Science.gov

Sample records for aboveground plant material

  1. Belowground herbivory by insects: influence on plants and aboveground herbivores.

    PubMed

    Blossey, Bernd; Hunt-Joshi, Tamaru R

    2003-01-01

    Investigations of plant-herbivore interactions continue to be popular; however, a bias neglecting root feeders may limit our ability to understand how herbivores shape plant life histories. Root feeders can cause dramatic plant population declines, often associated with secondary stress factors such as drought or grazing. These severe impacts resulted in substantial interest in root feeders as agricultural pests and increasingly as biological weed control agents, particularly in North America. Despite logistical difficulties, establishment rates in biocontrol programs are equal or exceed those of aboveground herbivores (67.2% for aboveground herbivores, 77.5% for belowground herbivores) and root feeders are more likely to contribute to control (53.7% versus 33.6%). Models predicting root feeders would be negatively affected by competitively superior aboveground herbivores may be limited to early successional habitats or generalist root feeders attacking annual plants. In later successional habitats, root feeders become more abundant and appear to be the more potent force in driving plant performance and plant community composition. Aboveground herbivores, even at high population levels, were unable to prevent buildup of root herbivore populations and the resulting population collapse of their host plants. Significant information gaps exist about the impact of root feeders on plant physiology and secondary chemistry and their importance in natural areas, particularly in the tropics.

  2. Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance.

    PubMed

    Wang, Minggang; Biere, Arjen; Van der Putten, Wim H; Bezemer, T Martijn

    2014-05-01

    Plants are often simultaneously or sequentially attacked by multiple herbivores and changes in host plants induced by one herbivore can influence the performance of other herbivores. We examined how sequential feeding on the plant Plantago lanceolata by the aboveground herbivore Spodoptera exigua and the belowground herbivore Agriotes lineatus influences plant defense and the performance of both insects. Belowground herbivory caused a reduction in the food consumption by the aboveground herbivore independent of whether it was initiated before, at the same time, or after that of the aboveground herbivore. By contrast, aboveground herbivory did not significantly affect belowground herbivore performance, but significantly reduced the performance of later arriving aboveground conspecifics. Interestingly, belowground herbivores negated negative effects of aboveground herbivores on consumption efficiency of their later arriving conspecifics, but only if the belowground herbivores were introduced simultaneously with the early arriving aboveground herbivores. Aboveground-belowground interactions could only partly be explained by induced changes in an important class of defense compounds, iridoid glycosides (IGs). Belowground herbivory caused a reduction in IGs in roots without affecting shoot levels, while aboveground herbivory increased IG levels in roots in the short term (4 days) but only in the shoots in the longer term (17 days). We conclude that the sequence of aboveground and belowground herbivory is important in interactions between aboveground and belowground herbivores and that knowledge on the timing of exposure is essential to predict outcomes of aboveground-belowground interactions.

  3. Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect.

    PubMed

    Borgström, Pernilla; Strengbom, Joachim; Viketoft, Maria; Bommarco, Riccardo

    2016-01-01

    Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of

  4. Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect

    PubMed Central

    Strengbom, Joachim; Viketoft, Maria; Bommarco, Riccardo

    2016-01-01

    Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of

  5. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition.

    PubMed

    Veen, G F Ciska; Geuverink, Elzemiek; Olff, Han

    2012-02-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales interact with small-scale aboveground-belowground interactions on plant community heterogeneity. Here, we investigate how cattle (Bos taurus) modify the effects of interactions between yellow meadow ants (Lasius flavus) and European brown hares (Lepus europaeus) on the formation of small-scale heterogeneity in vegetation composition. In the absence of cattle, hares selectively foraged on ant mounds, while under combined grazing by hares and cattle, vertebrate grazing pressure was similar on and off mounds. Ant mounds that were grazed by only hares had a different plant community composition compared to their surroundings: the cover of the grazing-intolerant grass Elytrigia atherica was reduced on ant mounds, whereas the relative cover of the more grazing-tolerant and palatable grass Festuca rubra was enhanced. Combined grazing by hares and cattle, resulted in homogenization of plant community composition on and off ant mounds, with high overall cover of F. rubra. We conclude that hares can respond to local ant-soil-vegetation interactions, because they are small, selective herbivores that make their foraging decisions on a local scale. This results in small-scale plant patches on mounds of yellow meadow ants. In the presence of cattle, which are less selective aboveground herbivores, local plant community patterns triggered by small-scale aboveground-belowground interactions can disappear. Therefore, cattle modify the consequences of aboveground-belowground interactions for small-scale plant community composition.

  6. Putative linkages between below- and aboveground mutualisms during alien plant invasions

    PubMed Central

    Rodríguez-Echeverría, Susana; Traveset, Anna

    2015-01-01

    Evidence of the fundamental role of below–aboveground links in controlling ecosystem processes is mostly based on studies done with soil herbivores or mutualists and aboveground herbivores. Much less is known about the links between belowground and aboveground mutualisms, which have been studied separately for decades. It has not been until recently that these mutualisms—mycorrhizas and legume–rhizobia on one hand, and pollinators and seed dispersers on the other hand—have been found to influence each other, with potential ecological and evolutionary consequences. Here we review the mechanisms that may link these two-level mutualisms, mostly reported for native plant species, and make predictions about their relevance during alien plant invasions. We propose that alien plants establishing effective mutualisms with belowground microbes might improve their reproductive success through positive interactions between those mutualists and pollinators and seed dispersers. On the other hand, changes in the abundance and diversity of soil mutualists induced by invasion can also interfere with below–aboveground links for native plant species. We conclude that further research on this topic is needed in the field of invasion ecology as it can provide interesting clues on synergistic interactions and invasional meltdowns during alien plant invasions. PMID:26034049

  7. Assessment of airborne heavy metal pollution by aboveground plant parts.

    PubMed

    Rossini Oliva, S; Mingorance, M D

    2006-10-01

    Italian stone pine (Pinus pinea L.) and oleander (Nerium oleander L.) leaves, bark and wood samples were collected at different sites around an industrial area (Huelva, SW Spain) and compared with samples of the same species from a background site. Samples were analysed with respect to the following pollutants: Al, Ba, Cr, Cu, Fe and Pb by ICP-AES. The suitability of different plant parts as biomonitors of pollution was investigated. In pine samples from the polluted sites the ratio of concentrations between bark and wood was high for Al, Ba, Cu and Fe, whereas no differences were found in samples from the unpolluted area. No differences were detected in oleander for the same ratio. In the oleander species, the ratio between leaves and wood concentration allowed to distinguish between control and polluted sites. The ratio of the concentration between leaves and wood was elevated for Al, Ba and Fe in pine samples from the polluted sites. The ratio of the concentration in bark or leaves to their concentration in wood might be useful to detect inorganic atmospheric pollutants.

  8. Management trade-off between aboveground carbon storage and understory plant species richness in temperate forests.

    PubMed

    Burton, Julia I; Ares, Adrian; Olson, Deanna H; Puettmann, Klaus J

    2013-09-01

    Because forest ecosystems have the capacity to store large quantities of carbon (C), there is interest in managing forests to mitigate elevated CO2 concentrations and associated effects on the global climate. However, some mitigation techniques may contrast with management strategies for other goals, such as maintaining and restoring biodiversity. Forest thinning reduces C storage in the overstory and recruitment of detrital C. These C stores can affect environmental conditions and resource availability in the understory, driving patterns in the distribution of early and late-seral species. We examined the effects of replicated (N = 7) thinning experiments on aboveground C and understory vascular plant species richness, and we contrasted relationships between aboveground C and early- vs. late-seral species richness. Finally, we used structural equation modeling (SEM) to examine relationships among early- and late-seral species richness and live and detrital aboveground C stores. Six years following thinning, aboveground C was greater in the high-density treatment and untreated control than in moderate- (MD) and variable-density (VD) treatments as a result of reductions in live overstory C. In contrast, all thinning treatments increased species richness relative to controls. Between the growing seasons of years 6 and 11 following treatments, the live overstory C increment tended to increase with residual density, while richness decreased in MD and VD treatments. The richness of early-seral species was negatively related to aboveground C in MD and VD, while late-seral species richness was positively (albeit weakly) related to aboveground C. Structural equation modeling analysis revealed strong negative effects of live overstory C on early-seral species richness balanced against weaker positive effects on late-seral species richness, as well as positive effects of detrital C stocks. A trade-off between carbon and plant species richness thus emerges as a net result of

  9. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods.

    PubMed

    Ebeling, Anne; Meyer, Sebastian T; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.

  10. Aboveground and belowground plant traits as drivers of microbial abundance and activity.

    NASA Astrophysics Data System (ADS)

    Baxendale, Catherine; Lavorel, Sandra; Grigulis, Karl; Legay, Nicolas; Krainer, Ute; Bahn, Michael; Kastl, Eva; Pommier, Thomas; Bardgett, Richard

    2013-04-01

    Although there is growing awareness of the roles that plant-soil interactions play in regulating ecosystem processes, our understanding of the role that specific aboveground and belowground plant traits play in defining them is limited. In this study, we aimed to develop a conceptual model linking plant functional trait impacts on soil microbial functional diversity and their coupled effects on ecosystem processes. This was done by replicating three mesocosm studies, based on model sub-alpine grasslands, across three sites in different parts of Europe as part of the pan-European project, VITAL. We manipulated community plant traits by planting communities of varying abundance and dominance of 4 common grassland species. After 1.5 years, we then measured aboveground traits (specific leaf area, leaf dry matter content, leaf nitrogen and carbon content and leaf C:N ratio), belowground traits (specific root length, average diameter, root dry matter content, root nitrogen and carbon content and root C:N ratio) microbial community abundance (using phospholipid fatty acid (PLFA) analysis and gene abundance of nitrifier and denitrifier communities), and microbial activity (via potential nitrification and denitrification rates). We present links between manipulated community traits, microbial properties and ecosystem processes, supporting the role of plant traits in driving microbial properties.

  11. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for

  12. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    USGS Publications Warehouse

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  13. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California, forests

    USGS Publications Warehouse

    McGinnis, T.W.; Shook, C.D.; Keeley, J.E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  14. Roots under attack: contrasting plant responses to below- and aboveground insect herbivory.

    PubMed

    Johnson, Scott N; Erb, Matthias; Hartley, Susan E

    2016-04-01

    The distinctive ecology of root herbivores, the complexity and diversity of root-microbe interactions, and the physical nature of the soil matrix mean that plant responses to root herbivory extrapolate poorly from our understanding of responses to aboveground herbivores. For example, root attack induces different changes in phytohormones to those in damaged leaves, including a lower but more potent burst of jasmonates in several plant species. Root secondary metabolite responses also differ markedly, although patterns between roots and shoots are harder to discern. Root defences must therefore be investigated in their own ecophysiological and evolutionary context, specifically one which incorporates root microbial symbionts and antagonists, if we are to better understand the battle between plants and their hidden herbivores.

  15. Interplay between Senecio jacobaea and plant, soil, and aboveground insect community composition.

    PubMed

    Bezemer, T Martijn; Harvey, Jeffrey A; Kowalchuk, George A; Korpershoek, Hanna; van der Putten, Wim H

    2006-08-01

    To elucidate the factors that affect the performance of plants in their natural environment, it is essential to study interactions with other neighboring plants, as well as with above- and belowground higher trophic organisms. We used a long-term field experiment to study how local plant community diversity influenced colonization by the biennial composite Senecio jacobaea in its native range in The Netherlands in Europe. We tested the effect of sowing later-succession plant species (0, 4, or 15 species) on plant succession and S. jacobaea performance. Over a period of eight years, the percent cover of S. jacobaea was relatively low in communities sown with 15 or 4 later-succession plant species compared to plots that were not sown, but that were colonized naturally. However, after four years of high abundance, the density of S. jacobaea in unsown plots started to decline, and the size of the individual plants was smaller than in the plots sown with 15 or 4 plant species. In the unsown plots, densities of aboveground leaf-mining, flower-feeding, and stem-boring insects on S. jacobaea plants were lower than on plants in sown plots, and there was a strong positive relationship between plant size and levels of herbivory. In a greenhouse experiment, we grew S. jacobaea in sterilized soil inoculated with soil from the different sowing treatments of the field experiment. Biomass production was lower when S. jacobaea test plants were grown in soil from the unsown plots than in soil from the sown plots (4 or 15 species). Molecular analysis of the fungal and bacterial communities revealed that the composition of fungal communities in unsown plots differed significantly from those in sown plots, suggesting that soil fungi could have been involved in the relative growth reduction of S. jacobaea in the greenhouse bioassay. Our results show that, in its native habitat, the abundance of S. jacobaea depends on the initial composition of the plant community and that, on a scale of

  16. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    PubMed Central

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping; Li, Dejun; Qin, Yujia; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Tiedje, James M.

    2016-01-01

    ABSTRACT Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. PMID:27677789

  17. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming.

    PubMed

    Xue, Kai; Yuan, Mengting M; Xie, Jianping; Li, Dejun; Qin, Yujia; Hale, Lauren E; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong

    2016-09-27

    Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  18. 40K/137Cs discrimination ratios to the aboveground organs of tropical plants.

    PubMed

    Sanches, N; Anjos, R M; Mosquera, B

    2008-07-01

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of (137)Cs and (40)K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisíaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of (137)Cs and (40)K in their growing parts. However, a significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The (40)K/(137)Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species.

  19. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    PubMed

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  20. Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Koptur, S.; Snyder, J.R.

    2004-01-01

    Species-specific allometric equations that provide estimates of biomass from measured plant attributes are currently unavailable for shrubs common to South Florida pine rocklands, where fire plays an important part in shaping the structure and function of ecosystems. We developed equations to estimate total aboveground biomass and fine fuel of 10 common hardwood species in the shrub layer of pine forests of the lower Florida Keys. Many equations that related biomass categories to crown area and height were significant (p < 0.05), but the form and variables comprising the best model varied among species. We applied the best-fit regression models to structural information from the shrub stratum in 18 plots on Big Pine Key, the most extensive pine forest in the Keys. Estimates based on species-specific equations indicated clearly that total aboveground shrub biomass and shrub fine fuel increased with time since last fire, but the relationships were non-linear. The relative proportion of biomass constituted by the major species also varied with stand age. Estimates based on mixed-species regressions differed slightly from estimates based on species-specific models, but the former could provide useful approximations in similar forests where species-specific regressions are not yet available. ?? 2004 Elsevier B.V. All rights reserved.

  1. Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture.

    PubMed

    Johnston, Danielle B; Cooper, David J; Hobbs, N Thompson

    2007-12-01

    In the northern elk wintering range of Yellowstone National Park, USA, wolf (Canis lupus) removal allowed elk (Cervus elaphus) to overbrowse riparian woody plants, leading to the exclusion of beaver (Castor canadensis) and a subsequent water table decline in many small stream valleys. Reduced elk browsing following wolf reintroduction may or may not facilitate willow (Salix sp.) recovery in these areas. To determine if the effect of elk browsing on willow interacts with that of beaver abandonment, we manipulated elk browsing and the water table in a factorial experiment. Under the condition of an ambient (low) water table, elk browsing increased shoot water potential (Psis), photosynthesis per unit leaf area (A), stomatal conductance per unit leaf area (gs), and aboveground current annual growth (CAG) by 50%. Elk browsing occurred entirely during dormancy and did not affect total plant leaf area (L). Improved water balance, photosynthetic rate, and annual aboveground productivity in browsed willows appeared to be due to morphological changes, such as increased shoot diameter and decreased branching, which typically increase plant hydraulic conductivity. An elevated water table increased Psis, A, gs, CAG, and L, and eliminated or lessened the positive effect of browsing on CAG for most species. Because low water tables create conditions whereby high willow productivity depends on the morphological effects of annual elk browsing, removing elk browsing in areas of water table decline is unlikely to result in vigorous willow stands. As large willow standing crops are required by beaver, a positive feedback between water-stressed willow and beaver absence may preclude the reestablishment of historical conditions. In areas with low water table, willow restoration may depend on actions to promote the re-establishment of beaver in addition to reducing elk browsing.

  2. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    NASA Astrophysics Data System (ADS)

    Reidinger, Stefan; Eschen, René; Gange, Alan C.; Finch, Paul; Bezemer, T. Martijn

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF colonization levels of individual ragwort ( Senecio jacobaea) plants growing in grassland plots that were originally sown with 15 or 4 plant species, or were unsown. We measured the concentrations of carbon, nitrogen and pyrrolizidine alkaloids (PAs), and assessed the presence of aboveground insect herbivores on the sampled plants. Total AMF colonization and colonization by arbuscules was lower in plots sown with 15 species than in plots sown with 4 species and unsown plots. AMF colonization was positively related to the cover of oxeye daisy ( Leucanthemum vulgare) and a positive relationship between colonization by arbuscules and the occurrence of a specialist seed-feeding fly ( Pegohylemyia seneciella) was found. The occurrence of stem-boring, leaf-mining and sap-sucking insects was not affected by AMF colonization. Total PA concentrations were negatively related to colonization levels by vesicles, but did not differ among the sowing treatments. No single factor explained the observed differences in AMF colonization among the sowing treatments or insect herbivore occurrence on S. jacobaea. However, correlations across the treatments suggest that some of the variation was due to the abundance of one plant species, which is known to stimulate AMF colonization of neighbouring plants, while AMF colonization was related to the occurrence of a specialist insect herbivore. Our results thus illustrate that in natural systems, the ecosystem impact of AMF through their influence on the occurrence of specialist insects can be recognised, but they also highlight the confounding effect of neighbouring plant species identity. Hence, our results emphasise the importance of field

  3. Fire recurrence effects on aboveground plant and soil carbon stocks in Mediterranean shrublands with Aleppo pine

    NASA Astrophysics Data System (ADS)

    Herman, J.; den Ouden, J.; Mohren, G. M. J.; Retana, J.; Serrasolses, I.

    2009-04-01

    Changes in fire regime due to intensification of human influence during the last decades led to changes in vegetation structure and composition, productivity and carbon sink strength of Mediterranean shrublands and forests. It is anticipated that further climate warming and lower precipitation will enhance fire frequency, having consequences for the carbon budget and carbon storage in Mediterranean ecosystems. The purpose of this study was to determine whether fire recurrence modifies aboveground plant and soil carbon stocks, soil organic carbon content and total soil nitrogen content in shrublands with Aleppo pine on the Garraf Massif in Catalonia (Spain). Stands differing in fire frequency (1, 2 and 3 fires since 1957) were examined 13 years after the stand-replacing fire of 1994 and compared with control stands which were free of fire since 1957. Recurrent fires led to a decrease in total ecosystem carbon stocks. Control sites stored 12203 g m-2C which was 3.5, 5.0 and 5.5 times more than sites that burned 1, 2 and 3 times respectively. Carbon stored in the aboveground biomass exceeded soil carbon stocks in control plots, while soils were the dominant carbon pool in burned plots. An increasing fire frequency from 1 to 2 fires decreased total soil carbon stock. Control soils stored 3551 g m-2C, of which 70 % was recovered over 13 years in once burned soils and approximately 50 % in soils that had 2 or 3 fires. The soil litter (LF) layer carbon stock decreased with increasing fire frequency from 1 to 2 fires, whereas humus (H) layer and upper mineral soil carbon stocks did not change consistently with fire frequency. Fire decreased the organic carbon content in LF and H horizons, however no significant effect of fire frequency was found. Increasing fire frequency from 1 to 2 fires caused a decrease in the organic carbon content in the upper mineral soil. Total soil N content and C/N ratios were not significantly impacted by fire frequency. Recurrent fires had the

  4. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  5. Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina

    NASA Astrophysics Data System (ADS)

    Pucheta, Eduardo; Cabido, Marcelo; Díaz, Sandra; Funes, Guillermo

    1998-04-01

    Changes in plant community composition, diversity, aboveground biomass, and aboveground net primary production (ANPP) of different plant growth-forms were assessed in sites protected from livestock grazing for 2, 4, and 15 years, and in a heavily-grazed site. Species richness was maximum at the grazed site and decreased significantly after 4 years of protection. Diversity decreased significantly only after 15 years of protection. No alien or weedy species were found at grazed or protected sites. Grazing exclusion produced a shift from grazing-tolerant or grazing-avoiding species with a graminoid or prostrate growth-form to taller species with a tall tussock growth-form. Grazing produced a 33% decrease in standing biomass but little change in ANPP when compared to the site protected from grazing for 2 years, but important changes in both biomass and ANPP respect to the sites protected for 4 and 15 years. Consumption was near 35% of ANPP.

  6. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    PubMed

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  7. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    PubMed Central

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  8. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem.

    PubMed

    Blue, Jarrod D; Souza, Lara; Classen, Aimée T; Schweitzer, Jennifer A; Sanders, Nathan J

    2011-11-01

    Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.

  9. The response of tundra plant biomass, above-ground production, nitrogen, and CO{sub 2} flux to experimental warming

    SciTech Connect

    Hobbie, S.E.; Chapin, F.S. III

    1998-07-01

    The authors manipulated air temperature in tussock tundra near Toolik Lake, Alaska, and determined the consequences for total plant biomass, aboveground net primary production (ANPP), ecosystem nitrogen (N) pools and N uptake, and ecosystem CO{sub 2} flux. After 3.5 growing seasons, in situ plastic greenhouses that raised air temperature during the growing season had little effect on total biomass, N content, or growing-season N uptake of the major plant and soil pools. Similarly, vascular ANPP and net ecosystem CO{sub 2} exchange did not change with warming, although net primary production of mosses decreased with warming. Such general lack of response supports the hypothesis that productivity in tundra is constrained by the indirect effects of cold temperatures rather than by cold growing-season temperatures per se. Despite no effect on net ecosystem CO{sub 2} flux, air warming stimulated early-season gross photosynthesis (GP) and ecosystem respiration (ER) throughout the growing season. This increased carbon turnover was probably associated with species-level responses to increased air temperature. Warming increased the aboveground biomass of the overstory shrub, dwarf birch (Betula nana), and caused a significant net redistribution of N from the understory evergreen shrub, Vaccinium vitis-idaea, to B. nana, despite no effects on soil temperature, total plant N, or N availability.

  10. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    PubMed

    Ceulemans, Tobias; Hulsmans, Eva; Berwaers, Sigi; Van Acker, Kasper; Honnay, Olivier

    2017-01-01

    Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  11. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands

    PubMed Central

    Ceulemans, Tobias; Hulsmans, Eva; Berwaers, Sigi; Van Acker, Kasper; Honnay, Olivier

    2017-01-01

    Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species’ recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary. PMID:28333985

  12. Carbon dynamics in aboveground biomass of co-dominant plant species in a temperate grassland ecosystem: same or different?

    PubMed

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A; Schnyder, Hans

    2016-04-01

    Understanding the role of individual organisms in whole-ecosystem carbon (C) fluxes is probably the biggest current challenge in C cycle research. Thus, it is unknown whether different plant community members share the same or different residence times in metabolic (τmetab ) and nonmetabolic (i.e. structural) (τnonmetab ) C pools of aboveground biomass and the fraction of fixed C allocated to aboveground nonmetabolic biomass (Anonmetab ). We assessed τmetab , τnonmetab and Anonmetab of co-dominant species from different functional groups (two bunchgrasses, a stoloniferous legume and a rosette dicot) in a temperate grassland community. Continuous, 14-16-d-long (13) C-labeling experiments were performed in September 2006, May 2007 and September 2007. A two-pool compartmental system, with a well-mixed metabolic and a nonmixed nonmetabolic pool, was the simplest biologically meaningful model that fitted the (13) C tracer kinetics in the whole-shoot biomass of all species. In all experimental periods, the species had similar τmetab (5-8 d), whereas τnonmetab ranged from 20 to 58 d (except for one outlier) and Anonmetab from 7 to 45%. Variations in τnonmetab and Anonmetab were not systematically associated with species or experimental periods, but exhibited relationships with leaf life span, particularly in the grasses. Similar pool kinetics of species suggested similar kinetics at the community level.

  13. Carbon dynamics in aboveground biomass of co-dominant plant species: related rather to leaf life span than to species

    NASA Astrophysics Data System (ADS)

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A.; Schnyder, Hans

    2016-04-01

    This study investigates the role of individual organisms in whole ecosystem carbon (C) fluxes. It is currently unknown if different plant community members share the same or different kinetics of C pools in aboveground biomass, thereby adding (or not) variability to the first steps in ecosystem C cycling. We assessed the residence times in metabolic and non-metabolic (or structural) C pools and the allocation pattern of assimilated C in aboveground plant parts of four co-existing, co-dominant species from different functional groups in a temperate grassland community. For this purpose continuous, 14-16 day long 13CO2/12CO2-labeling experiments were performed in Sept. 2006, May 2007 and Sept. 2007, and the tracer kinetics were analysed with compartmental modeling. In all experimental periods, the species shared vastly similar residence times in metabolic C (5-8 d). In contrast, the residence times in non-metabolic C ranged from 20 to 58 d (except one outlier) and the fraction of fixed C allocated to the non-metabolic pool from 7 to 45%. These variations in non-metabolic C kinetics were not systematically associated with species or experimental periods, but exhibited close relationships with (independent estimates of) leaf life span, particularly in the grasses. This adds new meaning to leaf life span as a functional trait in the leaf and plant economics spectrum and its implication for C cycle studies in grassland and also forest systems. As the four co-dominant species accounted for ~80% of total community shoot biomass, we should also expect that the observed similarities in pool kinetics and allocation will scale up to similar relationships at the community level.

  14. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.

    PubMed

    Johnson, Scott N; Mitchell, Carolyn; McNicol, James W; Thompson, Jacqueline; Karley, Alison J

    2013-09-01

    1. Terrestrial food webs are woven from complex interactions, often underpinned by plant-mediated interactions between herbivores and higher trophic groups. Below- and above-ground herbivores can influence one another via induced changes to a shared host plant, potentially shaping the wider community. However, empirical evidence linking laboratory observations to natural field populations has so far been elusive. 2. This study investigated how root-feeding weevils (Otiorhynchus sulcatus) influence different feeding guilds of herbivore (phloem-feeding aphids, Cryptomyzus galeopsidis, and leaf-chewing sawflies, Nematus olfaciens) in both controlled and field conditions. 3. We hypothesized that root herbivore-induced changes in plant nutrients (C, N, P and amino acids) and defensive compounds (phenolics) would underpin the interactions between root and foliar herbivores, and ultimately populations of natural enemies of the foliar herbivores in the field. 4. Weevils increased field populations of aphids by ca. 700%, which was followed by an increase in the abundance of aphid natural enemies. Weevils increased the proportion of foliar essential amino acids, and this change was positively correlated with aphid abundance, which increased by 90% on plants with weevils in controlled experiments. 5. In contrast, sawfly populations were 77% smaller during mid-June and adult emergence delayed by >14 days on plants with weevils. In controlled experiments, weevils impaired sawfly growth by 18%, which correlated with 35% reductions in leaf phosphorus caused by root herbivory, a previously unreported mechanism for above-ground-below-ground herbivore interactions. 6. This represents a clear demonstration of root herbivores affecting foliar herbivore community composition and natural enemy abundance in the field via two distinct plant-mediated nutritional mechanisms. Aphid populations, in particular, were initially driven by bottom-up effects (i.e. plant-mediated effects of root

  15. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts.

    PubMed

    Massimo, Nicholas C; Nandi Devan, M M; Arendt, Kayla R; Wilch, Margaret H; Riddle, Jakob M; Furr, Susan H; Steen, Cole; U'Ren, Jana M; Sandberg, Dustin C; Arnold, A Elizabeth

    2015-07-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in aboveground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on nonsucculent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity, and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert-plant communities and can be used to optimize strategies for capturing endophyte biodiversity at regional scales.

  16. Fungal endophytes in above-ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts

    PubMed Central

    Massimo, Nicholas C.; Nandi Devan, MM; Arendt, Kayla R.; Wilch, Margaret H.; Riddle, Jakob M.; Furr, Susan H.; Steen, Cole; U'Ren, Jana M.; Sandberg, Dustin C.; Arnold, A. Elizabeth

    2015-01-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in above-ground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on non-succulent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region, and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less-arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert plant communities, and can be used to optimize strategies for capturing endophyte biodiversity at regional scales. PMID

  17. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    PubMed Central

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  18. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    PubMed

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  19. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    SciTech Connect

    French, Sean B; Christensen, Candace; Jennings, Terry L; Jaros, Christopher L; Wykoff, David S; Crowell, Kelly J; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  20. Nitrogen deposition alters plant-fungal relationships: linking belowground dynamics to aboveground vegetation change.

    PubMed

    Dean, Sarah L; Farrer, Emily C; Taylor, D Lee; Porras-Alfaro, Andrea; Suding, Katharine N; Sinsabaugh, Robert L

    2014-03-01

    Nitrogen (N) deposition rates are increasing globally due to anthropogenic activities. Plant community responses to N are often attributed to altered competitive interactions between plants, but may also be a result of microbial responses to N, particularly root-associated fungi (RAF), which are known to affect plant fitness. In response to N, Deschampsia cespitosa, a codominant plant in the alpine tundra at Niwot Ridge (CO), increases in abundance, while Geum rossii, its principal competitor, declines. Importantly, G. rossii declines with N even in the absence of its competitor. We examined whether contrasting host responses to N are associated with altered plant-fungal symbioses, and whether the effects of N are distinct from effects of altered plant competition on RAF, using 454 pyrosequencing. Host RAF communities were distinct (only 9.4% of OTUs overlapped). N increased RAF diversity in G. rossii, but decreased it in D. cespitosa. D. cespitosa RAF communities were more responsive to N than G. rossii RAF communities, perhaps indicating a flexible microbial community aids host adaptation to nutrient enrichment. Effects of removing D. cespitosa were distinct from effects of N on G. rossii RAF, and D. cespitosa presence reversed RAF diversity response to N. The most dominant G. rossii RAF order, Helotiales, was the most affected by N, declining from 83% to 60% of sequences, perhaps indicating a loss of mutualists under N enrichment. These results highlight the potential importance of belowground microbial dynamics in plant responses to N deposition.

  1. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  2. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  3. ABOVEGROUND NITROGEN USE EFFICIENCY AND ...

    EPA Pesticide Factsheets

    Long-term nitrogen (N) fertilization studies suggest shifting dominance from Spartina alterniflora to Distichlis spicata, although the underlying mechanism is unclear. A limitation on our ability to predict changes is a poor understanding of resource use under ambient conditions. The present project compares growth rates and N use dynamics between two emerging salt marsh dominants, S. alterniflora and D. spicata. We hypothesize that under ambient Narragansett Bay nutrient conditions, S. alterniflora is a more efficient user of N than D. spicata. Spartina alterniflora and D. spicata cores were collected from the field and raised in a greenhouse. Heights of all stems were measured weekly to determine growth rates. To understand N movement, a pulse of 15N was added and three cores were sacrificed each subsequent week. Live aboveground biomass was separated into stems and leaves, with leaves categorized based on their position from the top of the stem. Samples were analyzed by isotope ratio mass spectrometry to trace N accumulation in different pools over time. One week after the 15N pulse, most of the aboveground 15N was bound in the stems and the youngest leaves. Efficient nutrient transfer in photosynthetic material likely provides a stronger competitive advantage for taller plants, which are able to compete better for light. Growth rates of S. alterniflora proved to be more variable over time than that of D. spicata. A better understanding of N dynamics under am

  4. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaching of dissolved organic matter (DOM) from fresh and pyrolyzed aboveground plant inputs to the soil is a major pathway by which decomposing aboveground plant material contributes to soil organic matter formation. Understanding how aboveground plant input chemical traits control the partiti...

  5. Decreasing precipitation variability does not elicit major aboveground biomass or plant diversity responses in a mesic rangeland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an emergent need to understand how altered precipitation regimes will affect aboveground biomass, stability of this biomass, and diversity in grassland ecosystems. We used replicated 9X10 m rainout shelters to experimentally remove inherent intra- and inter-annual variability of precipitati...

  6. Response of aboveground carbon balance to long-term, experimental enhancements in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    USGS Publications Warehouse

    McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew; Bosworth, Andrew

    2017-01-01

    Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.

  7. Response of aboveground carbon balance to long-term, experimental enhancements in precipitation seasonality is contingent on plant community type in cold-desert rangelands.

    PubMed

    McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew J; Bosworth, Andrew

    2017-03-01

    Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.

  8. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides

    PubMed Central

    Sánchez-Vilas, Julia; Bermúdez, Raimundo; Retuerto, Rubén

    2012-01-01

    Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the

  9. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation.

  10. Aboveground Epichloë coenophiala-Grass Associations Do Not Affect Belowground Fungal Symbionts or Associated Plant, Soil Parameters.

    PubMed

    Slaughter, Lindsey C; McCulley, Rebecca L

    2016-10-01

    Cool season grasses host multiple fungal symbionts, such as aboveground Epichloë endophytes and belowground arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSEs). Asexual Epichloë endophytes can influence root colonization by AMF, but the type of interaction-whether antagonistic or beneficial-varies. In Schedonorus arundinaceus (tall fescue), Epichloë coenophiala can negatively affect AMF, which may impact soil properties and ecosystem function. Within field plots of S. arundinaceus that were either E. coenophiala-free (E-), infected with the common, mammal-toxic E. coenophiala strain (CTE+), or infected with one of two novel, non-toxic strains (AR542 NTE+ and AR584 NTE+), we hypothesized that (1) CTE+ would decrease AMF and DSE colonization rates and reduce soil extraradical AMF hyphae compared to E- or NTE+, and (2) this would lead to E- and NTE+ plots having greater water stable soil aggregates and C than CTE+. E. coenophiala presence and strain did not significantly alter AMF or DSE colonization, nor did it affect extraradical AMF hypha length, soil aggregates, or aggregate-associated C and N. Soil extraradical AMF hypha length negatively correlated with root AMF colonization. Our results contrast with previous demonstrations that E. coenophiala symbiosis inhibits belowground AMF communities. In our mesic, relatively nutrient-rich grassland, E. coenophiala symbiosis did not antagonize belowground symbionts, regardless of strain. Manipulating E. coenophiala strains within S. arundinaceus may not significantly alter AMF communities and nutrient cycling, yet we must further explore these relationships under different soils and environmental conditions given that symbiont interactions can be important in determining ecosystem response to global change.

  11. Influence of the Wax Lake Delta sediment diversion on aboveground plant productivity and carbon storage in deltaic island and mainland coastal marshes

    NASA Astrophysics Data System (ADS)

    DeLaune, R. D.; Sasser, C. E.; Evers-Hebert, E.; White, J. R.; Roberts, H. H.

    2016-08-01

    Coastal Louisiana is experiencing a significant loss of coastal wetland area due to increasing sea level rise, subsidence, sediment starvation and marsh collapse. The construction of large scale Mississippi River sediment diversions is currently being planned in an effort to help combat coastal wetlands losses at a rate of >50 km-2 y-1. The Wax Lake Delta (WLD) is currently being used as a model for evaluating potential land gain from large scale diversions of Mississippi River water and sediment. In this study, we determine the impact of the WLD diversion on plant production at newly formed islands within the delta and adjacent, mainland freshwater marshes. Plant aboveground productivity, sediment nutrient status and short term accretion were measured at three locations on a transect at each of three fresh water marsh sites along Hog Bayou and at six newly formed emerging island sites in the delta. Spring flooding has resulted in a greater increase in plant production and consequently, greater carbon sequestration potential in adjacent mainland marshes compared to the newly formed island sites, which contain less total carbon (C), nitrogen (N), and phosphorus (P) in the sediment. While sediment diversions are predicted to create land, as seen in island formation in the WLD, the greatest benefit of river sediment diversions from a carbon credit perspective might be to the adjacent freshwater mainland marshes for several reasons. Both greater plant production and sediment C accumulation are two important factors for marsh stability, while perhaps even more critical, is the prevention of the loss of stored sediment C in the marsh profile. This stored C would be lost without the introduction of freshwater, nutrients and sediment through river sediment diversion efforts.

  12. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities.

  13. Nuclear power plant cable materials :

    SciTech Connect

    Celina, Mathias Christopher; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  14. Pathogen-tested, or certified planting material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certification programs have been developed to provide plant material that meets a predetermined level of plant health. The primary objective of these programs is to limit pathogen incidence in plant material in order to minimize losses by growers. For many fruit and nut crops plantings are expecte...

  15. Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3.

    PubMed

    Garbeva, P; Postma, J; van Veen, J A; van Elsas, J D

    2006-02-01

    The extent of soil microbial diversity is seen to be critical to the maintenance of soil health and quality. Different agricultural practices are able to affect soil microbial diversity and thus the level of suppressiveness of plant diseases. In a 4-year field experiment, we investigated the microbial diversity of soil under different agricultural regimes. We studied permanent grassland, grassland turned into arable land, long-term arable land and arable land turned into grassland. The diversity of microbial communities was described by using cultivation-based and cultivation-independent methods. Both types of methods revealed differences in the diversities of soil microbial communities between different treatments. The treatments with higher above-ground biodiversity generally maintained higher levels of microbial diversity. Moreover, a positive correlation between suppression of Rhizoctonia solani AG3 and microbial diversity was observed. Permanent (species-rich) grassland and grassland turned into maize stimulated higher microbial diversities and higher levels of suppressiveness of R. solani AG3 compared with the long-term arable land. Effects of agricultural practices on Bacillus and Pseudomonas communities were also observed and clear correlations between the levels of suppressiveness and the diversities of these bacterial groups were found. This study highlighted the importance of agricultural management regime for soil microbial community structure and diversity as well as the level of soil suppressiveness.

  16. Selenium and its species distribution in above-ground plant parts of selenium enriched buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Vogrincic, Maja; Cuderman, Petra; Kreft, Ivan; Stibilj, Vekoslava

    2009-11-01

    Common buckwheat (Fagopyrum esculentum Moench) was foliarly sprayed with a water solution containing 10 mg Se(VI) L(-1) at the beginning of flowering. The total Se content in plant parts in the untreated group was low, whereas in the Se-sprayed group it was approximately 50- to 500-fold higher, depending on the plant part (708-4231 ng Se g(-1) DM(-1) (DM: dry matter)). We observed a similar distribution of Se in plant parts in both control and treated groups, with the highest difference in Se content being in ripe seeds. Water-soluble Se compounds were extracted by enzymatic hydrolysis with protease XIV, resulting in above 63% of soluble Se from seeds, approximately 14% from stems, leaves and inflorescences and less than 1% from husks. Se-species were determined in enzymatic extracts using HPLC-UV-HG-AFS (HPLC-hydride generation-atomic fluorescence spectrometry with UV treatment). The main Se species found in seeds was SeMet ( approximately 60% according to total Se content), while in stems, leaves and inflorescences the only form of soluble Se present was Se(VI) (up to 10% of total Se). In husks no Se-species were detected. We observed an instability of Se(IV) in seed extracts as a possible consequence of binding to the matrix components. Therefore, special care concerning sample extraction and the storage time of the extracts should be taken.

