levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Family Differences in Aboveground Biomass Allocation in Loblolly Pine

    Treesearch

    Scott D. Roberts

    2002-01-01

    The proportion of tree growth allocated to stemwood is an important economic component of growth efficiency. Differences in growth efficiency between species, or between families within species, may therefore be related to how growth is proportionally allocated between the stem and other aboveground biomass components. This study examines genetically related...

  6. Amino compounds in poultry litter, litter-amended pasture soils and grass shoots

    USDA-ARS?s Scientific Manuscript database

    Organic N accounts for 95-98% of total soil N contents with amino compounds (ACs) as major ingredients. But relatively little is known about the effects of poultry litter (PL) application on soil AC pools and turnover. In this work, we determined 21 AC contents in 23 PL samples, 15 soil samples with...

  7. Effect of different types of litter material for rearing broilers.

    PubMed

    Swain, B K; Sundaram, R N

    2000-07-01

    1. Coir dust was evaluated as broiler litter in comparison with sawdust and rice husk using 135 commercial broilers. Forty-five broiler chicks were reared to 42 d on a 50 mm layer of each of these litters. 2. Birds reared on coir dust showed no difference in food consumption, body weight gain, food conversion efficiency production number and survivability in comparison to those reared on saw dust and rice husk. 3. It was concluded that coir dust is suitable as broiler litter when cheaply available.

  8. Estimating soil organic and aboveground woody carbon stock in a protected dry Miombo ecosystem, Zimbabwe: Landsat 8 OLI data applications

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Muchena, Richard; Masocha, Mhosisi; Shoko, Cletah

    2018-06-01

    Accurate and reliable soil organic carbon stock estimation is critical in understanding forest role to regional carbon cycles. So far, the total carbon pool in dry Miombo ecosystems is often under-estimated. In that regard this study sought to model the relationship between the aboveground woody carbon pool and the soil carbon pool, using both ground-based and remote sensing methods. To achieve this objective, the Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and the Soil Adjusted Vegetation Index (SAVI) computed from the newly launched Landsat 8 OLI satellite data were used. Correlation and regression analysis were used to relate Soil Organic Carbon (S.O.C), aboveground woody carbon and remotely sensed vegetation indices. Results showed a soil organic carbon in the upper soil layer (0-15 cm) was positively correlated with aboveground woody carbon and this relationship was significant (r = 0.678; P < 0.05) aboveground carbon. However, there were no significant correlations (r = -0.11, P > 0.05) between SOC in the deeper soil layer (15-30 cm) and aboveground woody carbon. These findings imply that (relationship between aboveground woody carbon and S.O.C) aboveground woody carbon stocks can be used as a proxy to estimate S.O.C in the top soil layer (0-15 cm) in dry Miombo ecosystems. Overall, these findings underscore the potential and significance of remote sensing data in understanding savanna ecosystems contribution to the global carbon cycle.

  9. Universal Distribution of Litter Decay Rates

    NASA Astrophysics Data System (ADS)

    Forney, D. C.; Rothman, D. H.

    2008-12-01

    Degradation of litter is the result of many physical, chemical and biological processes. The high variability of these processes likely accounts for the progressive slowdown of decay with litter age. This age dependence is commonly thought to result from the superposition of processes with different decay rates k. Here we assume an underlying continuous yet unknown distribution p(k) of decay rates [1]. To seek its form, we analyze the mass-time history of 70 LIDET [2] litter data sets obtained under widely varying conditions. We construct a regularized inversion procedure to find the best fitting distribution p(k) with the least degrees of freedom. We find that the resulting p(k) is universally consistent with a lognormal distribution, i.e.~a Gaussian distribution of log k, characterized by a dataset-dependent mean and variance of log k. This result is supported by a recurring observation that microbial populations on leaves are log-normally distributed [3]. Simple biological processes cause the frequent appearance of the log-normal distribution in ecology [4]. Environmental factors, such as soil nitrate, soil aggregate size, soil hydraulic conductivity, total soil nitrogen, soil denitrification, soil respiration have been all observed to be log-normally distributed [5]. Litter degradation rates depend on many coupled, multiplicative factors, which provides a fundamental basis for the lognormal distribution. Using this insight, we systematically estimated the mean and variance of log k for 512 data sets from the LIDET study. We find the mean strongly correlates with temperature and precipitation, while the variance appears to be uncorrelated with main environmental factors and is thus likely more correlated with chemical composition and/or ecology. Results indicate the possibility that the distribution in rates reflects, at least in part, the distribution of microbial niches. [1] B. P. Boudreau, B.~R. Ruddick, American Journal of Science,291, 507, (1991). [2] M

  10. Isotopic Discrimination During Leaf Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Ngao, J.; Rubino, M.

    2006-12-01

    Methods involving stable isotopes have been successfully applied since decades in various research fields. Tracing 13C natural abundance in ecosystem compartments greatly enhanced the understanding of the C fluxes in the plant-soil-atmosphere C exchanges when compartments present different C isotopic signatures (i.e. atmospheric CO2 vs photosynthetic leaves, C3 vs C4; etc.). However, the assumption that no isotopic discrimination occurs during respiration is commonly made in numbers of C isotope-based ecological studies. Furthermore, verifications of such assumption are sparse and not enough reliable. The aim of our study is to assess the potential isotopic discrimination that may occur during litter decomposition. Leaf litter from an Arbutus unedo (L.) stand (Tolfa, Italy) was incubated in 1L jars, under constant laboratory conditions (i.e. 25 ° C and 135% WC). During the entire incubation period, gravimetric mass loss, litter respiration rates and the isotopic composition of respired CO2 are monitored at regular intervals. Data from 7 months of incubation will be presented and discussed. After two months, the litter mass loss averaged 16% of initial dry mass. During the same time-period, the respiration rate decreased significantly by 58% of the initial respiration rate. Isotopic compositions of respired CO2 ranged between -27.95‰ and - 25.69‰. Mean values did not differ significantly among the sampling days, in spite of an apparent enrichment in 13C of respired CO2 with time. The significance of these isotopic enrichment will be determined at a longer time scale. They may reveal both/either a direct microbial discrimination during respiration processes and/or a use of different litter compounds as C source along time. Further chemical and compound-specific isotopic analysis of dry matter will be performed in order to clarify these hypotheses. This work is part of the "ALICE" project, funded by the European Union's Marie Curie Fellowship Actions that aims to

  11. Leaf litter production of mahogany along street and campus forest of Universitas Negeri Semarang, Indonesia

    NASA Astrophysics Data System (ADS)

    Martin, F. P.; Abdullah, M.; Solichin; Hadiyanti, L. N.; Widianingrum, K.

    2018-03-01

    The leaf litter of trees along the existing streets on campus UNNES if not managed properly will be scattered and become garbage. Leaf litter Production in UNNES campus is not known for certain. UNNES does not own mapping of leaf litter Production of dominant tree species on campus. This cause leaf waste management is not optimal yet. There is still a lot of leaf litter that is discharged (not processed) because it exceeds the capacity of the fertilizer production equipment in the compost house. Aims of this study were to examine leaf litter production of dominant trees in Universitas Negeri Semarang and evaluate the relationship between leaf litter and average rainfall. Purposive sampling method placed pouches of nylon gauze measuring 1 × 1 mm2 as litter trap container with size 1 x l m2 (10 points mounted along street and campus forest). Litter trap mounted at the height of 50 cm above ground level. Leaf litter will be taken once a week for three months to observe the litter production. The litter was then dried by the oven at 70 ° C for 48 hours to obtain constant dry weight. Based on the results of the research, it was known that Mahogany tree in UNNES campus area has the potential to produce the litter of about 10 ton/ha / 3months in campus forest area and 2.5 ton/ha / 3months along campus street. There is a significant relationship between litter production of Mahogany leaves and precipitation during August - October 2017.

  12. Characterization of forest litter horizons through full-wave inversion of ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    André, Frédéric; Jonard, Mathieu; Jonard, François; Lambot, Sébastien

    2015-04-01

    Decomposing litter accumulated at the soil surface in forest ecosystems play a major role in a series of ecosystem processes (soil carbon sequestration, nutrient release through decomposition, water retention, buffering of soil temperature variations, tree regeneration, population dynamics of ground vegetation and soil fauna, ...). Besides, the presence of litter is acknowledged to influence remote sensing radar data over forested areas and accurate quantification of litter radiative properties is essential for proper processing of these data. In these respects, ground-penetrating radar (GPR) presents particular interests, potentially allowing for fast and non-invasive characterization of organic layers with fine spatial and/or temporal resolutions as well as for providing detailed information on litter electrical properties which are required for modeling either active or passive microwave remote sensing data. We designed an experiment in order to analyze the backscattering from forest litter horizons and to investigate the potentialities of GPR for retrieving the physical properties of these horizons. For that purpose, we used an ultrawide band radar system connected to a transmitting and receiving horn antenna. The GPR data were processed resorting to full-wave inversion of the signal, through which antenna effects are accounted for. In a first step, GPR data were acquired over artificially reconstructed layers of three different beech litter types (i.e., (i) recently fallen litter with easily discernible plant organs (OL layer), (ii) fragmented litter in partial decomposition without entire plant organs (OF layer) and (iii) combination of OL and OF litter layers) and considering in each case a range of layer thicknesses. In a second step, so as to validate the adopted methodology in real natural conditions, GPR measurements were performed in situ along a transect crossing a wide range of litter properties in terms of thickness and composition through stands of

  13. Poultry litter-based activated carbon for removing heavy metal ions in water.

    PubMed

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  14. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient

    NASA Astrophysics Data System (ADS)

    Mayer, Paul M.

    2008-03-01

    Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the strength of these mechanisms. To identify these controls and feedbacks, I measured mass loss and N flux in herbaceous, leaf, and wood litter along a successional gradient of ecosystem types (old field, transition forest, old-growth forest) while manipulating detritivore access to litter. Ecosystem type, litter type, and decomposers contributed directly and interactively to decomposition. Litter mass loss and N accumulation was higher while litter C:N remained lower in old-growth forests than in either old fields or transition forest. Old-growth forests influenced litter dynamics via microclimate (coolest and wettest) but also, apparently, through a decomposer community adapted to consuming the large standing stocks of leaf litter, as indicated by rapid leaf litter loss. In all ecosystem types, mass loss of herbaceous litter was greater than leaf litter which, in turn was greater than wood. However, net N loss from wood litter was faster than expected, suggesting localized N flux effects of wood litter. Restricting detritivore access to litter reduced litter mass loss and slowed the accumulation of N in litter, suggesting that macro-detritivores affect both physical and chemical characteristics of litter through selective grazing. These data suggest that the distinctive litter loss rates and efficient N cycling observed in old-growth forest ecosystems are not likely to be realized soon after old fields are restored to forested ecosystems.

  15. 17β-estradiol in runoff as affected by various poultry litter application strategies.

    PubMed

    Delaune, P B; Moore, P A

    2013-02-01

    Steroidal hormones, which are excreted by all mammalian species, have received increasing attention in recent years due to potential environmental implications. The objective of this study was to evaluate 17β-estradiol concentrations in runoff water from plots receiving poultry litter applications using various management strategies. Treatments included the effects of 1) aluminum sulfate (alum) application rates to poultry litter; 2) time until the first runoff event occurs after poultry litter application; 3) poultry litter application rate; 4) fertilizer type; and 5) litter from birds fed modified diets. Rainfall simulators were used to cause continuous runoff from fertilized plots. Runoff samples were collected and analyzed for 17β-estradiol concentrations. Results showed that increasing alum additions to poultry litter decreased 17β-estradiol concentrations in runoff water. A significant exponential decline in 17β-estradiol runoff was also observed with increasing time until the first runoff event after litter application. Concentrations of 17β-estradiol in runoff water increased with increasing litter application rate and remained above background concentrations after three runoff events at higher application rates. Management practices such as diet modification and selection of fertilizer type were also shown to affect 17β-estradiol concentrations in runoff water. Although results from these experiments typically represented a worst case scenario since runoff events generally occurred immediately after litter application, the contaminant loss from pastures fertilized with poultry litter can be expected to be much lower than continual estradiol loadings observed from waste water treatment plants. Management practices such as alum amendment and application timing can significantly reduce the risk of 17β-estradiol losses in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Degradation of polycyclic aromatic hydrocarbons (PAHs) during Sphagnum litters decay.

    PubMed

    Wang, Zucheng; Liu, Shasha; Bu, Zhao-Jun; Wang, Shengzhong

    2018-04-28

    The dynamics of polycyclic aromatic hydrocarbon (PAH) degradation in Sphagnum litters and the decomposition of the litters were investigated. PAH concentration decreased to approximately half of the initial concentration as Sphagnum litters decayed. The initial PAH concentration was 489.2 ± 72.2 ng g -1 , and the concentration after 120 days of incubation was 233.0 ± 5.8 ng g -1 . The different PAH compositions changed concentrations at different times. The low-molecular-weight (LMW) and high-molecular-weight (HMW) PAHs started to be degraded after incubation and after 40 days of incubation, respectively. PAH concentrations in the Sphagnum litters correlated with the total organic carbon (TOC) content (p < 0.05), indicating that PAHs were associated with the TOC of the Sphagnum litters and were degraded as organic matter decayed. The positive relationship between LMW PAH concentration and the soluble carbohydrate content (p < 0.05) indicated that LMW PAHs and the readily decomposed organic carbon fractions were cometabolized, or that LMW PAHs were mainly absorbed by soluble carbohydrate. The weak negative correlation between fulvic acid (FA) and PAH concentrations (p < 0.1) indicated that FA may enhance PAH degradation. Redundancy analysis suggested that the contents of both soluble carbohydrate and cellulose significantly affected the changes in PAH concentrations (p < 0.05), and that FA content and C/N ratios may also contribute to the changes in PAH concentrations (p < 0.1). However, the polyphenol that was related to microbial activities was not associated with changes in PAH concentrations. These results suggested that litter quality is more important than microbial activities in PAH degradation in Sphagnum litters.

  17. Low densities of drifting litter in the African sector of the Southern Ocean.

    PubMed

    Ryan, Peter G; Musker, Seth; Rink, Ariella

    2014-12-15

    Only 52 litter items (>1cm diameter) were observed in 10,467 km of at-sea transects in the African sector of the Southern Ocean. Litter density north of the Subtropical Front (0.58 items km(-2)) was less than in the adjacent South Atlantic Ocean (1-6 items km(-2)), but has increased compared to the mid-1980s. Litter density south of the Subtropical Front was an order of magnitude less than in temperate waters (0.032 items km(-2)). There was no difference in litter density between sub-Antarctic and Antarctic waters either side of the Antarctic Polar Front. Most litter was made of plastic (96%). Fishery-related debris comprised a greater proportion of litter south of the Subtropical Front (33%) than in temperate waters (13%), where packaging dominated litter items (68%). The results confirm that the Southern Ocean is the least polluted ocean in terms of drifting debris and suggest that most debris comes from local sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. SOA formation potential of emissions from soil and leaf litter.