  17. Bioinspired materials: Boosting plant biology

    NASA Astrophysics Data System (ADS)

    Scholes, Gregory D.; Sargent, Edward H.

    2014-04-01

    Chloroplasts with extended photosynthetic activity beyond the visible absorption spectrum, and living leaves that perform non-biological functions, are made possible by localizing nanoparticles within plant organelles.

  18. Elicitors aboveground: an alternative for control of a belowground pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation ...

  19. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  20. Drought and Root Herbivory Interact to Alter the Response of Above-Ground Parasitoids to Aphid Infested Plants and Associated Plant Volatile Signals

    PubMed Central

    Tariq, Muhammad; Wright, Denis J.; Bruce, Toby J. A.; Staley, Joanna T.

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40–55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may

  1. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    PubMed

    Tariq, Muhammad; Wright, Denis J; Bruce, Toby J A; Staley, Joanna T

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be

  2. Aboveground storage tanks -- Better safe than sorry

    SciTech Connect

    Rizzo, J.A.

    1995-12-31

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: safety; product losses; cost comparison of UST vs AGSTs; space availability/accessibility; precipitation handling; aesthetics and security; and existing and pending regulations.

  3. Aboveground and belowground competition between willow Salix caprea its understory

    NASA Astrophysics Data System (ADS)

    Mudrák, Ondřej; Hermová, Markéta; Frouz, Jan

    2016-04-01

    The effects of aboveground and belowground competition with the willow S. caprea on its understory plant community were studied in unreclaimed post-mining sites. Belowground competition was evaluated by comparing (i) frames inserted into the soil that excluded woody roots (frame treatment), (ii) frames that initially excluded woody root growth but then allowed regrowth of the roots (open-frame treatment), and (iii) undisturbed soil (no-frame treatment). These treatments were combined with S. caprea thinning to assess the effect of aboveground competition. Three years after the start of the experiment, aboveground competition from S. caprea (as modified by thinning of the S. caprea canopy) had not affected understory biomass or species number but had affected species composition. In contrast, belowground competition significantly affected both the aboveground and belowground biomass of the understory. The aboveground biomass of the understory was greater in the frame treatment (which excluded woody roots) than in the other two treatments. The belowground biomass of the understory was greater in the frame than in the open-frame treatment. Unlike aboveground competition (light availability), belowground competition did not affect understory species composition. Our results suggest that S. caprea is an important component during plant succession on post-mining sites because it considerably modifies its understory plant community. Belowground competition is a major reason for the low cover and biomass of the herbaceous understory in S. caprea stands on post-mining sites.

  4. Methods of producing compounds from plant materials

    SciTech Connect

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine J.

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  5. Methods of producing compounds from plant material

    DOEpatents

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  8. Unit Plants, First Trial Materials, Inspection Set.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    The Australian Science Education Project is producing materials designed for use in grades 7-10 of Australian schools. This is the first trial version of a unit introducing the study of plants. The section to be completed by all pupils, contained in the first of the student workbooks, emphasizes observation of specimens on school grounds and on…

  9. Forecasting annual aboveground net primary production in the intermountain west

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...

  10. Aktau Plastics Plant Explosives Material Report

    SciTech Connect

    CASE JR.,ROGER S.

    1999-12-01

    The U.S. Department of Energy (DOE) has been cooperating with the Republic of Kazakhstanin Combined Threat Reduction (CTR) activities at the BN350 reactor located at the Mangyshlak Atomic Energy Complex (MAEC) in the city of Aktau, Kazakhstan since 1994. DOE contract personnel have been stationed at this facility for the last two years and DOE representatives regularly visit this location to oversee the continuing cooperative activities. Continued future cooperation is planned. A Russian news report in September 1999 indicated that 75 metric tons of organic peroxides stored at the Plastics Plant near Aktau were in danger of exploding and killing or injuring nearby residents. To ensure the health and safety of the personnel at the BN350 site, the DOE conducted a study to investigate the potential danger to the BN350 site posed by these materials at the Plastics Plant. The study conclusion was that while the organic peroxides do have hazards associated with them, the BN350 site is a safe distance from the Plastics Plant. Further, because the Plastics Plant and MAEC have cooperative fire-fighting agreements,and the Plastics Plant had exhausted its reserve of fire-fighting foam, there was the possibility of the Plastics Plant depleting the store of fire-fighting foam at the BN350 site. Subsequently, the DOE decided to purchase fire-fighting foam for the Plastics Plant to ensure the availability of free-fighting foam at the BN350 site.

  11. Luminescence of some airborne plant materials

    NASA Astrophysics Data System (ADS)

    Satterwhite, Melvin B.

    1997-07-01

    The objective of this study was to describe the excitation- emission spectra of seed pubescence, pollen and spores, and senesced plant materials that could be carried in the air column. Reference samples were a mature green-colored corn leaf, green-, yellow- and brown-colored soybean leaves, cellulose, commercial grade cotton batting and a soil. Spectral luminescence signatures were collected over the 300 to 800 nanometer region using a scanning spectrofluorometer. The excitation-emission spectra were broadband emission centroids in the 400-nm to 600-nm spectrum. Emission maxima were associated with the 440-nm, 470-nm and 370-nm excitation bands and the 455-nm to 590-nm emission bands. The coma of milkweed, silkvine, cotton (raw), cottonwood seeds and yellow- colored pollen and spores were highly fluorescent. The pappus of thistles, dandelion and goat's beard seeds and newly senesced grass leaves and glumes had moderate to high fluorescence. Dark brown-colored mushroom spores and weathered, senesced plant materials had low fluorescence. The emission spectra resembled that of regent, microcrystalline cellulose although impurities incorporated within the plant materials altered their emission intensities from that of cellulose. Moderate to low emissions were from tan- to dark brown-colored materials, whereas the white-colored or light, tan-colored materials had high emissions.

  12. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and...

  13. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and...

  14. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and...

  15. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and...

  16. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and...

  17. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?

    PubMed Central

    Yim, Bunlong; Winkelmann, Traud; Ding, Guo-Chun; Smalla, Kornelia

    2015-01-01

    Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing revealed significant differences in the bacterial community composition even after 8 weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus, and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia, and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e., potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments. PMID:26635733

  18. Boiler Materials For Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  19. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  20. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-07-17

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

  1. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  3. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-07-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  7. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

    2003-04-21

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  9. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2004-10-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  10. 7 CFR 1726.175 - General plant materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false General plant materials. 1726.175 Section 1726.175... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.175 General plant... determine the procurement method that best meets its needs for purchase of general plant material...

  11. 7 CFR 1726.175 - General plant materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false General plant materials. 1726.175 Section 1726.175... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.175 General plant... determine the procurement method that best meets its needs for purchase of general plant material...

  12. 7 CFR 1726.175 - General plant materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false General plant materials. 1726.175 Section 1726.175... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.175 General plant... determine the procurement method that best meets its needs for purchase of general plant material...

  13. 7 CFR 1726.175 - General plant materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false General plant materials. 1726.175 Section 1726.175... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.175 General plant... determine the procurement method that best meets its needs for purchase of general plant material...

  14. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  15. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  16. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-07-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  17. 7 CFR 613.3 - NRCS responsibilities in plant materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false NRCS responsibilities in plant materials. 613.3... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS PLANT MATERIALS CENTERS § 613.3 NRCS responsibilities in plant materials. NRCS operates or enters into agreements with State universities or other...

  18. 7 CFR 613.3 - NRCS responsibilities in plant materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false NRCS responsibilities in plant materials. 613.3... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS PLANT MATERIALS CENTERS § 613.3 NRCS responsibilities in plant materials. NRCS operates or enters into agreements with State universities or other...

  19. 7 CFR 613.3 - NRCS responsibilities in plant materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false NRCS responsibilities in plant materials. 613.3... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS PLANT MATERIALS CENTERS § 613.3 NRCS responsibilities in plant materials. NRCS operates or enters into agreements with State universities or other...

  20. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    PubMed

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    . The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom-up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short-term alterations of the aboveground herbivore community can strongly impact nutrient cycling within ecosystems independent of long-term management and grazing history.

  1. Preliminary Materials Transport Plan for the Plutonium Immobilization Plant

    SciTech Connect

    Gilkison, J.M.; Dyches, G.M.; Randall, W.J.; Steed, J.H.

    2000-01-26

    This Materials Transport Plan defines the methodology for moving process and non-process materials within the Plutonium Immobilization Plant (PIP) operations. The scope of the plan includes the movement of materials between plant operational units (gloveboxes or operational areas/rooms within the plant). The movements of materials within the various plant operational units are described in the System Design Description prepared for the individual units. The plan provides a design concept for transporting each type of material including the containerization used during the movements. Further, the plan identifies the high-level functions and requirements for movements of the materials.

  2. Contents, accumulation and release of energy in green, dead and decomposing plant materials in an upland grassland near Kamenicky, Czechoslovakia.

    PubMed

    Ulehlová, B

    1980-01-01

    The energy content was studied in above-ground live plant material and in litter in a natural grassland ecosystem with dominant Nardus stricta L., defined phytosociologically as Polygalo-Nardetum strictae. PREISING 1950 corr. OBERDORFER 1957, and in two of its fertilized variants in the course of 1975 to 1977. Based on the determined production characteristics and data on decomposition processes, the amounts of energy accumulated by the green parts of the stands and the amount of energy released during decomposition from the litter were calculated. Changes in the energy content of litter in different stages of decomposition were determined. With progressing decomposition the energy content per gram ash-free decomposing plant litter increases.

  3. Analysis of phosphate esters in plant material

    PubMed Central

    Isherwood, F. A.; Barrett, F. C.

    1967-01-01

    1. A critical study was made of the quantitative extraction of nucleotide and sugar phosphates from plant tissue by either boiling aqueous ethanol or cold trichloroacetic acid. The effect of the extraction technique on the inactivation of the enzymes in the plant tissue and the possibility of adsorption of the phosphate esters on the cell wall were especially considered. 2. In the recommended method the plant tissue was frozen in liquid nitrogen, ground to a powder and then blended with cold aqueous trichloroacetic acid containing 8-hydroxyquinoline to prevent adsorption. 3. The extract contained large amounts of trichloroacetic acid, cations, chloride, sugars, amino acids, hydroxy organic acids, phytic acid, orthophosphoric acid and high-molecular-weight material including some phosphorus-containing compounds. All of these were removed as they were liable to interfere with the chromatographic or enzymic assay of the individual nucleotide or sugar phosphates. 4. The procedure was as follows: the last traces of trichloroacetic acid were extracted with ether after the solution had been passed through a column of Dowex AG 50 in the hydrogen form to remove all cations. High-molecular-weight compounds were removed by ultrafiltration and low-molecular-weight solutes by a two-stage chromatography on cellulose columns with organic solvents. In the first stage, sugars, amino acids, chloride and phytic acid were separated by using a basic solvent (propan-1-ol–water–aqueous ammonia) and, in the second stage, the organic acids and orthophosphoric acid were separated by using an acidic solvent (di-isopropyl ether–formic acid–2-methylpropan-2-ol–water). The final solution of nucleotide and sugar phosphates was substantially free from other solutes and was suitable for the detection of individual phosphate esters by either chromatography or enzymic assay. 5. The recovery of d-glucose 6-phosphate or adenosine 5′-triphosphate added to a trichloroacetic acid extract

  4. Plants growing in Apollo 15 lunar material

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A close view of germ free plants - lettuce (left), tomato (right center and left center) and citrus (right). This type of testing is an effort at the Manned Spacecraft Center (MSC) to grow germ-free plants.

  5. Plant species richness belowground: higher richness and new patterns revealed by next-generation sequencing.

    PubMed

    Hiiesalu, Inga; Opik, Maarja; Metsis, Madis; Lilje, Liisa; Davison, John; Vasar, Martti; Moora, Mari; Zobel, Martin; Wilson, Scott D; Pärtel, Meelis

    2012-04-01

    Variation in plant species richness has been described using only aboveground vegetation. The species richness of roots and rhizomes has never been compared with aboveground richness in natural plant communities. We made direct comparisons of grassland plant richness in identical volumes (0.1 × 0.1 × 0.1 m) above and below the soil surface, using conventional species identification to measure aboveground richness and 454 sequencing of the chloroplast trnL(UAA) intron to measure belowground richness. We described above- and belowground richness at multiple spatial scales (from a neighbourhood scale of centimetres to a community scale of hundreds of metres), and related variation in richness to soil fertility. Tests using reference material indicated that 454 sequencing captured patterns of species composition and abundance with acceptable accuracy. At neighbourhood scales, belowground richness was up to two times greater than aboveground richness. The relationship between above- and belowground richness was significantly different from linear: beyond a certain level of belowground richness, aboveground richness did not increase further. Belowground richness also exceeded that of aboveground at the community scale, indicating that some species are temporarily dormant and absent aboveground. Similar to other grassland studies, aboveground richness declined with increasing soil fertility; in contrast, the number of species found only belowground increased significantly with fertility. These results indicate that conventional aboveground studies of plant richness may overlook many coexisting species, and that belowground richness becomes relatively more important in conditions where aboveground richness decreases. Measuring plant belowground richness can considerably alter perceptions of biodiversity and its responses to natural and anthropogenic factors.

  6. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores.

    PubMed

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-09-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  7. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores

    PubMed Central

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-01-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  8. 7 CFR 613.4 - Special production of plant materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Special production of plant materials. 613.4 Section 613.4 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES... conservation job if this production will serve the public welfare and only if the plant materials are...

  9. Plant Material Testing: Can we learn from small plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Choosing appropriate plant materials for a rangeland rehabilitation project is critical for long-term success. The question is what species to seed? We find it is first necessary to define objectives and goals before debating plant material choices. For example, our objective is often to suppress...

  10. Method of preparing and handling chopped plant materials

    DOEpatents

    Bransby, David I.

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  11. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores.

    PubMed

    Kumar, Pavan; Ortiz, Erandi Vargas; Garrido, Etzel; Poveda, Katja; Jander, Georg

    2016-09-01

    Plants mediate interactions between aboveground and belowground herbivores. Although effects of root herbivory on foliar herbivores have been documented in several plant species, interactions between tuber-feeding herbivores and foliar herbivores are rarely investigated. We report that localized tuber damage by Tecia solanivora (Guatemalan tuber moth) larvae reduced aboveground Spodoptera exigua (beet armyworm) and Spodoptera frugiperda (fall armyworm) performance on Solanum tuberosum (potato). Conversely, S. exigua leaf damage had no noticeable effect on belowground T. solanivora performance. Tuber infestation by T. solanivora induced systemic plant defenses and elevated resistance to aboveground herbivores. Lipoxygenase 3 (Lox3), which contributes to the synthesis of plant defense signaling molecules, had higher transcript abundance in T. solanivora-infested leaves and tubers than in equivalent control samples. Foliar expression of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and 3-hydroxy-3-methylglutaryl CoA reductase I (HMGR1) genes, which are involved in chlorogenic acid and steroidal glycoalkaloid biosynthesis, respectively, also increased in response to tuber herbivory. Leaf metabolite profiling demonstrated the accumulation of unknown metabolites as well as the known potato defense compounds chlorogenic acid, α-solanine, and α-chaconine. When added to insect diet at concentrations similar to those found in potato leaves, chlorogenic acid, α-solanine, and α-chaconine all reduced S. exigua larval growth. Thus, despite the fact that tubers are a metabolic sink tissue, T. solanivora feeding elicits a systemic signal that induces aboveground resistance against S. exigua and S. frugiperda by increasing foliar abundance of defensive metabolites.

  12. Root-fed salicylic acid in grape involves the response caused by aboveground high temperature.

    PubMed

    Liu, Hong-Tao; Liu, Yue-Ping; Huang, Wei-Dong

    2008-06-01

    In order to investigate the transportation and distribution of salicylic acid (SA) from root to aboveground tissues in response to high temperature, the roots of grape plant were fed with (14)C-SA before high temperature treatment. Radioactivity results showed that progressive increase in SA transportation from root to aboveground as compared with the control varied exactly with the heat treatment time. Radioactivity results of leaves at different stem heights indicated that the increase in SA amount at the top and middle leaves during the early period was most significant in comparison with the bottom leaves. The up-transportation of SA from root to aboveground tissues was dependent on xylem rather than phloem. Auto-radiographs of whole grape plants strongly approved the conclusions drawn above. Root-derived SA was believed to be a fundamental source in response to aboveground high temperature.

  13. Catalytic production of aromatics and olefins from plant materials

    SciTech Connect

    Haag, W.O.; Rodewald, P.G.; Weisz, P.B.

    1980-08-01

    Hydrocarbons and hydrocarbon-like plant materials offer the possibility of relatively simple and energy-efficient processing to liquid fuels or petrochemicals. The use of such highly reduced photosynthesis products as potential fuels has been advocated by Calvin and coworkers, and Buchanan and coworkers have evaluated several hundred plant species for the presence of hydrocarbons. The yield of extracted oils may exceed 10 wt % of the plant dry weight. Some field growth studies of the most promising of these plants are underway, e.g., by Calvin in California, by Native Plants, Inc., and by the Diamond Shamrock Co., in conjunction with the University of Arizona, mostly with Euphorbia and related genera. Exploratory studies were performed to determine if direct catalytic upgrading of the hydrocarbon-like plant constituents could be carried out. A preliminary report has been published recently. A variety of plant materials were shown to be upgraded to liquid premium fuels by relatively simple catalytic processing over Mobil's shape selective zeolite, ZSM-5. The present paper contains additional information on the conversion of a variety of plant materials with special emphasis on the production of petrochemicals, and discusses key mechanistic aspects of the reactions. Feedstocks were chosen to represent different types of plant materials: corn oil, castor oil and jojoba seed oil; plant extracts from Euphorbia lathyrus and Grindelia squarrosa; and hydrocarbons obtained by tapping of trees such as copaiba oil and natural rubber latex.

  14. Analysis of amines in plant materials.

    PubMed

    Bouchereau, A; Guénot, P; Larher, F

    2000-09-29

    Biogenic amines are conveniently divided into aliphatic monoamines, aliphatic di- and polyamines and aromatic amines. These compounds are shown to fulfill an array of roles in cellular metabolism. Thus, amines are needed for growth and development and their metabolism appears to be coordinated with the cell cycle. Di- and polyamines, among which are putrescine, spermidine and spermine, are ubiquitous polycationic molecules that occur in all living cells. However, plants accumulate a number of specific related compounds under free or conjugated forms. In plant tissues, the molecular diversity combined with the fact that amine contents are highly responsive to developmental and environmental signals encouraged analysts to develop specific procedures for their isolation and characterization. The main goals were to develop high performance routine procedures in terms of selectivity, repeatability and detectability with minimum running costs. Domains of application concern not only fundamental aspects of amine biochemistry and physiology in plants but also increasing needs in the control of food and beverage quality from plant origin. The present review reports the most recent advances in extraction, identification and quantitation of amines in plant tissues with special interest in the analysis of original and uncommon metabolites. Emphasis is directed towards chromatographic and electrophoretic separation methodologies and new detection technologies of both derivatized and underivatized compounds including photometry, fluorometry, amperometry and mass spectrometry.

  15. [Effects of shading on the aboveground biomass and stiochiometry characteristics of Medicago sativa].

    PubMed

    Ma, Zhi-Liang; Yang, Wan-Qin; Wu, Fu-Zhong; Gao, Shun

    2014-11-01

    In order to provide scientific basis for inter-planting alfalfa in abandoned farmland, a shading experiment was conducted to simulate the effects of different light intensities on the aboveground biomass, the contents of carbon, nitrogen, phosphorus and potassium, and the stoichiometric characteristics of alfalfa under the plantation. The results showed that the aboveground biomass of alfalfa correlated significantly with the light intensity, and shading treatment reduced the aboveground biomass of alfalfa significantly. The aboveground alfalfa tissues under the 62% shading treatment had the highest contents of carbon, nitrogen and phosphorus, which was 373.73, 34.38 and 5.47 g · kg(-1), respectively, and significantly higher than those of the control. However, shading treatments had no significant effect on the potassium content of aboveground part. The C/N ratio in aboveground tissues under the 72% shading treatment was significantly higher than that of the control, but no significant differences among other treatments were found. The ratios of N/P and C/P in aboveground tissues showed a tendency that decreased firstly and then increased with the increase of light intensity.

  16. 7 CFR 613.3 - NRCS responsibilities in plant materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false NRCS responsibilities in plant materials. 613.3 Section 613.3 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES..., county, and nonprofit agencies or organizations on the selection of plants and evaluation of...

  17. Uptake by plants of radionuclides from FUSRAP waste materials

    SciTech Connect

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  18. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    NASA Astrophysics Data System (ADS)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    Heavy metal contamination is an important environmental problem, since the metals are harmful to humans, animals and tend to bioaccumulate in the food chain. The aim of this study was to determine the total concentration of As, As (III) and As(V) in soil samples, leaves and roots of plant material, growing in a mining area in Spain (Murcia). Ditichia viscosa was used as the plant of reference. The concentrations of bioavailable As in plant samples were calculated by different soil chemical extraction methods; deionized water, 0.5N NaHCO3 (Olsen extraction), oxidizable medium, 0.5 HCl, 0.05M (NH4)2SO4, 0.005M DTPA and Mehra-Jackson extraction. For this study, fourteen samples were collected in the surrounding area of Sierra Minera and Portman Bay (Murcia, SE Spain). Samples were air dried and sieved to < 2mm for general analytical determinations. To determine the As content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer. Samples showed pH average values close to neutrality. Most samples showed a very low organic matter percentage. Electrical conductivity and calcium carbonate content were considerably low in most samples. The mineralogical analysis showed that the main minerals were quartz, muscovite, kaolinite and illite, while the minority minerals were alteration products derived of mining activities (iron oxides and hydroxides, siderite, jarosite and gypsum), calcite and feldspars. Although the plants do not absorb arsenic in the same proportion, the results suggest that a good relationship exists between the total content of As in soil and the total content in plant. The results showed that the arsenic content in roots was positively correlated with the oxidizable-organic matter and sulfides

  19. DNA barcoding of medicinal plant material for identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the increasing demand for herbal remedies and for authentication of the source material, it is vital to provide a single database containing information about authentic plant materials and their potential adulterants. The database should provide DNA barcodes for data retrieval and similar...

  20. Root growth dynamics linked to aboveground growth in walnuts (Juglans regia L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims: Examination of belowground plant responses to canopy and soil moisture manipulation is scant compared to that aboveground but needed to understand whole plant responses to environmental factors. Plasticity in the seasonal timing and vertical distribution of root growth in respon...

  1. The hierarchical structure and mechanics of plant materials

    PubMed Central

    Gibson, Lorna J.

    2012-01-01

    The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency. PMID:22874093

  2. Interface problems between material recycling systems and plants.

    PubMed

    Nitta, K; Oguchi, M; Otsubo, K

    1992-01-01

    A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling systems to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifiers, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystem introduced in Plant Cultivation Modules.

  3. Material and methods to increase plant growth and yield

    DOEpatents

    Kirst, Matias

    2015-09-15

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  4. Effect of lunar materials on plant tissue culture.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  5. Predictive aging results for cable materials in nuclear power plants

    SciTech Connect

    Gillen, K.T.; Clough, R.L.

    1990-11-01

    In this report, we provide a detailed discussion of methodology of predicting cable degradation versus dose rate, temperature, and exposure time and its application to data obtained on a number of additional nuclear power plant cable insulation (a hypalon, a silicon rubber and two ethylenetetrafluoroethylenes) and jacket (a hypalon) materials. We then show that the predicted, low-dose-rate results for our materials are in excellent agreement with long-term (7 to 9 years), low dose-rate results recently obtained for the same material types actually aged under nuclear power plant conditions. Based on a combination of the modelling and long-term results, we find indications of reasonably similar degradation responses among several different commercial formulations for each of the following generic'' materials: hypalon, ethylenetetrafluoroethylene, silicone rubber and PVC. If such generic'' behavior can be further substantiated through modelling and long-term results on additional formulations, predictions of cable life for other commercial materials of the same generic types would be greatly facilitated. Finally, to aid utilities in their cable life extension decisions, we utilize our modelling results to generate lifetime prediction curves for the materials modelled to data. These curves plot expected material lifetime versus dose rate and temperature down to the levels of interest to nuclear power plant aging. 18 refs., 30 figs., 3 tabs.

  6. Structural Materials and Fuels for Space Power Plants

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  7. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  8. Reference electrodes for aboveground storage tanks

    SciTech Connect

    Ansuini, F.J.; Dimond, J.R.

    1995-12-31

    This paper discusses several factors affecting the reference potential established by copper/copper sulfate and silver/silver chloride reference electrodes. Guidelines for using references in aboveground storage tank applications are presented and some causes of misleading readings are discussed.

  9. Techniques of preparing plant material for chromatographic separation and analysis.

    PubMed

    Romanik, G; Gilgenast, E; Przyjazny, A; Kamiński, M

    2007-03-10

    This paper discusses preparation techniques of samples of plant material for chromatographic analysis. Individual steps of the procedures used in sample preparation, including sample collection from the environment or from tissue cultures, drying, comminution, homogenization, leaching, extraction, distillation and condensation, analyte enrichment, and obtaining the final extracts for chromatographic analysis are discussed. The techniques most often used for isolation of analytes from homogenized plant material, i.e., Soxhlet extraction, ultrasonic solvent extraction (sonication), accelerated solvent extraction, microwave-assisted extraction, supercritical-fluid extraction, steam distillation, as well as membrane processes are emphasized. Sorptive methods of sample enrichment and removal of interferences, i.e., solid-phase extraction, and solid-phase micro-extraction are also discussed.

  10. Graphite as a structural material in HTR plants

    NASA Astrophysics Data System (ADS)

    Theymann, W.; Schmidt, A.

    1990-04-01

    Graphite has been selected as a structural material in HTR plants because of its favourable characteristics. The low ductility and the low tensile strength of this material as well as its behaviour under the impact of fast neutron irradiation require special construction directives and design criteria. It is demonstrated that by an appropriate structural design it is possible to separate the tasks and functions of the individual graphite components, which permits a classification of each component into one of three classes of qualitity assurance. Adequate stress criteria have been developed for the graphite internals of HTR based on probabilistic methods.

  11. Alkene Metathesis and Renewable Materials: Selective Transformations of Plant Oils

    NASA Astrophysics Data System (ADS)

    Malacea, Raluca; Dixneuf, Pierre H.

    The olefin metathesis of natural oils and fats and their derivatives is the basis of clean catalytic reactions relevant to green chemistry processes and the production of generate useful chemicals from renewable raw materials. Three variants of alkene metathesis: self-metathesis, ethenolysis and cross-metathesis applied to plant oil derivatives will show new routes to fine chemicals, bifunctional products, polymer precursours and industry intermediates.

  12. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  13. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland.

    PubMed

    Zhang, Qing; Buyantuev, Alexander; Li, Frank Yonghong; Jiang, Lin; Niu, Jianming; Ding, Yong; Kang, Sarula; Ma, Wenjing

    2017-03-01

    The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

  14. Simple method for estimating soil mass loading onto plant surface using magnetic material content as a soil indicator - Influence of soil adhesion to vegetation on radioactive cesium concentration in forage.

    PubMed

    Sunaga, Yoshihito; Harada, Hisatomi

    2016-11-01

    A simple technique for estimating soil mass loading on vegetation was developed using magnetic material content as an indicator of soil adhesion. Magnetic material contents in plant and soil samples were determined by a magnetic analyzer. High recovery rates of 85-97% were achieved in a recovery test in which additional soil was added to powdered plant materials [stem of forage corn (Zea mays L.), aboveground part of Italian ryegrass (Lolium multiflorum Lam.)] at addition rates of 12.3-200 g dry soil kg(-1) dry plant material including soil. Samples of different Japanese cultivated soils were tested and showed a range of magnetic contents of 1.27-16.1 g kg(-1) on a dry weight basis. These levels are considered adequate for determining soil contamination in plant materials. Then, we applied this method for confirming the effect of soil adhesion on radioactive cesium concentrations in plant samples obtained at the area affected by the 2011 nuclear accident in Japan. The mean soil mass loading (±standard deviation) on forage rye (Secale cereale L.) showing mild lodging was 0.8 ± 0.6 g kg(-1), but was 7.4 ± 5.0 g kg(-1) for plants with serious lodging. No soil loading was detected on rye plants that showed no lodging. Radioactive cesium concentrations in the rye samples increased linearly with the increase in soil mass loading caused by plant lodging, and consequently mean radioactive cesium concentration for rye plants with serious lodging was about 2.7 times higher than that with no lodging. Cesium radioactivity in forage was affected by variations in soil mass loading onto forage plants caused by changes in plant growth and differences between plant species.

  15. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks.

    PubMed

    DiTommaso, Antonio; Morris, Scott H; Parker, John D; Cone, Caitlin L; Agrawal, Anurag A

    2014-01-01

    Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus) populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15 × 15 m fenced enclosures and paired open plots in recently followed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005-2010), we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005-2008) and tree density (2005-2012). The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity), reduced seed bank abundance, relatively more short-lived species (annuals and biennials), and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually recruit from an

  16. Deer Browsing Delays Succession by Altering Aboveground Vegetation and Belowground Seed Banks

    PubMed Central

    DiTommaso, Antonio; Morris, Scott H.; Parker, John D.; Cone, Caitlin L.; Agrawal, Anurag A.

    2014-01-01

    Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus) populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15×15 m fenced enclosures and paired open plots in recently fallowed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005–2010), we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005–2008) and tree density (2005–2012). The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity), reduced seed bank abundance, relatively more short-lived species (annuals and biennials), and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually recruit

  17. Cathodic protection design for aboveground storage tanks

    SciTech Connect

    Koszewski, L.; Quincy, G.L.

    1995-12-31

    The application of cathodic protection for aboveground storage tank (AST) bottoms has been accomplished in a variety of approaches, with varying degrees of success. Recent State regulations, requiring corrosion protection for new tanks and secondary containment for double bottom tanks, have prompted new application techniques to be developed for AST cathodic protection. Improved design applications are now available to todays` tank owners and operators to provide effective long term cathodic protection.

  18. Cathodic protection maintenance for aboveground storage tanks

    SciTech Connect

    Koszewski, L.

    1995-12-31

    Cathodic protection systems are utilized to mitigate corrosion on the external bottom surfaces of aboveground storage tanks (ASTs). Cathodic protection systems should be part of a preventative maintenance program to minimize in-service failures. A good maintenance program will permit determination of continuous adequate cathodic protection of ASTs, through sustained operation and also provide the opportunity to detect cathodic protection system malfunctions, through periodic observations and testing.

  19. Vegetative regeneration capacities of five ornamental plant invaders after shredding.

    PubMed

    Monty, Arnaud; Eugène, Marie; Mahy, Grégory

    2015-02-01

    Vegetation management often involves shredding to dispose of cut plant material or to destroy the vegetation itself. In the case of invasive plants, this can represent an environmental risk if the shredded material exhibits vegetative regeneration capacities. We tested the effect of shredding on aboveground and below-ground vegetative material of five ornamental widespread invaders in Western Europe that are likely to be managed by cutting and shredding techniques: Buddleja davidii (butterfly bush, Scrophulariaceae), Fallopia japonica (Japanese knotweed, Polygonaceae), Spiraea × billardii Hérincq (Billard's bridewort, Rosaceae), Solidago gigantea (giant goldenrod, Asteraceae), and Rhus typhina L. (staghorn sumac, Anacardiaceae). We looked at signs of vegetative regeneration and biomass production, and analyzed the data with respect to the season of plant cutting (spring vs summer), the type of plant material (aboveground vs below-ground), and the shredding treatment (shredded vs control). All species were capable of vegetative regeneration, especially the below-ground material. We found differences among species, but the regeneration potential was generally still present after shredding despite a reduction of growth rates. Although it should not be excluded in all cases (e.g., destruction of giant goldenrod and staghorn sumac aboveground material), the use of a shredder to destroy woody alien plant material cannot be considered as a general management option without significant environmental risk.

  20. Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding

    NASA Astrophysics Data System (ADS)

    Monty, Arnaud; Eugène, Marie; Mahy, Grégory

    2015-02-01

    Vegetation management often involves shredding to dispose of cut plant material or to destroy the vegetation itself. In the case of invasive plants, this can represent an environmental risk if the shredded material exhibits vegetative regeneration capacities. We tested the effect of shredding on aboveground and below-ground vegetative material of five ornamental widespread invaders in Western Europe that are likely to be managed by cutting and shredding techniques: Buddleja davidii (butterfly bush, Scrophulariaceae), Fallopia japonica (Japanese knotweed, Polygonaceae), Spiraea × billardii Hérincq (Billard's bridewort, Rosaceae), Solidago gigantea (giant goldenrod, Asteraceae), and Rhus typhina L. (staghorn sumac, Anacardiaceae). We looked at signs of vegetative regeneration and biomass production, and analyzed the data with respect to the season of plant cutting (spring vs summer), the type of plant material (aboveground vs below-ground), and the shredding treatment (shredded vs control). All species were capable of vegetative regeneration, especially the below-ground material. We found differences among species, but the regeneration potential was generally still present after shredding despite a reduction of growth rates. Although it should not be excluded in all cases (e.g., destruction of giant goldenrod and staghorn sumac aboveground material), the use of a shredder to destroy woody alien plant material cannot be considered as a general management option without significant environmental risk.

  1. Proactive Management of Materials Degradation for Nuclear Power Plant Systems

    SciTech Connect

    Bond, Leonard J.; Taylor, Theodore T.; Doctor, Steven R.; Hull, Amy; Malik, Shah

    2008-09-01

    There are approximately 440 operating reactors in the global nuclear power plant (NPP) fleet, and these have an average age greater than 20 years. These NPPs had design lives of 30 or 40 years. The United States is currently implementing license extensions of 20 years on many plants and consideration is now being given to the concept of “life-beyond-60,” a further period of license extension from 60 to 80 years, and potentially longer. In almost all countries with NPPs, authorities are looking at some form of license renewal program. There is a growing urgency as a number of plants face either approvals for license extension or shut down, which will require deployment of new power plants. In support of NPP license extension over the past decade, various national and international programs have been initiated. This paper reports part of the work performed in support of the U.S. Nuclear Regulatory Commission’s (NRC’s) Proactive Management of Materials Degradation (PMMD) program. The paper concisely explains the basic principles of PMMD, its relationship to advanced diagnostics and prognostics and provides an assessment of some the technical gaps in PMMD and prognostics that need to be addressed.

  2. A fusion power plant without plasma-material interactions

    SciTech Connect

    Cohen, S.A.

    1997-04-01

    A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.

  3. Bentonite as a waste isolation pilot plant shaft sealing material

    SciTech Connect

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  4. Boiler materials for ultra supercritical coal power plants

    SciTech Connect

    Purgert, Robert; Shingledecker, John; Pschirer, James; Ganta, Reddy; Weitzel, Paul; Sarver, Jeff; Vitalis, Brian; Gagliano, Michael; Stanko, Greg; Tortorelli, Peter

    2015-12-29

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions up to 760°C (1400°F) and 35 MPa (5000 psi). A limiting factor to achieving these higher temperatures and pressures for future A-USC plants are the materials of construction. The goal of this project is to assess/develop materials technology to build and operate an A-USC boiler capable of delivering steam with conditions up to 760°C (1400°F)/35 MPa (5000 psi). The project has successfully met this goal through a focused long-term public-private consortium partnership. The project was based on an R&D plan developed by the Electric Power Research Institute (EPRI) and an industry consortium that supplemented the recommendations of several DOE workshops on the subject of advanced materials. In view of the variety of skills and expertise required for the successful completion of the proposed work, a consortium led by the Energy Industries of Ohio (EIO) with cost-sharing participation of all the major domestic boiler manufacturers, ALSTOM Power (Alstom), Babcock and Wilcox Power Generation Group, Inc. (B&W), Foster Wheeler (FW), and Riley Power, Inc. (Riley), technical management by EPRI and research conducted by Oak Ridge National Laboratory (ORNL) has been developed. The project has clearly identified and tested materials that can withstand 760°C (1400°F) steam conditions and can also make a 700°C (1300°F) plant more economically attractive. In this project, the maximum temperature capabilities of these and other available high-temperature alloys have been assessed to provide a basis for

  5. Conspecific and Heterospecific Aboveground Herbivory Both Reduce Preference by a Belowground Herbivore.

    PubMed

    Milano, N J; Barber, N A; Adler, L S

    2015-04-01

    Insect herbivores damage plants both above- and belowground, and interactions in each realm can influence the other via shared hosts. While effects of leaf damage on aboveground interactions have been well-documented, studies examining leaf damage effects on belowground interactions are limited, and mechanisms for these indirect interactions are poorly understood. We examined how leaf herbivory affects preference of root-feeding larvae [Acalymma vittatum F. (Coleoptera: Chrysomelidae)] in cucumber (Cucumis sativus L.). We manipulated leaf herbivory using conspecific adult A. vittatum and heterospecific larval Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) herbivores in the greenhouse and the conspecific only in the field, allowing larvae to choose between roots of damaged and undamaged plants. We also examined whether leaf herbivory induced changes in defensive cucurbitacin C in leaves and roots. We hypothesized that induced changes in roots would deter larvae, and that effects would be stronger for damage by conspecifics than the unrelated caterpillar because the aboveground damage could be a cue to plants indicating future root damage by the same species. In both the greenhouse and field, plants with damaged leaves recruited significantly fewer larvae to their roots than undamaged plants. Effects of conspecific and heterospecific damage did not differ. Leaf damage did not induce changes in leaf or root cucurbitacin C, but did reduce root biomass. While past work has suggested that systemic induction by aboveground herbivory increases resistance in roots, our results suggest that decreased preference by belowground herbivores in this system may be because of reduced root growth.

  6. Ash from thermal power plants as secondary raw material.

    PubMed

    Cudić, Vladica; Kisić, Dragica; Stojiljković, Dragoslava; Jovović, Aleksandar

    2007-06-01

    The basic characteristic of thermal power plants in the Republic of Serbia is that they use low-grade brown coal (lignite) as a fuel. Depending on the location of coal mines, lignite may have different properties such as heating value, moisture, and mineral content, resulting in different residue upon combustion. Because of several million tonnes of ash and slag generated every year, their granularmetric particle size distribution, and transport and disposal methods, these plants have a negative impact on the environment. According to the waste classification system in the Republic of Serbia, ash and slag from thermal power plants are classified as hazardous waste, but with an option of usability. The proposed revision of waste legislation in Serbia brings a number of simple and modern solutions. A procedure is introduced which allows for end-of-waste criteria to be set, clarifying the point where waste ceases to be waste, and thereby introducing regulatory relief for recycled products or materials that represent low risk for the environment. The new proposal refocuses waste legislation on the environmental impacts of the generation and management of waste, taking into account the life cycle of resources, and develops new waste prevention programmes. Stakeholders, as well as the general public, should have the opportunity to participate in the drawing up of the programmes, and should have access to them.

  7. Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient

    PubMed Central

    Kumordzi, Bright B.; Gundale, Michael J.; Nilsson, Marie-Charlotte; Wardle, David A.

    2016-01-01

    Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems. PMID:27270445

  8. Aboveground pipeline response to random ground motion

    SciTech Connect

    Banerji, P.; Ghosh, A.

    1995-12-31

    Response of two types of aboveground pipelines--rigid, segmented pipelines, and flexible, continuous pipelines--to random ground motion are studied in this paper. The emphasis is on studying the effect of pipeline system parameters on its response. It is seen that pipe parameters, except for the pipe span, affect system response negligibly. Pier height and flexibility, and foundation-soil flexibility, however, affect response significantly. Furthermore, for practical situations, pipe and pier responses are decoupled, and the pier, therefore, behaves essentially as a point structure that is not affected by spatial variation of ground motion.

  9. Can local adaptation research in plants inform selection of native plant materials? An analysis of experimental methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Local adaptation research in plants: limitations to synthetic understanding Local adaptation is used as a criterion to select plant materials that will display high fitness in new environments. A large body of research has explored local adaptation in plants, however, to what extent findings can inf...

  10. Increasing native, but not exotic, biodiversity increases aboveground productivity in ungrazed and intensely grazed grasslands.

    PubMed

    Isbell, Forest I; Wilsey, Brian J

    2011-03-01

    Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.

  11. Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota

    PubMed Central

    Kong, Hyun G.; Kim, Byung K.; Song, Geun C.; Lee, Soohyun; Ryu, Choong-Min

    2016-01-01

    Plants respond to various types of herbivore and pathogen attack using well-developed defensive machinery designed for self-protection. Infestation from phloem-sucking insects such as whitefly and aphid on plant leaves was previously shown to influence both the saprophytic and pathogenic bacterial community in the plant rhizosphere. However, the modulation of the root microbial community by plants following insect infestation has been largely unexplored. Only limited studies of culture-dependent bacterial diversity caused by whitefly and aphid have been conducted. In this study, to obtain a complete picture of the belowground microbiome community, we performed high-speed and high-throughput next-generation sequencing. We sampled the rhizosphere soils of pepper seedlings at 0, 1, and 2 weeks after whitefly infestation versus the water control. We amplified a partial 16S ribosomal RNA gene (V1–V3 region) by polymerase chain reaction with specific primers. Our analysis revealed that whitefly infestation reshaped the overall microbiota structure compared to that of the control rhizosphere, even after 1 week of infestation. Examination of the relative abundance distributions of microbes demonstrated that whitefly infestation shifted the proteobacterial groups at week 2. Intriguingly, the population of Pseudomonadales of the class Gammaproteobacteria significantly increased after 2 weeks of whitefly infestation, and the fluorescent Pseudomonas spp. recruited to the rhizosphere were confirmed to exhibit insect-killing capacity. Additionally, three taxa, including Caulobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, and three genera, including Achromobacter, Janthinobacterium, and Stenotrophomonas, were the most abundant bacterial groups in the whitefly infested plant rhizosphere. Our results indicate that whitefly infestation leads to the recruitment of specific groups of rhizosphere bacteria by the plant, which confer beneficial traits to the host plant. This

  12. Material balance areas and frequencies for large reprocessing plants

    SciTech Connect

    Burr, T.

    1994-08-01

    It has long been recognized that facilities with a large nuclear material throughput will probably not meet the International Atomic Energy Agency (IAEA) goal for detecting trickle diversion of plutonium over periods of about one year. The reason is that measurement errors for plutonium concentration and for liquid volume are often approximately relative over a fairly wide range of true values. Therefore, large throughput facilities will tend to have large uncertainties assigned to their annual throughput. By the same argument, if frequent balances are performed over small material balance areas, then the uncertainty associated with each balance period for each balance area will be small. However, trickle diversion would still be difficult to detect statistically. Because the IAEA will soon be faced with safeguarding a new large-scale reprocessing plant in Japan, it is timely to reconsider the advantages and disadvantages of performing frequent material balances over small balance areas (individual tanks where feasible). Therefore, in this paper the authors present some simulation results to study the effect of balance frequency on loss detection probability, and further simulation results to study possibilities introduced by choosing small balance areas. They conclude by recommending frequent balances over small areas.

  13. Automated saccharification assay for determination of digestibility in plant materials

    PubMed Central

    2010-01-01

    Background Cell wall resistance represents the main barrier for the production of second generation biofuels. The deconstruction of lignocellulose can provide sugars for the production of fuels or other industrial products through fermentation. Understanding the biochemical basis of the recalcitrance of cell walls to digestion will allow development of more effective and cost efficient ways to produce sugars from biomass. One approach is to identify plant genes that play a role in biomass recalcitrance, using association genetics. Such an approach requires a robust and reliable high throughput (HT) assay for biomass digestibility, which can be used to screen the large numbers of samples involved in such studies. Results We developed a HT saccharification assay based on a robotic platform that can carry out in a 96-well plate format the enzymatic digestion and quantification of the released sugars. The handling of the biomass powder for weighing and formatting into 96 wells is performed by a robotic station, where the plant material is ground, delivered to the desired well in the plates and weighed with a precision of 0.1 mg. Once the plates are loaded, an automated liquid handling platform delivers an optional mild pretreatment (< 100°C) followed by enzymatic hydrolysis of the biomass. Aliquots from the hydrolysis are then analyzed for the release of reducing sugar equivalents. The same platform can be used for the comparative evaluation of different enzymes and enzyme cocktails. The sensitivity and reliability of the platform was evaluated by measuring the saccharification of stems from lignin modified tobacco plants, and the results of automated and manual analyses compared. Conclusions The automated assay systems are sensitive, robust and reliable. The system can reliably detect differences in the saccharification of plant tissues, and is able to process large number of samples with a minimum amount of human intervention. The automated system uncovered

  14. Radiation effects on organic materials in nuclear plants. Final report

    SciTech Connect

    Bruce, M B; Davis, M V

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  15. Occurrence and distribution of Legionella species in composted plant materials.

    PubMed Central

    Hughes, M S; Steele, T W

    1994-01-01

    Legionellae were found in many samples of composted plant matter obtained from home gardeners and from facilities which undertook bulk composting. The predominant species isolated from these composts was Legionella pneumophila, the strains of which belonged to serogroups other than serogroup 1. Other Legionella species were present in many samples. Legionella longbeachae serogroup 1, which is implicated in human infections in South Australia, was present in samples obtained from two of six facilities composting large volumes of material and from 3 of 30 gardeners. Many of the species or strains isolated from composts have not been implicated as causative agents of legionellosis in South Austrailia, but some cause infection in healthy and immunosuppressed persons. PMID:11001749

  16. Plant development effects of biochars from different raw materials

    NASA Astrophysics Data System (ADS)

    Cely, Paola; Méndez, Ana; Paz-Ferreiro, Jorge; Gascó, Gabriel

    2015-04-01

    Biochar can provide multiple benefits in the ecosystem. However, the presence of phytotoxic compounds in some biochars is an important concern that needs to be addressed and that depends on the raw material and the pyrolysis conditions used in biochar production. For example, sewage sludge biochars can have elevated heavy metal contents as they were present in the feedstock and were enriched during pyrolysis. Also during carbonization, some phytotoxic compounds such as polycyclic aromatic hydrocarbons (PAHs), polyphenols or volatile organic compounds (VOCs) could be formed representing a risk of contamination to soils and crops. In this work we report the results from seed germination and plant development for three biochars prepared from wood, paper sludge plus wheat husks and sewage sludge. Five higher plant species (cress, lentils, cucumber, tomato and lettuce) were studied. Biochar from wood shows seed inhibition in several species and the paper sludge biochar on lettuce. For the rest, the effect on seed germination was positive. No inhibition of root growth was detected, but in some cases leaves and stems growth were inhibited. Our results are significant in terms of advancing or current understanding on the impacts of biochar on vegetative growth and linking those effects to biochar properties.

  17. Belowground induction by Delia radicum or phytohormones affect aboveground herbivore communities on field-grown broccoli

    PubMed Central

    Pierre, S. P.; Dugravot, S.; Hervé, M. R.; Hassan, H. M.; van Dam, N. M.; Cortesero, A. M.

    2013-01-01

    Induced plant defence in response to phytophagous insects is a well described phenomenon. However, so far little is known about the effect of induced plant responses on subsequently colonizing herbivores in the field. Broccoli plants were induced in the belowground compartment using (i) infestation by the root-herbivore Delia radicum, (ii) root application of jasmonic acid (JA) or (iii) root application of salicylic acid (SA). The abundance of D. radicum and six aboveground herbivores displaying contrasting levels of host specialization were surveyed for 5 weeks. Our study showed that the response of herbivores was found to differ from one another, depending on the herbivore species, its degree of specialization and the root treatment. The abundance of the root herbivore D. radicum and particularly the number of emerging adults was decreased by both phytohormone treatments, while the number of D. radicum eggs was increased on conspecific infested plants. The root infestation exhibited moderate effects on the aboveground community. The abundance of the aphid Brevicoryne brassicae was strongly increased on D. radicum infested plants, but the other species were not impacted. Root hormone applications exhibited a strong effect on the abundance of specialist foliar herbivores. A higher number of B. brassicae and Pieris brassicae and a lower number of Plutella xylostella were found on JA treated plants. On SA treated plants we observed a decrease of the abundance of B. brassicae, Pi. rapae, and P. xylostella. Surprisingly, generalist species, Mamestra brassicae and Myzus persicae were not affected by root induction treatments. Finally, root treatments had no significant effect on either glucosinolate (GLS) profiles of the heads or on plant quality parameters. These results are discussed from the perspective of below- aboveground interactions and adaptations of phytophagous insects to induced plant responses according to their trophic specialization level. PMID:23970888

  18. [Design and Preparation of Plant Bionic Materials Based on Optical and Infrared Features Simulation].

    PubMed

    Jiang, Xiao-jun; Lu, Xu-liang; Pan, Jia-liang; Zhang, Shuan-qin

    2015-07-01

    Due to the life characteristics such as physiological structure and transpiration, plants have unique optical and infrared features. In the optical band, because of the common effects of chlorophyll and water, plant leafs show spectral reflectance characteristics change in 550, 680, 1400 and 1900 nm significantly. In the infrared wave band, driven by transpiration, plants could regulate temperature on their own initiative, which make the infrared characteristics of plants different from artificial materials. So palnt bionic materials were proposed to simulate optical and infrared characteristics of plants. By analyzing formation mechanism of optical and infrared features about green plants, the component design and heat-transfer process of plants bionic materials were studied, above these the heat-transfer control formulation was established. Based on water adsorption/release compound, optical pigments and other man-made materials, plant bionic materials preparation methods were designed which could simulate the optical and infrared features of green plants. By chemical casting methods plant bionic material films were prepared, which use polyvinyl alcohol as film forming and water adsorption/release compound, and use optical pigments like chrome green and macromolecule yellow as colouring materials. The research conclusions achieved by testings figured out: water adsorption/release testing showed that the plant bionic materials with a certain thickness could absorb 1.3 kg water per square meter, which could satisfy the water usage of transpiration simulation one day; the optical and infrared simulated effect tests indicated that the plant bionic materials could preferably simulate the spectral reflective performance of green plants in optical wave band (380-2500 nm, expecially in 1400 and 1900 nm which were water absorption wave band of plants), and also it had similar daily infrared radiation variations with green plants, daily average radiation temperature

  19. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    USGS Publications Warehouse

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  20. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio.

  1. Improved allometric models to estimate the aboveground biomass of tropical trees.

    PubMed

    Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto; Chidumayo, Emmanuel; Colgan, Matthew S; Delitti, Welington B C; Duque, Alvaro; Eid, Tron; Fearnside, Philip M; Goodman, Rosa C; Henry, Matieu; Martínez-Yrízar, Angelina; Mugasha, Wilson A; Muller-Landau, Helene C; Mencuccini, Maurizio; Nelson, Bruce W; Ngomanda, Alfred; Nogueira, Euler M; Ortiz-Malavassi, Edgar; Pélissier, Raphaël; Ploton, Pierre; Ryan, Casey M; Saldarriaga, Juan G; Vieilledent, Ghislain

    2014-10-01

    Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

  2. 7 CFR 330.210a - Administrative instructions listing approved packing materials for plant pests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Administrative instructions listing approved packing... Pests § 330.210a Administrative instructions listing approved packing materials for plant pests. (a) The following materials are approved as packing materials for use with any shipment of plant pests in...

  3. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  4. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2010-10-01 2010-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  5. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  6. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  7. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  8. Aboveground storage tank double bottom cathodic protection

    SciTech Connect

    Surkein, M.B.

    1995-12-31

    Cathodic protection is typically used to achieve corrosion control between bottoms of aboveground storage tanks with double bottoms. To determine the proper design of such systems, an investigation was conducted on the performance of two different cathodic protection system designs utilizing zinc ribbon anodes. A full scale field test on a 35 meter (115 feet) diameter tank was conducted to determine cathodic protection system performance. The test included periodic measurement of tank bottom steel potentials including on, instant off and polarization decay, anode current output and tank product level measurements.Results showed that zinc ribbon anode spacing in a chord fashion of 1.2 meter (4 feet) or less can be effective to achieve cathodic protection according to industry accepted standards. Utilizing the design information gained by the study, a standard sacrificial anode and impressed current anode cathodic protection system has been developed.

  9. Method and apparatus for selectively harvesting multiple components of a plant material

    DOEpatents

    Hoskinson, Reed L.; Hess, Richard J.; Kenney, Kevin L.; Svoboda, John M.; Foust, Thomas D.

    2004-05-04

    A method and apparatus for selectively harvesting multiple components of a plant material. A grain component is separated from the plant material such as by processing the plant material through a primary threshing and separating mechanism. At least one additional component of the plant material is selectively harvested such as by subjecting the plant material to a secondary threshing and separating mechanism. For example, the stems of a plant material may be broken at a location adjacent one or more nodes thereof with the nodes and the internodal stem portions being subsequently separated for harvesting. The at least one additional component (e.g., the internodal stems) may then be consolidated and packaged for subsequent use or processing. The harvesting of the grain and of the at least one additional component may occur within a single harvesting machine, for example, during a single pass over a crop field.

  10. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  11. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST... breakage in transit and danger of plant pest dissemination and shall be labeled in accordance with §...

  12. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings

  13. Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation.

    PubMed

    Mundra, Sunil; Halvorsen, Rune; Kauserud, Håvard; Müller, Eike; Vik, Unni; Eidesen, Pernille B

    2015-03-01

    Soil conditions and microclimate are important determinants of the fine-scale distribution of plant species in the Arctic, creating locally heterogeneous vegetation. We hypothesize that root-associated fungal (RAF) communities respond to the same fine-scale environmental gradients as the aboveground vegetation, creating a coherent pattern between aboveground vegetation and RAF. We explored how RAF communities of the ectomycorrhizal (ECM) plant Bistorta vivipara and aboveground vegetation structure of arctic plants were affected by biotic and abiotic variables at 0.3-3.0-m scales. RAF communities were determined using pyrosequencing. Composition and spatial structure of RAF and aboveground vegetation in relation to collected biotic and abiotic variables were analysed by ordination and semi-variance analyses. The vegetation was spatially structured along soil C and N gradients, whereas RAF lacked significant spatial structure. A weak relationship between RAF community composition and the cover of two ECM plants, B. vivipara and S. polaris, was found, and RAF richness increased with host root length and root weight. Results suggest that the fine-scale spatial structure of RAF communities of B. vivipara and the aboveground vegetation are driven by different factors. At fine spatial scales, neighbouring ECM plants may affect RAF community composition, whereas soil nutrients gradients structure the vegetation.

  14. Live Specimens More Effective than World Wide Web for Learning Plant Material

    ERIC Educational Resources Information Center

    Taraban, Roman; McKenney, Cynthia; Peffley, Ellen; Applegarth, Ashley

    2004-01-01

    The World Wide Web and other computer-based media are new teaching resources for plant identification. The purpose of the experiments reported here was to test whether learning plant identification for woody and herbaceous plant material over the web was as effective, more effective, or preferred by undergraduate students when compared with…

  15. Geothermal materials survey: Baca Geothermal Demonstration Power Plant, Baca, New Mexico

    SciTech Connect

    Ellis, P.F. II

    1980-10-07

    The results of a materials survey for the Baca 50 MW(e) single flash geothermal plant in the Valles Caldera of New Mexico are presented. From the design documents provided, materials proposed for use in contact with the plant atmosphere, the two-phase geofluid, the separated steam, and the recirculating condensate cooling water were assessed for suitability. Special emphasis was given to records of performance of the materials in other geothermal plants. Based upon these considerations of chemical reactivity and plant operating experience, a number of recommendations were made.

  16. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... fundamentals of an SNM control and accounting system, including criteria for the receipt, internal control... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear...-5028, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants.'' In...

  17. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear... Accounting Systems for Nuclear Power Plants.'' This regulatory guide provides guidance on recordkeeping and reporting requirements with respect to material control and accounting. This guide applies to all...

  18. Radish plant exposed to lunar material collected on the Apollo 12 mission

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The leaves of this radish plant were rubbed with lunar material colleted on the Apollo 12 lunar landing mission in experiments conducted in the Manned Spacecraft Center's Lunar Receiving Laboratory. The plant was exposed to the material 30 days before this photograph was made. Evidently no ill effects resulted from contact with the lunar soil.

  19. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests

    PubMed Central

    Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong

    2015-01-01

    Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession. PMID:26184121

  20. NORTH ELEVATION WITH GRADUATED MEASURING POLE. ABOVEGROUND PORTION IS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION WITH GRADUATED MEASURING POLE. ABOVE-GROUND PORTION IS ON THE LEFT. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  1. OBLIQUE VIEW WITH ABOVEGROUND PORTION IN THE FOREGROUND. VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW WITH ABOVE-GROUND PORTION IN THE FOREGROUND. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  2. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    EPA Pesticide Factsheets

    This issue paper, developed for EPA's Engineering Forum, identifies and summarizes experiences with proven aboveground treatment alternatives for arsenic in groundwater, and provides information on their relative effectiveness and cost.

  3. Modelling the impact and control of an infectious disease in a plant nursery with infected plant material inputs.

    PubMed

    Bate, Andrew M; Jones, Glyn; Kleczkowski, Adam; MacLeod, Alan; Naylor, Rebecca; Timmis, Jon; Touza, Julia; White, Piran C L

    2016-08-24

    The ornamental plant trade has been identified as a key introduction pathway for plant pathogens. Establishing effective biosecurity measures to reduce the risk of plant pathogen outbreaks in the live plant trade is therefore important. Management of invasive pathogens has been identified as a weakest link public good, and thus is reliant on the actions of individual private agents. This paper therefore provides an analysis of the impact of the private agents' biosecurity decisions on pathogen prevention and control within the plant trade. We model the impact that an infectious disease has on a plant nursery under a constant pressure of potentially infected input plant materials, like seeds and saplings, where the spread of the disease reduces the value of mature plants. We explore six scenarios to understand the influence of three key bioeconomic parameters; the disease's basic reproductive number, the loss in value of a mature plant from acquiring an infection and the cost-effectiveness of restriction. The results characterise the disease dynamics within the nursery and explore the trade-offs and synergies between the optimal level of efforts on restriction strategies (actions to prevent buying infected inputs), and on removal of infected plants in the nursery. For diseases that can be easily controlled, restriction and removal are substitutable strategies. In contrast, for highly infectious diseases, restriction and removal are often found to be complementary, provided that restriction is cost-effective and the optimal level of removal is non-zero.

  4. Engineered Plants Make Potential Precursor to Raw Material for Plastics

    ScienceCinema

    Shanklin, John

    2016-10-19

    In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.

  5. Engineered Plants Make Potential Precursor to Raw Material for Plastics

    SciTech Connect

    Shanklin, John

    2010-11-02

    In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.

  6. Topographically mediated controls on aboveground biomass across a mediterranean-type landscape

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2009-12-01

    Aboveground biomass accumulation is a useful metric for evaluating habitat restoration and ecosystem services projects, in addition to being a robust measure of carbon sequestration. However, at the landscape scale non-anthropogenic controls on biomass accumulation are poorly understood. In this study we combined field measurements, high resolution data from the NASA JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Carnegie Airborne Observatory (CAO) airborne light detection and ranging (lidar) system to create a comprehensive map of aboveground biomass across a patchy mediterranean-type landscape (Jasper Ridge Biological Preserve, Stanford, CA). Candidate explanatory variables (e.g. slope, elevation, incident solar radiation) were developed using a geologic map and a digital elevation model derived from the lidar data. Finally, candidate variables were tested, and a model was produced to predict aboveground biomass from environmental data. Though many of the explanatory variables have only indirect effects on plant growth, the model permits inferences to be made about the relative importance of light, water, temperature, and edaphic characteristics on carbon accumulation in mediterranean-type systems.

  7. [Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kintze (Arecaceae) at a palm shrub community on the Marambaia beach ridge, Rio de Janeiro, Brazil].

    PubMed

    de Menezes, L F; de Araujo, D S

    2000-02-01

    Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kuntze (Arecaceae) along five topographic profiles perpendicular to the ocean was examined in a palm scrub community on Marambaia beach ridge, Rio de Janeiro State, Brazil. Aerial biomass was positively correlated with distance from the sea (F = 39.57; R2 = 0.69; P < 0.01) as was detritus cover (F = 525.92; R2 = 0.92; P < 0.01). A. arenaria growth is closely related to the topography of the beach area. Dense populations of this palm enrich the soil by increasing organic matter under the plants through dead leaf material. This promotes the accumulation of nutrients and the creation of micro-climates that favor the establishment of other species.

  8. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    PubMed

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  9. Airport, air base benefit from switch to aboveground tanks

    SciTech Connect

    1995-10-01

    The Environmental Protection Agency requires that by the end of 1998 all underground fuel tanks must comply with requirements established for tanks installed after Dec. 22, 1988. To comply with federal and state regulations, authorities at Mansfield (Mass.) Municipal Airport decided during a recent reconstruction effort to replace several 46-year-old underground fuel tanks with an 8,000-gallon, aboveground tank. After researching several types of tanks and weighing recommendations from the airport`s fueling company, officials chose to install a lightweight, double-walled tank from Aero-Power Unitized Fueler Inc., Smithtown, NY. The Fireguard{trademark} tank has a concrete-insulated lining between its two walls that can absorb aviation fuel in case of a pool fire. An outer steel wall provides secondary containment, protecting the insulating material, and resists cracking and spalling. Dobbins Air Reserve Base in Georgia recently installed two 2,000-gallon Fireguard tanks to contain diesel and unleaded fuel for a new military-vehicle refueling station.

  10. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  11. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210... through the United States, or interstate, must be free of soil, except when the Deputy Administrator approves in the permit the movement of soil with the plant pest. Subject to this exception, only...

  12. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210... through the United States, or interstate, must be free of soil, except when the Deputy Administrator approves in the permit the movement of soil with the plant pest. Subject to this exception, only...

  13. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210... through the United States, or interstate, must be free of soil, except when the Deputy Administrator approves in the permit the movement of soil with the plant pest. Subject to this exception, only...

  14. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210... through the United States, or interstate, must be free of soil, except when the Deputy Administrator approves in the permit the movement of soil with the plant pest. Subject to this exception, only...

  15. Materials management in an internationally safeguarded fuels reprocessing plant

    SciTech Connect

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  16. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  17. Probing of Metabolites in Finely Powdered Plant Material by Direct Laser Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Musharraf, Syed Ghulam; Ali, Arslan; Choudhary, M. Iqbal; Atta-ur-Rahman

    2014-04-01

    Natural products continue to serve as an important source of novel drugs since the beginning of human history. High-throughput techniques, such as MALDI-MS, can be techniques of choice for the rapid screening of natural products in plant materials. We present here a fast and reproducible matrix-free approach for the direct detection of UV active metabolites in plant materials without any prior sample preparation. The plant material is mechanically ground to a fine powder and then sieved through different mesh sizes. The collected plant material is dispersed using 1 μL solvent on a target plate is directly exposed to Nd:YAG 335 nm laser. The strategy was optimized for the analysis of plant metabolites after study of the different factors affecting the reproducibility and effectiveness of the analysis, including particle sizes effects, types of solvents used to disperse the sample, and the part of the plant analyzed. Moreover, several plant species, known for different classes of metabolites, were screened to establish the generality of the approach. The developed approach was validated by the characterization of withaferin A and nicotine in the leaves of Withania somnifera and Nicotiana tabacum, respectively, through comparison of its MS/MS data with the standard compound. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used for the tissue imaging purposes. This approach can be used to directly probe small molecules in plant materials as well as in herbal and pharmaceutical formulations for fingerprinting development.

  18. Planting Turf. Competency Based Teaching Materials in Horticulture.

    ERIC Educational Resources Information Center

    Legacy, Jim; And Others

    This competency-based curriculum unit on planting turf is one of four developed for classroom use in teaching the turf and lawn services area of horticulture. The eight sections are each divided into teaching content (in a question-and-answer format) and student skills that outline steps and factors for consideration. Topics covered include…

  19. Plant materials and methodologies for Great Basin rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Nevada Section, Society for Range Management held a winter meeting/symposium January 2017 in Sparks, Nevada. Nearly a century and half of research and experience was presented by scientists in the field of soil science, range and weed science and plant genetics. The ability of resource managers ...

  20. Testing the Paradox of Enrichment along a Land Use Gradient in a Multitrophic Aboveground and Belowground Community

    PubMed Central

    Meyer, Katrin M.; Vos, Matthijs; Mooij, Wolf M.; Hol, W. H. Gera; Termorshuizen, Aad J.; van der Putten, Wim H.

    2012-01-01

    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions. PMID:23145055

  1. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  2. MODIS Based Estimation of Forest Aboveground Biomass in China

    PubMed Central

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  3. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi.

    PubMed

    Paudel, Shishir; Longcore, Travis; MacDonald, Beau; McCormick, Melissa K; Szlavecz, Katalin; Wilson, Gail W T; Loss, Scot R

    2016-03-01

    A mounting body of research suggests that invasive nonnative earthworms substantially alter microbial communities, including arbuscular mycorrhizal fungi (AMF). These changes to AMF can cascade to affect plant communities and vertebrate populations. Despite these research advances, relatively little is known about (1) the mechanisms behind earthworms' effects on AMF and (2) the factors that determine the outcomes of earthworm-AMF interactions (i.e., whether AMF abundance is increased or decreased and subsequent effects on plants). We predict that AMF-mediated effects of nonnative earthworms on ecosystems are nearly universal because (1) AMF are important components of most terrestrial ecosystems, (2) nonnative earthworms have become established in nearly every type of terrestrial ecosystem, and (3) nonnative earthworms, due to their burrowing and feeding behavior, greatly affect AMF with potentially profound concomitant effects on plant communities. We highlight the multiple direct and indirect effects of nonnative earthworms on plants and review what is currently known about the interaction between earthworms and AMF. We also illustrate how the effects of nonnative earthworms on plant-AMF mutualisms can alter the structure and stability of aboveground plant communities, as well as the vertebrate communities relying on these habitats. Integrative studies that assess the interactive effects of earthworms and AMF can provide new insights into the role that belowground ecosystem engineers play in altering aboveground ecological processes. Understanding these processes may improve our ability to predict the structure of plant and animal communities in earthworm-invaded regions and to develop management strategies that limit the numerous undesired impacts of earthworms.

  4. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  5. Apollo 12 lunar material - Effects on plant pigments.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Walkinshaw, C. H.

    1972-01-01

    Tissue cultures of tobacco grown for 12 weeks in contact with lunar material returned by Apollo 12 contained 21 to 35% more total pigment than control tissues. This difference is due primarily to increased chlorophyll a concentrations per gram fresh weight of tissue in experimental cultures. No differences were noted in the fresh or dry weight of the experimental and control cultures.

  6. Degradation by Streptomyces viridosporus T7A of plant material grown under elevated CO2 conditions.

    PubMed

    Ball, A S

    1991-11-15

    The biodegradability of plant material derived from wheat grown under different concentrations of atmospheric CO2 was investigated using the lignocarbohydrate solubilising actinomycete, Streptomyces viridosporus. Growth of S. viridosporus and solubilisation of lignocarbohydrate were highest when wheat grown at ambient CO2 concentrations (350 ppm) was used as C-source. Growth of S. viridosporus and solubilisation were reduced when the plant material was derived from wheat grown at 645 ppm CO2. The results suggest that modifications in plant structure occur when wheat is grown under conditions of elevated atmospheric CO2 which make it more resistant to microbial digestion.

  7. Material protection, control and accounting cooperation at the Urals Electrochemical Integrated Plant (UEIP), Novouralsk, Russia

    SciTech Connect

    McAllister, S., LLNL

    1998-07-15

    The Urals Electrochemical Integrated Plant is one of the Russian Ministry of Atomic Energy`s nuclear material production sites participating in the US Department of Energy`s Material Protection, Control and Accounting (MPC&A) Program. The Urals Electrochemical Integrated Plant is Russia`s largest uranium enrichment facility and blends tons of high-enriched uranium into low enriched uranium each year as part of the US high-enriched uranium purchase. The Electrochemical Integrated Plant and six participating national laboratories are cooperating to implement a series of enhancements to the nuclear material protection, control, and accountability systems at the site This paper outlines the overall objectives of the MPC&A program at Urals Electrochemical Integrated Plant and the work completed as of the date of the presentation.

  8. An OxiTop(®) protocol for screening plant material for its biochemical methane potential (BMP).

    PubMed

    Pabón Pereira, C P; Castañares, G; van Lier, J B

    2012-01-01

    A protocol was developed for determining the biochemical methane potential (BMP) of plant material using the OxiTop(®) system. NaOH pellets for CO(2) absorption and different pretreatment methods were tested for their influence in the BMP test. The use of NaOH pellets in the headspace of the bottle negatively affected the stability of the test increasing the pH and inhibiting methanization. Sample comminution increased the biodegradability of plant samples. Our results clearly indicate the importance of test conditions during the assessment of anaerobic biodegradability of plant material, considering BMP differences as high as 44% were found. Guidelines and recommendations are given for screening plant material suitable for anaerobic digestion using the OxiTop(®) system.

  9. Radioactive materials released from nuclear power plants. Annual report 1978

    SciTech Connect

    Tichler, J.; Benkovitz, C.

    1981-03-01

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  10. Material control and accountancy at EDF PWR plants; GCN: Gestion du Combustible Nucleaire

    SciTech Connect

    de Cormis, F. )

    1991-01-01

    The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes.

  11. HPLC determination of extractable and unextractable proanthocyanidins in plant materials.

    PubMed

    Hellström, Jarkko K; Mattila, Pirjo H

    2008-09-10

    This study developed a method for the determination of extractable and unextractable proanthocyanidins. Extractable proanthocyanidins were separated according to their degree of polymerization using normal phase HPLC. Unextractable proanthocyanidins were measured after acid-catalyzed depolymerization as flavan-3-ols (terminal units) and benzylthioethers (external units). Electrospray ionization mass spectrometry (ESI-MS) was used for the identification of proanthocyanidins in the samples. Hubaux-Vos detection limits were 0.01-0.15 ng/injection for extractable proanthocyanidins, with recovery rates from 69 to 91%. Detection limits for unextractable proanthocyanidin derivatives were 0.002-0.035 ng/injection with 80% recovery. The developed method was applied to the analysis of several fruit and berry samples. Results showed great variation in the proportion of unextractable proanthocyanidins in total proanthocyanidin content between samples, being highest in the green variety of table grape (63%) and lowest in the apple cultivar 'Valkeakuulas' (4.1%). The method reported herein is reliable and gives valuable information on the nature of proanthocyanidins in plant-derived foods.

  12. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  13. Irradiation creep of candidate materials for advanced nuclear plants

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Hoffelner, W.

    2013-10-01

    In the present paper, irradiation creep results of an intermetallic TiAl alloy and two ferritic oxide dispersion strengthened (ODS) steels are summarized. In situ irradiation creep measurements were performed using homogeneous implantation with α- and p-particles to maximum doses of 0.8 dpa at displacement damage rates of 2-8 × 10-6 dpa/s. The strains of miniaturized flat dog-bone specimens were monitored under uniaxial tensile stresses ranging from 20 to 400 MPa at temperatures of 573, 673 and 773 K, respectively. The effects of material composition, ODS particle size, and bombarding particle on the irradiation creep compliance was studied and results are compared to literature data. Evolution of microstructure during helium implantation was investigated in detail by TEM and is discussed with respect to irradiation creep models.

  14. Automated Aboveground Carbon Estimation of Forests with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Gordon, Piper

    Canada's forests are believed to contain 86 gigatons of carbon, stored above and below ground. These forests are large in area, making them difficult to monitor using conventional means. Understanding the carbon cycle and the role of forests as carbon sinks is crucial in the investigation and mitigation of climate change to address national obligations. One economical solution for monitoring the carbon content of Canada's forests is the development of an automated computer system which uses multisource remotely sensed data to estimate the aboveground carbon of trees. The process involves data fusion of remotely sensed hyperspectral data for tree species information and lidar (light detection and ranging) and radar (radio detection and ranging) for tree height. The size and dimensionality of the data necessitate the efficient use of computing resources for analysis. The outcome is a useful carbon measuring system. The three research questions are: (1) How do we map with remote sensing aboveground carbon in the forests? (2) How do we determine the accuracies of these aboveground carbon maps? (3) How can an automated system be designed for creating aboveground carbon maps?

  15. WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE (BUILDING 3568), SPARES INERT STORAGE BUILDING (BUILDING 3570), MISSILE ASSEMBLY SHOP (BUILDING 3578) AND SEGREGATED MAGAZINE STORAGE BUILDING (BUILDING 3572). VIEW TO NORTHWEST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  16. Inventory of Tank Farm equipment stored or abandoned aboveground

    SciTech Connect

    Hines, S.C.; Lakes, M.E.

    1994-10-12

    This document provides an inventory of Tank Farm equipment stored or abandoned aboveground and potentially subject to regulation. This inventory was conducted in part to ensure that Westinghouse Hanford Company (WHC) does not violate dangerous waste laws concerning storage of potentially contaminated equipment/debris that has been in contact with dangerous waste. The report identifies areas inventoried and provides photographs of equipment.

  17. Exploring the possibility of estimating the aboveground biomass of Vallisneria spiralis L. using Landsat TM image in Dahuchi, Jiangxi Province, China

    NASA Astrophysics Data System (ADS)

    Wu, Guofeng; de Leeuw, Jan; Skidmore, Andrew K.; Prins, Herbert H. T.; Liu, Yaolin

    2005-10-01

    The provision of food to breeding and migrating waterfowl is one of the major functions of submerged aquatic vegetation in shallow lakes. Vallisneria spiralis L. is a submerged aquatic plant species widely distributed within Jiangxi Poyang Lake National Nature Reserve, China. More than 95% of the world population of the endangered Siberian crane as well as significant numbers of Bewick's swan and swan goose over winter in this area, while foraging on the tubers of Vallisneria. The objective of this paper was to explore the possibility of estimating the aboveground biomass of Vallisneria in Dahuchi Lake using Landsat TM image. The relations between aboveground biomass and the bands of a Landsat TM image and their derived variables were investigated using uni- and multivariate linear and non-linear regression models. The results revealed significant but very weak relations between aboveground biomass and the remotely sensed variables. Hence Landsat TM imagery offered little potential to predict aboveground biomass of Vallisneria in this particular region. Possible reasons which could have caused these results were discussed, including: 1) the possible influence of suspended matter in the water; 2) the less accurate field sampling; 3) the limitations of spatial and spectral resolutions of Landsat TM image; 4) the methods used are not appropriate; 5) the homogeneously spatial distribution of aboveground biomass. We propose considering two alternative methods to improve the estimation of aboveground biomass of Vallisneria. First of all, results might be improved while combining alternative data sources (hyperspectral or high spatial resolution images) with innovative methods and more accurate sampling data; Secondly we propose assessing aboveground biomass while using productivity simulation models of submerged aquatic vegetation integrated with geographic information system (GIS) and remote sensing.

  18. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant... cannabis plant material, and products made therefrom, that contain tetrahydrocannabinols. (a) Any...

  19. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant... cannabis plant material, and products made therefrom, that contain tetrahydrocannabinols. (a) Any...

  20. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant... cannabis plant material, and products made therefrom, that contain tetrahydrocannabinols. (a) Any...

  1. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant... cannabis plant material, and products made therefrom, that contain tetrahydrocannabinols. (a) Any...

  2. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant... cannabis plant material, and products made therefrom, that contain tetrahydrocannabinols. (a) Any...

  3. Prediction of Heavy Metal Uptake by Marsh Plants Based on Chemical Extraction of Heavy Metals from Dredged Material.

    DTIC Science & Technology

    1978-02-01

    A field and laboratory study was conducted to establish the extent of heavy metal absorption and uptake by marsh plant species from dredged material...emphasizes the need for a method to predict heavy metal availability from dredged material to plants. DTPA extraction of heavy metals gave the best correlations with actual heavy metal concentrations in marsh plants.

  4. Enzyme conversion of lignocellulosic plant materials for resource recovery in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Kohlmann, K. L.; Westgate, P.; Velayudhan, A.; Weil, J.; Sarikaya, A.; Brewer, M. A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.

  5. Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life support system

    NASA Astrophysics Data System (ADS)

    Kohlmann, K. L.; Westgate, P.; Velayudhan, A.; Weil, J.; Sarikaya, A.; Brewer, M. A.; Hendrickson, R. L.; Ladisch, M. R.