    PubMed

    Faiola, Celia L; Vanderschelden, Graham S; Wen, Miao; Elloy, Farah C; Cobos, Douglas R; Watts, Richard J; Jobson, B Thomas; Vanreken, Timothy M

    2014-01-21

    Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.

  19. SOA formation potential of emissions from soil and leaf litter

    DOE PAGES

    Faiola, Celia L.; VanderSchelden, Graham S.; Wen, Miao; ...

    2013-12-13

    Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m –2 h –1. The composition of the SOA producedmore » was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Furthermore, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.« less

  20. Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability

    PubMed Central

    Gaxiola, Aurora; Armesto, Juan J.

    2015-01-01

    Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15–240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems. PMID:25852705

  1. Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability.

    PubMed

    Gaxiola, Aurora; Armesto, Juan J

    2015-01-01

    Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15-240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems.

  2. Aboveground growth interactions of paired conifer seedlings in close proximity

    Treesearch

    Warren D. Devine; Timothy B. Harrington

    2011-01-01

    Where belowground resources are relatively abundant, naturally established trees sometimes occur in very close proximity to one another. We conducted a two-year study to assess the aboveground interactions between Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis) and noble fir (Abies procera)...

  3. ESTIMATING THE BREAKDOWN AND ACCUMULATION OF EMERGENT MACROPHYTE LITTER: A MASS-BALANCE APPROACH

    EPA Science Inventory

    Litter accumulation within emergent macrophyte marshes may significantly influence abiotic conditions and biota but litter is rarely considered in emergent macrophyte studies. Litter is defined here as the standing and fallen dead plant material that can be collected using harv...

  4. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    PubMed

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  5. Correlation between the morphogenetic types of litter and their properties in bog birch forests

    NASA Astrophysics Data System (ADS)

    Efremova, T. T.; Efremov, S. P.; Avrova, A. F.

    2010-08-01

    A formalized arrangement of morphogenetic types of litter according to the physicochemical parameters provided their significant grouping in three genetic associations. The litter group (highly decomposed + moderately decomposed) is confined to the tall-grass group of bog birch forests. The rhizomatous (roughly decomposed) litter is formed in the sedge-reed grass bog birch forests. The litter group (peaty + peatified + peat) is associated with the bog-herbaceous-moss group of forest types. The genetic associations of the litters (a) reliably characterize the edaphic conditions of bog birch forests and (b)correspond to formation of the peat of certain ecological groups. We found highly informative the acid-base parameters, the exchangeable cations (Ca2+ + Mg2+) and the total potential acidity, which differentiated the genetic associations of litter practically with 100% probability. The expediency of studying litters under groups of forest types rather than under separate types of bog birch forests was demonstrated.

  6. Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests

    NASA Astrophysics Data System (ADS)

    Virzo De Santo, Amalia; Rutigliano, Flora Angela; Berg, Björn; Fioretto, Antonietta; Puppi, Gigliola; Alfani, Anna

    2002-08-01

    The fungal mycelium ingrowth and the rates of mass loss and respiration of needle litter of Pinus pinea, Pinus laricio, Pinus sylvestris, and Abies alba were investigated, in three coniferous forests, over a 3-year period by means of a composite set of incubations. In the early stages, the fungal flora of the decomposing needles was dominated by dematiaceous hyphomycetes and coelomycetes. Basidiomycetes reached a peak after 6 months on pine needles, but were absent from the N-rich needles of A. alba. Soil fungi ( Penicillium, Trichoderma, Absidia, Mucor sp. pl.) became most frequent in later stages. At the end of the study period, the total mycelium amount showed the lowest values in all pine needles incubated in the P. laricio forest and the highest ones in P. pinea needles incubated in the P. pinea forest. In all data sets, as in data for boreal forests examined for comparison, the concentration of litter fungal mycelium versus litter mass loss followed a common exponential model. However, in later stages, the amount of litter fungal mycelium was very close to that of the humus at the incubation site, thus supporting the hypothesis of a logistic growth pattern. Respiration rates of decomposing litters varied with season and decreased with litter age to values close to those of the humus at the incubation site. Respiration of water-saturated litter was negatively correlated with the total mycelium concentration, and this was consistent with the observation that in far-decomposed litter only a minor fraction of the total mycelium is alive.

  7. Detection and quantification of ionophore antibiotics in runoff, soil and poultry litter.

    PubMed

    Sun, Peizhe; Barmaz, Delphine; Cabrera, Miguel L; Pavlostathis, Spyros G; Huang, Ching-Hua

    2013-10-18

    Ionophore antibiotics (IPAs) are widely used as coccidiostats in poultry and other livestock industries to promote growth and prevent infections. Because most of the ingested IPAs are excreted in poultry litter, which is primarily applied as grassland fertilizer, a significant amount of IPAs can be released into the litter-soil-water environment. A robust analytical method has been developed to quantify IPAs (monensin (MON), salinomycin (SAL) and narasin (NAR)) in complex environmental compartments including surface runoff, soil and poultry litter, with success to minimize matrix interference. The method for water samples involves solid-phase extraction (SPE) followed by liquid-liquid extraction (LLE) post-clean up steps. The method for solid samples involves bi-solvent LLE. IPAs were detected by HPLC-MS, with optimized parameters to achieve the highest sensitivity. Nigericin (NIG), an IPA not used in livestock industry, is successfully applied and validated as a surrogate standard. The method recoveries were at 92-95% and 81-85% in runoff samples from unfertilized and litter-fertilized fields, respectively. For solids, the method recoveries were at 93-99% in soils, and 79-83% in poultry litter samples. SAL was detected at up to 22mg/kg and MON and NAR at up to 4mg/kg in broiler litter from different farms. Up to 183μg/kg of MON was detected in litter-fertilized soils. All three IPAs were detected in the rainfall runoff from litter-fertilized lands at concentrations up to 9μg/L. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... placed in service after October 2, 2000, pneumatic testing must be in accordance with section 5.3 of API Specification 12 F (incorporated by reference, see § 195.3). (b) For aboveground breakout tanks built to API Standard 620 and first placed in service after October 2, 2000, hydrostatic and pneumatic testing must be...

  9. Comparison of four sampling methods for the detection of Salmonella in broiler litter.

    PubMed

    Buhr, R J; Richardson, L J; Cason, J A; Cox, N A; Fairchild, B D

    2007-01-01

    Experiments were conducted to compare litter sampling methods for the detection of Salmonella. In experiment 1, chicks were challenged orally with a suspension of naladixic acid-resistant Salmonella and wing banded, and additional nonchallenged chicks were placed into each of 2 challenge pens. Nonchallenged chicks were placed into each nonchallenge pen located adjacent to the challenge pens. At 7, 8, 10, and 11 wk of age the litter was sampled using 4 methods: fecal droppings, litter grab, drag swab, and sock. For the challenge pens, Salmonella-positive samples were detected in 3 of 16 fecal samples, 6 of 16 litter grab samples, 7 of 16 drag swabs samples, and 7 of 16 sock samples. Samples from the nonchallenge pens were Salmonella positive in 2 of 16 litter grab samples, 9 of 16 drag swab samples, and 9 of 16 sock samples. In experiment 2, chicks were challenged with Salmonella, and the litter in the challenge and adjacent nonchallenge pens were sampled at 4, 6, and 8 wk of age with broilers remaining in all pens. For the challenge pens, Salmonella was detected in 10 of 36 fecal samples, 20 of 36 litter grab samples, 14 of 36 drag swab samples, and 26 of 36 sock samples. Samples from the adjacent nonchallenge pens were positive for Salmonella in 6 of 36 fecal droppings samples, 4 of 36 litter grab samples, 7 of 36 drag swab samples, and 19 of 36 sock samples. Sock samples had the highest rates of Salmonella detection. In experiment 3, the litter from a Salmonella-challenged flock was sampled at 7, 8, and 9 wk by socks and drag swabs. In addition, comparisons with drag swabs that were stepped on during sampling were made. Both socks (24 of 36, 67%) and drag swabs that were stepped on (25 of 36, 69%) showed significantly more Salmonella-positive samples than the traditional drag swab method (16 of 36, 44%). Drag swabs that were stepped on had comparable Salmonella detection level to that for socks. Litter sampling methods that incorporate stepping on the sample

  10. Predicting climate change impacts on polar bear litter size

    PubMed Central

    Molnár, Péter K.; Derocher, Andrew E.; Klanjscek, Tin; Lewis, Mark A.

    2011-01-01

    Predicting the ecological impacts of climate warming is critical for species conservation. Incorporating future warming into population models, however, is challenging because reproduction and survival cannot be measured for yet unobserved environmental conditions. In this study, we use mechanistic energy budget models and data obtainable under current conditions to predict polar bear litter size under future conditions. In western Hudson Bay, we predict climate warming-induced litter size declines that jeopardize population viability: ∼28% of pregnant females failed to reproduce for energetic reasons during the early 1990s, but 40–73% could fail if spring sea ice break-up occurs 1 month earlier than during the 1990s, and 55–100% if break-up occurs 2 months earlier. Simultaneously, mean litter size would decrease by 22–67% and 44–100%, respectively. The expected timeline for these declines varies with climate-model-specific sea ice predictions. Similar litter size declines may occur in over one-third of the global polar bear population. PMID:21304515

  11. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept

    USDA-ARS?s Scientific Manuscript database

    Recent research suggests labile plant litters promote the stabilization of soil organic matter (SOM) in physico-chemically protected fractions with relatively slow turnover. However, the effect of litter quality on SOM stabilization is inconsistent. Labile, ‘high quality’ litters characterized by hi...

  12. Reducing Weekend Litter (and Improving RA-Resident Interactions) in a College Residence Hall.

    ERIC Educational Resources Information Center

    Luyben, Paul D.; And Others

    1984-01-01

    Investigated the effectiveness of a litter reduction program, consisting of group assignment of responsibility and a token reward system, on weekend litter rates in college residence halls. Results indicated procedure was completely effective, with litter reduced to zero in all settings. (BL)

  13. Characterization of broiler cake and broiler litter, the by-products of two management practices.

    PubMed

    Sistani, K R; Brink, G E; McGowen, S L; Rowe, D E; Oldham, J L

    2003-10-01

    The application of broiler manure and bedding (litter) on land has been a long-used disposal method that benefits plant and soil. For proper manure management, factors such as nutrient content, house cleaning management, application methods, and many land, crop, and climatic factors must be considered. A study was undertaken to characterize broiler cake and broiler litter as the by-products of two management systems in Mississippi. Broiler cake and litter productions were quantified and analyzed for four flocks during 1999 and 2000. The overall means for broiler cake production were 12.50, 13.90, and 10.30 kg m(-2) for producers 1, 2, and 3, respectively. Significantly greater quantities of litter, 27.50, 29.0, and 28.30 kg m(-2) than cake were determined for the same producers. The cake and litter moisture averaged 455 and 277 g kg(-1), respectively. No significant differences were observed between cake and litter total N, NH4-N, total C, total P, and water-soluble P (WP). However, cake had significantly greater Ca, Mg, K, Cu, Fe, Mn, and Zn than litter. Approximately 16.8% of the broiler cake and 15.2% of the broiler litter total P were in the form of water-soluble P. The NH4-N content of the cake and the litter were 12.5% and 11.5% of the cake and litter total nitrogen, respectively. The results also showed the advantage of the decaking practice with respect to the quantity of the manure generated for land application. Approximately 57% of the litter remains in the poultry house with decaking practice after each growth cycle compared to the 0% for total cleanout practice.

  14. Country report: Broiler industry and broiler litter-related problems in the southeastern United States.

    PubMed

    Paudel, Krishna P; McIntosh, Christopher S

    2005-01-01

    This report describes the development of the broiler litter problem in the southeastern United States, including the economic opportunity and environmental challenges brought to the region by the industry. Through an analysis applied to the State of Georgia, land application of litter as a disposal alternative is examined along with its associated benefits. The analysis indicates that litter could be transported economically up to 256 km for cropland application. Excessive broiler litter production in a few concentrated regions is expected to stimulate the development of alternative approaches to broiler litter management, such as electricity generation.

  15. Litter size at birth in purebred dogs--a retrospective study of 224 breeds.

    PubMed

    Borge, Kaja Sverdrup; Tønnessen, Ragnhild; Nødtvedt, Ane; Indrebø, Astrid

    2011-03-15

    Despite the long history of purebred dogs and the large number of existing breeds, few studies of canine litter size based upon a large number of breeds exist. Previous studies are either old or include only one or a few selected breeds. The aim of this large-scale retrospective study was to estimate the mean litter size in a large population of purebred dogs and to describe some factors that might influence the litter size. A total of 10,810 litters of 224 breeds registered in the Norwegian Kennel Club from 2006 to 2007 were included in the study. The overall mean litter size at birth was 5.4 (± 0.025). A generalized linear mixed model with a random intercept for breed revealed that the litter size was significantly influenced by the size of the breed, the method of mating and the age of the bitch. A significant interaction between breed size and age was detected, in that the expected number of puppies born decreased more for older bitches of large breeds. Mean litter size increased with breed size, from 3.5 (± 0.04) puppies in miniature breeds to 7.1 (± 0.13) puppies in giant breeds. No effect on litter size was found for the season of birth or the parity of the bitch. The large number of breeds and the detail of the registered information on the litters in this study are unique. In conclusion, the size of the breed, the age of the bitch and the method of mating were found to influence litter size in purebred dogs when controlling for breed, with the size of the breed as the strongest determinant. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Forecasting annual aboveground net primary production in the intermountain west

    USDA-ARS?s Scientific Manuscript database

    For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...

  17. WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE (BUILDING 3568), SPARES INERT STORAGE BUILDING (BUILDING 3570), MISSILE ASSEMBLY SHOP (BUILDING 3578) AND SEGREGATED MAGAZINE STORAGE BUILDING (BUILDING 3572). VIEW TO NORTHWEST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  18. Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis

    NASA Astrophysics Data System (ADS)

    Li, Furong; Dudley, Tom L.; Chen, Baoming; Chang, Xiaoyu; Liang, Liyin; Peng, Shaolin

    2016-11-01

    Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest

  19. Is litter decomposition 'primed' by primary producer-release of labile carbon in terrestrial and aquatic experimental systems?

    NASA Astrophysics Data System (ADS)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2015-04-01

    It is possible that recalcitrant organic matter (ROM) can be 'activated' by inputs of labile organic matter (LOM) through the priming effect (PE). Investigating the PE is of major importance to fully understand the microbial use of ROM and its role on carbon (C) and nutrient cycling in both aquatic and terrestrial ecosystems. In aquatic ecosystems it is thought that the PE is triggered by periphytic algae release of LOM. Analogously, in terrestrial systems it is hypothesized that the LOM released in plant rhizospheres, or from the green crusts on the surface of agricultural soils, stimulate the activity and growth of ROM decomposers. Most previous studies on PE have utilised pulse additions of single substrates at high concentrations. However, to achieve an assessment of the true importance of the PE, it is important to simulate a realistic delivery of LOM. We investigated, in a series of 2-week laboratory experiments, how primary producer (PP)-release of LOM influence litter degradation in terrestrial and aquatic experimental systems. We used soil (terrestrial) and pond water (aquatic) microbial communities to which litter was added under light and dark conditions. In addition, glucose was added at PP delivery rates in dark treatments to test if the putative PE in light systems could be reproduced. We observed an initial peak of bacterial growth rate followed by an overall decrease over time with no treatment differences. In light treatments, periphytic algae growth and increased fungal production was stimulated when bacterial growth declined. In contrast, both fungal growth and algal production were negligible in dark treatments. This reveals a direct positive influence of photosynthesis on fungal growth. To investigate if PP LOM supplements, and the associated fungal growth, translate into a modulated litter decomposition, we are using stable isotopes to track the use of litter and algal-derived carbon by determining the δ13C in produced CO2. Fungi and bacteria

  20. Radiation effects on moisture variation in ponderosa pine litter

    Treesearch

    Clive M. Countryman

    1977-01-01

    This exploratory study indicated that considerable variation in the moisture content of litter can occur within short horizontal distances. The variations ere found to be caused primarily by differences in the amount of solar radiation received by the litter and in the degree of cooling by radiation at night. Because actual fuel moisture lags behind equilibrium...

  1. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    USGS Publications Warehouse

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton haa??1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  2. The effect of leaf litter cover on surface runoff and soil erosion in Northern China.

    PubMed

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  3. The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China

    PubMed Central

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858

  4. Land use not litter quality is a stronger driver of decomposition in hyperdiverse tropical forest.

    PubMed

    Both, Sabine; Elias, Dafydd M O; Kritzler, Ully H; Ostle, Nick J; Johnson, David

    2017-11-01

    In hyperdiverse tropical forests, the key drivers of litter decomposition are poorly understood despite its crucial role in facilitating nutrient availability for plants and microbes. Selective logging is a pressing land use with potential for considerable impacts on plant-soil interactions, litter decomposition, and nutrient cycling. Here, in Borneo's tropical rainforests, we test the hypothesis that decomposition is driven by litter quality and that there is a significant "home-field advantage," that is positive interaction between local litter quality and land use. We determined mass loss of leaf litter, collected from selectively logged and old-growth forest, in a fully factorial experimental design, using meshes that either allowed or precluded access by mesofauna. We measured leaf litter chemical composition before and after the experiment. Key soil chemical and biological properties and microclimatic conditions were measured as land-use descriptors. We found that despite substantial differences in litter quality, the main driver of decomposition was land-use type. Whilst inclusion of mesofauna accelerated decomposition, their effect was independent of land use and litter quality. Decomposition of all litters was slower in selectively logged forest than in old-growth forest. However, there was significantly greater loss of nutrients from litter, especially phosphorus, in selectively logged forest. The analyses of several covariates detected minor microclimatic differences between land-use types but no alterations in soil chemical properties or free-living microbial composition. These results demonstrate that selective logging can significantly reduce litter decomposition in tropical rainforest with no evidence of a home-field advantage. We show that loss of key limiting nutrients from litter (P & N) is greater in selectively logged forest. Overall, the findings hint at subtle differences in microclimate overriding litter quality that result in reduced

  5. Broiler litter as a micronutrient source for cotton: concentrations in plant parts.

    PubMed

    Tewolde, H; Sistani, K R; Rowe, D E

    2005-01-01

    Analytically, poultry litter contains nearly all essential micronutrients but the extent of phytoavailability of these nutrients and whether cotton (Gossypium hirsutum L.) and other crop plants can receive adequate amounts of these nutrients from litter is not fully known. The objective of this research was to determine whether cotton receives sufficient amounts of Fe, Cu, Mn, and Zn from litter and estimate the efficiency of cotton in extracting these metal nutrients from litter in the absence of any other source of the micronutrients. The greenhouse research used plastic pots filled with approximately 11 kg of a 2:1 (v/v) sand to vermiculite growing mix. Cotton (cv. Stoneville 474) was grown in the pots fertilized with broiler litter at rates of 30, 60, 90, or 120 g pot(-1) in a factorial combination with four supplemental nutrient solution (NS) treatments. The nutrient solutions consisted of full Hoagland's nutrient solution (NS-full); a solution of the macronutrients N, P, K, Ca, and Mg (NS-macro); a solution of the micronutrients Fe, Zn, Mn, Cu, B, and Mo (NS-micro); and water (NS-none). Based on tissue nutrient analysis, a one-time broiler litter application supplied adequate amounts of Fe, Cu, and Mn to bring the concentration of these nutrients in upper leaves within published sufficiency ranges. Zinc, with <17 mg kg(-1) concentration in the upper leaves, was the only micronutrient below the established sufficiency range regardless of the rate of applied litter. Cotton extracted Fe and Mn more efficiently than Cu or Zn, removing as much as 8.8% of Fe and 7.2% of Mn supplied by 30 g litter pot(-1). In contrast, the extraction efficiency was 1.7% for Cu and 1.9% for Zn. Roots accumulated 58% of the total absorbed Fe and 64% of Cu, and leaves accumulated 32% of the Fe and only 13% of the Cu supplied by litter. In contrast, only 16% of the total absorbed Mn and 23% of Zn accumulated in roots while leaves accumulated 64% of the total Mn and 37% of Zn. These

  6. Soil microbial communities and enzyme activities under various poultry litter application rates.

    PubMed

    Acosta-Martínez, V; Harmel, R Daren

    2006-01-01

    The potential excessive nutrient and/or microbial loading from mismanaged land application of organic fertilizers is forcing changes in animal waste management. Currently, it is not clear to what extent different rates of poultry litter impact soil microbial communities, which control nutrient availability, organic matter quality and quantity, and soil degradation potential. From 2002 to 2004, we investigated the microbial community and several enzyme activities in a Vertisol soil (fine, smectitic, thermic, Udic Haplustert) at 0 to 15 cm as affected by different rates of poultry litter application to pasture (0, 6.7, and 13.4 Mg ha(-1)) and cultivated sites (0, 4.5, 6.7, 9.0, 11.2, and 13.4 Mg ha(-1)) in Texas, USA. No differences in soil pH (average: 7.9), total N (pasture: 2.01-3.53, cultivated: 1.09-1.98 g kg(-1) soil) or organic C (pasture average: 25-26.7, cultivated average: 13.9-16.1 g kg(-1) soil) were observed following the first four years of litter application. Microbial biomass carbon (MBC) and nitrogen (MBN) increased at litter rates greater than 6.7 Mg ha(-1) (pasture: MBC = >863, MBN = >88 mg kg(-1) soil) compared to sites with no applied litter (MBC = 722, MBN = 69 mg kg(-1) soil). Enzyme activities of C (beta-glucosidase, alpha-galactosidase, beta-glucosaminidase) or N cycling (beta-glucosaminidase) were increased at litter rates greater than 6.7 Mg ha(-1). Enzyme activities of P (alkaline phosphatase) and S (arylsulfatase) mineralization showed the same response in pasture, but they were only increased at the highest (9.0, 11.2, and 13.4 Mg ha(-1)) litter application rates in cultivated sites. According to fatty acid methyl ester (FAME) analysis, the pasture soils experienced shifts to higher bacterial populations at litter rates of 6.7 Mg ha(-1), and shifts to higher fungal populations at the highest litter application rates in cultivated sites. While rates greater than 6.7 Mg ha(-1) provided rapid enhancement of the soil microbial populations

  7. Investigation and comprehensive evaluation of the litter pollution on the Heishijiao beach in Dalian

    NASA Astrophysics Data System (ADS)

    Han, Mengdi; Zhao, Kaiyuan; Zhang, Yan; Sui, Chuanguo

    2018-02-01

    From November 2015 to August 2016, this paper conducted an investigation into the classification of the litter on the Heishijiao beach in Dalian, and made a comprehensive evaluation of the litter pollution on the beach in different seasons. According to the results, the litter on the Heishijiao beach in Dalian mainly come from human’s offshore activities and other wastes, and spring is the season which witnesses the largest quantity of litter resulting from the activities. Most of the fragmental wastes are glass, plastic and paper, while there is a little metal, rubber and wooden products. On the Heishijiao beach, most of the fragmental litter are small, followed by medium and large ones; outsized wastes are rare. The quantitative density of litter is highest in winter (9.0items/m2), with the average quantitative density of 4.6 items/m2; the qualitative density of litter is highest in spring (8 g/m2), with the average qualitative density of 6.0 g/m2. The results of the comprehensive evaluation show that the litter pollution on the Heishijiao beach stays between “Average” and “Unsatisfactory”.

  8. Marine Litter Distribution and Density in European Seas, from the Shelves to Deep Basins

    PubMed Central

    Pham, Christopher K.; Ramirez-Llodra, Eva; Alt, Claudia H. S.; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B.; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L.; Huvenne, Veerle A. I.; Isidro, Eduardo; Jones, Daniel O. B.; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A.

    2014-01-01

    Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments. PMID:24788771

  9. [Effects of Cunninghamia lanceolata-broadleaved tree species mixed leaf litters on active soil organic matter].

    PubMed

    Wang, Qing-kui; Wang, Si-long; Yu, Xiao-jun; Zhang, Jian; Liu, Yan-xin

    2007-06-01

    With incubation test, this paper studied the effects of Cunninghamia lanceolata leaf litter and its mixture with the litters of main broadleaved tree species in subtropical China, such as Alnus cremastogyne, Kalopanax septemlobus and Michelia macclurei on active soil organic matter. The results showed that adding leaf litters into soil could significantly increase soil microbial biomass C and N, respiration rate and dissolved organic C, and mixed leaf litters were more effective than C. lanceolata leaf litter in increasing soil dissolved organic C. By the end of the incubation, the increment of soil microbial biomass C and N, respiration rate, and dissolved organic C in treatments C. lanceolata leaf litter and C. lanceolata-broadleaved tree species mixed leaf litters was 49% and 63%, 35% and 75%, 65% and 100%, and 66% and 108%, respectively, compared with control. The addition of leaf litters had no significant effects on soil microbial quotient and microbial biomass C/N ratio.

  10. Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau.

    PubMed

    Yue, Kai; Yang, Wanqin; Peng, Changhui; Peng, Yan; Zhang, Chuan; Huang, Chunping; Tan, Yu; Wu, Fuzhong

    2016-10-01

    Litter decomposition is a biological process fundamental to element cycling and a main nutrient source within forest meta-ecosystems, but few studies have looked into this process simultaneously in individual ecosystems, where environmental factors can vary substantially. A two-year field study conducted in an alpine forest meta-ecosystem with four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana) that varied widely in chemical traits showed that both litter species and ecosystem type (i.e., forest floor, stream and riparian zone) are important factors affecting litter decomposition, and their effects can be moderated by local-scale environmental factors such as temperature and nutrient availability. Litter decomposed fastest in the streams followed by the riparian zone and forest floor regardless of species. For a given litter species, both the k value and limit value varied significantly among ecosystems, indicating that the litter decomposition rate and extent (i.e., reaching a limit value) can be substantially affected by ecosystem type and the local-scale environmental factors. Apart from litter initial acid unhydrolyzable residue (AUR) concentration and its ratio to nitrogen concentration (i.e., AUR/N ratio), the initial nutrient concentrations of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were also important litter traits that affected decomposition depending on the ecosystem type. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of anthropogenic heavy metal contamination on litter decomposition in streams - A meta-analysis.

    PubMed

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François

    2016-03-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Temporal dynamics of phosphorus during aquatic and terrestrial litter decomposition in an alpine forest.

    PubMed

    Peng, Yan; Yang, Wanqin; Yue, Kai; Tan, Bo; Huang, Chunping; Xu, Zhenfeng; Ni, Xiangyin; Zhang, Li; Wu, Fuzhong

    2018-06-17

    Plant litter decomposition in forested soil and watershed is an important source of phosphorus (P) for plants in forest ecosystems. Understanding P dynamics during litter decomposition in forested aquatic and terrestrial ecosystems will be of great importance for better understanding nutrient cycling across forest landscape. However, despite massive studies addressing litter decomposition have been carried out, generalizations across aquatic and terrestrial ecosystems regarding the temporal dynamics of P loss during litter decomposition remain elusive. We conducted a two-year field experiment using litterbag method in both aquatic (streams and riparian zones) and terrestrial (forest floors) ecosystems in an alpine forest on the eastern Tibetan Plateau. By using multigroup comparisons of structural equation modeling (SEM) method with different litter mass-loss intervals, we explicitly assessed the direct and indirect effects of several biotic and abiotic drivers on P loss across different decomposition stages. The results suggested that (1) P concentration in decomposing litter showed similar patterns of early increase and later decrease across different species and ecosystems types; (2) P loss shared a common hierarchy of drivers across different ecosystems types, with litter chemical dynamics mainly having direct effects but environment and initial litter quality having both direct and indirect effects; (3) when assessing at the temporal scale, the effects of initial litter quality appeared to increase in late decomposition stages, while litter chemical dynamics showed consistent significant effects almost in all decomposition stages across aquatic and terrestrial ecosystems; (4) microbial diversity showed significant effects on P loss, but its effects were lower compared with other drivers. Our results highlight the importance of including spatiotemporal variations and indicate the possibility of integrating aquatic and terrestrial decomposition into a common

  13. Highly Active Ice Nuclei from Tree Leaf Litters Retain Activity for Decades

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Hill, T. C. J.

    2015-12-01

    Biogenic ice nuclei (IN) studied since the 1960s were first observed in tree leaf litters, in a few bacteria species and later in fungi and lichens. Recently, viable IN bacteria in precipitation have been used as a metric of their possible role in precipitation formation. Although bacterial IN activity is deactivated by a variety of common environmental stresses, we present data showing that IN found in a potpourri of decayed plant leaves, bacteria, molds and fungi etc. in plant litters are exceptionally stable and active over decades while in storage. As such, their atmospheric IN potential is worthy of further study due to their environmental persistence. In August 1970 litter collected in a grove of deciduous trees near Red Deer, AB, Canada was tested for IN (drop freezing technique). The sample initiated ice at -4C with 109 IN per gram of litter active at -10C. A few kilograms were stored in a plastic bag and tested every few years for IN content; the IN activity remained essentially unchanged over 40 years. In 2011, litter collected in the same grove had the same IN activity as the sample tested over the intervening 40 years. Boiling a gram sample of this litter in 100 grams of water deactivated 99 % of the IN activity down to -13C. None of 88 different bacteria cultures several of which appeared to Pseudomonads (common IN producing bacteria) from the fresh litter produced any active IN. A sample of the litter was placed on the top of a 15 cm column of laboratory grade kaolin and water dripped onto the litter. Ten days later the water reached the bottom of the column. The kaolin was dried and tested for IN. The prior essentially IN free kaolin now exhibited IN activity at -4C with 105 IN active at -10C. The litter exposed kaolin retained the IN activity for 25 years. Baking the kaolin removed the active IN. This suggests that IN activity attributed to kaolin particles sometimes seen at the nucleus of snow crystals could be of biological origin.