    1996-01-01

    A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.

  6. The contribution of woody plant materials on the several conditions in a space environment

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  7. [Aboveground architecture and biomass distribution of Quercus variabilis].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou

    2015-08-01

    The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline

  8. Sorption of trace organics and engineered nanomaterials onto wetland plant material.

    PubMed

    Sharif, Fariya; Westerhoff, Paul; Herckes, Pierre

    2013-01-01

    Wastewater treatment plant (WWTP) effluents are sources for emerging pollutants, including organic compounds and engineered nanomaterials (ENMs), which then flow into aquatic systems. In this article, natural attenuation of pollutants by constructed wetland plants was investigated using lab-scale microcosm and batch sorption studies. The microcosms were operated at varying hydraulic residence times (HRTs) and contained decaying plant materials. Representative organic compounds and ENMs were simultaneously spiked into the microcosm influent, along with a conservative tracer (bromide), and then monitored in the effluent over time. It was observed that a more hydrophobic compound-natural estrogen achieved better removal than a polar organic compound – para-chlorobenzoic acid (pCBA), which mimics the behaviour of the tracer. Batch sorption experiments showed that estrogen has higher sorption affinity than pCBA, highlighting the importance of sorption to the plant materials as a removal process for the organic contaminants in the microcosms. Wetland plants were also found a potential sorbent for ENMs. Two different ENMs (nano-silver and aqueous fullerenes) were included in this study, both of which experienced comparable removal in the microcosms. Relative to the tracer, the highest removal of ENMs and trace organics was 60% and 70%, respectively. A more than two-fold increase in HRT increased the removal efficiency of the contaminants in the range of 20–60%. The outcome of this study supports that plant materials of wetlands can play an important role in removing emerging pollutants from WWTP effluent.

  9. Underground roots monitor aboveground environment by sensing stem-piped light

    PubMed Central

    Lee, Hyo-Jun; Ha, Jun-Ho; Park, Chung-Mo

    2016-01-01

    ABSTRACT Light is a critical environmental cue for plant growth and development. Plants actively monitor surrounding environments by sensing changes in light wavelength and intensity. Therefore, plants have evolved a series of photoreceptors to perceive a broad wavelength range of light. Phytochrome photoreceptors sense red and far-red light, which serves as a major photomorphogenic signal in shoot growth and morphogenesis. Notably, plants also express phytochromes in the roots, obscuring whether and how they perceive light in the soil. We have recently demonstrated that plants directly channel light to the roots through plant body to activate root phytochrome B (phyB). Stem light facilitates the nuclear import of phyB in the roots, and the photoactivated phyB triggers the accumulation of the photomorphogenic regulator ELONGATED HYPOCOTYL 5 in modulating root growth and gravitropism. Optical experiments revealed that red to far-red light is efficiently transduced through plant body. Our findings provide physical and molecular evidence, supporting that photoreceptors expressed in the underground roots directly sense light. We propose that the roots are not a passive organ but a central organ that actively monitors changes in the aboveground environment by perceiving light information from the shoots. PMID:28042383

  10. Failure Prevention For Nuclear Power Plants Through Proactive Management of Materials Degradation (PMMD)

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Bruemmer, Stephen M.; Cumblidge, Stephen E.; Hull, Amy; Malik, Shah

    2009-05-01

    Failure prevention is central to the operation of nuclear power plants. To meet this goal there is growing interest in new and improved philosophies and methodologies for plant life management (PLiM), which include the migration from reliance on periodic inservice inspection to include condition-based maintenance. A further step in the development of plant management is the move from reactive responses based on ISI to become proactive, through the investigation of the potential for implementation of a proactive management of materials degradation (PMMD) program and its potential impact on the management of LWRs.

  11. Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales.

    PubMed

    Manninen, Sirkku; Zverev, Vitali; Bergman, Igor; Kozlov, Mikhail V

    2015-12-01

    Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities.

  12. Aspects of experimental design for plant metabolomics experiments and guidelines for growth of plant material.

    PubMed

    Gibon, Yves; Rolin, Dominique

    2012-01-01

    Experiments involve the deliberate variation of one or more factors in order to provoke responses, the identification of which then provides the first step towards functional knowledge. Because environmental, biological, and/or technical noise is unavoidable, biological experiments usually need to be designed. Thus, once the major sources of experimental noise have been identified, individual samples can be grouped, randomised, and/or pooled. Like other 'omics approaches, metabolomics is characterised by the numbers of analytes largely exceeding sample number. While this unprecedented singularity in biology dramatically increases false discovery, experimental error can nevertheless be decreased in plant metabolomics experiments. For this, each step from plant cultivation to data acquisition needs to be evaluated in order to identify the major sources of error and then an appropriate design can be produced, as with any other experimental approach. The choice of technology, the time at which tissues are harvested, and the way metabolism is quenched also need to be taken into consideration, as they decide which metabolites can be studied. A further recommendation is to document data and metadata in a machine readable way. The latter should also describe every aspect of the experiment. This should provide valuable hints for future experimental design and ultimately give metabolomic data a second life. To facilitate the identification of critical steps, a list of items to be considered before embarking on time-consuming and costly metabolomic experiments is proposed.

  13. Below-ground plant–fungus network topology is not congruent with above-ground plant–animal network topology

    PubMed Central

    Toju, Hirokazu; Guimarães, Paulo R.; Olesen, Jens M.; Thompson, John N.

    2015-01-01

    In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant–fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant–partner networks. Specifically, plant–fungus networks lacked a “nested” architecture, which has been considered to promote species coexistence in plant–partner networks. Rather, the below-ground networks had a conspicuous “antinested” topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions. PMID:26601279

  14. Can local adaptation research in plants inform selection of native plant materials? An analysis of experimental methodologies.

    PubMed

    Gibson, Alexis L; Espeland, Erin K; Wagner, Viktoria; Nelson, Cara R

    2016-12-01

    Local adaptation is used as a criterion to select plant materials that will display high fitness in new environments. A large body of research has explored local adaptation in plants, however, to what extent findings can inform management decisions has not been formally evaluated. We assessed local adaptation literature for six key experimental methodologies that have the greatest effect on the application of research to selecting plant materials for natural resource management: experimental environment, response variables, maternal effects, intraspecific variation, selective agents, and spatial and temporal variability. We found that less than half of experiments used reciprocal transplants or natural field conditions, which are both informative for revegetation and restoration. Population growth rate was rarely (5%) assessed, and most studies measured only single generations (96%) and ran for less than a year. Emergence and establishment are limiting factors in successful revegetation and restoration, but the majority of studies measured later life-history stages (66%). Additionally, most studies included limited replication at the population and habitat levels and tested response to single abiotic selective factors (66%). Local adaptation research should be cautiously applied to management; future research could use alternative methodologies to allow managers to directly apply findings.

  15. Deep-sea macrourid fishes scavenge on plant material: Evidence from in situ observations

    NASA Astrophysics Data System (ADS)

    Jeffreys, Rachel M.; Lavaleye, Marc S. S.; Bergman, Magda J. N.; Duineveld, Gerard C. A.; Witbaard, Rob; Linley, Thom

    2010-04-01

    Deep-sea benthic communities primarily rely on an allochthonous food source. This may be in the form of phytodetritus or as food falls e.g. sinking carcasses of nekton or debris of marine macrophyte algae. Deep-sea macrourids are the most abundant demersal fish in the deep ocean. Macrourids are generally considered to be the apex predators/scavengers in deep-sea communities. Baited camera experiments and stable isotope analyses have demonstrated that animal carrion derived from the surface waters is an important component in the diets of macrourids; some macrourid stomachs also contained vegetable/plant material e.g. onion peels, oranges, algae. The latter observations led us to the question: is plant material an attractive food source for deep-sea scavenging fish? We simulated a plant food fall using in situ benthic lander systems equipped with a baited time-lapse camera. Abyssal macrourids and cusk-eels were attracted to the bait, both feeding vigorously on the bait, and the majority of the bait was consumed in <30 h. These observations indicate (1) plant material can produce an odour plume similar to that of animal carrion and attracts deep-sea fish, and (2) deep-sea fish readily eat plant material. This represents to our knowledge the first in situ documentation of deep-sea fish ingesting plant material and highlights the variability in the scavenging nature of deep-sea fishes. This may have implications for food webs in areas where macrophyte/seagrass detritus is abundant at the seafloor e.g. canyon systems and continental shelves close to seagrass meadows (Bahamas and Mediterranean).

  16. Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials

    SciTech Connect

    Bardhan, S.; Watson, M.; Dick, W.A.

    2008-07-15

    Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth. An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.

  17. The History and Future of NDE in the Management of Nuclear Power Plant Materials Degradation

    SciTech Connect

    Doctor, Steven R.

    2009-04-01

    The author has spent more than 25 years conducting engineering and research studies to quantify the performance of nondestructive evaluation (NDE) in nuclear power plant (NPP) applications and identifying improvements to codes and standards for NDE to manage materials degradation. This paper will review this fundamental NDE engineering/research work and then look to the future on how NDE can be optimized for proactively managing materials degradation in NPP components.

  18. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale.

    PubMed

    Han, Ji Soo; Lee, Sunmin; Kim, Hyang Yeon; Lee, Choong Hwan

    2015-09-03

    Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  19. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  20. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    PubMed

    Raich, James W; Clark, Deborah A; Schwendenmann, Luitgard; Wood, Tana E

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  1. Critical Zone Ecohydrology as a Link Between Below- and Above-Ground Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Kumar, P.

    2013-12-01

    The Critical Zone is the near-surface layer that is created by life processes from microbial scale to ecosystems, which in turn supports nearly all the terrestrial living systems. It extends from the top of the canopy to the bedrock. The biotic-abiotic links between the below- and above-ground processes determine the functional role of the critical zone. To predict and assess the impact of climate and other anthropogenic changes on the Critical Zone processes, a model that considers this zone as a continuum and captures the interactions between roots, soil moisture, nutrient uptake, and photosynthesis is developed. We attempt to address a variety of questions: How does elevated CO2 affect photosynthesis and plant water uptake? What role does hydraulic redistribution play in the below- and above-ground interactions? How do these scale when we consider interaction between multiple vegetation species, for example, between tall and understory vegetation? Results from a number of study sites will be presented and their implications will be discussed.

  2. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  3. A Role for Assisted Evolution in Designing Native Plant Materials for Domesticated Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developers of native plant materials for wildland restoration may operate under either the evolutionary paradigm, which seeks to emulate natural genetic patterns, also referred to as genetic identity, or the resource paradigm, which emphasizes empirical performance. We contend that both paradigms a...

  4. 7 CFR 351.7 - Regulations governing importation by mail of plant material for immediate export.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be dispatched in the mails from abroad, accompanied by a yellow and green special mail tag bearing... appropriate, according to the address on the yellow and green tag, and there submitted to the customs officer... the movement of plant material in the international mails in transit through the United States....

  5. 7 CFR 351.7 - Regulations governing importation by mail of plant material for immediate export.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be dispatched in the mails from abroad, accompanied by a yellow and green special mail tag bearing... appropriate, according to the address on the yellow and green tag, and there submitted to the customs officer... the movement of plant material in the international mails in transit through the United States....

  6. 7 CFR 351.7 - Regulations governing importation by mail of plant material for immediate export.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be dispatched in the mails from abroad, accompanied by a yellow and green special mail tag bearing... appropriate, according to the address on the yellow and green tag, and there submitted to the customs officer... the movement of plant material in the international mails in transit through the United States....

  7. 7 CFR 351.7 - Regulations governing importation by mail of plant material for immediate export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be dispatched in the mails from abroad, accompanied by a yellow and green special mail tag bearing... appropriate, according to the address on the yellow and green tag, and there submitted to the customs officer... the movement of plant material in the international mails in transit through the United States....

  8. 7 CFR 351.7 - Regulations governing importation by mail of plant material for immediate export.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be dispatched in the mails from abroad, accompanied by a yellow and green special mail tag bearing... appropriate, according to the address on the yellow and green tag, and there submitted to the customs officer... the movement of plant material in the international mails in transit through the United States. [24...

  9. [Minimizing risk for health in workers engaged into preplanting treatment of planting material].

    PubMed

    Lipkina, L I; Zavolokina, N G; Mikheyeva, E N

    2016-01-01

    Application of modern technologies and pesticides for preplanting treatment of planting material guarantees minimal risk of hazardous influence on workers with strict compliance with technologic regulations (preparation and working solution consumption, normalized technique, etc) and safety requirements (usage of recommended individual protection means, timely cleansing of equipment, etc).

  10. Phosphoric acid, nitric acid, and hydrogen peroxide digestion of soil and plant materials for selenium determination

    SciTech Connect

    Dong, A.; Rendig, V.V.; Burau, R.G.; Besga, G.S.

    1987-11-15

    A mixture of phosphoric acid, nitric acid, and hydrogen peroxide has been proposed as an alternative to the use of the nitric/perchloric acid mixture to digest biological fluids to determine their selenium (Se) content. The purpose of the studies reported here was to test the applicability of this digestion method for the determination of Se in soil and plant materials.

  11. Development of North American forb plant materials for rangeland revegetation and restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant materials development for Intermountain rangelands is a primary mission of the USDA-ARS Forage and Range Research Laboratory. Currently there is a significant demand for North American forbs (including legumes) for rangeland revegetation and restoration in the Great Basin, but commercial quan...

  12. 36 CFR 13.485 - Subsistence use of timber and plant material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Subsistence § 13.485 Subsistence use of timber and plant material. (a) Notwithstanding any other provision of this part, the non-commercial... information about such actions and reasons also shall be made available for broadcast on local radio...

  13. 36 CFR 13.485 - Subsistence use of timber and plant material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... timber and plant material. (a) Notwithstanding any other provision of this part, the non-commercial cutting of standing timber by local rural residents for appropriate subsistence uses, such as firewood or...) The noncommerical gathering by local rural residents of fruits, berries, mushrooms, and other...

  14. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Olsoy, Peter J.; Glenn, Nancy F.; Clark, Patrick E.; Derryberry, DeWayne R.

    2014-02-01

    Sagebrush (Artemisia tridentata), a dominant shrub species in the sagebrush-steppe ecosystem of the western US, is declining from its historical distribution due to feedbacks between climate and land use change, fire, and invasive species. Quantifying aboveground biomass of sagebrush is important for assessing carbon storage and monitoring the presence and distribution of this rapidly changing dryland ecosystem. Models of shrub canopy volume, derived from terrestrial laser scanning (TLS) point clouds, were used to accurately estimate aboveground sagebrush biomass. Ninety-one sagebrush plants were scanned and sampled across three study sites in the Great Basin, USA. Half of the plants were scanned and destructively sampled in the spring (n = 46), while the other half were scanned again in the fall before destructive sampling (n = 45). The latter set of sagebrush plants was scanned during both spring and fall to further test the ability of the TLS to quantify seasonal changes in green biomass. Sagebrush biomass was estimated using both a voxel and a 3-D convex hull approach applied to TLS point cloud data. The 3-D convex hull model estimated total and green biomass more accurately (R2 = 0.92 and R2 = 0.83, respectively) than the voxel-based method (R2 = 0.86 and R2 = 0.73, respectively). Seasonal differences in TLS-predicted green biomass were detected at two of the sites (p < 0.001 and p = 0.029), elucidating the amount of ephemeral leaf loss in the face of summer drought. The methods presented herein are directly transferable to other dryland shrubs, and implementation of the convex hull model with similar sagebrush species is straightforward.

  15. Towards aging mechanisms of cross-linked polyethylene (XLPE) cable insulation materials in nuclear power plants

    SciTech Connect

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    2016-12-19

    Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.

  16. Factors affecting the isotopic composition of organic matter. (1) Carbon isotopic composition of terrestrial plant materials.

    PubMed

    Yeh, H W; Wang, W M

    2001-07-01

    The stable isotope composition of the light elements (i.e., H, C, N, O and S) of organic samples varies significantly and, for C, is also unique and distinct from that of inorganic carbon. This is the result of (1) the isotope composition of reactants, (2) the nature of the reactions leading to formation and post-formational modification of the samples, (3) the environmental conditions under which the reactions took place, and (4) the relative concentration of the reactants compared to that of the products (i.e., [products]/[reactants] ratio). This article will examine the carbon isotope composition of terrestrial plant materials and its relationship with the above factors. delta13C(PDB) values of terrestrial plants range approximately from -8 to -38%, inclusive of C3-plants (-22 to -38%), C4-plants (-8 to -15%) and CAM-plants (-13 to -30%). Thus, the delta13C(PDB) values largely reflect the photosynthesis pathways of a plant as well as the genetics (i.e., species difference), delta13C(PDB) values of source CO2, relevant humidity, CO2/O2 ratios, wind and light intensity etc. Significant variations in these values also exist among different tissues, different portions of a tissue and different compounds. This is mainly a consequence of metabolic reactions. Animals mainly inherit the delta13C(PDB) values of the foods they consume; therefore, their delta13C(PDB) values are similar. The delta13C(PDB) values of plant materials, thus, contain information regarding the inner workings of the plants, the environmental conditions under which they grow, the delta13C(PDB) values of CO2 sources etc., and are unique. Furthermore, this uniqueness is passed on to their derivative matter, such as animals, humus etc. Hence, they are very powerful tools in many areas of research, including the ecological and environmental sciences.

  17. Estimating above-ground biomasss using lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Lim, Kevin S.; Treitz, Paul; Morrison, Ian; Baldwin, Ken

    2003-03-01

    Previous forest research using time-of-flight lidar suggests that there exists some quantile of the distribution of laser canopy heights that could provide an estimate of various forest biophysical properties. The results presented here not only support this theory, but also extend it by suggesting that a quantile of the distribution of all laser heights could provide estimates of aboveground biomass for forests with similar stand structure. Tolerant northern hardwood forests, composed predominantly of mature sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton), were surveyed using an ALTM 1225 (Optech Inc.) in August 2000. Field data for 49 circular plots, each 400 m2 in area, were collected in July 2000. Using site-specific allometric equations, total aboveground biomass and biomass components (i.e., stem wood, stem bark, live branches, and foliage) were derived for each plot. Three laser height metrics were derived from the lidar data: (i) maximum laser height; (ii) mean laser height; and (iii) mean laser height calculated from lidar returns filtered based on a threshold applied to the intensity return data LhIR). LhIR was identified as the best predictor of total aboveground biomass (R2 = 0.85) and biomass components (R2 between 0.84 to 0.85) when all plot types were considered.

  18. The analysis of plant-based raw materials of unknown origin.

    PubMed

    Wasek, Marek; Wroczyński, Piotr; Sołobodowska, Sylwia; Lal, Natalia

    2013-01-01

    Chosen aspects of the safety of use of several herbs received from National Medicines Institute, which came from smuggling, have been examined. The analysis has been conducted in three different aspects: (1) Possibilities of contamination of plant-based raw materials by metals of heavy elements (As, Cd, Cu, Cr, Pb). (2) Conscious smuggling of intoxicating preparation or narcotics in plant-based raw materials. (3) Radioactive contamination originating mostly from 137Cs isotope. To solve the problem, analytical methods of GFAAS and ICP-MS, X-ray diffraction and high-distributive spectrometry of gamma-radiation have been applied. Determined concentration of arsenic in all analyzed samples and the concentration of lead in one sample exceeded allowable concentration recommended by WHO. In analyzed materials, no presence of narcotics or radioactive contamination of 137Cs isotope has been detected.

  19. Closed vessel miniaturized microwave assisted chelating extraction for determination of trace metals in plant materials

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Duering, Rolf-Alexander

    2013-04-01

    In recent years, the use of closed vessel microwave assisted extraction (MAE) for plant samples has shown increasing research interest which will probably substitute conventional procedures in the future due to their general disadvantages including consumption of time and solvents. The objective of this study was to demonstrate an innovative miniaturized closed vessel microwave assisted extraction (µMAE) method under the use of EDTA (µMAE-EDTA) to determine metal contents (Cd, Co, Cu, Mn, Ni, Pb, Zn) in plant samples (Lolio-Cynosuretum) by inductively coupled plasma-optical emission spectrometry (ICP-OES). Validation of the method was done by comparison of the results with another miniaturized closed vessel microwave HNO3 method (µMAE-H) and with two other macro scale MAE procedures (MAE-H and MAE-EDTA) which were applied by using a mixture of nitric acid (HNO3) and hydrogen peroxide (H2O2) (MAE-H) and EDTA (MAE-EDTA), respectively. The already established MAE-H method is taken into consideration as a reference validation MAE method for plant material. A conventional plant extraction (CE) method, based on dry ashing and dissolving of the plant material in HNO3, was used as a confidence comparative method. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. This allowed the validation of the applicability of the µMAE-EDTA procedure. For 36 real plant samples with triplicates each, µMAE-EDTA showed the same extraction yields as the MAE-H in the determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn contents in plant samples. Analytical parameters in µMAE-EDTA should be further investigated and adapted for other metals of interest. By the reduction and elimination of the use of hazardous chemicals in environmental analysis and thus allowing a better understanding of metal distribution and accumulation process in plants and also the metal transfer from soil to plants and into the food chain, µ

  20. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    SciTech Connect

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  1. Evaluation of Anticorrosion Performance of New Materials for Alternative Superheater Tubes in Biomass Power Plants

    NASA Astrophysics Data System (ADS)

    Li, Yuchun; Zhang, Hongliang; He, Yuwu

    2016-09-01

    One way of controlling alkali chloride-induced corrosion in biomass boilers is by designing new alloy materials used as superheater tubes. Four newly designed Cr-Ni alloy was designed and studied for applicability in biomass power plants. High-temperature oxidation experiments and high-temperature corrosion experiments were carried out for evaluation material characterization. Through analysis and discussion of the corrosion kinetics and oxidation kinetics, it can be concluded that materials with series number of "2xx" and "3xx" had better endurance ability in KCl environment under 650°C and 700°C than TP316 material. In the same conditions, 3xx material had better anticorrosion ability in 700°C with KCl environment.

  2. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials.

    PubMed

    Agarwal, Umesh P

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression can be achieved, the utility of the Raman investigations has increased significantly. Moreover, the development of several new capabilities such as estimation of cellulose-crystallinity, ability to analyze changes in cellulose conformation at the local and molecular level, and examination of water-cellulose interactions have made this technique essential for research in the field of plant science. The FT-Raman method has also been applied to research studies in the arenas of biofuels and nanocelluloses. Moreover, the ability to investigate plant lignins has been further refined with the availability of near-IR Raman. In this paper, we present 1064-nm FT-Raman spectroscopy methodology to investigate various compositional and structural properties of plant material. It is hoped that the described studies will motivate the research community in the plant biomass field to adapt this technique to investigate their specific research needs.

  3. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    PubMed Central

    Agarwal, Umesh P.

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression can be achieved, the utility of the Raman investigations has increased significantly. Moreover, the development of several new capabilities such as estimation of cellulose-crystallinity, ability to analyze changes in cellulose conformation at the local and molecular level, and examination of water-cellulose interactions have made this technique essential for research in the field of plant science. The FT-Raman method has also been applied to research studies in the arenas of biofuels and nanocelluloses. Moreover, the ability to investigate plant lignins has been further refined with the availability of near-IR Raman. In this paper, we present 1064-nm FT-Raman spectroscopy methodology to investigate various compositional and structural properties of plant material. It is hoped that the described studies will motivate the research community in the plant biomass field to adapt this technique to investigate their specific research needs. PMID:25295049

  4. Current problems: Plant biomass as raw material for the production of olefins and motor fuels

    SciTech Connect

    Paushkin, Ya.M.; Lapidus, A.L.; Adel`son, S.V.

    1995-01-01

    Apart from petroleum, another reserve of energy that may be tapped is plant biomass - the primary source of life on Earth. Plant biomass is formed every year in the amount of 170-200 billion tonnes (calculated as dry weight), equivalent in energy to 70-80 billion tonnes of crude oil (compare with the world oil production of about 3 billion tonnes). A small percentage of the plant biomass is utilized by the human race (food, construction, fuel, industry) and by the animal world. Most of it vanishes without producing any benefits; it is decomposed and converted to carbon dioxide and water. With modern technology of growing and harvesting biomass, there is no doubt that at least 2.5-5% of the biomass can be utilized; this is equivalent in terms of energy to 2-4 billion tonnes of crude oil or more than 3-6 billion tonnes of coal. In the course of processing plant raw material in the forest industry, agriculture, and other activities, large amounts of organic wastes are formed; these can be utilized directly for energy production - either as solid fuel in the form of fuel briquets, in solid-waste disposal plants for the production of heat in the form of steam, or as a raw material for processing into liquid fuel means of newly developed technology.

  5. Methane production from and beneficiation of anaerobic digestion of aquatic plant material

    SciTech Connect

    Klass, D.L.; Ghosh, S.

    1984-01-03

    A process is disclosed for improved CH/sub 4/ production by anaerobic digestion of aquatic plant material, at least a portion or all which was grown in organically polluted water. Mixtures of aquatic plant material whose 1 portion was grown in nonpolluted and a 2nd portion comprising approximately 10 wt.% or more grown in organically polluted water can be used. The liquid effluent from the digester may be advantageously returned to the aquatic plant-growing pond to maintain the desired organic pollution. The process provides for improved CH/sub 4/ production from aquatic plant material which is, by itself, recalcitrant to anaerobic digestion. Thus, 2 digesters were operated under the same conditions, the 1st being fed with water hyacinth grown in nonorganic polluted hardwater of BOD 5 mg/l and hardness of 20 grains/gal. and the 2nd being fed with water hyacinth grown in sewage-polluted water of BOD 20 mg/l. Each digester was operated in a semicontinuous completely mixed anaerobic manner with a culture volume of 5 liters for a detention time of 12 days, a loading of 0.1 lb volatile solid/cubic feet-day, and 35/sup 0/ at pH of 6.8-7.1. The runs were contained for several detention times and exhibited stable performance. CH/sub 4/ yield increased approximately 69% and the gas-production rate increased approximately 82% by using water hyacinth feed grown in sewage-polluted water.

  6. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    PubMed

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  7. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  8. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials

    NASA Astrophysics Data System (ADS)

    Trevizan, Lilian Cristina; Santos, Dário, Jr.; Samad, Ricardo Elgul; Vieira, Nilson Dias, Jr.; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Krug, Francisco José

    2009-05-01

    Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm - 2 . An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg - 1 B, 3.0 mg kg - 1 Cu, 3.6 mg kg - 1 Fe, 1.8 mg kg - 1 Mn and 1.2 mg kg - 1 Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.

  9. Aging predictions in nuclear power plants: Crosslinked polyolefin and EPR cable insulation materials

    SciTech Connect

    Gillen, K.T.; Clough, R.L.

    1991-06-01

    In two earlier reports, we derived a time-temperature-dose rate superposition methodology, which, when applicable, can be used to predict cable degradation versus dose rate, temperature and exposure time. This methodology results in long-term predictive capabilities at the low dose rates appropriate to ambient nuclear power plant aging environments. The methodology was successfully applied to numerous important cable materials used in nuclear applications and the extrapolated predictions were verified by comparisons with long-term (7 to 12 year) results for similar or identical materials aged in nuclear environments. In this report, we test the methodology on three crosslinked polyolefin (CLPO) and two ethylene propylene rubber (EPR) cable insulation materials. The methodology applies to one of the CLPO materials and one of the EPR materials, allowing predictions to be made for these materials under low dose-rate, low temperature conditions. For the other materials, it is determined that, at low temperatures, a decrease in temperature at a constant radiation dose rate leads to an increase in the degradation rate for the mechanical properties. Since these results contradict the fundamental assumption underlying time-temperature-dose rate superposition, this methodology cannot be applied to such data. As indicated in the earlier reports, such anomalous results might be expected when attempting to model data taken across the crystalline melting region of semicrystalline materials. Nonetheless, the existing experimental evidence suggests that these CLPO and EPR materials have substantial aging endurance for typical reactor conditions. 28 refs., 26 figs., 3 tabs.

  10. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    PubMed

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  11. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    SciTech Connect

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  12. Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions

    PubMed Central

    Schädler, Martin

    2010-01-01

    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1–3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on

  13. Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions.

    PubMed

    Eisenhauer, Nico; Schädler, Martin

    2011-02-01

    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1-3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on

  14. Materials selection for process equipment in the Hanford waste vitrification plant

    SciTech Connect

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  15. Material protection control and accounting program activities at the electrochemical plant

    SciTech Connect

    McAllister, S.

    1997-11-14

    The Electrochemical Plant (ECP) is the one of the Russian Federation`s four uranium enrichment plants and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. ECP is located approximately 200 km east of Krasnoyarsk in the closed city of Zelenogorsk (formerly Krasnoyarsk- 45). DOE`s MPC&A program first met with ECP in September of 1996. The six national laboratories participating in DOE`s Material Protection Control and Accounting program are cooperating with ECP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC&A work at ECP is expected to be completed during fiscal year 2001.

  16. Oral hepatitis B vaccine candidates produced and delivered in plant material.

    PubMed

    Streatfield, Stephen J

    2005-06-01

    Hepatitis B is a major global health problem; approximately two billion people are infected with the virus worldwide, despite the fact that safe and efficacious vaccines have been developed and used for nearly 20 years. Prohibitive costs for vaccine purchase and administration restrict uptake in many developing nations. Agencies such as the Global Alliance for Vaccination and Immunization are helping to make current vaccines more available, but reduced costs would greatly aid this effort. Oral delivery is an option to reduce the expense of administering hepatitis B vaccines. It may also improve compliance, and orally delivered vaccines may be more efficacious among poor responders to current vaccines. However, to induce protective efficacy, oral administration may require encapsulation of antigen and delivery of large doses. Plant-based expression systems offer an oral delivery alternative with low production costs, and they also encapsulate the antigen. Some plant-based systems also stabilize antigen and therefore reduce storage and distribution costs. The hepatitis B major surface antigen has been expressed in several plant systems. A variety of regulatory sequences and subcellular targets have been used to achieve expression suitable for early stage clinical trials. However, further increase in expression will be necessary for practical and efficacious products. Appropriate processing can yield palatable products with uniform antigen concentration. The antigen expressed in plant systems shows extensive disulphide cross-linking and oligomerization and forms virus-like particles. Oral delivery of the antigen in plant material can induce a serum antibody response, prime the immune system for a subsequent injection of antigen and give a boosted response to a prior injection. Small scale clinical trials in which the antigen has been delivered orally in edible plant material indicate safety and immunogenicity.

  17. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    SciTech Connect

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basis of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)

  18. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil.

    PubMed

    Koskinen, William C; Marek, LeEtta J; Hall, Kathleen E

    2016-03-01

    There is a need for simple, fast, efficient and sensitive methods of analysis for glyphosate and its degradate aminomethylphosphonic acid (AMPA) in diverse matrices such as water, plant materials and soil to facilitate environmental research needed to address the continuing concerns related to increasing glyphosate use. A variety of water-based solutions have been used to extract the chemicals from different matrices. Many methods require extensive sample preparation, including derivatization and clean-up, prior to analysis by a variety of detection techniques. This review summarizes methods used during the past 15 years for analysis of glyphosate and AMPA in water, plant materials and soil. The simplest methods use aqueous extraction of glyphosate and AMPA from plant materials and soil, no derivatization, solid-phase extraction (SPE) columns for clean-up, guard columns for separation and confirmation of the analytes by mass spectrometry and quantitation using isotope-labeled internal standards. They have levels of detection (LODs) below the regulatory limits in North America. These methods are discussed in more detail in the review.

  19. Corrosion fundamentals and corrosion effects on aboveground storage tanks

    SciTech Connect

    Fitzgerald, J.H. III

    1995-12-31

    Corrosion is an electrochemical process that involves ion migration and electron flow. The electrochemical process is explained and the four elements of the basic cell are described--anode, cathode, electrolyte and return circuit. The corrosion mechanisms affecting underground structures can be divided into two main categories--naturally occurring corrosion and stray current corrosion. Several examples of each are shown. These mechanisms of corrosion are applicable to aboveground storage tanks. Various types of exterior and interior corrosion of ASTs are explained in the light of electrochemical theory.

  20. New materials for thermal energy storage in concentrated solar power plants

    NASA Astrophysics Data System (ADS)

    Guerreiro, Luis; Collares-Pereira, Manuel

    2016-05-01

    Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.

  1. Closed vessel microwave assisted extraction - An innovative method for determination of trace metals in plant materials

    NASA Astrophysics Data System (ADS)

    Oeztan, S.; Duering, R.-A.

    2012-04-01

    Determination of metal concentrations in plant samples is important for better understanding of effects of toxic metals that are biologically magnified through the food chain and compose a great danger to all living beings. In recent years the use of microwave assisted extraction for plant samples has shown tremendous research interest which will probably substitute conventional procedures in the future. Generally conventional procedures have disadvantages including consuming of time and solvents. The objective of this study is to investigate and compare a new closed vessel microwave extraction (MAE) method with the combination of EDTA (MAE-EDTA) for the determination of metal contents (Cd, Mn, Pb, Zn) in plant samples (Lolio-Cynosuretum) by ICP-OES. Validation of the method was done by comparison of the results with another MAE procedure (MAE-H) which is applied with the mixture of 69% nitric acid (HNO3) and 30% hydrogen peroxide (H2O2). Moreover, conventional plant extraction (CE) method, for which the dissolution of plant samples were handled in HNO3 after dry ashing at 420° C, was used as a reference method. Approximately 0.5 g of sample was digested in 5 ml HNO3, 3 ml H2O2, and 5 ml deionized H2O for MAE-H and in 8 ml EDTA solution for MAE-EDTA. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. Thereby, the applicability of both MAE-H and MAE-EDTA procedures could be demonstrated. For 58 plant samples MAE-H showed the same extraction yields as CE in the determination of trace metal contents of the investigated elements in plant samples. MAE-EDTA gave similar values when compared to MAE-H and highly linear relationships were found for determination of Cd, Mn, Pb and Zn amounts. The recoveries for the CRMs were within the range 89.6-115%. Finally, strategic characteristics of MAE-EDTA for determination metal contents (Cd, Mn, Pb, Zn) in plant samples are: (i) applicability to a large set

  2. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-06-30

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Aboveground Storage Tanks” and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: · CAS 03-01-03, Aboveground Storage Tank · CAS 03-01-04, Tank · CAS 15-01-05, Aboveground Storage Tank · CAS 29-01-01, Hydrocarbon Stain

  3. Carbon isotopic constraints on the contribution of plant material to the natural precursors of trihalomethanes

    USGS Publications Warehouse

    Bergamaschi, B.A.; Fram, M.S.; Kendall, C.; Silva, S.R.; Aiken, G.R.; Fujii, R.

    1999-01-01

    The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn, Zea maize L) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 1-6.8??? difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12??? lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3 9???, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn; Zea maize L.) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 16.8qq difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic

  4. Aging effects on fire-retardant additives in organic materials for nuclear-plant applications

    SciTech Connect

    Clough, R.L.

    1982-08-01

    Inhibiting fire is a major concern of nuclear safety. One of the most widely used commercial fire-retardant additives incorporated into cable insulation and other organic materials to reduce their flammability has been the halocarbon (usually a chlorinated hydrocarbon), typically in combination with antimony oxide. Such materials may be installed for the design lifetime of a nuclear plant; this report describes an investigation of the long-term aging behavior of these fire-retardant additives in polymeric materials. Extensive aging experiments on fire-retarded formulations of ethylene propylene rubber (EPR) and of chlorosulfonated polyethylene (CSPE) have been carried out, with chemical analysis of halogen and antimony content performed as a function of aging time and conditions. Oxygen index flammability measurements were also performed on selected samples. Significant fire-retardant losses (both chlorine (Cl) and antimony (Sb)) were found to occur in certain of the fire-retardant materials but not in others, depending on the molecular structure of the particular halogen-containing component. The data indicate that the loss of halogen- and antimony-based fire retardants appears to be insignificant under ambient conditions expected for nuclear plants.

  5. Monitoring Thermal Fatigue Damage In Nuclear Power Plant Materials Using Acoustic Emission

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Watson, Bruce E.; Pitman, Stan G.; Roosendaal, Timothy J.; Bond, Leonard J.

    2012-04-26

    Proactive aging management of nuclear power plant passive components requires technologies to enable monitoring and accurate quantification of material condition at early stages of degradation (i.e., pre-macrocrack). Acoustic emission (AE) is well-suited to continuous monitoring of component degradation and is proposed as a method to monitor degradation during accelerated thermal fatigue tests. A key consideration is the ability to separate degradation responses from external sources such as water spray induced during thermal fatigue testing. Water spray provides a significant background of acoustic signals, which can overwhelm AE signals caused by degradation. Analysis of AE signal frequency and energy is proposed in this work as a means for separating degradation signals from background sources. Encouraging results were obtained by applying both frequency and energy filters to preliminary data. The analysis of signals filtered using frequency and energy provides signatures exhibiting several characteristics that are consistent with degradation accumulation in materials. Future work is planned to enable verification of the efficacy of AE for thermal fatigue crack initiation detection. While the emphasis has been placed on the use of AE for crack initiation detection during accelerated aging tests, this work also has implications with respect to the use of AE as a primary tool for early degradation monitoring in nuclear power plant materials. The development of NDE tools for characterization of aging in materials can also benefit from the use of a technology such as AE which can continuously monitor and detect crack initiation during accelerated aging tests.

  6. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  7. Carbon isotopic fractionation during decomposition of plant materials of different quality

    NASA Astrophysics Data System (ADS)

    Fernandez, I.; Mahieu, N.; Cadisch, G.

    2003-09-01

    Changes in isotopic 13C composition of solid residues and CO2 evolved during decomposition of C3 and C4 plant materials were monitored over 10 months to determine carbon isotopic fractionation at successive stages of biodegradation. We selected plant materials of different chemical quality, e.g., Zea mays (leaves, stems, coarse roots, and fine roots), Lolium perenne (leaves and roots), Pinus pinaster (needles), and Cocos nucifera (coconut shell) and also characterized these by solid-state 13C NMR. Roots were more lignified than aerial parts of the same species. Lignin was always depleted in 13C (up to 5.2‰) as compared with cellulose from the same sample. Proteins were enriched in 13C in C3 plants but depleted in maize. Cumulative CO2 evolved fitted a double-exponential model with two C pools of different lability. During early stages of decomposition, the CO2-C released was usually 13C depleted as compared with the initial substrate but enriched at posterior stages. Consequently, with ongoing decomposition, the solid residue became 13C depleted, which could only partly be explained by an accumulation of lignin-C. The extension of the initial 13C depleted CO2-C phase was significantly correlated with the labile substrate C content, acid-detergent soluble fraction, and total N, pointing to a direct influence of plant quality on C isotopic dynamics during early stages of biodegradation. This isotopic fractionation can also lead to an underestimation of the contribution of plant residues to CO2-C when incubated in soils. We discuss possible implications of these mechanisms of 13C fractionation in ecosystems.