  14. Patient Litter System Response in a Full-Scale CH-46 Crash Test.

    PubMed

    Weisenbach, Charles A; Rooks, Tyler; Bowman, Troy; Fralish, Vince; McEntire, B Joseph

    2017-03-01

    U.S. Military aeromedical patient litter systems are currently required to meet minimal static strength performance requirements at the component level. Operationally, these components must function as a system and are subjected to the dynamics of turbulent flight and potentially crash events. The first of two full-scale CH-46 crash tests was conducted at NASA's Langley Research Center and included an experiment to assess patient and litter system response during a severe but survivable crash event. A three-tiered strap and pole litter system was mounted into the airframe and occupied by three anthropomorphic test devices (ATDs). During the crash event, the litter system failed to maintain structural integrity and collapsed. Component structural failures were recorded from the litter support system and the litters. The upper ATD was displaced laterally into the cabin, while the middle ATD was displaced longitudinally into the cabin. Acceleration, force, and bending moment data from the instrumented middle ATD were analyzed using available injury criteria. Results indicated that a patient might sustain a neck injury. The current test illustrates that a litter system, with components designed and tested to static requirements only, experiences multiple component structural failures during a dynamic crash event and does not maintain restraint control of its patients. It is unknown if a modern litter system, with components tested to the same static criteria, would perform differently. A systems level dynamic performance requirement needs to be developed so that patients can be provided with protection levels equivalent to that provided to seated aircraft occupants. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  15. Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna.

    PubMed

    Schwieder, M; Leitão, P J; Pinto, J R R; Teixeira, A M C; Pedroni, F; Sanchez, M; Bustamante, M M; Hostert, P

    2018-05-15

    The quantification and spatially explicit mapping of carbon stocks in terrestrial ecosystems is important to better understand the global carbon cycle and to monitor and report change processes, especially in the context of international policy mechanisms such as REDD+ or the implementation of Nationally Determined Contributions (NDCs) and the UN Sustainable Development Goals (SDGs). Especially in heterogeneous ecosystems, such as Savannas, accurate carbon quantifications are still lacking, where highly variable vegetation densities occur and a strong seasonality hinders consistent data acquisition. In order to account for these challenges we analyzed the potential of land surface phenological metrics derived from gap-filled 8-day Landsat time series for carbon mapping. We selected three areas located in different subregions in the central Brazil region, which is a prominent example of a Savanna with significant carbon stocks that has been undergoing extensive land cover conversions. Here phenological metrics from the season 2014/2015 were combined with aboveground carbon field samples of cerrado sensu stricto vegetation using Random Forest regression models to map the regional carbon distribution and to analyze the relation between phenological metrics and aboveground carbon. The gap filling approach enabled to accurately approximate the original Landsat ETM+ and OLI EVI values and the subsequent derivation of annual phenological metrics. Random Forest model performances varied between the three study areas with RMSE values of 1.64 t/ha (mean relative RMSE 30%), 2.35 t/ha (46%) and 2.18 t/ha (45%). Comparable relationships between remote sensing based land surface phenological metrics and aboveground carbon were observed in all study areas. Aboveground carbon distributions could be mapped and revealed comprehensible spatial patterns. Phenological metrics were derived from 8-day Landsat time series with a spatial resolution that is sufficient to capture gradual

  16. The multidimensional causal factors of 'wet litter' in chicken-meat production.

    PubMed

    Dunlop, Mark W; Moss, Amy F; Groves, Peter J; Wilkinson, Stuart J; Stuetz, Richard M; Selle, Peter H

    2016-08-15

    The problem of 'wet litter', which occurs primarily in grow-out sheds for meat chickens (broilers), has been recognised for nearly a century. Nevertheless, it is an increasingly important problem in contemporary chicken-meat production as wet litter and associated conditions, especially footpad dermatitis, have developed into tangible welfare issues. This is only compounded by the market demand for chicken paws and compromised bird performance. This review considers the multidimensional causal factors of wet litter. While many causal factors can be listed it is evident that the critical ones could be described as micro-environmental factors and chief amongst them is proper management of drinking systems and adequate shed ventilation. Thus, this review focuses on these environmental factors and pays less attention to issues stemming from health and nutrition. Clearly, there are times when related avian health issues of coccidiosis and necrotic enteritis cannot be overlooked and the development of efficacious vaccines for the latter disease would be advantageous. Presently, the inclusion of phytate-degrading enzymes in meat chicken diets is routine and, therefore, the implication that exogenous phytases may contribute to wet litter is given consideration. Opinion is somewhat divided as how best to counter the problem of wet litter as some see education and extension as being more beneficial than furthering research efforts. However, it may prove instructive to assess the practice of whole grain feeding in relation to litter quality and the incidence of footpad dermatitis. Additional research could investigate the relationships between dietary concentrations of key minerals and the application of exogenous enzymes with litter quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China

    USGS Publications Warehouse

    Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.

    2008-01-01

    The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.

  18. The effect of alum addition on microbial communities in poultry litter.

    PubMed

    Rothrock, M J; Cook, K L; Warren, J G; Sistani, K

    2008-08-01

    Alum [Al(2)(SO(4))(3).14H(2)O] is a common poultry litter amendment used to decrease water-soluble phosphorus or reduce ammonia volatilization, or both. Although the physiochemical effects of alum addition have been well researched, little attention has been given to the poultry litter microbial communities. The goal of this study was to use molecular biological methods [denaturing gradient gel electrophoresis (DGGE), community cloning, and quantitative real-time PCR] to characterize general, group-specific and pathogenic microbial communities in alum (10% wt/wt) and non-alum-treated litter. According to quantitative real-time PCR analyses, alum addition to the poultry litter resulted in significant reductions in both Campylobacter jejuni and Escherichia coli concentrations by the end of the first month of the experiment (3 log and 2 log, respectively). The concentrations of Salmonella spp. were below detection (<5 x 10(3) cell.g(-1) of litter) for the entire experiment. The DGGE analyses revealed significant reductions in the Clostridium/Eubacterium and low %GC gram-positive groups in the alum-treated litters by the end of the first month, with no bands detectable for either group after 8 wk of incubation. Conversely, minimal effects of alum addition were observed in the Actinomycetes community. The most significant shift in the microbial community (based on DGGE analyses) occurred in the fungal population, with a large increase in diversity and abundance within 1 mo of alum addition (1 dominant band on d 0 to 9 dominant bands at 4 wk). Specifically, the incidence of Aspergillus spp. increased from 0 to 50% of the sequences in fungal clone libraries (n = 80) over the course of the experiment. This suggests that the addition of alum to poultry litter potentially shifts the microbial populations from bacterially dominated to dominated by fungi. The ramifications of this shift in dominance are still unknown, and future work will be aimed at characterizing these fungi

  19. Stoichiometry and climatic stress drive respiration and nutrient dynamics of beech litter decomposition

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Hämmerle, Ieda; Zechmeister-Boltenstern, Sophie

    2010-05-01

    Little is known about how the variance in resources in terms of carbon (C), nitrogen (N), phosphorus (P) ratios affects respiration and nutrient dynamics. To elucidate how resource quantity and stoichiometry affect the decomposition process of beech (Fagus sylvatica) litter a terrestrial microcosm experiment was conducted. Our aim was to follow changes of beech litter stoichiometry and biogeochemical processes, and to quantify element losses as affected by temperature and moisture extremes. In addition to gaseous element losses (CO2) we examined the release of nutrients prone to leaching and the importance of environmental controls. We addressed mechanisms and pathways of carbon, nitrogen and phosphorus losses. In our experiment sterilised dried leaves were inoculated with a litter-soil suspension from a beech forest in order to ensure similar starting conditions. Beech litter from different Austrian sites covering C:N ratios from 45 to 66 and C:P ratios from 652 to 1467 were incubated at 15°C for six months. The water content was adjusted to 60% at regular intervals to keep the moisture constant. To monitor transient and persistent influences of environmental stress, the microcosms were subject to extreme changes in temperature (+30°C and -20°C) and moisture (draught) after an incubation time of three months. Litter stoichiometries (C:N, C:P) turned out to be strong predictors for respiration, and nitrogen, and phosphorous losses. (i) Litter with narrow litter C:nutrient ratios decomposed faster than litter with wider litter C:nutrient ratios; and therefore showed higher respiration rates. (ii) Increased nutrient losses as leachates were observed for high quality leaf litter i.e. inorganic nitrogen losses for sites with narrow litter C:N ratios and phosphate was released more quickly in sites with narrow C:P ratios. There was a strong functional response of the microbial community to environmental extremes. Respiration increased upon temperature extremes

  20. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall.

    PubMed

    Lowe, Premesh S; Duan, Wenbo; Kanfoud, Jamil; Gan, Tat-Hean

    2017-11-04

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.

  1. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall

    PubMed Central

    Kanfoud, Jamil; Gan, Tat-Hean

    2017-01-01

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. PMID:29113058

  2. Beach litter sourcing: A trawl along the Northern Ireland coastline.

    PubMed

    Williams, A T; Randerson, P; Allen, C; Cooper, J A G

    2017-09-15

    Fourteen non-recreational coastal locations in Northern Ireland were investigated as to whether beach litter deposition was related to seasonal or site specific factors. Litter items were counted in 100m width transects and 1km strand-line surveys over a five-season period (autumn to autumn). Survey sites comprised fishing ports; estuarine areas, north (high energy) and east coast (low energy) beaches. Fishing ports accumulated the most litter. In the 100m beach surveys, plastics, string and cord, bottle caps, food items, rope, and drink containers dominated. In strand-line surveys, large plastic pieces were dominant, followed by rope, string and cord, strapping bands (absent on beach surveys), cloth, wood (mainly pallets, fish boxes) and metal items. Multivariate analyses revealed major litter category differences between the ports and all other sites, with a lesser distinction between exposed and estuarine sites. There was no simple coastline trend and no apparent effect of seasonality between samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Litter aeration and spread of Salmonella in broilers.

    PubMed

    Bodí, Sara González; Garcia, Arantxa Villagra; García, Santiago Vega; Orenga, Clara Marín

    2013-08-01

    Litter quality in the poultry sector is one of the main parameters of health, productivity, and animal welfare. Therefore, innovative management methods have been developed to improve the quality of litter. One of them is litter aeration (LA) by tumbling. However, there is little information related to the effect of this technique on the spreading of pathogens of public health importance such as Salmonella. In this context, the objective of this study was to determine the epidemiology of Salmonella in poultry farms, when serial LA were implemented during the rearing cycle of broilers. For this purpose, an experimental broiler farm with 3 identical rooms was used in the study. Two rooms were assigned to the LA treatment, and the other one served as the control room. Environmental samples were taken in poultry houses after LA in 4 consecutive weeks at the end of the cycle. All samples collected were analyzed according to the standards of the International Organization for Standardization (ISO 6579:2002, Annex D). The results of this study showed that in the control and treated rooms, the percentage of positive samples for Salmonella decreased in the first 3 LA sessions (LA 1, LA 2, and LA 3). However, in the last LA session of rearing (LA 4), the percentage of positive samples increased from 8.2 to 33.2% in the control room instead the treated rooms where the positive samples decreased (P = 0.017). Thus, the aeration of the litter as litter management technique in poultry broiler production does not increase the shedding or the spread of Salmonella throughout broiler houses. In addition, it could be an effective technique to reduce the infective pressure of this bacterium in several areas of the farm or in certain moments of the rearing period with more risk of multiplication and spreading of Salmonella.

  4. Distribution of plant nutrient elements and carbon in particle size fractions of broiler litter ash

    USDA-ARS?s Scientific Manuscript database

    An estimated 10.8 million tons of broiler litter and 3.0 million tons of turkey litter were produced in the United States in 2009. Poultry litter is a mixture of manure, bedding material (e.g., wood chips, sawdust, or straw), feathers, and spilled feed. Poultry litter contains high levels of Ca, N...

  5. Biochemical Composition Suggests Different Roles of Leaf Litter and Fine Roots in Soil Carbon Formation

    NASA Astrophysics Data System (ADS)

    Xia, M.; Pregitzer, K. S.; Talhelm, A. F.

    2012-12-01

    Plant litter is a major source of soil organic carbon (C). This litter is not homogenous, but instead primarily composed of fine root and leaf litter that adapted to different physiological functions. These unique functions suggest that root and leaf litter likely have different biochemical traits, and thus different decomposition patterns. However, few studies have compared their substrate quality and contributions to soil C. Also, much less attention has been given to fine roots although they can represent a substantial litter production. Here we hypothesize that 1) leaf litter and fine roots have different substrate quality as they are highly different in biochemical composition; 2) the biochemical composition of leaf litter and fine roots responds differently to the simulated nitrogen (N) deposition. To test these hypotheses, we collected leaf litter and fine roots of Acer saccharum (the dominant species in the northern temperate ecosystems we studied) in both ambient and N addition treatment plots at four sites of Michigan N deposition gradient study. We quantified ten biochemical components thought to be important on decomposition. Strikingly, we found a consistently three-fold higher lignin concentration in fine roots than that in leaf litter (P< 0.01). On average, lignin concentration of fine roots was 45.4±0.3% while that of leaf litter was 13.5±0.2%. Lignin has been considered highly recalcitrant and hypothesized as the major precursor of humus substance. Condensed tannin (CT) concentration in fine roots (13.13±0.51%) was also substantially higher than that in leaf litter (P< 0.01, 4.63±0.42 %). Tissue CT can inhibit litter decay by both precipitating proteins and by having antimicrobial properties. In contrast, fine roots exhibited lower concentrations of non-structural carbohydrates (NSC), soluble phenolics, and holocellulose (hemicelluloses & cellulose) than leaf litter (P< 0.01). These components are considered more easily accessible, and may

  6. A test of the hierarchical model of litter decomposition.

    PubMed

    Bradford, Mark A; Veen, G F Ciska; Bonis, Anne; Bradford, Ella M; Classen, Aimee T; Cornelissen, J Hans C; Crowther, Thomas W; De Long, Jonathan R; Freschet, Gregoire T; Kardol, Paul; Manrubia-Freixa, Marta; Maynard, Daniel S; Newman, Gregory S; Logtestijn, Richard S P; Viketoft, Maria; Wardle, David A; Wieder, William R; Wood, Stephen A; van der Putten, Wim H

    2017-12-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO 2 . Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.

  7. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    NASA Astrophysics Data System (ADS)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-02-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg-1 soil on Cynodon dactylon litter (3 g kg-1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.

  8. Benthic marine litter in four Gulfs in Greece, Eastern Mediterranean; abundance, composition and source identification

    NASA Astrophysics Data System (ADS)

    Koutsodendris, Andreas; Papatheodorou, George; Kougiourouki, Ourania; Georgiadis, Michalis

    2008-04-01

    The types, abundance, distribution and sources of benthic marine litter found in four Greek Gulfs (Patras, Corinth, Echinades and Lakonikos) were studied using bottom trawl nets. Mean distribution and weight densities range between 72-437 Item/km 2 and 6.7-47.4 kg/km 2. Litter items were sorted into material and usage categories. Plastic litter (56%) is the most dominant material category followed by metal (17%) and glass (11%). Beverage packaging (32%) is the dominant usage category followed by general packaging (28%) and food packaging (21%). Based on the typological results three dominant litter sources were identified; land-based, vessel-based and fishery-based. Application of factor analysis (R- and Q-mode) conducted on both material and usage litter datasets confirmed the existence of the three dominant litter sources. Q-mode analysis further resulted in the quantification of the litter sources; land-based ones provided the majority (69%) of the total litter items followed by vessel-based (26%) and fishery-based (5%) sources. Diverse environmental parameters influence significantly these amounts among the four Gulfs.

  9. Application of gypsum to control P runoff from poultry litter fertilization of pasture

    USDA-ARS?s Scientific Manuscript database

    This paper will discuss the utilization of gypsum (CaSO4 .2H2O) to reduce P losses from surface runoff when poultry litter is used as a fertilizer source in agriculture. Utilization of poultry litter as a fertilizer source is common in regions with intense poultry production. While poultry litter ...

  10. Identifying aboveground wood fiber potentials in New York State

    Treesearch

    Eric H. Wharton

    1984-01-01

    New York forests are made up of more than just the growing stock that is measured during conventional forest inventories. A biomass inventory, completed in 1980, showed that New York commercial forest lands contain nearly 1,164.4 million green tons of aboveground tree biomass, or an average of 75.6 green tons per acre. Conventional growing stock accounted for 57...

  11. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life.

    PubMed

    Bergmann, Melanie; Lutz, Birgit; Tekman, Mine B; Gutow, Lars

    2017-12-15

    Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9-524gm -2 and were similar to those from densely populated areas. Plastics accounted for >80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Bioindicators for monitoring marine litter ingestion and its impacts on Mediterranean biodiversity.

    PubMed

    Fossi, Maria Cristina; Pedà, Cristina; Compa, Montserrat; Tsangaris, Catherine; Alomar, Carme; Claro, Francoise; Ioakeimidis, Christos; Galgani, Francois; Hema, Tatjana; Deudero, Salud; Romeo, Teresa; Battaglia, Pietro; Andaloro, Franco; Caliani, Ilaria; Casini, Silvia; Panti, Cristina; Baini, Matteo

    2018-06-01

    The Mediterranean Sea has been described as one of the most affected areas by marine litter in the world. Although effects on organisms from marine plastic litter ingestion have been investigated in several oceanic areas, there is still a lack of information from the Mediterranean Sea. The main objectives of this paper are to review current knowledge on the impact of marine litter on Mediterranean biodiversity, to define selection criteria for choosing marine organisms suitable for use as bioindicator species, and to propose a methodological approach to assessing the harm related to marine litter ingestion in several Mediterranean habitats and sub-regions. A new integrated monitoring tool that would provide the information necessary to design and implement future mitigation actions in the Mediterranean basin is proposed. According to bibliographic research and statistical analysis on current knowledge of marine litter ingestion, the area of the Mediterranean most studied, in terms of number of species and papers in the Mediterranean Sea is the western sub-area as well as demersal (32.9%) and pelagic (27.7%) amongst habitats. Applying ecological and biological criteria to the most threatened species obtained by statistical analysis, bioindicator species for different habitats and monitoring scale were selected. A threefold approach, simultaneously measuring the presence and effects of plastic, can provide the actual harm and sub-lethal effects to organisms caused by marine litter ingestion. The research revealed gaps in knowledge, and this paper suggests measures to close the gap. This and the selection of appropriate bioindicator species would represent a step forward for marine litter risk assessment, and the implementation of future actions and mitigation measures for specific Mediterranean areas, habitats and species affected by marine litter ingestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Do Laboratory Mouse Females that Lose Their Litters Behave Differently around Parturition?

    PubMed Central

    Weber, Elin M.; Hultgren, Jan

    2016-01-01

    Efficiency in laboratory mouse breeding is hampered by poor reproductive performance, including the loss of entire litters shortly after birth. However, the underlying mechanisms are not yet fully understood and establishing the cause of death in laboratory mouse pups can be complicated. Newborn mouse pups are generally hidden in nests, dead pups are often eaten by the female, and the widespread practice of leaving periparturient females undisturbed complicates inspection, which may delay the discovery of pup loss. In order to efficiently prevent problems with litter loss, it is important to find key factors for survival. We investigated differences in periparturient behavior between female laboratory mice whose pups survived until weaning and females whose entire litters were lost. Video recordings of 82 primiparous females of the C57BL/6 strain or knockouts with C57BL/6 background were used. The mice were observed from 24 h before until 24 h after parturition and female behaviors coded using a pre-established ethogram. The relationship between behavior and survival was analyzed using logistic models, where litter survival was regressed on the proportion of 30-s observations with at least one occurrence of the behavior. We found that females with surviving litters performed more nest building behavior during the last 24 h before parturition (p = 0.004) and spent less time outside the nest during the entire observation period (p = 0.001). Increased litter survival was also associated with more passive maternal behaviors and the female ignoring still pups less. Females that lost their litters performed more parturition-related behaviors, suggesting prolonged labor. The results indicate that maternal behavior plays a significant role in laboratory mouse pup survival. Complications at parturition also contribute to litter mortality. PMID:27575720

  14. Do Laboratory Mouse Females that Lose Their Litters Behave Differently around Parturition?

    PubMed

    Weber, Elin M; Hultgren, Jan; Algers, Bo; Olsson, I Anna S

    2016-01-01

    Efficiency in laboratory mouse breeding is hampered by poor reproductive performance, including the loss of entire litters shortly after birth. However, the underlying mechanisms are not yet fully understood and establishing the cause of death in laboratory mouse pups can be complicated. Newborn mouse pups are generally hidden in nests, dead pups are often eaten by the female, and the widespread practice of leaving periparturient females undisturbed complicates inspection, which may delay the discovery of pup loss. In order to efficiently prevent problems with litter loss, it is important to find key factors for survival. We investigated differences in periparturient behavior between female laboratory mice whose pups survived until weaning and females whose entire litters were lost. Video recordings of 82 primiparous females of the C57BL/6 strain or knockouts with C57BL/6 background were used. The mice were observed from 24 h before until 24 h after parturition and female behaviors coded using a pre-established ethogram. The relationship between behavior and survival was analyzed using logistic models, where litter survival was regressed on the proportion of 30-s observations with at least one occurrence of the behavior. We found that females with surviving litters performed more nest building behavior during the last 24 h before parturition (p = 0.004) and spent less time outside the nest during the entire observation period (p = 0.001). Increased litter survival was also associated with more passive maternal behaviors and the female ignoring still pups less. Females that lost their litters performed more parturition-related behaviors, suggesting prolonged labor. The results indicate that maternal behavior plays a significant role in laboratory mouse pup survival. Complications at parturition also contribute to litter mortality.

  15. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis

    USGS Publications Warehouse

    Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.

    2014-01-01

    The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in

  16. Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition

    USGS Publications Warehouse

    van Huysen, Tiff L.; Perakis, Steven; Harmon, Mark E.

    2016-01-01

    We conclude that litter P concentrations and to some extent soil P may influence litter nutrient dynamics during decomposition, resulting in a convergence of element ratios that reflect the balance of substrate decomposition and microbial nutrient stoichiometry.

  17. WETLAND INVERTEBRATE COMMUNITY RESPONSES TO VARYING EMERGENT LITTER IN A PRAIRIE POTHOLE EMERGENT MARSH

    EPA Science Inventory

    Plant litter produced in the interior of dense emergent stands may directly or indirectly influence invertebrate communities. Low litter may provide structure and refuge to invertebrates while high litter may shade out vegetation and algae and decrease oxygen concentrations. With...

  18. Biochemical Control of Fungal Biomass and Enzyme Production During Native Hawaiian Litter Degradation

    NASA Astrophysics Data System (ADS)

    Amatangelo, K. L.; Cordova, T. P.; Vitousek, P. M.

    2007-12-01

    Microbial growth and enzyme production during decomposition is controlled by the availability of carbon substrates, essential elements, and the ratios of these (such as lignin:N). We manipulated carbon:nutrient stoichiometry during decomposition using a natural fertility gradient in Hawaii and litter of varying initial biochemistry. We collected freshly senesced litter of seven biochemically distinct species from three sites offering differing levels of N, P, cations, and 15N , but similar yearly rainfall and temperature patterns. Litter types were decomposed at both the sites they were collected, and at the other site(s) that species was found. Litter was collected at multiple time points, and after one year of decomposition, calculated K constants varied an order of magnitude, from 0.276 to 2.76. Decomposition rates varied significantly with both litter site of origin and deployment, except at the oldest, P-limited site, where litter site of origin was not significantly correlated with decomposition within species. As microbial exocellular enzymes provide the catalyst for the breakdown of organic molecules including phenols, cellulose, and cutin, we assayed polyphenol oxidase, cellobiohydrolase, cutinase, chitinase, and lignin peroxidase to evaluate the breakdown sequence of different litter types. To measure the fungal biomass accumulating during decomposition, we extracted (22E)-Ergosta-5,7,22-trien-3beta- ol (ergosterol) on a subset of samples. The production of particular exocellular enzymes on litter species responded distinctly to origin and decomposition sites: after six months, chitinase and cellobiohydrolase were significantly affected by origin site, whereas polyphenol oxidase activity was controlled by deployment site. We conclude that site characteristics can alter the interaction between litter carbon:nutrient ratios and decomposition rate, mediated through microbial biomass and enzyme production.

  19. Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landeen, D.S.

    1994-09-01

    Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated thatmore » plant litter and cryptogams may serve as effective ``natural`` monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ``cryptogams`` describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants.« less

  20. Biocrude oils from the fast pyrolysis of poultry litter and hardwood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agblevor, F.A., E-mail: Fagblevo@vt.ed; Beis, S.; Kim, S.S.

    2010-02-15

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultrymore » litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.« less

  1. Thermal Inactivation of Desiccation-Adapted Salmonella spp. in Aged Chicken Litter

    PubMed Central

    Chen, Zhao; Diao, Junshu; Dharmasena, Muthu; Ionita, Claudia; Rieck, James

    2013-01-01

    Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter was investigated in comparison with that in a nonadapted control to examine potential cross-tolerance of desiccation-adapted cells to heat treatment. A mixture of four Salmonella serovars was inoculated into the finished compost with 20, 30, 40, and 50% moisture contents for a 24-h desiccation adaptation. Afterwards, the compost with desiccation-adapted cells was inoculated into the aged chicken litter with the same moisture content for heat treatments at 70, 75, 80, 85, and 150°C. Recovery media were used to allow heat-injured cells to resuscitate. A 5-log reduction in the number of the desiccation-adapted cells in aged chicken litter with a 20% moisture content required >6, >6, ∼4 to 5, and ∼3 to 4 h of exposure at 70, 75, 80, and 85°C, respectively. As a comparison, a 5-log reduction in the number of nonadapted control cells in the same chicken litter was achieved within ∼1.5 to 2, ∼1 to 1.5, ∼0.5 to 1, and <0.5 h at 70, 75, 80, and 85°C, respectively. The exposure time required to obtain a 5-log reduction in the number of desiccation-adapted cells gradually became shorter as temperature and moisture content were increased. At 150°C, desiccation-adapted Salmonella cells survived for 50 min in chicken litter with a 20% moisture content, whereas control cells were detectable by enrichment for only 10 min. Our results demonstrated that the thermal resistance of Salmonella in aged chicken litter was increased significantly when the cells were adapted to desiccation. This study also validated the effectiveness of thermal processing being used for producing chicken litter free of Salmonella contamination. PMID:24014540

  2. Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter.

    PubMed

    Chen, Zhao; Diao, Junshu; Dharmasena, Muthu; Ionita, Claudia; Jiang, Xiuping; Rieck, James

    2013-11-01

    Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter was investigated in comparison with that in a nonadapted control to examine potential cross-tolerance of desiccation-adapted cells to heat treatment. A mixture of four Salmonella serovars was inoculated into the finished compost with 20, 30, 40, and 50% moisture contents for a 24-h desiccation adaptation. Afterwards, the compost with desiccation-adapted cells was inoculated into the aged chicken litter with the same moisture content for heat treatments at 70, 75, 80, 85, and 150°C. Recovery media were used to allow heat-injured cells to resuscitate. A 5-log reduction in the number of the desiccation-adapted cells in aged chicken litter with a 20% moisture content required >6, >6, ∼4 to 5, and ∼3 to 4 h of exposure at 70, 75, 80, and 85°C, respectively. As a comparison, a 5-log reduction in the number of nonadapted control cells in the same chicken litter was achieved within ∼1.5 to 2, ∼1 to 1.5, ∼0.5 to 1, and <0.5 h at 70, 75, 80, and 85°C, respectively. The exposure time required to obtain a 5-log reduction in the number of desiccation-adapted cells gradually became shorter as temperature and moisture content were increased. At 150°C, desiccation-adapted Salmonella cells survived for 50 min in chicken litter with a 20% moisture content, whereas control cells were detectable by enrichment for only 10 min. Our results demonstrated that the thermal resistance of Salmonella in aged chicken litter was increased significantly when the cells were adapted to desiccation. This study also validated the effectiveness of thermal processing being used for producing chicken litter free of Salmonella contamination.

  3. Biocrude oils from the fast pyrolysis of poultry litter and hardwood.

    PubMed

    Agblevor, F A; Beis, S; Kim, S S; Tarrant, R; Mante, N O

    2010-02-01

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.

  4. Decreasing phosphorus runoff losses from land-applied poultry litter with dietary modifications and alum addition.

    PubMed

    Smith, Douglas R; Moore, P A; Miles, D M; Haggard, B E; Daniel, T C

    2004-01-01

    Phosphorus (P) losses from pastures fertilized with poultry litter contribute to the degradation of surface water quality in the United States. Dietary modification and manure amendments may reduce potential P runoff losses from pastures. In the current study, broilers were fed a normal diet, phytase diet, high available phosphorus (HAP) corn diet, or HAP corn + phytase diet. Litter treatments were untreated control and alum added at 10% by weight between flocks. Phytase and HAP corn diets reduced litter dissolved P content in poultry litter by 10 and 35%, respectively, compared with the normal diet (789 mg P kg(-1)). Alum treatment of poultry litter reduced the amount of dissolved P by 47%, while a 74% reduction was noted after alum treatment of litter from the HAP corn + phytase diet. The P concentrations in runoff water were highest from plots receiving poultry litter from the normal diet, whereas plots receiving poultry litter from phytase and HAP corn diets had reduced P concentrations. The addition of alum to the various poultry litters reduced P runoff by 52 to 69%; the greatest reduction occurred when alum was used in conjunction with HAP corn and phytase. This study demonstrates the potential added benefits of using dietary modification in conjunction with manure amendments in poultry operations. Integrators and producers should consider the use of phytase, HAP corn, and alum to reduce potential P losses associated with poultry litter application to pastures.