  8. Reclamation of waste rock material at the Summitville Mine Superfund site using organic matter and topsoil treatments

    SciTech Connect

    Winter, M.E.; Redente, E.F.

    1999-07-01

    The Summitville Mine was a high elevation (3,500 m) open-pit gold mine located in southwestern Colorado. The mine was abandoned in 1992 leaving approximately 200 ha of disturbed area comprised partially of two large waste rock piles. Reclamation of waste rock material is challenging due to extreme climatic conditions in conjunction with a high acid-production potential and low organic matter concentration of the material. In addition, stockpiled topsoil at the site is acidic and may be biologically inactive due to long-term storage, and therefore sufficient plant growth medium may be limited. The purpose of this study was to determine the effect of organic amendments (mushroom compost vs. biosolids) and topsoil (stockpiled vs. nonstockpiled) on aboveground biomass, herbaceous cover, and trace element uptake. An on-site field study was established in 1995 to identify the most effective combination of treatments for successful reclamation of waste rock material. Incorporation of organic matter increased total aboveground production and cover, with mushroom compost being more effective than biosolids, but did not show significant trends relative to trace element uptake. The use of topsoil did not show a significant response relative to aboveground production, cover, and trace element uptake. This study shows that waste rock materials can be directly revegetated if properly neutralized, fertilized, and amended with organic matter. Additionally, stockpiled topsoil was equivalent in plant growth to non-stockpiled topsoil when neutralized with lime.

  9. Method and plant for conversion of waste material to stable final products

    SciTech Connect

    Santen, S.; Thornblom, J.

    1985-04-02

    The invention relates to a method and plant for converting waste material containing and/or comprising thermally disintegratable chemcial substances to stable final products such as CO/sub 2/, H/sub 2/O and HCI, the waste material being subjected to a plasma gas of high temperature generated in a plasma generator in order to effect disintegration. The waste material in feedable form is caused to flow through a reaction zone, heated by a plasma gas to at least 2000/sup 0/ C. The reaction zone comprises a cavity burned in a gas-permeable filling in piece form arranged in a reaction chamber, by means of the plasma jet from the plasma generator directed towards and projecting into said filling. An appropriate oxygen potential is maintained in at least the reaction zone such that the disintegration products are continuously converted to stable final products.

  10. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill].

    PubMed

    Fassinou Hotegni, V Nicodème; Lommen, Willemien J M; Agbossou, Euloge K; Struik, Paul C

    2014-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers.

  11. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill

    PubMed Central

    Fassinou Hotegni, V. Nicodème; Lommen, Willemien J. M.; Agbossou, Euloge K.; Struik, Paul C.

    2015-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers

  12. Severe particulate pollution from the deposition practices of the primary materials of a cement plant.

    PubMed

    Kourtidis, K; Rapsomanikis, S; Zerefos, C; Georgoulias, A K; Pavlidou, E

    2014-01-01

    Global cement production has increased twofold during the last decade. This increase has been accompanied by the installation of many new plants, especially in Southeast Asia. Although various aspects of pollution related to cement production have been reported, the impact of primary material deposition practices on ambient air quality has not yet been studied. In this study, we show that deposition practices can have a very serious impact on levels of ambient aerosols, far larger than other cement production-related impacts. Analyses of ambient particulates sampled near a cement plant show 1.3-30.4 mg/m(3) total suspended particulates in the air and concentrations of particles with a diameter of 10 μm or less at 0.04-3 mg/m(3). These concentrations are very high and seriously exceed air quality standards. We unequivocally attribute these levels to outdoor deposition of cement primary materials, especially clinker, using scanning electron microscopy/energy-dispersive X-ray spectroscopy. We also used satellite-derived aerosol optical depth maps over the area of study to estimate the extent of the spatial impact. The satellite data indicate a 33% decrease in aerosol optical depth during a 10-year period, possibly due to changing primary material deposition practices. Although the in situ sampling was performed in one location, primary materials used in cement production are common in all parts of the world and have not changed significantly over the last decades. Hence, the results reported here demonstrate the dominant impact of deposition practices on aerosol levels near cement plants.

  13. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    PubMed

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  14. Boiler materials for ultra-supercritical coal power plants - steamside oxidation

    SciTech Connect

    Viswanathan, R.; Sarver, J.; Tanzosh, J.M.

    2006-06-15

    The corrosion behavior of tubing materials carrying steam at high temperature is of great concern to fossil power plant operators. This is due to the fact that the oxide films formed on the steam side can lead to major failures and consequently to reduced plant availability. The wall loss of the pressure boundary caused by oxidation can increase the hoop stresses and cause premature creep failures; second, the increased insulation of the tubes due to the low thermal conductivity of the oxide film can lead to increased metal temperature, thereby exacerbating the fireside corrosion as well as creep problems. The third concern is that thicker oxides may spall more easily when the plant is cooled down. On restart, the spalled material may lodge somewhere in the system with the potential for causing tube blockages, or it may be swept out with the working fluid and enter the steam turbine causing erosion damage to the turbine nozzles and blades. Failures of tubing and turbine components by these mechanisms have been widely reported in the United States. In view of the importance of the steamside oxidation, a major study of the phenomenon is being carried out as part of a major national program sponsored by the U.S. Department of Energy and the Ohio Coal Development Office. As a prelude to the experimental work, a literature survey was performed to document the state of the art. Results of the review are reported here.

  15. Seasonal availability of edible underground and aboveground carbohydrate resources to human foragers on the Cape south coast, South Africa

    PubMed Central

    Cowling, Richard M.; Potts, Alastair J.; Marean, Curtis W.

    2016-01-01

    The coastal environments of South Africa’s Cape Floristic Region (CFR) provide some of the earliest and most abundant evidence for the emergence of cognitively modern humans. In particular, the south coast of the CFR provided a uniquely diverse resource base for hunter-gatherers, which included marine shellfish, game, and carbohydrate-bearing plants, especially those with Underground Storage Organs (USOs). It has been hypothesized that these resources underpinned the continuity of human occupation in the region since the Middle Pleistocene. Very little research has been conducted on the foraging potential of carbohydrate resources in the CFR. This study focuses on the seasonal availability of plants with edible carbohydrates at six-weekly intervals over a two-year period in four vegetation types on South Africa’s Cape south coast. Different plant species were considered available to foragers if the edible carbohydrate was directly (i.e. above-ground edible portions) or indirectly (above-ground indications to below-ground edible portions) visible to an expert botanist familiar with this landscape. A total of 52 edible plant species were recorded across all vegetation types. Of these, 33 species were geophytes with edible USOs and 21 species had aboveground edible carbohydrates. Limestone Fynbos had the richest flora, followed by Strandveld, Renosterveld and lastly, Sand Fynbos. The availability of plant species differed across vegetation types and between survey years. The number of available USO species was highest for a six-month period from winter to early summer (Jul–Dec) across all vegetation types. Months of lowest species’ availability were in mid-summer to early autumn (Jan–Apr); the early winter (May–Jun) values were variable, being highest in Limestone Fynbos. However, even during the late summer carbohydrate “crunch,” 25 carbohydrate bearing species were visible across the four vegetation types. To establish a robust resource landscape

  16. Seasonal availability of edible underground and aboveground carbohydrate resources to human foragers on the Cape south coast, South Africa.

    PubMed

    De Vynck, Jan C; Cowling, Richard M; Potts, Alastair J; Marean, Curtis W

    2016-01-01

    The coastal environments of South Africa's Cape Floristic Region (CFR) provide some of the earliest and most abundant evidence for the emergence of cognitively modern humans. In particular, the south coast of the CFR provided a uniquely diverse resource base for hunter-gatherers, which included marine shellfish, game, and carbohydrate-bearing plants, especially those with Underground Storage Organs (USOs). It has been hypothesized that these resources underpinned the continuity of human occupation in the region since the Middle Pleistocene. Very little research has been conducted on the foraging potential of carbohydrate resources in the CFR. This study focuses on the seasonal availability of plants with edible carbohydrates at six-weekly intervals over a two-year period in four vegetation types on South Africa's Cape south coast. Different plant species were considered available to foragers if the edible carbohydrate was directly (i.e. above-ground edible portions) or indirectly (above-ground indications to below-ground edible portions) visible to an expert botanist familiar with this landscape. A total of 52 edible plant species were recorded across all vegetation types. Of these, 33 species were geophytes with edible USOs and 21 species had aboveground edible carbohydrates. Limestone Fynbos had the richest flora, followed by Strandveld, Renosterveld and lastly, Sand Fynbos. The availability of plant species differed across vegetation types and between survey years. The number of available USO species was highest for a six-month period from winter to early summer (Jul-Dec) across all vegetation types. Months of lowest species' availability were in mid-summer to early autumn (Jan-Apr); the early winter (May-Jun) values were variable, being highest in Limestone Fynbos. However, even during the late summer carbohydrate "crunch," 25 carbohydrate bearing species were visible across the four vegetation types. To establish a robust resource landscape will require

  17. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    PubMed

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  18. Diversity and Above-Ground Biomass Patterns of Vascular Flora Induced by Flooding in the Drawdown Area of China's Three Gorges Reservoir

    PubMed Central

    Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  19. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    SciTech Connect

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  20. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  1. Evaluation of extraction procedures for the ion chromatographic determination of arsenic species in plant materials.

    PubMed

    Schmidt, A C; Reisser, W; Mattusch, J; Popp, P; Wennrich, R

    2000-08-11

    The determination of arsenic species in plants grown on contaminated sediments and soils is important in order to understand the uptake, transfer and accumulation processes of arsenic. For the separation and detection of arsenic species, hyphenated techniques can be applied successfully in many cases. A lack of investigations exists in the handling (e.g., sampling, pre-treatment and extraction) of redox- and chemically labile arsenic species prior to analysis. This paper presents an application of pressurized liquid extraction (PLE) using water as the solvent for the effective extraction of arsenic species from freshly harvested plants. The method was optimized with respect to extraction time, number of extraction steps and temperature. The thermal stability of the inorganic and organic arsenic species under PLE conditions (60-180 degrees C) was tested. The adaptation of the proposed extraction method to freeze-dried, fine-grained material was limited because of the insufficient reproducibility in some cases.

  2. Severe particulate pollution from deposition practices of primary materials of cement plants

    NASA Astrophysics Data System (ADS)

    Kourtidis, Konstantinos; Rapsomanikis, Spyridon; Zerefos, Christos; Georgoulias, Aristeidis; Pavlidou, Eleni

    2014-05-01

    Analysis of ambient particulates sampled at a residential area near a cement manufacturing plant in Greece, showed total aerosol mass in the sampled air 1.3-30.4 mg/m3 and PM10 concentrations 0.04-3 mg/m3. These concentrations are very high and seriously exceed air quality standards. Morphological examination and elemental analysis of air samples and primary materials with Scanning Electron Microscopy (SEM)/Energy Dispersive X-Ray Spectroscopy (EDS) showed that ambient particulates shared appearance features and had similar elemental synthesis to clinker and fly ash, showing heavy impacts on the ambient aerosol load from the cement plant practice of open deposition of primary materials. Satellite-derived AOD over the area during the period 2000-2010 shows extended spatial impact, while satellite overpass data indicate a 33% decrease in AOD over this period, possibly due to changing production and primary material deposition practices. Although the sampling was performed more than one decade ago in Greece, environmental legislation and its reinforcement practices at that time in Greece are similar to current ones in many parts of the world. The global increase in cement production, especially in south-east Asia, make these measurements particularly relevant.

  3. Mutagenicity studies in a tyre plant: in vitro activity of workers' urinary concentrates and raw materials.

    PubMed Central

    Crebelli, R; Paoletti, A; Falcone, E; Aquilina, G; Fabri, G; Carere, A

    1985-01-01

    The possible contribution to urinary mutagenicity of occupational exposures in the rubber industry was studied by assaying the urine concentrates of 72 workmen (44 smokers) employed in a tyre plant. Twenty three clerks (16 smokers) engaged in the administrative department of the same factory served as presumptive unexposed controls. XAD-2 resin concentrates of urine samples were assayed in the plate incorporation test and in the microtitre fluctuation assay with Salmonella typhimurium strains TA1535, TA98, and TA100. Furthermore, the in vitro mutagenicity of the major raw materials in use at the plant was determined in the plate incorporation assay with S typhimurium strains TA1535, TA1537, TA98, and TA100. The results obtained from the urinary mutagenicity study show that smoking habits, but not occupation, were statistically significantly related to the appearance of a urinary mutagenicity that was detectable with strain TA98. A possible synergistic effect of occupation with smoking was observed among tyre builders who were also smokers. The study of the raw materials showed that three technical grade materials were weakly active as mutagens in strain TA98 in the absence (poly-p-dinitrosobenzene) or in the presence of metabolic activation (mixed diaryl-p-phenylendiamines and tetramethyltiuram disulphide). The latter chemical was also weakly active in strain TA100. PMID:4015996

  4. Stoichiometry in aboveground and fine roots of Seriphidium korovinii in desert grassland in response to artificial nitrogen addition.

    PubMed

    Li, Lei; Gao, Xiaopeng; Gui, Dongwei; Liu, Bo; Zhang, Bo; Li, Xiangyi

    2017-03-31

    Nitrogen (N) input by atmospheric deposition and human activity enhances the availability of N in various ecosystems, which may further affect N and phosphorus (P) cycling and use by plants. However, the internal use of N, P, and N:P stoichiometry by plants in response to N supply, particularly for grass species in a desert steppe ecosystem, remains unclear. In this work, a field experiment was conducted at an infertile area in a desert steppe to investigate the effects of N fertilizer addition rates on the stoichiometry of N and P in a dominant grass species, Seriphidium korovinii. Results showed that for both aboveground and fine roots of S. korovinii, N inputs exponentially increased the N concentration and N:P ratios while P concentrations decreased. Meanwhile, the relationships between N and P concentrations for both aboveground and fine roots were significantly negative. Furthermore, while the N concentrations in the plants were relatively low, P concentrations were higher than the global means, resulting in a relatively low N:P ratio. These results suggest that the stoichiometric characteristics of N were different from that of P for this desert plant species. Results also show that the intraspecific variations in the main element traits (N, P, and N:P ratios) were consistent at the whole-plant level. Our results also suggest that N should be part of any short-term fertilization plan that is part of a management strategy designed to restore degraded desert grassland. These findings highlight that nutrient addition by atmospheric N deposition and human activity can have significant effects on the internal use of N and P by plants. Therefore, establishing a nutrient-conservation strategy for desert grasslands is important.

  5. Ice nucleation by plant structural materials and its potential contribution to glaciation in clouds

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Hoose, C.; Järvinen, E.; Kiselev, A. A.; Moehler, O.; Schnaiter, M.; Ullrich, R.; Cziczo, D. J.; Felgitsch, L.; Gourihar, K.; Grothe, H.; Reicher, N.; Rudich, Y.; Tobo, Y.; Zawadowicz, M. A.

    2015-12-01

    Glaciation of supercooled clouds through immersion freezing is an important atmospheric process affecting the formation of precipitation and the Earth's energy budget. Currently, the climatic impact of ice-nucleating particles (INPs) is being reassessed due to increasing evidence of their diversity and abundance in the atmosphere as well as their ability to influence cloud properties. Recently, it has been found that microcrystalline cellulose (MCC; extracted from natural wood pulp) can act as an efficient INP and may add crucial importance to quantify the role of primary biological INP (BINP) in the troposphere. However, it is still unclear if the laboratory results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to assess the overall role of BINPs in clouds and the climate system. Here, we use the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber in Karlsruhe, Germany to demonstrate that several important plant constituents as well as natural plant debris can act as BINPs in simulated super-cooled clouds of the lower and middle troposphere. More specifically, we measured the surface-scaled ice nucleation activity of a total 16 plant structural materials (i.e., celluloses, lignins, lipids and carbohydrates), which were dispersed and immersed in cloud droplets in the chamber, and compared to that of dried leaf powder as a model proxy for atmospheric BINPs. Using these surface-based activities, we developed parameters describing the ice nucleation ability of these particles. Subsequently, we applied them to observed airborne plant debris concentrations and compared to the background INP simulated in a global aerosol model. Our results suggest that cellulose is the most active BINPs amongst the 16 materials and the concentration of ice nucleating cellulose and plant debris to become significant (>0.1 L-1) below about -20 ˚C. Overall, our findings support the view that MCC may be a good proxy

  6. Extractable sulphate-sulphur, total sulphur and trace-element determinations in plant material by flow injection analysis

    SciTech Connect

    Heanes, D.L. )

    1990-01-01

    A rapid, accurate and reproducible procedure for determining total sulphur(S) and trace elements (copper, zinc, manganese and iron) in plant material is described. Plant material is digested in culture tubes with a mixture of nitric and perchloric acids containing ammonium metavanadate and calcium chloride. In the acid digest, concentrations of total-S as sulphate are determined by turbidimetry and trace-elements by flame atomic absorption spectrophotometry using flow injection analysis. The results for a range of plant materials compare well with those obtained by conventional procedures for the same elements. The microprocessor controlled digestion and multielement assay procedure described here offers improved laboratory efficiencies in materials, time and cost effectiveness. The techniques should be particularly useful when plant tissues are in limited supply.

  7. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  8. Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.

    2013-01-01

    Annual/perennial and tall/short plant species differentially dominate early to late successional shortgrass steppe communities. Plant species can have different ratios of above-/below-ground biomass distributions and this can be modified by precipitation and grazing. We compared grazing effects on aboveground production and root biomass in early- and mid-seral fields and undisturbed shortgrass steppe. Production averaged across four years and grazed and ungrazed treatments were 246, 134, and 102 g m−2 yr−1 for the early-, mid-seral, and native sites, respectively, while root biomass averaged 358, 560, and 981 g m−2, respectively. Early- and mid-seral communities provided complimentary forage supplies but at the cost of root biomass. Grazing increased, decreased, or had no effect on aboveground production in early-, mid-seral, and native communities, and had no effect on roots in any. Grazing had some negative effects on early spring forage species, but not in the annual dominated early-seral community. Dominant species increased with grazing in native communities with a long evolutionary history of grazing by large herbivores, but had no effects on the same species in mid-seral communities. Effects of grazing in native communities in a region cannot necessarily be used to predict effects at other seral stages.

  9. Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation.

    PubMed

    Li, Hui; Xu, Zhuwen; Yang, Shan; Li, Xiaobin; Top, Eva M; Wang, Ruzhen; Zhang, Yuge; Cai, Jiangping; Yao, Fei; Han, Xingguo; Jiang, Yong

    2016-05-01

    It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect.

  10. Nuclear power plant containment metallic pressure boundary materials and plans for collecting and presenting their properties

    SciTech Connect

    Oland, C.B.

    1995-04-01

    A program is being conducted at the Oak Ridge National Laboratory (ORNL to assist the Nuclear Regulatory Commission (NRC)) in their assessment of the effects of degradation (primarily corrosion) on the structural capacity and leaktight integrity of metal containments and steel liners of reinforced concrete structures in nuclear power plants. One of the program objectives is to characterize and quantify manifestations of corrosion on the properties of steels used to construct containment pressure boundary components. This report describes a plan for use in collecting and presenting data and information on ferrous alloys permitted for use in construction of pressure retaining components in concrete and metal containments. Discussions about various degradation mechanisms that could potentially affect the mechanical properties of these materials are also included. Conclusions and recommendations presented in this report will be used to guide the collection of data and information that will be used to prepare a material properties data base for containment steels.

  11. Analysis of the presence of improper materials in the composting process performed in ten MBT plants.

    PubMed

    Montejo, C; Ramos, P; Costa, C; Márquez, M C

    2010-11-01

    Composting of the organic fraction of municipal solid waste (OFMSW) reduces the amount of biodegradable waste landfilled. However, the final product or compost used as organic soil amendment shows a large presence of improper materials and alarming concentrations of heavy metals. In this work, 30 samples of OFMSW before and after composting have been characterized to determine qualitatively and quantitatively this contamination and its origin. In addition, technical features of the equipment installed in 10 waste treatment plants have been assessed because of their influence on the streams involved in the composting process. Results show 78.2% of the samples stabilized by composting to be organic matter and the rest corresponds to improper materials, mainly paper, plastic and glass. Origin is due to the composting feedstocks, the OFMSW obtained by size separation in trommels which, due to non-source separation and poor selectivity, contains one third of impurities. In seven of the 30 samples household batteries were found.

  12. Disposal of United Nuclear Company materials at the Y-12 Plant

    SciTech Connect

    Butz, T.R.; Stoner, H.H.

    1983-12-19

    The UNC Recovery Systems Company, located at Wood River Junction, Rhode Island, was involved in the recovery of enriched uranium from scrap materials generated primarily in defense program activities of the DOE and its predecessor agencies. Following shutdown of the recovery operations in August 1980, UNC was required to decontaminate facilities and the associated waste lagoon systems and to remove the resultant low-level radioactive waste out of the state of Rhode Island. In view that the waste resulted from the processing of scrap materials generated in DOE Defense Programs activities and due to the lack of adequate capacity at commercial waste disposal facilities, DOE agreed to accept the waste for burial at the Y-12 Plant. Site characterization and well monitoring results are presented of the disposal site.

  13. Testing cathodic protection systems on aboveground storage tanks

    SciTech Connect

    Garrity, K.C.

    1995-12-31

    The evaluation of cathodic protection systems on aboveground storage tanks presents a unique challenge. Paramount with selection of system type is the method of verification that corrosion control has indeed been achieved. Past experience indicates that standard monitoring procedures intended to determine satisfaction of the industry recognized criteria may not be adequate in analyzing the degree of protection being afforded a storage tank resting on the ground. The standard method of determining the effectiveness of cathodic protection on any structure is the structure-to-electrolyte potential measurement. These measurements are performed utilizing a high impedance voltmeter and a stable, reproducible reference electrode contacting the electrolyte. The paper describes several case histories to illustrate methods.

  14. Evaluating lidar point densities for effective estimation of aboveground biomass

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  15. Effects of interannual climate variation on aboveground phytomass in alpine vegetation

    SciTech Connect

    Walker, M.D.; Webber, P.J.; Arnold, E.H. ); Ebert-May, D. )

    1994-03-01

    Relationships between peak annual vascular aboveground phytomass and annual climate variation in alpine plant communities located on Niwot Ridge, Colorado, were analyzed using path analysis. The five community types, fellfield, dry meadow, moist meadow, wet meadow, and snowbed, represent a snow depth-soil moisture gradient and broadly represent the most common vegetation types on east-facing slopes of the Front Range alpine zone. using nine successive years of data, this is the first longer term analysis of alpine phytomass and climate and one of the longest nonagricultural production records available. Live phytomass ranged from 97 g/m[sup 2] (snowbed) to 237 g/m[sup 2] (fellfield). Among-community differences in phytomass were greater than differences among years, but there was a significant phytomass variation among years. Path analysis indicated that climate accounted for 15-40% of the variation in phytomass. The dry communities, fellfield (exposed rocky summit areas dominated by cushion and mat plants) and dry meadow, were most sensitive to previous year precipitation, the moist and wet meadow communities were most sensitive to current growing season soil moisture, and the snowbed community was most sensitive to date of snow release. Because of the relatively high amount of variation attributable to variables related to precipitation, changes in precipitation regimes that may occur in alpine ecosystems will likely result in changes in phytomass that are detectable with clip-harvest methods. 62 refs., 2 figs., 6 tabs.

  16. Corrosion Behavior Of Potential Structural Materials For Use In Nitrate Salts Based Solar Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Summers, Kodi

    The increasing global demand for electricity is straining current resources of fossil fuels and placing increased pressure on the environment. The implementation of alternative sources of energy is paramount to satisfying global electricity demand while reducing reliance on fossil fuels and lessen the impact on the environment. Concentrated solar power (CSP) plants have the ability to harness solar energy at an efficiency not yet achieved by other technologies designed to convert solar energy to electricity. The problem of intermittency in power production seen with other renewable technologies can be virtually eliminated with the use of molten salt as a heat transfer fluid in CSP plants. Commercial and economic success of CSP plants requires operating at maximum efficiency and capacity which requires high temperature and material reliability. This study investigates the corrosion behavior of structural alloys and electrochemical testing in molten nitrate salts at three temperatures common to CSP plants. Corrosion behavior was evaluated using gravimetric and inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis. Surface morphology was studied using scanning electron microscopy. Surface oxide structure and chemistry was characterized using X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical behavior of candidate structural alloys Alloy 4130, austenitic stainless steel 316, and super-austenitic Incoloy 800H was evaluated using potentiodynamic polarization characteristics. It was observed that electrochemical evaluation of these candidate materials correlates well with the corrosion behavior observed from gravimetric and ICP-OES analysis. This study identifies that all three alloys exhibited acceptable corrosion in 300°C molten salt while elevated salt temperatures require the more corrosion resistant alloys, stainless steel 316 and 800H. Characterization of the sample

  17. Synchrotron powered FT-IR microspectroscopy enhances spatial resolution for probing and mapping of plant materials

    SciTech Connect

    Wetzel, David L.; Sweat, Joseph A.; Panzer, Dia D.

    1998-06-01

    Cross sections of grain kernels, leaves, other plant material, and their products have been examined routinely in our own laboratory with an integrated FT-IR microspectrometer equipped with a conventional (thermal) globar source. With plant material, scattering is often a problem. Representative (low density) mapping requires interpolation between spots on the tissue actually interrogated. High density (100%) mapping with a small pixel size is typically painstakingly done and requires coaddition of many scans. With the synchrotron source (National Synchrotron Light Source, Beamline U2B) of the U.S. Department of Energy's Brookhaven National Laboratory, Upton, New York, nearly all of these problems are solved. Low thermal noise and brightness of the beam provide high S/N. The non-divergence of the synchrotron microbeam allows the high S/N to be retained even with aperturing of 6 {mu}m or 12 {mu}m sizes. Diffraction influences the practical limit. Step sizes corresponding to the small aperture dimension reveal highly localized chemical differences between adjacent pixels of a tissue specimen.

  18. Synchrotron powered FT-IR microspectroscopy enhances spatial resolution for probing and mapping of plant materials

    SciTech Connect

    Wetzel, D.L.; Sweat, J.A.; Panzer, D.D.

    1998-06-01

    Cross sections of grain kernels, leaves, other plant material, and their products have been examined routinely in our own laboratory with an integrated FT-IR microspectrometer equipped with a conventional (thermal) globar source. With plant material, scattering is often a problem. Representative (low density) mapping requires interpolation between spots on the tissue actually interrogated. High density (100{percent}) mapping with a small pixel size is typically painstakingly done and requires coaddition of many scans. With the synchrotron source (National Synchrotron Light Source, Beamline U2B) of the U.S. Department of Energy{close_quote}s Brookhaven National Laboratory, Upton, New York, nearly all of these problems are solved. Low thermal noise and brightness of the beam provide high S/N. The non-divergence of the synchrotron microbeam allows the high S/N to be retained even with aperturing of 6 {mu}m or 12 {mu}m sizes. Diffraction influences the practical limit. Step sizes corresponding to the small aperture dimension reveal highly localized chemical differences between adjacent pixels of a tissue specimen. {copyright} {ital 1998 American Institute of Physics.}

  19. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  20. Diagnostics and Prognostics Tools for Assessing Remaining Useful Life of Nuclear Power Plant Materials

    SciTech Connect

    Ramuhalli, Pradeep; Griffin, Jeffrey W.; Fricke, Jacob M.; Henager, Charles H.; Dixit, Mukul; Bond, Leonard J.

    2011-12-01

    In recent years, there has been renewed interest in expanding the use of nuclear power to provide sustainable, carbon-free energy. As part of these activities in the USA, there are major initiatives focused on "life extension" for existing light-water nuclear power reactors (LWR) from 60 to 80 (or 100) years. To enable longer term operation, a range of advanced diagnostics and prognostics methods that are suitable for on-line, continuous, in-plant monitoring over extended time periods (months to years) are necessary. A central issue in life extension for the current fleet of LWRs is the early detection and monitoring of materials degradation. Material aging and degradation due to stresses and irradiation is a critical element in assessing potential for the failure of components in legacy nuclear power plants. A related issue is the ability to estimate remaining useful life (RUL) of components and systems based on condition assessment or degradation information. Detection of early stage damage in materials and assessment of remaining life is important in proactive or prognostic-based life management of legacy nuclear power plants. These approaches go beyond what is currently included in "condition-based maintenance," this strategy can potentially improve safety and reduce costs by detecting damage and scheduling appropriate maintenance/mitigation strategies early in the component lifecycle. For early detection of degradation, novel nondestructive (i.e., without destroying the utility of the specimen) tests that are suitable for continuous monitoring over extended time periods are needed, as are new techniques for data integration. The challenge of predicting remaining life starting from earlier phases of degradation is also largely unsolved and will require new prognostics tools. This paper will discuss the development and application of advanced diagnostics and prognostics tools to the life extension problem. The focus of these activities will be on ferritic and

  1. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    NASA Astrophysics Data System (ADS)

    Gomes, Marcos S.; Schenk, Emily R.; Santos, Dário; Krug, Francisco José; Almirall, José R.

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg- 1 for Zn to as high as 94 mg kg- 1 for K but were generally below 6 mg kg- 1 for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ~ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ~ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis.

  2. Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation.

    PubMed

    Abas, Lindy; Luschnig, Christian

    2010-06-15

    Isolation of a microsomal membrane fraction is a common procedure in studies involving membrane proteins. By conventional definition, microsomal membranes are collected by centrifugation of a postmitochondrial fraction at 100,000g in an ultracentrifuge, a method originally developed for large amounts of mammalian tissue. We present a method for isolating microsomal-type membranes from small amounts of Arabidopsis thaliana plant material that does not rely on ultracentrifugation but instead uses the lower relative centrifugal force (21,000g) of a microcentrifuge. We show that the 21,000g pellet is equivalent to that obtained at 100,000g and that it contains all of the membrane fractions expected in a conventional microsomal fraction. Our method incorporates specific manipulation of sample density throughout the procedure, with minimal preclearance, minimal volumes of extraction buffer, and minimal sedimentation pathlength. These features allow maximal membrane yields, enabling membrane isolation from limited amounts of material. We further demonstrate that conventional ultracentrifuge-based protocols give submaximal yields due to losses during early stages of the procedure; that is, extensive amounts of microsomal-type membranes can sediment prematurely during the typical preclearance steps. Our protocol avoids such losses, thereby ensuring maximal yield and a representative total membrane fraction. The principles of our method can be adapted for nonplant material.

  3. Stabilization/solidification of battery debris & lead impacted material at Schuylkill Metals, Plant City, Florida

    SciTech Connect

    Anguiano, T.; Floyd, D.

    1997-12-31

    The Schuylkill Metals facility in Plant City Florida (SMPCI) operated as a battery recycling facility for approximately 13 years. During its operation, the facility disposed of battery components in surrounding wetland areas. In March of 1991 the U.S. EPA and SMPCI entered into a Consent Decree for the remediation of the SMPCI site using stabilization/solidification and on-site disposal. In November of 1994, ENTACT began remediation at the facility and to date has successfully stabilized/solidified over 228,000 tons of lead impacted battery components and lead impacted material. The ENTACT process reduces the size of the material to be treated to ensure that complete mixing of the phosphate/cement additive is achieved thereby promoting the chemical reactions of stabilization and solidification. ENTACT has met the following performance criteria for treated material at the SMPCI site: (1) Hydraulic Conductivity less than 1x10{sup -6} cm/s, (2) Unconfined Compressive Strength greater than 50 psi, (3) Lead, Cadmium, Arsenic, Chromium TCLP Leachability below hazardous levels.

  4. Thick-target PIGE analysis of plant materials preconcentrated by dry ashing.

    PubMed

    Saarela, K E; Harju, L; Lill, J O; Rajander, J; Lindroos, A; Heselius, S J

    2000-04-03

    Plant materials were dry ashed at 550 degrees C and analysed using particle-induced prompt gamma-ray emission (PIGE). The analyses were performed with an external beam of 3 MeV protons incident on the target. Seven biological certified reference materials were analysed and used for the evaluation of the method for Na, Mg, Al, P and Mn. The elemental concentration to detection limit ratios were greatly enhanced by dry ashing of the biological materials. The concentrations of the elements in ashes were clearly above the values at which reliable analyses can be made. The method was applied to samples of spruce and pine. Due to the low ash content of the wood samples, the sensitivity of the method was radically improved. The detection limits for the five elements studied in spruce wood were in the range 0.014-2.5 mug g(-1). The set-up and the beam current used enabled simultaneous particle-induced X-ray emission spectrometry (PIXE) analyses, with the sensitivity optimised for heavier trace elements.

  5. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    SciTech Connect

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  6. Metabolic Engineering of Plants to Produce Precursors (Phloroglucinol and 1,2,4-butanetriol) of Energetic Materials

    DTIC Science & Technology

    2015-01-02

    Precursors (Phloroglucinol and 1,2,4-butanetriol) of Energetic Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER N000140810470 5c. PROGRAM...phloroglucinol, which are precursors of energetic materials butanetriol trinitrate (BTTN) and l,3,5-triamino-2,4,6 trinitrobenzene (TATB), respectively, in...energetic materials in plants overcomes many problems associated with the current chemical-based methods. Bacterial synthesis of butanetriol from xylose or

  7. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River Basin of Southeastern Colorado, USA

    USGS Publications Warehouse

    Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.

    2007-01-01

    Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.

  8. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities

    PubMed Central

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A.; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M.; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude “waste” plant materials for specific practical applications, especially—but not exclusively—in developing countries lacking a more sophisticated industrial infrastructure. PMID:27104554

  9. Use of macrophyte plants, sand & gravel materials in constructed wetlands for greywater treatment

    NASA Astrophysics Data System (ADS)

    Qomariyah, S.; Ramelan, AH; Sobriyah; Setyono, P.

    2017-02-01

    Greywater discharged without any treatments into drainage channels or natural water bodies will lead to environmental degradation and health risk. Local macrophyte plants combined with natural materials of sand and gravel have been used in a system of constructed wetland for the treatment of the greywater. This paper presents the results of some studies of the system carried out in Indonesia, Thailand, and Costa Rica. The studies demonstrate the success of the constructed wetland systems in removing some pollutants of BOD, COD, TSS, pathogen, and detergent. The studies resulted in the treated water in a level of treatment that fulfils the requirement of the local standards for wastewater reuse as irrigation water, fishery, or other outdoor needs.

  10. Screening of halogenated aromatic compounds in some raw material lots for an aluminium recycling plant.

    PubMed

    Sinkkonen, Seija; Paasivirta, Jaakko; Lahtiperä, Mirja; Vattulainen, Antero

    2004-05-01

    Four samples of scrap raw materials for an aluminium recycling plant were screened for the occurrence of persistent halogenated aromatic compounds. The samples contained waste from handling of electric and electronic plastics, filter dust from electronic crusher, cyclone dust from electronic crusher and light fluff from car shredder. In our screening analyses, brominated flame retardants were observed in all samples. Polybrominated diphenyl ethers (PBDE) were identified in all samples in amounts of 245-67450 ng/g. The major PBDE congeners found were decabromo- and pentabromodiphenyl ethers. 1,1-bis(2,4,6-tribromophenoxy)ethane, hexabromobenzene, ethyl-pentabromobenzene, tetrabromobisphenol-A, pentabromotoluene and dimethyl tetrabromobenzene were observed in all scrap samples. The concentrations of PCBs, PCNs (polychlorinated naphthalenes) and nona- to undecachlorinated terphenyls in some of these scrap samples were remarkably high.

  11. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K.; Kodama, T.

    2013-07-01

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  12. [Identification of original plants of uyghur medicinal materials fructus elaeagni using morphological characteristics and DNA barcode].

    PubMed

    Wang, Guo-Ping; Fan, Cong-Zhao; Zhu, Jun; Li, Xiao-Jin

    2014-06-01

    Morphology and molecular identification technology were used to identify 3 original plants of Fructus Elaeagni which was commonly used in Uygur medicine. Leaves, flowers and fruits from different areas were selected randomly for morphology research. ITS2 sequence as DNA barcode was used to identify 17 samples of Fructus Elaeagni. The genetic distances were computed by kimura 2-parameter (K2P) model, and the Neighbor-Joining (NJ) and Maximum Likelihood phylogenetic trees were constructed using MEGA5.0. The results showed that Elaeagnus angustifolia, E. oxycarpa and E. angustifolia var. orientalis cannot be distinguished by morphological characteristics of leaves, flowers and fruits. The sequence length of ITS2 ranged from 220 to 223 bp, the average GC content was 61.9%. The haplotype numbers of E. angustifolia, E. oxycarpa and E. angustifolia var. orientals were 4, 3, 3, respectively. The results from the NJ tree and ML tree showed that the 3 original species of Fructus Elaeagni cannot be distinguished obviously. Therefore, 3 species maybe have the same origin, and can be used as the original plant of Uygur medicineal material Fructus Elaeagni. However, further evidence of chemical components and pharmacological effect were needed.

  13. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    NASA Astrophysics Data System (ADS)

    Sritram, P.; Treedet, W.; Suntivarakorn, R.

    2015-12-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m3/min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m3/min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency.

  14. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize

    PubMed Central

    Park, Yong-Soon; Bae, Dong-Won; Ryu, Choong-Min

    2015-01-01

    Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants. PMID:26630288

  15. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize.

    PubMed

    Park, Yong-Soon; Bae, Dong-Won; Ryu, Choong-Min

    2015-01-01

    Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.

  16. Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy.