  5. Contrasting effects of plant species traits and moisture on the decomposition of multiple litter fractions.

    PubMed

    Riggs, Charlotte E; Hobbie, Sarah E; Cavender-Bares, Jeannine; Savage, Jessica A; Wei, Xiaojing

    2015-10-01

    Environmental variation in moisture directly influences plant litter decomposition through effects on microbial activity, and indirectly via plant species traits. Whether the effects of moisture and plant species traits are mutually reinforcing or counteracting during decomposition are unknown. To disentangle the effects of moisture from the effects of species traits that vary with moisture, we decomposed leaf litter from 12 plant species in the willow family (Salicaceae) with different native habitat moisture preferences in paired mesic and wetland plots. We fit litter mass loss data to an exponential decomposition model and estimated the decay rate of the rapidly cycling litter fraction and size of the remaining fraction that decays at a rate approaching zero. Litter traits that covaried with moisture in the species' native habitat significantly influenced the decomposition rate of the rapidly cycling litter fraction, but moisture in the decomposition environment did not. In contrast, for the slowly cycling litter fraction, litter traits that did not covary with moisture in the species' native habitat and moisture in the decomposition environment were significant. Overall, the effects of moisture and plant species traits on litter decomposition were somewhat reinforcing along a hydrologic gradient that spanned mesic upland to wetland (but not permanently surface-saturated) plots. In this system, plant trait and moisture effects may lead to greater in situ decomposition rates of wetland species compared to upland species; however, plant traits that do not covary with moisture will also influence decomposition of the slowest cycling litter fraction.

  6. [Litter decomposition and its main affecting factors in tidal marshes of Minjiang River Estuary, East China].

    PubMed

    Zhang, Lin-Hai; Zeng, Cong-Sheng; Zhang, Wen-Juan; Wang, Tian-E; Tong, Chuan

    2012-09-01

    By using litterbag method, this paper studied the decomposition of the leaf- and flower litters of two emergent macrophytes, native species Phragmites australis and invasive species Spartina alterniflora, and related affecting factors in the Minjiang River estuary of East China. In the decomposition process of the litters, the decay of standing litter (0-90 days) was an important period, and the loss rate of the flower- and leaf litters dry mass of P. australis and S. alterniflora was 15.0 +/- 3.5% and 13.3 +/- 1.1%, and 31.9 +/- 1.1% and 20.8 +/- 1.4%, respectively. During lodging decay period (91-210 days), the loss rate of the flower- and leaf litters dry mass of P. australis and S. alterniflora was 69.5 +/- 0.6% and 71.5 +/- 2.5%, and 76.8 +/- 1.9% and 67.5 +/- 2.1%, respectively. In standing decay period, the decomposition rate of the two plants litters was positively correlated with the litters C/N but negatively correlated to the litters N/P, and the litters P was an important factor limiting the litters decay. In lodging decay period, the effects of the litters C/N, C/P, and N/P decreased, while the environment factors (climate, soil moisture, soil acidity and salinity, and sediment properties) acted more important roles. The differences in the factors affecting the decay of the litters in different decomposition periods were mainly related to the micro-environment and tidal process for the two plant communities.

  7. Compositional aspects of herbaceous litter decomposition in the freshwater marshes of the Florida Everglades

    USDA-ARS?s Scientific Manuscript database

    Litter decomposition in wetlands is an important component of ecosystem function in these detrital systems. In oligotrophic wetlands, such as the Florida Everglades, litter decomposition processes are dependent on nutrient availability and litter quality. However, not much is known about how the che...

  8. Dynamics of the Leaf-Litter Arthropod Fauna Following Fire in a Neotropical Woodland Savanna

    PubMed Central

    Vasconcelos, Heraldo L.; Pacheco, Renata; Silva, Raphael C.; Vasconcelos, Pedro B.; Lopes, Cauê T.; Costa, Alan N.; Bruna, Emilio M.

    2009-01-01

    Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of

  9. Growth of precommercially thinned loblolly pine 4 years following application of poultry litter

    Treesearch

    Scott D. Roberts; Alex L. Friend; Stephen H. Schoenholtz

    2006-01-01

    Application of poultry litter to southern pine stands represents a potentially attractive litter disposal option. Many pine stands are nutrient-limited and might respond positively to the added nutrients. However, the ability of pine stands to respond to nutrients contained in the litter, as well as contain the nutrients on site, has not been thoroughly investigated....

  10. Tenacity of low-pathogenic avian influenza viruses in different types of poultry litter.

    PubMed

    Reis, A; Stallknecht, D; Ritz, C; García, M

    2012-08-01

    To determine the risk of infection associated with exposure to low-pathogenic avian influenza (AI) virus-contaminated poultry litter, the tenacity of low pathogenic A/Ck/CA/431/00(H6N2), A/Mallard/MN/355779/00(H5N2), and A/turkey/Ohio/313053/04(H3N2) was evaluated. Viral stocks were incubated with poultry litter from commercial flocks at 25°C. Three types of poultry litter, wood shavings, shavings plus gypsum, and shavings plus peanut hulls, from commercial broiler flocks were used. The 3 low-pathogenic avian influenza viruses retained infectivity for one day in wood shavings and shavings plus peanut hulls litter types, whereas in wood shavings plus gypsum, litter viruses remained infective for up to 3 d. In contrast to the survivability in litter, all the viruses maintained infectivity in water for 4 d at titers of log(10)4.5. The infectivity of A/Ck/CA/431/00(H6N2) shed by experimentally infected layers, broilers, and turkeys was retained for one day, independently of the type of litter. In commercial production where a high density of birds are housed, the viral load shed by an infected flock will be significantly higher than the viral load shed 3 d postinfection obtained under the experimental conditions used in this study. Therefore proper management and disposal of poultry by products, such as windrow composting of litter and the composting of carcasses during an AI outbreak should be implemented.

  11. Quicklime treatment and stirring of different poultry litter substrates for reducing pathogenic bacteria counts.

    PubMed

    Lopes, M; Roll, V F B; Leite, F L; Dai Prá, M A; Xavier, E G; Heres, T; Valente, B S

    2013-03-01

    Testing different management practices can help to identify conditions that decrease or even eliminate pathogenic bacteria in poultry litter. A trial was conducted to evaluate the effects of daily manual stirring (rotation of the litter with a pitchfork) for the first 14 d of a bird's life (WDR), in 3 types of poultry litter substrates and quicklime treatment (CaO) during layout time between flocks on pathogenic bacteria occurrence (cfu). A total of 216 male Cobb broilers were randomly allotted to 18 pens with new litter (experimental unit). A split-plot design, with 6 treatments allotted to the main plots, was used: 1) wood shavings (WS) + WDR, 2) WS without stirring up to 14 d (WODR), 3) rice hulls (RIH) + WDR, 4) RIH + WODR, 5) mixture of 50% RIH and WS + WDR, and 6) mixture of 50% RIH and WS + WODR. Two treatments were allotted to the subplots: 0 and 300 g of CaO•m(-2) litter. After depopulation, litter samples were collected, and CaO was incorporated into the litter in the designated half of each pen. The cfu from litter samples after 7 d of the quicklime treatment were counted on Chapman agar, brain heart infusion media, and MacConkey agar. The data were analyzed using ANOVA, and the means were compared by least squares means (P < 0.05). Neither the type of substrate nor the act of stirring affected the cfu. The incorporation of 300 g of CaO•m(-2) litter efficiently reduced the cfu observed on brain heart infusion, Chapman agar, and MacConkey agar media by 57.2, 66.9, and 92.1%, respectively, compared with control (6.4, 17.9, and 46.1%; P < 0.001). In conclusion, the incorporation of 300 g/m(-2) of quicklime in poultry litter reduces the cfu, regardless of the substrate and stirring performed.

  12. Litter survey : status report 2.

    DOT National Transportation Integrated Search

    1979-01-01

    This report discusses the results of three series of litter pickups at twenty 0.1-mile long sites on Virginia highways 4 sites on the interstate system, and 8 each on the primary and secondary systems. This study is a continuing effort to monitor qua...

  13. Ecohydrology of the wetland-forestland interface: hydrophobicity in leaf litter and its potential effect on surface evaporation

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander

    2017-04-01

    Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to

  14. Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna

    Treesearch

    R. Flint Hughes; Seeven R. Archer; Gegory P. Asner; Carol A. Wessman; Chad McMurtry; Jim Nelson; R. James. Ansley

    2006-01-01

    When woody plant abundance increases in grasslands and savannas, a phenomenon widely observed worldwide, there is considerable uncertainty as to whether aboveground net primary productivity (ANPP) and ecosystem carbon (C) and nitrogen (N) pools increase, decrease, or remain the same. We estimated ANPP and C and N pools in aboveground vegetation and surface soils on...

  15. Epidemiology of infection by nontuberculous mycobacteria. VIII. Absence of mycobacteria in chicken litter.

    PubMed

    Falkinham, J O; George, K L; Parker, B C

    1989-06-01

    Overlap in the geographic distributions of (1) higher frequencies of persons reacting to antigens prepared from the Mycobacterium avium, M. intracellulare, and M. scrofulaceum (MAIS) group; (2) higher frequencies of isolation from natural waters and soils; (3) higher densities of farms producing broilers (chicken) in the southeastern United States raises the question of whether MAIS organisms occur abundantly in chicken litter (pine bark shavings containing avian fecal material) and whether litter may be a potential source of animal or human infection through its subsequent use as a fertilizer or feed supplement. We show here that potentially pathogenic mycobacteria were seldom recovered from chicken litter containing avian fecal material. Further, litter appears bactericidal to these organisms in that less than 1% of cells inoculated survived more than 6 wk, probably because of the high pH of litters.

  16. Arsenic speciation and reactivity in poultry litter

    USGS Publications Warehouse

    Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.

    2003-01-01

    Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (< 15 mg kg-1) was found in long-term PL-a mended agricultural surface soils. This suggests that As in the PL may have undergone surface and subsurface transport processes. Our research results raise concerns about long-term PL amendment effects on As contamination in surrounding soilwater environments.

  17. Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling.

    PubMed

    Quested, Helen M; Press, Malcolm C; Callaghan, Terry V

    2003-05-01

    Hemiparasitic angiosperms concentrate nutrients in their leaves and also produce high quality litter, which can decompose faster and release more nutrients than that of surrounding species. The impact of these litters on plant growth may be particularly important in nutrient-poor communities where hemiparisites can be abundant, such as the sub-Arctic. We tested the hypothesis that plant growth is enhanced by the litter of the hemiparasite Bartsia alpina, in comparison with litter of co-occurring dwarf shrub species, using a pot based bioassay approach. Growth of Betula nana and Poa alpina was up to 51% and 41% greater, respectively, in the presence of Bartsia alpina litter than when grown with dwarf shrub litter (Vaccinium uliginosum, Betula nana and Empetrum nigrum subsp. hermaphroditum). The nutrient concentrations of Betula nana plants grown with Bartsia alpina litter were almost double those of plants grown with dwarf shrub litter, and a significantly greater proportion of biomass was allocated to shoots rather than roots, strongly suggesting that nutrient availability was higher where Bartsia alpina litter was present. The presence of litter from dwarf shrubs, or the moss Hylocomium splendens, did not reduce the positive effect of Bartsia alpina litter on plant growth. E. nigrum litter did not appear to affect plant growth substantially differently from litter of other dwarf shrub species, despite earlier reports of its allelopathic action. The enhanced nutrient uptake and growth of plants in the presence of Bartsia alpina (and potentially other hemiparasitic species) litter could have important implications for communities in which it occurs, including enhanced survival of seedlings of co-occurring species and increased resource patchiness.

  18. Influence of Litter Diversity on Dissolved Organic Matter Release and Soil Carbon Formation in a Mixed Beech Forest

    PubMed Central

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow. PMID:25486628

  19. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    PubMed

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  20. Characteristics of train noise in above-ground and underground stations with side and island platforms

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  1. Aboveground tree biomass on productive forest land in Alaska.

    Treesearch

    John Yarie; Delbert Mead

    1982-01-01

    Total aboveground woody biomass of trees on forest land that can produce 1.4 cubic m eters per hectare per year of industrial wood in Alaska is 1.33 billion metric tons green weight. The estimated energy value of the standing woody biomass is 11.9 x 10'5 Btu's. Statewide tables of biomass and energy values for softwoods, hardwoods, and species groups are...

  2. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    DTIC Science & Technology

    2002-10-01

    Contaminant of Concern by Mediaa Media Number of Sites Groundwater 380 Soil 372 Sediment 154 Surface Water 86 Debris 77 Sludge 45 Solid Waste 30 Leachate ...issue paper does not address three technologies that have been used to treat water containing arsenic: • Biological treatment • Phytoremediation ...arsenic in water, and no aboveground treatments of groundwater conducted at full scale were found. Phytoremediation and electrokinetics are not

  3. Carbon and nitrogen loss during initial erosion processes under litter cover

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Kühn, Peter; Scholten, Thomas

    2013-04-01

    Soil erosion translocates carbon (C) and nitrogen (N) from the soil pool. In natural or near-natural ecosystems like forests the soil is usually covered by litter. It can be assumed that litter decomposition and dust particles adhered on the surface of the leaves contribute to C and N fluxes during erosion processes as well. To our knowledge, the contribution of these compartments to the C and N balance of soil erosion is not yet known. As part of the "New Integrated Litter Experiment" within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" we conducted a rainfall simulation experiment to quantify the role of litter cover for C and N fluxes during soil erosion in subtropical China. 96 mini runoff plots (40cm x 40cm) were established and divided into four blocks, two of them replicates. Seven different domestic litter species were used in this study combined to 1-species, 2-species and 4-species mixtures and complemented by none species plots (bare ground). Erosion processes were initiated by artificial rainfall using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Sediment discharge and runoff volume were measured every 5 minutes for 20 minutes of rainfall duration and filtrated in the laboratory. Two time steps of rainfall simulation were carried out (summer 2012 and autumn 2012). Total C and N content were quantified from the solid sediment and the liquid runoff volume. Leaf decomposition rates were calculated based on the mass, leaf litter coverage was measured and loss of C and N contents from the decomposing leaves were provided by other project members. Additionally, C and N content of corresponding soils were designated. Lab work and statistical analysis are still ongoing. First results show that C and N concentrations of runoff and sediment are slightly higher for plots covered by litter than bare plots during the first run in summer 2012. It seems that 4-species plots have the highest C and N flux during

  4. Role of Reactive Mn Complexes in a Litter Decomposition Model System

    NASA Astrophysics Data System (ADS)

    Nico, P. S.; Keiluweit, M.; Bougoure, J.; Kleber, M.; Summering, J. A.; Maynard, J. J.; Johnson, M.; Pett-Ridge, J.

    2012-12-01

    The search for controls on litter decomposition rates and pathways has yet to return definitive characteristics that are both statistically robust and can be understood as part of a mechanistic or numerical model. Herein we focus on Mn, an element present in all litter that is likely an active chemical agent of decomposition. Berg and co-workers (2010) found a strong correlation between Mn concentration in litter and the magnitude of litter degradation in boreal forests, suggesting that litter decomposition proceeds more efficiently in the presence of Mn. Although there is much circumstantial evidence for the potential role of Mn in lignin decomposition, few reports exist on mechanistic details of this process. For the current work, we are guided by the hypothesis that the dependence of decomposition on Mn is due to Mn (III)-oxalate complexes act as a 'pretreatment' for structurally intact ligno-carbohydrate complexes (LCC) in fresh plant cell walls (e.g. in litter, root and wood). Manganese (III)-ligand complexes such as Mn (III)-oxalate are known to be potent oxidizers of many different organic and inorganic compounds. In the litter system, the unique property of these complexes may be that they are much smaller than exo-enzymes and therefore more easily able to penetrate LCC complexes in plant cell walls. By acting as 'diffusible oxidizers' and reacting with the organic matrix of the cell wall, these compounds can increase the porosity of fresh litter thereby facilitating access of more specific lignin- and cellulose decomposing enzymes. This possibility was investigated by reacting cell walls of single Zinnia elegans tracheary elements with Mn (III)-oxalate complexes in a continuous flow reactor. The uniformity of these individual plant cells allowed us to examine Mn (III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as IR and X-ray spectromicroscopy. This presentation will

  5. Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems.

    PubMed

    Ali, Arshad; Mattsson, Eskil

    2017-11-15

    The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R 2 =0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and

  6. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system.

    PubMed

    Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling

    2014-01-01

    Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.

  7. Plant, fungal, bacterial, and nitrogen interactions in the litter layer of a native Patagonian forest.

    PubMed

    Vivanco, Lucía; Rascovan, Nicolás; Austin, Amy T

    2018-01-01

    Plant-microbial interactions in the litter layer represent one of the most relevant interactions for biogeochemical cycling as litter decomposition is a key first step in carbon and nitrogen turnover. However, our understanding of these interactions in the litter layer remains elusive. In an old-growth mixed Nothofagus forest in Patagonia, we studied the effects of single tree species identity and the mixture of three tree species on the fungal and bacterial composition in the litter layer. We also evaluated the effects of nitrogen (N) addition on these plant-microbial interactions. In addition, we compared the magnitude of stimulation of litter decomposition due to home field advantage (HFA, decomposition occurs more rapidly when litter is placed beneath the plant species from which it had been derived than beneath a different plant species) and N addition that we previously demonstrated in this same forest, and used microbial information to interpret these results. Tree species identity had a strong and significant effect on the composition of fungal communities but not on the bacterial community of the litter layer. The microbial composition of the litter layer under the tree species mixture show an averaged contribution of each single tree species. N addition did not erase the plant species footprint on the fungal community, and neither altered the bacterial community. N addition stimulated litter decomposition as much as HFA for certain tree species, but the mechanisms behind N and HFA stimulation may have differed. Our results suggest that stimulation of decomposition from N addition might have occurred due to increased microbial activity without large changes in microbial community composition, while HFA may have resulted principally from plant species' effects on the litter fungal community. Together, our results suggest that plant-microbial interactions can be an unconsidered driver of litter decomposition in temperate forests.

  8. Forest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest

    PubMed Central

    Li, Han; Xu, Liya; Wu, Fuzhong; Yang, Wanqin; Ni, Xiangyin; He, Jie; Tan, Bo; Hu, Yi

    2016-01-01

    The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year. PMID:26849120

  9. Assessment of frequent litter amendment application on ammonia emission from broilers operations.

    PubMed

    Li, Hong; Lin, Chongyang; Collier, Stephen; Brown, William; White-Hansen, Susan

    2013-04-01

    Litter amendments have been used to control the ammonia (NH3) emission from the broiler litter during the brooding period. One of the commercially available litter amendments, sodium bisulfate, was frequently applied on the litter with two different rates on weekly basis in a laboratory setup and with a single rate on biweekly basis under field conditions. Repeated application ofsodium bisulfate led to significant reduction in NH3 emissions from broilers. The magnitude of NH3 emission reduction increases with the application rate of sodium bisulfate. The reduction rates of cumulative emissions with 366 g/wk-m2 (75 lb/wk-1000 ft) rate (from 14% to 64.5%) were higher than the reduction rate of 183 g/wk-m2 (37.5 lb/wk-1000 ft2) rate (from 0% to 55%) from 28 to 61 days of age. The cumulative NH3 emission was reduced by 51.7% with 244 g/2 wk-m2 (50 lb/2 wk-1000 ft2) rate over a three-flockperiod (8-wk average grow-out per flock) under field production conditions. Sodium bisulfate application showed no significant difference on body weight and feed conversion efficiency. However, footpad quality was significantly improved by sodium bisulfate application. Litter pH and ammonia nitrogen level of the litter were decreased by sodium bisulfate application with both rates. Organic and total nitrogen contents in the litter were higher, whereas less nitrogen was emitted as NH3. The laboratory-scale findings of emission reduction by the additives should be considered to be preliminary if the additives are to be applied under commercial production settings. This work demonstrated that frequent litter amendment application can be used to reduce NH3 emissions from broiler houses, with no adverse effect on the animal production performances. The NH3 reduction rates could vary with different application frequencies and rates. Using litter amendment during broiler grow-out to lower NH3 emissions should be applicable to boiler production systems. The results of this study also

  10. Bacterial content in runoff from simulated rainfall applied to plots amended with poultry litter

    USDA-ARS?s Scientific Manuscript database

    To evaluate potential bacterial runoff from poultry litter, litter was applied to test plots and exposed to simulated rainfall 1, 8 or 15 d after litter application. Runoff samples were tested for Salmonella and Campylobacter, two bacterial pathogens commonly associated with poultry, as well as com...

  11. Metal release from contaminated leaf litter and leachate toxicity for the freshwater crustacean Gammarus fossarum.

    PubMed

    Maunoury-Danger, Florence; Felten, Vincent; Bojic, Clément; Fraysse, Fabrice; Cosin Ponce, Mar; Dedourge-Geffard, Odile; Geffard, Alain; Guérold, François; Danger, Michael

    2018-04-01

    Industrialization has left large surfaces of contaminated soils, which may act as a source of pollution for contiguous ecosystems, either terrestrial or aquatic. When polluted sites are recolonized by plants, dispersion of leaf litter might represent a non-negligible source of contaminants, especially metals. To evaluate the risks associated to contaminated leaf litter dispersion in aquatic ecosystems, we first measured the dynamics of metal loss from leaf litter during a 48-h experimental leaching. We used aspen (Populus tremula L.), a common tree species on these polluted sites, and collected leaf litter on three polluted sites (settling pond of a former steel mill) and three control sites situated in the same geographic area. Then, toxicity tests were carried out on individuals of a key detritivore species widely used in ecotoxicology tests, Gammarus fossarum (Crustacea, Amphipoda), with uncontaminated and contaminated leaf litter leachates, using a battery of biomarkers selected for their sensitivity to metallic stress. Leaf litters collected on polluted sites exhibited not only significantly higher cadmium and zinc concentrations but also lower lignin contents. All leaf litters released high amounts of chemical elements during the leaching process, especially potassium and magnesium, and, in a lesser extent, phosphorus, calcium, and trace metals (copper, cadmium, and zinc but not lead). Toxicity tests revealed that the most important toxic effects measured on G. fossarum were due to leaf litter leachates by themselves, whatever the origin of litter (from polluted or control sites), confirming the toxicity of such substances, probably due to their high content in phenolic compounds. Small additional toxic effects of leachates from contaminated leaf litters were only evidenced on gammarid lipid peroxidation, indicating that contaminated leaf litter leachates might be slightly more toxic than uncontaminated ones, but in a very reduced manner. Further studies will

  12. SOA Formation Potential of Emissions from Soil and Leaf Litter

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

    2013-12-01

    In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be

  13. Estimates of forest canopy height and aboveground biomass using ICESat.

    Treesearch

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom Espirito-Santo; Maria O. Hunter; Raimundo de Oliveira Jr.

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  14. Tropical herbivorous phasmids, but not litter snails, alter decomposition rates by modifying litter bacteria

    Treesearch

    Chelse M. Prather; Gary E. Belovsky; Sharon A. Cantrell; Grizelle González

    2018-01-01

    Consumers can alter decomposition rates through both feces and selective feeding in many ecosystems, but these combined effects have seldom been examined in tropical ecosystems. Members of the detrital food web (litter-feeders or microbivores) should presumably have greater effects on decomposition than herbivores, members of the green food web. Using litterbag...

  15. Microhabitat effects of litter temperature and moisture on forest-floor invertebrate communities

    Treesearch

    Tim A. Christiansen; Sue A. Perry; William B. Perry

    1996-01-01

    Litter temperature and moisture may be altered due to changes in global climate. We investigated the effect of small changes in litter temperature and moisture on forest-floor communities in West Virginia.

  16. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    NASA Astrophysics Data System (ADS)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  17. Spatial Patterns of Plant Litter and Sedimentation in a Tidal Freshwater Marsh and Implications for Marsh Persistence

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Cadol, D. D.; Palinkas, C. M.; Engelhardt, K. A.

    2014-12-01

    The maintenance of marsh platform elevation under sea level rise is dependent on sedimentation and biomass conversion to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here we explore spatial pattern in plant litter, a variable related to productivity, to understand its role in physical and biological interactions in a freshwater marsh. Plant litter that persists through the dormant season has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located along the Potomac River estuary. We completed two years of repeat RTK GPS surveys with corresponding measurements of litter height (over 2000 observations) to train a non-parametric random forest decision tree to predict litter height. LiDAR and field observations show that plant litter height increases with increasing elevation, although important deviations from this relationship are apparent. These spatial patterns exhibit stability from year to year and lead to corresponding patterns in soil organic matter content, revealed by loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important trade-off with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, litter contributes organic matter to soil development. Despite these tradeoffs, changes in elevation over time are consistent across elevation, with only small positive differences in elevation gain over time at elevations where the most sediment is deposited or where litter exhibits the most biomass.

  18. Attitude towards littering as a mediator of the relationship between personality attributes and responsible environmental behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojedokun, Oluyinka, E-mail: yinkaoje2004@yahoo.com

    Highlights: > Independently, altruism and locus of control contributed significantly toward attitude towards littering. > Altruism and locus of control jointly contributed significantly to attitude towards littering. > The results further show a significant joint influence of altruism and locus of control on REB. > The independent contributions reveal that altruism and locus of control contribute significantly to REB. > Attitude towards littering mediates the relationship between locus of control and REB. - Abstract: The study tested whether attitude towards littering mediates the relationship between personality attributes (altruism and locus of control) and responsible environmental behavior (REB) among some residentsmore » of Ibadan metropolis, Nigeria. Using multistage sampling technique, measures of each construct were administered to 1360 participants. Results reveal significant independent and joint influence of personality attributes on attitude towards littering and responsible environmental behavior, respectively. Attitude towards littering also mediates the relationship between personality characteristics and REB. These findings imply that individuals who possess certain desirable personality characteristics and who have unfavorable attitude towards littering have more tendencies to engage in pro-environmental behavior. Therefore, stakeholders who have waste management as their priority should incorporate this information when guidelines for public education and litter prevention programs are being developed. It is suggested that psychologists should be involved in designing of litter prevention strategies. This will ensure the inclusion of behavioral issues in such strategies. An integrated approach to litter prevention that combines empowerment, cognitive, social, and technical solutions is recommended as the most effective tool of tackling the litter problem among residents of Ibadan metropolis.« less

  19. Lost fishing gear and litter at Gorringe Bank (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Vieira, Rui P.; Raposo, Isabel P.; Sobral, Paula; Gonçalves, Jorge M. S.; Bell, Katherine L. C.; Cunha, Marina R.

    2015-06-01

    Studies concerning marine litter have received great attention over the last several years by the scientific community mainly due to their ecological and economic impacts in marine ecosystems, from coastal waters to the deep ocean seafloor. The distribution, type and abundance of marine litter in Ormonde and Gettysburg, the two seamounts of Gorringe Bank, were analyzed from photo and video imagery obtained during ROV-based surveys carried out at 60-3015 m depths during the E/V Nautilus cruise NA017. Located approximately 125 nm southwest of Portugal, Gorringe Bank lays at the crossroad between the Atlantic and the Mediterranean and is therefore characterized by an intense maritime traffic and fishing activities. The high frequency of lost or discarded fishing gear, such as cables, longlines and nets, observed on Gorringe Bank suggests an origin mostly from fishing activities, with a clear turnover in the type of litter (mostly metal, glass and to a much lesser extent, plastic) with increasing depth. Litter was more abundant at the summit of Gorringe Bank (ca. 4 items·km- 1), decreasing to less than 1 item·km- 1 at the flanks and to ca. 2 items·km- 1 at greater depths. Nevertheless, litter abundance appeared to be lower than in continental margin areas. The results presented herein are a contribution to support further actions for the conservation of vulnerable habitats on Gorringe Bank so that they can continue contributing to fishery productivity in the surrounding region.

  20. 9 CFR 82.7 - Interstate movement of manure and litter from a quarantined area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... manure and litter at the destination listed on the permit. (b) Compost derived from manure generated by... composting site at the same time; (5) Following the composting process, the composted manure or litter... composted manure or litter from the infected site is removed at the same time; (7) The resulting compost...

  1. 9 CFR 82.7 - Interstate movement of manure and litter from a quarantined area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... manure and litter at the destination listed on the permit. (b) Compost derived from manure generated by... composting site at the same time; (5) Following the composting process, the composted manure or litter... composted manure or litter from the infected site is removed at the same time; (7) The resulting compost...

  2. VOC emission into the atmosphere by trees and leaf litter in Polish forests

    NASA Astrophysics Data System (ADS)

    Isidorov, V.; Smolewska, M.; Tyszkiewicz, Z.