    PubMed

    de Carvalho, Gabriel Gustinelli Arantes; Moros, Javier; Santos, Dário; Krug, Francisco José; Laserna, J Javier

    2015-05-30

    Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) has been used for the first time for quantitative determination of nutrients in plant materials from different crops. A highly heterogeneous population of 31 samples, previously analyzed by inductively coupled plasma optical emission spectroscopy, covering a wide range of matrices was interrogated. To tackle the analysis, laser-induced plasmas under argon atmosphere of pellets prepared from sieved cryogenically ground leaves were studied. Predictive functions based on univariate and multivariate modeling of optical emissions associated to macro- (Ca, Mg, and P) and micronutrients (Cu, Fe, Mn and Zn) were designed. Hierarchical cluster analysis was performed to select representative calibration (n(cal)=17) and validation (n(val)=14) datasets. The predictive performance of calibration functions over fs-LIBS data was compared with that attained on spectral information from nanosecond LIBS (ns-LIBS) operating at different wavelengths (1064 nm, 532 nm, and 266 nm). Findings established higher accuracy and less uncertainty on mass fractions quantification from fs-LIBS, whatever the modeling approach. Quality coefficients below 20% for the accuracy error on mass fractions' prediction in unknown samples, and residual predictive deviations in general above 5, were obtained. In contrast, only multivariate modeling satisfactorily handled the non-linear variations of emissions in ns-LIBS, leading to 2-fold decrease in the root mean square error of prediction (RMSEP) of Ca, Mg, P, Cu, Fe, Mn and Zn in comparison with the univariate approach. But still, an averaged quality coefficient about 35% and residual predictive deviations below 3 were found. Similar predictive capabilities were observed when changing the laser wavelength. Although predicted values by ns-LIBS multivariate modeling exhibit better agreement with reference mass fractions as compared to univariate functions, fs-LIBS conducts better quantification of

  17. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    de Souza, Paulino Florêncio; Santos, Dário, Júnior; de Carvalho, Gabriel Gustinelli Arantes; Nunes, Lidiane Cristina; da Silva Gomes, Marcos; Guerra, Marcelo Braga Bueno; Krug, Francisco José

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg- 1 Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm- 2 (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves).

  18. Legislative and regulatory update of aboveground storage tank requirements

    SciTech Connect

    Howard, J.L. Jr.

    1995-12-31

    Today, a patchwork of federal and state requirements regulate the three general categories of aboveground storage tanks: petroleum tanks (which comprise about 90% of all ASTs in use), hazardous substances tanks, and hazardous waste tanks. Various federal regulatory programs address ASTs, including the Clean Water Act, the Clean Air Act, and the Resource Conservation and Recovery Act (RCRA). At the state or local level, regulations and building codes have incorporated industry guidelines for designing, building, and testing tanks for fire prevention and safety purposes. With respect to environmental protection requirements, only the hazardous waste tanks are subject to a comprehensive federal regulatory program, under RCRA, and the states have adopted these federal regulations or promulgated their own. Some states have enacted comprehensive tank programs governing petroleum, and a few have addressed hazardous substances. The prospects for comprehensive legislation or regulation for petroleum ASTs in 1995, however, are dim. Federal legislation has been introduced, the Environmental Protection Agency (EPA) is studying ASTs, and most states are waiting for Congress and EPA to act. The paper briefly summarizes the applicable federal and state regulations and then discusses federal legislative and regulatory developments.

  19. Dryland Wheat Domestication Changed the Development of Aboveground Architecture for a Well-Structured Canopy

    PubMed Central

    Li, Pu-Fang; Cheng, Zheng-Guo; Ma, Bao-Luo; Palta, Jairo A.; Kong, Hai-Yan; Mo, Fei; Wang, Jian-Yong; Zhu, Ying; Lv, Guang-Chao; Batool, Asfa; Bai, Xue; Li, Feng-Min; Xiong, You-Cai

    2014-01-01

    We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate. PMID:25181037

  20. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands.

    PubMed

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-09-26

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity-ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao's quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands.

  1. Remote sensing of aboveground biomass and annual net aerial primary productivity in tidal wetlands

    SciTech Connect

    Hardisky, M.A.

    1983-01-01

    A technique was investigated for estimating biomass and net aerial primary productivity (NAPP) in Delaware tidal marshes from spectral data, describing marsh vegetation canopies. Spectral radiance data were collected with hand-held radiometers from the ground and from low altitude aircraft. Spectral wavebands corresponding to Landsat 4 thematic mapper bands 3, 4 and 5 and multispectral scanner bands 5 and 7 were employed. Spectral data, expressed as index values, were substituted into simple regression models to nondestructively compute total aboveground biomass. Dead biomass, salt crystals on plant leaves and soil background reflectance, all attenuated the spectral radiance index values. A large spectral contribution from any one of these canopy components caused an underestimate of live biomass. Biomass and annual NAPP of a S. alterniflora dominated salt marsh was estimated by traditional harvesting techniques and from ground-gathered spectral radiance data. The live and dead standing crop biomass estimates computed from spectral data were usually not significantly different from harvest biomass estimates. Spectral estimates of NAPP were usually within 10% of NAPP estimates calculated from harvest data. August live standing crop biomass estimates computed from ground-gathered spectral data for a tidal brackish marsh were generally within 10% of harvest estimates. Live biomass estimates computed from spectral data gathered from a low altitude aircraft were equally similar to harvest biomass estimates. The remote sensing technique holds much promise for rapid and accurate estimates of biomass and NAPP in tidal marshes.

  2. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands

    PubMed Central

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-01-01

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity–ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands. PMID:27666532

  3. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Nossov, Dana R.; Peterson, Birgit E.; Waldrop, Mark P.; McFarland, Jack W.; Rover, Jennifer R.; Hollingsworth, Teresa N.

    2012-01-01

    Terrestrial plant biomass is a key biophysical parameter required for understanding ecological systems in Alaska. An accurate estimation of biomass at a regional scale provides an important data input for ecological modeling in this region. In this study, we created an aboveground biomass (AGB) map at 30-m resolution for the Yukon Flats ecoregion of interior Alaska using Landsat data and field measurements. Tree, shrub, and herbaceous AGB data in both live and dead forms were collected in summers and autumns of 2009 and 2010. Using the Landsat-derived spectral variables and the field AGB data, we generated a regression model and applied this model to map AGB for the ecoregion. A 3-fold cross-validation indicated that the AGB estimates had a mean absolute error of 21.8 Mg/ha and a mean bias error of 5.2 Mg/ha. Additionally, we validated the mapping results using an airborne lidar dataset acquired for a portion of the ecoregion. We found a significant relationship between the lidar-derived canopy height and the Landsat-derived AGB (R2 = 0.40). The AGB map showed that 90% of the ecoregion had AGB values ranging from 10 Mg/ha to 134 Mg/ha. Vegetation types and fires were the primary factors controlling the spatial AGB patterns in this ecoregion.

  4. Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data

    SciTech Connect

    Harrell, P.A.; Haney, E.M.; Christensen, N.L. Jr.; Kasischke, E.S.; Bourgeau-Chavez, L.L.

    1997-02-01

    Estimation of forest biomass on a global basis is a key issue in studies of ecology and biogeochemical cycling. Forests are a terrestrial sink of atmospheric carbon dioxide and play a central role in regulating the exchange of this important greenhouse gas between the atmosphere and the biosphere. A study was performed to evaluate various techniques for estimating aboveground, woody plant biomass in pine stands found in the southeastern United States, using C- and L- band multiple polarization radar imagery collected by the Shuttle Imaging Radar-C (SIR-C) system. The biomass levels present in the test stands ranged between 0.0 and 44.5 kg m{sup {minus}2}. Two SIR-C data sets were used one collected in April, 1994, when the soil conditions were very wet and the canopy was slightly wet from dew and a second collected in October, 1994, when the soils and canopy were dry. During the October mission, pine needles were completely flushed and the foliar biomass was twice as great in the forest stands as in April. Four methods were evaluated to estimate total biomass: one including a straight multiple linear correlation between total biomass and the various SIR-C channels, another including a ratio of the L-band HV/C-band HV channels; and two others requiring multiple steps, where linear regression equations for different stand components were used as the basis for estimating total biomass.

  5. Understanding the effects of PEMFC contamination from balance of plant assembly aids materials: In situ studies

    DOE PAGES

    Opu, Md.; Bender, G.; Macomber, Clay S.; ...

    2015-06-29

    In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introducedmore » through a nebulizer into the cathode feed stream of a 50 cm2 PEMFC operating at 0.2 A/cm2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.« less

  6. Understanding the effects of PEMFC contamination from balance of plant assembly aids materials: In situ studies

    SciTech Connect

    Opu, Md.; Bender, G.; Macomber, Clay S.; Van Zee, J. W.; Dinh, Huyen N.

    2015-06-29

    In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introduced through a nebulizer into the cathode feed stream of a 50 cm2 PEMFC operating at 0.2 A/cm2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.

  7. Aboveground and belowground responses to nutrient additions and herbivore exclusion in Arctic tundra ecosystems in northern Alaska

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Gough, L.; Simpson, R.; Johnson, D. R.

    2011-12-01

    The Arctic has experienced significant increased regional warming over the past 30 years. Warming generally increases tundra soil nutrient availability by creating a more favorable environment for plant growth, decomposition and nutrient mineralization. Aboveground there has been a "greening" of the Arctic with increased net primary productivity (NPP), and an increase in woody vegetation. Concurrent with the changes aboveground has been an increase in root growth at lower depths and a loss of soil organic C (40 -100 g C m-2 yr-1). Given that arctic soils contain 14% of the global soil C pool, understanding the mechanisms behind shifts of this magnitude that are changing arctic soils from a net sink to a net source of atmospheric C is critical. We took an integrated multi-trophic level approach to examine how altering soil nutrients and mammalian herbivore activity affects vegetation, soil fauna, and microbial communities as well as soil physical characteristics in moist acidic (MAT) and dry heath (DH) tundra. Our work was conducted at the Arctic LTER site in northern Alaska. We sampled the nutrient (controls and annual N+P additions) and herbivore (controls and exclosures) manipulations established in 1996 after 10 years of treatment. Models that incorporated the biomass estimates from the field were used to characterize the trophic structure of the belowground food web and to estimate carbon flux among soil organisms and C-mineralization rates. Both MAT and DH exhibited significant increases in NPP and root growth and changes in vegetation structure with transitions from a mixed community to deciduous shrubs in MAT and from lichens to grasses and shrubs in DH, with nutrient additions and herbivore exclosures. Belowground responses to the treatments were dependent on ecosystem type, but exposed alterations in trophic structure that included changes in microbial biomass, the establishment of microbivorous enchytreaids, increases in root-feeding nematodes, and

  8. Coupling aboveground and belowground activities using short term fluctuations in 13C composition of soil respiration

    NASA Astrophysics Data System (ADS)

    Epron, D.; Parent, F.; Grossiord, C.; Plain, C.; Longdoz, B.; Granier, A.

    2011-12-01

    There is a growing amount of evidence that belowground processes in forest ecosystems are tightly coupled to aboveground activities. Soil CO2 efflux, the largest flux of CO2 to the atmosphere, is dominated by root respiration and by respiration of microorganisms that find the carbohydrates required to fulfil their energetic costs in the rhizosphere. A close coupling between aboveground photosynthetic activity and soil CO2 efflux is therefore expected. The isotopic signature of photosynthates varies with time because photosynthetic carbon isotope discrimination is dynamically controlled by environmental factors. This temporal variation of δ13C of photosynthate is thought to be transferred along the tree-soil continuum and it will be retrieved in soil CO2 efflux after a time lag that reflects the velocity of carbon transport from canopy to belowground. However, isotopic signature of soil CO2 efflux is not solely affected by photosynthetic carbon discrimination, bur also by post photosynthetic fractionation, and especially by fractionation processes affecting CO2 during the transport from soil layers to surface. Tunable diode laser spectrometry is a useful tool to quantify short-term variation in δ13C of soil CO2 efflux and of CO2 in the soil atmosphere. We set up hydrophobic tubes to measure the vertical profile of soil CO2 concentration and its δ13C composition in a temperate beech forest, and we monitored simultaneously δ13C of trunk and soil CO2 efflux, δ13C of phloem exudate and δ13C of leaf sugars. We evidenced that temporal changes in δ13C of soil CO2 and soil CO2 efflux reflected changes in environmental conditions that affect photosynthetic discrimination and that soil CO2 was 4.4% enriched compared to soil CO2 efflux according to diffusion fractionation. However, this close coupling can be disrupted when advective transport of CO2 took place. We also reported evidences that temporal variations in the isotopic composition of soil CO2 efflux reflect

  9. Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin

    NASA Astrophysics Data System (ADS)

    Kearsley, Elizabeth; Hufkens, Koen; Steppe, Kathy; Beeckman, Hans; Boeckx, Pascal; Verbeeck, Hans

    2014-05-01

    Accurate estimates of the amount of carbon stored in tropical forests represent crucial baseline data for recent climate change mitigation policies. Such data are needed to quantify possible emissions due to deforestation and forest degradation, and to evaluate the potential of these forests to act as carbon sinks. Currently, only rough estimates of the carbon stocks for Central African tropical forests are available due to a lack of field data, and little is known about the response of these stocks to climate change. We present the first field-based carbon stock data for the Central Congo Basin in Yangambi, Democratic Republic of Congo. We found an average aboveground carbon stock of 162 ± 20 Mg C ha-1 for intact old-growth forest, which is significantly lower than stocks recorded in the outer regions of the Congo Basin. The best available tree height-diameter relationships derived for Central Africa do not render accurate canopy height estimates for our study area. Aboveground carbon stocks would be overestimated by 24% if these inaccurate relationships were used. The studied forests have a lower stature compared with forests in the outer regions of the basin, which confirms remotely sensed patterns. We identified a significant difference in height-diameter relations across the Congo Basin as a driver for spatial differences in carbon stocks. The study of a more detailed interaction of the environment and the available tree species pool as drivers for differences in carbon storage could have large implications. The effect of the species pool on carbon storage can be large since species differ in their ability to sequester carbon, and the collective functional characteristics of plant communities could be a major driver of carbon accumulation. Numerous species-specific tree height-diameter relations are established for two sites around Kisangani, central Congo Basin, with differing stand height-diameter relationships. The species-specific relations for the two

  10. SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants

    SciTech Connect

    Stephen Harrison

    2015-07-08

    The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.

  11. Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method.

    PubMed

    Martin-Ortigosa, Susana; Valenstein, Justin S; Sun, Wei; Moeller, Lorena; Fang, Ning; Trewyn, Brian G; Lin, Victor S-Y; Wang, Kan

    2012-02-06

    Applying nanotechnology to plant science requires efficient systems for the delivery of nanoparticles (NPs) to plant cells and tissues. The presence of a cell wall in plant cells makes it challenging to extend the NP delivery methods available for animal research. In this work, research is presented which establishes an efficient NP delivery system for plant tissues using the biolistic method. It is shown that the biolistic delivery of mesoporous silica nanoparticle (MSN) materials can be improved by increasing the density of MSNs through gold plating. Additionally, a DNA-coating protocol is used based on calcium chloride and spermidine for MSN and gold nanorods to enhance the NP-mediated DNA delivery. Furthermore, the drastic improvement of NP delivery is demonstrated when the particles are combined with 0.6 μm gold particles during bombardment. The methodology described provides a system for the efficient delivery of NPs into plant cells using the biolistic method.

  12. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants.

    PubMed

    De Greef, J; Villani, K; Goethals, J; Van Belle, H; Van Caneghem, J; Vandecasteele, C

    2013-11-01

    Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation - before and after optimisation - as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  13. Direct containment heating experiments in Zion Nuclear Power Plant geometry using prototypic materials

    SciTech Connect

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-12-31

    Direct Containment Heating (DCH) experiments have been completed which utilize prototypic core materials. The experiments reported on here are a continuation of the Integral Effects Testing (IET) DCH program. The experiments incorporated a 1/40 scale model of the Zion Nuclear Power Plant containment structures. The model included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven. Iron-alumina thermite with chromium was used as a core melt stimulant in the earlier IET experiments. These earlier IET experiments at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL) provided useful data on the effect of scale on DCH phenomena; however, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. Three tests have been completed, DCH-U1A, U1B and U2. DCH-U1A and U1B employed an inerted containment atmosphere and are counterpart to the IET-1RR test with iron/alumina thermite. DCH-U2 employed nominally the same atmosphere composition of its counterpart iron/alumina test, IET-6. All tests, with prototypic material, have produced lower peak containment pressure rises; 45, 111 and 185 kPa in U1A, U1B and U2, compared to 150 and 250 kPa IET-1RR and 6. Hydrogen production, due to metal-steam reactions, was 33% larger in U1B and U2 compared to IET-1RR and IET-6. The pressurization efficiency was consistently lower for the corium tests compared to the IET tests.

  14. X-ray spectromicroscopic investigation of natural organochlorine distribution in weathering plant material

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Marcus, Matthew A.; Myneni, Satish C. B.

    2007-12-01

    Natural organochlorine (Cl org) is ubiquitous in soil humus, but the distribution and cycling of different Cl species during the humification of plant material is poorly understood. Our X-ray spectromicroscopic studies indicate that the distributions of Cl org and inorganic Cl -(Cl inorg) in oak leaf material vary dramatically with decay stage, with the most striking changes occurring at the onset of weathering. In healthy or senescent leaves harvested from trees, Cl inorg occurs in sparsely distributed, highly localized "hotspots" associated with trichomes as well as in diffuse concentration throughout the leaf tissue. The Cl inorg associated with trichomes exists either in H-bonded form or in a solid salt matrix, while the Cl inorg in diffuse areas of lower Cl concentration appears exclusively in H-bonded form. Most solid phase Cl inorg leaches from the leaf tissue during early weathering stages, whereas the H-bonded Cl inorg appears to leach away slowly as degradation progresses, persisting through advanced weathering stages. In unweathered leaves, aromatic and aliphatic Cl org were found in rare but concentrated hotspots. In weathered leaves, by contrast, aromatic Cl org hotspots are prevalent, often coinciding with areas of elevated Fe or Mn concentration. Aromatic Cl org is highly soluble in leaves at early weathering stages and insoluble at more advanced stages. These results, combined with optical microscopy, suggest that fungi play a role in the production of aromatic Cl org in weathering leaf material. Aliphatic Cl org occurs in concentrated hotspots in weathered leaves as well as in diffuse areas of low Cl concentration. The distribution and speciation of Cl in weathering oak leaves depicted by this spectromicroscopic study provides new insight into the formation and cycling of Cl org during the decay of natural organic matter.

  15. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material. Validation of the metabolic fate of munitions materials (TNT, RDX) in mature crops

    SciTech Connect

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1995-09-01

    The goals of this effort were to confirm and expand data related to the behavior and impacts of munitions residues upon human food chain components. Plant species employed included corn (Zea mays), alfalfa (Medicago sativa). spinach (Spinacea oleraceae), and carrot (Daucus carota). Plants were grown from seed to maturity (70 to 120 days) in a low-fertility soil (Burbank) amended with either {sup 14}C-TNT or {sup 14}C-RDX at which time they were harvested and analyzed for munitions uptake, partitioning, and chemical form of the munition or munition-metabolite. All four of the plant species used in this study accumulated the {sup 14}C-TNT- and RDX-derived label. The carrot, alfalfa, and corn demonstrated a higher percentage of label retained in the roots (62, 73, and 83% respectively). The spinach contained less activity in its root (36%) but also contained the highest TNT specific activity observed (>4600 jig TNT equivalents/g dry wt.). The specific uptake values of RDX for the spinach and alfalfa were comparable to those previously reported for wheat and bean (314 to 590 {mu}g RDX-equivalents/g dry wt. respectively). An exception to this may be the carrot where the specific activity was found to exceed 4200 {mu}g RDX-equivalents/g dry wt. in the shoot. The total accumulation of TNT by the plants ranged from 1.24% for the spinach to 2.34% for the carrot. The RDX plants ranging from 15% for the spinach to 37% for the carrot. There was no identifiable TNT or amino dinitrotoluene (ADNT) isomers present in the plants however, the parent RDX compound was found at significant levels in the shoot of alfalfa (> 1 80 {mu}g/g) and corn (>18 {mu}g/g).

  16. Qualitative and quantitative modifications of root mitochondria during senescence of above-ground parts of Arabidopis thaliana.

    PubMed

    Fanello, Diego Darío; Bartoli, Carlos Guillermo; Guiamet, Juan José

    2017-05-01

    This work studied modifications experienced by root mitochondria during whole plant senescence or under light deprivation, using Arabidopsis thaliana plants with YFP tagged to mitochondria. During post-bolting development, root respiratory activity started to decline after aboveground organs (i.e., rosette leaves) had senesced. This suggests that carbohydrate starvation may induce root senescence. Similarly, darkening the whole plant induced a decrease in respiration of roots. This was partially due to a decrease in the number of total mitochondria (YFP-labelled mitochondria) and most probably to a decrease in the quantity of mitochondria with a developed inner membrane potential (ΔΨm, i.e., Mitotracker red- labelled mitochondria). Also, the lower amount of mitochondria with ΔΨm compared to YFP-labelled mitochondria at 10d of whole darkened plant, suggests the presence of mitochondria in a "standby state". The experiments also suggest that small mitochondria made the main contribution to the respiratory activity that was lost during root senescence. Sugar supplementation partially restored the respiration of mitochondria after 10d of whole plant dark treatment. These results suggest that root senescence is triggered by carbohydrate starvation, with loss of ΔΨm mitochondria and changes in mitochondrial size distribution.

  17. [Effects of phosphorus fertilizer on the root system and its relationship with the aboveground part of flue-cured tobacco].

    PubMed

    Wang, Yan-li; Liu, Guo-shun; Ding, Song-shuang; Wang, Jing; Li, Yuan-bo; Dong, Xiao-li

    2015-05-01

    Using 'Yuyan 10' as the material, the effects of different phosphorus fertilizer application on root characteristics of tobacco, such as root dry mass and the difference of dry matter distribution and mineral nutrient accumulation between its above and underground parts were investigated. The results showed that the growth of flue-cured tobacco root system and the distribution of dry matter to the aboveground part were significantly promoted by phosphorus fertilizer application. The application of 30 kg P2O5 · hm(-2) led to the maximums of root dry mass, root volume, root activity and the minimum of root to shoot ratio. The maximum nutrient accumulation rates of root and leaf appeared 57-66 days after transplanting and 44-55 days after transplanting, respectively. Phosphorus could not only promote the mineral nutrition absorption of tobacco and the earlier appearance of maximum nutrient accumulation, but significantly promote the nutrient accumulation of the aboveground part. But, the positive effects described above would be weakened when the amount of phosphorus fertilizer was more than 30 kg P2O5 · hm(-2). Therefore, it's necessary to control the amount of phosphorus application to improve the quality of tobacco leaves.

  18. The effect of freezing and drying on leaching of DOM from above ground vascular plant material from the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.

    2014-12-01

    Our understanding of the seasonal dynamics of fluvial dissolved organic matter (DOM) concentrations and fluxes in Arctic catchments has increased substantially during recent years, especially during the spring, which historically has been an under-sampled time period. While a number of studies have observed peaks in both DOM concentrations and fluxes during the spring snowmelt, our knowledge of the mechanisms that control these observations are still lacking. During the initial snowmelt period, frozen ground and the snow matrix act to constrain melt-water to the soil surface. We hypothesize that restriction of flow during this time facilitates leaching of DOM from senescent above ground vegetation and detritus contributing to the high DOM concentrations observed during the spring melt. This study focuses on the effect of freezing and drying on the leaching of dissolved organic carbon and nitrogen (DOC and DON) from above ground vascular plant material. Specifically, we examined the treatment effects of freezing, drying, and freeze-drying on three genera of common Alaskan Arctic vascular plants; Eriophorum (spp.), Carex (spp.), and Salix (spp.). Frozen and freeze-dried plant material released more DOC over the experimental 96 hour leaching period compared to plant material that was only dried. Qualitatively, these patterns were similar among the different plant types, while quantitatively Salix leached more DOC than either Eriophorum or Carex in all treatments. Similar patterns were also seen for DON between the different treatments and among the different plant types. Compositionally, DOM that was leached from frozen and freeze-dried material had higher C:N ratios than material that was only dried. Comparatively, DOM leached from Salix had much higher C:N ratios than either Eriophorum or Carex. During the first 24 hours of leaching, C:N ratios tended to increase followed by a subsequent leveling or decrease, suggesting that the composition of leached DOM varied

  19. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  20. Current state of development of advanced pipe and tube materials in Germany and Europe for power plant components

    SciTech Connect

    Bendick, W.; Deshayes, F.; Haarmann, K.; Vaillant, J.C.

    1998-07-01

    New power plants with improved thermal efficiency require the use of advanced materials that possess adequate creep rupture strength at increased steam temperatures and pressures. For that purpose new materials, the steels E 911 and 7CrMoVTiB10-10, have been developed for steam pipework and boilers. They are being validated within the frameworks or large national and international research projects.

  1. Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment.

    PubMed

    Freschet, Grégoire T; Ostlund, Lars; Kichenin, Emilie; Wardle, David A

    2014-04-01

    Human activities that involve land-use change often cause major transformations to community and ecosystem properties both aboveground and belowground, and when land use is abandoned, these modifications can persist for extended periods. However, the mechanisms responsible for rapid recovery vs. long-term maintenance of ecosystem changes following abandonment remain poorly understood. Here, we examined the long-term ecological effects of two remote former settlements, regularly visited for -300 years by reindeer-herding Sami and abandoned -100 years ago, within an old-growth boreal forest that is considered one of the most pristine regions in northern Scandinavia. These human legacies were assessed through measurements of abiotic and biotic soil properties and vegetation characteristics at the settlement sites and at varying distances from them. Low-intensity land use by Sami is characterized by the transfer of organic matter towards the settlements by humans and reindeer herds, compaction of soil through trampling, disappearance of understory vegetation, and selective cutting of pine trees for fuel and construction. As a consequence, we found a shift towards early successional plant species and a threefold increase in soil microbial activity and nutrient availability close to the settlements relative to away from them. These changes in soil fertility and vegetation contributed to 83% greater total vegetation productivity, 35% greater plant biomass, and 23% and 16% greater concentrations of foliar N and P nearer the settlements, leading to a greater quantity and quality of litter inputs. Because decomposer activity was also 40% greater towards the settlements, soil organic matter cycling and nutrient availability were further increased, leading to likely positive feedbacks between the aboveground and belowground components resulting from historic land use. Although not all of the activities typical of Sami have left visible residual traces on the ecosystem after

  2. Aboveground roofed design for the disposal of low-level radioactive waste in Maine

    SciTech Connect

    Alexander, J.A.

    1993-03-01

    The conceptual designs proposed in this report resulted from a study for the Maine Low-level Radioactive Waste Authority to develop conceptual designs for a safe and reliable disposal facility for Maine`s low-level radioactive waste (LLW). Freezing temperatures, heavy rainfall, high groundwater tables, and very complex and shallow glaciated soils found in Maine place severe constraints on the design. The fundamental idea behind the study was to consider Maine`s climatic and geological conditions at the beginning of conceptual design rather than starting with a design for another location and adapting it for Maine`s conditions. The conceptual designs recommended are entirely above ground and consist of an inner vault designed to provide shielding and protection against inadvertent intrusion and an outer building to protect the inner vault from water. The air dry conditions within the outer building should lead to almost indefinite service life for the concrete inner vault and the waste containers. This concept differs sharply from the usual aboveground vault in its reliance on at least two independent, but more or less conventional, roofing systems for primary and secondary protection against leakage of radioisotopes from the facility. Features include disposal of waste in air dry environment, waste loading and visual inspection by remote-controlled overhead cranes, and reliance on engineered soils for tertiary protection against release of radioactive materials.

  3. Corrosion and degradation of test materials in the U-GAS coal-gasification pilot plant

    SciTech Connect

    Yurkewycz, R.; Firestone, R.F.

    1982-10-01

    Corrosion monitoring of materials was conducted in the operating environment of the IGT U-GAS coal gasification pilot plant between 1977 and 1982. Metal and refractory specimens were exposed in the fluid bed gasifier in the freeboard section. Metal coupons were also exposed in two test locations in the product gas scrubber and venturi collection tank. Exposure times (coal feed to gasifier) were 264 h, 392 h, and 981 h. The corrosion performance of most alloys in the first exposure compared to the second and third in the U-GAS gasifier freeborad section was quite different. The more aggressive conditions produced during the first-exposure period are attributed to processing of unwashed high-sulfur coals in the steam-air gasification mode. Of the group of alloys evaluated, alloy 6B showed acceptable corrosion performance in all three exposures. Although their performance was poor in the first period, alloys N155 and IN-671 showed marked improvement in corrosion resistance during the second and third exposure periods. The same was true of cobalt-base alloy 188 which was the best performing alloy in the second and third exposures. Pack-aluminized alloys IN-800 and Type 310 showed acceptable performance. Conditions at the coupon location in the product gas scrubber (off-gas) were extremely aggressive to a range of materials exposed except titanium 50A. In the product-gas scrubber sludge tank and venturi collection tank, only carbon steel A515 showed significant attack; in some cases Types 410 and 430 incurred only mild pitting attack. Exposure in the gasifier freeboard had no significant effect on refractory specimens.

  4. 7 CFR 330.210a - Administrative instructions listing approved packing materials for plant pests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant... resin foam. (8) Sawdust. (9) Sponge rubber. (10) Thread waste; twine; or cord. (11) Vermiculite....

  5. 7 CFR 330.210a - Administrative instructions listing approved packing materials for plant pests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant... resin foam. (8) Sawdust. (9) Sponge rubber. (10) Thread waste; twine; or cord. (11) Vermiculite....

  6. 7 CFR 330.210a - Administrative instructions listing approved packing materials for plant pests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant... resin foam. (8) Sawdust. (9) Sponge rubber. (10) Thread waste; twine; or cord. (11) Vermiculite....

  7. 7 CFR 330.210a - Administrative instructions listing approved packing materials for plant pests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant... resin foam. (8) Sawdust. (9) Sponge rubber. (10) Thread waste; twine; or cord. (11) Vermiculite....

  8. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material (DNA). Initial assessment of plant DNA adducts as biomarkers

    SciTech Connect

    Harvey, S.D.; Clauss, T.W.; Fellows, R.J.; Cataldo, D.A.

    1995-08-01

    Genetic damage to deoxyribonucleic acid (DNA) has long been suspected of being a fundamental event leading to cancer. A variety of causal factors can result in DNA damage including photodimerization of base pairs, ionizing radiation, specific reaction of DNA with environmental pollutants, and nonspecific oxidative damage caused by the action of highly reactive oxidizing agents produced by metabolism. Because organisms depend on an unadulterated DNA template for reproduction, DNA repair mechanisms are an important defense for maintaining genomic integrity. The objective of this exploratory project was to evaluate the potential for TNT to form DNA adducts in plants. These adducts, if they exist in sufficient quantities, could be potential biomarkers of munitions exposure. The ultimate goal is to develop a simple analytical assay for the determination of blomarkers that is indicative of munitions contamination. DNA repair exists in dynamic equilibrium with DNA damage. Repair mechanisms are capable of keeping DNA damage at remarkably low concentrations provided that the repair capacity is not overwhelmed.

  9. Responses of belowground communities to large aboveground herbivores: meta-analysis reveals biome-dependent patterns and critical research gaps.

    PubMed

    Andriuzzi, Walter S; Wall, Diana H

    2017-02-28

    The importance of herbivore-plant and soil biota-plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta-analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root-feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked. This article is protected by copyright. All rights reserved.

  10. USING AND CARING FOR ORNAMENTAL PLANT MATERIALS AND LANDSCAPE STRUCTURES. HORTICULTURE-SERVICE OCCUPATIONS, MODULE NO. 11.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO PREPARE HIGH SCHOOL STUDENTS FOR HORTICULTURE-SERVICE OCCUPATIONS, THIS MODULE HAS AS ITS MAJOR OBJECTIVE TO DEVELOP THE ABILITIES NEEDED TO USE, CARE FOR, AND MAINTAIN ORNAMENTAL PLANT MATERIALS AND LANDSCAPE STRUCTURES. IT WAS DEVELOPED ON THE BASIS OF DATA FROM STATE STUDIES BY A NATIONAL TASK FORCE. SUBJECT MATTER…

  11. PRODUCTION OF METHYL SULFIDE AND DIMETHYL DISULFIDE FROM SOIL-INCORPORATED PLANT MATERIALS AND IMPLICATIONS FOR CONTROLLING SOILBORNE PATHOGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-incorporated plant materials have been associated with reduction in soilborne pathogens and diseases. Most credits have been given to secondary products of glucosinolate hydrolysis. Little is known about the production of volatile sulfur compounds and even less on their efficacy against soilb...

  12. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    SciTech Connect

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  13. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Schnable, Patrick S.; Wen, Tsui-Jung

    2009-04-28

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  14. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2005-09-13

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  15. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2004-07-20

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.sub..alpha. subunit of pPDH, the E1.sub..beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyurvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.sub..alpha. pPDH, E1.sub..beta. pPDH, E2 pPDH, mtPDH or ALDH.

  16. US program on materials technology for ultra-supercritical coal power plants

    SciTech Connect

    Viswanathan, R.; Henry, J.F.; Tanzosh, J.; Stanko, G.; Shingledecker, J.; Vitalis, B.; Purgert, R.

    2005-06-01

    The study reported on here is aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers that are capable of operating with steam at temperatures of 760{sup o}C (1400{sup o}F) and pressures of 35 MPa (5000 psi). The economic viability of such a plant has been explored. Candidate alloys applicable to various ranges of temperatures have been identified. Stress rupture tests have been completed on the base metal and on welds to a number of alloys. Steamside oxidation tests in an autoclave at 650{sup o}C (1200{sup o}F) and 800{sup o}C (1475 {sup o}F) have been completed. Fireside corrosion tests have been conducted under conditions simulating those of waterwalls and superheater/reheater tubes. The weldability and fabricability of the alloys have been investigated. The capabilities of various overlay coatings and diffusion coatings have been examined. This article provides a status report on the progress achieved to date on this project.

  17. Influence of material and tube size on DUWLs contamination in a pilot plant.

    PubMed

    Sacchetti, Rossella; De Luca, Giovanna; Zanetti, Franca

    2007-01-01

    Numerous studies have shown that the water discharged from dental unit waterlines (DUWLs) contains high densities of bacteria, especially non-fermenting Gram negative bacteria. The aim of the present study was to investigate how the material (polyethylene-PE and polytetrafluorethylene-PTFE) and size (1.6 and 4.0 mm) of 4 waterlines in a pilot plant influence the level of contamination in the output water. The water contamination was assessed by analyzing the trend of the heterotrophic plate counts at 22 degrees C as a function of time and by testing for non-fermenting Gram negative bacteria. In all waterlines, the bacterial density increased exponentially during the first months and thereafter remained between 10(4) and 10(6) cfu/ml. However, the plate count at 22 degrees C was lower in the water from PTFE tubes and from larger size tubes. Comamonas acidovorans, Pseudomonas aeruginosa and Pseudomonas fluorescens were isolated. Pseudomonas aeruginosa, responsible for infections associated with dental practice, was never isolated in the output water from PTFE tubes. In order to control bacterial contamination the results suggest the use of waterlines made of PTFE on account of their ability to inhibit the colonization and growth of Pseudomonas aeruginosa.

  18. PAHs in leachates from thermal power plant wastes and ash-based construction materials.

    PubMed

    Irha, Natalya; Reinik, Janek; Jefimova, Jekaterina; Koroljova, Arina; Raado, Lembi-Merike; Hain, Tiina; Uibu, Mai; Kuusik, Rein

    2015-08-01

    The focus of the current study is to characterise the leaching behaviour of polycyclic aromatic hydrocarbons (PAHs) from oil shale ashes (OSAs) of pulverised firing (PF) and circulating fluidised-bed (CFB) boilers from Estonian Thermal Power Plant (Estonia) as well as from mortars and concrete based on OSAs. The target substances were 16 PAHs from the EPA priority pollutant list. OSA samples and OSA-based mortars were tested for leaching, according to European standard EN 12457-2 (2002). European standard CEN/TC 15862(2012) for monolithic matter was used for OSA-based concrete. Water extracts were analysed by GC-MS for the concentration of PAHs. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were detected. Still, the release of PAHs was below the threshold limit value for inert waste. The amount of the finest fraction (particle size <0.045 mm), the content of the Al-Si glass phase and the surface characteristics were the main factors, which could affect the accessibility of PAHs for leaching. The mobility of PAHs from OSA of CFB and PF boilers was 20.2 and 9.9%, respectively. Hardening of OSA-based materials did not lead to the immobilisation of soluble PAHs. Release of PAHs from the monolith samples did not exceed 0.5 μg/m(2). In terms of leaching of PAHs, OSA is safe to be used for construction purposes.

  19. Materials for sustained and controlled release of nutrients and molecules to support plant growth.

    PubMed

    Davidson, Drew; Gu, Frank X

    2012-02-01

    Controlled release fertilizers (CRFs) are a branch of materials that are designed to improve the soil release kinetics of chemical fertilizers to address problems stemming losses from runoff or other factors. Current CRFs are used but only in a limited market due to relatively high costs and doubts about their abilities to result in higher yields and increased profitability for agricultural businesses. New technologies are emerging that promise to improve the efficacy of CRFs to add additional functionality and reduce cost to make CRFs a more viable alternative to traditional chemical fertilizer treatment. CRFs that offer ways of reducing air and water pollution from fertilizer treatments, improving the ability of plants to access required nutrients, improving water retention to increase drought resistance, and reducing the amount of fertilizer needed to provide maximum crop yields are under development. A wide variety of different strategies are being considered to tackle this problem, and each approach offers different advantages and drawbacks. Agricultural industries will soon be forced to move toward more efficient and sustainable practices to respond to increasing fertilizer cost and desire for sustainable growing practices. CRFs have the potential to solve many problems in agriculture and help enable this shift while maintaining profitability.

  20. Development of plant-based resist material derived from biomass on hardmask layer in ultraviolet curing nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi

    2012-06-01

    Nanopatterning printability due to high sensitivity and low film thickness shrinkage of ultraviolet curing process in resist material was one of key to achieve high resolution and quality of nanoimprint lithography. The new ultraviolet curing plant-based resist material derived from biomass was investigated to achieve high quality of 100 nm line and space patterning images in the optimized conditions of ultraviolet curing nanoimprint lithography technology for the optical films containing light-emitting diodes, solar cell devices, actuators, biosensors, and micro electro mechanical systems. The newly plantbased resist material derived from biomass is expected as one of the nanoimprint lithography technology in next generation optical devices and biosensors.

  1. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    SciTech Connect

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-11-15

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  2. The influence of gravity on the structure and functions of plant material

    NASA Astrophysics Data System (ADS)

    Brown, A. H.

    Growth process generate plant form and relate to most physiological functions. The Earth's gravity force affects plant growth in both obvious and subtle ways. It is a major environmental influence on morphology and physiology of plants. Gravity is less important as an agent for plant stress than as an environmental signal to guide growth. The plant's bioaccelerometers are remarkably sensitive, especially in hypogravity. Simulation (clinostat) studies and experiments in satellite laboratories are needed to understand the sensing, transduction, and response characteristics of g related mechanisms. By examining how plants alter growth processes to accomplish developmental or physiological ``objectives'' we may find it pragmatically desirable to ask ourselves how we might design a plant to achieve such responses to environmental influences. Examples of this design engineering approach for gravity related effects are described as an aid to experimentation.

  3. The influence of gravity on the structure and functions of plant material.

    PubMed

    Brown, A H

    1984-01-01

    Growth process generate plant form and relate to most physiological functions. The Earth's gravity force affects plant growth in both obvious and subtle ways. It is a major environmental influence on morphology and physiology of plants. Gravity is less important as an agent for plant stress than as an environmental signal to guide growth. The plant's bioaccelerometers are remarkably sensitive, especially in hypogravity. Simulation (clinostat) studies and experiments in satellite laboratories are needed to understand the sensing, transduction, and response characteristics of g related mechanisms. By examining how plants alter growth processes to accomplish developmental or physiological "objectives" we may find it pragmatically desirable to ask ourselves how we might design a plant to achieve such responses to environmental influences. Examples of this design engineering approach for gravity related effects are described as an aid to experimentation.

  4. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of

  5. Cometabolic Degradation of Trichloroethene by Rhodococcus sp. Strain L4 Immobilized on Plant Materials Rich in Essential Oils▿ †

    PubMed Central

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-01-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 μM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE. PMID:20472723

  6. Cooperative efforts of the materials protection control and accounting program at the electrochemical plant (Krasnoyarsk-45) in Russia-011

    SciTech Connect

    Moore, L.

    1998-07-22

    The USDOE Material Protection Control and Accountability Program (MPC&A) has established a Project Team with the goal of providing the Russian Electrochemical Plant (ECP) with equipment and training to enable ECP to evaluate, develop, and implement a comprehensive plan and systems for physical protection, material controls, and accountancy upgrades. The MPC&A project will provide for improvements such as risk assessments, access control upgrades, computerized MC&A, communications systems upgrades, building perimeter surveillance and intrusion detection upgrades, vault upgrades, metal and nuclear material detection upgrades, along with mass measurement and non- destructive analysis (NDA) instrumentation. This paper outlines the overall objectives of the MPC&A project at the Electrochemical Plant.

  7. Preferring cellulose of Eichhornia crassipes to prepare xanthogenate to other plant materials and its adsorption properties on copper.

    PubMed

    Tan, Liangfeng; Zhu, Duanwei; Zhou, Wenbing; Mi, Weijie; Ma, Lixiao; He, Wenting

    2008-07-01

    Choosing bio-material of Eichhornia crassipes from five plant materials through comparison on their exchangeable capacity to copper and carboxyl content, cellulose xanthogenate was prepared by raw fiber of E. crassipes with NaOH and CS(2). The exchange adsorption properties of the product on copper were investigated and the optimum preparing condition was obtained. The results showed that the adsorption capacity of cellulose xanthogenate of E. crassipes to copper was higher than that of other plant materials. Adsorption capacity to copper ion increased with pH value increasing, and was affected by different anions, but not by sodium ion. Adsorption rate was fast and the dynamics of adsorption could be described by a first order kinetic equation.

  8. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications

    PubMed Central

    Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    Background African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Principal Findings Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. Conclusions/Significance We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to

  9. Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material

    NASA Astrophysics Data System (ADS)

    Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

    2010-05-01

    Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air

  10. Uptake of explosives from contaminated soil by vegetation at the Joliet Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D.; Banwart, W.L.; Houser, W.P.

    1994-06-01

    This study examines the uptake of explosives by vegetation growing on soils contaminated by 2,4,6-trinitrotoluene (TNT) in Group 61 at the Joliet Army Ammunition Plant (JAAP). Plant materials and soil from the root zone were sampled and analyzed to determine TNT uptake under natural field conditions. Standard USATHAMA methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. No- explosives were detected in the aboveground portion of any plant sample. However, results indicate that TNT, 2-aminodinitrotoluene (2-ADNT), and/or 4-ADNT were present in some root samples. The presence of 2-ADNT and 4-ADNT increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  11. Aboveground and Belowground Herbivores Synergistically Induce Volatile Organic Sulfur Compound Emissions from Shoots but Not from Roots.

    PubMed

    Danner, Holger; Brown, Phil; Cator, Eric A; Harren, Frans J M; van Dam, Nicole M; Cristescu, Simona M

    2015-07-01

    Studies on aboveground (AG) plant organs have shown that volatile organic compound (VOC) emissions differ between simultaneous attack by herbivores and single herbivore attack. There is growing evidence that interactive effects of simultaneous herbivory also occur across the root-shoot interface. In our study, Brassica rapa roots were infested with root fly larvae (Delia radicum) and the shoots infested with Pieris brassicae, either singly or simultaneously, to study these root-shoot interactions. As an analytical platform, we used Proton Transfer Reaction Mass Spectrometry (PTR-MS) to investigate VOCs over a 3 day time period. Our set-up allowed us to monitor root and shoot emissions concurrently on the same plant. Focus was placed on the sulfur-containing compounds; methanethiol, dimethylsulfide (DMS), and dimethyldisulfide (DMDS), because these compounds previously have been shown to be biologically active in the interactions of Brassica plants, herbivores, parasitoids, and predators, yet have received relatively little attention. The shoots of plants simultaneously infested with AG and belowground (BG) herbivores emitted higher levels of sulfur-containing compounds than plants with a single herbivore species present. In contrast, the emission of sulfur VOCs from the plant roots increased as a consequence of root herbivory, independent of the presence of an AG herbivore. The onset of root emissions was more rapid after damage than the onset of shoot emissions. The shoots of double infested plants also emitted higher levels of methanol. Thus, interactive effects of root and shoot herbivores exhibit more strongly in the VOC emissions from the shoots than from the roots, implying the involvement of specific signaling interactions.

  12. The Material Protection, Control and Accounting Sustainability Program Implementation at the Electrochemical Plant

    SciTech Connect

    Sirotenko, Vladimir; Antonov, Eduard; Sirotenko, Alexei; Kukartsev, Alexander; Krivenko, Vladimir; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Esther M.

    2008-06-10

    Joint efforts by the Electrochemical Plant (ECP) in Zelenogorsk, Russia, and the United States Department of Energy National Nuclear Security Administration (US DOE/NNSA) Material Protection, Control and Accounting (MPC&A) Program to upgrade ECP security systems began in 1996. The commissioning of major MPC&A systems at ECP occurred in December 2004. Since that time, the US Project Team (USPT) and ECP personnel have focused jointly on the development and implementation of an enterprise-wide MPC&A Sustainability Program (SP) that address the seven essential MPC&A Program sustainability elements. This paper describes current operational experience at the ECP with the full implementation of the site SP utilizing an earned-value methodology. In support of this site program, ECP has established a Document Control Program (DCP) for sustainability-related documents; developed a robust master Work Breakdown Structure (WBS) that outlines all ECP MPC&A sustainability activities; and chartered an Enterprise-Wide Sustainability Working Group (ESWG) The earned value methodology uses ECP-completed (and USPT-verified) analyses to assess project performance on a quarterly basis. The MPC&A SP, presently operational through a contract between ECP and the Los Alamos National Laboratory (LANL), incorporates the seven essential MPC&A Program sustainability elements and governs all sustainability activities associated with MPC&A systems at ECP. The site SP is designed to ensure over the near term the upgraded MPC&A systems continuous operation at ECP as funding transitions from US-assisted to fully Russian supported and sustained.

  13. Mortality of workers at a nuclear materials production plant at Oak Ridge, Tennessee, 1947-1990.

    PubMed

    Loomis, D P; Wolf, S H

    1996-02-01

    The Y-12 plant at Oak Ridge, Tennessee, produced nuclear materials for the U.S. government's nuclear weapons program beginning in 1943. Workers at Y-12 were exposed to low dose, internal, alpha radiation and external, penetrating radiation, as well as to beryllium, mercury, solvents, and other industrial agents. This paper presents updated results from a long-term mortality study of workers at Y-12 between 1947 and 1974, with follow-up of white men through 1990 and data reported for the first time for women and men of other races. Vital status was determined through searches of the National Death Index and other records, and the workers' mortality was compared to the national population's using standardized mortality ratios (SMRs). Total mortality was low for all Y-12 workers and total cancer mortality was as expected. Among the 6,591 white men, there were 20% more lung cancer deaths than expected (95% confidence interval [CI] 1.04-1.38). Death rates from brain cancer and several lymphopoietic system cancers were also elevated among white men, with SMRs of 1.28 and 1.46. Mortality from cancer of the pancreas, prostate, and kidney was similarly elevated. There was evidence of excess breast cancer among the 1,073 female workers (SMR 1.21, 95% CI 0.60-2.17). Lung cancer mortality among these workers warrants continued surveillance because of the link between internal alpha radiation exposure and this disease, but other agents, notably beryllium, also merit considerations as potential causes of lung cancer. Other cancers and agents should also be investigated as part of a comprehensive study of the health consequences of the production of nuclear weapons.

  14. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    PubMed

    Cheng, Chin-Min; Chang, Yung-Nan; Sistani, Karamat R; Wang, Yen-Wen; Lu, Wen-Chieh; Lin, Chia-Wei; Dong, Jing-Hong; Hu, Chih-Chung; Pan, Wei-Ping

    2012-02-01

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements (i.e., As, B, and Se), i.e., emission to ambient air, uptake by surface vegetation, and/or rainfall infiltration, after flue gas desulfurization (FGD) material is applied to soil. Three FGD materials collected from two power plants were used. Our results show Hg released into the air and uptake in grass from all FGD material-treated soils were all higher (P < 0.1) than the amounts observed from untreated soil. Hg in the soil amended with the FGD material collected from a natural oxidation wet scrubber (i.e., SNO) was more readily released to air compared to the other two FGD materials collected from the synthetic gypsum dewatering vacuum belt (i.e., AFO-gypsum) and the waste water treatment plant (i.e., AFO-CPS) of a forced oxidation FGD system. No Hg was detected in the leachates collected during the only 3-hour, 1-inch rainfall event that occurred throughout the 4-week testing period. For every kilogram of FGD material applied to soil, AFO-CPS released the highest amount of Hg, B, and Se, followed by SNO, and AFO gypsum. Based on the same energy production rate, the land application of SNO FGD material from Plant S released higher amounts of Hg and B into ambient air and/or grass than the amounts released when AFO-gypsum from Plant A was used. Using FGD material with lower concentration levels of Hg and other elements of concern does not necessary post a lower environmental risk. In addition, this study demonstrates that considering only the amounts of trace elements uptake in surface vegetation may under estimate the overall release of the trace elements from FGD material-amended soils. It also shows, under the same soil amendment conditions, the mobility of trace elements varies when FGD materials produced from different processes are used.

  15. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan

    2016-08-01

    Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and

  16. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  17. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm(2)) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.

  18. Petrographic and anatomical characteristics of plant material from two peat deposits of Holocene and Miocene age, Kalimantan, Indonesia

    USGS Publications Warehouse

    Moore, T.A.; Hilbert, R.E.

    1992-01-01

    Samples from two peat-forming environments of Holocene and Miocene age in Kalimantan (Borneo), Indonesia, were studied petrographically using nearly identical sample preparation and microscopic methodologies. Both deposits consist of two basic types of organic material: plant organs/tissues and fine-grained matrix. There are seven predominant types of plant organs and tissues: roots possessing only primary growth, stems possessing only primary growth, leaves, stems/roots with secondary growth, secondary xylem fragments, fragments of cork cells, and macerated tissue of undetermined origin. The fine-grained matrix consists of fragments of cell walls and cell fillings, fungal remains, spores and pollen grains, and resin. Some of the matrix material does not have distinct grain boundaries (at ??500) and this material is designated amorphous matrix. The major difference between the Holocene peat and Miocene lignite in reflected light, oil immersion is a loss of red coloration in the cell walls of tissue in the lignite, presumably due to loss of cellulosic compounds. In addition, cortex and phloem tissue (hence primary roots and stems) are difficult to recognize in the lignite, probably because these large, thin-walled tissues are more susceptible to microbial degradation and compaction. Particle size in both peat and lignite samples display a bimodal distribution when measurements are transformed to a - log2 or phi (??), scale. Most plant parts have modes of 2-3?? (0.25 - 0.125 mm), whereas the finer-grained particulate matrix has modes of 7-9?? (0.008-0.002 mm). This similarity suggest certain degradative processes. The 2-3?? range may be a "stable" size for plant parts (regardless of origin) because this is a characteristics of a substrate which is most suitable for plant growth in peat. The finer-grained matrix material (7-9??) probably results from fungal decay which causes plant material to weaken and with slight physical pressure to shatter into its component

  19. Temperature sensitivity of CO2, CH4, CO, and H2 emissions during photodegradation of plant material

    NASA Astrophysics Data System (ADS)

    Lee, H.; Throop, H. L.; Rahn, T.

    2010-12-01

    Recent studies suggest that photochemical breakdown (hereafter ‘photodegradation’) of plant material by ultraviolet (UV) radiation may circumvent biotic decomposition and contribute up to 33% of decomposition in arid and semiarid ecosystems. Current knowledge of UV effects on the breakdown of plant-derived carbon compounds such as cellulose and lignin is limited. Several other observations showed that photodegradation of plant material not only produces CO2, but also produces CO and CH4. These observations also suggested that the gas production may be sensitive to temperature. We established a laboratory experiment to test the temperature sensitivity of greenhouse gases (CO2 and CH4) and indirect greenhouse gases (CO and H2) during photodegradation of plant material. The photochemical reaction was induced using a 300 W Xenon lamp solar simulator in a closed quartz chamber connected to a high resolution Wavelength-Scanned Cavity Ringdown Spectroscopy CO2-CH4 analyzer and a reduced compound photometer CO and H2 gas chromatograph. We attached a water bath connected to a chiller/heater below the chamber to control chamber temperatures at 15, 25, 35, 45, and 55°C. We compared emission rates from two artificial materials that were high in lignin and cellulose (basswood sheet and high cellulose content filter paper, respectively) and leaves of two plant species (honey mesquite and little bluestem grass). The rate of CO2 and CO emissions from photodegradation of plant material ranged from 3-70 μg CO2-C m-2 hr-1 and 2-30 μg CO-C m-2 hr-1 and were positively correlated to temperature for all materials (magnitude of fluxes: basswood > mesquite = grass > filter paper). In contrast, the rate of CH4 and H2 ranged from 0-0.4 μg CH4-C m-2 hr-1 and 0-0.4 μg H2 m-2 hr-1, but the temperature responses varied among materials. For instance, the rate of CH4 and H2 emissions were positively correlated with temperature during photodegradation of basswood, but they were negatively

  20. Aboveground predation by an American badger (Taxidea taxus) on black-tailed prairie dogs (Cynomys ludovicianus)

    USGS Publications Warehouse

    Eads, D.A.; Biggins, D.E.

    2008-01-01

    During research on black-tailed prairie dogs (Cynomys ludovicianus), we repeatedly observed a female American badger (Taxidea taxus) hunting prairie dogs on a colony in southern Phillips County, Montana. During 1-14 June 2006, we observed 7 aboveground attacks (2 successful) and 3 successful excavations of prairie dogs. The locations and circumstances of aboveground attacks suggested that the badger improved her probability of capturing prairie dogs by planning the aboveground attacks based on perceptions of speeds, angles, distances, and predicted escape responses of prey. Our observations add to previous reports on the complex and varied predatory methods and cognitive capacities of badgers. These observations also underscore the individuality of predators and support the concept that predators are active participants in predator-prey interactions.

  1. Gold concentrations in abiotic materials, plants, and animals: a synoptic review.

    PubMed

    Eisler, R

    2004-01-01

    Gold (Au) is ubiquitous in the environment and mined commercially at numerous locations worldwide. It is also an allergen that induces dermatitis in sensitive individuals. Gold concentrations were comparatively elevated in samples collected near gold mining and processing facilities, although no data were found for birds and non-human mammals. Maximum gold concentrations reported in abiotic materials were 0.001 microg L(-1) in rainwater; 0.0015 microg L(-1) in seawater near hydrothermal vents vs. < 0.00004-0.0007 microg L(-1) elsewhere; 5.0 microg kg(-1) dry weight (DW) in the Earth's crust; 19.0 microg L(-1) in a freshwater stream near a gold mining site; 440 microg kg(-1) DW in atmospheric dust near a high traffic road; 843 microg kg(-1) DW in alluvial soil near a Nevada gold mine vs. < 29 microg kg(-1) DW premining; 2.53 mg kg(-1) DW in snow near a Russian smelter vs. < 0.35 mg kg(-1) DW at a reference site; 4.5 mg kg(-1) DW in sewage sludge; 28.7 mg kg(-1) DW in polymetallic sulfides from the ocean floor; and 256.0 mg kg(-1) DW in freshwater sediments near a gold mine tailings pile vs. < 5 microg kg(-1) DW prior to mining. In plants, elevated concentrations of 19 microg Au kg(-1) DW were reported in terrestrial vegetation near gold mining operations vs. < 4 microg kg(-1) DW at a reference site; 37 microg kg(-1) DW in aquatic bryophytes downstream from a gold mine; 150 microg Au kg(-1) DW in leaves of beans grown in soil containing 170 microg kg(-1) DW; up to 1.06 mg kg(-1) DW in algal mats of rivers receiving gold mine wastes; and 0.1-100 mg kg(-1) DW in selected gold accumulator plants. Fish and aquatic invertebrates contained 0.1-38.0 microg Au kg(-1) DW. In humans, gold concentrations up to 1.1 microg L(-1) were documented in urine of dental technicians vs. 0.002-0.85 microg L(-1) in reference populations; 2.1 microg L(-1) in breast milk, attributed to gold dental fillings and jewelry of mothers; 1.4 mg kg(-1) DW in hair of goldsmiths vs. a normal range of 6

  2. Gold concentrations in abiotic materials, plants, and animals: a synoptic review

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    Gold (Au) is ubiquitous in the environment and mined commercially at numerous locations worldwide. It is also an allergen that induces dermatitis in sensitive individuals. Gold concentrations were comparatively elevated in samples collected near gold mining and processing facilities, although no data were found for birds and non-human mammals. Maximum gold concentrations reported in abiotic materials were 0.001 ug/L in rainwater; 0.0015 ug/L in seawater near hydrothermal vents vs. <0.00004-0.0007 ug/L elsewhere; 5.0 ug/kg dry weight (DW) in the Earth's crust; 19.0 ug/L in a freshwater stream near a gold mining site; 440 ug/kg DW in atmospheric dust near a high traffic road; 843 ug/kg DW in alluvial soil near a Nevada gold mine vs. <29 ug/kg DW premining; 2.53 mg/kg DW in snow near a Russian smelter vs. <0.35 mg/kg DW at a reference site; 4.5 mg/kg DW in sewage sludge; 28.7 mg/kg DW in polymetallic sulfides from the ocean floor; and 256.0 mg/kg DW in freshwater sediments near a gold mine tailings pile vs. <5 ug/kg DW prior to mining. In plants, elevated concentrations of 19 ug Au/kg DW were reported in terrestrial vegetation near gold mining operations vs. <4 ug/kg DW at a reference site; 37 ug/kg DW in aquatic bryophytes downstream from a gold mine; 150 ug Au/kg DW in leaves of beans grown in soil containing 170 ug/kg DW; up to 1.06 mg/kg DW in algal mats of rivers receiving gold mine wastes; and 0.1-100 mg/kg DW in selected gold accumulator plants. Fish and aquatic invertebrates contained 0.1-38.0 ug Au/kg DW. In humans, gold concentrations up to 1.1 ug/L were documented in urine of dental technicians vs. 0.002-0.85 ug/L in reference populations; 2.1 ug/L in breast milk, attributed to gold dental fillings and jewelry of mothers; 1.4 mg/kg DW in hair of goldsmiths vs. a normal range of 6-880 ug/kg DW; 2.39 mg/L in whole blood of rheumatoid arthritis patients receiving gold thiol drugs to reduce inflammation (chrysotherapy) vs. a normal range of 0.2-2.0 ug/L; and 60

  3. Electron Beam Lithography Using Highly Sensitive Negative Type of Plant-Based Resist Material Derived from Biomass on Hardmask Layer

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Oshima, Akihiro; Sekiguchi, Atsushi; Yanamori, Naomi; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2011-10-01

    We investigated electron beam (EB) lithography using a novel highly sensitive negative type of plant-based resist material derived from biomass on a hardmask layer for trilayer processes. The chemical design concept for using the plant-based resist material with glucose and dextrin derivatives was first demonstrated in the EB lithography. The 1 µm line patterning images with highly efficient crosslinking properties and low film thickness shrinkage were provided under specific process conditions of EB lithography. The results shown reveal that the alpha-linked disaccharide formed by a 1,1-glucoside bond between two glucose units in dextrin derivatives was an important factor in controlling the highly sensitive EB patterning and developer properties.

  4. Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases

    PubMed Central

    2012-01-01

    Background Saccharide materials have been used for centuries as binding media, to paint, write and illuminate manuscripts and to apply metallic leaf decorations. Although the technical literature often reports on the use of plant gums as binders, actually several other saccharide materials can be encountered in paint samples, not only as major binders, but also as additives. In the literature, there are a variety of analytical procedures that utilize GC-MS to characterize saccharide materials in paint samples, however the chromatographic profiles are often extremely different and it is impossible to compare them and reliably identify the paint binder. Results This paper presents a comparison between two different analytical procedures based on GC-MS for the analysis of saccharide materials in works-of-art. The research presented here evaluates the influence of the analytical procedure used, and how it impacts the sugar profiles obtained from the analysis of paint samples that contain saccharide materials. The procedures have been developed, optimised and systematically used to characterise plant gums at the Getty Conservation Institute in Los Angeles, USA (GCI) and the Department of Chemistry and Industrial Chemistry of the University of Pisa, Italy (DCCI). The main steps of the analytical procedures and their optimisation are discussed. Conclusions The results presented highlight that the two methods give comparable sugar profiles, whether the samples analysed are simple raw materials, pigmented and unpigmented paint replicas, or paint samples collected from hundreds of centuries old polychrome art objects. A common database of sugar profiles of reference materials commonly found in paint samples was thus compiled. The database presents data also from those materials that only contain a minor saccharide fraction. This database highlights how many sources of saccharides can be found in a paint sample, representing an important step forward in the problem of

  5. Engineering Transgenic Plants for the Sustained Containment and In Situ Treatment of Energetic Materials

    DTIC Science & Technology

    2009-06-01

    cloacae nitroreductase ...................................... 24 Figure 9 Relative quantitative levels of nfsI expression in transgenic plant lines... Plant Line Fo ld e xp re ss io n Figure 10. Relative quantitative levels of nfsI expression in transgenic plant lines Results are the mean...relative to the lowest nfsI expressing transgenic line, NR 20-3 (Figure 10). 0 10 20 30 40 50 60 70 80 NR 20-3 NR 3-2, T0 NR 3-2, T2 NR 9-1 Transgenic

  6. Uptake of explosives from contaminated soil by existing vegetation at the Iowa Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Zellmer, S.D.; Tomczyk, N.A.; Rastorier, J.R.; Chen, D.; Banwart, W.L.

    1995-02-01

    This study examines the uptake of explosives by existing vegetation growing in soils contaminated with 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-3,5-triazine (RDX) in three areas at the Iowa Army Ammunition Plant (IAAP). To determine explosives uptake under natural environmental conditions, existing plant materials and soil from the root zone were sampled at different locations in each area, and plant materials were separated by species. Standard methods were used to determine the concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. The compound TNT was not detected in the aboveground portion of plants, and vegetation growing on TNT-contaminated soils is not considered a health hazard. However, soil and plant roots may contain TNT degradation products that may be toxic; hence, their consumption is not advised. The compound RDX was found in the tops and roots of plants growing on RDX-contaminated soils at all surveyed sites. Although RDX is not a listed carcinogen, several of its potentially present degradation products are carcinogens. Therefore, the consumption of any plant tissues growing on RDX-contaminated sites should be considered a potential health hazard.

  7. Uptake of explosives from contaminated soil by existing vegetation at the Joliet Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D.; Banwart, W.L. |

    1994-01-01

    This study examines the uptake of explosives by existing vegetation growing in TNT-contaminated soils on Group 61 at the Joliet Army Ammunition Plant (JAAP). The soils in this group were contaminated more than 40 years ago. In this study, existing plant materials and soil from the root zone were sampled from 15 locations and analyzed to determine TNT uptake by plants under natural field conditions. Plant materials were separated by species if more than one species was present at a sampling location. Standard methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. No. explosives were detected in the aboveground portion of any plant sample. However, the results indicate that TNT, 2-amino DNT, and/or 4-amino DNT were found in some root samples of false boneset (Kuhnia eupatorioides), teasel (Dipsacus sylvestris), and bromegrass (Bromus inermis). It is possible that slight soil contamination remained on the roots, especially in the case of the very fine roots for species like bromegrass, where washing was difficult. The presence of 2-amino DNT and 4-amino DNT, which could be plant metabolites of TNT, increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  8. Genetic and Biochemical Basis for the Transformation of Energetic Materials (RDX, TNT, DNTs) by Plants

    DTIC Science & Technology

    2007-04-01

    Phytoremediation, as a concept, was first recognized in 1966 when the uptake of fluorine from air by plants was observed (Jacobson et al., 1966...and preparing it for conjugation by plant molecules. In the case of TNT, the three nitro groups present on the ring confer it with an electrophilic ...contaminant passes, in most species, through at least one reductive step. Reduction serves to reduce the electrophilicity of TNT and prepare it for

  9. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    PubMed

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.

  10. Plant intentionality and the phenomenological framework of plant intelligence

    PubMed Central

    Marder, Michael

    2012-01-01

    This article aims to bridge phenomenology and the study of plant intelligence with the view to enriching both disciplines. Besides considering the world from the perspective of sessile organisms, it would be necessary, in keeping with the phenomenological framework, to rethink (1) the meaning of being-sessile and being-in-a-place; (2) the concepts of sentience and attention; (3) how aboveground and underground environments appear to plants; (4) the significance of modular development for our understanding of intelligence; and (5) the concept of communication within and between plants and plant tissues. What emerges from these discussions is the image of a mind embodied in plant life. PMID:22951403

  11. Effects of Long-Term Trampling on the Above-Ground Forest Vegetation and Soil Seed Bank at the Base of Limestone Cliffs

    NASA Astrophysics Data System (ADS)

    Rusterholz, Hans-Peter; Verhoustraeten, Christine; Baur, Bruno

    2011-11-01

    Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.

  12. Effects of long-term trampling on the above-ground forest vegetation and soil seed bank at the base of limestone cliffs.

    PubMed

    Rusterholz, Hans-Peter; Verhoustraeten, Christine; Baur, Bruno

    2011-11-01

    Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.

  13. Material Aging and Degradation Detection and Remaining Life Assessment for Plant Life Management

    SciTech Connect

    Ramuhalli, Pradeep; Henager, Charles H.; Griffin, Jeffrey W.; Meyer, Ryan M.; Coble, Jamie B.; Pitman, Stan G.; Bond, Leonard J.

    2012-12-31

    One of the major factors that may impact long term operations is structural material degradation, Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined, and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided.

  14. Matching seed to site by climate similarity: Techniques to prioritize plant materials development and use in restoration.

    PubMed

    Doherty, Kyle D; Butterfield, Bradley J; Wood, Troy E

    2017-04-01

    Land management agencies are increasing the use of native plant materials for vegetation treatments to restore ecosystem function and maintain natural ecological integrity. This shift toward the use of natives has highlighted a need to increase the diversity of materials available. A key problem is agreeing on how many, and which, new accessions should be developed. Here we describe new methods that address this problem. Our methods use climate data to calculate a climate similarity index between two points in a defined extent. This index can be used to predict relative performance of available accessions at a target site. In addition, the index can be used in combination with standard cluster analysis algorithms to quantify and maximize climate coverage (mean climate similarity), given a modeled range extent and a specified number of accessions. We demonstrate the utility of this latter feature by applying it to the extents of 11 western North American species with proven or potential use in restoration. First, a species-specific seed transfer map can be readily generated for a species by predicting performance for accessions currently available; this map can be readily updated to accommodate new accessions. Next, the increase in climate coverage achieved by adding successive accessions can be explored, yielding information that managers can use to balance ecological and economic considerations in determining how many accessions to develop. This approach identifies sampling sites, referred to as climate centers, which contribute unique, complementary, climate coverage to accessions on hand, thus providing explicit sampling guidance for both germplasm preservation and research. We examine how these and other features of our approach add to existing methods used to guide plant materials development and use. Finally, we discuss how these new methods provide a framework that could be used to coordinate native plant materials development, evaluation, and use across

  15. 137Cs sorption into bentonite from Cidadap-Tasikmalaya as buffer material for disposal demonstration plant facility at Serpong

    NASA Astrophysics Data System (ADS)

    Setiawan, B.; Sriwahyuni, H.; Ekaningrum, NE.; Sumantry, T.

    2014-03-01

    According to co-location principle, near surface disposal type the disposal demonstration plant facility will be build at Serpong nuclear area. The facility also for anticipation of future needs to provide national facility for the servicing of radwaste management of non-nuclear power plant activity in Serpong Nuclear Area. It is needs to study the material of buffer and backfill for the safety of demonstration plant facility. A local bentonite rock from Cidadap-Tasikmalaya was used as the buffer materials. Objective of experiment is to find out the specific data of sorption characteristic of Cidadap bentonite as buffer material in a radwaste disposal system. Experiments were performed in batch method, where bentonite samples were contacted with CsCl solution labeled with Cs-137 in 100 ml/g liquid:solid ratio. Initial Cs concentration was 10-8 M and to study the effects of ionic strength and Cs concentration in solution, 0.1 and 1.0 M NaCl also CsCl concentration ranging 10-8 - 10-4 M were added in solution. As the indicator of Cs saturated in bentonite samples, Kd value was applied. Affected parameters in the experiment were contact time, effects of ionic strength and concentration of CsCl. Results showed that sorption of Cs by bentonite reached constantly after 16 days contacted, and Kd value was 10.600 ml/g. Effect of CsCl concentration on Kd value may decreased in increased in CsCl concentration. Effect of ionic strength increased according to increased in concentration of background and would effect to Kd value due to competition of Na ions and Cs in solution interacts with bentonite. By obtaining the bentonite character data as buffer material, the results could be used as the basis for making of design and the basic of performance assessment the near surface disposal facility in terms of isolation capacity of radwaste later.

  16. {sup 137}Cs sorption into bentonite from Cidadap-Tasikmalaya as buffer material for disposal demonstration plant facility at Serpong

    SciTech Connect

    Setiawan, B. Sriwahyuni, H. Ekaningrum, NE. Sumantry, T.

    2014-03-24

    According to co-location principle, near surface disposal type the disposal demonstration plant facility will be build at Serpong nuclear area. The facility also for anticipation of future needs to provide national facility for the servicing of radwaste management of non-nuclear power plant activity in Serpong Nuclear Area. It is needs to study the material of buffer and backfill for the safety of demonstration plant facility. A local bentonite rock from Cidadap-Tasikmalaya was used as the buffer materials. Objective of experiment is to find out the specific data of sorption characteristic of Cidadap bentonite as buffer material in a radwaste disposal system. Experiments were performed in batch method, where bentonite samples were contacted with CsCl solution labeled with Cs-137 in 100 ml/g liquid:solid ratio. Initial Cs concentration was 10{sup −8} M and to study the effects of ionic strength and Cs concentration in solution, 0.1 and 1.0 M NaCl also CsCl concentration ranging 10{sup −8} - 10{sup −4} M were added in solution. As the indicator of Cs saturated in bentonite samples, Kd value was applied. Affected parameters in the experiment were contact time, effects of ionic strength and concentration of CsCl. Results showed that sorption of Cs by bentonite reached constantly after 16 days contacted, and Kd value was 10.600 ml/g. Effect of CsCl concentration on Kd value may decreased in increased in CsCl concentration. Effect of ionic strength increased according to increased in concentration of background and would effect to Kd value due to competition of Na ions and Cs in solution interacts with bentonite. By obtaining the bentonite character data as buffer material, the results could be used as the basis for making of design and the basic of performance assessment the near surface disposal facility in terms of isolation capacity of radwaste later.

  17. Evaluation of advanced materials in laboratory tests and pilot-plant service for use in liquefaction letdown valves. Final report

    SciTech Connect

    Wright, I.G.; Clauer, A.H.; Shetty, D.K.; Peterson, J.H.; Merz, W.E.

    1981-05-01

    The aim of this program was to obtain erosion data on a number of candidate valve materials under a range of slurry erosion conditions which would be useful to valve and process engineers involved in materials selection and valve design. The Battelle slurry erosion rig was used with reconstituted coal-derived slurries to erode candidate materials under a range of slurry velocity and impingement angle conditions. The materials studied were the cemented tungsten carbides: K 701, KZ 701 and K 703; and the ceramics silicon carbide (in the reaction-bonded, CVD and sintered alpha forms) and hot-pressed boron carbide. The erosive nature of slurries from two processes, SRC-1, and H-Coal were also investigated. The size distribution of insoluble solid particles in the slurries examined showed fairly close similarity between different coals processed in one plant, and for a given coal slurry from the two processes. Service trials with a reaction-bonded silicon carbide valve stem in a cemented tungsten carbide seat resulted in what was classified as a premature failure, but provided quite revealing data. The two materials had eroded in the same mode and at the same relative rates as observed in the laboratory rig tests. Analysis of the parts suggested that, in fact, the failure may have resulted from the contour to which the stem was machined rather than from poor materials erosion performance.

  18. A study on estimation of aboveground wet biomass based on the microwave vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation biomass is an important parameter in the carbon cycle study. In this paper, a new technique to estimate aboveground vegetation wet biomass based on the Microwave Vegetation Indices (MVIs), which are computed through the observed brightness temperature of AMSR-E/Aqua under two adjacent fre...

  19. Impact of predatory carabids on below- and aboveground pests and yield in strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of adult carabid beetles on below- and above-ground pests and fruit yield was examined in a two-year strawberry field study. Plots (2 m x 2 m) enclosed with barriers were used to augment or exclude adult carabids, and compared to open control plots. Pterostichus melanarius was the predo...

  20. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution of many dryland vegetation species are expected to shift based on predictions of future increases in global temperatures. Quantifying aboveground biomass in dryland systems is important for assessing global carbon storage and monitoring the presence and distribution of these rapidl...

  1. Characteristics of train noise in above-ground and underground stations with side and island platforms

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  2. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  3. [Effects of aboveground and belowground competition between grass and tree on elm seedlings growth in Horqin Sandy Land].

    PubMed

    Tang, Yi; Jiang, De-ming; Chen, Zhuo; Toshio, Oshida

    2011-08-01

    Elm sparse woodland steppe plays an important role in vegetation restoration and landscape protection in Horqin Sandy Land. In this paper, a two-factor and two-level field experiment was conducted to explore the effects of aboveground and belowground competition between grass and tree on the growth of elm seedlings in the Sandy Land. Five aspects were considered, i.e., seedling biomass, belowground biomass/aboveground biomass, stem height, ratio of root to stem, and leaf number. For the one-year-old elm seedlings, their biomass showed a trend of no competition > aboveground competition > full competition > belowground competition, belowground biomass / aboveground biomass showed a trend of belowground competition > full competition > no competition > aboveground competition, stem height showed a trend of aboveground competition > no competition > full competition > belowground competition, root/stem ratio showed a trend of belowground competition > full competition > no competition > aboveground competition, and leaf number showed a trend of aboveground competition > no competition > belowground competition > full competition. Belowground competition had significant effects on the growth of one-year-old elm seedlings, while aboveground competition did not have. Neither belowground competition nor aboveground competition had significant effects on the growth of two-year-old elm seedlings. It was suggested that in Horqin Sandy Land, grass affected the growth of elm seedlings mainly via below-ground competition, but the belowground competition didn' t affect the resource allocation of elm seedlings. With the age increase of elm seedlings, the effects of grass competition on the growth of elm seedlings became weaker.

  4. Rehabilitation of an incised stream using plant materials: the dominance of geomorphic processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of potentially species-rich stream ecosystems in physically unstable environments is challenging, and few attempts have been scientifically evaluated. A 2-km reach of an incised, sand-bed stream in northern Mississippi was treated with large wood structures and willow plantings to trigg...

  5. Integrating Phytoextraction and Biofortification: Fungal Accumulation of Selenium in Plant Materials from Phytoremediation of Agricultural Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytomanagement of Se-polluted soil and water is one strategy that may be environmentally sustainable and cost-effective for soils and waters enriched with natural-occurring Se. Several plant species, including Indian mustard (Brassica juncea), pickleweed (Salicornia bigelovii), and other salt/S...

  6. Plant oil-based polymers prepared in green media and functionalized into useful materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of plant oils to polymers has attracted renewed attention in recent years in order to replace or augment the traditional petro-chemical based polymers and resins. This is due to concern for the environment, waste disposal, and depletion of fossil and non renewable feedstocks. In this ...

  7. A plant culture system for producing food and recycling materials with sweetpotato in space

    NASA Astrophysics Data System (ADS)

    Kitaya, Yoshiaki; Yano, Sachiko; Hirai, Hiroaki

    2016-07-01

    The long term human life support in space is greatly dependent on the amounts of food, atmospheric O2 and clean water produced by plants. Therefore, the bio-regenerative life support system such as space farming with scheduling of crop production, obtaining high yields with a rapid turnover rate, converting atmospheric CO2 to O2 and purifying water should be established with employing suitable plant species and varieties and precisely controlling environmental variables around plants grown at a high density in a limited space. We are developing a sweetpotato culture system for producing tuberous roots as a high-calorie food and fresh edible leaves and stems as a nutritive functional vegetable food in space. In this study, we investigated the ability of food production, CO2 to O2 conversion through photosynthesis, and clean water production through transpiration in the sweetpotato production system. The biomass of edible parts in the whole plant was almost 100%. The proportion of the top (leaves and stems) and tuberous roots was strongly affected by environmental variables even when the total biomass production was mostly the same. The production of biomass and clean water was controllable especially by light, atmospheric CO2 and moisture and gas regimes in the root zone. It was confirmed that sweetpotato can be utilized for the vegetable crop as well as the root crop allowing a little waste and is a promising functional crop for supporting long-duration human activity in space.