    2009-04-01

    It is generally recognized at present that the vegetation of continents is the principal source of reactive volatile organic compounds (VOC) of the atmosphere. The upper limit of the evaluation of global phytogenic VOC is 1100-1500 Tg/yr (Isidorov, 1990; Guenther et al., 1995). Although these global evaluations showing the place of phytogenic emission among of other VOC sources are important, evaluations for individual countries are also very important. This poster represents the results of the estimation of VOC emission from Polish forests. Calculations took into account the composition and age of forests. According to our estimation, the total VOC emission by the arboreal vegetation differs from 190 to 750 kt/yr, depending of weather conditions in different years. There are only few studies conducted on decaying plant material as a source of atmospheric VOCs, but still they are able to give evidence of the importance of this source. For Polish forests, the litter mass is estimated to be (16-19)106 t/yr. These organic materials undergo decomposition by mesofauna and microorganisms. In these processes volatile organic compounds (VOC) stored in the litter and secondary metabolites of litter-destroying fungi are emitted into the atmosphere. The scale of the phenomenon makes leaf litter an important VOC source in the atmosphere. The filling of numerous gaps in researches of VOC emissions from decomposing leaf litter demands carrying out of long term field experiments in various climatic conditions. In this communication we report also the results of 3.5-year experiment on qualitative and quantitative GC-MS investigations of VOC emitted into the gas phase from leaves litter of some species of deciduous and coniferous trees of Polish forests. Apart from terpenes and their oxygenated derivatives, which are usual in plant tissues, leaf litter intensively emits vast amounts of lower alcohols and carbonyl compounds. We suppose that these volatile substances are products

  3. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    PubMed

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty

  4. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    USGS Publications Warehouse

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  5. Family Differences Influence the Aboveground Biomass of Loblolly Pine Plantations

    Treesearch

    P.E. Pope; D.L. Graney

    1979-01-01

    We compared the aboveground biomass of 4 half-sib families of loblolly pine (Pinus taeda L.) 11 years after planting. Total dry weights differed significantly among families in plantations on the same soil type with the same site index. Differences in biomass resulted from differences in stem form and branch size. Distribution of growth -the proportion of tree weight...

  6. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting

    USGS Publications Warehouse

    Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R. L.

    2003-01-01

    Roxarsone, 3-nitro-4-hydroxyphenylarsonic acid, is an organoarsenic compound that is used extensively in the feed of broiler poultryto control coccidial intestinal parasites, improve feed efficiency, and promote rapid growth. Nearly all the roxarsone in the feed is excreted unchanged in the manure. Poultry litter composed of the manure and bedding material has a high nutrient content and is used routinely as a fertilizer on cropland and pasture. Investigations were conducted to determine the fate of poultrylitter roxarsone in the environment. Experiments indicated that roxarsone was stable in fresh dried litter; the primary arsenic species extracted with water from dried litter was roxarsone. However, when water was added to litter at about 50 wt % and the mixture was allowed to compost at 40oC, the speciation of arsenic shifted from roxarsone to primarily arsenate in about 30 days. Increasing the amount of water increased the rate of degradation. Experiments also suggested that the degradation process most likely was biotic in nature. The rate of degradation was directly proportional to the incubation temperature; heat sterilization eliminated the degradation. Biotic degradation also was supported by results from enterobacteriaceae growth media that were inoculated with litter slurry to enhance the biotic processes and to reduce the concomitant abiotic effects from the complex litter solution. Samples collected from a variety of litter windrows in Arkansas, Oklahoma, and Maryland also showed that roxarsone originally present had been converted to arsenate.

  7. Understanding Ozark Forest Litter Variability Through a Synthesis of Accumulation Rates and Fire Events

    Treesearch

    Michael C. Stambaugh; Richard P. Guyette; Keith W. Grabner; Jeremy Kolaks

    2006-01-01

    Measuring success of fuels management is improved by understanding rates of litter accumulation and decay in relation to disturbance events. Despite the broad ecological importance of litter, little is known about the parameters of accumulation and decay rates in Ozark forests. Previously published estimates were used to derive accumulation rates and combined litter...

  8. Microbial communities in the litter of middle taiga bilberry-spruce forests

    NASA Astrophysics Data System (ADS)

    Sizonenko, T. A.; Zagirova, S. V.; Khabibullina, F. M.

    2010-10-01

    The structure of the microbial communities in the litters of middle-taiga bilberry-spruce forests was studied. It was found that ammonifying and oligonitrophilic microorganisms predominate in these communities. Two maximums in the population density of the microorganisms were observed in June and August. The number of microorganisms increased in the direction from the spruce trunks to the periphery of the crowns. The species composition of the micromycetes in the litters under the spruce crowns and within the intercrown spaces differed. The maximum population density of the fungi was found in the litter under the periphery of the spruce crowns, whereas the maximum diversity of the micromycetes was observed within the intercrown spaces. The Trichoderma, Trichosporiella, Penicillium, Paecilomyces, and Chaetomium genera were most abundant in the litters of the bilberry spruce forests. The Penicillium genus had the maximum abundance during the entire growing period, and the amount of Mycelia sterilia increased in the fall. The maximum diversity of the fungi was observed in May and June.

  9. Long-term effects of fuel treatments on aboveground biomass accumulation in ponderosa pine forests of the northern Rocky Mountains

    Treesearch

    Kate A. Clyatt; Christopher R. Keyes; Sharon M. Hood

    2017-01-01

    Fuel treatments in ponderosa pine forests of the northern Rocky Mountains are commonly used to modify fire behavior, but it is unclear how different fuel treatments impact the subsequent production and distribution of aboveground biomass, especially in the long term. This research evaluated aboveground biomass responses 23 years after treatment in two silvicultural...

  10. Quantifying the effect of plant growth on litter decomposition using a novel, triple-isotope label approach

    NASA Astrophysics Data System (ADS)

    Ernakovich, J. G.; Baldock, J.; Carter, T.; Davis, R. A.; Kalbitz, K.; Sanderman, J.; Farrell, M.

    2017-12-01

    Microbial degradation of plant detritus is now accepted as a major stabilizing process of organic matter in soils. Most of our understanding of the dynamics of decomposition come from laboratory litter decay studies in the absence of plants, despite the fact that litter decays in the presence of plants in many native and managed systems. There is growing evidence that living plants significantly impact the degradation and stabilization of litter carbon (C) due to changes in the chemical and physical nature of soils in the rhizosphere. For example, mechanistic studies have observed stimulatory effects of root exudates on litter decomposition, and greenhouse studies have shown that living plants accelerate detrital decay. Despite this, we lack a quantitative understanding of the contribution of living plants to litter decomposition and how interactions of these two sources of C build soil organic matter (SOM). We used a novel triple-isotope approach to determine the effect of living plants on litter decomposition and C cycling. In the first stage of the experiment, we grew a temperate grass commonly used for forage, Poa labillardieri, in a continuously-labelled atmosphere of 14CO2 fertilized with K15NO3, such that the grass biomass was uniformly labelled with 14C and 15N. In the second stage, we constructed litter decomposition mescososms with and without a living plant to test for the effect of a growing plant on litter decomposition. The 14C/15N litter was decomposed in a sandy clay loam while a temperate forage grass, Lolium perenne, grew in an atmosphere of enriched 13CO2. The fate of the litter-14C/15N and plant-13C was traced into soil mineral fractions and dissolved organic matter (DOM) over the course of nine weeks using four destructive harvests of the mesocosms. Our preliminary results suggest that living plants play a major role in the degradation of plant litter, as litter decomposition was greater, both in rate and absolute amount, for soil mesocosms

  11. Effect of petroleum on decomposition of shrub-grass litters in soil in Northern Shaanxi of China.

    PubMed

    Zhang, Xiaoxi; Liu, Zengwen; Yu, Qi; Luc, Nhu Trung; Bing, Yuanhao; Zhu, Bochao; Wang, Wenxuan

    2015-07-01

    The impacts of petroleum contamination on the litter decomposition of shrub-grass land would directly influence nutrient cycling, and the stability and function of ecosystem. Ten common shrub and grass species from Yujiaping oil deposits were studied. Litters from these species were placed into litterbags and buried in petroleum-contaminated soil with 3 levels of contamination (slight, moderate and serious pollution with petroleum concentrations of 15, 30 and 45 g/kg, respectively). A decomposition experiment was then conducted in the lab to investigate the impacts of petroleum contamination on litter decomposition rates. Slight pollution did not inhibit the decomposition of any litters and significantly promoted the litter decomposition of Hippophae rhamnoides, Caragana korshinskii, Amorpha fruticosa, Ziziphus jujuba var. spinosa, Periploca sepium, Medicago sativa and Bothriochloa ischaemum. Moderate pollution significantly inhibited litter decomposition of M. sativa, Coronilla varia, Artemisia vestita and Trrifolium repens and significantly promoted the litter decomposition of C. korshinskii, Z. jujuba var. spinosa and P. sepium. Serious pollution significantly inhibited the litter decomposition of H. rhamnoides, A. fruticosa, B. ischaemum and A. vestita and significantly promoted the litter decomposition of Z. jujuba var. spinosa, P. sepium and M. sativa. In addition, the impacts of petroleum contamination did not exhibit a uniform increase or decrease as petroleum concentration increased. Inhibitory effects of petroleum on litter decomposition may hinder the substance cycling and result in the degradation of plant communities in contaminated areas. Copyright © 2015. Published by Elsevier B.V.

  12. Littering dynamics in a coastal industrial setting: the influence of non-resident populations.

    PubMed

    Campbell, Marnie L; Paterson de Heer, Chloe; Kinslow, Amber

    2014-03-15

    We examined if there is truth to the preconceptions that non-resident workers (including FIFO/DIDO's) detract from communities. We used marine debris to test this, specifically focussing on littering behaviour and evidence of awareness of local environmental programs that focus on marine debris. Littering was most common at recreational areas, then beaches and whilst boating. Twenty-five percent of respondents that admit to littering, reported no associated guilt with their actions. Younger respondents litter more frequently. Thus, non-resident workers litter at the same rate as permanent residents, visitors and tourists in this region, within this study. Few respondents are aware of the environmental programs that operate in their local region. Awareness was influenced by a respondent's residency (non-residents are less aware), age, and level of education. To address this failure we recommend that industries, that use non-resident workers, should develop inductions that expose new workers to the environmental programs in their region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effect of Fresh Poultry Litter and Compost on Soil Physical and Chemical Properties

    NASA Technical Reports Server (NTRS)

    Carr, Stacy; Tsegaye, Teferi; Coleman, Tommy

    1998-01-01

    Application of poultry litter and compost as a substitute for fertilizer not only uses unwanted waste and decreases expenditures for commercial fertilizer, it adds nutrients to soil for plant uptake. The properties of soil affected by poultry litter were analyzed to determine the positive and negative aspects of using this substitute fertilizer. This study focused on changes associated with saturated hydraulic conductivity, bulk density, nitrate concentrations, and pH after application of varying concentrations of poultry litter and compost. Soil samples from Tennessee Valley Substation in Alabama were analyzed in a laboratory at Alabama A&M University. As a result of the application of fresh poultry litter and compost, we found that the saturated hydraulic conductivity increased and the bulk density decreased, while the pH was generally not affected. Using poultry litter and compost as an alternative commercial fertilizers could be adapted by the farming community to protect the sustainability of our environment. Unwanted waste is used productively and soil is enriched for farming.

  14. Microbial plant litter decomposition in aquatic and terrestrial boreal systems along a natural fertility gradient

    NASA Astrophysics Data System (ADS)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2017-04-01

    Plant litter decomposition is a global ecosystem process, with a crucial role in carbon and nutrient cycling. The majority of litter processing occurs in terrestrial systems, but an important fraction also takes place in inland waters. Among environmental factors, pH impacts the litter decomposition through its selective influence on microbial decomposers. Fungal communities are less affected by pH than bacteria, possibly owing to a wider pH tolerance by this group. On the other hand, bacterial pH optima are constrained to a narrower range of pH values. The microbial decomposition of litter is universally nutrient limited; but few comparisons exist between terrestrial and aquatic systems. We investigated the microbial colonisation and decomposition of plant litter along a fertility gradient, which varied in both pH and N availability in both soil and adjacent water. To do this we installed litterbags with birch (Betula pendula) in streams and corresponding soils in adjacent riparian areas in a boreal system, in Krycklan, Sweden. During the four months covering the ice-free growth season we monitored the successional dynamics of fungal (acetate incorporation into ergosterol) and bacterial growth (thymidine incorporation), microbial respiration in leaf litter, and quantitative and qualitative changes in litter over time. We observed that bacterial growth rates were initially higher in litter decomposing in streams than those in soils, but differences between terrestrial and aquatic bacterial production converged towards the end of the experiment. In litter bags installed in soils, bacterial growth was lower at sites with more acidic pH and lower N availability, while aquatic bacteria were relatively unaffected by the fertility level. Fungal growth rates were two-fold higher for litter decomposing in streams than in soils. In aquatic systems, fungal growth was initially lower in low fertility sites, but differences gradually disappeared over the time course. Fungal

  15. Impact of poultry litter cake, cleanout, and bedding following chemical amendments on soil C and N mineralization

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes and increased chemical amendment use may impact litter plant N availability. Thus, research was initiated to evaluate the effect that broiler house cake and total cleanout litter ame...

  16. Are nitrate exports in stream water linked to nitrogen fluxes in decomposing foliar litter?

    Treesearch

    Kathryn B. Piatek; Mary Beth Adams

    2011-01-01

    The central hardwood forest receives some of the highest rates of atmospheric nitrogen (N) deposition, which results in nitrate leaching to surface waters. Immobilization of N in foliar litter during litter decomposition represents a potential mechanism for temporal retention of atmospherically deposited N in forest ecosystems. When litter N dynamics switch to the N-...

  17. Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient

    PubMed Central

    Kumordzi, Bright B.; Gundale, Michael J.; Nilsson, Marie-Charlotte; Wardle, David A.

    2016-01-01

    Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems. PMID:27270445

  18. Proportion of litters of purebred dogs born by caesarean section.

    PubMed

    Evans, Katy M; Adams, Vicki J

    2010-02-01

    To describe the frequency of caesarean sections in a large sample of pedigree dogs in the UK. Data on the numbers of litters born in the previous 10 years were available from a cross-sectional study of dogs belonging to breed club members (2004 Kennel Club/BSAVA Scientific Committee Purebred Dog Health Survey). In this survey 151 breeds were represented with data for households that had reported on at least 10 litters (range 10-14,15): this represented 13,141 bitches which had whelped 22,005 litters. The frequency of caesarean sections was estimated as the percentage of litters that were reported to be born by caesarean section (caesarean rates) and are reported by breed. The dogs were categorised into brachycephalic, mesocephalic and dolicocephalic breeds. The 10 breeds with the highest caesarean rates were the Boston terrier, bulldog, French bulldog, mastiff, Scottish terrier, miniature bull terrier, German wirehaired pointer, Clumber spaniel, Pekingese and Dandie Dinmont terrier. In the Boston terrier, bulldog and French bulldog, the rate was > 80%. These data provide evidence for the need to monitor caesarean rates in certain breeds of dog.

  19. Litter carbon stocks in forests of the US are markedly smaller than previously reported

    Treesearch

    Grant Domke; Charles Perry; Brian Walters; Christopher Woodall; Matthew Russell; James Smith

    2015-01-01

    Forest ecosystems are the largest terrestrial carbon sink on earth with more than half of their net primary production moving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated 5...

  20. Comparison of the abundance and composition of litter fauna in tropical and subalpine forests

    Treesearch

    G. Gonzalez; T.R. Seastedt

    2000-01-01

    In this study, we quantify the abundance and composition of the litter fauna in dry and wet tropical forests and north- and south-facing subalpine forests. We used the same litter species contained in litterbags across study sites to standardize for substrate conditions, and a single method of fauna extraction from the litter (Tullgren method). Fauna densities were...