  8. Olfactory Responses of Male Medflies to Plant Material Containing the Parapheromone a-Copaene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is a highly invasive species that is considered the most adaptable and polyphagous species of tephritid fruit fly due to its global distribution and its broad range of host plants, primarily tropical and subtropical fr...

  9. Olfactory responses of male Medflies to plant material containing the parapheromone a-copaene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is a highly invasive species that is considered the most adaptable and polyphagous species of tephritid fruit fly due to its global distribution and its broad range of host plants, primarily tropical and subtropical fr...

  10. Distribution of anthropogenic fill material within the Y-12 plant area, Oak Ridge, Tennessee

    SciTech Connect

    Sutton, G.E. Jr. |; Field, S.M.

    1995-10-01

    Widespread groundwater contamination in the vicinity of the Oak Ridge Y-12 Plant has been documented through a variety of monitoring efforts since the late 1970s. Various contaminants, most notably volatile organic compounds (VOCs), have migrated through the subsurface and formed extensive contaminant plumes within the Knox Aquifer/Maynardville Limestone, the primary exit pathway for groundwater transport within the Bear Creek Valley. In 1991, an integrated, comprehensive effort (Upper East Fork Poplar Creek [UEFPC] Phase I monitoring network) was initiated in order to (1) identify contaminant source areas within the industrialized portions of the plant and (2) define contamination migration pathways existing between the source areas and the Knox Aquifer/Maynardville Limestone. Data obtained during previous studies have indicated that extensive zones of fill and buried utility trenches may serve as preferred migration pathways. In addition, portions of UEFPC were rerouted, with several of its tributaries being filled during the initial construction of the plant. These filled surface drainage features are also believed to serve as preferred migration pathways. The identification of preferred contaminant migration pathways within the Y-12 Plant area is essential and required to refine the current Bear Creek Valley groundwater conceptual model and to assist in the selection of technically feasible and cost effective remedial strategies. This report presents the results of an initial investigation of the occurrence of manmade (anthropogenic) fill and its effect upon groundwater movement within the plant area. These interpretations are subject to revision and improvement as further investigation of the effects of the fill upon contaminant migration progresses.

  11. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    SciTech Connect

    Corwin, William R; Ballinger, R.; Majumdar, S.; Weaver, K. D.

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures

  12. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L. L.; Sayer, E. J.

    2013-11-01

    Global change has been shown to alter the amount of above-ground litter inputs to soil greatly, which could cause substantial cascading effects on below-ground biogeochemical cycling. Despite extensive study, there is uncertainty about how changes in above-ground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a meta-analysis on 70 litter-manipulation experiments in order to assess how changes in above-ground litter inputs alter soil physicochemical properties, carbon dynamics and nutrient cycles. Our results demonstrated that litter removal decreased soil respiration by 34%, microbial biomass carbon in the mineral soil by 39% and total carbon in the mineral soil by 10%, whereas litter addition increased them by 31, 26 and 10%, respectively. This suggests that greater litter inputs increase the soil carbon sink despite higher rates of carbon release and transformation. Total nitrogen and extractable inorganic nitrogen in the mineral soil decreased by 17 and 30%, respectively, under litter removal, but were not altered by litter addition. Overall, litter manipulation had a significant impact upon soil temperature and moisture, but not soil pH; litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Compared to other ecosystems, tropical and subtropical forests were more sensitive to variation in litter inputs, as altered litter inputs affected the turnover and accumulation of soil carbon and nutrients more substantially over a shorter time period. Our study demonstrates that although the magnitude of responses differed greatly among ecosystems, the direction of the responses was very similar across different ecosystems. Interactions between plant productivity and below-ground biogeochemical cycling need to be taken into account to predict ecosystem responses to environmental change.

  13. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    USGS Publications Warehouse

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton haa??1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  14. Ion exchange uptake of ammonium in wastewater from a Sewage Treatment Plant by zeolitic materials from fly ash.

    PubMed

    Juan, Roberto; Hernández, Susana; Andrés, José M; Ruiz, Carmen

    2009-01-30

    The potential value of zeolitic materials (ZM) obtained from a hazardous waste, such as coal fly ash, for the retention of NH(4)(+) present in liquid effluents from a Sewage Treatment Plant (STP) is studied. A wastewater sample was taken from an STP in Zaragoza (Spain) after conventional treatment at the Plant. The water was treated with different amounts of three ZM: NaP1 zeolite, K-F zeolite and K-Chabazite/K-Phillipsite zeolites all of them in powdered and granulated state. The wastewater was treated by two kinds of processes: continuous stirring batch experiments with powdered ZM, and fixed packed bed of granulated ZM in a column. The powdered materials reduced about 80% of NH(4)(+) from wastewater, even in the presence of Ca(2+), which competes with NH(4)(+) for the cation exchange sites in zeolites. Around 70% of NH(4)(+) reduction was achieved with granulated materials. In both cases, moderate ZM/wastewater ratios had to be used to achieve those results, with K-zeolites slightly less effective in NH(4)(+) retention.

  15. Field and laboratory testing of seal materials proposed for the Waste Isolation Pilot Plant

    SciTech Connect

    Knowles, M.K.; Howard, C.L.

    1996-02-05

    The Small Scale Seal Performance Tests (SSSPT) were a series of in situ tests designed to evaluate the feasibility of various materials for sealing purposes. Testing was initiated in 1985 and concluded in 1995. Materials selected for the SSSPT included salt-saturated concrete, a 50%/50% mixture of crushed salt and bentonite, bentonite, and crushed salt. This paper presents a summary of the SSSPT field program, results of the in situ testing, and a discussion of post-testing laboratory studies of salt-saturated concrete. Results of the SSSPT support the use of salt-saturated concrete, compacted bentonite clay, and compacted crushed salt as sealing materials for the WIPP.

  16. Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436

    SciTech Connect

    Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim; Meira Castro, Ana Cristina

    2013-07-01

    Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

  17. Aboveground and belowground effects of single-tree removals in New Zealand rain forest.

    PubMed

    Wardle, David A; Wiser, Susan K; Allen, Robert B; Doherty, James E; Bonner, Karen I; Williamson, Wendy M

    2008-05-01

    There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches

  18. EPA Actions in Response to Release of Radioactive Material from the Waste Isolation Pilot Plant (WIPP)

    EPA Pesticide Factsheets

    This document provides information about the actions EPA is taking to support and provide oversight of the WIPP release of radioactive material response effort, and provide information for the public.

  19. Evaluation of a plant material-based air purifier for removing H2S, NH3 and swine manure odour.

    PubMed

    Zhou, Xuezhi; Zhang, Qiang; Huang, Anhong

    2012-12-01

    A plant material-based air purifier (PMAP) was evaluated for odour removal. Laboratory tests were performed using two identical chambers: one treated by PMAP, and one as the control. Swine manure, hydrogen sulphide (H2S) and ammonia (NH3) were tested as odour sources. The test was also conducted in a swine barn. Air samples were taken from test chambers and two rooms in the pig barn and analysed for H2S, NH3 and odour concentrations. When treated with PMAP, the H2S concentration in the sealed chamber was subject to exponential decay, with the decay constant ranging from 0.59 to 0.70 l/h. The H2S concentration was reduced from 20 to 3 ppm in 3 h and to 0.2 ppm in 7h for H2S produced by chemical reaction, and from 0.4 to 0.02 ppm in 3 h for swine manure as the odour source. When an equal amount of ammonia solution was placed in the two test chambers, the NH3 concentration reached a peak value of 25 ppm in the chamber treated by PMAP, and 43 ppm in the control. The NH3 concentration in the treated chamber was reduced to 5 ppm in 3.5 h but stayed at 37 ppm in the control. The PMAP reduced the NH3 concentration from 38 to 10 ppm when swine manure was used as the odour source. The PMAP was capable of reducing swine odour in both laboratory and in-barn conditions. The reduction rate was at least 50%. The results from this research indicate the plant-based materials provide an alternative, environmentally friendly way for odour control. It is also shown that the mode of odour reduction by the PMAP was the removal of odour compounds, in contrast to odour masking, which occurs for most plant materials that have been used for odour control.

  20. Reduction of Safe Separation Distances for Hazardous Materials Transported in Buckets through Ramps at Lap Plants

    DTIC Science & Technology

    1981-12-01

    Use of lightweight tunnel materials. The effects of explosions can be mitigated, and at times controlled, through the use of blow - out panels...detonation of an explosive has much higher pressures and pres- sure rise rates than is experienced in an explosion. The pressure relief from blow -out...extremes of daily use and rough handling. Two basic materials fell well within the purview of these require- ments: metals and thermoplastics . Previous

  1. Long-Term Effects of Dredging Operations Program. Long-Term Evaluation of Plants and Animals Colonizing Contaminated Estuarine Dredged Material Placed in Both Upland and Wetland Environments

    DTIC Science & Technology

    1991-09-01

    into the surface of the dredged material, enhancing plant growth and establishment. The lime and lime + manure plots showed 51 and 28 percent cover...have greatly improved plant growth and vegetative cover. Vegetative cover plays a significant role in improving surface runoff water quality (Skogerboe...large portion of tie wetland (Figure 9f, left side). As the wetland extended across the marsh creation site, the most robust plant growth was observed

  2. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment.

    PubMed

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly; Kostenko, Olga; Van der Putten, Wim H; Macel, Mirka

    2016-02-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during this early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically balanced plant communities.

  3. Determination of the silicon concentration in plant material using Tiron extraction.

    PubMed

    Guntzer, F; Keller, C; Meunier, J D

    2010-11-01

    • The quantification of silicon (Si) in plants generally requires a digestion procedure before the determination of the dissolved Si concentration by spectrometric analysis. Recent procedures produce rapid and accurate measurements, but are based on either hazardous chemicals or sophisticated instrumentation. • Here, we describe a simpler procedure using Tiron. Tiron [4,5-dihydroxy-1,3-benzene-disulfonic acid disodium salt, (HO)(2)C(6)H(2)(SO(3)Na)(2)] is currently used as a selective extractant for amorphous silica in soils. Because Si in the shoots is mostly composed of amorphous opaline silica particles (i.e. phytoliths), we tested the Tiron extraction procedure for plants. • Our results are critically discussed in relation to two other standard procedures: electrothermal vaporization determination and high-temperature lithium-metaborate digestion. • We demonstrate that Tiron extraction is an alternative method which allows the rapid, safe and accurate quantification of Si in shoots of various plants covering a wide range of Si concentrations.

  4. Temporal changes in allocation and partitioning of new carbon as (11)C elicited by simulated herbivory suggest that roots shape aboveground responses in Arabidopsis.

    PubMed

    Ferrieri, Abigail P; Agtuca, Beverly; Appel, Heidi M; Ferrieri, Richard A; Schultz, Jack C

    2013-02-01

    Using the short-lived isotope (11)C (t(1/2) = 20.4 min) as (11)CO(2), we captured temporal changes in whole-plant carbon movement and partitioning of recently fixed carbon into primary and secondary metabolites in a time course (2, 6, and 24 h) following simulated herbivory with the well-known defense elicitor methyl jasmonate (MeJA) to young leaves of Arabidopsis (Arabidopsis thaliana). Both (11)CO(2) fixation and (11)C-photosynthate export from the labeled source leaf increased rapidly (2 h) following MeJA treatment relative to controls, with preferential allocation of radiolabeled resources belowground. At the same time, (11)C-photosynthate remaining in the aboveground sink tissues showed preferential allocation to MeJA-treated, young leaves, where it was incorporated into (11)C-cinnamic acid. By 24 h, resource allocation toward roots returned to control levels, while allocation to the young leaves increased. This corresponded to an increase in invertase activity and the accumulation of phenolic compounds, particularly anthocyanins, in young leaves. Induction of phenolics was suppressed in sucrose transporter mutant plants (suc2-1), indicating that this phenomenon may be controlled, in part, by phloem loading at source leaves. However, when plant roots were chilled to 5°C to disrupt carbon flow between above- and belowground tissues, source leaves failed to allocate resources belowground or toward damaged leaves following wounding and MeJA treatment to young leaves, suggesting that roots may play an integral role in controlling how plants respond defensively aboveground.

  5. Effect of woody and herbaceous plants on chemical weathering of basalt material

    NASA Astrophysics Data System (ADS)

    Mark, N.; Dontsova, K.; Barron-Gafford, G. A.

    2011-12-01

    Worldwide, semi-arid landscapes are transitioning from shallow-rooted grasslands to mixed vegetation savannas composed of deeper-rooted shrubs. These contrasting growth forms differentially drive below-ground processes because they occupy different soil horizons, are differentially stressed by periods of drought, and unequally stimulate soil weathering. Our study aims to determine the effect of woody and herbaceous plants on weathering of granular basalt serving as a model for soil. We established pots with velvet mesquite (Prosopis veluntina), sideoats grama (Bouteloua curtipendula), and bare-soil pots within two temperature treatments in University of Arizona Biosphere 2. The Desert biome served as the ambient temperature treatment, while the Savanna biome was maintained 4°C warmer to simulate projected air temperatures if climate change continues unabated. Rhizon water samplers were installed at a depth of one inch from the soil surface to monitor root zone exudates (total dissolved carbon and nitrogen), dissolved inorganic carbon, and lithogenic elements resulting from basalt weathering. Soil leachates were collected through the course of the experiment. The anion content of the leachates was determined using the ICS-5000 Reagent-Free ion chromatography system. Dissolved carbon and nitrogen were analyzed by combustion using the Shimadzu TOC-VCSH with TN module. Metals and metalloids were measured using inductively coupled plasma mass spectrometry. Irrigation of the pots was varied in time to simulate periods of drought and determine the effect of stress on root exudation. Leachates from all treatments displayed higher pH and electrical conductivity than water used for irrigation indicating weathering. On average, leachates from the potted grasses displayed higher pH and electrical conductivity than mesquites. This agreed with higher concentrations of organic carbon, a measure of root exudation, and inorganic carbon, measure of soil respiration. Both organic

  6. ELWIRA "Plants, wood, steel, concrete - a lifecycle as construction materials": University meets school - science meets high school education

    NASA Astrophysics Data System (ADS)

    Strauss-Sieberth, Alexandra; Strauss, Alfred; Kalny, Gerda; Rauch, Hans Peter; Loiskandl, Willibald

    2016-04-01

    The research project "Plants, wood, steel, concrete - a lifecycle as construction materials" (ELWIRA) is in the framework of the Sparkling Science programme performed by the University of Natural Resources and Life Sciences together with the Billroth Gymnasium in Vienna. The targets of a Sparkling Science project are twofold (a) research and scientific activities should already be transferred in the education methods of schools in order to fascinate high school students for scientific methods and to spark young people's interest in research, and (b) exciting research questions not solved and innovative findings should be addressed. The high school students work together with the scientists on their existing research questions improve the school's profile and the high school student knowledge in the investigated Sparkling Science topic and can lead to a more diverse viewing by the involvement of the high school students. In the project ELWIRA scientists collaborate with the school to quantify and evaluate the properties of classical building materials like concrete and natural materials like plants and woodlogs in terms of their life cycle through the use of different laboratory and field methods. The collaboration with the high school students is structured in workshops, laboratory work and fieldworks. For an efficient coordination/communication, learning and research progress new advanced electronic media like "Moodle classes/courses" have been used and utilized by the high school students with great interest. The Moodle classes are of high importance in the knowledge transfer in the dialogue with the high school students. The research project is structured into four main areas associated with the efficiencies of building materials: (a) the aesthetic feeling of people in terms of the appearance of materials and associated structures will be evaluated by means of jointly developed and collected questionnaires. The analysis, interpretation and evaluation are carried

  7. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website.

  8. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka.

    PubMed

    Ali, Arshad; Mattsson, Eskil

    2017-01-01

    Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry

  9. Biological potential of extraterrestrial materials. 2. Microbial and plant responses to nutrients in the Murchison carbonaceous meteorite

    NASA Technical Reports Server (NTRS)

    Mautner, M. N.; Conner, A. J.; Killham, K.; Deamer, D. W.

    1997-01-01

    Meteoritic materials are investigated as potential early planetary nutrients. Aqueous extracts of the Murchison C2 carbonaceous meteorite are utilized as a sole carbon source by microorganisms, as demonstrated by the genetically modified Pseudomonas fluorescence equipped with the lux gene. Nutrient effects are observed also with the soil microorganisms Nocardia asteroides and Arthrobacter pascens that reach populations up to 5 x 10(7) CFU/ml in meteorite extracts, similar to populations in terrestrial soil extracts. Plant tissue cultures of Asparagus officinalis and Solanum tuberosum (potato) exhibit enhanced pigmentation and some enhanced growth when meteorite extracts are added to partial nutrient media, but inhibited growth when added to full nutrient solution. The meteorite extracts lead to large increases in S, Ca, Mg, and Fe plant tissue contents as shown by X-ray fluorescence, while P, K, and Cl contents show mixed effects. In both microbiological and plant tissue experiments, the nutrient and inhibitory effects appear to be best balanced for growth at about 1:20 (extracted solid : H2O) ratios. The results suggest that solutions in cavities in meteorites can provide efficient concentrated biogenic and early nutrient environments, including high phosphate levels, which may be the limiting nutrient. The results also suggest that carbonaceous asteroid resources can sustain soil microbial activity and provide essential macronutrients for future space-based ecosystems.

  10. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland.

    PubMed

    Scolforo, Henrique Ferraco; Scolforo, Jose Roberto Soares; Mello, Carlos Rogerio; Mello, Jose Marcio; Ferraz Filho, Antonio Carlos

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna.

  11. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland

    PubMed Central

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna. PMID:26066508

  12. Light microscopy can reveal the consumption of a mixture of psychotropic plant and fungal material in suspicious death.

    PubMed

    Wiltshire, Patricia E J; Hawksworth, David L; Edwards, Kevin J

    2015-08-01

    Light microscopical examination of plant and fungal remains in the post mortem gut may be capable of demonstrating the ingestion of unexpected natural psychotropic materials. This is demonstrated here in a case in which a 'shaman' was accused of causing the death of a young man. The deceased had participated in a ceremony which involved the drinking of ayahuasca in order to induce a psychotropic experience. Ayahuasca is an infusion of Banisteriopsis caapi (ayahuasca vine), which produces a monoamine oxidase inhibitor, and one or more additional tropical plants, generally Psychotria viridis (chacruna) which produces dimethyltryptamine (DMT). The monoamine oxidase inhibitor prevents DMT from being broken down in the gut, so enabling its passage into the bloodstream and across the blood/brain barrier. Toxicological tests for DMT demonstrated the presence of this compound in the body. The deceased was reported to be in the habit of using Psilocybe semilanceata (liberty cap). This fungus (popularly called magic mushroom) contains psilocybin which is hydrolysed in the gut to psilocin; this compound mimics a serotonin uptake inhibitor, and also invokes psychotropic experiences. Microscopical examination established that the ileum and colon contained spores of Psilocybe and, in addition, pollen of Cannabis sativa and seeds of Papaver cf. somniferum (opium poppy). Both the plant species yield psychotropic substances. Palynological and mycological analysis of containers from the deceased person's dwelling also yielded abundant trace evidence of pertinent pollen and spores. The police had requested analysis for DMT but there was no screening for other psychotropic substances. Investigators were surprised that a mixture of hallucinogenic materials had been consumed by the deceased. The charge was modified from manslaughter to possession of a 'Class A' drug as the deceased had been consuming psychotropic substances not administered by the 'shaman'. Where death involving drugs

  13. Monitoring the chemistry and materials of the Magma binary-cycle generating plant

    SciTech Connect

    Shannon, D.W.; Elmore, R.P.; Pierce, D.D.

    1981-10-01

    This monitoring program includes studies of the following areas: chemistry of the geothermal brine, chemistry of the cooling water, corrosion of materials in both water systems, scale formation, suspended solids in th brine, and methods and instruments to monitor corrosion and chemistry. (MHR)

  14. Materials Selection for Superheater Tubes in Municipal Solid Waste Incineration Plants

    NASA Astrophysics Data System (ADS)

    Morales, M.; Chimenos, J. M.; Fernández, A. I.; Segarra, M.

    2014-09-01

    Corrosion reduces the lifetime of municipal solid waste incineration (MSWI) superheater tubes more than any other cause. It can be minimized by the careful selection of those materials that are most resistant to corrosion under operating conditions. Since thousands of different materials are already known and many more are developed every year, here the selection methodology developed by Prof. Ashby of the University of Cambridge was used to evaluate the performance of different materials to be used as MSWI superheater tubes. The proposed materials can operate at steam pressures and temperatures over 40 bars and 400 °C, respectively. Two case studies are presented: one makes a balanced selection between mechanical properties and cost per thermal unit; and the other focuses on increasing tube lifetime. The balanced selection showed that AISI 410 martensitic stainless steel (wrought, hard tempered) is the best candidate with a good combination of corrosion resistance, a relatively low price (0.83-0.92 €/kg) and a good thermal conductivity (23-27 W/m K). Meanwhile, Nitronic 50/XM-19 stainless steel is the most promising candidate for long-term selection, as it presents high corrosion resistance with a relatively low price (4.86-5.14 €/kg) compared to Ni-alloys.

  15. Material considerations for HRSGs in gas turbine combined cycle plants. Final report

    SciTech Connect

    Bourgeois, H.S.

    1996-08-01

    The primary objectives of this project are to investigate and identify the limitations of current heat recovery steam generator (HRSG) materials, identify potential materials that could be used in future high temperature HRSGs, and develop a research and development plan to address the deficiencies and the future requirements. The project team developed a comprehensive survey which was forwarded to many HRSG manufacturers worldwide. The manufacturers were questioned about cycle experience, failure experience, design practices, materials, research and development, and future designs. The team assembled the responses and other in-house data to identify the key problem areas, probably future operating parameters, and possible material issues. The draft report was circulated to the manufacturers surveyed for comments before the final report was issued. The predominant current problem area for HRSGs relates to insulation; however, it is anticipated that in future designs, tube failures and welds will become most important. Poor water chemistry has already resulted in numerous failure mechanisms. By 2005, HSRGs are expected to operated with the following average conditions: unfired gas temperatures of 1125 F, steam temperatures of 950 F, steam pressures of 1500 psi, and exhaust temperatures of 170 F.

  16. A Highly Sensitive Multicommuted Flow Analysis Procedure for Photometric Determination of Molybdenum in Plant Materials without a Solvent Extraction Step

    PubMed Central

    Santos, Felisberto G.

    2017-01-01

    A highly sensitive analytical procedure for photometric determination of molybdenum in plant materials was developed and validated. This procedure is based on the reaction of Mo(V) with thiocyanate ions (SCN−) in acidic medium to form a compound that can be monitored at 474 nm and was implemented employing a multicommuted flow analysis setup. Photometric detection was performed using an LED-based photometer coupled to a flow cell with a long optical path length (200 mm) to achieve high sensitivity, allowing Mo(V) determination at a level of μg L−1 without the use of an organic solvent extraction step. After optimization of operational conditions, samples of digested plant materials were analyzed employing the proposed procedure. The accuracy was assessed by comparing the obtained results with those of a reference method, with an agreement observed at 95% confidence level. In addition, a detection limit of 9.1 μg L−1, a linear response (r = 0.9969) over the concentration range of 50–500 μg L−1, generation of only 3.75 mL of waste per determination, and a sampling rate of 51 determinations per hour were achieved. PMID:28357152

  17. A Highly Sensitive Multicommuted Flow Analysis Procedure for Photometric Determination of Molybdenum in Plant Materials without a Solvent Extraction Step.

    PubMed

    Santos, Felisberto G; Reis, Boaventura F

    2017-01-01

    A highly sensitive analytical procedure for photometric determination of molybdenum in plant materials was developed and validated. This procedure is based on the reaction of Mo(V) with thiocyanate ions (SCN(-)) in acidic medium to form a compound that can be monitored at 474 nm and was implemented employing a multicommuted flow analysis setup. Photometric detection was performed using an LED-based photometer coupled to a flow cell with a long optical path length (200 mm) to achieve high sensitivity, allowing Mo(V) determination at a level of μg L(-1) without the use of an organic solvent extraction step. After optimization of operational conditions, samples of digested plant materials were analyzed employing the proposed procedure. The accuracy was assessed by comparing the obtained results with those of a reference method, with an agreement observed at 95% confidence level. In addition, a detection limit of 9.1 μg L(-1), a linear response (r = 0.9969) over the concentration range of 50-500 μg L(-1), generation of only 3.75 mL of waste per determination, and a sampling rate of 51 determinations per hour were achieved.

  18. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.

    PubMed

    Zwicke, Marine; Alessio, Giorgio A; Thiery, Lionel; Falcimagne, Robert; Baumont, René; Rossignol, Nicolas; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-11-01

    Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more

  19. Are patterns in nutrient limitation belowground consistent with those aboveground: Results from a 4 million year chronosequence

    USGS Publications Warehouse

    Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.

    2011-01-01

    Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.

  20. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    PubMed

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry.

  1. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    PubMed

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1).

  2. Above-ground biomass estimation of tuberous bulrush ( Bolboschoenus planiculmis) in mudflats using remotely sensed multispectral image

    NASA Astrophysics Data System (ADS)

    Kim, Ji Yoon; Im, Ran-Young; Do, Yuno; Kim, Gu-Yeon; Joo, Gea-Jae

    2016-03-01

    We present a multivariate regression approach for mapping the spatial distribution of above-ground biomass (AGB) of B. planiculmis using field data and coincident moderate spatial resolution satellite imagery. A total of 232 ground sample plots were used to estimate the biomass distribution in the Nakdong River estuary. Field data were overlain and correlated with digital values from an atmospherically corrected multispectral image (Landsat 8). The AGB distribution was derived using empirical models trained with field-measured AGB data. The final regression model for AGB estimation was composed using the OLI3, OLI4, and OLI7 spectral bands. The Pearson correlation between the observed and predicted biomass was significant (R = 0.84, p < 0.0001). OLI3 made the largest contribution to the final model (relative coefficient value: 53.4%) and revealed a negative relationship with the AGB biomass. The total distribution area of B. planiculmis was 1,922,979 m2. Based on the model estimation, the total AGB had a dry weight (DW) of approximately 298.2 tons. The distribution of high biomass stands (> 200 kg DW/900 m2) constituted approximately 23.91% of the total vegetated area. Our findings suggest the expandability of remotely sensed products to understand the distribution pattern of estuarine plant productivity at the landscape level.

  3. [Aboveground biomass of Tamarix on piedmont plain of Tianshan Mountains south slope].

    PubMed

    Zhao, Zhenyong; Wang, Ranghui; Zhang, Huizhi; Wang, Lei

    2006-09-01

    Based on the geo-morphological and hydro-geological characteristics, the piedmont plain of Tianshan Mountains south slope was classified into 4 geo-morphological belts, i.e., flood erosion belt, groundwater spill belt, delta belt, and the joining belt of piedmont plain and Tarim floodplain. A field investigation on the Tamarix shrub in this region showed that there was a significant difference in its aboveground biomass among the four belts, ranged from 1428.53 kg x hm(-2) at groundwater spill belt to 111.18 kg x hm(-2) at the joining belt of piedmont plain and Tarim floodplain. The main reason for such a big difference might be the different density of Tamarix shrub on different belts. Both the Tamarix aboveground biomass and the topsoil's salinity were decreased with increasing groundwater level. Groundwater level was the main factor limiting Tamarix growth, while soil salinity was not.

  4. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants

    SciTech Connect

    Adrados, A.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Study of the influence of materials in the pyrolysis of real plastic waste samples. Black-Right-Pointing-Pointer Inorganic compounds remain unaltered. Black-Right-Pointing-Pointer Cellulosic components give rise to an increase in char formation. Black-Right-Pointing-Pointer Cellulosic components promote the production of aqueous phase. Black-Right-Pointing-Pointer Cellulosic components increase CO and CO{sub 2} contents in the gases. - Abstract: In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm{sup 3} reactor, swept with 1 L min{sup -1} N{sub 2}, at 500 Degree-Sign C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg{sup -1}). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO{sub 2}; their HHV is in the range of 18-46 MJ kg{sup -1}. The amount of CO-CO{sub 2} increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  5. Radioactive materials released from nuclear power plants. Annual report 1991, Volume 12

    SciTech Connect

    Tichler, J.; Doty, K.; Congemi, J.

    1994-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1991 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1991 release data are summarized in tabular form. Data Covering specific radionuclides are summarized.

  6. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    PubMed

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  7. Enrichment of By-Product Materials from Steel Pickling Acid Regeneration Plants (TRP 9942)

    SciTech Connect

    Lu Swan, Delta Ferrites LLC

    2009-09-30

    A new process for manufacturing an enriched, iron-based product (strontium hexaferrite) in existing steel pickling acid regeneration facilities was evaluated. Process enhancements and equipment additions were made to an existing acid regeneration plant to develop and demonstrate (via pilot scale testing and partial-capacity production trials) the viability of a patented method to produce strontium-based compounds that, when mixed with steel pickling acid and roasted, would result in a strontium hexaferrite powder precursor which could then be subjected to further heat treatment in an atmosphere that promotes rapid, relatively low-temperature formation of discrete strontium hexaferrite magnetic domains yielding an enriched iron-based product, strontium hexaferrite, that can be used in manufacturing hard ferrite magnets.

  8. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Gower, S. T.; Vogel, J. G.; Norman, J. M.; Kucharik, C. J.; Steele, S. J.; Stow, T. K.

    1997-12-01

    The objectives of this study are to (1) characterize the carbon (C) content, leaf area index, and aboveground net primary production (ANPP) for mature aspen, black spruce, and young and mature jack pine stands at the southern and northern Boreal Ecosystem-Atmosphere Study (BOREAS) areas and (2) compare net primary production and carbon allocation coefficients for the major boreal forest types of the world. Direct estimates of leaf area index, defined as one half of the total leaf surface area, range from a minimum of 1.8 for jack pine forests to a maximum of 5.6 for black spruce forests; stems comprise 5 to 15% of the total overstory plant area. In the BOREAS study, total ecosystem (vegetation plus detritus plus soil) carbon content is greatest in the black spruce forests (445,760-479,380 kg C ha-1), with 87 to 88% of the C in the soil, and is lowest in the jack pine stands (68,370-68,980 kg C ha-1) with a similar distribution of carbon in the vegetation and soil. Forest floor carbon content and mean residence time (MRT) also vary more among forest types in a study area than between study areas for a forest type; forest floor MRT range from 16 to 19 years for aspen stands to 28 to 39 years for jack pine stands. ANPP differs significantly among the mature forests at each of the BOREAS study areas, ranging from a maximum of 3490 to 3520 kg C ha-1 yr-1 for aspen stands to 1170 to 1220 kg C ha-1 yr-1 for jack pine stands. Both net primary production (NPP) and carbon allocation differ between boreal evergreen and deciduous forests in the world, suggesting global primary production models should distinguish between these two forest types. On average, 56% of NPP for boreal forests occurs as detritus and illustrates the need to better understand factors controlling aboveground and below-ground detritus production in boreal forests.

  9. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China.

    PubMed

    Lin, Dunmei; Lai, Jiangshan; Muller-Landau, Helene C; Mi, Xiangcheng; Ma, Keping

    2012-01-01

    The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha(-1) (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha(-1) (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha(-1) (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.

  10. Aboveground tree biomass on productive forest land in Alaska. Forest Service research paper

    SciTech Connect

    Yarie, J.; Mead, D.R.

    1982-08-01

    Total aboveground woody biomass of trees on forest land that can produce 1.4 cubic meters per hectare per year of industrial wood in Alaska is 1.33 billion metric tons green weight. The estimated energy value of the standing woody biomass is 11.9 x 10 Btu's. Statewide tables of biomass and energy values for softwoods, hardwoods, and species group are presented.

  11. Topographic Variation in Aboveground Biomass in a Subtropical Evergreen Broad-Leaved Forest in China

    PubMed Central

    Lin, Dunmei; Lai, Jiangshan; Muller-Landau, Helene C.; Mi, Xiangcheng; Ma, Keping

    2012-01-01

    The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha−1 (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha−1 (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha−1 (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage. PMID:23118961

  12. Extended Bioventing Testing Results at the Aboveground Jet Fuel Storage Tank #20, Randolph AFB LPST # 104626

    DTIC Science & Technology

    2007-11-02

    Parsons Engineering Science, Inc. (Parsons ES) is pleased to submit the results of the extended bioventing testing at the aboveground jet fuel...performed by Parsons ES from 3 to 8 May 1996 to assess the extent of remediation completed during approximately three years of air injection bioventing . The...purpose of this letter is to summarize site and bioventing activities to date, present the results of the most recent respiration and soil gas

  13. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam

    PubMed Central

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P. R.

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam. PMID:27309718

  14. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar

    PubMed Central

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-01

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE) = 81.89 g·m−2, and relative error of 14.1%). The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns. PMID:28106819

  15. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.

    PubMed

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-19

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R² = 0.340, root-mean-square error (RMSE) = 81.89 g·m(-2), and relative error of 14.1%). The improvement of multiple regressions to the R² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns.

  16. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    NASA Technical Reports Server (NTRS)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  17. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    SciTech Connect

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V.

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  18. Corrosion-Resistant Materials for Water and Wastewater Treatment Plants at Fort Bragg

    DTIC Science & Technology

    2007-06-01

    sections in the following UFGS: • UFGS 0997040 C-200 Coal Tar Epoxy Polyamide Paint • UFGS 08120 Aluminum Doors and Frames • UFGS 08165A Sliding Metal...journal section (Appendix 2). Nitrile or buna-N rubber seals are used more than all the other elastomers combined, since nitrile is the most versatile...material and is not as likely to fail as do most other rub- ber gaskets and seals due to the natural breakdown of the elastomeric mo- lecular bond of

  19. Vermicomposting of herbal pharmaceutical industry waste: earthworm growth, plant-available nutrient and microbial quality of end materials.

    PubMed

    Singh, Deepika; Suthar, Surindra

    2012-05-01

    Efforts were made to decompose herbal pharmaceutical industrial waste (HPIW) spiked with cow dung (CD) using Eisenia fetida. A total of five vermibeds: T(1) - HPIW (0%+CD 100%, control), T(2) - HPIW (25%), T(3) - HPIW (50%), T(4) - HPIW (75%) and T(5) - HPIW (100%) were used for vermicomposting. The changes in biology and chemistry of vermibeds were measured after ten days interval. E. fetida showed high growth and cocoon production rate in all vermibeds. The vermicomposted material contained great population of fungi 6.0-40.6 (CFU × 10(5)g(-1)), bacteria 220-1276.0 (CFU × 10(8)g(-1)) and actinomycetes 410.0-2962.0 (CFU × 10(5)g(-1)) than initial material. Vermicomposted material was rich in plant-available forms of nutrients (N-NO(3)(-),PO(4)(3-),available K and SO(4)(-2)). Results suggested that noxious industrial waste can be converted into valuable product for sustainable soil fertility programme.

  20. Spatial and temporal distributions of hexabromocyclododecanes in the vicinity of an expanded polystyrene material manufacturing plant in Tianjin, China.

    PubMed

    Zhu, Hongkai; Zhang, Kai; Sun, Hongwen; Wang, Fei; Yao, Yiming

    2017-03-01

    To investigate the environmental fate of 3 main hexabromocyclododecane diastereoisomers (α-, β-, and γ-HBCDs), samples from various environmental media, including outdoor settled dust, soil, sediment, plant tissues (holly, cypress and pine) and marine species (shrimp, crab and fish) were obtained around an expanded polystyrene material manufacturing plant in Tianjin, China. The 3 main HBCD diastereoisomers were detected with the total concentrations ranging from 328 to 31,752 ng/g dry weight (dw), 2.91-1730 ng/g dw, 23.5-716 ng/g dw, 3.45-2494 ng/g dw, and 0.878-44.8 ng/g dw in the dust, soil, sediment, plant tissues, and marine species, respectively. This indicated that a point source of HBCDs could bring wide impact on its vicinal environment. A significant increasing trend of HBCDs concentrations was noted, as indicated by 12.9-41.6% of increasing rates in total concentrations of HBCDs at four sediment sites in the past five years. The diastereoisomer profiles were sorted into 3 groups: dust, soil and sediment, which had no statistical difference from commercial EPS-products (p > 0.05); plant tissues, which showed a moderate increase of α-isomer (22.9 ± 3.3%); and marine species, which were dominated by α-isomer (62.6 ± 2.8%). For α- and β-isomers, the results of enantiomeric analysis showed a preferential accumulation of the (+)-enantiomer in part of plant tissues and all marine organisms (p < 0.05). However, there was no enantioselectivity of the 3 isomers in dust, soil, and sediment samples (p > 0.05). Besides, marine food web magnification is observed for HBCDs, with trophic magnification factors close to 2. The daily intakes of HBCDs were estimated to be 0.058-5.84 ng/kg-bw/day for local residents through dust and soil ingestion and 0.048-8.43 ng/kg-bw/day for Tianjin citizens through seafood consumption.

  1. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, Wenge; Lee, Shihyan; Strahler, Alan H.; Woodcock, Curtis E.; Schaaf, Crystal; Yao, Tian; Ranson, K. Jon; Sun, Guoqing; Blair, J. Bryan

    2010-06-01

    Lidar-based aboveground biomass is derived based on the empirical relationship between lidar-measured vegetation height and aboveground biomass, often leading to large uncertainties of aboveground biomass estimates at large scales. This study investigates whether the use of any additional lidar-derived vegetation structure parameters besides height improves aboveground biomass estimation. The analysis uses data collected in the field and with the Laser Vegetation Imaging Sensor (LVIS), and the Echidna® validation instrument (EVI), a ground-based hemispherical-scanning lidar data in New England in 2003 and 2007. Our field data analysis shows that using wood volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve aboveground biomass estimates at large scales. This result is comparable to previous individual-tree based analyses. Our LVIS data analysis indicates that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, are closely related to wood volume and thus biomass particularly for conifer forests. RH100*cover and RH50*cover perform similarly or even better than RH50, a good biomass predictor found in previous study. This study shows that the use of structure parameters that combine height and gap fraction (rather than height alone) improves the aboveground biomass estimate, and that the fusion of lidar and optical remote sensing (to provide vegetation t